
Recognising High-Level Agent Behaviour through

Observations in Data Scarce Domains

Rolf Hugh Baxter

A dissertation submitted for the degree of Doctor of Philosophy

Heriot-Watt University

School of Engineering and Physical Sciences

July 2012

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that the copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author or of the University (as may be appropriate).

Abstract

This thesis presents a novel method for performing multi-agent behaviour recognition
without requiring large training corpora. The reduced need for data means that robust
probabilistic recognition can be performed within domains where annotated datasets are
traditionally unavailable (e.g. surveillance, defence). Human behaviours are composed
from sequences of underlying activities that can be used as salient features. We do not
assume that the exact temporal ordering of such features is necessary, so can represent
behaviours using an unordered “bag-of-features”. A weak temporal ordering is imposed
during inference to match behaviours to observations and replaces the learnt model param-
eters used by competing methods. Our three-tier architecture comprises low-level video
tracking, event analysis and high-level inference. High-level inference is performed us-
ing a new, cascading extension of the Rao-Blackwellised Particle Filter. Behaviours are
recognised at multiple levels of abstraction and can contain a mixture of solo and multi-
agent behaviour. We validate our framework using the PETS 2006 video surveillance
dataset and our own video sequences, in addition to a large corpus of simulated data.
We achieve a mean recognition precision of 96.4% on the simulated data and 89.3% on
the combined video data. Our “bag-of-features” framework is able to detect when be-
haviours terminate and accurately explains agent behaviour despite significant quantities
of low-level classification errors in the input, and can even detect agents who change their
behaviour.

i

Acknowledgements

I would like to express my thanks to:

• My supervisors Professors David Lane and Ruth Aylett who have guided me through-
out my Ph.D. study. Their guidance in the early stages was particularly valuable in
helping me to focus my ideas and I am greatly appreciative for their support. This
is especially true as the research topic moved away from the Lab’s core focus of
autonomous underwater systems.

• Professor Yvan Petillot and Dr. Neil Robertson for their support as colleagues and
mentors. Both have made themselves available as sounding boards to bounce ideas
off and provided technical advice, especially regarding the field of computer vision.
They have also been of great assistance in helping me to write better scientific
publications and I would like to thank them again for their contributions.

• I am indebted to the UK Ministry of Defence for funding this research, and to my
colleagues at DSTL who have supported the project. Peter Houghton was especially
helpful with his suggestions and comments regarding operational requirements and
scenarios.

• I would also like to express my thanks to Nicolas Valeyrie for our many impromptu
discussions on particle filtering, and to Wassit Limprasert for allowing me to use
his person tracker as part of my research.

• My special thanks to my wife Alaina who has been patient with me throughout the
PhD., has lifted my spirits and assisted in all the ways she could whenever I have
been busy trying to meet deadlines. And finally, I would like to thank my parents
for their support and encouragement throughout my studies, without which I would
have never made it this far.

ii

ACADEMIC REGISTRY
Research Thesis Submission

Name: Rolf Hugh Baxter

School/PGI: Engineering and Physical Sciences

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought
(Award and
Subject area)

Doctor of Philosophy

Electrical, Electronic and Computer
Engineering

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to

work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic

versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made

available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.

Signature of
Candidate:

Date:

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in
capitals):

Method of Submission
(Handed in to SSC; posted through
internal/external mail):

E-thesis Submitted (mandatory for
final theses)

Signature: Date:

Please note this form should bound into the submitted thesis.

Updated February 2008, November 2008, February 2009, January 2011

Contents

Page

1 Introduction 1
1.1 A Common Terminology . 7
1.2 Aims . 8

1.2.1 Extensions . 9
1.3 Contributions . 9
1.4 Thesis Roadmap . 12

2 Literature Survey 15
2.1 Probabilistic Inference Techniques . 16

2.1.1 Bayesian Networks . 16
2.1.2 Markov Models . 17
2.1.3 Hidden Markov Models . 18
2.1.4 Dynamic Bayesian Networks . 18
2.1.5 Bayes Filter . 20
2.1.6 Sequential Importance Sampling (SIS) 21
2.1.7 SIS with Resampling . 25
2.1.8 Rao-Blackwellisation . 27
2.1.9 Summary . 31

2.2 Video Processing Techniques . 32
2.2.1 Foreground Detection . 32
2.2.2 Object Classification . 34
2.2.3 Object Tracking . 35

2.3 Trajectory Models . 38
2.4 Semantic Models . 40

2.4.1 Logic Models . 41
2.4.2 Constraint Satisfaction . 42
2.4.3 Grammars . 44

2.5 State Models . 46
2.5.1 Hidden Markov Models . 47
2.5.2 Dynamic Bayesian Networks . 50
2.5.3 Summary . 54

2.6 Feature Models . 55

iv

2.7 Multi-agent Models . 58
2.8 Conclusions . 60

2.8.1 Video Processing . 60
2.8.2 Probabilistic Behaviour Recognition 61
2.8.3 Alternative Recognition Approaches 62
2.8.4 Feature Based vs. Sequence Based 64

3 Feature-Based Behaviour Recognition 65
3.1 Principles of The ‘Bag-of-Features’ . 66

3.1.1 Worked Example . 69
3.2 Bayes Network Representation . 69
3.3 Adding A Temporal Model . 72
3.4 Summary . 75

4 Efficient Inference 76
4.1 Basic Algorithm . 77

4.1.1 Sample Regeneration . 80
4.1.2 Summary . 89

4.2 Advanced Algorithm . 90
4.2.1 Partial Behaviours . 92
4.2.2 Feature Repetition . 93
4.2.3 Behaviour Concatenation . 94

4.3 Summary . 94

5 Hierarchical Recognition 97
5.1 Representation . 99
5.2 The Hierarchical Filter . 102
5.3 Example . 103
5.4 Summary . 105

6 Multi-agent Behaviour Recognition 108
6.1 Combing Filter Results . 111
6.2 Identifying Multi-agent Behaviour . 113
6.3 Predicting Agent Behaviour . 122
6.4 Limitations . 123
6.5 Summary . 124

7 Implementation 125
7.1 Image Processing . 127

7.1.1 Object Detection and Tracking 127
7.1.2 Primitive Feature Detection . 129

7.2 Reasoning . 131

v

7.2.1 Complex Feature Detection . 131
7.2.2 Collaborator Detection . 133

7.3 Operator Interaction . 133
7.3.1 Prediction Criteria . 135
7.3.2 Prediction Detail . 136

7.4 Primitive Feature Simulator . 137
7.5 Summary . 138

8 Experimental Evaluation via Simulation 142
8.1 Recognition Accuracy . 146

8.1.1 Post-Sequence Prediction . 147
8.1.2 In-Sequence Prediction . 148

8.2 Behaviour Variability . 152
8.2.1 Unknown Behaviours . 152
8.2.2 Ordering Mutation . 155
8.2.3 Behaviour Switching and Concatenation 157
8.2.4 Superfluous Activity . 162

8.3 Effect of Feature Classification Errors 164
8.4 Effects of Scaling . 166

8.4.1 Number of Particles . 167
8.4.2 Number of Agents . 171

8.5 Summary . 172

9 Experimental Validation using Video 178
9.1 The Video Based Inference Process . 179
9.2 Event Recognition Performance . 185
9.3 Behaviour Recognition Performance . 188
9.4 Summary . 191

10 Discussion 192
10.1 Feature Based Recognition . 192

10.1.1 Earlier Prediction . 194
10.1.2 Heuristic Particle Weights . 196
10.1.3 Behaviour Confusion . 196

10.2 Real-World Application . 197
10.2.1 Explaining Behaviour . 198
10.2.2 Event Detection Comparison . 201
10.2.3 Behaviour Detection Comparison 202
10.2.4 Runtime Scaling . 203
10.2.5 Complexity of Human Behaviour 205

10.3 Generic Application . 209
10.4 Summary . 210

vi

11 Conclusions and Future Work 212
11.1 Conclusions . 212
11.2 Future Work . 215

11.2.1 Collaborator Detection . 215
11.2.2 Repetitive Behaviour . 216
11.2.3 Active Vision . 217
11.2.4 Ontology Integration . 218
11.2.5 Comparing Approaches . 218
11.2.6 Behaviour Similarity . 218
11.2.7 Video Event Detectors . 219
11.2.8 Standardised Dataset . 219

11.3 Closing Remarks . 220

Appendix A 221

Bibliography 227

vii

List of Tables

2.1 Transition matrix and prior probabilities for a simple Markov Model . . . 17

3.1 Prior, Conditional and Transition probabilities between time steps t − 1
and t for the DBN in Figure 3.4 . 73

6.1 Worked example of filter merging . 114
6.2 Example probability distributions for two agents. 116

7.1 The primitive feature detection modules 129
7.2 Goal behaviours used in the evaluation 132

8.1 Summary of evaluation behaviours . 143
8.2 Classification error distribution model 143
8.3 Primitive feature true-positive detection rates 143
8.4 Behaviour confusion matrix for post-sequence prediction 148
8.5 Behaviour confusion matrix for in-sequence prediction 150

9.1 Tracking errors are the normal cause of missed classifications, and are
partially responsible for classification errors. 183

9.2 The parameters used with the tracker and event detection modules. 185
9.3 The number of instances of each complex behaviour in the datasets. . . . 189

10.1 Comparison of luggage detection (PlaceOb ject) accuracy 201
10.2 Comparison of the Abandon Object (AO2) detection accuracy with com-

peting techniques . 202
10.3 Comparing precision with Chai and Yang’s MG-Recogniser 208

viii

List of Figures

1.1 Taxonomic structure of a behaviour . 4

1.2 The ‘Watched Item’ behaviour is comprised of five activities performed by two

agents . 5

1.3 Two agents switch from the ‘Watched Item’ behaviour to the ‘Passing Through’

1 & 2 behaviours . 10

1.4 An agent performing the ‘Passing Through 2’ behaviour, including repetitious

elements that are not part of the behaviour definition. 11

2.1 A simple Bayes Network . 16

2.2 The Hidden Markov Model . 18

2.3 Example two-slice Bayes network defining P(Zt |Zt−1). Shaded nodes are latent,

while unshaded nodes are directly observable. 19

2.4 A simple target trajectory, and estimated trajectories by two different particles . 25

2.5 Normalised particle weights for five observations 26

2.6 Example Dynamic Bayes Net for the robot localisation and mapping problem

from [38] . 28

2.7 Incorporating the latest observation into the RB-Posterior reverses the edge be-

tween yt and zt . 29

2.8 A Goal Consistency Graph in which observations (rectangles) can be explained

by different goals. Inconsistent goals are removed from the graph allowing pred-

icates to be formed. Link labels (e.g. S1) indicate action order. 41

2.9 Defining the ‘Aircraft_Arrival_Preparation’ behaviour in the Video Event De-

scription Language, taken from [46]. 43

2.10 The scene is segmented into four zones to assist inference (taken from [106]) . . 43

2.11 The multi-modal SEER architecture from [112] 48

2.12 Blaylock and Allen decompose high-level behaviour into lower-level sub-goals

and actions. 48

2.13 A Cascading Hidden Markov Model . 49

2.14 The environment and the trajectory of a person, taken from [24] 51

2.15 The region and behaviour hierarchy from [24] 51

2.16 DBN representing a person’s outdoor movements during everyday activity. The

upper level is used for novelty detection, and the middle layer estimates the user’s

goal and the trip segments he or she is taking to get there. The lowest layer

represents the user’s mode of transportation, speed, and location. Two time slices,

k and k − 1, are shown. (Taken from [83]). 53

ix

2.17 The basic concept of image composition taken from [22]. A region in the new

image is considered likely if it has a large enough contiguous region of support in

the database. New ‘normal’ images can thus be inferred from the database even

when they have not been previously observed. 57

2.18 A partial behaviour description of an American Football play from [65]. An agent

(obj1) ‘snaps’ to the other team’s Quarterback and block their pass. Because one

of the agents is explicitly defined the algorithm does not need to consider the

actions of all agents when trying to match this behaviour. 59

3.1 (a) The temporal representation of the Watched Item Behaviour. (b) The Bag-of-

Features representation of the Watched Item behaviour. 67

3.2 a) A Bayesian Network for representing behaviour using features. b) The gener-

alised form . 70

3.3 The addition of an ‘Interruption’ node I into the bag-of-features DBN 72

3.4 The full DBN for ‘bag-of-features’ inference 72

3.5 A visualisation of the state transition model . 74

4.1 Incorporating the latest observation into the RB-Posterior reverses the edge be-

tween At and Dt . 78

4.2 A worked example of the basic inference algorithm (Part 1). Please refer to the

text for a detailed discussion. Line numbers relate to Algorithm 4.1 86

4.3 A worked example of the basic inference algorithm (Part 2). Please refer to the

text for a detailed discussion. Line numbers relate to Algorithm 4.1 87

4.4 The minimal explanation changes as observations arrive. At the first observation

(EnterAgent) PT 1 (Passing Though 1) gains the highest probability because it

is the shortest explaining behaviour. By the second observation (PlaceOb ject)

PT 1 can no longer explain the observations and reduces in probability, while

AO2 (Abandon Object 2) becomes more likely as the next shortest behaviour that

can explain the observations. This happens again at observation three where PT 2

(Passing Through 2) becomes and remains the most probable explanation. 88

4.5 The cumulative distribution function used by Algorithm 4.1. 89

4.6 Example particle state growth for two particles and two behaviours while observ-

ing a 3 features sequence. 91

5.1 An example of how goal behaviours are hierarchically decomposed into sub-goals

and activities . 98

5.2 To model a set of behaviours requires two stacks of DBNS. One set for the goal

behaviours, and one set for the sub-goals. 102

5.3 Algorithms 5.2 and 5.3 produce two levels of particle filters. The level 1 filter

approximates the probability density of the agent’s high-level behaviour, while

the level 2 filters approximate the probability of different sub-goals. Note that for

k high-level behaviours there are also k level 2 filters, but only one level 1 filter.

