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A B S T R A C T

Shared control plays a pivotal role in designing assistive robots to comple-
ment human capabilities during everyday tasks. However, traditional shared
control relies on users forming an accurate mental model of expected robot
behaviour. Without this accurate mental image, users may encounter confu-
sion or frustration whenever their actions do not elicit the intended system
response, forming a misalignment between the respective internal models
of the robot and human. The Explainable Shared Control paradigm intro-
duced in this thesis attempts to resolve such model misalignment by jointly
considering assistance and transparency.

There are two perspectives of transparency to Explainable Shared Control:
the human’s and the robot’s. Augmented reality is presented as an integral
component that addresses the human viewpoint by visually unveiling the
robot’s internal mechanisms. Whilst the robot perspective requires an aware-
ness of human “intent”, and so a clustering framework composed of a deep
generative model is developed for human intention inference.

Both transparency constructs are implemented atop a real assistive robotic
wheelchair and tested with human users. An augmented reality headset is
incorporated into the robotic wheelchair and different interface options are
evaluated across two user studies to explore their influence on mental model
accuracy. Experimental results indicate that this setup facilitates transparent
assistance by improving recovery times from adverse events associated with
model misalignment. As for human intention inference, the clustering frame-
work is applied to a dataset collected from users operating the robotic wheel-
chair. Findings from this experiment demonstrate that the learnt clusters are
interpretable and meaningful representations of human intent.

This thesis serves as a first step in the interdisciplinary area of Explainable
Shared Control. The contributions to shared control, augmented reality and
representation learning contained within this thesis are likely to help future
research advance the proposed paradigm, and thus bolster the prevalence of
assistive robots.
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1
I N T R O D U C T I O N

Assistive robots are one of the most promising avenues for enhancing the
quality of life in people living with disability. Whether these robots occupy
the form of a powered wheelchair, a feeding and drinking aid, or even a
social companion, they all strive to somehow augment the independence of
disabled people (Brose et al., 2010). Not only can such technologies accel-
erate improvements in quality of life, but they may also reduce the burden
on available healthcare resources (Agree, 2014). Yet in spite of the potential
rooted in assistive robots, their migration from controlled lab environments
to widespread commercial use remains an open problem.

A predominant reason for the hindered pervasiveness of assistive robots
lies in the complexity of providing assistance in general, be it through hu-
mans or robots. Assisting someone properly is a demanding task that must
account for a multitude of factors, such as the frequently varying environ-
ment, the developmental changes experienced by the person being helped,
as well as their personal initiative and authority (Demiris, 2009). Designing
a system to accommodate these diverse conditions is a non-trivial task.

In the broader domain of Human-Robot Interaction (HRI), an auspicious
trend for collaboration with robots is Shared Control (SC), which is the sub-
ject matter of this thesis. There are many definitions of SC in the HRI literat-
ure, but we adopt a well-accepted view of this construct as any task where a
human and robot continuously exert control over a system to accomplish a
common goal (Abbink et al., 2018). Relating back to the task of assistance, SC
presents a propitious means of supporting disabled individuals in the oper-
ation of assistive robots.

However, the quality of assistance delivered through SC heavily depends
on whether the person being assisted can form accurate mental models of the
robot behaviour (Abbink et al., 2018; Goodrich and Olsen, 2003). Whenever
robot actions do not align with human expectations, there is risk of causing
obstruction and frustration rather than offering support (Nisbet, 2002). In the
worst-case scenario, a person may even reject all robotic assistance due to the
misalignment between their mental models of intended system behaviour
and the robot’s internal models. A method of reconciling mismatched agent
models is thus required.
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16 introduction

Within the field of Explainable Artificial Intelligence (XAI) and specifically
planning, the problem of “model reconciliation” is regarded as a process of
explanation (Chakraborti et al., 2017; Fox et al., 2017). Explanations here refer
to model updates that help resolve any differences between a human’s ex-
pectations of robot plans and their actual representations. A popular way
of producing these explanations is to visually expose latent robot represent-
ations to human observers via a mode of feedback, for which Augmented
Reality (AR) is an increasingly prevalent choice of medium (Chakraborti,
Sreedharan, Kulkarni and Kambhampati, 2018).

Motivated by the notion of using explanations to resolve model mismatch
in SC, this thesis introduces the Explainable Shared Control (XSC) paradigm.
The key objective of XSC is to establish transparency in the HRI, such that
both the human and robot can interpret each other’s internal models in or-
der to rectify any misalignment. In the context of this thesis, internal models
responsible for the high-level planning and generation of goal-driven human
behaviour are deemed “intentions” (Bratman, 1990; Tomasello et al., 2005).
By assuming that these models are akin to the “intentions” of an agent, we
regard a transparent interaction as one where there exists a communication
channel of intent (Lyons, 2013; Lyons and Havig, 2014). For the human end-
point of this channel, the rationale behind robot actions must be visualised
for explanation (Chakraborti, Fadnis, Talamadupula, Dholakia, Srivastava,
Kephart and Bellamy, 2018). Whilst at the robot endpoint, intent must be im-
plicitly inferred from sensory observations of overt human behaviour (De-
miris, 2007; Goodrich and Olsen, 2003).

Our primary focus in this thesis is to satisfy these transparency require-
ments and thereby fulfil XSC. Addressing the human viewpoint, we present
an AR interface that reveals the inner workings of an SC implementation for
assistive robot navigation. From the robot angle, we derive an unsupervised
clustering algorithm that can perform human intention inference without
relying on any explicit indicators or labels of intent (e. g. predefined goal
poses on a map). Both solutions for transparency are tested on a robotic
– or “smart” – wheelchair, i. e. a powered wheelchair that has been exten-
ded to include a collection of sensors and an on-board computer (Simpson
et al., 2004). This assistive mobile robot is the target application considered
throughout the thesis.
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1.1 research questions

Four research questions arise from this thesis on Explainable Shared Control:

1. What constitutes as an effective Shared Control methodology for assist-
ive robot navigation?

2. How can an Augmented Reality Head-Mounted Display be integrated
with a Shared Control system to expose its inner workings?

3. Can human users of Shared Control have their mental model accuracy
improved by an Augmented Reality interface that visually explains the
robot’s internal mechanisms?

4. How can an interpretable model be developed for robots to infer hu-
man intentions without making any assumptions about specific task
constraints?

1.2 thesis contributions

The main contributions of this thesis to the field of robotics are:

• A Shared Control implementation tailored to help robotic wheelchair
users safely navigate indoor environments. The Shared Control em-
ploys two processes: intention estimation and assistive control. User
joystick commands are first analysed to yield an estimate of intent that
is translated into a navigation goal for the mobile base. This goal then
informs an obstacle avoidance routine on when and how to output as-
sistive commands. We also supply the corresponding C++ implement-
ation as an open-source Robot Operating System package.

• The first instance of an Augmented Reality Head-Mounted Display be-
ing integrated onto a smart wheelchair with built-in Shared Control.
By rendering the internal state of the Shared Control onto the oper-
ator’s view of the world via a head-mounted Augmented Reality in-
terface, we aim to aid mental models in growing accustomed to the
administered assistance.

• A list of objectives and guidelines that delimit the Explainable Shared
Control paradigm, coupled with an Augmented Reality-based instanti-
ation for robotic wheelchairs. Explainable Shared Control is conceptu-
alised from the perspective of developing internal models (e. g. inten-
tion estimation) and designing Augmented Reality interfaces.
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• Two user studies with a setup involving a smart wheelchair and a
Head-Mounted Display, namely the Microsoft HoloLens1. The first
evaluates the acceptance rate and learning curve of Shared Control
for assistive navigation when complemented with an Augmented Real-
ity immersive training regime. Results from this initial study highlight
that graphical cues must be carefully designed to augment informa-
tion acquisition and not induce distractions from the task-at-hand. The
follow-up study then discerns the value of Explainable Shared Con-
trol at settling model misalignment during an indoor navigation trial.
Users displayed faster traversal times for challenging events linked
with poorly aligned mental models, and unlike before, at no expense
of distracting or harming task performance.

• A deep generative model for unsupervised clustering on sequential
data, termed the Disentangled Sequence Clustering Variational Au-
toencoder (DiSCVAE), which is utilised to make inferences about hu-
man intent. This generative model falls under the Variational Autoen-
coder (VAE) framework (Kingma and Welling, 2013; Rezende et al.,
2014), allowing for efficient and scalable learning. Unlike previous
VAEs in sequence modelling, the DiSCVAE simultaneously clusters and
disentangles latent representations of sequential observations, granting
explainable insight on its generative properties. Each cluster formed is
indexed by a categorical variable and its mode can be used to infer
discrete high-level features, e. g. “intentions”.

• Experimental analysis of the DiSCVAE performing two tasks: unsu-
pervised classification and human intention inference. To validate the
model’s capacity to discover classes from unlabelled sequences, we re-
port results on Moving MNIST (Srivastava et al., 2015), a synthetic
dataset for video representation learning. As for inferring intent from
observed human behaviour, we provide results of the model applied to
a Human-Robot Interaction dataset collected with a robotic wheelchair.
Findings from this experiment demonstrate how clusters that signify
intent can be learnt without relying on any explicit supervision.

Appendix D summarises the relevant publications derived from this thesis.

1 https://www.microsoft.com/en-us/hololens

https://www.microsoft.com/en-us/hololens
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Figure 1.1: Thesis overview. Each block references a chapter, with the blue arrows
distinguishing between the two perspectives of transparency in XSC.

1.3 thesis overview and organisation

This thesis is comprised of six chapters in total (see Figure 1.1 for a visual
overview), with supplementary material spanning across four appendices:

• Chapter 2 reviews the foundations that underpin our approach to XSC
in assistive robotics. In particular, prior works engaging in SC and AR
are discussed in isolation before being framed in the context of model
reconciliation. Various deep generative models and techniques for hu-
man intention estimation are then examined. Finally, connections are
drawn between all the above.

• Chapter 3 describes our SC methodology and architecture for assistive
robot navigation in a smart wheelchair setting. There are two principal
functions of the navigational assistance: trajectory generation and ar-
bitration. Both functions link to the processes of intention estimation
and assistive control, respectively, and are delineated as components
of our proposed SC methodology.

• Chapter 4 details a novel head-mounted AR system for robotic wheel-
chairs and introduces XSC, alongside a clarification of its terminology
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and guidelines. Two HRI experiments in which subjects operated the
AR Head-Mounted Display (HMD) system are evaluated to identify its
effectiveness at improving mental model accuracy.

• Chapter 5 proposes an unsupervised clustering approach for human
intention inference using the DiSCVAE. Assigning individual observa-
tions to the most probable component of this mixture model enables
classes or intentions to be inferred from the formed clusters. To illus-
trate this capability, experimental results on a synthetic video data-
set and an HRI dataset involving a smart wheelchair are additionally
provided.

• Chapter 6 concludes with a discussion summarising the findings of
this thesis and its impact on assistive robotics, as well as any outstand-
ing issues and potential research directions for future work.

• Appendix A outlines the software packages and open-source contribu-
tions that stem from this thesis.

• Appendix B investigates an eye-gaze controlled wheelchair as a non-
invasive hands-free solution for people who do not possess the cog-
nitive or motor capacity to steadily navigate an environment with a
standard joystick device.

• Appendix C exemplifies an application of AR to project the intentions
of a dual-arm collaborative robot, as opposed to explaining SC.

• Appendix D is an account of all the peer-review publications originat-
ing from this thesis.

This chapter introduced the research objective of XSC to establish transpar-
ency, such that both the assistive robot and human understand each other’s
underlying “intent”. The next chapter covers the related work that reinforces
our endeavour for transparent HRI.
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B A C K G R O U N D

This chapter reviews the relevant foundations of Explainable Shared Con-
trol (XSC) for assistive robotics. In Section 2.1, Shared Control (SC) is in-
troduced and situated within assistive robotics. Section 2.2 then explores
Augmented Reality (AR) as a communication medium for Human-Robot In-
teraction (HRI) and Section 2.3 follows with an interrogation of the model
reconciliation problem. Pertinent computational approaches to intention es-
timation are investigated in Section 2.4, alongside the interdisciplinary theor-
ies surrounding human intent. Section 2.5 presents state-of-the-art deep gen-
erative models and exemplifies their utility in robotics. Finally, Section 2.6
closes this chapter with remarks about how the reviewed topics form the
basis of XSC in facilitating transparent and effective HRI.

2.1 shared control

The SC paradigm is widely regarded as any task in which a human oper-
ator and robot collaborate towards a common goal by continuously exerting
control over a system (Abbink et al., 2018). The continuous element is vital as
it compels participants of the SC to actively engage in the task-at-hand. We
adopt this stance on SC and thus exclude from consideration a vast range
of paradigms that rely on mode-switching mechanisms to slide between dis-
tinct levels of autonomy (Desai and Yanco, 2005; Dias et al., 2008).

We first present SC for its pivotal role in user-technology integration with
assistive robots (e. g. robot-assisted mobility Cowan et al., 2012). Typical SC
frameworks that comply with the aforementioned definition are then ex-
amined, which are categorised as either goal-oriented or learning-based. Frame-
works that assume a known goal space exists for the specific task are referred
to as goal-oriented, whilst learning-based SC mitigates the prerequisite for
a goal representation by directly learning an assistive policy from human
input data, e. g. their actions. Lastly, the remainder of this section is devoted
to methods of evaluating effective SC.

21
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2.1.1 Conditionally Assistive Robots

Assistive robotics is a subset of HRI that aims to bolster the autonomy of
people living with disability. In spite of this promising outlook, designing ro-
bots to administer proper assistance is riddled with challenges. For instance,
the unique requirements of different individuals and their disabilities must
be taken into account, as well as adapted whenever there are variations in
their capabilities (Brose et al., 2010; Cowan et al., 2012). Deriving policies for
assistance is also complicated by the social and physical factors of continu-
ously evolving environments (Agree, 2014; Cowan et al., 2012). To address
these challenges and encourage improvements in a user’s developmental
trajectory, the robot must facilitate conditional assistance (Demiris, 2009). In
other words, the robot should balance out a user’s proficiency at independ-
ently completing the task with their need for support.

One viable route for building “conditionally assistive” robots is to incor-
porate SC (Demiris, 2009). A robot employing SC will only correct – not
override – noisy or unsafe inputs, hence respecting user desires for independ-
ence (Nisbet, 2002). Moreover, robots that supply assistance on an as-needed
basis reinforce the user’s confidence and personal growth, which is crucial
for preventing debilitating effects on development, e. g. “learned helpless-
ness” (Abramson et al., 1978; Seligman, 1972). Assistive robots undertaking
SC are also adept at handling complex environments where human inter-
vention may be necessary (Abbink et al., 2018).

SC holds great potential for engineering a variety of assistive robots, but
the focus of this thesis will be on its application to powered mobility. Ex-
amples of mobile robotic aids include “smart” wheelchairs (Simpson et al.,
2004), wearable exoskeletons and artificial limbs (Cowan et al., 2012). In the
following, we motivate our SC methodology for robotic wheelchairs (see
Chapter 3) by elaborating on how SC is generally realised across different
robot architectures.

2.1.2 Goal-Oriented Frameworks

Goal-oriented SC frameworks consist of two core processes: intention es-
timation and arbitration (Losey et al., 2018). A typical interaction cycle of
these processes will first involve the robot recognising user intentions from
a pre-defined set of task-specific goals in order to select appropriate control
commands. An arbitration phase then considers both the user’s and robot’s
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individual control inputs before finalising the output commands that best
align with the overall SC objective, e. g. to conditionally assist.

A popular scheme of SC is to perform intention estimation and arbitra-
tion sequentially in isolation, which is termed “predict-then-blend” (Javdani
et al., 2015). In this scheme, the robot predicts or estimates a user’s goal with
respect to the task and chooses an assistive action to help achieve this goal.
A blend of the user and robot control inputs is subsequently composed to
regulate assistance in the SC, i. e. “policy-blending” (Dragan and Srinivasa,
2013). There is also usually a measure of confidence associated with pre-
dicted goals to inform the weighting in blending robot-user control (Carlson
and Demiris, 2012; Dragan and Srinivasa, 2013; Huang and Mutlu, 2016).
However, “predict-then-blend” methods rely on single point estimates of
goals and suffer when the corresponding confidences are low, as the robot
is left to either assist incorrectly or not assist at all.

To offer efficient assistance irrespective of the ambiguity surrounding hu-
man intent, many SC frameworks instead apply Bayesian reasoning to com-
pute a belief over all task goals (Javdani et al., 2015). By maintaining this
probabilistic belief, the robot can reason over an entire goal distribution
to select actions that sustain assistance even when confidence levels are
low (Javdani et al., 2015; Pellegrinelli et al., 2016). Furthermore, the uncer-
tainty obtained from a predictive distribution can be exploited to determine
how robot-user control is arbitrated (Jain and Argall, 2018, 2019). Although
more robust than “predict-then-blend”, these probabilistic frameworks still
assume that a discrete set of possible goals is known beforehand.

2.1.3 Learning-Based Frameworks

On the contrary, modern learning-based SC frameworks bypass the con-
straint of explicitly representing user goals and directly derive policies of
assistance from sensory observations of human input. Rather than perform-
ing intention inference, these frameworks deploy learning algorithms to re-
veal end-to-end mappings between control inputs and assistive behaviour.

Learning by demonstration is a notable SC framework that learns an assist-
ive policy from numerous rehearsals of “expert” guidance (Soh and Demiris,
2013, 2015). Soh and Demiris (2015) applied this framework in a smart wheel-
chair setting using a mixture model of sparse online Gaussian Processes
(GPs) to learn “how” and “when” to help users drive. The model learnt this
policy from observations of a supervisor administering assistance through
a haptic device. Despite reported successes at reproducing expert-level aid,
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there are a few drawbacks to this approach. First and foremost, the super-
visor’s assistance may not always maintain consistency or necessarily agree
with the primary user (Kucukyilmaz and Demiris, 2018). Another hindrance
is that an external perspective on the task is a transformed frame of refer-
ence that could result in misguided control (Schettino and Demiris, 2019).
The heavy reliance on an expert being available may also pose difficulties in
data acquisition.

More recent machine learning frameworks for SC overcome these draw-
backs by recovering assistive policies solely from observed user behaviour.
For example, Reddy et al. (2018) demonstrated how human-in-the-loop re-
inforcement learning could enable versatile SC by decoding intended robot
actions from user inputs without the assumption of an existing goal. Encap-
sulated in the learning algorithm was a decision-making component that
determined how to provide assistance when conditioned on this implicit de-
coding of intent. Losey et al. (2019) instead extracted high-dimensional robot
actions from a low-dimensional, human-controllable latent space via repres-
entation learning. These “latent actions” were beneficial in easing the SC of
assistive robots. Within such frameworks, model training can also take place
in simulation to alleviate the issue of data availability.

Executing SC in a learning-based manner is advantageous for real-world
tasks without any prior knowledge about the human goals or policies for
attaining them. Nevertheless, the low-level robot actions generated using
the above frameworks do not corroborate a user’s high-level intent, e. g. their
plan of action for achieving some goal (Pacherie, 2008; Tomasello et al., 2005).
As a result, we probe the matter of human intention understanding further
in Section 2.4.

2.1.4 Methods of Evaluation

Another aspect of SC not yet discussed is how to determine its effectiveness
at providing assistance. There is no clear consensus on how to evaluate SC,
but a common standard is to identify its benefits over manual control (Ab-
bink et al., 2018). Though this approach may prove enlightening when using
traditional engineering metrics, like time-to-completion or fluency of con-
trol (Erdogan and Argall, 2017), it is unlikely to account for human factors,
such as user preference (Ezeh et al., 2017) or cognitive workload (Carlson
and Demiris, 2012; Ghorbel et al., 2018; Viswanathan et al., 2017). Moreover,
Abbink et al. (2018) highlight that assessment of SC should extend beyond
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the boundaries of the robot capabilities and task constraints, meaning the
more realistic the experimental conditions, the better.

Given the thesis scope of powered mobility, we will now outline a corres-
ponding means of evaluating SC on smart wheelchairs that abides by the
above remarks. Indeed, metrics like task completion time, number of colli-
sions and joystick command fluency are informative to smart wheelchair de-
signers on the efficiency of SC versus manual control (Carlson and Demiris,
2012; Erdogan and Argall, 2017). However, human factors must also be eval-
uated using objective and subjective measures. For instance, cognitive work-
load is an important criterion that determines a user’s attitude and likely
acceptance of the resulting wheelchair assistance (Ezeh et al., 2017; Ghor-
bel et al., 2018; Viswanathan et al., 2017). Subjective questionnaires, such as
the NASA-TLX (Hart and Staveland, 1988), are practical indicators of this
metric, but there are also objective measures from human physiological data
(e. g. eye gaze and head dynamics) that bear close ties with heightened work-
load (Doshi and Trivedi, 2012; Reimer and Mehler, 2011; Solovey et al., 2014).
Therefore, the SC evaluation should encompass a range of subjective and ob-
jective metrics that gauge the positive impact on both the resulting control
policy and human engagement.

Testing SC on smart wheelchairs that intend to push the boundaries of con-
strained lab conditions (Abbink et al., 2018) can also be achieved by referring
to the Wheelchair Skills Test (WST) manual (Kirby et al., 2002). The WST is
a scored set of skills that establish whether a person qualifies as sufficiently
capable at operating a wheelchair during everyday activities (Kirby et al.,
2002). Some example skills include applying brakes, traversing doorways,
ascending or descending an incline, and performing 3-point turns. Design-
ing user studies according to the WST thereby fulfils the “full spectrum of
realistic situations and conditions” mandated by Abbink et al. (2018) on how
to evaluate SC. The WST has also enjoyed prior success in the literature on
SC for smart wheelchair studies (Ghorbel et al., 2018; Pineau et al., 2011).

Having presented a brief outlook on how to evaluate SC, specifically in as-
sistive robot navigation, the only aspect left to address is communication (Lo-
sey et al., 2018). Information feedback in SC is especially relevant as complex
“black-box” methods begin to emerge, such as those detailed in Reddy et al.
(2018) and Losey et al. (2019). Accordingly, the next section investigates how
AR can create a bridge of communication in HRI.
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2.2 augmented reality in human-robot interaction

Immersive technologies involving AR are a prominent way of expressing in-
formation to users about the inner workings of an intelligent agent. These
technologies are designed to perform a range of capabilities suited for estab-
lishing an embodied interface and augmenting a user’s natural perception
of the Artificial Intelligence (AI). In this section, we concentrate on the phys-
ical case of robots and how AR has previously been utilised as a mode of
information feedback in HRI.

Dating back to the earliest applications of AR in robotics, there have been
reports on its efficacy at guiding the control of human operators (Azuma,
1997; Milgram et al., 1995, 1993). In many collaborative situations that re-
quire the human to teleoperate the robot’s end-effectors, AR serves as a com-
munication channel between the two agents (Azuma et al., 2001). By over-
laying the robot’s perspective onto the operator’s view and displaying the
predicted effects of interacting with the surroundings, the user is capable of
executing accurate remote control (Azuma et al., 2001; Milgram et al., 1995).
With the pervasiveness of mobile AR systems prompted by improvements in
wireless networking, these visualisation techniques have even migrated into
navigation settings (Carmigniani et al., 2011; Chatzopoulos et al., 2017).

Meanwhile in SC, a key expectation of the robot is to regularly exchange
information with its human partner (Losey et al., 2018). In many instances of
SC, the haptic channel is the selected modality of sensory feedback during
this exchange (Kucukyilmaz and Demiris, 2018; Losey et al., 2018). However,
force feedback only provides a limited user embodied experience and so AR
possibly poses as a more transparent mode of relaying back information to
interacting human partners. Head-Mounted Displays (HMDs) are particu-
larly useful for this purpose due to their increased sense of presence and
engagement over monitors or projectors (Alshaer et al., 2017; Buttussi and
Chittaro, 2018; Sibirtseva et al., 2018). These headsets are not without flaws,
but in the scope of SC where users must maintain attention and actively par-
ticipate in the task-at-hand, they have been highlighted as superior to other
feedback modalities (Sibirtseva et al., 2018).

Regardless of the positive prospects rooted in AR as a medium of ex-
change, explicating the hidden rationale of a robot is a non-trivial task. In
SC, the process of inferring robot intent is challenging for humans and often
leads to a misalignment between a person’s mental models of the expected
behaviour and the robot’s internal models (Jain and Argall, 2019; Javdani
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et al., 2015). This phenomenon, known as model misalignment, echoes the
need for transparency in the HRI (Lyons, 2013; Lyons and Havig, 2014).

2.3 model reconciliation

Model misalignment or “model reconciliation” (Chakraborti et al., 2017) is a
well-known problem in Explainable Artificial Intelligence (XAI) and explain-
able planning (Fox et al., 2017). In this subject area, model reconciliation
refers to the use of “explanations” or model updates (Chakraborti et al.,
2017) to resolve differences in a human’s expectations of an artificially in-
telligent agent’s plan. Ergo, the aim behind generating explanations is to
modify the human’s model of the world to agree with the agent’s model.

