13 research outputs found

    Domain independent goal recognition

    Get PDF
    Goal recognition is generally considered to follow plan recognition. The plan recognition problem is typically deïŹned to be that of identifying which plan in a given library of plans is being executed, given a sequence of observed actions. Once a plan has been identiïŹed, the goal of the plan can be assumed to follow. In this work, we address the problem of goal recognition directly, without assuming a plan library. Instead, we start with a domain description, just as is used for plan construction, and a sequence of action observations. The task, then, is to identify which possible goal state is the ultimate destination of the trajectory being observed. We present a formalisation of the problem and motivate its interest, before describing some simplifying assumptions we have made to arrive at a ïŹrst implementation of a goal recognition system, AUTOGRAPH. We discuss the techniques employed in AUTOGRAPH to arrive at a tractable approximation of the goal recognition problem and show results for the system we have implemented

    Intention Recognition for Partial-Order Plans Using Dynamic Bayesian Networks

    Get PDF
    In this paper, a novel probabilistic approach to intention recognition for partial-order plans is proposed. The key idea is to exploit independences between subplans to substantially reduce the state space sizes in the compiled Dynamic Bayesian Networks. This makes inference more efficient. The main con- tributions are the computationally exploitable definition of subplan structures, the introduction of a novel Lay- ered Intention Model and a Dynamic Bayesian Net- work representation with an inference mechanism that exploits consecutive and concurrent subplans\u27 indepen- dences. The presented approach reduces the state space to the order of the most complex subplan and requires only minor changes in the standard inference mecha- nism. The practicability of this approach is demon- strated by recognizing the process of shelf-assembly

    Reconnaissance des buts d'un agent à partir d'une observation partielle de ses actions et des connaissances stratégiques de son espace de décision

    Get PDF
    La capacité de reconnaßtre les intentions des autres est une composante essentielle non seulement de l'intelligence humaine mais aussi de l'intelligence artificielle dans plusieurs domaines d'application. Pour les algorithmes d'intelligence artificielle, reconnaßtre l'intention d'un agent à partir d'une observation partielle de ses actions demeure un défi de taille. Par exemple dans les jeux de stratégie en temps réel, on aimerait reconnaßtre les intentions de son adversaire afin de mieux contrer ses actions futures. En domotique, on voudrait une maison capable de comprendre et d'anticiper les intentions de ses habitants pour maximiser leur confort et les assister dans leurs activités quotidiennes. Dans le domaine de la sécurité informatique, un outil de détection des intrus doit pouvoir observer les actions des usagers du réseau et déceler ceux qui ont des intentions malveillantes. Ce mémoire de maßtrise propose d'aborder ce problÚme sous observabilité partielle par adaptation des méthodes utilisées dans l'analyse grammaticale probabiliste. L'approche probabiliste considérée utilise une grammaire hors contexte de multi-ensemble partiellement ordonnée et considÚre la poursuite de plusieurs buts simultanément, ordonnés ou non. Cela revient donc à faire de l'analyse grammaticale probabiliste avec plusieurs symboles de départ

    Heuristic Online Goal Recognition in Continuous Domains

    Full text link

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    Recognising high-level agent behaviour through observations in data scarce domains

    Get PDF
    This thesis presents a novel method for performing multi-agent behaviour recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable (e.g. surveillance, defence). Human behaviours are composed from sequences of underlying activities that can be used as salient features. We do not assume that the exact temporal ordering of such features is necessary, so can represent behaviours using an unordered “bag-of-features”. A weak temporal ordering is imposed during inference to match behaviours to observations and replaces the learnt model parameters used by competing methods. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao-Blackwellised Particle Filter. Behaviours are recognised at multiple levels of abstraction and can contain a mixture of solo and multiagent behaviour. We validate our framework using the PETS 2006 video surveillance dataset and our own video sequences, in addition to a large corpus of simulated data. We achieve a mean recognition precision of 96.4% on the simulated data and 89.3% on the combined video data. Our “bag-of-features” framework is able to detect when behaviours terminate and accurately explains agent behaviour despite significant quantities of low-level classification errors in the input, and can even detect agents who change their behaviour

    Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems

    Get PDF
    Much research in artificial intelligence is concerned with the development of autonomous agents that can interact effectively with other agents. An important aspect of such agents is the ability to reason about the behaviours of other agents, by constructing models which make predictions about various properties of interest (such as actions, goals, beliefs) of the modelled agents. A variety of modelling approaches now exist which vary widely in their methodology and underlying assumptions, catering to the needs of the different sub-communities within which they were developed and reflecting the different practical uses for which they are intended. The purpose of the present article is to provide a comprehensive survey of the salient modelling methods which can be found in the literature. The article concludes with a discussion of open problems which may form the basis for fruitful future research.Comment: Final manuscript (46 pages), published in Artificial Intelligence Journal. The arXiv version also contains a table of contents after the abstract, but is otherwise identical to the AIJ version. Keywords: autonomous agents, multiagent systems, modelling other agents, opponent modellin

    Applications of Discourse Structure for Spoken Dialogue Systems

    Get PDF
    Language exhibits structure beyond the sentence level (e.g. the syntactic structure of a sentence). In particular, dialogues, either human-human or human-computer, have an inherent structure called the discourse structure. Models of discourse structure attempt to explain why a sequence of random utterances combines to form a dialogue or no dialogue at all. Due to the relatively simple structure of the dialogues that occur in the information-access domains of typical spoken dialogue systems (e.g. travel planning), discourse structure has often seen limited application in such systems. In this research, we investigate the utility of discourse structure for spoken dialogue systems in more complex domains, e.g. tutoring. This work was driven by two intuitions.First, we believed that the "position in the dialogue" is a critical information source for two tasks: performance analysis and characterization of dialogue phenomena. We define this concept using transitions in the discourse structure. For performance analysis, these transitions are used to create a number of novel factors which we show to be predictive of system performance. One of these factors informs a promising modification of our system which is implemented and compared with the original version of the system through a user study. Results show that the modification leads to objective improvements. For characterization of dialogue phenomena, we find statistical dependencies between discourse structure transitions and two dialogue phenomena which allow us to speculate where and why these dialogue phenomena occur and to better understand system behavior.Second, we believed that users will benefit from direct access to discourse structure information. We enable this through a graphical representation of discourse structure called the Navigation Map. We demonstrate the subjective and objective utility of the Navigation Map through two user studies.Overall, our work demonstrates that discourse structure is an important information source for designers of spoken dialogue systems
    corecore