Estimates from the level 2 filters are utilised by the level 1 weighting step. 106

6.1 The Theft behaviour has two distinct agent roles 109

x

6.2 The probability of accepting a negative transition (-0.02) as the temperature changes119

6.3 A simple example trace of the simulated annealing algorithm. 121

7.1 The 3-Layer Implementation Framework . 126

7.2 Primitive Feature Simulator Example: Individual agent behaviours are merged

into a single observation stream upon which the error model is then applied to

insert classification errors. 139

8.1 F-Score for each behaviour prediction . 147

8.2 In-sequence prediction F-Score vs. post-sequence F-Score 149

8.3 Example observation trace in which an erroneous multi-agent feature (E1,2) occurs.150

8.4 The density of particle weights associated with two explanations (complex fea-

tures) for the set of primitives: {PlaceOb ject,RemoveOb ject}. One third of the

particle weights are assigned to the assumption that RemoveOb ject was a false

positive and explain the PlaceOb ject primitive with a LeaveOb ject complex. The

remaining two thirds of particle weight assume that both observations were true

positives and explain them via the complex feature TransientOb ject. 151

8.5 Comparing F-Scores when unknown behaviours are observed. Unknown be-

haviours have minimal impact on recognition performance. Of the 30 unknown

(random) behaviours only 4 (13%) were misclassified, with no classifications

made for the remaining 87%. 154

8.6 The primitive features in the WI and AO1 behaviours being reordered 156

8.7 Probability density for each complex feature as observations are made (Behaviour:

WI). (a) is consistent with the model order, (b) shows an alternative order. When

PlaceOb ject and ExitAgent are observed contiguously the LeaveOb ject feature

(which is comprised of PlaceOb ject and ExitAgent) has a higher probability den-

sity than when they are separated by another observation. 158

8.8 Probability density for each complex feature as observations are made (Behaviour:

AO1). (a) is consistent with the model order, (b) shows an alternative order. When

PlaceOb ject and ExitAgent are observed contiguously the LeaveOb ject feature

(which is comprised of PlaceOb ject and ExitAgent) has a higher probability den-

sity than when they are separated by two observations. 159

8.9 When two behaviours are observed directly after one another the second be-

haviour suffers a 24% loss of recall. In combination with a 4% drop in precision

this leads to an overall F-Score of 0.73. 161

8.10 Pairs of superfluous activities (e.g. {PlaceOb ject,RemoveOb ject}) cause a re-

duction in mean F-Score from 0.92 to 0.64. 164

8.11 Effect of primitive feature classification errors on recognition F-Score [update to

use levels] . 166

8.12 Effect of number of particles on F-Score . 169

8.13 Effect of number of particles on runtime . 170

8.14 Thread growth rates . 172

xi

9.1 Camera calibration data for PETS scene S1-T1-C (Camera 3) showing the x,y,

origin. 180

9.2 Example output from the person tracker for PETS scene S1-T1-C (Camera 3) . . 180

9.3 Person tracking information is provided to the Agent Tracker which detects and

EnterAgent event. This event is output as a Primitive Feature and provided as

input to the bag-of-features inference algorithm. 182

9.4 The video processing components of the framework provide a stream of primitive

feature observations to the Bag-of-features inference algorithm. The primitive

feature simulator also provides such a stream and incorporates synthetic classifi-

cation errors to mimic video processing failures. 184

9.5 Video event detection precision . 187

9.6 Frames from PETS scene S1-T1-C. A group of agents entering the scene together

and travelling as a group causes tracking errors and false FormGroup detections. 187

9.7 Video event detection recall . 188

9.8 Behaviour recognition accuracy on the PETS data 190

9.9 Two examples of the person tracker misclassifying luggage as people on the PETS

dataset. 190

9.10 Behaviour recognition F-Scores on the HW data 191

10.1 In-sequence prediction results plotted in ROC space. Optimal x,y coordinates: (0,1)193

10.2 F-Scores for each behaviour B as the number of features required for prediction is

altered. When predictions are made with one outstanding feature expected there

is a 0.28 reduction in mean F-Score from 0.92 to 0.64. 195

10.3 Example explanation from the PETS dataset (Scenario 4). The text reads: “Agent

H5 has left luggage with agent H7, but they are not known companions. H5 may

have abandoned an object. The item was placed around frame 878 and abandoned

around frame 1941. (High certainty)” . 199

10.4 Runtime vs. number of agents with fixed 220 particles 204

A.1 Structure of the Passing Through 1 behaviour 223

A.2 Structure of the Passing Through 2 behaviour 223

A.3 Structure of the Watched Item behaviour . 224

A.4 Structure of the Abandon Object 1 behaviour 224

A.5 Structure of the Abandon Object 2 behaviour 225

A.6 Structure of the Theft behaviour . 225

A.7 Structure of the Hand-Off behaviour . 226

xii

Publications

Portions of the work described in this thesis has also appeared in:

Conference papers

• Real-time event recognition from video via a “Bag-Of-Activities”, R. H. Baxter,
N. M. Robertson and D. M. Lane, in Proceedings of the UAI Bayesian Modelling

Applications Workshop. July 2011

• Probabilistic Behaviour Signatures: Feature-Based Behaviour Recognition in Data-
Scarce Domains, R. H. Baxter, N. M. Robertson and D. M. Lane, in Proceedings of

the 13th International Conference on Information Fusion. July 2010

• Recognising Agent Behaviour During Variable Length Activities, R. H. Baxter, D.
M. Lane and Y. Petillot, in Proceedings of The 19th European Conference on Arti-

ficial Intelligence. August 2010

• Behaviour Recognition for Spatially Unconstrained Unmanned Vehicles, R. H. Bax-
ter, D. M. Lane and Y. Petillot, in Proceedings of The IJCAI Workshop on Plan,

Activity and Intent Recognition (PAIR). July 2009.

Journals (submitted, under review)

• Recognising High-Level Agent Behaviour in Data Scarce Domains, R. H. Baxter,
D. M. Lane, N. M. Robertson, submitted to Systems, Man and Cybernetics, Part B:
Cybernetics, IEEE Transactions on. December 2011.

xiii

Chapter 1

Introduction

“behaviour: noun

1 manner of behaving or conducting oneself

...

4 the action, reaction, or functioning of a system, under normal or
specified circumstances ”

Collins English Dictionary [3]

The ability to recognise agent behaviour through observation is a skill each of us posses.
We recognise the behaviours of others frequently throughout each day; other road users
on the way to work, colleagues and family members performing daily routines, yet this
seemingly trivial task presents significant challenges for computers. This is because the
ability to recognise behaviour requires several different skills: The ability to sense the
environment, the ability to infer action purpose and the ability to apply learnt knowledge.
It should be no surprise therefore that the goal of behaviour recognition has attracted
researchers from many different fields.

The ability to learn behavioural models and recognise complex behaviour has been of par-
ticular interest to artificial intelligence researchers, with significant publications on plan
and goal recognition as early as the 1980s (e.g. [68]). Although early work primarily
focused on synthetic data with toy problems [69, 79], recent advances have been increas-
ingly applied to real-world scenarios. In part, this has been fuelled by the technical ad-
vances that have made high-quality electronics so readily available. Behaviours have been
recognised from consumer devices such as wireless network [27, 147] and GPS receivers
[82, 83], as well as from a vast array of video cameras [24, 107, 108, 11, 15, 76, 35].

1

The wide application potential of behaviour recognition technology is frequently cited as
a motivating factor for research and includes:

• Technologies for long-term healthcare: Systems that can recognise and monitor
activities of daily living such as dressing, eating and leisure can help to provide
assurance of patient well-being and identify abnormalities [75].

• Automated surveillance: Remote sensing devices such as radar and closed circuit
television (CCTV) have been extensively deployed for public and asset security, yet
it is openly acknowledged that human observers are far from optimal [36]. The abil-
ity to automatically detect behaviour of interest has the potential to reduce human
sensory overload and to improve recognition performance.

• Video archiving: Similarly, the ability to automatically detect behaviours within
video has potential benefits for automated video archiving [57]. Video search tech-
niques currently rely on non-visual meta-data such as tags and transcripts, while
visual information could provide valuable information for archiving and retrieval
purposes.

• Autonomous vehicles: There is great interest in providing increased situation aware-
ness to autonomous vehicles for commercial, civilian and military applications [6].
Situation awareness is defined as the ability to perceive elements of the environment
and to comprehend their meaning [42]. Such abilities are important for the deploy-
ment of autonomous vehicles within multi-agent environments for both control and
safety reasons.

• Entertainment/Training: Artificial intelligence techniques are increasingly being
utilised by the video entertainment industry with Microsoft’s Kinect and Nintendo’s
WII being prime examples of behaviour recognition technologies at work in the
home environment. There is also great potential for improving the complexity of
virtual agents in synthetic environments (e.g. military simulation) [135, 134].

The work described herein was primarily aimed at developing deployable surveillance
technology for the project’s sponsor, the UK Ministry of Defence. Although this appli-
cation imposed a number of operational constraints the algorithms developed maintain a
generality that enables their utilisation in a wider application potential.

Despite a wide-spread interest in behaviour recognition, the situation aware computers
envisaged in the 1960s (e.g. HAL1) are still far from reality. Early work in the field often

1HAL (Heuristically programmed ALgorithmic computer) was an artificial intelligence system in Arthur
C. Clarke’s science fiction novel 2001: A Space Odyssey

2

looked at toy problems with simplistic, manufactured observations [69, 79]. However,
many early approaches were unable to deal with noisy, uncertain environments and this
has generally led to a demise of early techniques in modern research. More significant
progress has been made in the last decade since researchers started building real-world
systems with sensor observations. Activity recognition is one area where techniques have
flourished and generally considers short-term goal behaviours such as standing, walking
and running [123]. These fundamental building blocks have led to slightly more complex
activities, such as the inference of transportation routines by Liao et al. [83]. Their
approach fuses an agent’s GPS location with additional information to infer their mode of
transport (e.g. car, bus), and is able to predict a person’s goal location (e.g. home).

Behaviour recognition has also progressed within the video and image processing com-
munity [75]. Much of their work has focused on the detection and tracking of humans in
video, and the recognition of simple activities which are commonly termed ‘events’ in vi-
sion literature. An example event might be an ‘abandoned object’, identified through the
fact that a tracked person has moved some distance away from a bag they placed. There
are also examples of more advanced events being detected involving multiple agents,
although these approaches tend to rely on rules that look for the correlation of several
different activities within certain spatio-temporal constraints.

Unlike much of this previous research, this thesis focuses on recognising high-level be-
haviours from sensor data. A high-level behaviour can be most easily described as a
taxonomy structure, often termed a goal tree, in which an agent’s goal is decomposed into
smaller and smaller components until a sequence of actions is reached. This is illustrated
in Figure 1.1 and can be related to the inverse problem of hierarchical computer planning.
In planning one starts with a goal and attempts to derive a set of actions by which that goal
is achieved. High-level behaviour recognition is thus the reverse of this process: given a
set of (observed) actions, determine the most likely agent goal-tree.

To give a concrete example, Figure 1.2 demonstrates the ‘Watched Item’ behaviour, com-
monly seen at public transport hubs. It is composed of the following observable actions:

• The two agents enter the scene together as a group

• One agent (blue) places a luggage item on the floor

• The group of agents ‘splits’ as one agent (blue) moves away from the other

• The blue agent exits the scene, leaving their luggage ‘watched’ by the other agent
(green)

3

}Observable
Actions

} Latent
Sub-goals

} Latent
Goal

Figure 1.1: Taxonomic structure of a behaviour

Recognising this high-level behaviour involves several challenging steps. First, the en-
vironment must be sensed and signal processing performed so that the agents can be
detected and tracked. The video frames in Figure 1.2 show that two agents have been
detected and are highlighted by blue and green ellipses. The low-level actions of the
agents then need to be detected, such as entering the scene or placing an object on the
floor. From these primitive actions the complex agent behaviours must be inferred, in-
cluding their sub-goals and goals. Figure 1.2 includes the sub-goal LeaveOb ject, which
is composed of two primitive actions. Over-all, the Watched Item behaviour is comprised
of four sub-goals. Putting this example into the wider context, the objective of high-level
behaviour recognition is to identify the sub-goals/goals being performed by an agent from
a larger set of candidates.

Significant progress has been made in high-level recognition. Successful examples in-
clude the inference of office behaviours by Bui and Venkatesh [24], whose work we build
upon in this thesis. They used Rao-Blackwellised Particle Filtering in combination with
trained trajectory models to recognise behaviours such as ‘printing a document’, com-
prised of a person entering the scene, loitering near a computer and then moving towards
a printer. Other successful approaches have been presented by Nguyen et al. and applied
to similar behaviours [107, 108], but again, their work has been constrained by a reliance
on trained trajectory models which are simply unavailable in some domains. Furthermore,
in both of these examples only single agent behaviours are addressed, with no consider-
ation of multi-agent behaviour. This constraint is common in much of the prior research
(e.g. [68, 82, 83, 85, 18, 19, 20, 102, 103, 104, 78]).

It is unfortunate that the most robust approaches for behaviour recognition adopt trained
probabilistic models, making them poorly suited to data-scarce domains. For instance,
for video surveillance applications, annotated libraries of video do not exist for many
interesting behaviours, while operational factors become problematic when dealing with
military or counter-terrorism applications [66]. Furthermore, even when data can be col-

4

Watched

Item

Goal

A1:

Enter Area

Subgoal

Enter

Area

A1:

Leave Object

Subgoal

A1/R:

Split Group

Subgoal

A2:

Enter Area

Subgoal

Enter

Area

Place

Object
Exit

Area

Split

Group {
Performed by Agent 1

{

Performed by

Agent 2

{

Performed by

Agent 1

{

Performed by

Agents 1 & 2

Enter

Area

Enter

Area

Place

Object

Split

Group

Exit

Area

Figure 1.2: The ‘Watched Item’ behaviour is comprised of five activities performed by
two agents

5

lected there is often a high cost associated. This issue is particularly relevant when col-
lecting from real-world environments, where privacy concerns and configuration time can
significantly impact collection.

In data-scarce domains there are primarily two alternative approaches that have been em-
ployed, although each approach sacrifices robustness in order to provide recognition.
For example, in video surveillance applications it is not uncommon to manually spec-
ify semantic constraints, rules and relations (e.g. [46]), but these approaches are largely
deterministic and lack convenient methods for handling observational uncertainty [75].
The second alternative; anomaly detection, detects abnormal behaviours and thus subtly
changes the goal from behaviour recognition. Consequently, this approach has limited use
where an application requires behaviour recognition. In other data-scarce domains a lack
of training data has generally been overlooked. For instance, in counter-terrorism appli-
cations it is often assumed that probabilities can be gleaned from statistics or experts (e.g.
[141, 66]), although there is very little consideration of how reasonable this assumption
is or what implications it may have.

This thesis proposes that there is a better way to use probabilistic models in data-scarce
domains and is fundamentally grounded upon the idea of an alternative behaviour repre-
sentation that removes the need to learn temporal structure. Indeed, it poses the idea that
the components of a behaviour can be used as salient features and is inspired by image
based object detection. There is a clear difference between these two domains; images
are static while behaviours are not, yet this evolution of behaviour is the very method by
which a feature based approach works.

To model the ‘Watched Item’ behaviour (Figure 1.2) using traditional techniques each
activity/action would be considered a state. The probability of moving from one state to
the next would be represented by a transition probability, and these would be derived via
a process of model training. In the absence of suitable training data such probabilities
could be estimated by an expert as in [141], although this reliance is clearly limiting.

As an alternative representation, this thesis proposes that each activity be considered a
feature and represents the behaviour as an unordered “bag of features” (cardinality: 1).
If it is assumed that an agent is performing the ‘Watched Item’ behaviour (hence forth
referred to as WI), then we have a set of features that we expect to see. It holds that
as the agent is observed performing activities (features) the set of expected features re-
duces if observations are consistent with expectations. Thus at time step t = 0 each
of the 5 features is expected. Let us assume that two agents are observed to enter the
scene at t = 1. If the agents are indeed performing WI then the set of expected features

6

now reduces to {SplitGroup(A1,A2),PlaceItem(A1),ExitArea(A2)}. If one agent is ob-
served to place a luggage item at t = 2 the set of expected features reduces further to
{SplitGroup(A1,A2),ExitArea(A2)}. If an observation is inconsistent with the expected
features then there is evidence that the agents may not be performing WI, and indeed,
such an observation may support an alternative behaviour hypothesis.

Using this approach it is my thesis that we should be able to recognise behaviours without
learning their temporal structure, and in doing so will be able to probabilistically recog-
nise behaviours in data-scarce domains. This approach maintains an ability to reason
about uncertainty while existing alternatives do not. Furthermore, a lack of fixed tem-
poral structure means that observations can appear in an ‘unconventional’ order which is
useful for wide-area, multi-sensor surveillance. In such an application different compo-
nents of the plan might be performed at different times and by different people, yet this
would have no effect on inference. It should also be noted that although the approach is
applied to video surveillance in this research, there is no requirement to use video input.
The approach could be supplied with event data from any number of sources (e.g. radar,
lidar, intrusion detection systems), or even utilise multi-model observations. In contrast,
very few other approaches could be applied in the same way due to their tight coupling
with the data (e.g. [55, 10, 94, 73]

1.1 A Common Terminology

The multi-disciplinary nature of behaviour recognition research has led to a set of terms
that are inconsistent, and sometimes conflicting. To eliminate confusion in the succeeding
chapters several terms will now be defined as used within this thesis. Behaviours will be
discussed in two contexts; high-level (complex) and low-level (primitive). A low-level be-
haviour will be considered isolated, and do not involve long-term temporal dependencies.
This definition is broadly consistent with the use of ‘activity’ in prior research, where
examples include Agent Enters and Object Placed on Ground. These primitive features
can be seen in Figure 1.2 as being directly observable.