There is no absolute way of evaluating how explanations effectively foster
this ‘agreement’, albeit many have investigated the matter. Perhaps the best
point of reference is Gilpin et al. (2018), who claim that an explanation can be
evaluated either in terms of interpretability or completeness. Given an explana-
tion, the former reflects how well it helps humans understand the internals
of an AI, whilst the latter relates to how accurately it describes the AI op-
eration, such that humans can anticipate its behaviour (Clinciu and Hastie,
2019; Gilpin et al., 2018). Diagnosing these two measures can be performed
subjectively, e. g. via post-instance questionnaires (Theodorou, 2019), or ob-
jectively through quantitative metrics, like monitored attention and cognitive
load (Carlson and Demiris, 2009; Goodrich and Olsen, 2003), or predictive
and descriptive accuracy (Murdoch et al., 2019). Bootstrapped with this pro-
tocol for evaluation, the next phase is to develop a means of reconciling
mismatched models.

Intelligent systems within explainable planning tackle model reconcili-
ation by adopting three qualities: trust, interaction and transparency (Fox
et al., 2017). Trust refers to the user’s confidence in the capabilities and
reliability of an AI, interaction relates to the user’s ability to query the
AI, and transparency concerns the user’s clarity on the AI status (e. g. its
goals and functionality Theodorou, 2019). These qualities are instrumental
in the circulation of intelligent systems and fall under the wider umbrella
of standards that strive towards ethical AI (Bryson and Winfield, 2017), e. g.
on the transparency of autonomous systems1. Offering explanations that en-
compass these qualities can be cast as a problem of visualisation, where the
“brain” of the AI should be externalised in order to align mismatched mod-

1 https://standards.ieee.org/project/7001.html

https://standards.ieee.org/project/7001.html
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els (Chakraborti, Fadnis, Talamadupula, Dholakia, Srivastava, Kephart and
Bellamy, 2018; Wortham et al., 2017).

All three ingredients for model reconciliation and the notion of using visu-
alisations to enable them are also heavily rooted in HRI. Although interac-
tion is a natural precondition of this field, trust and transparency are also
essential constructs for effective HRI that arise less naturally (Lyons, 2013).
Inspired by the importance of trust and transparency in human-human re-
lationships, the literature is rich in ways of manifesting these constructs for
HRI (Hancock et al., 2011; Lyons, 2013; Lyons and Havig, 2014; Soh et al.,
2019; Wortham et al., 2017) and SC (Alonso and de la Puente, 2018). Similar
to XAI, a fitting means of injecting trust and transparency into the HRI is
via an interface, specifically one that shares intent between robot and human
partners (Lyons, 2013; Lyons and Havig, 2014). AR HMDs are interfaces that
have had notable success at disambiguating intentions in HRI by using visu-
alisations to externalise the robot’s mind (Chakraborti, Sreedharan, Kulkarni
and Kambhampati, 2018; Sibirtseva et al., 2018; Walker et al., 2018).

Employing AR HMD interfaces that embody the preceding traits and visu-
ally explain the rationale behind any robotic assistance can thus hope to mit-
igate model misalignment in SC, provided that care is taken in the presenta-
tion of information. Otherwise, ineffective visualisations may exacerbate the
dilemma, e. g. those that fail to exploit the surrounding space with graphical
cues (Kim et al., 2018) or do not account for the influence of depth per-
ception (Diaz et al., 2017). For appearance-constrained robots that lack an-
thropomorphic features, graphical objects used to signal intent warrant even
greater scrutiny (Lyons and Havig, 2014; Walker et al., 2018). Additionally,
the small Field of View (FoV) of most headsets bears the risk of misleading
or distracting users (Sibirtseva et al., 2018). If the interface adheres to careful
design considerations to avoid such issues, then AR HMDs propose one of
the most auspicious trends for model reconciliation.

So far, we have looked at how AR interfaces share robot intent with hu-
mans for “robot-to-human” transparency (Lyons, 2013; Lyons and Havig,
2014), without considering the robot’s awareness of human states. Yet a com-
pletely explainable SC system must also establish “robot-of-human” trans-
parency (Alonso and de la Puente, 2018; Lyons, 2013; Lyons and Havig, 2014),
such that robots can interpret human states. The next section addresses this
concept by examining how to equip robots with the ability to understand
human intent.
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2.4 human intention estimation

Human intention estimation is a multidisciplinary subject that has been
widely explored in HRI as a mechanism for enhancing collaboration between
participating agents (Demiris, 2007; Jain and Argall, 2019; Losey et al., 2018).
Whilst humans are naturally gifted with this ability early on in life (To-
masello et al., 2005), the computational process of deriving intent purely
based on observable behaviour is a formidable task. We motivate this task
by first outlining how humans understand intent in others. Prior computa-
tional approaches to intention estimation are then reviewed.

2.4.1 Understanding Human Intent

Humans formulate intent as a reaction to both implicit and explicit stimuli.
Explicit signals from the physical surroundings of an individual could be re-
sponsible for eliciting external responses in their goal-directed behaviour, or
an internal stimulus could instead be evoked by latent cognitive functions,
such as the desires and beliefs of the person (Bratman, 1990; Cohen and
Levesque, 1990). Detecting the impact of these dormant thought processes
on the goals and intentions of other individuals is a far more challenging en-
deavour than if these processes were observable. Yet humans are remarkably
proficient at the intention inference problem (Blakemore and Decety, 2001),
with evidence of this ability emerging around the first year of life and gradu-
ally developing thereon until full-fledged competence is attained at just two
years of age (Tomasello et al., 2005).

“Theory of mind” is a topic that lies at the boundaries of philosophy, neur-
oscience and cognitive psychology, in which the process of humans under-
standing one another’s minds is explored. Embedded in this topic is simu-
lation theory, which offers a prominent explanation on how the neural and
computational operations in the brain link overt movement with goal infer-
ence (Gallese and Goldman, 1998; Gallese et al., 2004; Hesslow, 2002). The
operations responsible for modelling this sensorimotor loop in the brain are
termed internal models (Wolpert et al., 2003, 1998).

Simulation theory of action is a broadly accepted justification for how
humans ascribe intention (Blakemore and Decety, 2001; Grafton, 2009; Jean-
nerod, 2001). The simulationist perspective argues that people understand
the mental states of others by performing the dual role of action observation
followed by the simulation of action consequences (Blakemore and Decety,
2001; Hesslow, 2002; Jeannerod, 2001). In other words, by using our own
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sensory-motor repertoire to internally generate goal-directed behaviour, we
are able to infer action-intention mappings.

The discovery of “mirror” neurons in monkeys (Rizzolatti et al., 1996)
and humans (Grèzes et al., 2003) also supplies neurophysiological evidence
in favour of the biological motor system informing our perception of goal-
directed behaviour in other beings. These neurons, which are excited by the
recognition or execution of goal-directed movements, spurred on notions
about how humans label action consequences according to their own mental
simulations of such actions.

Another core element of a human being’s innate ability to identify high-
level intentions from their perceptions of other people’s actions is hierarchy.
Many studies from motor cognition suggest that different hierarchical inten-
tional levels take place prior to any overt movement (Hamilton and Grafton,
2007; Pacherie, 2008; Wolpert et al., 2003). In simulation theory, efficient com-
putational hierarchies have also been identified during the process of intern-
ally generating actions (Grafton, 2009).

Overall, simulation theory and the mirror neuron system have sufficient
evidence supporting their close ties with estimating intent, making them a
worthwhile source of inspiration for computational modelling.

2.4.2 What is Intent?

Before proceeding any further, the terminology for “intent” used throughout
this thesis should be resolved. With respect to intention and how it is distin-
guished from action goals, low-level continuous states of desire will gener-
ally be referred to as goals or trajectories (e. g. a vector of poses or control
commands), whilst high-level discrete counterparts are intentions (Bratman,
1990; Cohen and Levesque, 1990; Tomasello et al., 2005). Goal or intention
estimation will also adopt this distinction in semantic language. Moreover,
estimation and prediction are considered as techniques of recognising either
current or future intentions, respectively.

For additional clarity, an intention is defined as containing both a goal
and a plan of action for accomplishing it (Bratman, 1990; Tomasello et al.,
2005). A plan is a practical means of fulfilling intended human behaviour
in a future-directed context, e. g. a trajectory of control commands to man-
oeuvre a robot arm. Goals are the desired outcomes of pursuing this plan,
which also occupy the continuous space of values in the R domain, e. g. the
target pose of the robot arm. Ultimately, an intention is viewed as an abstract
composition of these two elements that can be identified by its index or la-
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Figure 2.1: Diagram of how intentions are represented. An intention ix is a tuple
of user velocity commands ux (the action plan) and their corresponding
target state gx (the goal). In this illustration, there are four available
intentions based on the repertoire of available plans (indexed by x).

bel across potential plans (held in the action repertoire Wolpert et al., 2003),
hence its discreteness (Pacherie, 2008).

To provide a concrete instance of this terminology, we will now revert to
our robotic wheelchair scenario. A multitude of works have explored inten-
tion estimation in robotic wheelchairs, with most adopting similar repres-
entations of user intent (Carlson and Demiris, 2012; Matsubara et al., 2015;
Narayanan et al., 2016; Poon et al., 2017). Intention is often defined in these
works as a target wheelchair state gx (the goal) or a set of states. In contrast,
we explicitly frame intentions as a unification of these goals and the means
for achieving them, i. e. ix = 〈ux,gx〉, where ux are the user’s intended velo-
city commands (the plan). An intention ix is thus completely captured by its
tuple constituents, as well as its index x amongst the collection of competing
action plans (see Figure 2.1 for the visual depiction).

2.4.3 Computational Approaches

Intention estimation essentially revolves around an observing agent deriving
a model to match an acting agent’s behaviour (Demiris, 2007). This model
matching procedure can be enacted in either a discriminative or generative
manner. The following describes previous computational approaches within
these two classes, as well as biologically-inspired architectures linked to sim-
ulation theory.

2.4.3.1 Discriminative Class

In the discriminative class, low-level features of the observed state are de-
ciphered and characterised according to labels of intent that exist a priori for
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the domain-specific task. Informative features are first obtained from a vari-
ety of sensory sources, such as eye gaze (Huang et al., 2015), visual captures
of human activity (Koppula and Saxena, 2016), or even a fusion of multiple
modalities (Doshi et al., 2011; Trick et al., 2019). These features are then clas-
sified using popular algorithms, e. g. support-vector machines (Doshi et al.,
2011; Huang et al., 2015; Trick et al., 2019), conditional random fields (Kop-
pula and Saxena, 2016), or neural networks (Nicolis et al., 2018), all of which
have also been incorporated into anticipatory control systems for human-
robot collaboration (Huang and Mutlu, 2016; Koppula and Saxena, 2016;
Nicolis et al., 2018).

Alternatively, discriminative models can take a probabilistic stance by
employing Bayesian reasoning to infer a conditional distribution over pre-
existing representations of human intent (Jain and Argall, 2018, 2019; Javdani
et al., 2015; Pellegrinelli et al., 2016). The resulting posterior distribution can
be used to either forecast low-level trajectories of action patterns or classify
predefined labels of desire (Losey et al., 2018). Despite the extra flexibility as-
sociated with this conditional distribution, discriminative algorithms are not
capable of reproducing the perceived state as they do not model a joint dis-
tribution. In other words, they directly learn the parameters of the posterior
and have no knowledge of the underlying observation space.

On the other hand, generative models represent a joint distribution that
can be sampled from to reproduce state observations. As many theories on
human intent are ascribed to our ability to internally reproduce or simulate
the actions we observe (Blakemore and Decety, 2001; Grafton, 2009; Jean-
nerod, 2001), it is prudent to view a mathematical process with the same
generative capacity as a fitting model. This generative capacity is particu-
larly appealing for robots seeking to reproduce embodiment (Demiris, 2007),
such as to drive a motor body during active event recognition (Ognibene
and Demiris, 2013) and imitation (Lee et al., 2013; Wang et al., 2017). The
discussion will now stray away from discriminative models and focus on
generative alternatives.

2.4.3.2 Generative Class

Generative approaches are a prominent class of probabilistic algorithms that
recover a distribution over observable data by introducing latent random
variables to capture any hidden underlying structure. Within the confines of
human intention inference, the modelled latent space can then be presumed
to represent all possible causal relations between intentions and observations
of human behaviour (Demiris, 2007; Wang et al., 2013). The inference task
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therefore boils down to iteratively learning the parameters of the generative
process until the posterior distribution or unknown structure of the observed
data is acquired.

Dynamic graphical models of stochastic processes are extensively util-
ised for intention inference in the generative schema. For instance, Hidden
Markov Models (HMMs) and their generalisation, Dynamic Bayesian Net-
works (DBNs), are especially suitable when interpreting goal-directed ac-
tions from sequential data (Pentland and Liu, 1999). In this body of lit-
erature, many variants of DBNs have been used to reveal the connections
between sensory data and motor behaviour, e. g. Hierarchical HMMs (Blay-
lock and Allen, 2006; Murphy and Paskin, 2002; Zhu et al., 2008), Growing
HMMs (Vasquez et al., 2008, 2009) and Hidden semi-Markov Models (Tan-
wani and Calinon, 2017). Over the last decade, these parametric dynamics
models are less commonly employed due to the hardship in designing them
to perform inference over high-dimensional and non-linear human action
spaces (Wang et al., 2013).

The advent of scalable learning algorithms has led to generative models
that efficiently infer latent variables of “intent” from abundant sources of
complex human behavioural data. Some early examples are dynamical GPs
that encapsulate temporal dynamics in the latent space (Wang et al., 2008).
These GPs can model intention-driven behaviour by encoding human ac-
tions via non-linear functional mappings (Matsubara et al., 2015; Wang et al.,
2013). In recent years, the significant interest in deep neural networks that
parameterise latent variable models has also transferred over to the inten-
tion inference domain (Hu et al., 2019, 2018). Nevertheless, the literature is
still sparse in such deep generative models, which will be commented on in
Section 2.5.

2.4.3.3 Biologically-Inspired Architectures

It is also worthwhile to reflect on generative strategies that fall under the sim-
ulationist perspective of cognitive functions (Hesslow, 2002). From this point
of view, internal models should be used to simulate motor control in har-
mony with anticipated intentions. Two prevailing types of internal models
are forward and inverse models, which respectively depict feedback or feed-
forward control (Wolpert et al., 1998). Figure 2.2 illustrates the properties of
these coupled concepts, with inverse models akin to controllers or behaviours
and forward models akin to output predictors (Karniel, 2002). These compon-
ents are embedded in many control architectures that have been inspired by
mirror neurons (Demiris and Khadhouri, 2006; Wolpert et al., 2003).
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Figure 2.2: Block diagram of a paired forward and inverse model. The inverse
model outputs an action given current and target state inputs, whilst
the forward model predicts the next sensory state from the correspond-
ing inverse model’s output. Dashed arrows denote optional inputs.

An appealing trait of controller-based architectures is their hierarchical lay-
out. For example, Hierarchical Attentive Multiple Models for Execution and
Recognition (HAMMER) (Demiris and Khadhouri, 2006) is a biologically-
inspired action recognition architecture that consists of paired inverse and
forward models to initiate motor control. These internal models are the basic
building units of HAMMER (shown in Figure 2.2) and are organised in a par-
allel manner, such that higher-level blocks act as top-down contributions to
the lower-level blocks responsible for generating motor actions. This arrange-
ment is markedly attractive for its plausibility in linking the recognition of
future-directed intentions with compositions of lower layers (Hamilton and
Grafton, 2007; Pacherie, 2008).

However, the “inverse problem” of directly extracting motor control from
desired movements is intractable in these architectures for numerous reas-
ons. First and foremost, there may exist non-linear many-to-one mappings
of actions to sensations, which can yield non-convex one-to-many inverse
images (Jordan and Rumelhart, 1992). In essence, this issue of multimodality
translates into the fact that many diverse actions often fulfil the same in-
tention. Furthermore, observing agents do not necessarily possess the same
kinematic dynamics as those of the demonstrating agents. In this situation,
a mapping between motor control policies of the different physical actors is
required (Nehaniv and Dautenhahn, 2001).

Recent advances in representation learning present promising computa-
tional solutions to bypass the “inverse problem” of earlier controller-based
architectures, whilst sustaining the advantages of generative models and
hierarchy (Bengio et al., 2013; Bengio and Delalleau, 2011). The following
section presents state-of-the-art representation learning algorithms and ap-
plications to robotics.
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2.5 deep generative models in robotics

Deep generative models have achieved significant progress in addressing
the fundamental challenges of representing complex latent structures over
large and high-dimensional datasets. A seminal generative model is the
Variational Autoencoder (VAE), which provides a scalable way of tractably
learning latent variables over multimodal data spaces through approximate
inference (Kingma and Welling, 2013; Rezende et al., 2014). Despite the rep-
resentation power of VAEs, they are not naturally tuned for probabilistic in-
ference or prediction. Consequently, recurrent frameworks are attractive ad-
aptations of the original VAE, as they tailor to structured output prediction
through a conditional generative model (Sohn et al., 2015). The Variational
Recurrent Neural Network (VRNN) is a notable example for sequence mod-
elling, which under evaluation demonstrated the expressive power of condi-
tional distributions (Chung et al., 2015).

Many of these conditional VAEs have become increasingly popular in the
robotics literature. In trajectory prediction, network architectures with this
layout have been used to capture the dynamics of multiple interacting agents,
such as basketball players (Ivanovic et al., 2018) or pedestrians perceived
during autonomous driving (Lee et al., 2017). Key to both works is that
their architectures could produce diverse predictions of multiple possible
future trajectories, i. e. “multimodal” outcomes (Ivanovic et al., 2018; Lee
et al., 2017). Aside from trajectory prediction, conditional VAEs have also
triumphed in numerous other robotics scenarios, including imitation learn-
ing (Wang et al., 2017), human motion prediction and synthesis (Bütepage
et al., 2017), as well as SC (Losey et al., 2019).

Although powerful, “black-box” algorithms are notoriously difficult to in-
terpret and hence explain to end-users (Fox et al., 2017). As a result, a core
research direction for deep generative models is to derive meaning behind
the learnt latent space by disentangling its structure, i. e. recovering abstract
concepts from independent factors of variation (Bengio et al., 2013). The
most prevalent framework for learning disentangled representations is the
VAE (Locatello et al., 2019; Tschannen et al., 2018). For instance, VAEs con-
structed using a hybrid of continuous-discrete variables have shown how
particular latent dimensions manipulate meaningful generative properties
of the data, e. g. handwriting style (Kingma et al., 2014) or speaker iden-
tity (van den Oord et al., 2017). The desirable qualities of disentanglement
have spurred on new algorithms in the representation learning community
for various purposes, like clustering (Dilokthanakul et al., 2016; Jiang et al.,
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2017) and sequence modelling (Hsieh et al., 2018; Hsu et al., 2017, 2018; Ying-
zhen and Mandt, 2018).

An integral asset of disentangled representations lies in their interpretabil-
ity (Locatello et al., 2019). The capability to interpret the latent space can fa-
cilitate abstract reasoning for practical outcomes, such as counting bouncing
digits from video sequences (Kosiorek et al., 2018) or determining a patient’s
mortality risk from medical records (Fortuin et al., 2019). One prominent
form of disentanglement that enhances the level of interpretability is to in-
corporate discrete information into the latent variable model (van den Oord
et al., 2017). An exemplification of how discrete latent codes can augment a
model’s interpretability is through clustering (topic of Chapter 5).

Nonetheless, very few deep generative models with disentangled latent
variables have transferred over to the robotics domain. Hu et al. (2019) is a
unique case, where a conditional VAE was adapted to intention inference by
disentangling latent variables in a multi-agent driving scenario. In the same
vein, our approach to human intention inference delineated in Chapter 5 in-
corporates discrete code into the VAE and employs a mixture prior to cluster
the disentangled variables, enabling us to diagnose the learnt representation.
This clustering framework is part of the venture to bridge the gap between
representation learning and robotics.

2.6 closing remarks

From this literary digest, three requirements have been identified as imperat-
ive for XSC. First, the SC must incorporate a suitable medium of information
feedback to guide users into building precise mental models of expected ro-
bot behaviour. Of the available communication media, AR HMDs grant an
auspicious means of demystifying the underlying SC. Next, the interface
provided during the SC must adequately combat the issue of model mis-
alignment. Reconciling mismatched mental models is feasible if the AR in-
terface is designed to share robot intent and foster “robot-to-human” trans-
parency (Lyons, 2013; Lyons and Havig, 2014). Finally, to complete the ex-
plainable paradigm, “robot-of-human” transparency must also exist (Alonso
and de la Puente, 2018; Lyons, 2013; Lyons and Havig, 2014). By equipping
robots with a powerful yet interpretable method of inferring human intent
during SC, the robot can also better communicate back to users its own in-
tent (Chang et al., 2018).

The remaining chapters of this thesis will divulge how each of these re-
quirements are fulfilled to establish XSC. Chapter 3 develops an SC methodo-
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logy for an assistive robot, namely a robotic wheelchair. After hinting at how
model misalignment occurs in this standard setup, an AR HMD interface is
then designed in Chapter 4 and integrated onto the robotic wheelchair for
“robot-to-human” transparency. User studies are also included to evaluate
the impact on model reconciliation. Lastly, Chapter 5 contributes a deep gen-
erative model for human intention inference that can be disentangled and
thereby explained to users. Each of these components yields our proposed
XSC paradigm.
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3
S H A R E D C O N T R O L F O R A S S I S T I V E R O B O T
N AV I G AT I O N

This chapter addresses our first research question:

“What constitutes as an effective Shared Control methodology
for assistive robot navigation?”

The purpose of this chapter is to propose a Shared Control (SC) method-
ology suited for assistive robot navigation. Section 3.1 first motivates the
application setting of “smart” wheelchairs and the capacity for SC to bolster
the independent mobility of disabled individuals. In Section 3.2, we intro-
duce the assistive robot architecture used throughout this thesis. Section 3.3
follows with a description of the SC deployed on this target platform. The
limitations of our methodology are then highlighted in Section 3.4, partic-
ularly from the viewpoint of model misalignment and how a medium of
communication is necessary. Lastly, Section 3.5 summarises the chapter and
its relevance to material covered later in this thesis.

Some of this chapter’s content has previously been published in Zolotas
and Demiris (2019), specifically Sections 3.2 and 3.3.

3.1 application setting : “smart” wheelchairs

Independent mobility plays a significant role in our everyday activities and
quality of life, irrespective of the age group (Agree, 2014; Iezzoni et al.,
2001; Metz, 2000). Traditional mobility aids that incorporate “smart” char-
acteristics from other technical domains, such as robotics, are an auspicious
means of ensuring that disabled individuals can also exercise mobility. A
typical example of such a platform for assistive robot navigation are “smart”
wheelchairs (Simpson, 2005; Simpson et al., 2004). These mobile robots are
powered wheelchairs that have been extended to include a collection of
sensors and an on-board computer, allowing for a more intelligent way of
ensuring safety and control (Leaman and La, 2017; Simpson et al., 2004).

Millions of disabled individuals who otherwise cannot operate a standard
powered wheelchair are forecast to benefit from possessing smart wheel-
chairs (Simpson, 2008). Simpson (2005) presented a thorough review on the

39
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main features of these wheelchairs, ranging from the hardware sensors for
collision avoidance, to the input methods for navigation and the operating
modes for path planning. Whilst such features have significantly benefitted
many, a more recent review by Leaman and La (2017) noted that human
factors are still not adequately taken into account during the development
of smart wheelchairs. Some examples of human factors include building
trust in the Human-Robot Interaction (HRI) and personalising the device to
solely administer the level of assistance required by each user (Leaman and
La, 2017).

Numerous engineering efforts have made progress in upgrading user-
technology integration for smart wheelchairs by addressing these human
factors. For example, prior research has explored the diversification of user
control interfaces, as not all patients possess the cognitive or motor capa-
city to steadily and consistently navigate an environment using the tradi-
tional joystick (Fehr et al., 2000). Unconventional input methods, such as
brain-machine interfaces (Carlson and Del R. Millan, 2013), head motion (Li
et al., 2016) and even eye gaze (Ktena et al., 2015)1, have begun to appear
amongst modern smart wheelchairs. Yet regardless of how user-friendly an
interface is, these wheelchairs still require sophisticated controllers to mod-
ulate the complex behaviour of patients with severe disabilities (Fehr et al.,
2000; Viswanathan et al., 2017). One pertinent solution is to adjust any noisy
and unpredictable input signals by engaging in SC and offering conditional
assistance (Demiris, 2009).

3.2 assistive robot architecture

A system diagram of the smart wheelchair used for all experimentation
in this thesis is displayed in Figure 3.1. Originally designed by Sarabia
and Demiris (2013); Soh and Demiris (2012), we have since regularly com-
mitted enhancements to this assistive robot architecture. On the hardware
front, we have integrated two new technologies into the architecture: an eye
tracker and an Augmented Reality (AR) Head-Mounted Display (HMD) (see
Chapter 4 for more information). From the software perspective, two notable
contributions are the intention inference algorithm (see Chapter 5) and the
SC employed, which is the topic of this chapter. The blue box in Figure 3.1
contains software processes developed in this thesis as part of the SC.

Apart from these contributed changes, the wheelchair continues to be con-
trolled using a joystick with a circuit board that enables an Arduino UNO to

1 We also contribute an eye-gaze controlled smart wheelchair in Appendix B.
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Figure 3.1: System diagram of the target smart wheelchair platform. The laser and
IMU sensor data form the environmental state, whilst the joystick
and eye tracker readings comprise the user state. Eye gaze data is
only used in our work to assess the user’s cognitive state, but the
dashed arrow indicates how it could also feed into the intention
estimation module. Within the SC, the user’s joystick commands
are evaluated to estimate an intended pose and then arbitrated
through an assistive control procedure that outputs safe motor
commands based on the latest laser sensor readings.

translate user-issued commands into motor signals. The mobile platform has
a rectangular shape (1.0m×0.65m) and is equipped with two Hokuyo URG-
04LX-UG1 Light Detection And Ranging (LiDAR) scanners at the front, and
one SICK LMS200 LiDAR sensor at the back for full 360◦ Field of View (FoV).
A Phidgets spatial 3/3/3 IMU is also equipped to improve the odometry es-
timate of the mobile setup. All the listed system components are developed
atop the Robot Operating System (ROS) middleware running on the on-
board laptop (Quigley et al., 2009).

In our proposed architecture, sensory signals perceived by the robot either
relate to the user state or the environmental state. A user’s state is composed
of the commands they input through the wheelchair’s built-in joystick, as
well as their gaze direction determined by a wearable eye tracker (we use
an open-source eye tracking platform made by Pupil Labs Kassner et al.,
2014). Environmental data is acquired from the three attached laser rangers
and the IMU, which help construct a map using the localisation module’s
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Simultaneous Localization and Mapping (SLAM) component2. The localisa-
tion module then produces an estimate of the current robot state, i. e. the
robot’s pose on the constructed map. In the next section, we dive deeper
into the SC.

3.3 control-sharing methodology

The SC methodology detailed in this section falls under the goal-oriented
class of frameworks discussed in Section 2.1.2. Providing conditional assist-
ance via this type of SC involves two core functions: intention estimation
and arbitration (Demiris, 2007; Losey et al., 2018). Both these functions fol-
low a user-centred design in that they were informed by the feedback of
human subjects in a pilot study (Section 4.2). In other words, this single it-
eration of feedback helped answer the chapter’s research question on what
constitutes as effective SC. This section will now illuminate our answer, with
Algorithm 3.1 containing the pseudocode for the complete SC implementa-
tion.

3.3.1 Intention Estimation

In the scope of powered mobility, user intent is often expressed as a desired
sequence of destination poses on a map. These are equivalent to the goals
g characterised in Section 2.4.2, which do not necessarily capture the user’s
actions u, i. e. their plans. Chapter 5 adopts a novel perspective on this rep-
resentation that completely encompasses the intention tuple i, but for now
we settle on a trajectory of poses as a depiction of user intent. We take a for-
ward model approach to generate this trajectory of intended poses by utilising
both the robot kinematics and user-selected joystick actions to predict future
robot states. The time horizon associated with this prediction is dependent
on the simulation period T , as we examine in the following sections.

3.3.1.1 Forward Models

A forward model can be developed in multiple ways. For instance, a forward
model can be considered a “distal teacher” of the inverse model, whereby
the error in output predictions allows adjustments to be made to the con-
trollers (Jordan and Rumelhart, 1992; Karniel, 2002). Another portrayal of

2 Additional details regarding the localisation module and other software nodes are provided
in Appendix A.
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Algorithm 3.1: Shared Control algorithm
Inputs : Robot state rt; User input command ut; Simulation period T ;
Output : Assisted output command at
// Intention estimation by trajectory generation (Section 3.3.1)

1 τ1 ← rt
2 for t ∈ {1, ..., T−1} do
3 τt+1 ← φ(ut, [rt]) using Equation (3.4)
4 end
5 if IsUnsafe(τ1:T) then

// Arbitrate (Section 3.3.2.2) if intended trajectory is unsafe, i. e.

// if IsUnsafe returns a non-empty vector of collision points co
6 st ← ObstacleAvoidance(τ1:T ,ut) (Mujahed et al., 2018)
7 at ← PolicyBlend(st,ut) using Equation (3.6)
8 else
9 at ← ut

10 end
11 Function IsUnsafe(gτ)

// Check for collisions along each robot edge (Section 3.3.2.1)

12 co ← ∅
13 foreach edge Pe ∈ E do
14 foreach obstacle po ∈ O do
15 pi ← Intersect(Pe,po)
16 if pi 6= 0 then

// Update collision vector

17 p∗i ← Transform(pi,gτ) using Equation (3.5)
18 co.append(p∗i )
19 end
20 end
21 return co

forward models is as “state estimators”, in which the objective is to predict
state changes based on a set of initial conditions and inputs (Karniel, 2002).
For different robot platforms, this state estimation procedure makes use of
the robot dynamics to inform state changes, e. g. using differential-drive kin-
ematics to estimate the change in state of a differential mobile base.

Forward models are functions φ(·, ·) that output the system’s predicted
next state r ′t+1, given some input motor command ut and optionally the
current state rt (Wolpert et al., 1998). A forward model equates to the fol-
lowing transformation:

r ′t+1 = φ(ut, [rt]). (3.1)
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A confidence function C(·, ·) can also be defined as any function that as-
signs a reward or penalty ε depending on how well the predictions of the
forward models fare against the actual next state rt+1:

ε = C(r ′t+1, rt+1). (3.2)

There is no restrictive form on how to measure the similarity between two
states, as it is yet again likely to be specific to the robot application, environ-
ment and task domain.

3.3.1.2 Trajectory Generation

In line with the “state estimation” outlook on forward models, the traject-
ory generation process for estimating user navigational intent takes place
as follows. Given the wheelchair’s mobile base adheres to differential-drive
kinematics, its motion is constrained by the equation (Minguez et al., 2016):

− ẋ sin θ+ ẏ cos θ = 0, (3.3)

where rt=(x,y, θ) represents the robot state, i. e. its location (x,y) and ori-
entation θ at time t. The predicted next state r ′t+1=(ẋ, ẏ, θ̇) is thus computed
as: 

ẋ

ẏ

θ̇

 =


cos θ 0

sin θ 0

0 1


 v
ω

 , (3.4)

with motor command ut=(v,ω) at time t denoting input linear v and angu-
lar ω velocities.

This operation is repeatedly performed over a simulation period of T to
output a trajectory τ1:T =(ẋ1:T , ẏ1:T , θ̇1:T ). For local path primitives in wheel-
chair navigation, T is likely to be around 20 discretised timesteps (Poon et al.,
2017), e. g. a two-second duration if operating at a rate of 10Hz. Simulating
trajectories in this manner offers a trace of recognised intent, albeit the con-
stant velocity assumption here means this trace is only a snapshot represent-
ation. Once trajectory τ1:T is obtained, it is then passed through an assistive
control process for safe navigation.

3.3.2 Assistive Control

The ensuing phase determines how to best assist a user in accordance with
their estimated intentions. In our assistive navigation context, we break this



3.3 control-sharing methodology 45

process down into two independent stages: collision avoidance and arbitra-
tion. We will now outline both stages and compare them to the SC presented
in Soh and Demiris (2012).

3.3.2.1 Collision Avoidance

Reactive collision avoidance boils down to the computation of motion that is
capable of evading obstacles detected by sensors (Minguez et al., 2016). The
SC of Soh and Demiris (2012) tackled this problem by projecting robot states
forward in time and then validating for safety against an obstacle map con-
structed from incoming LiDAR scans. A binary model estimated the prob-
ability of potential collisions based on these future states. Although simple
and effective, this approach assumed like other standard obstacle avoidance
algorithms that the mobile robot is both holonomic and disc-shaped (Minguez
et al., 2016; Minguez and Montano, 2009), neither of which apply to the
differential-drive rectangular base of the wheelchair. As a result, projected
robot states required computationally expensive point-in-polygon checks for
colliding obstacle cells (Soh and Demiris, 2012).

In contrast, we employ the ‘gap-based’ collision avoidance method of Mu-
jahed et al. (2018), as it considers the exact robot shape and kinematics
through an abstraction layer (Minguez and Montano, 2009). The key idea
behind this abstraction layer is to assume that motion trajectories can be
approximated by piecewise circular arcs (Fox et al., 1997; Minguez and
Montano, 2009). Therefore, the trajectory τ1:T produced by Equation (3.4)
can be described by a sequence of circular arcs, where the radius and tangent
direction of each circular path is extracted from its endpoint. In turn, the sim-
ulated goal point gτ=(ẋT , ẏT ) allows us to concisely encapsulate τ1:T as a
single circular path. More details regarding the formal definitions of these
trajectory arcs are available in Minguez and Montano (2009); Mujahed et al.
(2018).

Gap-based obstacle avoidance approaches generally use rangefinder data
(e. g. from LiDAR sensors or depth cameras) to identify ‘gaps’ in the en-
vironment, i. e. open navigational spaces for the mobile robot to traverse
through (Durham and Bullo, 2008). The “Admissible Gap” strategy of Mu-
jahed et al. (2018) not only accounts for robot shape and kinematics during
gap traversal, but is also more computationally efficient, safe, smooth and
robust in densely cluttered environments. Inspired by these advantages for
scenarios frequently encountered during wheelchair navigation (Minguez
and Montano, 2009), we implemented a version of the “Admissible Gap”
method tailored to our use case of SC.
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As in Mujahed et al. (2018), our collision avoidance objective is to derive
collision-free motion commands st that will guide the mobile robot through
the gap closest to the user’s intended goal, gτ. A crucial step in this pro-
cedure is to test the admissibility of every trajectory traversing a gap by
checking if any robot edge Pe intersects with obstacle points po along the
circular arc. Each intersection point pi can then be transformed to the goal
frame of reference using:

p∗i =

pi + gτ, if ẏT = 0

Rpi + gτ, otherwise
(3.5)

where rotation matrix R (defined in Eq. 31 of Mujahed et al., 2018) is applied
depending on whether motion is purely translational or not. Performing this
navigability check yields a vector of potential collision points co, as shown
in Algorithm 3.1.

Aside from this collision-checking routine, the remaining steps for deci-
phering st are contained within Mujahed et al. (2018) and not disclosed here
in this thesis. We merely specify how to recover collision vector co, as this
vector proves to be a vital AR visualisation in Section 4.3.2.2. However, Ap-
pendix A does provide more information on our ROS package of the fused
“Admissible Gap” and SC algorithm.

3.3.2.2 Arbitration

Given safe velocity commands st, the arbitration stage is then concerned
with adjusting user input commands ut whenever they are deemed unsafe.
Soh and Demiris (2012) mediated user input by selecting the highest-scoring
command from a range of discretely sampled velocities in the robot’s con-
trol space. The scoring schema for these prospective commands applied a
variant of the seminal dynamic window approach (Fox et al., 1997) in order
to compute a velocity command that would optimally align with user intent.
We instead adopt a “policy-blending” formalism as an arbitration of the con-
trol policies originating from the operator and robot (Dragan and Srinivasa,
2013), so as to continuously preserve a user’s participation in the SC. In par-
ticular, we choose a linear-blending and take precautionary measures to cir-
cumvent the known issues of improper wheelchair manoeuvres (Ezeh et al.,
2017). For instance, if the user outputs commands opposing those of the
robot (e. g. a forward and reverse motion), then the linear-blended output
would be to remain stationary.
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The following delineates our linear-blending arbitration scheme. To first
avoid unexpected wheelchair manoeuvres resulting from blending (Ezeh
et al., 2017), we adapt the motion law of Mujahed et al. (2018) to navigate
towards the closest gap based on angular disparity, as opposed to Euclidean
distance. Ergo, the robot-generated motion commands st always conform to
the user’s desired heading for a more anticipatory and sensible outcome in
the arbitration (avoiding failure cases like above). The arbitration of control
commands ut and st is then calculated by:

at = (1− ε) ∗ st + ε ∗ ut, (3.6)

where ε ∈ [0, 1] is typically a measure of confidence in the intention estima-
tion, as in Equation (3.2). Though for our application of smart wheelchairs,
we prioritise user-safety by setting ε according to a perceived indicator of
threat (Durham and Bullo, 2008) rather than similarity to user intent:

ε =
1

N

N∑
i=1

sat[0,1]

(
Ds + R− li

Ds

)
. (3.7)

The aggregate threat score ε is a saturated function of N ranger readings li,
the robot’s radius R (0.5m in the wheelchair’s case), and a safety distance
parameter Ds (set to 0.8m).

Overall, the final assistive command at can be thought of as an amal-
gam of robot-user input. Intuitively, the robot occupies more control if the
user inputs ut are collision-prone and vice versa if they are risk-free, hence
respecting user authority. In essence, our SC mechanism for smart wheel-
chairs is designated to exclusively correct the motor commands of operators
when in the face of danger.

3.4 current limitations

Although our SC methodology ensures safety during wheelchair navigation,
it is also liable to bewilder or impede users whenever their actions do not eli-
cit the intended system response. Consequently, a misalignment between the
respective internal models of the robot and human may start to form. This is
especially problematic for smart wheelchair users due to the steep learning
curve associated with accepting navigational assistance on powered wheel-
chairs (Carlson and Demiris, 2010; Nisbet, 2002). Mismatched internal mod-
els may even lead to patient failure in fulfilling the strict eligibility criteria
for acquiring ownership of these assistive mobility platforms (Fehr et al.,
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2000). This dilemma of model misalignment is primarily rooted in the cur-
rent lack of transparency in our SC (Alonso and de la Puente, 2018; Lyons,
2013; Lyons and Havig, 2014). The building blocks of our SC, namely inten-
tion estimation and arbitration, are usually evaluated based on how well the
output control commands align with the user’s actual task intent or manage
to evade danger. Nevertheless, this does not illustrate whether the user is
aware of the underlying robot reasoning and reiterates the need for commu-
nication in the SC to expose its inner workings (Losey et al., 2018). We focus
on this topic in Chapter 4.

Moreover, the intention estimation technique of our SC derives a repres-
entation of human intent that is neither robust nor accurate across different
task settings. Despite its straightforward nature, there is no guarantee that a
trajectory of low-level wheelchair poses will corroborate a human’s higher-
level plan of intent (Tomasello et al., 2005). Without conditioning on prior
knowledge of the world dynamics or user goals, each recognised intention is
only a snapshot representation of a user’s cognitive state. Chapter 5 expands
on this representation and improves the robustness of computationally inter-
preting human intent via a probabilistic inference framework.

3.5 conclusions

Robotic wheelchairs with built-in assistive features, such as SC, are an emer-
ging means of providing independent mobility to severely disabled indi-
viduals. In this chapter, we introduced our architecture for such an assist-
ive robotic wheelchair, as well as its precise methodology of executing SC.
The remaining sections of this thesis will refer back to this SC methodology
when addressing the limitations mentioned in Section 3.4. Furthermore, later
experiments on human subjects will make use of the assistive robot architec-
ture demonstrated in Section 3.2.

The proposed architecture and SC have also served various other research
directions. As an example, the hardware and software constituents of our
assistive robot architecture supported HRI trials revolving around learning
assistance by demonstration through remote interfaces (Schettino and De-
miris, 2019). Additionally, the SC algorithm has been extensively used in AR
studies where environmental affordances were visually displayed to users
operating the robotic wheelchair (Chacón-Quesada and Demiris, 2019, 2020).

Finally, a noteworthy benefit of our SC is its ease of explanation due
to its model-based nature. The growing use of deep learning and other
“black-box” approaches to intention estimation (Nicolis et al., 2018) and
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arbitration (Reddy et al., 2018) are far from explainable to end-users (Fox
et al., 2017). Whereas our SC simplifies this endeavour by employing internal
mechanisms that are easy to interpret and translate into visual explanations,
which becomes apparent in the next chapter.
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4
T O WA R D S E X P L A I N A B L E S H A R E D C O N T R O L U S I N G
A U G M E N T E D R E A L I T Y

This chapter addresses research questions 2 and 3:

• “How can an Augmented Reality Head-Mounted Display be in-
tegrated with a Shared Control system to expose its inner work-
ings?”

• “Can human users of Shared Control have their mental model ac-
curacy improved by an Augmented Reality interface that visually
explains the robot’s internal mechanisms?”

Explainable Shared Control (XSC) is a paradigm within Shared Control (SC)
that settles model mismatch during Human-Robot Interaction (HRI). Tradi-
tional processes of SC, i. e. intention estimation and arbitration (Losey et al.,
2018), are commonly evaluated based on how well the output control com-
mands align with estimates of the control behaviour intended by a user. In
the proposed paradigm, we examine these processes from an additional per-
spective: transparency, where the objective is to best represent the underlying
robot reasoning and feed it back to the user. Coinciding with this objective, a
suitable medium of communication is required to relay back information to
the user. Augmented Reality (AR) is presented as an integral component of
XSC that meets this communication requirement by visually unveiling the
robot’s inner workings to human operators.

Whilst Explainable Artificial Intelligence (XAI) is a widely explored area
of interest, it has only recently garnered similar attention in SC (Zolotas and
Demiris, 2019; Zolotas et al., 2018). Generating explanations for SC poses
various new challenges, namely the dependence on a continuous commu-
nication channel of physical intent (Losey et al., 2018), the requirement for
implicit switching between interaction modes (Goodrich and Olsen, 2003),
and the overall lack of consensus on SC guidelines (Abbink et al., 2018). The
XSC paradigm strives to address these challenges and resolve model mis-
alignment by using AR visualisations for explanation.

This chapter is structured as follows. In Section 4.1, we clarify our inter-
pretation of commonly used XAI terminology. Section 4.2 then integrates an
AR Head-Mounted Display (HMD) onto a robotic wheelchair with built-in
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SC, as an early prototype of our explainable system. This section also in-
cludes a pilot user study conducted to investigate the influence of different
interface design options on the acceptance rate and learning curve of our
AR-wheelchair setup. We then outline XSC in Section 4.3 and instantiate
it with an updated AR HMD interface for assistive robot navigation, so as
to discern the paradigm’s benefits over our initial prototype. This extended
work also presents results from a user study that revolves around model
misalignment. Section 4.4 summarises the chapter and comments on future
directions for XSC.

The majority of research in this chapter has been published in articles
Zolotas et al. (2018) and Zolotas and Demiris (2019), as well as the extended
abstract Zolotas and Demiris (2020).

4.1 terminology

Many of the key terms in XAI, such as explainability, interpretability or
transparency, are constantly evolving and often used interchangeably in dif-
ferent contexts (Clinciu and Hastie, 2019; Gilpin et al., 2018). For instance,
transparency in an HRI context has been regarded as a means of creating
shared intent and awareness between humans and machines (Lyons, 2013;
Lyons and Havig, 2014). Yet in SC, a popular interpretation of transparency
relates to the robot’s observability and predictability, i. e. the what, why and
when (Abbink et al., 2018; Alonso and de la Puente, 2018). Hence, there are
numerous reviews of these key terms (Alonso and de la Puente, 2018; Lyons,
2013; Lyons and Havig, 2014; Theodorou, 2019) and how they relate to one
another (Clinciu and Hastie, 2019; Gilpin et al., 2018), e. g. an Artificial Intelli-
gence (AI) becomes transparent by providing explanations or interpretations
of its inner workings.

It is therefore imperative for us to first clarify our own usage of these
terms. In line with Lyons (2013); Lyons and Havig (2014), we view transpar-
ency as a communication bridge of intent between human and robot. More
specifically, “robot-to-human” transparency (Lyons, 2013; Lyons and Havig,
2014) is about revealing a robot’s intentions and state to interacting humans,
which is the topic focus of this chapter. We visually expose this informa-
tion through explanations, i. e. instruments capable of improving a user’s
mental model of expected system behaviour (Clinciu and Hastie, 2019). A
robot equipped with such instruments is thus deemed “explainable”, as is
the SC. The robot’s perspective of human intent is instead viewed as “robot-
of-human” transparency (Lyons, 2013; Lyons and Havig, 2014). This matter
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will be addressed in Chapter 5 through a human intention inference frame-
work that allows for model interpretation, or rather the “extraction of relevant
knowledge from domain relationships in the data” (Murdoch et al., 2019).

Throughout this thesis, we will follow the terminology delineated in this
section. The way in which constructs of “transparency” and “explainability”
are established during HRI will become apparent when we introduce the
XSC paradigm in Section 4.3. Nevertheless, the next section emphasises less
the role of these constructs and more the system integration of our smart
wheelchair with an AR HMD.

4.2 explainable robotic wheelchair assistance

Patients often struggle to build a mental model of their smart wheelchair’s
behaviour under different environmental conditions (Nisbet, 2002). Immers-
ive technologies involving HMDs are an emerging solution to help users
easily accept the navigational assistance offered by smart wheelchairs. For
example, virtual reality HMDs have recently garnered attention as apt train-
ing simulators for offline learning of wheelchair control (Alshaer et al., 2017;
Devigne et al., 2017; Ktena et al., 2015). However, AR HMDs could serve as
an even better mode of communicating assistance to foster transparency, but
have yet to be integrated onto physical wheelchairs for online operation.

Motivated by the desire to bridge this gap in transparency, we propose a
novel AR system on a robotic wheelchair with built-in SC (see Figure 4.1).
A Microsoft HoloLens1 is incorporated into our real-world setup for the
purpose of highlighting to users the inner workings of the SC. Consequently,
this section makes two contributions to answer the second research question
of this thesis: 1) an AR system in Section 4.2.1 that renders the internal state
of a shared controller for powered mobility onto the driver’s view of the
world; 2) a pilot study in Section 4.2.2 that evaluates the acceptance rate and
learning curve of an immersive training regime for wheelchair control with
a variety of tested visualisations. Section 4.2.3 summarises the findings from
our pilot study of this initial prototype.

4.2.1 Augmented Reality Cueing System

In this section, we describe the core AR system for cueing robot-assisted mo-
bility (refer to Figure 4.1 for an overview). Figure 4.2 summarises its main

1 https://www.microsoft.com/en-us/hololens

https://www.microsoft.com/en-us/hololens
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Figure 4.1: Composite image of the visualisations rendered on the user’s view
through the AR headset (1). The grey path (2) shows the traject-
ory generated by the user’s manual input. The green patches (3)
highlight objects that pose as potential collisions. The rear-view
display (4) captures the camera image mounted on the back of the
seat (5), which includes overlaid graphics, such as the path and
obstacle cues. The green and red directional arrows (6) represent
the user’s raw input and the corrected output, respectively.

components, all of which are coordinated through the Robot Operating Sys-
tem (ROS) (Quigley et al., 2009) and AR graphical cues are designed within
the Unity 3D2 game development environment. The following presents each
of these system aspects, except for the shared controller, as it was covered in
Section 3.3.

4.2.1.1 Gridmap Processing

Whilst the shared controller captures information relating to a driver’s navig-
ational input, the gridmap processor instead represents environmental con-
text from sensor data. Given incoming rangefinder data, this module identi-
fies dangerous obstacles in the surroundings and constructs an image view
of this information to relay back to the user visually via AR (presented in
Section 4.2.1.2). All processing steps are entirely local and do not rely on a
static map.

2 https://unity.com/

https://unity.com/
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Figure 4.2: Schematic of our AR system components. Squared rectangles rep-
resent hardware, rounded rectangles represent software nodes
and the ellipses are graphical cues displayed in the AR. Sec-
tion 3.3 covers the shared controller and localisation modules,
Section 4.2.1.1 details the gridmap processor and Section 4.2.1.2
presents each of the AR visualisations, as well as how they were
rendered given information from the software nodes.

There are four major phases involved in the gridmap processing pipeline
(shown in Figure 4.3). Light Detection And Ranging (LiDAR) readings are
first converted into a 2D occupancy grid that is subsequently translated into
a binary image where occupied cells are mapped to white. This image is then
morphologically dilated to enlarge these obstacle regions. The third phase of
processing overlays a grey path onto the image to capture the user’s desired
route, based on their generated input trajectory (see Section 3.3.1.2). This
forward simulated path has been dilated to match the width of the mobile
base dimensions. Finally, the greyscale image is converted to RGB and green
circles are drawn at coordinates where the grey path and obstacles overlap.

Two additional steps are performed to render the resulting image below
the wheelchair in a user-centred way. The image is first rotated to align with
the robot’s reference frame during the third phase of the processing pipeline.
A masking and smoothing process is then applied after the fourth phase to
soften the harsh white boundaries of obstacles. The final image is therefore
a Gaussian filtered view of solely the grey path and any potential collisions
(green cues) en route.



56 towards explainable shared control using augmented reality

Figure 4.3: Gridmap processing pipeline. The 2D occupancy grid constructed by
LiDAR data is first converted into a binary image (1). Occupied
cells are dilated to enlarge potential collisions (2). The image is
then rotated to align with the mobile base frame and overlaid with
an inflated grey path generated by the user’s input commands (3).
Finally, green circles are centred at coordinates where the grey
path and obstacles intersect (4).