High-level behaviours will refer to sequences of activities that are temporally dependant
and achieve some higher-level goal. For example, the high-level behaviour in Figure1.2
(Watching Item) involves a number of hierarchical complex features. Similarly, the Leave

Object feature is also considered complex because it is composed of two dependent fea-
tures.

7

1.2 Aims

The goal of this thesis is to develop probabilistic inference techniques for high-level be-
haviour recognition in data scarce domains. There are three key aims of this work:

1. To design and implement an algorithm that allows high-level behaviour recognition
without model training and is

(a) robust in noisy environments

(b) delivers a low false-positive rate

(c) can explain detected behaviour and communicate:

i. detection certainty

ii. key activity times

(d) can perform real-time inference

2. Establish the effect of low-level (activity) classification errors on high-level infer-
ence

3. To validate the approach using sensor data in a domain for which annotated training
data is unavailable

8

1.2.1 Extensions

In addition to these aims there are several areas where extended goals have been identified.
These goals are not key to the success of this work but extend the range of behaviours that
can be detected and can be considered valuable extensions. They can be summarised as
follows:

1. Recognising switched and concatenated behaviour. Switched behaviour is ob-
served when an agent abandons one goal to pursue another leading to the partial
observance of two different behaviours (Figure 1.3). Concatenation is the complete
observance of two behaviours contiguously.

2. Recognising repetitious behaviour. This occurs when elements of the behaviour
are repeated. This is demonstrated in Figure 1.4 in which the ‘Passing Through
2’ behaviour is being performed (consisting of the primitive features: EnterAgent,
PlaceOb ject, RemoveOb ject, ExitAgent). The agent repeats two of the compo-
nents (PlaceOb ject, RemoveOb ject).

1.3 Contributions

With respect to behaviour recognition the contributions of this thesis are:

1. A new algorithm for behaviour recognition that builds on existing research with
Rao-Blackwellised Particle Filters [24]. Key to the approach is a new behaviour
representation that considers activities as behavioural features and encapsulates this
idea using Dynamic Bayesian Networks (DBN). A significant novelty of this DBN
is that it is application independent, unlike many prior approaches. The algorithm is
demonstrated within an automated visual surveillance framework, and we present
preliminary results from both simulated data and real surveillance-like video. Us-
ing video data from the publicly available PETS 2006 dataset [139], in addition
to further video collected by the author, we demonstrate the algorithm’s ability to
generate accurate and detailed behaviour reports in real-time within a noisy, sensor-
based environment. We achieve a mean recognition precision of 96.4% on the sim-
ulated data and 89.3% on the combined video data, while no parameter estimation
is required.

9

Time

Observed

Primitive

Features Enter Agent

Enter Agent Place Item
Split Group

Remove Item Exit Agent

Exit Agent

Leave Item

Place Item

Enter Agent

Enter Agent

Remove Item

Split Group

Exit Agent

Exit Agent

Exit AgentEnter Agent

Enter Agent Place Item
Passing

Through 2

Passing

Through 1

Watched

Item

Behaviours

Agent 1

Agent 2

Both Agents

Key:

Figure 1.3: Two agents switch from the ‘Watched Item’ behaviour to the ‘Passing
Through’ 1 & 2 behaviours

10

Time

Observed
Primitive
Features

Enter Agent Place Item Remove Item Exit AgentPlace Item Remove Item

Remove Item Exit AgentEnter Agent
Passing

Through 2 Place Item Remove Item Place Item{ {
Repeated Component

Behaviour

Agent 1 Activities

Defined Behaviour

Key:

Repetitious Behaviour

Figure 1.4: An agent performing the ‘Passing Through 2’ behaviour, including repetitious
elements that are not part of the behaviour definition.

11

2. The algorithm is extended to model behaviour at multiple levels of abstraction (i.e.
goals, sub-goals) and define multi-agent behaviour by specifying agent:sub-goal re-
lationships. It is shown that the resulting model can detect agents acting in isolation
as well as those involved in multi-agent behaviour without any prior knowledge of
agent groups. This ability is demonstrated in our experiments which involve 3 solo
behaviours and 4 multi-agent behaviours.

3. It is shown that the approach can recognise agents concatenating and switching
between behaviours. The approach even remains robust when behaviours contain
significant similarities, and performs comparably with other, trained, ‘multi-goal’
approaches. We achieve a mean precision of 88% for concatenated behaviour and
87% for switched behaviour at the cost of reduced recall (65% and 60% respec-
tively).

This thesis also makes further contributions with respect to probabilistic reasoning:

1. The framework employs a hierarchicalisation procedure that involves the cascad-
ing of particle filters. This cascade functions in a similar way to cascaded Hidden
Markov Models, where classifications from one model provide observations to an-
other. Set into the context of particle filters, the probability estimates for abstract
behavioural components (e.g. sub-goals) are partially based on probability density
estimates for non-abstract components (activities). This cascade allows behaviours
to be defined and recognised in terms of re-usable, abstract features and facilitates
a succinct representation and behaviour explanations.

2. Key to our approach is the ability to use multiple particle filters to hypothesise
different multi-agent scenarios. This required the development of a technique for
combing posterior filtering densities from multiple filters to obtain a combined dis-
tribution. The process developed functions on normalised filter densities and could
thus be applied in numerous other scenarios. The re-normalisation process also
accounts for conflicting evidence and remains robust in challenging situations.

1.4 Thesis Roadmap

The next chapter will introduce pertinent related work. This will include an overview
of the three main approaches to recognition: semantic models, state models, and feature
models. In order to remain succinct the discussion will primarily focus on the work that is

12

most similar to our own, although a brief discussion of underlying probabilistic and video
processing techniques will also be presented. The chapter will conclude with a discussion
on multi-agent behaviour recognition, which is often considered a sub-field of behaviours
recognition.

Having introduced the background material Chapter 3 will begin to introduce the frame-
work by discussing the underlying concept: the bag-of-features. This will then be for-
malised by presenting the Bayesian Network representation.

Chapter 4 will combine the underlying probabilistic inference techniques from Chapter 2
and concepts from Chapter 3 to derive an efficient inference mechanism for the bag-of-
features approach. This mechanism will be introduced in two stages; a basic algorithm
that introduces the core algorithm components, and an advanced algorithm that optimises
performance.

Up until this point in the thesis the underlying principles will have been presented in
a ‘flat’ representation. That is, behaviours will have been considered as a single set of
primitive features (activities). However, a taxonomy structure is often seen as a more
natural representation for behaviour, and allows the decomposition of goals into smaller
components (sub-goals, actions). Chapter 5 will go beyond the basic representation pre-
sented in the previous chapters to describe how such a decomposition can also be applied
to bags-of-features.

Within this thesis the major benefit of applying a taxonomy structure is that it allows us
to model multi-agent behaviour. How this is achieved is the focus of Chapter 6, which
updates the original inference algorithms from Chapter 4. The approach utilises combina-
torial optimisation to identify collaborating agents, and a Simulated Annealing algorithm
will be introduced to show how this may be efficiently achieved.

Chapter 7 will draw on all of the previous chapters to describe the implementation details
of our validation framework within the visual surveillance domain. The validation will
make use of simulated data in addition to real video data. This chapter will discuss the
details of how these two forms of data were obtained and processed, and will additionally
discuss the mechanism by which behaviour predictions are made.

The evaluation will commence in Chapter 8 using the simulated data. This data source
allows rigorous testing of different scenarios and conditions, and is followed in Chapter
9 with experiments using video data. In addition to the basic recognition performance of

13

the approach the experiments will also consider more complex conditions such as agents
changing their behaviour, and will evaluate the impact that low-level processing errors
have on higher-level inference.

Chapter 10 will interpret the results in a number of ways. First, the results will be dis-
cussed in relation to the bag-of-features framework, and will then be discussed in relation
to real-world applications. We will consider how well the approach is able to meet re-
quirements such as the ability to explain predictions and handle noisy environments, and
will also compare results with other published research. Finally, this chapter also consid-
ers the scalability of the approach and identifies areas of limitation.

Chapter 11 will close the thesis by drawing together the contributions of this research and
summarising what has been learnt. There are also a number of directions in which future
work might proceed and these too will be discussed.

14

Chapter 2

Literature Survey

As highlighted in the introduction, automated behaviour recognition is a multifaceted
problem that encompasses techniques from several different areas of research. This has
led to a vast quantity of literature considering different aspects of the problem. In this
chapter we identify how pertinent prior work has informed our research, and discuss the
novelties of bag-of-features inference in relation to existing techniques.

To assist the discussions later in the chapter, Section 2.1 will introduce several generic
Bayesian inference techniques. Numerous approaches have utilised and extended these
techniques, so it is important to understand their merits at a generic level before intro-
ducing implementation specific extensions. Similarly, some of the approaches to be dis-
cussed utilise video processing techniques to track agent behaviour, so these too will be
introduced in their generic form in Section 2.2.

Once these generic techniques have been presented the discussion will turn to a more
specialised introduction to behaviour recognition approaches. This will commence with
techniques using agent trajectory in Section 2.3. Because complex agent behaviour is
hard to encapsulate using trajectories alone, many authors have considered more descrip-
tive modelling approaches. These include semantic models (Section 2.4), state models
(Section 2.5) and feature-based models (Section 2.6).

Because this research is focused on recognising complex behaviour a discussion of related
work would not be complete without considering multi-agent behaviour. There are several
elements to multi-agent behaviour recognition and these will be discussed in Section 2.7.
Finally, Section 2.8 will draw this chapter together by making several conclusions and

15

Z1 Z2 Z3

Figure 2.1: A simple Bayes Network

identifying areas requiring further research.

2.1 Probabilistic Inference Techniques

The need to reason about uncertainty has led to the development of probabilistic inference
techniques for a wide range of applications, including behaviour recognition. Yet many of
these techniques build upon fundamental principles applied in different ways. Several of
the techniques introduced later in this chapter will rely on an understanding of these prin-
ciples. The next two subsections will introduce Bayesian Networks and their temporal
counterpart: Dynamic Bayesian Networks. This will be followed by the Bayesian Filter,
which performs exact inference on generic temporal models. For some problems exact
inference becomes intractable. Algorithms that perform approximate inference can prove
useful in these situations, with one such algorithm being Sequential Importance Sampling
(SIS). This sample based approach will be introduced in subsection 2.1.6, followed by
a modified version of the algorithm: Sequential Importance Sampling with Resampling.
Finally, Rao-Blackwellisation is a technique that improves approximate inference by util-
ising the structures found in some temporal models, and will be introduced at the end of
the section.

2.1.1 Bayesian Networks

Bayesian modelling is frequently used to encapsulate processes in a probabilistic forma-
tion. One of the benefits of Bayesian models is that they can be represented graphically
using a Bayesian Network (or Bayes Network for short), as shown in Figure 2.1. A Bayes
Network is an acyclic graphical model where nodes denote variables and edges denote de-
pendencies. In this example Z2 is dependant on Z1, while Z3 is conditionally independent

of Z1 given Z2 (i.e. P(Z3|Z1,Z2) = P(Z3|Z2)). Although variables are often considered
binary, this is not a requirement of the generic Bayes Network. To define a network one
must specify its Vertices, Edges, and a Conditional Probability Table, and is often repre-
sented by the tuple {V,E,CPT}.

16

Transition I J Priors
I 0.9 0.1 0.2
J 0.5 0.5 0.8

Table 2.1: Transition matrix and prior probabilities for a simple Markov Model

2.1.2 Markov Models

A limitation of the generic Bayes Network is that it models the state of a system as a
snapshot, that is, during a single instance in time. This makes them poorly suited for
modelling processes that evolve (non stationary processes). However, Bayes Nets can be
combined with a temporal model to form the Markov Model. In a Markov Model each
node represents the state of a process at a particular instance in time. With respect to
Figure 2.1, if the subscripts are considered as time indices then it can be said that Z2 is the
state of a process at time t = 2, and the probability that state Z3 takes on a certain value z

may be written as P(Z3 = z|Z2 = z2). Markov models are efficient because they make a
Markov Assumption, that is, future states are independent of past states given the current
state.

Markov Models represent the states of a system as a linear chain. The probability of
transitioning from one state to another is specified via a transition matrix, and due to the
Markov assumption, only needs to consider transitions from the state at time t to t + 1.
Each model also requires a set of prior probabilities which specify the probability of each
state at the first time step.

To model behaviour using a Markov Model each detectable action is first associated with
a state, while the model parameters (transition matrix and prior probabilities) are normally
learnt or defined by an expert. To model N activities requires N models. Recognition is
performed by calculating the probability of each model having caused the observed action
sequence. For example, consider the transition matrix and prior probabilities shown in
Table 2.1. The probability of the observed action sequence I→ I→ J can be calculated
as:

P(Zt = J|Zt−1 = I)P(Zt−1 = I|Zt−2 = I)P(Zt−2 = I) = 0.1∗0.9∗0.2 = 0.018 (2.1)

By comparing this probability against that derived with another behaviour model one can
determine which behaviour most likely explains the action sequence.

17

Yt-1

Zt-1

Yt

Zt

Yt+1

Zt+1

Figure 2.2: The Hidden Markov Model

2.1.3 Hidden Markov Models

The Hidden Markov Model (HMM) is a variation of the Markov Model in which the
states of the process are not directly observable (i.e. they are hidden) [121]. Instead, the
process is monitored through a sequence of observations from which the true process state
must be estimated. This can be represented using a Hidden Markov Model, which uses
hidden variables to represent the (unobservable) process state, and observable variables
representing the observations.

This is shown graphically in Figure 2.2, where the shaded nodes represent the hidden
(or commonly referred to as ‘latent’) process states and the unshaded nodes denote ob-
servations. As before, the model parameters consist of the transition matrix and prior
probabilities, but now also include an emission model. The emission model specifies the
probability of observing Yt = yt given the process is in state Zt = zt . Furthermore, the
Markov assumption states that each observation is conditionally independent given the
state, and thus P(yt |y1:t ,Z1:t) = P(yt |Zt).

2.1.4 Dynamic Bayesian Networks

Murphy showed that Hidden Markov Models are actually a special case of Dynamic
Bayesian Network (DBN) [101]. DBNs model temporal processes, but unlike HMMs,
they can have any number of hidden states. A network not only encodes the temporal
structure of a process, but also encodes node dependencies within each time-step. As
before, DBNs make the assumption that the process being modelled is Markov. It should
be noted that the structure of a DBN remains static between time slices, and thus may be
considered homogeneous. DBNs would be more appropriately named Temporal Bayesian
Networks [101].

18

At-1

Bt-1

Ct-1

At

Bt

Ct

Zt-1 Zt} }

Figure 2.3: Example two-slice Bayes network defining P(Zt |Zt−1). Shaded nodes are
latent, while unshaded nodes are directly observable.