4.2.1.2 Visualisations for Assistive Feedback

To compensate for the potential misalignment in a user’s interpretation of
their wheelchair’s behaviour, we use a Microsoft HoloLens to provide visual
feedback on the robot’s dynamics. We envision that an AR headset will help
users form a better mental model of the expected system behaviour with
respect to faster improvements in task performance (hypothesis H1 in the
Section 4.2.2 study). Furthermore, this approach could reduce the levels of
frustration and workload experienced by users of assistive robotic wheel-
chairs (Carlson and Demiris, 2012).

Figure 4.1 provides a summary of the four visualisations implemented as
AR feedback3. These visualisations are displayed at three different heights
relative to the user: floor level, head level and floating above head level. This
spatial separation was designed to help limit the likelihood of a user being
overloaded with information (hypothesis H2 of Section 4.2.2), or to avoid
overlapping visualisations.

3 Supplementary video material for first-person perspectives of these visualisations is available
at: https://www.youtube.com/watch?v=TJMkZykDudE

https://www.youtube.com/watch?v=TJMkZykDudE
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The first visual aid is a rear-view display, which is situated directly above
the user’s normal viewing direction. From the driver’s perspective, this dis-
play behaves like a large version of a rear-view mirror, such as those found
in road vehicles. The camera display also renders any other graphical ef-
fects incorporated into the holistic system. This is achieved by placing a
virtual camera’s view of the artificial world containing the visualisations in
the same position as the real camera. The intrinsic calibration parameters of
the real camera are mapped onto the captured virtual image to match the
strong fish-eye effect applied in the real camera’s display. By applying this
fish-eye effect, the user is able to view a very wide angle, which could help
navigation in tight manoeuvres typical of indoor wheelchair use.

There are two kinds of visualisations rendered onto the floor. A grey path
is projected either forward or backward depending on the direction of travel,
which portrays the predicted future state of the wheelchair given the current
input commands. If the path intersects with an obstacle then a bright green
circle is rendered at that location, which is intended to help drivers identify
objects that are likely to make the SC intervene. The construction of this
image was described in Section 4.2.1.1.

The last visualisation is a pair of directional arrows that float directly in
front of the user. The green arrow corresponds to the user’s joystick input
and the red arrow is the final command sent to wheelchair after arbitration
via SC (see Section 3.3.2.2). The arrows rotate with the direction of the cor-
responding command velocities and lengthen to represent their magnitude.

These four visualisations fall into two categories of relative placement
from a user perspective. The arrows and rear-view display appear fixed to
the motion of the wheelchair, behaving similarly to instruments found in an
aircraft cockpit or car dashboard. On the contrary, the grey predicted path
and green collision markers are perceived as fixed to the environment, not
necessarily being locked to the wheelchair as it moves or rotates.

4.2.1.3 Augmented Reality System Alignment

All visualisations presented in this work require appropriate alignment with
both the world and mobile platform, therefore a correspondence between
the HoloLens and wheelchair frames of reference must be determined. The
HoloLens maintains its own internal map for the purpose of visual odo-
metry, however by default there is no well-defined origin for the rest of the
robotic system to reference. This problem was previously solved in the con-
text of a motion capture arena in Elsdon and Demiris (2018), however due
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to the multi-room nature of indoor wheelchair use, a motion capture system
is not a reasonable proposition.

To solve the registration problem, three points were manually marked by
placing virtual objects in the AR environment. The HoloLens has a system
known as spatial anchors4, which use local geometry to latch objects in place
despite shifts in the global map. This enables the virtual markers to persist
across multiple uses of the HoloLens, whilst also allowing adaptations to be
made on-the-fly given any environmental changes. These three points are
compared to their equivalent coordinates on the map constructed using the
localisation module’s Simultaneous Localization and Mapping (SLAM) com-
ponent. Utilising singular value decomposition as outlined in Ho (2013), we
obtain the transform between the HoloLens world and the global frame of
the mobile base. There are four unknown variables accounted for, three for
the position offset between coordinate systems and one representing the rota-
tion in yaw direction. These points should not be collinear to avoid multiple
solutions and should span the experimental arena to minimise the effect of
placement error.

4.2.2 Experiments

In order to explore the assistive effects of our AR system on wheelchair con-
trol, we conducted a between-subjects experiment that evaluates how differ-
ent graphical aids affect the user’s experience and learning of our robot’s
internal model. The Unity game engine was used to both develop the AR
application and deploy it on the Microsoft HoloLens. Communication with
the HMD was established over a wireless router.

Our hypotheses for this experiment are:

• H1 – AR will accelerate the learning of our robot’s internal model
based on improvements in rate of completion time for three recorded
navigation trials.

• H2 – Visualisations in AR will reduce the physical strain on subjects,
according to less variable head motion when performing wheelchair
manoeuvres across three trials.

4.2.2.1 Experimental Setup

For this pilot study, we recruited 16 able-bodied participants (13 male, 3
female) aged between 20 and 31. The discrepancy here in gender-balance

4 https://azure.microsoft.com/en-gb/services/spatial-anchors/

https://azure.microsoft.com/en-gb/services/spatial-anchors/
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Figure 4.4: An overhead view of the trial route used for the experiment. Overlaid
on the map is the path that participants were asked to perform, with
green sections requested in forward motion and blue sections in reverse.
The small numeric labels denote course sections that required particular
manoeuvres, as summarised in Table 4.1. The door opening at location
4 is 90cm wide and the narrow corridor at location 1 is 110cm wide.

correlates with how the subject pool are engineering students and there is a
low percentage of women in engineering5. Participants were asked to sign a
consent form for the collection of data and presentation in this work. Prior
and post experiment questionnaires were also handed out for completion.
Each subject was requested to complete a navigation route (illustrated in Fig-
ure 4.4) four times in sequence, which lasted a total duration of 30 minutes
on average. The trial route devised for this experiment includes a subset of
evaluation criteria from the Wheelchair Skills Test (WST) manual (version
4.2 Kirby et al., 2002), as shown in Table 4.1.

The purpose of the experimental task was to investigate the effectiveness
of different graphical aids and whether the AR accelerated learning of the
wheelchair’s behaviour. We controlled for this by assigning individuals to
one of two groups: with-visualisation and without. People in the control
group also wore the HoloLens but without any visualisations displayed, so
that head orientation data could still be collected and that the obtrusiveness
of the HMD is kept fair for both groups. More importantly, this is done not
to add a confounding variable to the post-study statistical analysis.

Participants in the visualisation group differed from the non-visualisation
counterpart in two ways. First, they were administered augmented feedback

5 https://www.wes.org.uk/content/wesstatistics

https://www.wes.org.uk/content/wesstatistics
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Table 4.1: A summary of the modified WST assessment points. Each of the task-
specific positions is numbered correspondingly on the map in Figure 4.4.

Skill Location

Forward motion in narrow 1m passageway 1

Reverse in narrow 1m passageway 1

Turn while rolling forwards (90◦) 2

Turn while rolling backwards (90◦) 2

Turn in place (180◦) 3

Traverse through open doorway 4

Avoid static obstacles 5

Stop before walls A & B

and instructed on the meaning of the visualisations, although no advice on
how to interpret or make use of them was provided. Second, subjects in
the visualisation group were requested to perform the fourth attempt at the
course without any graphical aid. This was designed to observe whether a
dependency on the AR formed, or if the task-learnt skills were independent
of these visual cues. Nonetheless, this also mixes experimental conditions
between the groups, and so all significance testing is only run across the
first three trials where there is a clear distinction.

4.2.2.2 Empirical Findings

We assessed total time to completion for each trial as a performance indic-
ator of the overall AR feedback. Figure 4.5 indicates that the group without
visualisations performed better across all trials and improved consistently in
the first three rounds, having plateaued in skill by the third. On the other
hand, the group with visualisations demonstrated more variable perform-
ance, with a greater decrease in time relative to their first trial, despite taking
longer to plateau. Albeit the rate of improvement in timings across the first
three trials (i. e. when the two experimental groups are directly comparable)
rejects H1 (two sample t-test, p=0.97) and in fact, strongly confirms there
is no significant difference between the two conditions. When visualisations
were removed on the fourth trial, there was a slight dip in performance,
but no strong claim can be made for any dependency forming on the AR
assistance.

A possible explanation for this offset in absolute performance between
the two groups is suboptimal placement of some of the virtual objects. This
is especially true given the narrow Field of View (FoV) of the HoloLens
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Figure 4.5: Total time to completion for each trial. The group without visualisations
were superior in every trial, even in the 4th round where both groups
did not have visual aid.

(estimated at 17.5◦ vertically and 30◦ horizontally). We therefore speculate
that subjects could not make proper use of the AR assistive features outside
of their natural FoV.

To further elaborate on how often participants made use of the differ-
ent visualisations under these restrictive viewing conditions, dwell time was
monitored by extending a ray directly forwards from the user’s head and
registering intersections with virtual objects. We found that participants in
the visualisation group spent a median proportion of 48.4% across the first
three trials directed towards the rear-view display and floating arrows. The
green obstacle cues were instead oriented towards for a median value of
32.6%. It is worth noting that the viewing direction of the subjects in the non-
visualisation group would have also aligned with these obstacle cues for a
median of 77.6% had they been rendered. This implies that the floor-based
objects adopted a natural orientation angle for wheelchair navigation. As-
suming participants maintained a central eye-in-head position, we suspect
that floor-plane features occupied a less salient region within the HMD’s
FoV and were thus less effective.

Seeking to explore other aspects of effectiveness that are relevant to the
target application, we also evaluated the head orientation data recorded
by the HoloLens. Individuals with upper body mobility impairments are
prone to colliding with obstacles outside of their viewing capacity during
typical wheelchair navigation manoeuvres, such as rotating in place or re-
versing (Nisbet, 1996; Simpson, 2008). These day-to-day tasks for wheelchair
users, as asserted by the full WST manual (Kirby et al., 2002), could benefit
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Figure 4.6: Depicts the rate of head rotation in the yaw direction during the reverse
passageway section in Figure 4.4. Participants with visual feedback ro-
tate their head significantly less than the control group for the first three
trials. When the visualisations are removed in the 4th round, both groups
display similar mean rates of yaw rotational movement.

from the inclusion of a rear-view mirror that reduces the necessity for harsh
rotational head motion.

Figure 4.6 analyses the effects of the rear-view display on the rate of ro-
tational motion along the yaw axis during the reversal of the narrow pas-
sageway. The results demonstrate a significantly lower turning rate across
all AR aided trials (two sample t-test, p=0.01), and a rate that matches the
control group when the visualisations are removed on the last trial. These
findings corroborate H2 and suggest that the rear-view display provided
an easily accessible source of information for users, such that they could
complete the reversal task with minimal need for strenuous neck movement.
This could prove to be particularly beneficial for disabled individuals with
limited upper body and neck mobility, such as people suffering from spinal
cord injury.

4.2.2.3 Survey Results

In the post-experiment questionnaire, subjects were asked to rate the bene-
fit of each of the provided visualisations on a 5-point scale. A strikingly
positive result from this survey was the popularity of the rear-view display.
Almost all subjects rated it as either “good” or “very good” (4.125± 0.64).
Conversely, there was nearly universal disapproval of the grey path and the
green obstacle markers (2.375 ± 0.92 for both). The overall average scores
from 1-5 (5 being most positive) are listed in Table 4.2.
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Table 4.2: A summary of the user responses to the question: “Rate the following
visualisation from 1-5 (1 = very poor, 5 = very good)”.

Visualisation Mean User Rating Standard Deviation

Rear-View Display 4.125 0.64
User/Assistance Arrows 3.125 1.46
Projected Path 2.375 0.92
Highlighted Obstacles 2.375 0.92

The poor ratings associated with the grey path and obstacle cues are in-
formative on floor-based renderings. Although information overlaid on an
environment is a fundamental quality of AR, practical considerations should
be made for the HMD’s FoV limitations. Some participants provided com-
ments reinforcing this observation by stating that they could rarely notice
these floor visualisations, supporting our quantitative analysis on dwell time.
The embedding of this environmental information mandates a user to per-
form a search of their surroundings, which itself could frustrate them. Fur-
thermore, the time and frustration expended on searching for visual aids
may have impacted the trial performance reported in Figure 4.5.

Another noteworthy remark is on how intuitive different visualisations
appear from a user’s perspective. Many subjects commented on how they
misunderstood the purpose of the floating arrows, querying whether they
should have aimed to match the corrective red arrow or simply taken both
arrows into account as supplementary information. This leads us to believe
that low-level cues, such as command indicators, are not necessarily an ef-
fective user-centred form of augmented assistance and would require aux-
iliary instruction to be provided. On the contrary, highlighted obstacles are
higher-level and provide more intuitive feedback.

4.2.3 Discussion

To the best of our knowledge, this is the first instance of an AR headset
being incorporated into a smart wheelchair system. Our findings lead us to
believe that there is potential benefit to be gained from the integration of
AR headsets with robotic wheelchairs, as long as certain design choices are
taken into account. Namely, that virtual objects are placed in easily visible
locations that are not within proximity of the mobile base, and preferably
do not clutter the natural viewing required for navigation. Moreover, that
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graphical cues are high-level and contextual enough for a typical user to
garner an augmented experience from the administered aid.

Any AR cue that fulfils both these requirements, such as a virtual rear-
view mirror, could prove to be an attractive component in robotic wheelchair
design. The rear-view display yielded enthusiastic participant responses by
presenting helpful and intuitive information to users at a comfortable and
non-intrusive viewing angle. In the next section, we probe a set of guidelines
on how to implement similar AR cues that are guaranteed to facilitate en-
hanced information retrieval and transparency in the HRI. As a result, we
hope to mitigate the negative consequences of model misalignment on ro-
botic wheelchair navigation.

Regarding the evaluation of model misalignment, we now review a few
limitations of the study that may have influenced the outcome. First, the
users are not from the actual target population, so any conclusions drawn
from this study are discounting the attitudes, needs and preferences of actual
wheelchair users (Viswanathan et al., 2017). Next, the subject numbers are
quite low and may not hold sufficient statistical relevance. For instance, if a
statistical power of 80% was acceptable for a significance of 0.05 and an effect
size of 0.80, then at least 25 subjects would be required. Lastly, we reflect on
whether time-to-completion is a fitting metric to test H1. As underlined in
Section 2.3, mental model accuracy can be measured in various ways, such as
cognitive load and attentiveness, which are suitable choices for wheelchair
control (Carlson and Demiris, 2009).

A final use-case for our AR application is to extend beyond first-person
wheelchair navigation. Whilst floor-rendered and low-level visualisations
did not gather positive participant response, a bystander could benefit from
the inclusion of these graphical cues due to their improved ease of inter-
preting the primary user’s intentions. For example, a clinician or therapist
wearing a HoloLens can oversee the graphical overlay of the learner’s in-
teraction with the robot (similar to the view in Figure 4.1) and then better
understand the reasoning behind any assistive intervention. Communicat-
ing the navigational intent of a robotic wheelchair and its driver to passing
pedestrians has also been shown to generate smoother interactions between
the two parties (Watanabe et al., 2015). We thus believe that intention com-
munication in multi-AR headset applications is advantageous for the future
of rehabilitation and assistive robotics.
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Figure 4.7: Overview of XSC. Standard SC (indicated by black arrows) will
involve an inference of the user’s task intent based on sensory
inputs, followed by an assistive control process that outputs mo-
tor commands to the robot, e. g. a robotic wheelchair. In the ex-
plainable paradigm (indicated by red arrows), the robot’s internal
states are also visually represented in AR, i. e. making robot “in-
tent” transparent.

4.3 explainable shared control paradigm

The smart wheelchair system of the previous section clearly suffered from
model misalignment, even with the assistance of AR visualisations. Our ex-
perimental evaluation of this system exemplified how poorly designed visu-
alisations can harm task performance and even cause greater misunderstand-
ing. These findings suggest that more careful consideration is required when
designing visualisations for SC due to the active user engagement. Ergo, we
introduce XSC as a set of AR interface guidelines on how to best demystify
the SC.

XSC refers to a novel paradigm where the SC simultaneously comple-
ments the abilities of a human operator and facilitates rich information
exchange. There is a plethora of research on how to complement an oper-
ator’s abilities and instil trust in the interaction (Hancock et al., 2011; Soh
et al., 2019). Nonetheless, the literature on making processes of SC transpar-
ent is sparse (Alonso and de la Puente, 2018). As a result, the focus of XSC
is to expose any internal mechanisms in AR using “explanation as visual-
isation” (Chakraborti, Fadnis, Talamadupula, Dholakia, Srivastava, Kephart
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and Bellamy, 2018) and comply with standard axioms of SC (Abbink et al.,
2018).

By proposing a means of achieving XSC via an AR interface, we aspire
to settle the model mismatch between interacting humans and robots (over-
view shown in Figure 4.7). Therefore, the main contributions of this sec-
tion are: 1) to outline XSC in Section 4.3.1 and then instantiate it in Sec-
tion 4.3.2 with an AR HMD interface for assistive robot navigation; 2) to dis-
cern the paradigm’s benefits in Section 4.3.3 through a user study on model
misalignment. The setup for this experiment involves our standard robotic
wheelchair architecture and a Microsoft HoloLens supplemented with eye
tracking capabilities. Section 4.3.4 discusses insights gleaned from this ex-
periment. These contributions aim to further elaborate on research question
(2), as well as answer (3).

4.3.1 Guidelines for Transparency

The following are guidelines on how to realise XSC from the perspective
of developing internal models, as well as constructing a head-mounted AR
interface. By sharing robot intent through an interface, both trust and trans-
parency will be injected into the SC (Alonso and de la Puente, 2018; Lyons
and Havig, 2014).

4.3.1.1 Causality and Context

First, minimising conflict in the human’s understanding of robot behaviours
(Axiom 1 Abbink et al., 2018) should require the SC to exhibit causality (Fox
et al., 2017). In other words, the internal mechanisms must be able to draw
connections between inputs of the world (e. g. robot state, user commands,
sensor readings) and the individual stages involved in generating the fi-
nal output commands. Model-based intention estimation and arbitration al-
gorithms make this an easier endeavour (Fox et al., 2017). Effectively, this
helps answer user questions, such as: why and how did the robot perform
that action?

Answering the why and how, an AR interface guideline of XSC is to repres-
ent causality by designing contextual visualisations. Contextual visual aids
are those that achieve state summarisation of the robot’s perceived environ-
ment and any immediate action-effect relationships (e. g. an occupancy grid
constructed from LiDAR data or end effector kinematics resulting from ac-
tuation). However, the active role of a participant in SC – as opposed to a
passive observer – compels their continuous engagement with the task-at-
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hand. For such scenarios, we advocate for the visual context to be represen-
ted using “embodied” cues (Walker et al., 2018). These cues are generated
atop the robot morphology as virtual extensions, e. g. a radar attached to a
mobile base that depicts the constructed occupancy grid, or arrow vectors
originating from an arm’s end effector to illustrate planned motion (Walker
et al., 2018).

4.3.1.2 Abstraction and Prediction

Externalising the “brain” of SC is another step towards transparency, which
demands that robot reasoning about the task is made explicit (Axiom 2 Ab-
bink et al., 2018) through high-level abstraction (Chakraborti, Fadnis, Tala-
madupula, Dholakia, Srivastava, Kephart and Bellamy, 2018). Simply repres-
enting raw data streams of the system’s inputs or outputs will not suffice,
as it risks overloading users with information that is already observable.
Conversely, a trace or trajectory that highlights semantic task-specific char-
acteristics and shows the provenance of information captured in the environ-
ment is better for visual portrayal (Chakraborti, Sreedharan, Kulkarni and
Kambhampati, 2018). A critical question answered here is: when does the
robot decide to intervene?

Hence, another AR guideline of XSC is to develop predictive visualisations
that capture the reasoning behind when SC intervenes. Predictive visualisa-
tions are those that possess a temporal element and inform the high-level
planning of users. A limitation of the aforementioned contextual visual aids
is that they display only a snapshot of the current state, which is unlikely
to explain when the robot may intervene and can cause even greater mis-
understandings (as seen in Section 4.2.2). This is particularly problematic
for SC settings, where the active involvement of the user calls for advance
planning. By presenting visual traces of the historic or future world states
(e. g. the evolution of a virtual robot’s arm motion trajectory), users will be
equipped with the necessary information to act preemptively.

4.3.1.3 Why Headsets?

Viewing “explanation” as a process of visualisation (Chakraborti et al., 2017),
immersive HMDs are an integral component of the paradigm. Whilst most
SC methodologies achieve information exchange via force feedback, haptic
interfaces are limited at explainability in complex task settings unless com-
bined with a visual modality for a multimodal approach (Losey et al., 2018).
Given the rich visual feedback requirements of XSC, we stipulate that em-
bodied interfaces in AR offer a superior medium of unveiling the robot’s
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Figure 4.8: Composite image of the visualisations rendered during assistive robot
navigation. The rear-view display (1) overlays virtual objects onto an
image taken from a camera situated on the back of the seat. The mini-
map panel (2) depicts a bird’s eye view of the wheelchair configuration
and its surroundings. Finally, red spheres (3) are placed atop real-world
referents to highlight collisions.

inner workings. In particular, AR HMDs have the potential to better cir-
cumvent model mismatch during an active collaboration like SC, as they
provide users with a heightened sense of immersion over monitors or pro-
jectors (Alshaer et al., 2017; Sibirtseva et al., 2018).

4.3.2 Instantiation for Assistive Robot Navigation

Acknowledging that the presented outlook on XSC can be tackled in mul-
tiple ways, we now situate the paradigm in an assistive robot navigation
setting as a concrete example of its instantiation (final platform shown in
Figure 4.8).

4.3.2.1 Internal Mechanisms

The SC methodology presented in Section 3.3 developed internal mechan-
isms that are already in harmony with the guidelines of XSC. Projecting tra-
jectories in Section 3.3.1.2 fits the causality guideline, as it represents a trace
of recognised intent that can also be used to visually explain the wheelchair
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Figure 4.9: First-person perspectives of the AR visualisations. (a) illustrates the
rear-view display during reverse motion, where a wheelchair tra-
jectory is projected outwards. (b) shows the red collision spheres
overlaid in the environment. (c) & (d) display the mini-map util-
ity and arrow indicators. The mini-map reveals the wheelchair’s
future trajectory and can hint at upcoming obstacles, e. g. in (d)
where the heading angle is too tight for the doorway and requires
adjusting.

dynamics when supplied with input commands. The geometric method of
collision-checking in Section 3.3.2.1 also coincides with XSC on abstraction by
providing a high-level representation of threats based on sensor data. Identi-
fying “gaps” in the surroundings is particularly compelling for XSC, as it
adds another semantic layer of abstraction around sensory state information.
Accordingly, the next phase of XSC is to convey this navigational assistance
using a head-mounted AR interface.

4.3.2.2 Augmented Reality Interface

With the interface design guidelines of XSC in mind, three visualisations6

are devised and categorised as either environmental or embodied. Any graph-
ical cues that directly overlay the real-world surroundings are considered
environmental, whilst embodied visualisations are fixed to either the robot or
headset’s orientation and motion (Kim et al., 2018; Walker et al., 2018). First-
person perspectives are demonstrated in Figure 4.9.

6 Supplementary video material of visualisations available at: https://www.youtube.com/
watch?v=Hja38ghpKN0

https://www.youtube.com/watch?v=Hja38ghpKN0
https://www.youtube.com/watch?v=Hja38ghpKN0
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The first virtual aid is a collision sphere paired with a directional arrow.
Highlighting collision referents in the physical environment with salient red
spheres (see Figure 4.9-(b)) augments the contextual awareness of users, en-
abling them to identify why their actions may lead to unexpected behaviour.
Directional arrows are also employed as headset-embodied cues that signal
where these imminent collisions are situated from the operator’s perspect-
ive (shown in Figure 4.9-(c) & (d)). These arrows are constrained to always
appear within the headset’s FoV.

The second visualisation is a mini-map panel that portrays a birds-eye
view of the mobile base and its forward state. In order to explicate the SC
methodology discussed in Section 3.3, the mini-map is annotated with laser
scan readings and forecasts of the robot’s estimated poses after applying
input commands. For instance, Figure 4.9-(d) illustrates a scenario in which
the operator has selected a command that leads to a tight angle for door
traversal. The predictive visual feedback of both the red collision marker and
projected robot trajectory suggests that the user should adjust their heading
before attempting the doorway.

Lastly, the rear-view display incorporated in our previous AR HMD pro-
posal for wheelchair navigation (see Section 4.2.1.2) is persisted. We extend
the display to supplement the rear-view with a virtual wheelchair avatar
during backwards motion (translucent grey avatar shown in Figure 4.9-(a)).
This aid conforms to XSC by supplying users with a wider contextual per-
spective of the robot’s navigational reasoning and by rendering the predicted
effects of issuing reversal commands.

Certain design considerations are taken to avoid distracting users through-
out operation, which can pose a problem for HMDs (Sibirtseva et al., 2018).
The red obstacle spheres are instantiated at the physical targets detected by
LiDAR sensors attached to the mobile base, thus providing an accurate de-
piction of the robot’s collision-checking process. Whenever these spheres fall
outside of the egocentric FoV, small arrows appear in the navigator’s peri-
phery as a non-obtrusive indicator. Both the panel and rear-view are robot-
embodied cues that are rigidly attached to the mobile base. In order to not
clutter an operator’s FoV, these two virtual objects are positioned outside
the natural viewing angle of wheelchair navigation.

4.3.3 Experiments

We conducted a within-subjects experiment to investigate the influence of us-
ing XSC with an AR HMD whilst operating our robotic wheelchair platform.
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Figure 4.10: A floor plan of the navigation route used for a single experiment trial,
with a 3D overhead view in the top-left corner. Each participant is re-
quested to manoeuvre from the wheelchair position, to goal ‘A’, and
then to ‘B’, before finally returning to the starting wheelchair position.
The small numeric labels denote the centimetre widths of spaces along
the route.

As before, all navigation processes are implemented atop ROS (Quigley et al.,
2009) and run using an on-board laptop. The Unity 3D game engine was
again utilised for AR application development and deployed on a HoloLens
(30◦ × 17.5◦ FoV) that has been supplemented with the Pupil Labs add-on
for eye tracking (Kassner et al., 2014).

Our hypotheses for this indoor navigation study are:

• H1 – AR will improve the mental model accuracy of participants, as
determined by their quicker recovery times from jarring events linked
with model misalignment.

• H2 – Visualisations in AR will reduce the cognitive workload on sub-
jects based on their less variable eye gaze distribution profiles.

4.3.3.1 Experimental Setup & Protocol

We invited a total of 18 able-bodied volunteers (4 female, 14male) aged 22-65
(median: 25) to take part in the experiment. Once again, the gender discrep-
ancy is owed to the use of engineering students (see Section 4.2.2.1). Parti-
cipants reported their familiarity with powered mobility, robotic wheelchairs
and AR, with the most common grouping reporting no prior experience in
any.
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A 2D floor plan of the experimental route is illustrated in Figure 4.10.
Each subject was requested to complete this route twice, once with and
without the aid of the proposed visualisations. To counterbalance the effects
of trial order, even-numbered participants performed their first trial with
visual feedback before proceeding onto their second trial without, and vice
versa for the odd-numbered. Participants wore the headset across both trials
for the purpose of data collection and fairness in comfort.

An entire experiment run took approximately 30 minutes and consisted of
the following five phases: (1) preliminaries, (2) training if necessary, (3) eye
gaze calibration, (4) navigation task and (5) post-experiment questionnaire.
Phase (1) asked volunteers to fill out an introductory questionnaire, sign a
consent form and watch video demonstrations of the AR assistance. Phase
(2) was an optional 5-minute training of wheelchair control, especially for
those with no prior experience. Step (3) involved fitting the HoloLens on the
subject and calibrating the eye tracker using the plugin for HMDs (Kassner
et al., 2014). Phase (4) consisted of the two navigation trials, followed by a
post-experiment questionnaire in stage (5).

There are two unique locations along the navigation route that test the
benefits of XSC guidelines on AR interface design. First, the passageway to
goal ‘A’ includes a chair in the top-left corner of the room, which leads to
a tight bend around the table that is challenging to manoeuvre (contextual).
Second, the obstacle box located in the office is small and requires advance
notice for smooth circumvention without regular downward glances (predict-
ive – see Figure 4.11).

4.3.3.2 Evaluation Metrics

A variety of task-specific metrics are examined to evaluate the XSC system.
Aside from standard performance measures for mobile robotics, such as
time-to-completion, the focus of evaluation is also directed towards human
factors associated with model misalignment in SC.

One notable human factor that has previously been investigated for its im-
pact on SC is cognitive workload (Carlson and Demiris, 2012). Self-reported
questionnaires are often utilised to assess this metric, but eye gaze is known
to be correlated with heightened workload or difficulty in manoeuvring a
wheelchair (Carlson and Demiris, 2012; Simpson, 2008). More specifically,
prior literature has drawn connections between gaze-based attention and the
accuracy of mental models (Goodrich and Olsen, 2003). Higher degrees of
eye movement are linked to cognitive overload, which coincides with an in-
appropriate mental model on the basis of a less efficient interaction (Carlson
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Figure 4.11: Illustrates two participants navigating the office doorway entrance
(refer to map in Figure 4.10) mid-trial. The volunteer on the left had
to regularly attend to the obstacle box without any graphical aid. Con-
trarily, the volunteer on the right could manoeuvre around the box
with little need to perform downward glances due to the graphical as-
sistance.

and Demiris, 2009, 2012). As a result, we report eye gaze patterns as a
physiological measure on the mental models of participants.

Additionally, we record the time to traverse specific navigation events that
are relevant to XSC and any task load incurred due to model mismatch. By-
passing doorways and avoiding incidents where the wheelchair gets stuck
are both prominent issues for powered mobility (Simpson, 2008). Given the
role of transparent assistance in these situations, we identified events where
participants encountered doors and “stucks”, so as to record the time it
takes to overcome such events. Door positions are set by their midpoints
and tracked as events whenever they fall within the wheelchair’s footprint.
Likewise, “stucks” occur whenever the wheelchair does not escape its own
clearance for a duration of 10 seconds.

Lastly, a post-experiment survey was handed out to volunteers for sub-
jective feedback. The survey asked users to rate the benefit of the different
visualisations and their general perceptions of the overall system (5-point
Likert scale).

4.3.3.3 Empirical Findings

Fixating on the evaluation of transparency attributed to XSC, Figure 4.12

demonstrates traversal times for the events described in Section 4.3.3.2. The
results indicate that volunteers recovered faster from “stucks” (related t-test,
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Figure 4.12: Average timing results across commonly occurring events that can res-
ult from model misalignment in SC for robot-assisted navigation.
For both doorways and “stucks”, participants overcame these cir-
cumstances faster in their visualisation-aided trial, highlighting
the benefit of predictive cueing at inciting quicker recovery times.

p=0.03) when guided with AR (median: 18.61s, IQR=22.7-15.17s) than when
not (median: 26.23s, IQR=44.41-16.88s). Similarly, doorways had quicker tra-
versal times (related t-test, p=0.093) on trials with visualisations (median:
6.13s, IQR=8.64-4.77s) in comparison to without (median: 8.71s, IQR=15.14-
6.19s). These findings support H1 in that subjects overcame hazardous and
otherwise jarring incidents more effectively, hinting at higher mental model
accuracy.

In the post-survey responses, participants made various comments that
reinforce the quantitative findings on event traversal times. Some claimed
that the aids “helped with understanding where the problem was”, as well
as “explaining why the safety algorithm was changing the way the wheel-
chair behaved”. These observations echo the XSC guidelines discussed in
Section 4.3.1 and fortify the value of explicating SC, such that human oper-
ators can quickly recover from model misalignment.

Time-to-completion per participant is shown in Figure 4.13. We report
average relative improvement in timings, with median values of 16.05%
(IQR=24.91-12.86%) when switching to visualisations on the second trial
and 13.75% (IQR=21.36-8.49%) when visualisations were instead removed.
Despite the positive trend in improvements, the experimental scenario only
involves two trials and thus cannot discount the possibility of a larger ef-
fect due to natural learning rates between successive trials. As stated in Sec-
tion 4.2.3, the issue of statistical power persists in this study as well, meaning
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Figure 4.13: Time-to-completion per participant, with and without visualisations.
Even-numbered subjects had graphical aid for their first trial, and odd-
numbered subjects on their second. Points below the main diagonal
show subjects that attained lower times with visual aid in comparison
to without.

if more subjects were available then an investigation into the learning effects
could prove fruitful.

Joint angular gaze distribution plots of eye tracking results are shown in
Figure 4.14. Adhering to the manufacturer’s guidelines for our selected eye
tracker, we filtered all gaze points below a specified confidence threshold be-
fore generating these plots. For the angular coordinates with visualisations,
Figure 4.14-(a) presents mean angles of -1.74° (SD 9.63°) and -7.57° (SD 9.88°)
in the horizontal and vertical directions, respectively. Contrarily, Figure 4.14-
(b) presents for non-visualisation trials mean angles of -3.97° (SD 11.39°) and
-12.54° (SD 9.97°) in the horizontal and vertical directions, respectively.

Although no strong claims can yet be made for the relationship between
these gaze patterns and mental models (related t-test, p>0.1, rejecting H2),
there are still a few important observations. First, subjects occupied the
negative vertical region less frequently in the visually-aided trial, signify-
ing that they could successfully complete the task without repeatedly glan-
cing downwards for obstacles (exemplified in Figure 4.11). This implies that
the AR HMD interface provided an easily accessible source of contextual
information regarding the SC. Furthermore, volunteers maintained a more
centrally-oriented gaze when operating the wheelchair with visualisations
than without. A reduction in variability could be indicative of lower men-
tal workload during the prescribed navigation task (Carlson and Demiris,
2012). Lastly, greater care may need to be taken to not divert user attention
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Figure 4.14: Joint angular gaze distribution across all participants along the hori-
zontal and vertical axes. When operating the wheelchair with visualisa-
tions (a), volunteers maintain a more centrally-oriented gaze angle and
perform less downward glances in comparison to without (b).

through visual explanations, as there are more instances of looking upwards
in visualisation trials.

4.3.3.4 Survey Results

An uplifting result from the survey responses was the positive user appraisal
of all AR visualisations. Table 4.3 lists the average scores from 1-5 (5 being
most positive) for the graphical aids. Most notably, the red collision indicat-
ors garnered nearly universal approval (4.39± 0.92) and even surpassed the
popularity of the rear-view display (4.06± 0.94). Although the mini-map was
less appreciated (3.22± 1.17), the result was still in favour of its inclusion.

Table 4.4 presents general opinions on the overall system, which promote
the efficacy of conforming to XSC through AR HMDs. The general disagree-
ment with the notion of feeling distracted (2.17± 0.99) asserts that our visual-
isations did not have any inherently misleading effects. In line with the aim
to administer transparent assistance, subjects responded with high levels of
clarity on the purpose of each virtual aid (4.11± 0.68). Finally, the positive

Table 4.3: Summary of responses to: “Rate the benefit of the following visualisation
from 1-5 (1 = very poor, 5 = very good)”.
Visualisation Mean User Rating Standard Deviation Mode

Red Collision Indicators 4.39 0.92 5

Mini-map Display 3.22 1.17 3

Rear-view Display 4.06 0.94 5
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Table 4.4: Summary of subjective responses to general perceptions from 1-5 (1 =
strongly disagree, 5 = strongly agree).

Question Mean Rating ± Std. Dev. Mode

I felt clarity on the visualisations 4.11± 0.68 4

I found the visualisations effective 3.67± 0.84 4

I felt distracted by the visualisations 2.17± 0.99 2

tendency for users to find the visualisations effective at predicting the robot’s
behaviour (3.67± 0.84) bolsters the prospects of predictive cueing in AR.

4.3.4 Discussion

By applying a new interface design approach, the benefits of integrating
AR HMDs onto “smart” mobility platforms have begun to emerge. The res-
ults from our user study demonstrate a reduction in the traversal times of
doorways and trapped situations, as well as diminished head movement, all
of which are cognitively straining everyday challenges for wheelchair users
(validating H1). Moreover, the recorded eye gaze data has provided tentative
insight into how the introduced AR setup may expose users to less mentally
demanding distribution profiles, albeit the patterns are not statistically sig-
nificant yet (rejecting H2). As with our previous study, this may partially be
attributed to the lack of statistical power and choice of non-regular wheel-
chair users as participants (see Section 4.2.3).

A couple of drawbacks that persist in this updated architecture are re-
lated to the hardware. First, the LiDAR sensors only take a horizontal slice
of the 3D space and thereby fail to capture a holistic perspective of what
the wheelchair operator sees. This issue transfers into the AR visualisations
by only presenting obstacle indicators at the height of the planar scans and
constraining map portrayal to 2D grids. Second, the restricted FoV and hefti-
ness of current HMDs could hinder the assistance of the actual SC, especially
over longer durations, e. g. due to user fatigue (Sibirtseva et al., 2018). Nev-
ertheless, sufficient technological advancements are expected in this area,
rendering the problem obsolete.

In contrast to our earlier study presented in Section 4.2.2, deploying con-
textual and predictive AR visual aids have greatly enhanced the likelihood of
potential users adopting our system. Unlike before, our updated AR HMD
interface has neither distracted nor negatively impacted subjects during the
indoor navigation task. In fact, this follow-up study revealed that subjects
exhibited quicker recovery times from adverse events that are typically en-
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countered during model misalignment in wheelchair navigation. Overall,
these findings advocate the positive societal impact of AR headsets for as-
sistive wheelchair navigation and act as a stepping-stone in paving forth
this field of research.

4.4 conclusions

In this chapter, XSC was introduced to resolve the model misalignment prob-
lem that frequents many HRIs. Answering research question (2), a novel
AR system was presented in Section 4.2, where a Microsoft HoloLens acted
as a head-mounted aid for smart wheelchair navigation. Through an eval-
uation of this system, we gleaned preliminary insights into the beneficial
and adverse nature of different AR cues for assistive navigation. In particu-
lar, we asserted that care should be taken in the presentation of information,
with effort-reducing cues for augmented information acquisition (e. g. a rear-
view display) being the most appreciated. Section 4.3 then delineated XSC
and instantiated the paradigm for assistive navigation, where an AR headset
played the integral role of visually demystifying the SC. Experimental res-
ults on the effectiveness of XSC demonstrated quicker user recovery times
from adverse situations commonly encountered during model misalignment,
resolving question (3).

There are many ways of instantiating XSC, however the guidelines applied
in this chapter set a precedent for multiple application domains. In medical
applications, such as surgical navigation, the weight of impeding perform-
ance through inappropriately placed virtual objects can have life-threatening
consequences (Dixon et al., 2013). Predictive aids that augment the surgeon’s
trajectory planning and contextual awareness are an exemplar use-case of
XSC. Likewise, we anticipate that designing SC mechanisms to exhibit caus-
ality and abstraction could help disambiguate robot intentions in other HMD-
based human-robot collaborations, such as aerial navigation (Walker et al.,
2018) and shared workspace manipulation (Sibirtseva et al., 2018).

Future work could explore how to generalise the XSC paradigm to be
robot-agnostic and less task-dependent. The resounding appreciation for the
red collision indicators of Section 4.3.2.2 suggests that visualisations aug-
menting the environment are perhaps more tightly coupled with XSC, war-
ranting further investigation in other task domains. Another worthwhile av-
enue of research is to formalise the XSC guidelines and trace exactly how
they reconcile model misalignment over a continuous interaction instead of
solely on a session basis. One way of testing this could be to purposefully
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inject incorrect robot behaviours into the SC and observe how user miscon-
ceptions are corrected with different visualisations.

This chapter has been dedicated to the human’s perspective of robot in-
tent without addressing the robot’s perspective of human intent, i. e. “robot-
of-human” transparency (Lyons, 2013; Lyons and Havig, 2014). In the next
chapter, we complete our XSC objective for transparency by contributing a
probabilistic inference framework for robots to learn human intentions from
observed behaviour. Crucially, the model is interpretable and thereby enables
explanations to be administered to both system designers, as well as end-
users.
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5
D I S E N TA N G L E D S E Q U E N C E C L U S T E R I N G F O R H U M A N
I N T E N T I O N I N F E R E N C E

This chapter answers our last research question:

“How can an interpretable model be developed for robots to infer
human intentions without making any assumptions about spe-
cific task constraints?”

Equipping robots with the ability to estimate human intent satisfies the ro-
bot’s viewpoint of transparency in Explainable Shared Control (XSC). Many
computational approaches towards this objective employ probabilistic reas-
oning to recover a distribution of “intent” conditioned on the robot’s per-
ceived sensory state. When adopting such a probabilistic stance, the inten-
tion estimation of Shared Control (SC) can be regarded as an inference prob-
lem. However, most approaches to this problem assume task-specific repres-
entations of human intent (e. g. labelled goals) are known a priori.

In this chapter, we overcome such task-oriented constraints by propos-
ing an original clustering framework – the Disentangled Sequence Clus-
tering Variational Autoencoder (DiSCVAE) – to learn a distribution of hu-
man intent in an unsupervised manner. The DiSCVAE is a subset of the
Variational Autoencoder (VAE) (Kingma and Welling, 2013; Rezende et al.,
2014), a widely used generative model for learning complex distributions
over large, high-dimensional datasets. Moreover, the DiSCVAE incorporates
ideas from sequence learning networks, e. g. Recurrent Neural Networks
(RNNs), combined with VAEs to efficiently infer latent variables over se-
quential data (Chung et al., 2015; Fraccaro et al., 2016; Goyal et al., 2017;
Krishnan et al., 2017). Though unlike previous sequence-based frameworks,
the proposed variant exploits the notion of disentanglement in representation
learning (Bengio et al., 2013) to infer a discrete (or categorical) variable for
the purpose of clustering. The role of disentanglement in modelling a distri-
bution of intent will be made apparent later in the chapter.

Two sets of experiments are conducted to evaluate the DiSCVAE. First,
we validate its general capacity to discover high-level classes over sequential
data by testing on an unlabelled video dataset of bouncing digits, known
as Moving MNIST (Srivastava et al., 2015). For this dataset, the classes that
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must be extracted from the aforementioned categorical variable are the indi-
vidual digit identities. Importantly, we also report findings from a real-world
Human-Robot Interaction (HRI) experiment involving our smart wheelchair
platform. The primary ambition here is to glean insights into how the in-
ferred categorical variable coincides with human intent in this setting (see
Figure 5.1 for an overview of the experiment setup).

The chapter is organised as follows. Section 5.2 motivates why enabling
robots to infer human intent in unconstrained task scenarios is vital for HRI.
In Section 5.2, we describe the preliminary material necessary to define our
DiSCVAE in Section 5.3. Experimental results on the Moving MNIST and ro-
botic wheelchair domains are presented in Sections 5.4 and 5.5. Section 5.6
discusses techniques that bear close ties with the DiSCVAE and its applic-
ation to intention inference. Finally, Section 5.7 concludes with the implica-
tions of this work and its future extensions. Note that we maintain the same
terminology for intent throughout this chapter as in Section 2.4.2.

Research from this chapter has been submitted to a peer-reviewed journal.

5.1 motivation

Humans are remarkably proficient at accurately and rapidly inferring the
implicit intentions of others from their overt behaviour (Blakemore and De-
cety, 2001; Tomasello et al., 2005). Consequently, they are adept at planning
their own actions when collaborating with one another in shared physical
environments. It therefore stands to reason that intention inference may be
equally imperative in creating fluid and effective HRIs. Robots endowed
with this ability have been extensively explored in collaborative robotics (De-
miris, 2007; Jain and Argall, 2019; Losey et al., 2018), yet their migration into
real-world settings remains an open research problem.

One major impediment to real-world instances of human intention infer-
ence is the assumption that a known representation of intent exists. For
example, most prevalent frameworks in collaborative robotics assume a dis-
crete set of task goals is known a priori. Under this assumption, the robot can
infer a distribution of human intent by applying Bayesian reasoning over the
entire goal space (Hu et al., 2018; Jain and Argall, 2019; Javdani et al., 2015).
Whilst such a distribution offers a versatile and practical representation of
intent, the need for predefined labels to acquire it is not always feasible or
realistic unless restricted to a specific task scope (Locatello et al., 2019).

Another challenge in estimating human intent is that many diverse actions
often fulfil the same intention (Jordan and Rumelhart, 1992). A prominent
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Figure 5.1: Overview of the intention inference experiment on a robotic wheelchair
(see Figure 3.1 for the real robot platform). Bottom: Recorded output of
an actual human subject navigating towards a goal (red arrow), which is
visualised here as an animated simulation. Top Right: Maps of the three
experiment settings, with red stars denoting target locations. Top Left:
Probability histogram of the categorical variable modelling “intentions”
at this particular snapshot of the data for K= 6 clusters. The bars are col-
oured to align with the wheelchair trajectories generated by sampling
from the corresponding clusters. Multiple diverse trajectories can be
sampled from the same cluster and each trajectory’s length is dependent
on the velocity commands drawn from the generative model.

class of probabilistic algorithms that aptly tackle this challenge are generat-
ive models, which derive a distribution of observations by introducing latent
random variables to capture any hidden underlying structure. Within the
confines of intention inference, the modelled latent space can then be pre-
sumed to represent all possible causal relations between intentions and ob-
served human behaviour (Hu et al., 2019; Tanwani and Calinon, 2017; Wang
et al., 2013). The advent of deep generative models, such as VAEs (Kingma
and Welling, 2013; Rezende et al., 2014), has also made it possible to ef-
ficiently infer this latent space from abundant sources of highly complex
data.

Inspired by the prospects of not only extracting hidden “intent” variables
but also interpreting their meaning, we frame the intention inference prob-
lem as a process of disentangling the latent space. Disentanglement is a core
research direction in representation learning, and refers to the recovery of
abstract concepts from independent factors of variation that are assumed to
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be responsible for generating the observed data (Bengio et al., 2013; Loca-
tello et al., 2019; Tschannen et al., 2018). These independent factors could be
the handwriting style of digits in the MNIST dataset (Kingma et al., 2014), or
the orientation and motion of objects in videos (Hsieh et al., 2018; Yingzhen
and Mandt, 2018), or even the speaker identity in audio signals (Hsu et al.,
2017, 2018; van den Oord et al., 2017). The interpretable structure of such
disentangled representations is exceedingly desirable for human-in-the-loop
scenarios (Fortuin et al., 2019), like robotic wheelchair assistance. Despite
how this desirable quality has spurred on considerable advances in repres-
entation learning algorithms, very few have transferred over to the robotics
domain (Hu et al., 2019).

As a result, we strive to bridge this gap by proposing an unsupervised
clustering framework for human intention inference that circumvents the
barriers to utility under unconstrained task conditions. Capitalising on prior
disentanglement techniques for sequence modelling, we learn a latent rep-
resentation of sequential observations (e. g. of human behaviour) that di-
vides into a local (time-varying) and global (time-preserving) part (Hsieh
et al., 2018; Hsu et al., 2017; Yingzhen and Mandt, 2018). Though unlike
previous approaches, our variant simultaneously infers a categorical vari-
able to construct a mixture model with the continuous global variable. Each
cluster thereby grants an interpretable way of inferring discrete high-level fea-
tures, e. g. the navigation intentions of a wheelchair user. The overall frame-
work is generally suited for class discovery in sequences.

5.2 preliminaries

Before defining our clustering framework for intention inference, the fol-
lowing describes principles from representation learning that underpin its
operation. As the VAE acts as the basis of the DiSCVAE, we begin with a
brief overview of its foundations. We then examine how to tailor VAEs to
sequential data, as they are not directly suitable for time-series analysis in
their original form.

5.2.1 Variational Autoencoders

Deep generative models are density estimators of data that rely on neural
networks to predict probability distribution parameters. In the context of
VAEs (Kingma and Welling, 2013; Rezende et al., 2014), the generative pro-
cess to acquire the joint distribution pθ(x, z) follows two steps. A latent vari-
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able z is first drawn from a prior pθ(z) (often a multivariate Gaussian), and
then observations x are reproduced from a conditional distribution pθ(x | z).
The ‘deep’ aspect here relates to how the parameters θ of these distributions
are learnt by a neural network with non-linear activation functions, some-
times termed the generative network.

Of central interest to VAEs and Bayesian inference in general is the sought-
after posterior pθ(z | x). However, the integrals required to evaluate this pos-
terior are often intractable, especially with complicated likelihood functions,
like non-linear neural networks. To bypass this problem, an approximation
qφ(z | x) of the true posterior is instead computed, where parameters φ are
learnt via a recognition network (Kingma and Welling, 2013; Rezende et al.,
2014). VAEs specifically perform a mean-field approximation of qφ(z | x),
meaning the resulting variational distribution is fully factorised by assuming
independence across latent variables. This entire methodology of approxim-
ating the inference process for scalable Bayesian modelling falls under the
umbrella of variational inference (Zhang et al., 2019).

The VAE is thus a deep latent variable model (displayed in Figure 5.2a)
that consists of both a generative and recognition network (Kingma and
Welling, 2013; Rezende et al., 2014). Training this model can be achieved by
maximising the marginal log-likelihood of the data logpθ(x), or equivalently,
maximising the Evidence Lower Bound (ELBO) L(x; θ,φ) as a surrogate ob-
jective function:

logpθ(x) > L(x; θ,φ) (5.1)

≡ Eqφ(z | x)

[
log

pθ(x, z)
qφ(z|x)

]
≡ Eqφ(z | x)

[
logpθ(x | z)

]
− KL

(
qφ(z | x) ||pθ(z)

)
,

where the first term of the last line can be viewed as a reconstruction error
and the second Kullback-Leibler (KL) divergence term as a regulariser that
encourages the variational posterior qφ(z | x) to be close to the prior pθ(z).