To specify a DBN using the notation from [101], assume that Zt represents both the hidden
and output variables of a state-space model. A DBN is then defined to be a pair (B0,B→),
where B0 is a Bayes Net defining the prior P(Z1) and B→ is a two-slice Bayes Net defining
P(Zt |Zt−1) such that:

P(Zt |Zt−1) =
N

∏
i=1

P
(
Zi

t |Pa(Zi
t)
)

(2.2)

Where Zi
t is the i’th node of the Bayes Net at time t, Pa(Zi

t) are the parents of node Zi
t

and P(Zi
t |Pa(Zi

t)) = P(Zi
1) when t = 1. The resulting joint distribution of T time-slices is

given by:

P(Z1:T) =
T

∏
t=1

N

∏
i=1

P
(
Zi

t |Pa(Zi
t)
)

(2.3)

For example, Figure 2.3 shows a basic two-slice Bayes Net defining P(Zt |Pa(Zt)). One
can see that nodes Atand Bt are dependent upon the previous time step. The unrolled
network (the joint distribution) can be written for two time slices as:

P(Z1:2) =
2

∏
t=1

N

∏
i=1

P
(
Zi

t |Pa(Zi
t)
)

(2.4)

=
N

∏
i=1

P(Zi
1)×P(Zi

2|Pa(Zi
2)) (2.5)

= P(A1)P(B1|A1)P(C1|A1)×P(A2|A1)P(B2|A2,B1)P(C2|A2) (2.6)

It can be observed from equations 2.3 and 2.6 that a DBN can be ‘unrolled’ over time
to give a standard Bayes Network. This allows a large class of algorithms designed for
standard Bayes Networks to be applied to DBNs.

19

To map the dynamic Bayesian network notation back to HMM notation, recall that in a
HMM the hidden state (Zt) is comprised of only one node. Because there is only one
hidden node, in HMM terminology the conditional probability P(Zt |Zt−1) is often simply
referred to as the transition probability A(i, j), where i represents the state at t− 1 and j

the state at time t.

2.1.5 Bayes Filter

The Bayes Filter can be used to perform recursive Bayesian estimation. Consider the
general state-space model with hidden variables Zt and observed variable yt . Recall from
the previous section that P(Z1) represents the prior (initial) distribution and P(Zt |Zt−1)

represents the transition model. Note that for simplicity, the superscript indices represent-
ing variables have been removed. Recall also that a Markovian assumption is made and
thus the sequence of T observations y1:T = {y1,y2, ...,yT} is assumed to be conditionally
independent given the marginal distribution P(yt |Zt).

The joint distribution of all states and all observations up until time T can therefore be
written as:

P(Z0:T ,y1:T) =
T

∏
t=1

P(yt |Zt)P(Zt |Zt−1) (2.7)

The marginal P(Zt |y1:T) is known as the filtering distribution. To see how this may be
calculated, suppose that P(Zt−1|y1:t−1) is known. There are then two steps to recursive
Bayesian estimation. The first step, termed Prediction, uses the transition model to calcu-
late the prior probability of the state at time t. This is shown in Equation 2.8.

P(Zt |y1:t−1) =
∫

P(Zt |Zt−1)P(Zt−1|y1:t−1)dzt−1 (2.8)

At time-step t an observation yt becomes available which can be used to update the pre-
diction via the Update step. The marginal P(Zt |y1:T) is calculated using the observation
model P(yt |Zt):

P(Zt |y1:t) =
P(yt |Zt)P(Zt |y1:t−1)

P(yt |y1:t−1)
(2.9)

Where the denominator can be calculated as:

P(yt |y1:t−1) =
∫

P(Zt−1|y1:t−1)P(Zt |Zt−1)P(yt |Zt)dzt (2.10)

20

The posterior P(Zt |y1:T) can thus be calculated recursively using the two steps: Prediction
(Equation 2.8) and Update (Equation 2.9). Return now to the original assumption that
P(Zt−1|y1:t−1) is known, for which it may be unclear what happens when t = 1. Under
this condition no observations have been seen and thus P(Zt−1|y1:t−1) is simply the prior
P(Z1). At all other time-steps P(Zt−1|y1:t−1) is the estimate from the previous time-step.

Recursive Bayesian estimation is particularly useful for processes that evolve with time.
The arrival of a new observation allows the posterior probability to be updated without
maintaining a history of all previous observations, making it efficient for processes with
long duration.

This two-step Bayes Filter performs exact Bayesian inference, however, a limitation of
this solution is that Equation 2.10 cannot typically be calculated analytically. While it can
be calculated for models with discrete state spaces, and for restricted models such as the
Kalman Filter, for other models approximation techniques are required [39].

2.1.6 Sequential Importance Sampling (SIS)

The Sequential Importance Sampling (SIS) algorithm implements recursive Bayesian es-
timation using Monte Carlo sampling. It is variously known as particle filtering [40], the
bootstrap filter [54], the condensation algorithm [17] and Sequential Monte Carlo [39].
The SIS algorithm allows approximate inference to be performed when exact inference is
inappropriate.

Fundamentally, the approach uses a set of weighted random samples (particles) to approx-
imate the posterior density P(Z1:T |y1:T), from which the filtering density P(ZT |y1:T) can
be calculated. To see how this is achieved, first re-write P(Z1:T |y1:T):

P(Z1:T |y1:T) =
P(Z1:T ,y1:T)

P(y1:T)
=

P(y1:T |Z1:T)P(Z1:T)∫
P(y1:T ,Z1:T)dz1:T

(2.11)

Because
∫

P(y1:T ,Z1:T)dz1:T is a constant normalisation factor it can be isolated and
P(Z1:T |y1:T) rewritten, denoting the constant as Ψ. Furthermore, because the process
is assumed to be Markov P(yT |Z1:T) = P(yT |ZT). This gives:

P(Z1:T |y1:T) =
1
Ψ

(
T

∏
t=1

P(yt |Zt)

)
P(Z1:T) (2.12)

21

Denote a random sample of size N as {Zi
1:T ,ω

i
T}N

i=1. Let Zi
1:T be the i’th particle sam-

pled from P(Z1:T), and ω i
t be its associated weight such that ∑N

i=1 ω i
t = 1 and ω i

T =

∏T
t=1 P(yt |Zt). Substituting Zi

1:T and ω i
T into Equation 2.12 the normalising constant can

be dropped giving:

P(Z1:T |y1:T)≈
N

∑
i=1

ω i
t δ
(
Z1:T ,Zi

1:T
)

(2.13)

In calculating ω i
T there is actually a recurrence relation that can be taken into considera-

tion. Consider the weight ω i
T−1:

ω i
T−1 =

T−1

∏
t=1

P(yt |Zt = Zi
t) (2.14)

When Zi
t is sampled from P(Zt |Zt−1 = Zi

t−1) the weight can actually be factorised to give
the weight update equation:

ω i
t = ω i

t−1P(yt |Zt = Zi
t) (2.15)

Having defined the prediction and weight update steps, the generic SIS algorithm can be
summarised by Algorithm 2.1. A particle set {Zi

1,ω
i
1}N

i=1 is initialised according to the
prior P(Z1) and ω1. The particles then predict the new state at time t +1 by drawing from
the transition kernel P(Zi

t |Zi
t−1) and are weighted according to Equation 2.15.

Algorithm 2.1 The standard generic SIS algorithm
1: Init: Generate [{Zi

1,ω
i
1}N

i=1]∼ P(Z1) and ω1
2: for t = 1 to T do
3: for i = 1 to N do
4: Prediction: Draw Zi

t ∼ P(Zi
t |Zi

t−1)

5: Update: Assign weight to Zi
t according to Equation 2.15

6: end for
7: end for

Arulampalam et al. showed that the SIS algorithm can be modified to utilise two kernels
in [9]. This can be useful when a second kernel is required to incorporate different state
knowledge. To show how this is achieved let us re-write Equation 2.12 as follows:

P(Z1:T |y1:T) = 1
Ψ ×

(
∏T

t=1 P(yt |Zt)
)
× P(Z1:T)

= 1
Ψ ×

(
∏T

t=1 P(yt |Zt)
)
× P(Zt |Zt−1)P(Zt−1|Zt−2)×

P(Zt−2|Zt−3)...P(Z2|Z1)P(Z1)

22

Because P(Z1:T) is sampled using the transition kernel, if it is assumed that P(Z1|Z−1) =

P(Z1) (as before) then Equation 2.12 can be further rewritten as:

P(Z1:T |y1:T) =
1
Ψ
×
(

T

∏
t=1

P(yt |Zt)

)
×P(Z1:T) (2.16)

=
1
Ψ
×
(

T

∏
t=1

P(yt |Zt)P(Zt |Zt−1)

)
(2.17)

Let us denote G(Zt ,yt) = P(yt |Zt) and Q(Zt ,Zt−1) = P(Zt |Zt−1), where Q is the transition
kernel. Suppose that there is a further kernel K(Zt ,Zt−1,yt) = P(Zt |Zt−1,yt) and function
H(Zt ,Zt−1,yt) that satisfy:

G(Zt ,yt)Q(Zt ,Zt−1) = H(Zt ,Zt−1,yt)K(Zt ,Zt−1,yt) (2.18)

Then it follows that Equation 2.17 can be re-written:

P(Z1:T |y1:T) =
1
Ψ
×
(

T

∏
t=1

P(yt |Zt)P(Zt |Zt−1)

)
(2.19)

=
1
Ψ
×
(

T

∏
t=1

G(Zt ,yt)Q(Zt ,Zt−1)

)
(2.20)

=
1
Ψ
×
(

T

∏
t=1

H(Zt ,Zt−1,yt)K(Zt ,Zt−1,yt)

)
(2.21)

=
1
Ψ
×

T

∏
t=1

H(Zt ,Zt−1,yt)
T

∏
t=1

K(Zt ,Zt−1,yt) (2.22)

Let ξ i
1:T be the i’th particle sampled from ∏T

t=1 K(Zt ,Zt−1,yt).

P(Z1:T |y1:T) =
N

∑
i=1

ω i
t δ (Z1:T ,ξ i

1:T) (2.23)

When we are only interested in the filtering distribution P(ZT |y1:T) the history of all
previous states can be dropped via the Markov assumption to give:

P(ZT |y1:T) ≈
N

∑
i=1

ω i
T δ (ZT ,ξ i

T) (2.24)

23

where

ω i
T =

T

∏
t=1

H(ξ i
t ,ξ

i
t−1,yt) (2.25)

= ω i
t−1H(ξ i

t ,ξ
i
t−1,yt) (2.26)

Equation 2.18 can be can rearranged in terms of H(Zt ,Zt−1,yt) allowing it’s substitution
to:

ω i
t = ω i

t−1H(ξ i
t ,ξ

i
t−1,yt) (2.27)

= ω i
t−1

G(ξ i
t ,yt)Q(ξ i

t ,ξ i
t−1)

K(ξ i
t ,ξ i

t−1,yt)
(2.28)

= ω i
t−1

P(yt |Zt)P(Zt |Zt−1)

P(Zt |Zt−1,yt)
(2.29)

This updated SIS procedure can be summarised via Algorithm 2.2. As before, the particle
set is initialised according to the prior distribution P(Z1), with weights drawn from the
prior weight distribution ω1. The algorithm then iterates for T time steps. In the prediction
step the system kernel (P(Zt |Zt−1)) and the second kernel (P(Zt |Zt−1,yt)) are both used
to generate the new state particles {Z1

t ,Z
2
t . . .Z

N
t }. Each particle in the new sample is

weighted in accordance with its likelihood given the new observation yt , and thus the
weighting forms the update step, which now includes the second kernel P(Zt |Zt−1,yt).
As before, particles that are more likely will attract a higher weight while less likely
particles attract lower weights. Note that as the number of particles approaches ∞ the
approximation of P(Z1:T |y1:T) will approach the true probability.

Algorithm 2.2 The Two-Kernel SIS algorithm
1: Init: Generate [{Zi

1,ω
i
1}N

i=1]∼ P(Z1) and ω1
2: for t = 1 to T do
3: for i = 1 to N do
4: Prediction: Draw Zi

t ∼ Q(Zi
t |Zi

t−1,yt)

5: Update: Assign weight to Zi
t according to Equation 2.29

6: end for
7: end for

To give a simple example of the SIS filter in action consider a hypothetical target-tracking
filter. Suppose the target is a moving object in Cartesian space with a constant velocity
and trajectory. Now suppose that the target can only move along one of two trajectories
and there are two particles in a particle filter (one for each potential trajectory). Each
particle is initialised with the approximate location of the target at the first time-step. The
associated trajectories can be observed in Figure 2.4, in which one can see that Particle 1
provides a better estimate of the trajectory than particle 2.

24

0 1 2 3 4
0

1

2

3

4

5

6

X coordinate

Y
 c

o
o

rd
in

at
e

Target Trajectory

Particle 1 Trajectory

Particle 2 Trajectory

Figure 2.4: A simple target trajectory, and estimated trajectories by two different particles

Assume that the target’s position is observed at one second intervals with a Normal er-
ror distribution (mean error of 0.1m, standard deviation of 1). If each particle estimates
the target’s new position at the same frequency, the Euclidean distance could be used to
measure the error of each prediction and convert this to an observation probability using
the error distribution. The normalised particle weights for each observation can be seen
in Figure 2.5, where, as one would expect, Particle 1 becomes most probable.

Now assume that the filter actually contains 100 particles equally distributed between
the two trajectories, and each is initialised with a slightly different origin. The particles
with origin’s closest to the true origin would obtain more weight than those with poorer
initialisations, and thus the filter could be used to derive a more accurate estimation of the
target trajectory.

2.1.7 SIS with Resampling

Sample degeneracy is cited as a common problem with the SIS algorithm [39]. Degen-
eracy occurs after several iterations of the algorithm, where all but a small number of
particles will have negligible weight. This can be observed in Figure 2.5, where one can
see that after only five observations particle 2 has negligible weight. A large proportion of

25

1 2 3 4 5
0

0.5

1

Observation Number
N

o
rm

al
is

ed
 W

ei
g

h
t

Particle 1

Particle 2

Figure 2.5: Normalised particle weights for five observations

Algorithm 2.3 Systematic Sampling
1: Prototype: [{Zi∗

t ,ω i∗
t }N

i=1] = Resample([{Zi
t ,ω i

t}N
i=1])

2: [{Zi∗
t ,ω i∗

t }N
i=1] = /0

3: C1 = 0
4: for i = 2 to N do
5: Construct the cumulative distribution function (CDF): Ci =Ci−1 +ω i

t
6: end for
7: Reset i = 1
8: Draw random starting point: u1 ∼ R[0,N−1]
9: for j = 1 to N do

10: Move along the CDF: u j = u1 +N−1(j−1)
11: while u j > ci do
12: i = i+1
13: end while
14: Add new sample point: Z j∗

t = Zi
t

15: Add new weight: ω j∗
t = N−1

16: end for

inference time is therefore wasted updating particles that have little effect on the posterior
density. It has been shown that the variance of importance weights can only increase with
time, and thus the problem of degeneracy cannot be directly avoided.

This phenomena is overcome by adding a re-sampling step into the algorithm, forming the
SIR algorithm. The re-sampling step involves generating a new set of particles {Zi∗

t }N
i=1

by sampling N times with replacement from the approximate representation of P(ZT |y1:T)

(given by Equation 2.24) so that P(Zi∗
t = Zi

t)=ω i
t . The resulting particle set is an indepen-

dent and identically distributed (i.i.d.) sample from Equation 2.24, and thus the weights
are reset to {ω i

t = 1/N}N
i=1. The effect of re-sampling is that particles with very low

weights in {Zi
t}N

i=1 are less frequent in {Zi∗
t }N

i=1 , while particles with higher weights are
more frequent.

Referring back to the hypothetical filter distributions in Figures 2.4 and 2.5, assume that
once again the filter actually consists of 100 particles equally distributed between the

26

Algorithm 2.4 The Two-Kernel SIR algorithm
1: Generate [{Zi

1,ω
i
1}N

i=1]∼ P(Z1) and ω1
2: for t = 1 : T do
3: for i = 1 : N do
4: Re-Sample:τ i

t ∼ {Zi
t−1,ω

i
t−1} using Algorithm 2.3

5: Propagation: Draw Zi
t ∼ K(Zi

t ,τ i
t−1,yt)

6: Weighting: Assign weight to Zi
t according to Equation 2.24

7: end for
8: end for

two trajectories. The SIR filter now re-samples the particles according to the weight
distribution, and thus Figure 2.5 is representative of the number of ‘Trajectory 1’ particles
in the filter. Correspondingly, there are fewer particles representing ‘Trajectory 2’ and
inference time is not wasted updating these particles, but focused instead on finding the
best ‘Trajectory 1’ estimation.

There are a number of O(N) approaches for performing the re-sampling step, including
algorithms based on first order statistics [26], residual sampling [87] and systematic re-
sampling [9, 71]. The approach taken in this work is systematic re-sampling [71] due to
the ease of its implementation, and is summarised in Algorithm 2.3. Its integration into
the SIR algorithm is described in Algorithm 2.4.

2.1.8 Rao-Blackwellisation

Sequential importance sampling/re-sampling gains its efficiency through sampling Zt , but
bears the limitation that sampling a high-dimensional state space is inefficient. In some
cases a model encapsulates a tractable structure that can be analytically marginalised out
conditioned upon other nodes. This marginalisation considerably reduces the state space
that must be sampled and therefore increases efficiency [38].

This process of marginalising out some variables is known as
Rao-Blackwellisation, and its integration with the SIR algorithm gives rise to the
Rao-Blackwellised Particle Filter (RBPF). The underlying concept is to partition the
collection of latent variables Zt into those that will be sampled, and those that will be
marginalised. Denote the sampled component as r, and the marginalised component
z : Zt = {rt , zt}. The posterior in RBPF filtering can thus be expressed by the follow-
ing factorisation:

p(Zt |y1:t−1) = p(zt |rt ,y1:t−1)p(rt |y1:t−1) (2.30)

27

Algorithm 2.5 The Rao-Blackwellised Particle Filter algorithm
1: Generate [{zi

0,r
i
0,ω

i
0}N

i=1]∼ P(Z0) and ω0
2: for t = 1 : T do
3: for i = 1 : N do
4: Resampling: Generate ri

t ∼ {ri
t−1,ω

i
t−1} using Algorithm 2.3

5: Prediction: Draw Zi
t = {r, t}i

t ∼ q(zi
t |ri

t−1,yt)q(ri
t |ri

t−1,yt)

6: Update: Assign weight to Zi
t according to Equation 2.37

7: end for
8: end for

Lt

Mt(1)

Mt(2)

yt

Mt(n)

Observation

Location

Map Cell 1

Map Cell 2

Map Cell n

Lt-1

Mt-1(1)

Mt-1(2)

yt-1

Mt-1(n)

Figure 2.6: Example Dynamic Bayes Net for the robot localisation and mapping problem
from [38]

A Simple Example

Doucet et al. illustrate Rao-Blackwellisation with a Robot Localisation and Mapping
example in [38]. Consider a robot moving in a discrete grid of l cells, where each cell
can be shaded or unshaded. The robot can detect the colour of the current cell, but this
detection is subject to a noise model f (�) which randomly flips the detection. As the robot
moves around the grid it tracks its location (Lt) and updates its map (Mt(Lt))). However,
the problem is that the robot does not always move as expected (e.g. wheel slip), and
easily becomes lost meaning it does not know which location of the map to update.

The Dynamic Bayes Net for this problem is shown in Figure 2.6, and can be modelled in a
particle filter by encapsulating the agent state (shaded nodes) in each particle. A standard
particle filter samples the entire state, however, sampling can be made more efficient by
partitioning the state into rt = Lt , zt = {Mt(i)}l

i=1. A Rao-Blackwellised particle filter only
samples rt (in this case, the agent’s location) and marginalises the remaining variables (the
map variables) by conditioning on rt .

28

zt

Yt

zt-1

Yt-1

rtrt-1

Figure 2.7: Incorporating the latest observation into the RB-Posterior reverses the edge
between yt and zt

Incorporating Evidence

A limitation with the standard Rao-Blackwellised factorisation is that the latest evidence
(yt) is not considered when calculating the distribution of zt . This can result in a large
number of particles predicting values of zt that will obtain low weights during the weight-
ing step. These particles are effectively wasted samples and lead to sub-optimal perfor-
mance. It is therefore logical to incorporate information about the latest observation when
calculating the distribution of zt . This is done by applying the Two-Kernel SIR approach
to the RBPF algorithm. To proceed, the Rao-Blackwellised Posterior P(zt |rt ,y1:t−1) is
converted into P(zt |rt ,y1:t). This is done by sampling from kernel K({z,r}t ,{z,r}t−1,yt),
which is the Rao-Blackwellised form of K(Zt ,Zt−1,yt) from section 2.1.6. This has the
effect of reversing the edge between nodes yt and zt in the DBN and is visualised in Figure
2.7.

Using this new RB-Posterior, the distribution of zt will now incorporate the latest evi-
dence. These concepts can be merged into the SIR algorithm to form the Rao-Blackwellised
Particle Filter (RBPF), which consists of N random samples of the form {{r,z}i

1:t ,ω
i
t}N

i=1

that characterise the posterior density P(Zt |y1:t). Each sample point {r,z}i
t has an as-

sociated weight ω i
t such that ∑N

i=1 ω i
t = 1 as with the original SIS/SIR algorithms. The

posterior density at time t is approximated as:

P(Zt |y1:t) ≈
N

∑
i=1

ω iδ
(
{r,z}t ,{r,z}i

t
)

(2.31)

As shown in Section 2.1.6, the Two-Kernel weight update equation is given by:

ω i
t ∝ ω i

t−1
Q({r,z}t ,{r,z}t−1,yy)

K({r,z}t ,{r,z}t−1,yt)
(2.32)

29

∝ ω i
t−1

P(yt |{z,r}t)P({z,r}t |{z,r}t−1)

P({z,r}t |{z,r}t−1,yt)
(2.33)

Using this new weighting function and the three steps of the SIR algorithm, the RBPF
algorithm can be described as below.

Resampling

A Resampling step such as Algorithm 2.3 multiplies samples with high weights and elim-
inates those with low weights. The resampled set {Zi∗

t ,ω i∗
t }N

i=1 can be defined in terms of
the RBPF by:

{Zi∗
t ,ω i∗

t }N
i=1 = {{r,z}i∗

t ,ω
i∗
t }N

i=1 (2.34)

Prediction

Where as the standard SIR algorithm estimated the probability density function P(ZT |y1:T),
this step is now partitioned into the two components rt and zt . The first component is sam-
pled from the distribution P(rt |y1:t−1) as per equation 2.35.

P(rt |y1:t−1) = P(rt |Zt−1)P(Zt−1|y1:t−1) (2.35)

Once rt has been predicted the exact conditional P(zt |rt ,y1:t) can be calculated and zt

predicted.

Update

The final step in the algorithm weights the particles so that ∑N
i=1 ω i

t = 1, where the weights
should be proportional to the distribution in Equation 2.37.

30

ω i
t ∝ ω i

t−1
P
(
yt |Zi

t
)

P
(
Zi

t |Zi
t−1
)

P
(
Zi

t |Zi
t−1,yt

) (2.36)

∝ ω i
t−1

P
(
yt |{r,z}i

t
)

P
(
{r,z}i

t |{r,z}i
t−1
)

P
(
{r,z}i

t |{r,z}i
t−1,yt

) (2.37)

As before, P(Zt |Zt−1,yt) = K(Zt ,Zt−1,yt), and correspondingly,
K(Zt ,Zt−1,yt) = P({r,z}i

t |{r,z}i
t−1,yt). Recall from Section 2.1.6 that K(Zt ,Zt−1,yt) is

some importance distribution that is assumed to be known, and thus no further changes
are required to apply Rao-Blackwellisation to the algorithm.

2.1.9 Summary

This section has introduced some generic techniques for performing probabilistic infer-
ence. It began with Bayes Networks, which are graphical models that use edges to denote
dependence between different variables in the model. Many Bayes Networks consist of
latent (hidden) variables and observed variables. Given a set of known variable values
Bayesian inference allows us to calculate the conditional probabilities of another set of
variables, and is often used to calculate the probability of the latent variables given obser-
vations.

Where Bayes Networks become limited is with respect to temporal processes. Because
a Bayes Network represents the state of a system at a single point in time it must be
integrated with a temporal model to form a Dynamic Bayesian Network (DBN). Such
a network describes the dependencies between nodes at different time-steps and can be
‘unrolled’ to give a standard Bayes Network. DBN inference can be performed using the
Bayes Filter, which implements recursive Bayesian estimation and ‘updates’ the proba-
bility whenever a new observation is made. However, the Bayes Filter performs exact
Bayesian inference and can become intractable for some problems. For this reason the
Sequential Importance Sampling (SIS) and Sequential Importance Sampling with Resam-
pling (SIR) algorithms have been suggested as two alternatives to the Bayes Filter. These
algorithms perform approximate inference via sampling and can be applied in situations
where the Bayes Filter becomes intractable.

A limitation of the SIS/SIR algorithms is that sampling is inefficient in high-dimensions.
However, performance can be improved by integrating the concept of Rao-Blackwellisation,

31

which marginalises out variables by conditioning on a set of known variables. The Rao-
Blackwellised particle filter (RBPF) provides such an integration by sampling some vari-
ables using approximate inference, and analytically marginalising others conditioned on
the sampled variables. This has the effect of reducing the number of variables that must
be sampled and improves inference.

2.2 Video Processing Techniques

In the context of behaviour recognition video processing is normally concerned with the
identification and tracking of moving foreground objects. Broadly speaking, the processes
involved can be categorised into three distinct stages:

• Foreground detection, in which the static background is segmented from the moving
foreground components.

• Object classification, in which foreground components are classified into different
types of object (e.g. person, luggage, clutter).

• Object tracking, in which objects are tracked between video frames to produce an
object motion trajectory.

2.2.1 Foreground Detection

To detect foreground objects there are three popular techniques: background subtraction,
temporal differencing, and optical flow analysis [72].

Adaptive Background Subtraction

Background subtraction performs pixel-by-pixel subtraction of the current image frame
from a reference frame to identify foreground pixels (having a non-zero value). The
reference frame represents the static background and is normally learnt by averaging pixel
values over a number of frames. Because the background is rarely fixed, the reference
frame must be adapted at run-time to accommodate illumination and motion changes (e.g.

32

shadows, trees). This can be achieved in a number of ways. Simple approaches use the
median of the last n frames to update the background model [32], but ignore foreground
pixels during the update so as not to pollute the background image. However, one of the
key limitations of this approach is that a pixel cannot model multiple background objects,
such as moving leaves in-front of a building [116]. Stauffer and Grimson suggested using
a mixture of Gaussians to model multiple background objects [132], while Elgammal et

al. propose Kernel Density Estimation [41] to solve the same problem. Performance
comparisons of these and other approaches can be found in [116, 7].

Fusier et al. have applied background subtraction for video scene understanding in [46].
They adopt a colour mean and variance approach using a Gaussian distribution to model
the colour of each background pixel. To improve performance they also add components
to detect shadows and highlights by separating the brightness and chromaticity compo-
nents of the background image [60].

Temporal Differencing

In some respects Temporal Differencing is similar to Background Subtraction in that it
performs a pixel-by-pixel comparison between multiple frames. A threshold can then be
defined to identify substantial image changes. However, unlike Background Subtraction
this comparison is performed between two or three consecutive frames, rather than using
a background (reference) frame.

Because consecutive frames are used, Temporal Differencing is very robust in dynamic
scenes (e.g. lighting changes), however, it is frequently observed to do a poor job at ex-
tracting all relevant pixels in a moving object [64]. This leaves ‘holes’ within foreground
images, although a number of morphological operations can be performed to assist in
such matters. Furthermore, Lipton et al. comment that the approach fails when objects
become occluded or cease their movement [86]. They use Temporal Differencing for
tracking humans and vehicles from video.

Optical Flow Analysis

Optical flow analysis uses image intensity to identify moving image regions. Suppose that
I(x,y, t) is a spatio-temporal intensity function. During the interval dt it can be assumed
that the neighbourhood of (x,y) is translated a small distance (dx,dy) and thus I(x,y, t)≈

33

I(x+dx,y+dy, t +dt). However, the approach relies on a number of conditions [14]:

1. Objects have constant illumination

2. Objects have lambertion surface reflectance (isotropic luminance)

3. Pure translation parallel to the image plane

Because these conditions are rarely true in real-world scenarios they are relaxed such that
it is assumed that they hold locally. The validity of this assumption thus effects the ac-
curacy with which optical flow analysis estimates image motion. Furthermore, a number
of issues further effect accurate motion estimation including transparency and occlusion,
for which the scene must be segmented into regions corresponding to the independently
moving objects.

Although there are a large number of optical flow algorithms (see [14] for a summary of
several variations), their computational complexity and sensitivity to noise mean that they
are rarely employed for real-time applications [72, 64].

2.2.2 Object Classification

Having identified the moving foreground pixels object classification is often performed
on the connected pixels (commonly referred to as ‘blobs’). Object classification allows
irrelevant blobs to be discarded, for instance those caused by dynamic scene elements
such as moving trees or lighting changes. Furthermore, object identification also allows
relevant motion models to be engaged during object tracking.

The most popular techniques for object classification from surveillance video can be
broadly divided into two categories:

Shape based

Geometric properties such as size and shape often provide important cues about an ob-
ject’s type and are frequently used to distinguish between humans, vehicles, luggage and
clutter. For instance, lighting changes often create groups of small, sporadic blobs, which,

34

when combined with other cues (e.g. motion) allow for their elimination from the track-
ing process. Combining geometric information with a priori statistics is often one of the
best ways to identify object class [25]. For instance, by combining ellipsoid detection the
average height/width of humans has been shown to be very effective for detecting people
[16]. Similar approaches have also been applied to detect common luggage items [91].

Motion based:

Object motion can also be used to identify object type, with gait detection having been
proposed as a method for identifying particular people [126, 81]. Motion is also an impor-
tant attribute in identifying static objects, but it is more frequently used to identify types
of object motion rather than the object itself. For instance, distinguishing between people
walking and running, or performing different gestures [47].

2.2.3 Object Tracking

Having identified the objects of interest tracking is often employed to estimate the trajec-
tory of each object over a set of frames. Although target tracking is a problem encountered
in many domains it still remains challenging, with noise, occlusions, multiple targets and
abrupt changes in motion all causing particular difficulties.

The wide application potential of tracking research means that related work can be as-
sociated with different types of data (e.g. radar, sonar, video). To focus the discussion
this section will primarily review video based tracking, but it is important to acknowl-
edge that these techniques can often be applied to other types of data. Although Hu et

al. identify four general categories for visual tracking approaches (region-based, contour-
based, feature-based and model-based [64]), in many cases categorises can be combined
to harness more robust approaches.

Region Based

Region-based algorithms are often integrated with background subtraction techniques, al-
though this is not necessarily a pre-requisite if the approximate location of the object is
already known. Using a bounding box to encapsulate each object, variations of the image

35

region can be tracked. For instance, the Adaptive Mean-Shift algorithm [137] uses the
colour histogram of an object to match regions between frames. An object histogram is
constructed by counting the number of occurrences of each pixel colour, and the inter-
section between one object histogram and an image histogram can be combined with a
threshold to determine when a match is found. To account for changes in scale the his-
togram can be normalised by the image size, and lighting changes can be accommodated
by slowly adjusting the object histogram according to a learning parameter [138].

Although earlier region-based approaches were unable to accommodate object occlusion,
more recent work has progressed in this area. McKenna et al. use region histograms
for tracking groups of people [96]. At each frame background subtraction is performed
and a new region tracker is initialised for each novel region. People can be tracked using
individual regions or collections of regions in close proximity which helps to overcome
segmentation errors. To accommodate occlusion bounding boxes that overlap are said
to have formed a group. When this happens updating the individual colour models (his-
tograms) is suspended. The most likely group member associated with each pixel can be
determined from the collection of group histograms, and group bifurcation can also be
addressed when groups split by determining the most likely histogram(s) for each com-
ponent.