Key to the work of Kingma and Welling (2013); Rezende et al. (2014) is
an efficient training scheme to jointly learn the network parameters θ and φ
that optimise the ELBO. Whilst it would be attractive to use stochastic gradi-
ent descent for this optimisation (as is typical in neural networks), differen-
tiating the ELBO expectations is either impractical or impossible. Seeking
to overcome such impracticality, Kingma and Welling (2013); Rezende et al.
(2014) applied the reparameterisation trick to estimate expectation gradients
through Monte Carlo sampling. In essence, the trick expresses continuous
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(a) VAE (b) VRNN (c) GMVAE

Figure 5.2: Deep generative models for: (a) variational inference (Kingma and
Welling, 2013; Rezende et al., 2014); (b) a sequential VAE that con-
ditions on the deterministic hidden states of an RNN at each
timestep (VRNN Chung et al., 2015); (c) a VAE with a Gaussian
mixture prior (GMVAE). Dashed lines denote inference and bold
lines indicate generation.

latent variables in a deterministic form that is differentiable for stochastic
gradient descent, thereby facilitating variational inference over large quant-
ities of data.

We have presented the seminal VAE, but it does not account for time-series
analysis in its original form, and so the next section examines variational
inference for sequences. For notational simplicity, parameters φ and θ learnt
by recognition and generative networks will be omitted hereafter.

5.2.2 Variational Inference for Sequences

Most real-world data are characterised by time-varying attributes, motivat-
ing the development of deep generative models for sequences. Nevertheless,
the multi-layered structure of sequential data is a challenging modelling task
where variables at different timesteps are highly correlated and cannot be as-
sumed independent as in the factorised variational distribution of a VAE. In
order to explicitly capture these correlations, a recurrence relationship must
be established between the internal states of the latent variable model.

State Space Models (SSMs), such as Hidden Markov Models (HMMs), are
probabilistic graphical models that accomplish this feat using structured
variational inference. The structured qualifier denotes how the variational
approximation directly models dependencies between stochastic variables,
rather than factor them out (Zhang et al., 2019). Despite the rich history asso-
ciated with SSMs, they have only recently been merged with neural networks
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to leverage the expressive power of RNNs for sequence learning (Fraccaro
et al., 2016; Krishnan et al., 2017). Deep SSMs are therefore graphical models
formed of structured inference (or recognition) networks that are paramet-
erised by RNNs and optimised according to the VAE learning principle.

Alternatively, RNNs can be augmented to include latent variables and
solely model connections between deterministic states. By persisting the re-
current connections of hidden states with themselves, the RNN retains its
autoregressive nature. A notable example is the VRNN (Chung et al., 2015)
(shown in Figure 5.2b), which differs from SSMs by indirectly conditioning
on random variables and observations from previous timesteps through the
deterministic hidden state, ht(xt−1, zt−1, ht−1). This leads to a joint distri-
bution over the observation sequence and latent states:

p(x6T , z6T ) =
T∏
t=1

p(xt | z6t, x<t)p(zt | x<t, z<t) (5.2)

=

T∏
t=1

p(xt | zt, ht)p(zt |ht),

where the true posterior p(zt |ht) is conditioned on information pertaining
to previous observations x<t and latent states z<t, hence accounting for
temporal dependencies. The VRNN state ht is also shared with the inference
procedure to yield the following variational posterior distribution:

q(z6T | x6T ) =
T∏
t=1

q(zt | x6t, z<t) (5.3)

=

T∏
t=1

q(zt | xt, ht).

Deciding how to incorporate stochastic variables into a recurrent model
is an architecture choice (Goyal et al., 2017; Zhang et al., 2019). Whilst deep
SSMs (Fraccaro et al., 2016; Krishnan et al., 2017) provide a tighter ELBO
than that of a VRNN, they lose autoregressive structure by not conditioning
on the deterministic hidden state (Goyal et al., 2017). A recent framework
aiming to unify several of these architecture choices emphasised the benefit
of indirectly conditioning on stochastic latent variables to encode a “plan”
about future states during inference (Goyal et al., 2017). As our preliminary
results resonated with these findings, the DiSCVAE specified in the next
section also elects an approach akin to a VRNN (Chung et al., 2015).
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Figure 5.3: Computation graph of the inference q(.) and generative p(.) networks.
Green blocks contain the global variables y and zG, with a bidirectional
LSTM used to condition over the input sequence x6T . Hidden
states hzG

t and gzG
1 then compute the q(.) distribution parameters.

Orange blocks encompass the local sequence variable zt,L, where
a regular LSTM updates its internal states hzL

t at each timestep
and is combined with current inputs xt during inference of zt,L.
Generating xt requires both zG and zt,L.

5.3 the disentangled sequence clustering variational

autoencoder

In this section, we introduce the DiSCVAE (graphically shown in Figure 5.3),
a probabilistic clustering framework suited for human intention inference.
Our method of clustering is initially presented as an adaptation of the stand-
ard VAE to incorporate a Gaussian mixture prior and a categorical variable.
We then formulate the DiSCVAE by combining this clustering VAE with a se-
quential latent variable model capable of disentanglement. Finally, we discuss
how everything fits into the scope of intention inference.

5.3.1 Clustering with Variational Autoencoders

A key notion of learning “good” representations through a generative model
is to express a prior capable of naturally clustering the data space (Bengio
et al., 2013). Previous research on VAEs has pursued this objective and seg-
mented the latent space into distinct classes by applying a Gaussian mixture
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prior instead of the standard unimodal Gaussian (Dilokthanakul et al., 2016;
Jiang et al., 2017), sometimes referred to as a GMVAE.

Our approach is similar, with the exception of two modifications. First, we
leverage the categorical reparameterisation trick (Jang et al., 2016; Maddison
et al., 2016) to obtain differentiable samples of discrete variables and thereby
enable stochastic gradient descent for model optimisation. This differs from
the standard reparameterisation trick that exclusively operates on continu-
ous variables (Kingma and Welling, 2013; Rezende et al., 2014). Second, we
alter the ELBO objective to mitigate the precarious issues of posterior col-
lapse and cluster degeneracy (or mode collapse). Posterior collapse refers
to the phenomenon of latent variables being ignored or overpowered by
highly expressive decoders during training, such that the posterior mimics
the prior, i. e. the KL divergence term in Equation (5.1) falls to zero (Higgins
et al., 2017; Hsieh et al., 2018; van den Oord et al., 2017). On the other hand,
when multiple modes of the prior have collapsed into one (e. g. a single
cluster component), then this indicates mode collapse or cluster degeneracy
in the case of mixture models (Dilokthanakul et al., 2016; Hsu et al., 2018;
Shi et al., 2020).

The GMVAE used for this work (see Figure 5.2c) is outlined below. As-
suming observations x are generated according to some stochastic process
with discrete latent variable y and continuous latent variable z, and that the
aim is to divulge K clusters, then we can write the joint probability as:

p(x, z,y) = p(x | z)p(z |y)p(y), (5.4)

where

y ∼ Cat(π)

z ∼ N
(
µz(y), diag(σ2z(y))

)
x ∼ N

(
µx(z), I

)
or B

(
µx(z)

)
,

and functions µz, σ2z and µx are neural networks whose outputs paramet-
erise the distributions of z and x, respectively. More specifically, the generat-
ive process involves three steps: (1) sampling y from a categorical distribu-
tion Cat(y |π) parameterised by probability vector π, with πk set to K−1 in
favour of an uninformative uniform prior; (2) sampling z from the marginal
prior p(z |y), which results in a Gaussian Mixture Model (GMM) with a di-
agonal covariance matrix and uniform mixture weights; and (3) generating
data x from a likelihood function p(x | z), e. g. a fixed unit variance Gaussian
if real-valued (I denoting the identity matrix) or a Bernoulli if binary.
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A mean-field approximation q(z,y | x) of the true posteriors on z and y is
introduced in its factorised form as:

q(z,y | x) = q(z | x,y)q(y | x), (5.5)

where both the normally distributed q(z | x,y) and categorical q(y | x) are
also parameterised by neural networks. Nonetheless, the reparameterisation
trick does not directly apply to non-differentiable discrete samples (Kingma
and Welling, 2013; Rezende et al., 2014). Instead, we employ a continuous
relaxation of q(y | x) during training, coined as the Concrete (Maddison et al.,
2016) or Gumbel-Softmax (Jang et al., 2016) distribution1.

The ELBO objective for this clustering model is:

L(x) = Eq(z,y | x)

[
log

p(x, z,y)
q(z,y | x)

]
(5.6)

= Eq(z | x,y)
[

logp(x | z)
]

− Eq(y | x)
[
KL
(
q(z | x,y) ||p(z |y)

)]
− KL

(
q(y | x) ||p(y)

)
,

where the first term acts as a reconstruction loss on observations x, and the
latter two terms push the variational posteriors to be close to their corres-
ponding priors.

Optimising the ELBO for our GMVAE with a powerful decoder is prone
to posterior collapse and mode collapse. Cluster degeneracy is particularly
problematic for p(z |y), where the KL divergence term on y opts to use the
same mean and variance for each mixture component during training (Dilok-
thanakul et al., 2016; Hsu et al., 2018). To prevent both posterior collapse
and cluster degeneracy, we exploit the relationship with index-code mutual
information I(y; x) between y and x (Hoffman and Johnson, 2016):

Ep(x)
[
KL
(
q(y | x) ||p(y)

)]
= I(y; x)

= H(y) −H(y | x)

= logK−H(y | x). (5.7)

Provided that p(y) is uniform, directly maximising the entropy on q(y | x)
is equivalent to minimising KL

(
q(y | x) ||p(y)

)
. As with previous VAE-based

clustering models (Hsu et al., 2018; Shi et al., 2020), we make this replace-
ment in Equation (5.6) to alleviate posterior collapse and impose a constraint

1 In practice, a continuous relaxation of a one-hot categorical distribution is utilised, such that
samples from q(y | x) are one-hot vectors.
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that specialises clusters to individual observations. Empirical evidence sup-
porting this argument is supplied in Section 5.4.

5.3.2 Model Specification

Having established a means of categorising the latent space learnt using
VAEs for static data, we now derive the DiSCVAE as a sequential exten-
sion (graphically shown in Figure 5.3). The motivation behind our proposed
framework is to automatically disentangle representations and cluster them
into meaningful classes of information. In doing so, we aim to preserve the
benefits of autoregressive latent variable models for prediction, as well as
boost model interpretability via controlled generation.

Disentangling latent variables is an emerging area of research that has re-
cently gained traction in deep generative models for sequences (Hsieh et al.,
2018; Hsu et al., 2017, 2018; Yingzhen and Mandt, 2018). A common choice
of disentangled representation amongst these models involves segregating
into sequence-level and segment-level parts (Hsu et al., 2017). This has also
been regarded as a split into static and dynamic, or time-invariant and
time-dependent attributes (Hsieh et al., 2018; Yingzhen and Mandt, 2018).
Inspired by these approaches, we denote our disentangled representation at
timestep t as zt= [zG, zt,L], where zG and zt,L encode global (time-invariant)
and local (time-dependent) sequence characteristics, respectively.

The novelty of our approach lies in how we solely cluster the global (time-
invariant) variable zG extracted from sequences. Related temporal cluster-
ing models have either mapped the entire sequence x6T to a discrete latent
manifold (Fortuin et al., 2019) or inferred a categorical factor of variation
y to cluster over an entangled continuous latent representation (Hsu et al.,
2018; Shi et al., 2020). Whereas the DiSCVAE clusters high-level attributes
zG in isolation from lower-level dynamics zt,L. The DiSCVAE model itself
is an amalgamation of prior works, e. g. the VRNN (Chung et al., 2015),
GMVAEs (Dilokthanakul et al., 2016; Jiang et al., 2017) and sequence dis-
entanglement (Yingzhen and Mandt, 2018), however its formulation plays a
symbolic role in our interpretation of intention inference, as is made appar-
ent in Section 5.3.4.

Using the clustering scheme described in Section 5.3.1, we define the gen-
erative model p(x6T , z6T ,L, zG,y) as:

p(zG |y)p(y)

T∏
t=1

p(xt | zt,L, zG, hzL
t )p(zt,L |h

zL
t ). (5.8)
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Algorithm 5.1: Sampling procedure to produce diverse predictions of
novel states from the inferred cluster
Inputs : Sequence x6t; sample length L;
Output : Predictions x̃t+1, ..., x̃t+L

1 Feed prefix x6t into inference model via Equation (5.9)
2 Assign cluster c using Equation (5.11)
3 Draw fixed sample from p(zG |y = c)
4 for i ∈ {t+ 1, ..., t+ L} do
5 hi ← RNN(zi−1, xi−1, hi−1)
6 Sample dynamics from p(zi,L |hi)
7 Predict x̃i ∼ p(xi | zi,L, hi, zG)
8 end

The GMM prior p(zG |y) encourages mixture components (indexed by y) to
develop in the latent space of variable zG. Akin to a VRNN (Chung et al.,
2015), the posterior of zt,L is parameterised through deterministic state hzL

t .
It is also important to highlight the dependency on both zt,L and zG upon
generating xt.

To perform posterior approximation, we adopt the variational distribution
q(z6T ,L, zG,y | x6T ) and factorise it as:

q(zG | x6T ,y)q(y | x6T )
T∏
t=1

q(zt,L | xt, hzL
t ). (5.9)

As before, categorical y is injected into the inference process and relaxed
to acquire Monte Carlo sample estimates of gradients during training (Jang
et al., 2016; Maddison et al., 2016). An alternative variational distribution
q(z6T ,L, zG,y | x6T ) could use a “full” structure that conditions on zG and
y as well (Yingzhen and Mandt, 2018), but we find the chosen “factorised”
q(.) to be more effective for our experimental domains. By conforming to
a factorised structure, we assume that global features are independent of
local dynamics, e. g. a human’s high-level intention to grasp an object does
not correlate with the precise intricacies of their grasping behaviour. The
variational posterior over zt,L could also summarise information from the
future x6T , but Fraccaro et al. (2016) points out that this is unlikely to render
improvements given the shared deterministic state hzL

t .
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Under the VAE framework, the DiSCVAE is maximised according to the
time-wise learning objective:

L(x6T ) = Eq(·)

[
log
[
p(x6T , z6T ,L, zG, y)
q(z6T ,L, zG, y | x6T )

]]
(5.10)

= Eq(·)

[
T∑
t=1

(
log
[
p(xt | zt,L, zG, hzL

t )
]

− KL
(
q(zt,L | xt, hzL

t ) ||p(zt,L |h
zL
t )
))

− KL
(
q(zG | x6T , y) ||p(zG |y)

)
+ H

(
q(y | x6T )

)]
.

This summation of lower bounds across timesteps, L(x6T ), is decomposed
into: (1) the expected log-likelihood of input sequences; (2) KL divergences
for variables zt,L and zG; and (3) a measure of conditional entropy based on
our preceding argument in Equation (5.7).

5.3.3 Network Architecture

The complete DiSCVAE network architecture is demonstrated in Figure 5.3.
An RNN is used to parameterise the posteriors over zt,L, with the shared hid-
den state hzL

t allowing x<t and z<t,L to be indirectly conditioned on in Equa-
tions (5.8) and (5.9). For time-invariant variables y and zG, a bidirectional
RNN (Graves and Schmidhuber, 2005) is applied to extract feature represent-
ations over the entire sequence x6T , analogous to prior architectures (Frac-
caro et al., 2016; Krishnan et al., 2017; Yingzhen and Mandt, 2018). All RNNs
have LSTM cells (Hochreiter and Schmidhuber, 1997), as these gated units ex-
cel at handling very long segments of spatio-temporal data (Sutskever et al.,
2014). One-hidden layer Multilayer Perceptrons (MLPs) are also dispersed
throughout to output the mean and variance of any Gaussian distributions,
as per the VAE ideology. Decoded inputs xt at each timestep depend on the
concatenated disentangled representation, zt.

5.3.4 Intention Inference

Let us now relate back to the problem of intention inference and how we
deem intent as both a goal and a plan of action (Tomasello et al., 2005). Un-
der such a unified representation, we claim that the latent class attribute
y models a K-dimensional repertoire of action plans for any specific task.
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From this perspective, intention inference is a matter of assigning clusters to
observations x6T of human behaviour and their environment (e. g. joystick
commands and Light Detection And Ranging (LiDAR) sensor readings). Ul-
timately, human intent is computed as the most probable element of the
component posterior:

c = arg max
k

q(yk | x6T ), (5.11)

where c is the assigned cluster identity, i. e. the inferred intention label x
of the tuple ix in Section 2.4.2. The goal gx associated with this cluster is
then modelled by zG, and local variable zt,L captures the various behaviours
capable of accomplishing the inferred action plan ux (see Section 2.4.2 for a
reminder on the representation).

Aside from classifying observations, another major benefit of DiSCVAE
is its capacity for controlled generation of sequences. Given an observation
sequence x6T , we can infer c and then fix it to generate new sequences
by conditioning on the model priors. Repeatedly sampling zt,L also allows
for diversity in how the predicted trajectories x̃t pan out according to the
global plan. The procedure of generating novel states (e. g. intent-driven be-
haviours) is summarised in Algorithm 5.1.

5.4 validation setting : moving mnist

As a means of validating our clustering framework, this section presents
results on Moving MNIST (Srivastava et al., 2015), a dataset for video rep-
resentation learning. Code for the DiSCVAE and experimentation is publicly
available online2.

5.4.1 Dataset and Implementation

Moving MNIST is a video dataset (Srivastava et al., 2015) comprised of mul-
tiple digits bouncing off their surrounding frame edges at random velocities.
It has recently become a popular domain for investigating disentanglement
amongst sequential latent variable models (Hsieh et al., 2018; Kosiorek et al.,
2018) due to its intuitive separation of dynamic and static sequence attrib-
utes, namely the motion and identity of each digit. The dataset also poses as
a pertinent validation testbed for our work, as clustering on MNIST digits
is a common ground for evaluation (Dilokthanakul et al., 2016; Jiang et al.,
2017).

2 See Appendix A for information regarding this open-source software.
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Although the dataset is flexible in size given how the moving digits can
be rendered on-the-fly, we decide to synthesise a fixed total of only 10000
video sequences. Not relying on an endless amount of training data offers
better judgement on how our model might perform in more limited data
settings, e. g. in HRI. From the 10000 sequences, we split 8000 into training
and 1000 for both validation and testing. Every video is of length T = 20

frames, with each frame occupying a 64×64 patch. Unlike the original data-
set (Srivastava et al., 2015), our version contains a single 28×28 digit moving
randomly within each frame so as to not overcomplicate the clustering eval-
uation by needing to try out much higher values than K= 10. Digit classes
are evenly distributed across the dataset.

The DiSCVAE architecture adheres to the graph visualised in Figure 5.3.
Wrapped around this probabilistic architecture is a four-layer Convolutional
Neural Network (CNN) to encode and decode the raw video sequences, act-
ing as a feature extractor. The entire network is then configured as follows:
convolutional layers have 3×3 kernels and strides of two, MLP layers (leaky
ReLU activations) and the bidirectional LSTM state have 512 hidden units,
and the hzL

t state shared between the inference and generative processes has
128 units. Moreover, each pixel is modelled as a Bernoulli variable repres-
ented by latent variables of dimensionality dim(zt,L)= 32 and dim(zG)= 128.
The hyperparameter tuning process is exceptionally sensitive when learning
disentangled representations (Locatello et al., 2019), and so rigorous experi-
mental evaluations took place to settle on these values.

With regard to model training, less rigorous testing was required as there
are common choices in the relevant literature. For instance, we use the pop-
ular Adam optimiser (Kingma and Ba, 2014) to maximise the ELBO, with
a learning rate of 3×10−4 and batch size of 16 (relatively typical values).
The temperature parameter defining how approximately discrete q(y | x6T )
should be is also set to 1.0, as recommended in Jang et al. (2016); Maddison
et al. (2016). All functionality is implemented using TensorFlow (Abadi et al.,
2016) and its Probability library (Dillon et al., 2017).

5.4.2 Evaluation Protocol

Clustering performance is determined by a frequently applied metric for
unsupervised classification accuracy (Jiang et al., 2017):

ACC = max
m∈M

∑N
i=1 1{li = m(ci)}

N
, (5.12)
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where li and ci are the actual label and cluster assignment associated with
observation xi, respectively. The set M covers all possible one-to-one map-
pings between labels and learnt clusters, for which the best permutation
is computed via the Hungarian linear assignment algorithm (Kuhn, 1955).
To evaluate prediction performance on Moving MNIST, the standard pro-
tocol is to sample 10 frames into the future given 10 preceding input frames
and then compare these samples with the ground truth sequence (Srivast-
ava et al., 2015). Sticking to this protocol, we report on metrics of binary
cross-entropy (BCE) and mean squared error (MSE).

The following methods are considered for this experiment, with each one
possessing the same general network structure as specified above:

• SeqVAE-GMM: A sequential VAE where the variables at each timestep
are treated as independent of one another, plus a GMM separately
trained on the learnt latent space;

• SeqGMVAE: A sequential GMVAE based on the clustering schema
presented in Section 5.3.1, but again not handling temporal dependen-
cies between variables;

• VRNN-GMM: A VRNN (Chung et al., 2015) with a GMM fit to its
latent space during an isolated optimisation phase;

• DDPAE-GMM: The Decompositional Disentangled Predictive Auto-
Encoder (Hsieh et al., 2018) (coupled with a GMM for classification), a
model that attained state-of-the-art results on Moving MNIST by dis-
entangling and decomposing sequence representations;

• DiSCVAE: The proposed model of Section 5.3.2;

• DiSCVAE-KLY: A model variation where the ELBO L(x6T ) has the
entropy measure in Equation (5.10) exchanged for its respective KL
divergence, i. e. like in Equation (5.6).

In addition to these unsupervised approaches, we train a supervised bidirec-
tional LSTM (BiLSTM) using the aforementioned CNN encoder and a soft-
max classifier. All models are optimised over 10 training runs at different
random seeds until validation-based early stopping.

5.4.3 Results

Table 5.1 summarises classification results on the test set of Moving MNIST.
Excluding the DiSCVAE, all other algorithms achieve unsatisfactory per-
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Table 5.1: Performance on Moving MNIST test set (10 random seeds), with missing
values for non-temporal models that do not output sequence predictions

Model ACC (%) ↑ BCE ↓ MSE ↓

SeqVAE-GMM 22.16± 2.03 - -
SeqGMVAE 18.59± 1.45 - -
VRNN-GMM 15.04± 0.5 319.61± 26.24 73.03± 0.78
DDPAE-GMM 27.96± 3.68 246.52± 4.36 72.9± 1.17
DiSCVAE-KLY 28.54± 3.28 286.9± 8.08 70.9± 0.95
DiSCVAE 77.04± 6.76 279.4± 8.87 68.9± 1.28

Superv. BiLSTM 92.59± 1.64 - -

formance at discerning digit identities from the video sequences. The VRNN-
GMM combination is notably poor on account of its entangled latent rep-
resentation. On the other hand, the models viewing each frame independ-
ently are marginally better due to their focus on time-invariant character-
istics for reconstruction. Further improvements in the DiSCVAE-KLY and
DDPAE (Hsieh et al., 2018) with a GMM fit to its learnt “content” vector
(conceptually similar to our global variable) reinforce the value of both disen-
tanglement and temporal correlations. Nonetheless, the DiSCVAE obtains a far
superior classification accuracy that is also impressively comparable to the
supervised BiLSTM.

Predictive performance is also exhibited in Table 5.1, with only the autore-
gressive VRNN and DDPAE models serving as baselines. The VRNN is out-
performed by the DiSCVAE and DDPAE, suggesting that disentangling lat-
ent attributes can even occasionally aid in the prediction of entangled future
states. Between the DiSCVAE and DDPAE, the former produces better MSE
scores and worse BCE measurements, indicating that predictions are on aver-
age more accurate but less robust in the presence of uncertainty. The higher
certainty surrounding the DDPAE estimates is possibly attributed to how
this model learns decomposed representations of input sequences (e. g. in-
dividual digits within the video), acting as an attention mechanism towards
salient regions for prediction (Hsieh et al., 2018; Kosiorek et al., 2018). Any
discrepancy in DDPAE performance from the original work (Hsieh et al.,
2018) is by virtue of a much smaller dataset encompassing single-digit se-
quences.

Qualitative results of the DiSCVAE applied to the test set are demon-
strated in Figure 5.4. The bottom row shows the entire ground truth se-
quence and on the right-hand side are 10 forward sampled states from each
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Figure 5.4: Bouncing digits generated by drawing samples from different mixture
components. Bottom: Shows the ground truth sequence, where the first
10 frames prefix the sampling procedure disclosed in Algorithm 5.1.
Right: Illustrates how predictions sampled from every cluster correctly
persist the bouncing profile of the digit but alter its identity. The se-
quence just above ground truth is generated from the assigned cluster
c and correctly matches the “zero” class. Top Left: A visualisation of
the t-SNE projections for digit sequences held in the test set (each point
colour-coded by its label).

component of the mixture prior p(zG |y). For every cluster injected into the
sampling procedure of Algorithm 5.1, the velocity characteristics of the boun-
cing digit are maintained yet the identity distinctly changes to match the
corresponding component. Note that the trajectory just above ground truth
is drawn from the inferred cluster c, i. e. the one that maximises posterior
probability as in Equation (5.11). Furthermore, the top left plot in Figure 5.4
depicts t-SNE embeddings of global latent zG (Maaten and Hinton, 2008),
where coloured data points expose the true digit labels. This plot is gener-
ated for the best run (90.2% accuracy), hence the strong coherence.

5.4.4 Ablation Study

Lastly, we explore the issues of posterior collapse and cluster degeneracy
when modelling discrete variable y. Many techniques have been applied to
evade the occurrence of a zero KL divergence term, such as KL cost anneal-
ing (Higgins et al., 2017) or vector-quantisation (van den Oord et al., 2017),
yet we find maximising the entropy of q(y | x6T ) to be a simple and sufficient
solution. This has also been corroborated by other recent works (Hsu et al.,
2018; Shi et al., 2020). To justify the claim, we examined how different models
and regularisation terms for L(x6T ) affect the posterior when learning with
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Figure 5.5: Validation set classification accuracy and conditional entropy of
q(y | x6T ) monitored during training runs on Moving MNIST. The model
trained to minimise the KL divergence over y (DiSCVAE-KLY) exhib-
its cluster degeneracy, with the conditional entropy plot indicating that
every observation is equally likely to be assigned to the same compon-
ent. At the other extreme, the sequential GMVAE (SeqGMVAE) clearly
suffers from posterior collapse. Only the entropy formulation for
training a DiSCVAE yields reasonable clustering performance and
a meaningful variational posterior.

a powerful CNN decoder. In particular, we tracked the clustering accuracy
metric in Equation (5.12) and the conditional entropy during training runs
of the DiSCVAE, DiSCVAE-KLY and SeqGMVAE models.

Figure 5.5 illustrates the evolution of these measured quantities on the
validation set. When including the entropy term without modelling depend-
encies between timesteps (SeqGMVAE), the reconstruction loss is prioritised
and leads to a uniform posterior distribution that ignores latent variable
y altogether (posterior collapse). On the contrary, if temporal correlations
are captured but the model is optimised under KL divergence regularisa-
tion (DiSCVAE-KLY), every sequence will project to the same component
and suffer from mode collapse. In turn, we appoint an entropy constraint
(DiSCVAE) that encourages cluster specialisation to particular input obser-
vations and avoids degeneracy despite using expressive non-linear neural
networks. Table 5.1 additionally shows how the DiSCVAE surpasses its KL
divergence competitor in both classification and prediction.
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5.5 intention inference on robotic wheelchairs

After validating the framework’s capacity to disclose classes from synthetic
video sequences without supervision, we now explore intention inference
in the scope of assistive wheelchair navigation. The problem statement here
is to infer the action plans of users from observations of their joystick com-
mands and surroundings, as perceived using laser rangefinders. Equipping
robots with this capability is a fundamental ambition of assistive robot-
ics (Demiris, 2007).

5.5.1 Dataset

Ten healthy subjects (aged 25-33, all male) with prior experience using a
robotic wheelchair were recruited to navigate three mapped environments
(top right of Figure 5.1). Each subject was requested to manually control the
wheelchair using its joystick and follow a random route designated by goal
arrows appearing on a graphical interface, like the one shown in Figure 5.1.
In keeping with our terminology of “intent”, we highlight that these goals
are incomplete representations of human intent, as they do not reflect the
local plans of subjects, i. e. how they act in pursuit of a goal.

Experiment data collected during trials was recorded at a frequency of
10Hz, with sequences of length T = 20. All signals perceived by the robot
are constrained to this specific frequency rate as the LiDAR sensors act as a
bottleneck. As for T , the length is inspired from related work on estimating
the short-term “local” intentions of robotic wheelchair operators (Poon et al.,
2017). Every sequence was composed of user joystick commands at ∈R2 (lin-
ear and angular velocities), as well as LiDAR readings lt ∈R360 (1◦ angular
resolution). The resulting dataset amounted to a total of 8823 sequences.

Experimental evaluation on this dataset occurs in two ways. First, the gen-
eralisability of our intention inference framework is assessed according to
different mapped environments. As a result, any trials that took place in Map
3 (see Figure 5.1) are excluded from the training and validation sets, leaving
splits of 5881/1580/1422 for training/testing/validation. The rationale for
dividing the dataset in this way is to investigate performance under vari-
ations in task context, and verify whether our interpretable DiSCVAE can
elucidate human intent irrespective of such change. Second, user-specific
models are evaluated on a subset of the dataset. This subset adheres to the
same map-based split, but consists of only a single subject (3885/1035/882
for training/testing/validation).
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5.5.2 Post-Processing

Post-processing steps include synchronising and labelling the gathered data.
Synchronisation of incoming LiDAR and joystick sequences to a common fre-
quency is necessary, as each signal is recorded at varying rates (even between
different LiDAR sensors). Even though the mapped goal poses are incom-
patible with our definition of intent, we still desire labels for post-analysis.
Hence, we appoint ground truth labels to the implicit intent of subjects based
on the local manoeuvres they make while pursuing task goals. More pre-
cisely, the following automated labelling routine is utilised.

Each sequence is initially categorised as either narrow or wide depending
on the measure of threat we previously applied in our SC methodology,
refer to Equation (3.7). In essence, this score captures the danger of immin-
ent obstacles per timestep and designates a narrow sequence whenever the
averaged measure exceeds a certain threshold.

Next, we discern the intended navigation manoeuvres of participants from
the wheelchair’s odometry information. After empirically testing different
thresholds for translational and angular velocity, we determined six man-
oeuvres: in-place rotations (left/right), forward and reverse motion, as well
as forward turns (left/right). Overall, this results in 12 classes that account
for the influence of both environment state and actions. The majority class
across the training and validation sets is the wide in-place rotation (left and
right), whilst in the test set it is the narrow reverse. This switch in label fre-
quency between training and testing highlights the task diversity resulting
from different maps. Note that odometry data is not supplied as input to the
DiSCVAE network.

5.5.3 Implementation

The mobile platform is a powered wheelchair integrated with an on-board
computer and three LiDAR sensors, as described in Section 3.2. All software
processes and inter-device communication are handled within Robot Oper-
ating System (ROS) (Quigley et al., 2009).

The DiSCVAE network is portrayed in Figure 5.6 and mimics the graph-
ical model visualised in Figure 5.3, excluding the extra steps to deal with
two input modalities. Both the raw LiDAR vector l6T and 2D user control
commands a6T are passed through separate single-layer MLP neural net-
works with 512 units (ReLU activations) for feature extraction. The derived
code vectors are then concatenated together to yield x6T , which is fed into
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Figure 5.6: Complete robot and network architecture for the robotic wheelchair ex-
periment. Joystick and LiDAR data are fed into independent MLP
layers to produce a non-linear transformation of the concaten-
ated input sequence, xt ∈R288. This sequence then feeds into
the DiSCVAE encoder graph (see Figure 5.3) to produce the bi-
directional LSTM state representation hφx and hidden states hδxt
responsible for inferring variables zG and zt,L, respectively. These
variables are then concatenated and passed onto another set of
MLP layers, which decode the joystick commands ãt ∈R2 and
range values l̃t ∈R360.

the DiSCVAE to infer latent variables zG and z6T ,L. Upon generation, two
individual decoders are conditioned on these variables and trained to recon-
struct the original input modalities.

All other training details match our Moving MNIST implementation, ex-
cept for the following. Sensory observations are modelled as Gaussian vari-
ables with fixed variance instead of Bernoulli variables. Sequences are also
normalised per modality before entering the network using the mean and
standard deviation of the training set, as in previous sequential latent vari-
able models (Fraccaro et al., 2016; Maddison et al., 2017). Likewise, the lat-
ent variables representing observations have dimensions dim(zG)=φ= 32

and dim(zt,L)= δ= 32. The Adam optimiser (Kingma and Ba, 2014) is also
configured with a learning rate of 1×10−3. Again, hyperparameter selection
mostly relied on experimental evaluation.

5.5.4 Choosing K

A crucial design choice of the DiSCVAE is to select K for the action plan
repertoire size. Although this is straightforward for Moving MNIST, the
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Table 5.2: Test set metrics to determine number of clusters

No. Clusters
Whole Dataset User-Specific

ELBO ↑ NMI ↑ ELBO ↑ NMI ↑

4 -585.5 0.13 -574.0 0.19
6 -585.8 0.18 -574.1 0.21
10 -585.2 0.19 -571.9 0.27
13 -583.1 0.22 -573.4 0.25
16 -583.5 0.21 -573.8 0.26

decision is less apparent when there are many potential interpretations of
classes (e. g. between a forward-left turn or an in-place rotation left). The
lack of access to ground truth factors of variation also complicates the mat-
ter, possibly suggesting that an unsupervised metric would prove useful in
diagnosing clustering performance (Locatello et al., 2019). Therefore, two
metrics are utilised: the unsupervised log-likelihood per timestep (ELBO)
and the Normalised Mutual Information (NMI) across our assigned labels.
The NMI measure occupies a range of [0, 1] and is extensively used to assess
the quality of clustering, even amongst similar VAE-based algorithms for
interpretable discrete representation learning (Fortuin et al., 2019).

Table 5.2 provides the ELBO and NMI for different K in the range 4-16.
Whilst there is no compelling difference between the number of clusters, we
settled on K= 13 and K= 10 for the holistic dataset and its user-specific sub-
set, respectively. This decision was partially based on the slightly superior
performance, as well as the close proximity to the number of predefined la-
bels, aiding the linear cluster assignment process in Equation (5.12). It might
also be foreseeable that the user-specific subset would occupy a smaller rep-
ertoire size, given the more regular patterns of a single subject’s actions.

5.5.5 Evaluation

Complementary to the procedure for Moving MNIST, we report on clus-
tering performance through the accuracy metric defined in Equation (5.12).
Note that the linear assignment for this metric optimises a one-to-one map-
ping, so the leftover clusters or labels (depending on whichever is less) will
be assigned arbitrarily. Hence, we also train a classifier (k-nearest neigh-
bour) over the learnt latent representation, zG, to digest the prospects for
semi-supervised classification and obtain a more absolute assessment of dis-
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Figure 5.7: Left: t-SNE embeddings of component samples drawn from a K= 13
mixture prior. The joint density plot illustrates how a multimodal latent
space is learnt from the robotic wheelchair data, with separable clusters
representing intent. Right: Predicted laser scans (converted to a 2D grid)
on the test set when sampling from a “wide” and “narrow” type cluster.
Wide samples create spacious proximity around the wheelchair (red dot)
and preserve the corridor (left of dot), whilst narrow samples gradually
sever this corridor gap.

criminative performance. For this classifier, we compute the mean average
precision (mAP) individually across all 12 classes before taking their aver-
aged result as an indicator of the effectiveness of this semi-supervised ap-
proach. Trajectory predictions of user actions ãt and LiDAR readings l̃t are
also judged by comparing “ground truth” with 10 forward sampled states.
The metric for comparison is MSE, a standard error measure in intention
estimation (Hu et al., 2018; Tanwani and Calinon, 2017).

For this experiment, only a VRNN (Chung et al., 2015), the DiSCVAE and
a supervised BiLSTM are considered, with each trained across both datasets
(“Whole” and “User”). The BiLSTM classifier is trained to learn mappings
between inputs and the labels identified in Section 5.5.2, whilst the VRNN
is only optimised for the regression of trajectories. All methods maintain the
same network structure as in Figure 5.6 to encode observations.

5.5.6 Results

With respect to qualitative analysis, we demonstrate how action and state
samples emerge from the model’s prior latent structure. Figure 5.1 portrays
forecasted trajectories by sampling from each mixture component during
a recorded interaction with a subject. There is clear variability in the traject-
ory outcomes predicted for a specific wheelchair configuration (K= 6 to ease
visualisation). Importantly, the plotted categorical probability histogram (top
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Table 5.3: Performance on Wheelchair test set (10 random seeds)

Model ACC (%) ↑ mAP (%) ↑ MSE ↓

VRNN-Whole 21.7± 1.5 62.8± 1.2 3.50± 0.1
VRNN-User 21.9± 1.3 63.0± 2.8 3.60± 0.2
DiSCVAE-Whole 33.3± 3.1 75.9± 1.8 3.49± 0.1
DiSCVAE-User 37.6± 3.2 80.2± 2.2 3.49± 0.1

BiLSTM-Whole 44.9± 2.4 38.1± 1.0 -
BiLSTM-User 46.6± 1.9 44.9± 2.4 -

left of Figure 5.1) indicates that the most probable trajectory aligns with the
wheelchair user’s current goal (red arrow), i. e. the correct “intention”. Mean-
while, Figure 5.7-Right exemplifies how future environment states manifest
when sampling from clusters categorised as “wide” or “narrow”. Figure 5.7-
Left also depicts how random component samples from a K= 13 mixture
prior form distinguishable clusters and reveal a multimodal latent space.

Table 5.3 presents the quantitative results for this experiment. As anticip-
ated, highly variable wheelchair control in an unconstrained navigation task
makes classifying intent extremely challenging. The DiSCVAE attains a low
error rate of 33.3% on the “Whole” dataset and even the supervised BiLSTM
obtains a classification rate of merely 44.9% on the unseen test environment.
Nevertheless, learning representations of intent can clearly garner benefits in
inference, as the mAP is significantly improved (approximately doubled) by
training a classifier over the labelled latent attributes of the DiSCVAE and
VRNN. MSE scores for trajectory prediction of joystick and ranger values
show that the DiSCVAE and VRNN are alike in their error estimates, which
is consistent with how entangled representations often yield better predic-
tions at the expense of interpretability (Higgins et al., 2017; Tschannen et al.,
2018).

A few conclusions can be drawn from these results. First and foremost,
relying on labelled goals for evaluation is not necessarily informative on the
underlying distribution of intent. Instead, interpretability is germane to the
evaluation of disentangled representations (Locatello et al., 2019), in which
the DiSCVAE substantially gains as a transparent clustering model of human
intent (elaborated on in Section 5.5.7). Second, the elevated mAP hints that
semi-supervised learning may pose a worthwhile avenue to explore in fu-
ture applications, especially in user modelling on larger interaction datasets.
Lastly, the time-invariant and time-varying elements of wheelchair naviga-
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Figure 5.8: Assignment distribution of y for K= 13 with post-processed labels for
(a) wheelchair manoeuvres and (b) perceived spatial context. The plot
illuminates how various clusters are associated with user intent under
different environmental conditions. For example, most backward motion
and “narrow” state samples fall within cluster 2. Similar patterns are
noticeable for in-place rotations (0 and 9), as well as for “wide” forward
motion (4 and 10).

tion are possibly interdependent, as reinforced by the balanced dimension-
ality of local and global features.

5.5.7 Illuminating the Clusters

Straying away from the purely discriminative task of classifying intent, we
now use our framework to decipher the plans intended by users at the “local”
scope of wheelchair navigation. In particular, we plot the assignment distri-
butions of y for each test set example in the “Whole” dataset to understand
the underlying meaning of our clustered latent space. The labels from Sec-
tion 5.5.2 primarily serve to assist in this endeavour. We also point out that
identical assignment distributions are found in the “User” data.

Figure 5.8a provides further clarity on how certain clusters have learnt
isolated wheelchair manoeuvres. For instance, cluster 2 is distinctly linked
with motion trajectories of the wheelchair going in reverse. Likewise, clusters
0 and 9 are affiliated with left and right in-place rotations. Furthermore, the
spatial state assignments exhibited in Figure 5.8b delineate how these listed
clusters are most often categorised as narrow. This result is to be expected
of evasive actions that habitually take place in cluttered spaces. In contrast,
predominantly forward-oriented manoeuvres fall into wide clusters (e. g. 4
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and 10). These findings substantiate that an action plan repertoire has been
aptly inferred using our proposed framework.

5.6 related work

Our work builds on the VAE paradigm (Kingma and Welling, 2013; Rezende
et al., 2014) and its sequential extensions (Chung et al., 2015; Fraccaro et al.,
2016; Goyal et al., 2017; Krishnan et al., 2017) by uncovering meaning behind
their learnt latent representations (Bengio et al., 2013). Recent sequential lat-
ent variable models have advanced towards this objective by learning to
disentangle representations into sequence- and segment-level attributes of
data (Hsu et al., 2017; Yingzhen and Mandt, 2018). As a result, these mod-
els can distinguish and manipulate features present in the sequence at both
a local and global scale, e. g. separating pose information from content in
video data (Hsieh et al., 2018). Our model adheres to this scheme of disen-
tanglement but embraces an extra level of discrete attributes for the purpose
of clustering.

Incorporating discrete variables into deep generative models plays an in-
tegral role in understanding latent spaces, especially by drawing connec-
tions with abstract concepts, such as human intent. Some sequential models
complementary to ours have disentangled latent variables using decompos-
ition (Hsieh et al., 2018) or attention (Kosiorek et al., 2018) to enable ab-
stract reasoning (e. g. to compartmentalise or count the bouncing digits in
Moving MNIST), yet few have additionally considered clustering. The most
comparable work is a hierarchical generative model for text-to-speech syn-
thesis (Hsu et al., 2018) that also employed a GMM prior with categorical
attributes to cluster different speakers. However, a notable difference is that
the DiSCVAE parameterises the latent GMM with a recognition network and
does not presume categorical labels are visible a priori.

Intention understanding essentially revolves around the problem of an
observing agent deriving a model to match an acting agent’s behaviour (De-
miris, 2007). In HRI, this problem is typically addressed by equipping an
observing robot with a probabilistic model that infers intent from human ac-
tions (Hu et al., 2018; Jain and Argall, 2019; Javdani et al., 2015). The growing
interest in scalable learning techniques for modelling agent intent has also
spurred on applications in robotics for purposes like SC (Losey et al., 2019;
Reddy et al., 2018) and multi-agent governance (Xie et al., 2020). However,
disentangled representation learning remains sparse in the literature, with
the only known comparable work to ours being a conditional VAE that dis-
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entangled latent variables in a multi-agent driving setting (Hu et al., 2019).
Albeit similar in principle, we stipulate that our approach is the first to infer
a discrete “intent” variable from human behaviour and subsequently cluster
their action plans.

5.7 conclusions

In this chapter, we embraced a novel outlook on human intention inference
and introduced a deep generative model to simultaneously disentangle and
cluster sequence representations. The overall framework is broadly applic-
able to sequential data, as proven by revealing classes from synthetic video
sequences of bouncing digits, whilst correctly preserving motion character-
istics on trajectory generation. A real-world experiment on intention infer-
ence involving robotic wheelchairs also gleaned insights into how our model
could discern primitive action plans from observations, e. g. rotating in-place
or reversing. We believe the contributions of this chapter can equally serve
the machine learning and robotics communities.

The implications of an unsupervised, interpretable means of inferring in-
tent are promising for numerous research avenues in HRI. For instance, the
task-agnostic prior could be exploited in downstream tasks, such as user
modelling, to augment the wider adoption of collaborative robotics in un-
constrained environments. Our findings on semi-supervised learning from
the robotic wheelchair experiment fortify this idea. The interpretable lat-
ent structure could also prove fruitful in assistive robots that warrant ex-
planation by visually relaying inferred intentions back to end-users (as in
Chapter 4). A final course of inquiry could be to incorporate these explana-
tions into an interactive learning procedure (Locatello et al., 2019), e. g. for
user personalisation.

By contributing a means of creating “robot-of-human” transparency (Ly-
ons, 2013; Lyons and Havig, 2014), we have now fulfilled all the prerequis-
ites for effective XSC. Despite the “black-box” nature of our DiSCVAE for
intention inference, the capability to attach abstract concepts to its latent
structure enables us to reap the expressive power of deep learning (Bengio
and Delalleau, 2011) in applications that benefit from explanation, e. g. SC
for robotic wheelchair assistance.
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C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

The final chapter of this thesis serves three purposes. First, to compile to-
gether our contributions to various subject domains. Second, to remark on
any limitations of the presented work. Lastly, to review future research dir-
ections that may address these limitations and enhance the pervasiveness of
assistive robotics.

6.1 overview of thesis contributions

Our primary objective in this thesis has been to resolve the model misalign-
ment that frequents Shared Control (SC) by exposing robot and human in-
tentions to one another. In pursuing this objective, we have made contribu-
tions to a wide selection of research areas, including Human-Robot Inter-
action (HRI), Augmented Reality (AR) and representation learning. A focal
point across all these contributions has been to advance the prevalence of
assistive robots, hence our chosen platform: a “smart” wheelchair.

Our first contribution answered research question (2) with a novel architec-
ture integrating an AR Head-Mounted Display (HMD) onto a smart wheel-
chair. From the visualisations devised to accelerate mental model accuracy
of the SC, only the rear-view display garnered positive user ratings. Smart
wheelchair manufacturers could shed light from this result, as the large rear-
view is especially advantageous for disabled individuals with poorer eye-
sight or limited upper body and neck mobility. Moreover, we discovered that
users could not exploit all the AR aids to their benefit because some were
either too low-level and thereby puzzling (e. g. command vectors), or poorly
positioned and thus inaccessible (e. g. floor-level objects). The latter issue is
partly affected by the headset’s sturdiness and narrow Field of View (FoV),
however with sufficient technological advancements, many of these concerns
about how to spatially situate AR aids will become obsolete. For the former
issue, we found the need for a more principled interface design.

Striving to guide AR HMD interface design on how to avoid these out-
comes and successfully “explain” any internal mechanisms of robots em-
ploying SC, we introduced the Explainable Shared Control (XSC) paradigm.
This paradigm concerns both the development of internal SC processes, as
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well as their visualisation in AR. In particular, we described an SC meth-
odology where intention estimation and arbitration exhibited causality and
abstraction, allowing corresponding contextual and predictive AR cues to be
generated. These two traits in the SC methodology helped answer our first
research question. Experiments with the updated smart wheelchair system
showed that subjects engaging in XSC had less strenuous eye gaze patterns
and were quicker to overcome adverse events than subjects utilising stand-
ard SC. These findings corroborated the capacity for XSC to combat model
misalignment in assistive navigation, answering question (3).

Having addressed the human’s perception of robot intent through visual
“explanations”, our last question regarding XSC was to supply robots with
an interpretable framework for human intention inference. This inference
problem often relies on assumptions about the task-at-hand in order to op-
erate under constrained conditions. However, the proposed Disentangled
Sequence Clustering Variational Autoencoder (DiSCVAE) made no such as-
sumptions and enabled an assistive robot to instead learn how to represent
intentions directly from observed human behaviour. Unlike many “black-
box” methods that suffer from lack of model interpretability, the DiSCVAE
latent space consisted of clusters that could illuminate developers and users
alike on what human intentions were deciphered from observations.

Each of these contributions sought to fulfil the core requirements of XSC
and illustrate the beneficial impact on assistive robots, such as the smart
wheelchair. Our commitment to publish and make publicly available all soft-
ware derived from this thesis is also likely to pave the way towards more
explainable robot behaviour in the fields of SC and HRI. Appendix A sum-
marises the details of this open-source software.

6.2 outstanding issues

Before outlining future avenues for the XSC paradigm, the issues associated
with its current form must be expressed. This section is devoted to these
outstanding issues.

6.2.1 Addressing the Target Population

In spite of an encouraging forecast for XSC, we have yet to conduct user
trials with the actual target population. Testing on able-bodied volunteers
is favourable when it comes to engineering an assistive robot prototype,
as rapidly testing on users with minimal health risks is a mandatory and
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pragmatic first step. However, if the prototype is to eventually migrate out-
side of controlled lab settings, then a larger scale study where a small num-
ber of disabled patients are introduced is vital (Carlson and Demiris, 2012;
Viswanathan et al., 2017). Otherwise, healthy subjects may yield biased res-
ults and there is no guarantee that the main study conclusions will transfer
over to target end-users. Once we have evaluated XSC in a case study includ-
ing disabled individuals, only then can we draw concrete conclusions about
its benefits for assistive robotics.

6.2.2 General Applicability of Explainable Shared Control

As with any paradigm in robotics, validating its applicability over diverse ro-
bot architectures is a non-trivial challenge. Even the traditional SC paradigm
adopts numerous definitions and cannot easily find a common ground in
the literature (Abbink et al., 2018). This is primarily due to the variations in
physical characteristics and roles of robots assisting people via SC.

For instance, our AR HMD interface for SC on smart wheelchairs may
not prove suitable when considering aerial robots or robotic arms. Aside
from obvious differences in hardware and functionality between these ro-
bots, there is also the fact that smart wheelchairs are unique in how humans
embody them as operators. This embodiment largely affects the choice of
AR visualisations and requires extra care regarding the HMD’s FoV, as we
identified from our pilot study in Section 4.2. A fresh set of AR aids may
then be necessary in scenarios where humans are remotely sharing control
with robots, e. g. for telerobotic control (Milgram et al., 1995) or multi-agent
teaming (Dias et al., 2008).