One of the key limitations of region based approaches is that they cannot be used to re-
cover the position or orientation (pose) of the object. However, in many cases the position
of the object can be approximated in sparse scene by using the centre of the bounding
box’s lower element.

Active Contour Based

In active contour-based tracking the object boundary is used instead of object region.
Contours are a more efficient representation than regions and also encapsulate the object’s
shape, making them a more detailed descriptor. In active contour based tracking curves
are evolved under the influence of external potentials using active contour models such as
Snakes [67], Balloons [29] and Geodesic active contours [114]. However, because these
models rely upon accurate initialisation of the contour, automatically initiated tracking is
challenging. Indeed, [30] suggests that this is the most difficult problem to solve.

A further limitation with contour based approaches is that they can only track objects
through partial occlusion [64]. For instance, Yilmaz et al. combine active contours with

36

feature tracking (e.g. colour, texture) to predict the contours hidden by occlusions [146].
However, only partial occlusions are considered, and there is little discussion of full oc-
clusion in any of the literature.

Feature Based

In feature-based tracking elements of the object are extracted and clustered to identify
higher-level features. These features are matched between frames and can consist of
global, local and dependence-graph based features. The advantage of this approach is
that even during partial occlusion, it is likely that some of the features will remain visible.
Furthermore, many features are robust to changes in lighting.

Global features relate to the entire object and include centroid, perimeter and area. Polana
and Nelson demonstrate using the centroid of objects in [122] and can show that tracking
can be performed during full occlusion by using the objects motion information (velocity)
from the previous K frames.

Local features often take the form of lines, curves or corners. Coifman et al. use corner
features to track vehicles in [30], and more recent work by Yen-Lin et al. also tracks
vehicles, this time using individual headlights as features [28].

Dependency-graph features consist of geometric relations and distances, but are relatively
rare in the literature. Fan et al. employ surface descriptors in [43] using features based on
surface discontinuity (jump boundaries) and surface orientation discontinuities (creases).
However, one of the drawbacks of matching dependency-graph features is that they re-
quire time consuming search and matching algorithms which inhibits real-time perfor-
mance [64].

Model Based

Model-based tracking is the final approach to be discussed. Although model-based track-
ing can be applied to any number of ‘objects’, this discussion will be constrained to
human-model tracking with the understanding that the same ideas can also be applied
to other types of object. There are several elements to human model-based tracking: the
body model, the motion model, and search and prediction strategies.

37

The body model can be of varying complexity, where more complex modelling generally
delivers better tracking at the expense of longer computation [64]. In general models
segment the body into individual limbs and a torso, to which individual motion models
are then attached. Because limb movement is strongly constrained motion models tend
to work well. Sukthankar et al. present an example motion model in their work on
learning human motion models for different activities [133]. Once a motion model has
been derived it can be used to predict object pose given the object’s current state using
sampling. As the next image frame arrives the proposed models can be projected into
the image plane and the similarity between the predicted and observed motion can be
determined using an evaluation function.

The key limitation with model based tracking is that the models must be derived before
tracking can begin. Furthermore, their computational complexity has implications for
real-time processing, especially when multiple objects must be tracked concurrently in a
complicated scene.

2.3 Trajectory Models

Trajectory based behaviour models have been particularly popular with vision researchers.
Wang et al. use Optical Flow Analysis to detect abnormal traffic behaviours in [143]. Af-
ter detecting moving pixels they quantize them using a codebook based on pixel position
(10× 10 cell) and direction of motion. The video sequence is then segmented into ten
second clips which gives sets of spatio-temporal features, and can then be clustered using
techniques based on Latent Dirichlet Allocation [21]. In this context the video clips rep-
resent documents, and the moving pixels represent words. Each video clip is modelled
as a mixture of K topics, where each topic is a distribution over the dictionary of words
(moving pixels).

Using this approach Wang et al. show that the ‘normal’ motion trajectories within a traffic
scene can be detected, including correlated trajectories. For example, they show that
topics associated with traffic, and those associated with pedestrians crossing the road are
correlated such that they rarely occur together. This gives rise to the activity ‘pedestrians
cross the road when there is not much traffic’. Wang et al. can also detect abnormal
behaviours in videos, indicated by uncommon topics occurring (e.g. traffic driving the
wrong-way up a one-way street).

Aside from the fact that Wang et al. have focused on detecting abnormal behaviour, a key

38

difference from this research is that they have focused solely on motion trajectories. Their
approach has no concept of scene semantics and this limits recognition to behaviours
exhibiting distinct motion trajectories. Because of this fact it is the author’s opinion that
their approach is better suited to well constrained environments where motion is limited
by strict constraints.

Antonakaki et al. also considered motion based analysis, focusing on short term motion
anomalies (e.g. abrupt changes in motion) and long-term trajectory anomalies [8]. Using
background subtraction they extract the location of moving people and construct a set of
local features. These include object centroid, width, height, mean speed and histogram.
Using these feature vectors a Hidden Markov Model can be trained to model ‘normal’
trajectories’, from which abnormal behaviours can then be identified by their low proba-
bility.

To model the short-term behaviours they train a one-class Support Vector Machine (SVM).
SVMs construct a hypersphere around a set of training points in multi-dimensional fea-
ture space [92]. Training the approach with a set of ‘normal’ motions allows the classifier
to identify abnormal motion for each frame of video. Taken into context with the previous
24 frames of video, the SVM-based classifier uses the percentage of ‘abnormal’ frames
to detect anomalous motion.

For visual surveillance there are a number of limitations with this approach. With regards
to motion based abnormality there are many instances when abrupt changes in motion can
occur. This is particularly true in public transport hubs, where somebody may suddenly
run or stop running (for example to catch a train). As with Wang’s approach, trajectory
based recognition and anomalies are best suited to very constrained environments, and
are not suitable for detecting complex human behaviour in most domains.

To introduce one final trajectory based technique, Dee and Hogg used a cost based ap-
proach in [34]. They combine a set of goal locations with knowledge about the scene.
For instance, in a car-park scenario an agent may wish to get from their car to an exit.
The exit is therefore considered a goal. They assume that agents perform goal-directed
behaviour and that trajectories are formed from piecewise linear components. Crucially,
a state transition model is associated with the goals that are consistent with an agent’s
trajectory, with a cost with each goal transition. As a result, paths with fewer transitions
will have lower cost than those with more transitions, from which a pseudo likelihood can
be computed.

Cost based approaches are rare in the literature and this approach proposes some novel

39

behaviour recognition techniques. One can see that in constrained environments where
the number of ‘normal’ behaviours is limited it may be unnecessary to reason about be-
haviour at a semantic level, although the limitations of trajectory based recognition still
stand. That said, similar ideas could be applied to non-trajectory based applications by in-
terjecting semantically meaningful goals. As before, a cost could be associated with goal
transitions and this could prove an interesting technique. In this respect the approach is
somewhat similar to bag-of-features inference, which penalises unexpected observations
via a low probability.

Summary

To summarise, it is often argued that interesting behaviours rarely occur in surveillance
video, while there is a wealth of un-anotated video containing ‘normal’ behaviour. Mod-
elling this behaviour allows the ‘normality’ of a novel video to be assessed and identifies
interesting behaviour by its lack of representation in the training data. Several authors
have proposed approaches based on agent trajectory and are particularly well suited to
constrained environments in which normal trajectories are limited (e.g. traffic domains).
However, there are a limited number of behaviours that can be modelled by trajectories,
alone and this is a major limitation of these approaches.

2.4 Semantic Models

One approach for modelling complex behaviours is to define the semantic relationships
between the components. These relationships may be in the form of temporal and spatial
constraints, or compositional rules. Because of the complexity of these rules they are
normally specified by an expert rather than extracted through model learning. However,
semantic models are largely deterministic and treat states are facts (e.g. [49, 52, 78, 69,
68]), or at the very least assume that they are detected with a high degree of accuracy
(e.g. [46, 124]). Furthermore, the mechanisms for dealing with observation uncertainty
are not traditionally available [75]. There are generally three types of semantic model:
Logic Models, Grammars, and Constraint Satisfaction.

40

Go

Hiking
Cash

Cheque
Rob

Bank
Hunt

End

Go To

Woods

Get

Gun
Go To

Bank

S1S2 S1 S2 S1S1

Figure 2.8: A Goal Consistency Graph in which observations (rectangles) can be ex-
plained by different goals. Inconsistent goals are removed from the graph allowing pred-
icates to be formed. Link labels (e.g. S1) indicate action order.

2.4.1 Logic Models

Logic models represent some of the earliest methods of recognising human behaviour
(e.g. [68, 69, 78]). Kautz presented one such approach, proposing that behaviour could
be explained by constructing a plan library from first-order axioms [69]. A plan library
is a set of goal taxonomies: hierarchical decompositions of abstract goals into sub-goals
and actions. For example, Figure 2.8 illustrates a hierarchy with four possible plans and
three possible actions, where link labels (e.g. S1) indicate the action order. A Get Gun

observation is consistent (can be explained) by the predicate Hunt ∨ Rob Bank. The Rob

Bank goal becomes inconsistent upon further observing Go To Woods, which makes Hunt

the only consistent goal.

One of the major limitations of this approach is that it is unable to deal with observation
and goal uncertainty. If the observations can be explained by the predicate Hunt ∨ Rob

Bank, one would expect the Hunt goal to be more likely given prior knowledge, yet this
approach has no mechanism of using or communicating probability. Furthermore, there
is an assumption that all actions are purposeful, which has implications for noisy sensors
generating false-detections and uncollaborative agents (e.g. deliberate deception).

More advanced logic-based approaches have also been proposed, including a represen-
tation based upon Probabilistic Horn Abduction (PHA) [117] by Goldman et al. [120].
PHA uses prolog-like rules specified via propositions that allow hypotheses to be made.
Each hypothesis can have an associated prior probability, and thus more likely explana-
tions can be chosen over less likely ones and some reasoning about uncertainty can take
place. However, the approach is still restricted by an inability to handle observational
uncertainty.

41

2.4.2 Constraint Satisfaction

Constraint satisfaction is closely related to logic models in that they too use predicates to
specify behaviours. These predicates model behaviour using rules (e.g. geometric rela-
tions, ordering), which overlap with the way in which humans describe complex events
[75]. Constraint satisfaction has been particularly popular for recognising high-level be-
haviour from video, with [53, 46, 106, 58] all adopting constraint based approaches.

For example, Fusier et al. use surveillance of aircraft arrival procedures in [46]. They
segment the foreground and background components using background subtraction and
track objects using feature based tracking before classifying objects as people, ground
vehicles, aircraft or equipment. To model behaviours they introduce VERL (Video Event
Description Language), which specifies spatio-temporal rules that take advantage of a pri-
ori knowledge about the scene. For example, a priori knowledge might include geometric
zones of interest such as loading areas, exit points or entrances.

They also define several types of primitive and composite states. A primitive state is a
directly observable phenomena (e.g. vehicle in zone), while a composite state involves
two or more concurrent primitives (e.g. vehicle located and stopped inside a zone). They
also define primitive events (e.g. vehicle leaves zone) and composite events (e.g. stopped
vehicle in zone then leaves). In many respects these events are similar in definition to the
primitive and complex features used in this thesis.

Using VERL to reference these events and states Fusier et al. specify spatio-temporal
rules using constraints such as during and before, as shown in Figure 2.9. This exam-
ple involves a vehicle and a person entering and stopping in specific zones. Although
they report that several complex behaviours could be recognised, including multi-agent
behaviour, one of the major limitations of this work is the amount of prior knowledge
used. For instance, the extensive use of ‘zones’ helps simplify the problem by eliminating
potential explanations. In many domains, and especially a more generalised surveillance
problem, one cannot segment the environment so distinctly. Furthermore, in a busier
scene visual occlusion is more likely, increasingly the likelihood of ‘missed’ observa-
tions. Under such conditions constraints may remain unsatisfied, and no detection can be
made.

Scene segmentation has also been used by Robertson and Reid in [106]. They segment
each environment into logical zones, as illustrated in Figure 2.10 in which four zones have
been defined. However, unlike Fusier et al., they use motion information (e.g. location,

42

Figure 2.9: Defining the ‘Aircraft_Arrival_Preparation’ behaviour in the Video Event De-
scription Language, taken from [46].

1
2

3

4

1) Far-side Pavement

2) Road

3) Nearside Pavement

4) Driveway

Scene Zones

Figure 2.10: The scene is segmented into four zones to assist inference (taken from [106])

velocity) to train a set of Hidden Markov Models to recognise low-level behaviours such
as running and walking, and simple events such as ‘person crossed the road’.

Robertson and Reid detect complex behaviour using sets of rules, events and states. States

represent facts about the scene, such as people being ‘together’ or ‘not together’, and
are themselves detected via simple rules such as proximity. On the other hand, events

represent activities such as walking. To illustrate their use in a high-level rule consider
the behaviour definition below:

43

Behaviour: Agent crosses road to meet other agent
Event: (move-to-road, t1)
Event: (move-to-pavement, t2)
Constraint: t1 before t2
Fact: Location(t1)
Fact: Location(t2)
Constraint: Location(t1) 6= Location(t2)
Event: (meeting, t4)
Constraint: t3 before t4

This behaviour can be summarised as:

“IF the event ‘move-to-road’ is followed by event ‘move-to-pavement’
AND the current location is not the same as the location triggering the first
event (i.e., the road is crossed) AND, subsequently, a meeting takes place
THEN the explanation is that, ‘the agent crossed the road to meet the other
agent’. ”[106]

Although Robertson and Reid use Hidden Markov Models to probabilistically recognise
low-level activities their high-level behaviour rules do not reason about uncertainty. As
with other semantic models this means that they cannot communicate behaviour likeli-
hood or reason about the uncertainty of lower-level detections.

2.4.3 Grammars

Several authors have identified links between natural language processing (NLP) and
behaviour recognition, with Geib and Steedman presenting a strong case for the closer
integration of NLP and behaviour recognition research [52]. They explicitly map the
behaviour recognition problem into the NLP domain by stating that both domains are
concerned with inferring the underlying meaning for a sequence of tokens, and suggest
that results from NLP could inform behaviour recognition work. In the NLP domain these
tokens often arrive in the form of letters and words and are often received via audio obser-
vations, but are essentially the same as ‘activity’ tokens observed via some other means.
By considering grammar rules as goal rules a range of NLP inference algorithms can be
adapted to infer behaviours.

44

Within this area of behaviour recognition a number of different models have been pro-
posed including the probabilistic context free grammar (PCFG). A PCFG consists of a
number of expansion rules with associated probabilities. For example, in the simpli-
fied traffic model presented by Pynadath [118] there are two expansions of the ‘pass’
behaviour:

Pass→Left Right (0.9)

Pass→Right Left (0.1)

The rules tell us that when a driver passes another vehicle this is most likely accomplished
(P = 0.9) by moving into the left lane and then back into the right (US traffic regulations),
while there is a smaller probability of them moving into the right lane and then back to
the left (P = 0.1). However, some concepts do not translate into the PCFG representation,
such as the idea of agent/world state. For example, an agent may be less likely to over take
when they are approaching their exit. World/agent states often influence agent actions but
cannot be incorporated into PCFG based approaches.

More sophisticated models such as Probabilistic State Dependent Grammars (PSDG) do
allow for state depended rules [119]. Fundamentally the approach is very similar to
PCFGs, with the key difference being that expansion probabilities are now depended upon
state information. For instance, the expansion Drive→ Exit represents a transition from
normal driving to exiting a highway, and would have a higher probability when it is sensed
that the agent is nearing their exit.

However, Nguyen et al. highlighted that most grammar research has focused on high-level
inference, and has not addressed the issue of noisy observations from low-level sensors
[107].

Conclusion

Logic models, constraint satisfaction and probabilistic grammars have all been proposed
for semantically recognising complex behaviour. Logic models were considered in some
of the earliest research and often used consistency graphs to identify the minimum number
of goals required to explain observations. Some models incorporated behaviour priors to

45

facilitate uncertainty reasoning, but logic models as a whole have been replaced by more
powerful techniques such as probabilistic grammars. The Probabilistic State Dependent
Grammar has been a popular choice in this area and can use agent state information to
alter token expansion probabilities at run-time. Although grammar based approaches are
more powerful than their logic-based predecessors they share a common limitation: an
inability to reason about observation uncertainty. In other words they treat observations
as facts, which is not ideal for recognising complex behaviour from sensor based en-
vironments. Indeed, both of these techniques have been more commonly employed by
researches engaged in theoretical work without noisy observations.

In contrast, those researching video understanding often use constraint satisfaction to
identify behaviour. This too treats observations as facts, but probabilistic video process-
ing techniques are often employed to consider some level of observational uncertainty. In
this way behaviour inference is only performed upon observations with high probability.
Grammar and logic approaches could also be applied in a similar way and with further
research this may prove to be effective, although no direct comparisons of grammar/logic-
based models and constraint satisfaction exist. Furthermore, constraint based approaches
rely upon all activity being observed, so cannot directly reason about partial behaviours.
Lastly, constraint and logic based-approaches cannot compare the likelihoods of compet-
ing hypotheses, nor communicate the certainty of detections.

2.5 State Models

State models provide an alternative set of approaches for behaviour recognition and use
semantic knowledge to capture the state of a system in space and time [75]. Within a
behaviour recognition context these models generally include structural information such
as the relationships between different behavioural components, and are often combined
with abstraction schemes. In most circumstances human intuition is relied upon to provide
this structural information, while model parameters are often learnt from training data.
This allows state models to recognise more complex behaviour than trajectory models.
Furthermore, state models have made extensive use of Bayesian techniques to reason
about uncertainty, and in doing so have overcome many of the limitations of semantic
models. In this section several state-based approaches will be introduced.

46

2.5.1 Hidden Markov Models

Oliver et al. introduced the Layered Hidden Markov Model (LHMM) for inferring office
behaviours from video, audio and computer observations (e.g. mouse movement) [112].
Using the LHMM as a fusion mechanism they successfully recognise six scenarios in-
cluded a person giving a presentation and face-to-face conversation. The LHMM is a
hierarchical (2-layer) extension of the standard Hidden Markov Model and is illustrated
in Figure 2.11 (taken from [112]).

Focusing initially on the video observations, a feature vector is constructed for each frame
and includes the density of skin tones, motion, faces detected and foreground components.
From these feature vectors a bank of HMMs categorises the scene as containing zero, one,
or many persons present. This categorisation then forms one component of the feature
vector at the second layer of HMMs.

Audio signals are processed in a similar way, constructing a feature vector and using a
second bank of HMMs to identify types of audio. The audio categorisation becomes the
next component of the second layer feature vector, which is completed using information
about computer activity (mouse movement). Having fully constructed the second layer
feature vector a third bank of HMMs is queried to identify the most likely meeting room
activity. This can be seen in Figure 2.11.

One of the benefits of this hierarchical model is that data from different sensors can be
fused to facilitate high-level inference. For instance, video-based observations are pro-
cessed independently from audio-based observations before their ‘joint’ meaning is con-
sidered. This means that, in theory, any number of different sensing techniques could be
employed to detect low-level behavioural attributes. Furthermore, segmenting the state-
space in this way significantly reduces the HMM state spaces, simplifying the training
process.

However, hierarchical models bring another potential benefit: behaviour decomposition.
Although not entirely explored by Oliver et al., Blaylock and Allen go further using their
Cascaded Hidden Markov Model [19]. This is structurally very similar to the Oliver’s
LHMM, but rather than fusing observations from different sensors they focus on the de-
composition of complex behaviour into simpler components (sub-goals/actions). This is
shown in Figure 2.12.

To model a decomposition of depth D a set of D stacked banks of HMMs are used where

47

Figure 2.11: The multi-modal SEER architecture from [112]

} Actions

} Sub-goals

} Goal

Figure 2.12: Blaylock and Allen decompose high-level behaviour into lower-level sub-
goals and actions.

48

Q1 Q2 Q3 Q4

O1 O2 O3 O4

Level D-1

Level D

1

P

Q1 Q2 Q3 Q4

O1 O2 O3 O4

1

N

Q1 Q2 Q3 Q4

O1 O2 O3 O4

Level 1

1

P

Figure 2.13: A Cascading Hidden Markov Model

the most likely HMM from each bank emits a state observation to the bank above. These
state emissions correspond to hidden states in the HMM above it. Recognition com-
mences at the bottom of the stack with the observed agent actions forming input. Thus, at
each time step there is a chain of hidden state variables connecting the observed input (at
level D) to the highest-level of abstraction (level 1). This is illustrated in Figure 2.13.

Blaylock and Allen train each level of their model individually, using synthesised data
[105] from the Monroe corpus [20]. This corpus is an emergency response planning
domain with goals such as ‘clear road hazard’. They demonstrate that in a model of
depth 8 performance varies at different levels of the model, although they state that this is
primarily related to the complexity of the state-space at each level. However, one of the
limitations of their work is that the nature of their observations is unclear, especially with
regards to noise. Because they use synthesised data to both train and test their model one
cannot be certain how the model would perform in a noisy, real-world application.

Although powerful, one of the limitations of HMMs is that their latent variables consist
of only one node. However, there are occasions when the agent’s state can be more

49

appropriately modelled using several latent variables. For these applications Dynamic
Bayesian Networks (DBN) have been used. The reader may recall from Section 2.1 that
HMMs are in fact the simplest form of DBN, and thus it is not surprising that a more
complex DBN is often required to model complex behaviour.

2.5.2 Dynamic Bayesian Networks

There are several examples of behaviour recognition models based on DBNs, including
some that are ambiguously named such as the Abstract Hidden Markov Model (to be
discussed shortly) [24]. However, in surveying the literature one can also note that most
of these approaches are implemented using Sequential Monte Carlo sampling (particle
filtering). One of the reasons for this is that by increasing the complexity of the models
the run-time performance is reduced. This hinders real-time inference. By using particle
filter approximation only a subset of the state space is explored and real-time performance
can be recovered.

Furthermore, particle filtering is a recursive formalism, updating probability estimates as
new observations arrive. This approach naturally lends itself to on-line inference, allow-
ing predictions to be made and refined at each observation. In contrast, Hidden Markov
Models consider a window of observations so are less efficient for on-line inference.

Although there are various examples of particle filtering in the literature the work of
Bui and Venkatesh [24] is very relevant to this research. Bui and Venkatesh presented
the first successful application of particle filtering to behaviour recognition and used a
Rao-Blackwellised Particle Filter [38]. Their work considered agent behaviours within
an indoor environment of corridors and rooms. Each location in the environment was
segmented into seven regions to provide a discrete state-space of agent locations as shown
in Figure 2.14. In the figure one can see that the agent enters the corridor (region 1) from
the right and moves to the linux server (region 3) in the Vision Lab (region 5). The agent
then moves to the printer (region 4) before returning to the server. After exiting the room
they briefly enter Office 2 (region 7) before leaving the scene from the left end of the
corridor. At the modelling level they consider behaviour at the three levels of abstraction
shown in Figure 2.15.

In addition to decomposing behaviours into sub-behaviours they also make the assump-
tion that the current behaviour is only dependent on the agent’s current state. That is, when
an agent enters the Vision Lab only Vision Lab behaviours needs to be considered, and

50

Figure 2.14: The environment and the trajectory of a person, taken from [24]

The Environment
2 Behaviours

Corridor & Offices
3 Behaviours

Vision Lab
1 Behaviour

Linux Region
2 Behaviours

Printer Region
2 Behaviours

Empty Space
4 Behaviours

NT Region
2 Behaviours

Office 2
2 Behaviours

Office 1
2 Behaviours

Corridor
5 Behaviours

Top Level

Middle Level

Bottom Level

Figure 2.15: The region and behaviour hierarchy from [24]

51

the next Middle Level state does not change until the bottom level (Vision Lab) behaviour
terminates. Furthermore, behaviour termination is easy to detect because they are region
dependent, and thus a Vision Lab behaviour terminates when the agent transitions from
the lab to the corridor. To model behaviour they use a hierarchy of states to represent the
active behaviour at each behaviour level, where each particle in their filter is instantiated
with a behaviour hierarchy.

Assume that each particle is initialised with a random active behaviour status. At each
time-step each particle predicts the agent’s next region using a trained trajectory model
corresponding to the current bottom level behaviour. Each particle is then weighted ac-
cording to the probability of the observation given the current state (P(yt |xt)). If a be-
haviour transitions to a termination state the behaviour at the level above (middle or top)
is allowed to transition, selecting a new sub-behaviour for the level below.

In their results Bui and Venkatesh show that the behaviour being observed has a higher
probability than all other behaviours, although they do not consider the problem of actu-
ally classifying behaviour. Nevertheless, their approach provides encouraging support for
the use of particle filtering to perform approximate inference on DBNs. Indeed, this work
is frequently cited as inspiration for other particle filter wrapped DBNs, including work
by Nguyen et al. in which two model variations are presented and evaluated on similar,
region based problems [108, 107].

One of the contributions of Bui and Venkatesh is that of identifying an effective mecha-
nism for approximate DBN behaviour recognition. Indeed, their underlying DBN has not
been reused, but Rao-Blackwellised particle filtering has become increasingly popular as
a mechanism for behaviour recognition. A further example can be found in [83] in which
transportation routines are inferred from GPS coordinates by Liao et al. Their underly-
ing DBN consists of eight latent variables to indicate (amongst other things) the person’s
speed and velocity, mode of transport (e.g. bus, car) and trip segment (e.g. road), and is
shown in Figure 2.16.

Starting at the top of the model, the novelty variable indicates whether ‘normal’ behaviour
is being performed. When true, all other variables follow transitions learnt from historical
data, but when set to false, random transitions occur. The gk variable is used to indicate
the goal location of the agent (e.g. home, work), while tk indicates the trip segment
(comprised of a start location, end location and mode of transport). The trip segment
influences the route an agent takes, for example, by restricting movement to the bus route.
Variable mk indicates the current mode of transport and influences the agent’s velocity
and location. Finally, the ‘switching’ nodes are used to indicate when a change of mode

52

Figure 2.16: DBN representing a person’s outdoor movements during everyday activity.
The upper level is used for novelty detection, and the middle layer estimates the user’s
goal and the trip segments he or she is taking to get there. The lowest layer represents
the user’s mode of transportation, speed, and location. Two time slices, k and k − 1, are
shown. (Taken from [83]).

53

will occur shortly, for example when waiting for a bus to arrive.

It is not important for the reader to fully understand Liao’s model (see [83] for a com-
prehensive introduction), but it is important to highlight that each particle in their particle
filter encapsulates this DBN. This is quite unlike traditional particle filter applications,
which are often used for person tracking applications and employ some combination of
continuous distributions. In contrast, Liao, Bui and Nguyen have all made use of discrete
variables in their filters allowing particles to represent very complex states.

2.5.3 Summary

This section has introduced several state models that are particularly relevant to this re-
search. The Layered Hidden Markov Model (LHMM) and Cascaded Hidden Markov
Model (CHMM) both use banks of HMMs in a hierarchical structure. In the LHMM
the two levels allowed different types of data to be fused, processing audio, video and
computer information separately before combining simple activity classifications to form
a higher-level feature vector. This vector was then provided as input to the upper bank
of HMMs from which complex behaviour was detected. The CHMM is structurally very
similar but has been applied to recognise behaviours at different levels of abstraction. At
each time-step the lowest bank of HMMs receives an observation, and the model with the
highest probability of having generated the observation sequence emits a state. This state
is then cascaded into the next bank of HMMs one level up, a process that repeats until a
top-level goal classification is made.

These two models both extend the standard Hidden Markov Model; a type of Dynamic
Bayesian Network. The distinguishing feature between HMMs and DBNs is that a HMM
only has one hidden variable, while DBNs can have many. The increased modelling
complexity of DBNs is one of the driving factors that has led to some researchers adopting
DBN-based approaches instead of HMMs.

Although particle filtering is more traditionally applied to tracking problems, Bui and
Venkatesh showed that it can also be used to perform efficient inference on complex
DBNs, especially when combined with Rao-Blackwellisation. Researches inspired by
their approach have derived models for several different applications, and have often been
demonstrated on noisy, real-world data. Unlike semantic models particle filter wrapped
DBNs can reason about observational uncertainty, and their improved modelling power
means they can recognise more complex behaviours than, for example, simple trajecto-

54

ries.

However, in all cases these models have been trained using corpora, preventing their direct
application to data-scarce domains. Furthermore, the underlying DBNs have not been ap-
plication dependent and this has limited the generality of prior research. Removing these
limitations has become a key goal of this research and distinguishes our work. Further-
more, inspiration is drawn from the LHMM and CHMM by replacing the banks of HMMs
with particle filters. In this way abstraction can be achieved, simplifying the behaviour
modelling process.

2.6 Feature Models

Given that our approach is based on the idea of feature-based recognition a review of
the literature would not be complete without some discussion of similarly inspired work.
Object detection is one area in particular where feature-based approaches are abundant,
and is concerned with learning and detecting the presence of objects in static images and
video. Identifying a robust modelling approach is a key challenge in this domain, as
objects may undergo operations such as rotation, translation and scaling. This challenge
has led to the development of a number of different techniques for identifying invariant
object features. For instance, it is not uncommon to transform an object image into the
frequency or scale domains [88, 90], where invariant salient features can be more readily
identified.

Feature based methods are also popular in text-document classification, and several be-
haviour recognition approaches have built upon probabilistic Latent Semantic Analysis
(pLSA) [59] and Latent Dirichlet Allocation [21]. A key similarity with our own work
is that these approaches adopt a bag-of-words assumption: that is, the order of words in
a document can be neglected. Our approach is similarly defined; the exact order of be-
havioural components can be neglected in the representation, and loosely imposed during
recognition.

Niebles et al. build upon Latent Dirichlet Allocation to achieve behaviour recognition, but
focus on recognising low-level behaviours [109]. Their features are based on the spatio-
temporal properties of small moving regions, and they show recognition of repetitive
behaviours such as hand clapping and waving. However, they also acknowledge that
their features have no semantic meaning, and the lack of temporal information prevents
their approach from recognising more complex, non-repetitive behaviour. In fact, this

55

is one of the key distinctions between their approach and ours: we only ignore temporal
information at the modelling stage. Core to our approach is the idea of combining features
with behaviour evolution to re-impose a weak ordering at the recognition stage. This
ensures that as a behaviour evolves, the features observed match those that are expected.

Xiang and Gong used clustering techniques and unsupervised learning to identify both
normal and abnormal behaviours in [145]. During the training phase they segment video
sequences into sets of frames representing low-level behaviours. This segmentation can
be performed in several ways, for example, using fixed temporal windows or using ‘non-
activity’ regions (frames with little movement) as boundaries. Once segmented, object
detection and tracking is performed and a discrete 7-dimensional feature vector (including
centroid, dimensions and motion) is associated with each foreground object. Clustering
is then used with automatic model order selection [127] to identify distinct low-level
behaviours.

During the recognition stage frames are categorised as normal or abnormal by calculating
an anomaly measure. This is based on the likelihood of each cluster having generated the
observed frame. Using a threshold approach (e.g. 80% of frames in 10 second window
are normal), normal sequences can be classified using the known behaviour clusters while
abnormal sequences are flagged.