Nevertheless, the recommended guidelines of XSC are intended to be gen-
eral enough to inform the design of AR HMD interfaces in varied HRI set-
tings. In Appendix C, we refer to these guidelines in order to conceive an
AR HMD interface for dual-arm collaborative robots. For this application,
the arm manipulator’s intent is projected through contextual and predictive
AR cues. Although SC was not applied in this setup, elements of explainab-
ility from XSC are still utilised effectively. In turn, we suspect that the same
concepts introduced in this thesis would prove effective on platforms other
than the robotic wheelchair.
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6.2.3 Tracing Model Misalignment

Given the active nature of SC, tracing model mismatch should take place
over a continuous interaction, as opposed to a session basis. Whilst the user
study in Section 4.3.3 recognised the value of this trait and detected events
associated with model misalignment during navigation trials, it did not ex-
plore how mental models are reconciled per event. By aggregating the results
across entire trials, it is unclear how exactly the AR headsets helped users
recover from “stucks” or other jarring incidents. In a deeply collaborative set-
ting, like SC, it would be prudent to actively track the reconciliation process
throughout each event.

Tracking reconciliation is broadly part of a wider debate on how to evalu-
ate SC systems. Abbink et al. (2018) reflect on this dilemma and introduce an
evaluation corollary where experimental conditions of SC should “include
static and dynamic conditions that fall within and beyond the boundaries of the
task domain”. At present, our experimental trials have remained within the
boundaries of assistive navigation and are examined only in terms of static
conditions. It is therefore necessary to expand the scope of XSC beyond the
prescribed navigation tasks and establish new criteria for dynamically delim-
iting model misalignment and reconciliation. Probing the role of cognitive
load using saccadic eye movement could act as such a dynamic criterion on
the learning gauge of mental models.

6.2.4 Communicating the Human Intention Inference Model

Humans often struggle to comprehend the internal motives surrounding
robot behaviour (Jain and Argall, 2019). There are many reasons for this
struggle, including the correspondence problem (i. e. observers not possess-
ing the same internal mechanics as demonstrators Nehaniv and Dautenhahn,
2001), appearance constraints (e. g. robots lacking anthropomorphic features
Walker et al., 2018), illegible robot actions (Dragan et al., 2013), and so forth.
Regardless of the reason, it is of paramount importance to transparency that
the intentions or objectives of robots are conveyed back to users (Alonso and
de la Puente, 2018; Huang et al., 2019).

As a result, a key expectation of XSC is for humans and robots to share
intent in a bi-directional manner. In other words, the robot must infer human
intent in parallel with communicating its internal model for inference. Des-
pite the AR interface of Chapter 4 unveiling our smart wheelchair’s intention
estimation mechanism, this internal process was not an accurate inference of
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human intent, as pointed out in Section 3.4. On the other hand, the frame-
work in Chapter 5 learnt an action plan repertoire for wheelchair navigation
that depicts a more complete representation of human intent. Though we
have yet delved into how the interpretable nature of the DiSCVAE could be
relayed back to end-users visually.

6.2.5 Closing the Explainable Shared Control Loop

Possibly the most fundamental issue remaining is to close the XSC loop and
define a holistic system. Our endeavour to bring transparency to the human
and robot perspectives of SC was fulfilled in isolation without suggesting a
method of integration. Integration would require the DiSCVAE latent space
to be encapsulated into the AR HMD interface (as stated in Section 6.2.4),
and for its generated samples to be administered as assistive robot com-
mands during the SC. Given how the DiSCVAE was trained over navigation
trials involving healthy subjects, any generated actions could be supplied to
adjust noisy inputs of actual patients (akin to learning assistance by demon-
stration Kucukyilmaz and Demiris, 2018; Soh and Demiris, 2015).

6.3 future research

This thesis only provides an initial step forward in XSC, with many of its
qualities demanding further investigation. In the following, we describe a
few research directions for XSC and their significance to assistive robotics.

6.3.1 Mutual Model Adaptation

One interesting path of research is to analyse the interplay between internal
models of humans and robots as they actively participate in closed-loop
XSC. This idea coincides with what is known as mutual model adaptation
in SC (Nikolaidis et al., 2017), where the internal models of both the hu-
man and robot are regularly undergoing adaptation. Situated in XSC, the
intention inference model of the robot would have to be capable of online
updates and the AR interface must be dynamically configurable according
to these updates. Provided with real-time visual feedback on the robot’s
internal states, users would then evoke responsive behaviour that triggers
additional changes in the learnt action repertoire, e. g. modifying or adding
action plans.
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There is a myriad of lucrative aspects to studying this interplay, so we
will only name a few. First, model misalignment could be properly traced
as the interaction is unfolding and assessed based on the frequency of mu-
tual model updates. It could be hypothesised that a higher update frequency
correlates with worse misalignment. Next, the XSC decision-making could
exploit incoming information surrounding the interplay for purposes like
fine-tuning the arbitration policy, or disabling AR visualisations that are no
longer useful. Inference models on how humans make sense of the AR in-
terface could then also be created to discern which cues are most informat-
ive. Huang et al. (2019) recently tackled a similar problem, where a robot
inferred which behaviours would best teach end-users about its objective
function. The work did not aim to explicate any internal robot reasoning and
so AR could complement this line of research.

6.3.2 Hierarchical Intention Prediction

Another pertinent research question is whether long-term intentions can be
estimated from the short-term action plans extracted in Chapter 5. As men-
tioned in Section 2.4.2, we frame the recognition of future-directed intentions
as prediction, rather than estimation or inference. A source of biological in-
spiration on how to effectively approach this prediction problem are internal
models (see Figure 2.2). These models are neural functions that enable hu-
mans to foresee the resulting behaviour of perceived actions according to
internal simulations of their own sensory-motor repertoire of actions (Wolp-
ert et al., 2003, 1998). Given how we acquired such a repertoire in Chapter 5,
it bears considering how our learnt clusters, or alternatively internal models,
could be extrapolated to predict future intentions.

Many intention prediction architectures based on internal models rely on
two fundamental concepts: multiplicity and hierarchy (Demiris, 2007; De-
miris and Khadhouri, 2006; Wolpert et al., 2003, 1998). Multiplicity refers to
the idea that the motor system must handle multiple contexts with multiple
possible responses or behaviours, probing the idea that the motor apparatus
follows a distributed layout (Wolpert et al., 1998). Hierarchy instead expresses
how our motor system mediates and reasons about low-level actions from
higher-level internal representations (Wolpert et al., 2003).

Viewing the clustered latent space of our DiSCVAE as an already decom-
posed representation of multiple actions and contexts, the missing quality
for prediction is hierarchy. The initiative here could be to map all the local
actions of the repertoire into a hierarchical structure of intent, where the
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highest levels represent human deliberation and planning, whilst the low-
est layers reflect motor cognition (Hamilton and Grafton, 2007; Pacherie,
2008). For example, a “drive forward” action may combine with a situational-
dependent cluster that has learnt to “avoid obstacles”, and this may then
translate into the higher intention of “drive safely through doorway”.

One strategy for assembling this hierarchical structure in our intention
inference framework could involve learning a layer of high-level internal
models above our clustered latent space. Lee et al. (2013) successfully used
Stochastic Context-Free Grammars (SCFGs) for similar motives by parsing
imitated action sequences and capturing the underlying structure in complic-
ated tasks composed of multi-layered behaviours. These SCFGs offer numer-
ous compelling traits for hierarchical learning, such as robustness to noise,
compactness in representation and the ability to handle recursive symbol
sequences. Another invaluable asset of SCFGs for XSC lies in the output’s
human-readability, meaning the resulting grammar could relay back a group
of interpretable action symbols to visually depict the robot’s intent. As a
result, symbol parsing for intention prediction using SCFGs could define a
novel way of mediating control in XSC.

6.3.3 Multisensory Modalities

A third course of inquiry will be to glean further insights into XSC from
multisensory modalities, such as eye gaze. Section 4.3.3 briefly probed this
notion by tracking user eye movements during wheelchair navigation to
draw connections with model misalignment. Our enlightening findings from
this sensory signal motivates a deeper look into other modalities, e. g. aud-
itory stimuli. In particular, a biological characteristic of humans that plays
an immense role in their perceptional capabilities is multisensory integration.
Multisensory integration refers to our brain’s simultaneous processing of
an array of sensory inputs, such as visual stimuli, for the purpose of con-
structing a robust multimodal percept (Driver and Spence, 2000; Stein and
Stanford, 2008). The synthesis of multiple data sources is known to amelior-
ate uncertainty in coherency of the physical surroundings, leading to a more
robust form of percept (Ernst and Bülthoff, 2004; Stein and Stanford, 2008).

Merging multiple sensory sources into the XSC loop could enhance the
information throughput of the AR interface. The AR literature is rich in in-
terfaces that combine multimodal cues (e. g. touch, speech, gaze) into the
augmentation (Azuma, 1997; Carmigniani et al., 2011; Sibirtseva et al., 2019).
Hence, multimodal communication has been increasingly noted for its poten-
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tial to elevate transparency in HRI (Lakhmani et al., 2016) and disambiguate
internal robot functions (Huang et al., 2019; Sibirtseva et al., 2019). We thus
believe that generating multimodal “explanations” is a promising avenue for
XSC in fostering an immersive and transparent user experience.

Likewise, fusing multisensory inputs in the intention prediction of XSC
could improve its robustness and accuracy. With the onset of pervasive sens-
ing in robotics, multimodal representation learning has spurred on auspi-
cious results (Ngiam et al., 2011; Srivastava and Salakhutdinov, 2012). For
example, Noda et al. (2014) utilised deep autoencoders to integrate multiple
representations of sensory information into a noise-robust behaviour predic-
tion network. In vehicle manoeuvre prediction, Jain et al. (2016) and Lee et al.
(2017) both exploited a Fusion-Recurrent Neural Network (RNN) layer to
combine high-level representations of separate sensory sources and anticip-
ate future trajectories with state-of-the-art accuracy, despite only possessing
a partial temporal context of the multimodal input. Lee et al. (2017) notably
used a Variational Autoencoder (VAE)-based framework that could generate
multiple hypotheses about the future predictions, posing an attractive choice
for the multiplicity desired in intention prediction.

6.3.4 User Personalisation

A final ambition for XSC is to fulfil the challenging demands of providing
proper conditional assistance by developing a personalised user model that
can accommodate each specific patient’s characteristics. SC for smart mobil-
ity is well-known for being highly dependent on each individual operator
and their preferences (Erdogan and Argall, 2017; Viswanathan et al., 2017).
Vanhooydonck et al. (2010) undertook this endeavour by using a neural net-
work to learn an implicit model of users’ driving behaviour for wheelchair
navigation. Conversely, Jain and Argall (2019) relied on an explicit parameter
to define the level of assistance required by each user. We envision that a
combination of learning implicit user characteristics and adjusting an ex-
plicit SC arbitration parameter is an appropriate tactic for personalisation.
Furthermore, the resulting user model could be incorporated into the AR
interface, e. g. to adjust the scale of assistance.

6.4 epilogue

The overarching aspiration of XSC has been to establish a seamless collabor-
ation between assistive robots and humans. By documenting ways of mani-
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festing transparency from the human perspective via AR, as well as the robot
angle through intention inference, we hope that this thesis serves as an early
step towards realising explainability in SC. As XSC is only in its primitive
form, there are many exciting opportunities across interdisciplinary research
domains that could extend this paradigm, and thereby propel forward the
widespread use of assistive robots.
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A
S O F T WA R E PA C K A G E S

The following outlines several software packages and open-source contribu-
tions that were developed on during this thesis.

a.1 localisation and navigation packages for mobile robots

Localisation and navigation are integral capabilities required of the robotic
wheelchair architecture described in Section 3.2. The Robot Operating Sys-
tem (ROS) is a software framework that offers a collection of libraries and
tools that can accommodate these capabilities (Quigley et al., 2009). For ex-
ample, autonomous navigation can be handled using the ROS navigation
stack1, which is composed of modules for path planning, localisation, and
so forth. However, our wheelchair scenario demanded for a human user’s
active engagement with the robot, and so we applied the Shared Control (SC)
implementation delineated in Section 3.3 for all navigation purposes. The loc-
alisation module on the other hand was composed of many ROS packages
available online. In particular, we utilised gmapping2 and hector_mapping3 for
Simultaneous Localization and Mapping (SLAM), as well as amcl4 for pure
localisation on pre-constructed maps.

It is worth highlighting that we established a unified software repository
for the laboratory to easily configure localisation and navigation packages, as
well as our SC method. As a result, many generic localisation and navigation
routines are now available to other laboratory mobile platforms (e. g. our
paediatric smart wheelchair Soh and Demiris, 2012) with minimal parameter
configuration.

a.2 open-source contributions

Three open-source code repositories are by-products of this thesis:

1 http://wiki.ros.org/navigation
2 http://wiki.ros.org/gmapping
3 http://wiki.ros.org/hector_mapping
4 http://wiki.ros.org/amcl
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• Reactive Assistance: A ROS package of our SC method presented in
Section 3.3. Contains a C++ implementation of the admissible gap nav-
igation algorithm (Mujahed et al., 2018) adapted for the purpose of
SC. Currently operates on differential-drive rectangular mobile bases
with full Field of View (FoV) 2D planar Light Detection And Ran-
ging (LiDAR) data.

• Scan-Image Converter: A ROS package containing a C++ node that
takes as input LiDAR messages and converts them into image repres-
entations (polar to Cartesian space translation). Node was utilised in
the gridmap processing phase of Section 4.2.1.1.

• Disentangled Sequence Clustering Variational Autoencoder: Code
repository for a deep generative model that simultaneously clusters
and disentangles latent representations of sequences. The model has
been built using the TensorFlow (Abadi et al., 2016) and TensorFlow
Probability (Dillon et al., 2017) libraries for deep learning. A set of
scripts are also provided in this repository to evaluate the clustering
framework on the Moving MNIST dataset (Srivastava et al., 2015). A
similar but separate repository is available for the robotic wheelchair
experiment of Section 5.5. This code is not yet publicly available, as the
work is still under review.

https://github.com/mazrk7/reactive_assistance
https://github.com/mazrk7/scan_image_converter


B
E Y E - G A Z E W H E E L C H A I R

In this appendix, a non-invasive, eye-gaze controlled wheelchair is intro-
duced as a hands-free solution for power mobility users.

b.1 motivation

A traditional input method for controlling electric powered wheelchairs is a
joystick, however not all patients possess the cognitive or motor capacity to
safely navigate an environment via this input device (Fehr et al., 2000). Al-
ternative hands-free solutions include using voice recognition (Simpson and
Levine, 1997), electromyography (Han et al., 2003) and head gestures (Li
et al., 2016) for wheelchair navigation. Yet there remains a small group of
individuals with severe motor-disabilities (e. g. amyotrophic lateral sclerosis
or spinal cord injury) who still cannot comfortably or easily employ these
control interfaces (Fehr et al., 2000; Simpson, 2008; Viswanathan et al., 2017).
For this target population, brain-computer interfaces (BCIs) and eye move-
ment have become increasingly popular options (Carlson and Del R. Millan,
2013; Ktena et al., 2015).

Despite the exotic appeal of BCIs, there are a couple of advantages in fa-
vour of eye-directed wheelchairs. First, BCIs require immense levels of con-
centration and impose intense demands on mental workload (Carlson and
Del R. Millan, 2013). These burdens are far less prominent in gaze-based
controllers. Second, brain signals are noisy by nature and thus result in di-
minished information rates (Carlson and Del R. Millan, 2013). In contrast,
gaze signals can yield high-information throughput for tasks such as wheel-
chair navigation (Abbott and Faisal, 2012; Ktena et al., 2015). Given these
advantages, we settled on eye gaze as a non-invasive means of controlling
smart wheelchairs.

b.2 system design

In the following, we describe the operation of our proposed eye-gaze con-
trolled wheelchair (high-level system diagram shown in Figure B.1). First,
the front-facing webcam of the on-board laptop records RGB images of
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Webcam
RGB Images

Extract Eye Images & 
Estimate Gaze Direction

(Image & Method from 
Fischer et al., 2018)

Eye Gaze
Angles

Control Interface

Motor Command
Velocities

IDLE

Figure B.1: System diagram of the eye-gaze controlled smart wheelchair platform.
The user-facing webcam of the laptop records RGB images and feeds
them into the gaze estimation network of Fischer et al. (2018). This
network then outputs a tuple of gaze angles in real-time, which are
subsequently converted into appropriate motor command velocities
through a threshold-based control interface. Red arrows indicate reverse
motion (looking upwards), blue arrows indicate linear (looking down)
and rotational movement (looking left/right), and ‘IDLE’ is to remain
stationary.

the user and feeds them into a neural network algorithm for gaze estima-
tion (Fischer et al., 2018). The method of Fischer et al. (2018) is accurate, ver-
satile in natural environments, and capable of processing images in real-time,
making it particularly suitable for our application. Once this gaze estimation
method extracts eye gaze angles from the user’s face images, these angles
are then converted into motor command velocities. Our controller for this
conversion is inspired by the “natural free-view” interface for wheelchairs
presented in Ktena et al. (2015), where a continuous control field determines
linear and rotational command velocities according to user gaze angles.

A key benefit of our eye-controlled wheelchair setup is its non-intrusive
functionality. Without requiring any headsets or eye trackers (Kassner et al.,
2014), users can comfortably sit in the wheelchair and issue motor com-
mands. Moreover, safety is guaranteed, as all the input velocities still un-
dergo adjustment using the Shared Control (SC) methodology of Section 3.3.
Videos of the overall system are available online1.

Although we have developed a promising prototype for wheelchair users
with severe motor-disability, there are still numerous challenges to overcome.

1 Supplementary video material of the eye-gaze controlled wheelchair operating indoors: https:
//www.youtube.com/watch?v=Ey2G2HUYG6Y
As well as outdoors: https://www.youtube.com/watch?v=deBISMC4cRI

https://www.youtube.com/watch?v=Ey2G2HUYG6Y
https://www.youtube.com/watch?v=Ey2G2HUYG6Y
https://www.youtube.com/watch?v=deBISMC4cRI
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One of the most pressing challenges is to distinguish goal-directed eye beha-
viour from “attentive” saccades, which is known as the “Midas touch prob-
lem” (Jacob, 1995). Prior systems have mitigated this problem by either rely-
ing on explicit screen-interfaces to issue wheelchair commands or restricting
gaze-prediction models to only output a discrete set of states (Ktena et al.,
2015; Li et al., 2016; Matsumoto et al., 2001). Nevertheless, a more fitting ap-
proach may instead be to computationally model visual attention based on
eye gaze behaviour (Itti and Koch, 2001). The aim of this model would be
to discriminate between stimulus-driven influences (e. g. salient regions in
the scene) and goal-directed contributions relating to the task-at-hand (Borji
et al., 2014; Tsotsos, 2001).
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C
A U G M E N T E D R E A L I T Y F O R D U A L - A R M R O B O T S

This appendix presents an Augmented Reality (AR) Head-Mounted Display
(HMD) interface for an application involving a dual-arm collaborative robot,
namely the ABB YuMi. Whilst the thesis has focused on robotic wheelchairs
and Shared Control (SC), the following demonstrates how AR headsets can
improve transparency in Human-Robot Interactions (HRIs) other than assist-
ive navigation.

c.1 explaining affordable robot behaviours

The objective of this application is to visually explain the YuMi’s affordable
behaviours through an AR HMD interface. In turn, the user will better under-
stand the capabilities of the robot and anticipate how different behaviours
might unfold. Moreover, users are able to explicitly initiate robot actions via
hand gestures, and so the AR interface also acts as a controller.

3

2

1

Figure C.1: AR view of: (1) A dual-arm collaborative robot (the ABB YuMi)
and its overlaid 3D model to project intent; (2) An interactable
object (a teddy bear); (3) An action (“clean”) that the user can
select for the robot to perform.

Figure C.1 illustrates a wearer’s view of the interaction with YuMi cap-
tured in AR, where affordable robot behaviours are projected as indicators
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of intent. To create this user perspective, a depth camera attached on top of
the YuMi first extracts the identities and locations of objects on the shared
workspace, such that arm motion trajectories can be planned and executed
to manipulate these objects. We then broadcast the detected object poses
and robot arm joint poses for different manipulation trajectories into a con-
current AR application. The resulting 3D visual overlay1 shows users how
different grasping actions (e. g. “give” or “clean” the teddy bear) pan out
when activated.

c.2 links to explainable shared control

Although users can initiate collaborative actions through the AR interface
and do not need to physically interact or share control with the robot, the
guidelines of Explainable Shared Control (XSC) still benefit visualisation
design. For instance, projecting the arm manipulator’s intentions is clearly
an example of predictive AR feedback. Note that these 3D arm trajectories are
portrayed even when a user has not yet selected a specific behaviour and is
instead contemplating options by hovering their head gaze over different ac-
tion panels (shown in Figure C.1). Furthermore, contextual AR cues are also
utilised in the depiction of affordances, i. e. objects that the robot can interact
with. Despite not yet conducting a user study with this AR-YuMi setup, we
envision that by adhering to the XSC guidelines in creating the proposed
interface, there would be corresponding improvements in transparency.

1 Supplementary video material of the interaction is provided in: https://www.youtube.com/
watch?v=n7dFFJBrMbA

https://www.youtube.com/watch?v=n7dFFJBrMbA
https://www.youtube.com/watch?v=n7dFFJBrMbA
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A U T H O R ’ S P U B L I C AT I O N S

The following is a compilation of all peer-reviewed publications related to
this thesis, supplemented with a summary of their relevance to the thesis.

Zolotas, M., Elsdon, J. and Demiris, Y. (2018), Head-Mounted Augmented
Reality for Explainable Robotic Wheelchair Assistance, in ‘IEEE Interna-
tional Conference on Intelligent Robots and Systems’, pp. 1823–1829. doi:
10.1109/IROS.2018.8594002.

• Presents the first instance of an augmented reality headset being in-
corporated into a robotic wheelchair system and investigates the influ-
ence of different interface design options through a pilot user study.
Results from this study demonstrate that care should be taken in the
presentation of information, with effort-reducing cues for augmented
information acquisition (for example, a rear-view display) being the
most appreciated.

• Section 4.2 is based on this conference paper.

Zolotas, M. and Demiris, Y. (2019), Towards Explainable Shared Control us-
ing Augmented Reality, in ‘IEEE International Conference on Intelligent
Robots and Systems’, pp. 3020–3026. doi: 10.1109/IROS40897.2019.8968117.

• Introduces the paradigm of Explainable Shared Control and provides
guidelines on how to best visualise the internal state of shared control
in order to combat model misalignment. Findings from an assistive
navigation experiment with users indicate that the paradigm facilit-
ates transparent assistance by improving recovery times from adverse
events associated with model misalignment.

• Section 3.3 and Section 4.3 are based on this conference paper.

Zolotas, M. and Demiris, Y. (2020), Transparent Intent for Explainable Shared
Control in Assistive Robotics, in ‘International Joint Conference on Arti-
ficial Intelligence’, pp. 5184–5185. doi: 10.24963/ijcai.2020/732.

• Summarises our research on establishing transparency in shared con-
trol by enabling both the robot and human to understand each other’s
underlying “intent”.

• Parts of Chapter 4 are based on this extended abstract.
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http://dx.doi.org/10.1109/IROS.2018.8594002
http://dx.doi.org/10.1109/IROS.2018.8594002
http://dx.doi.org/10.1109/IROS40897.2019.8968117
http://dx.doi.org/10.24963/ijcai.2020/732
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In addition to the above, the following article has also been submitted to a
peer-reviewed journal.

Zolotas, M. and Demiris, Y. (2020), Disentangled Sequence Clustering for
Human Intention Inference, submitted.

• Contributes a clustering algorithm involving a latent variable model
to infer human intent from robot sensory observations. The proposed
algorithm is generally applicable to sequential data and was thus eval-
uated on both a video dataset for unsupervised classification, as well
as data collected during a robotic wheelchair experiment for intention
inference. Experimental results indicate that human intent can be in-
terpreted from the model’s learnt latent space, without requiring any
supervision.

• Chapter 5 is based on this journal submission.

This last publication is unrelated to the thesis, but is a by-product of my
teaching supervision in robotics during this Doctor of Philosophy.

Bagga, S., Maurer, B., Miller, T., Quinlan, L., Silvestri, L., Wells, D., Winqvist,
R., Zolotas, M. and Demiris, Y. (2019), instruMentor: An Interactive Ro-
bot for Musical Instrument Tutoring, in ‘Towards Autonomous Robotic
Systems’ (Oral Presentation), pp. 303-315. doi: 10.1007/978-3-030-23807-
0_25.

• Master’s degree group project on a musical instrument tutor robot for
students learning the recorder.

• Project was transformed under my supervision into a paper accepted
at the leading annual UK Robotics conference.

• Edited and presented the paper, which was also awarded the confer-
ence Prize for Innovation, sponsored by the Institution of Engineering
and Technology (IET) Robotics.

https://doi.org/10.1007/978-3-030-23807-0_25
https://doi.org/10.1007/978-3-030-23807-0_25
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