This work is interesting because it has gone some way towards removing the need for
annotated training data, but suffers two key limitations: 1) inference cannot be explained
to operators, and 2) the validation is constrained to low-level behaviours involving few
agents. In fact, their validation is performed on aircraft arrival video (also used by [46]),
but the behaviours recognised include ‘aircraft arrives’, and ‘air-bridge connects’. The
complexity of these behaviours is very limited and involves few agents, and it is unclear
how well the approach would perform in more complex environments. This is espe-
cially true for more typical surveillance scenes involving multiple interacting and non-
interacting agents. In this respect it is unlikely that meaningful clusters could be learnt
using this non-semantic approach.

Boiman and Irani propose abnormal behaviour detection using image re-composition in
[22]. They pose the problem as a puzzle in which one tries to compose newly observed
video using data extracted from previous video examples (a database). Regions of data
that match larger contiguous chunks from the database are considered more normal, while
regions that are more difficult to re-construct have a higher likelihood of abnormality. This
process of re-composition is illustrated in Figure 2.17, in which a newly observed image
(a) can be recomposed (b) using three images from the database (c).

56

a) New image: b) Inferring image from database

c) 3 images from the database support the new image

Figure 2.17: The basic concept of image composition taken from [22]. A region in the
new image is considered likely if it has a large enough contiguous region of support in the
database. New ‘normal’ images can thus be inferred from the database even when they
have not been previously observed.

To extend this process to the temporal domain, small local descriptors are extracted for
short sequences of video (4 frames), and given a new set of video frames the likelihood
of each pixel can be calculated. Boiman’s results are very impressive, but suffer a limita-
tion in that subtle abnormality cannot always be detected. For instance, assume that the
‘Watched Item’ behaviour from Chapter 1 was represented in the video database. Now
suppose that an agent enters the scene, places a luggage item next to an arbitrary person
and then exits the scene. It is likely that this agent’s behaviour could be matched to ex-
isting database sequences, yet the subtlety between this behaviour and ‘Watched Item’ is
that the agents are not associated (enter independently). In other words, these behaviours
are semantically different, but not very different visually. This is one of the primary limi-
tations of this approach, aside from an inability to recognise specific known behaviours.

Summary

Feature based recognition is common for object/document classification but has had lim-
ited application in behaviour recognition. One of the reasons for this is that it is difficult
to encapsulate the long-term temporal components of a behaviour into a feature. Without
this only very simple behaviours can be recognised, as demonstrated by Niebles et al. in
[109]. Xiang and Gong used high-dimensional feature vectors in their work and were able
to recognise slightly more complex behaviour, clustering feature vectors to automatically
identify simple behaviours [145]. However, these clusters had no semantic meaning, so

57

recognised behaviour could not be explained. A similar problem is suffered by Boiman
and Irani in [22], which again cannot semantically explain detections. Furthermore, their
approach focuses on anomaly detection only, so cannot identify individual instances of
known behaviour.

2.7 Multi-agent Models

In some cases recognising multi-agent behaviour is a relatively minor extension from the
single-agent scenario. This is particularly true when the number of agents is fixed and
behaviours involve all agents. Sukthankar and Sycara provide a good example of this
in their work recognising paired agent combat behaviours [134]. They experiment with
this problem in the context of a virtual reality training environment for military combat
officers, tracking agent movements to provide (x,y,) coordinates. Agent trajectories are
then extracted by segmenting coordinates into short, overlapping temporal windows, and
Hidden Markov Models are trained on pairs of agent trajectories. Like the HMM-based
approaches presented earlier, the most likely behaviour can be determined by comparing
the likelihoods of different model parameters having generated the observation sequences.
However, the key limitation of this work is that only simple behaviours can be recognised
from trajectories alone.

Zhang et al. have presented a non-trajectory based approach in [37]. They use a two-level
(cascaded/layered) HMM in which the upper bank detects group behaviour. In many
respects their approach is very similar to Oliver et al.’s Layered Hidden Markov Model
which was used to fuse audio and visual information. The key distinction is that Zhang
et al. explicitly model group behaviour at the upper level of their HMM using a state-
space comprised of solo and multi-agent features. For example, the features encapsulates
distance of agents from the projector. They recognise meeting-room behaviours including
‘white-board presentation with note-taking’, and as such has only been demonstrated with
behaviours of limited complexity. Furthermore, it is unclear whether their approach is
restricted to a fixed number of agents, which would further limit application.

In many environments the number of agents is unconstrained and the agents involved
in a behaviour can change. This presents a problem for the approaches above, which
assume that the agents involved in a behaviour are known. There is however an alternative
approach: to assume that all agents can be involved in a behaviour. If one assumes that
behavioural components can be performed by any agent then the problem becomes one
of identifying behaviour participants. In such cases other researchers have used domain

58

(agentGoal obj1
 (agent (obj1 (C)) ; Obj1 is always at the center (C)
 (goal obj1_act1 snapToQB (obj1))
 (goal obj2_act blockQBPass (obj1))
 (before obj1_act obj2_act))

Figure 2.18: A partial behaviour description of an American Football play from [65]. An
agent (obj1) ‘snaps’ to the other team’s Quarterback and block their pass. Because one of
the agents is explicitly defined the algorithm does not need to consider the actions of all
agents when trying to match this behaviour.

knowledge to assist in the recognition process.

For example, Intille and Bobick noted that in team sports individual players are often
assigned specific positions [65]. One can therefore refer to these positions (roles) in the
behaviour specification to limit the number of agents’ actions that need to be considered
when trying to match a behaviour. Intille and Bobick’s work considers the recognition of
American Football plays. Figure 2.18 shows a partial definition for the s51 play behaviour
and involves two agents. Note that one agent is explicitly defined as the opponents Quar-
terback. This helps reduce the search space and simplifies the inference process while
remaining more extensible than Sukthankar and Sycara’s approach. It is however limited
by the fact that it is a constraint based approach, so cannot reason about the likelihoods of
competing hypotheses.

Fusier et al. have used a similar approach in their work recognising aircraft arrival be-
haviours (introduced earlier) [46]. Like Intille and Bobick they use constraint satisfaction,
but distinguish between different agents by referring to agent types. Their aircraft arrival
behaviour (Figure 2.9 on page 43) defines the roles P1 (Person) and V1 (Vehicle), which
may be fulfilled by any entities of the appropriate types. As before, different hypotheses
can not be compared probabilistically, and a further limitation is that in a scene with many
entities, multiple agent-role matches might be obtained. While this is not necessarily a
problem, it does require a resolution strategy if all matches are not to be accepted. In a
constraint-based system developing such a strategy may be challenging, while comparing
relative probabilities would be simpler for probabilistic models.

To overcome the limitations of all of these approaches a combination is proposed. The use
of agent roles is important for specifying the types of agent that must fulfil behavioural
components, while probabilistic inference is important for comparing competing hypothe-
ses. This combined approach is one of the contributions of our work that distinguishes
our work from others.

59

Summary

Although many researchers have developed techniques for recognising agent behaviour,
fewer have considered multi-agent scenarios. As a result, this area of recognition has seen
less progress, and the development of fewer generic algorithms. The probabilistic ap-
proaches that have been proposed allow competing hypotheses to be compared, but have
been restricted to environments in which the agents involved are already known. How-
ever, this assumption cannot be made for many environments, including visual surveil-
lance. In contrast, several approaches have been based upon constraint satisfaction, and
in essence have assumed that all agents may be participants of a behaviour. In some cases
behavioural components have been restricted to agents fulfilling particular role properties
such as agent type and this helps to reduce the search space. However, because these
approaches are not probabilistic, competing hypotheses cannot be compared.

To overcome these limitations a combination is proposed in this research. It has been
identified that the use of agent roles is important for specifying the types of agent that must
fulfil behavioural components, while probabilistic inference is important for comparing
competing hypotheses. We thus present an approach that considers both of these aspects
by using combinatorial search to identify the most likely agents involved in multi-agent
behaviour. This approach is one of the key contributions of our work, and distinguishes it
from other work in the field.

2.8 Conclusions

Recognising real-world agent behaviour requires not only an ability to recognise be-
haviour patterns, but also requires signal processing and low-level inference techniques.
Consequently, this chapter has discussed a broad range of related work.

2.8.1 Video Processing

Processing videos of agents so that their behaviours can be identified is a challenging
signal processing task. At its most basic level it requires the identification of foreground
objects, object classification and tracking. To process complex scenes require an ability to
track agents as they become occluded by static objects and other agents, and even further

60

complexities are added by groups of agents.

Because of the vast area of this research this chapter has only provided a brief overview of
competing techniques. To perform foreground detection adaptive background subtraction
has proven to be one of the more robust approaches. For instance, in complex scenes
there may be multiple background objects (e.g. trees in front of buildings) which can be
modelled in a number of ways, yet competing techniques (e.g. Optical Flow, temporal
differencing) cannot accommodate multiple background objects. Furthermore, Optical
Flow relies upon objects moving, so cannot identify static foreground objects.

Once foreground objects are detected, object classification is particularly useful for filter-
ing clutter and removing uninteresting objects. For example, a sudden lighting change can
produce erroneous foreground objects, but the shape and sizes of these object are rarely
consistent with the objects of interest (e.g. person). Using geometric properties to clas-
sify objects has been demonstrated as a useful technique in removing such erroneously
detected objects and those that are not required.

Finally, object tracking must be performed on objects of interest. Again, object tracking
itself is an entire sub-field of research and this chapter has only provided a short overview
of the common techniques used in video processing work. Tracking object contours is
challenging because they require accurate instantiation, which is often hard to achieve
when automatically detecting objects. Furthermore, such objects can only be tracked
through partial occlusions, limiting their application in complex surveillance scenes. On
the other hand, object features such as centroid can be combined with a motion model
to track objects through occlusions, making the approach significantly more robust for
surveillance applications. That said, significant occlusions still present challenging con-
ditions, especially when tracking in 2D images.

2.8.2 Probabilistic Behaviour Recognition

At a fundamental level, Bayesian inference techniques allow us to perform probabilistic
reasoning on sets of variables and is at the heart of many more complex techniques (e.g.
Hidden Markov Models, Particle Filters). Variables can take different forms (e.g. binary,
sets), but the power of Bayesian inference is that it allows us to infer the conditional like-
lihood of a set of variables taking certain values given another set of observed variables.

When modelling non-stationary (evolving) processes, of which agent behaviour is one,

61

one of the problems is that the underlying state of the process (agent) is unknown. How-
ever, the process (agent’s actions) is observed, and from this must infer the hidden state.
The Hidden Markov Model (HMM) is a generic Bayesian inference technique that is well
suited to this problem, although it becomes inefficient for long processes. Furthermore,
HMM inference is performed on windows of observations, so is not ideal for on-line infer-
ence. To perform online-inference of a long process the Bayes filter is a more appropriate
choice. The Bayes filter is a recursive mechanism which allows probability estimates to
be updated as each new observation is made.

In actual fact HMMs are a specialised form of dynamic Bayesian network, which allow
the hidden state to be comprised of more than a single variable. Bayes filtering can be used
to perform inference on more complex dynamic Bayesian networks as well as on HMMs,
but a common problem is that as the complexity of the network increases, inference be-
comes intractable. This is especially true when networks include real-valued variables.
To make inference tractable sampling can be used to perform approximate inference, as
performed by a Particle Filter.

The need to reason about uncertainty has led to a large number of plan recognition re-
searchers adopting probabilistic inference techniques. In behaviour recognition exten-
sions of the Hidden Markov Model have proven popular, and so too have particle filter
based algorithms. This is especially true of more recent work which has often focused
on using noisy real-world observations, including video and GPS. However, there is a
fundamental limitation with much of this work: the need to estimate model parameters
from training corpora. All of the probabilistic models discussed require parameters in
the form of prior and conditional probabilities which must be estimated through model
training. Here-in lies the problem for data scarce domains such as visual surveillance and
defence: annotated training corpora are rarely available so parameter estimation cannot
be performed. Although some probabilistic models have been applied in these domains
their applications have been constrained so as to make learning possible, or have relied
upon the availability of experts to manually estimate parameters.

2.8.3 Alternative Recognition Approaches

Although state models have been popular, they are by no means the only approach for
behaviour recognition. Indeed, researchers working with data more closely related to
visual surveillance have often adopted alternative techniques for recognising behaviour.
Video understanding is a popular topic within vision research, and is the area from which
most ‘automated surveillance’ work can be found.

62

When comparing approaches from vision research to plan recognition there is a stark
contrast in techniques. Vision researchers often only adopt probabilistic approaches for
low-level processes like object tracking, and for recognising low-level behaviour such as
walking, running and fighting. The temporal and spatial complexities of these behaviours
are limited making training data easier to obtain. However, high-level behaviours often
involve more complex temporal and spatial constraints, and it is frequently identified that
suitable training data is unavailable in vision research. This has primarily led to the use
of constraint-based semantic reasoning for recognising complex behaviour.

Constraint-based reasoning employs rules, relations and constraints to identify instances
of behaviour. Temporal dependencies such as X before Y can be imposed, and through
combination with object classification, rules can apply to different types of entity (e.g.
person, vehicle). By segmenting the environment into different regions rules can also
refer to specific locations within the scene (Agent A in Zone C), and is well suited to
ordered environments. For example, in an aircraft arrival area the locations of vehicles,
people and equipment are all limited by procedures, physical constraints and other factors.
However, there are many environments that cannot be segmented so easily. Indeed, this
is one of the key limitations with existing research. Furthermore, because the notion of
probability has been lost, one cannot compare the likelihoods of competing behaviour
hypotheses, nor consider observational uncertainty.

Alternative inference techniques such as grammars and logic models suffer similar limi-
tations. Although probabilistic grammars can compare competing hypotheses they treat
observations as facts. Prior research has not focused on their use with noisy real-world
data, where their performance is more uncertain.

Vision researchers have also proposed two further alternatives: trajectory based infer-
ence and abnormal behaviour detection. In trajectory based inference agent motion is
detected and tracked to derive agent trajectories. These trajectories are often used to de-
tect anomalies like sudden changes in motion, or to detect trajectories that are uncommon.
However, as with constraint satisfaction, trajectory approaches are most suited to ordered
environments (e.g. traffic surveillance) where ‘normal’ trajectories are limited. Anomaly
detection has also been applied to image regions to find anomalies, using a database of
video to re-compose a novel scene. Areas that cannot be re-composed have a higher prob-
ability of anomaly, but this relies on anomalous behaviour being visually different from
‘normal’ behaviour. Like trajectory recognition, this limits the complexity of behaviours
that can be recognised.

63

2.8.4 Feature Based vs. Sequence Based

Feature based classification has proven to be popular in both object detection and text doc-
ument classification. In both of these fields there is an assumption that spatial constraints
can be ignored. In the case of object detection pixel relationships are lost when convert-
ing the image into other domains (e.g. frequency, scale). Even when using local pixel
features (e.g. small regions) global relations are lost. Similarly, in text document classi-
fication the frequency of word groups is considered rather than the grammatical structure
of the sentences.

Feature-based behaviour recognition is generally applied by removing most or all of the
temporal information associated with an action sequence. This is in stark contrast to the
majority of probabilistic techniques representing behaviours as sequences of states, which
rely heavily on temporal information.

A few researchers have applied feature based approaches to behaviour recognition. Suc-
cess has been demonstrated using an approach based on text-document classification, but
the removal of temporal information limited recognition to repetitive behaviours such as
hand clapping. Clustering based approaches have also been presented, but have only been
applied to low-level behaviour and are unlikely to scale well to more complex scenarios.

The work in this thesis has also been motivated by object recognition and text document
classification, and propose that the limitations of these earlier approaches can be over-
come by replacing, rather than removing, the exact temporal ordering of a behaviour. By
definition, non-stationary processes evolve, but it is proposed that the nature of their evo-
lution does not need to be modelled as strictly as prior probabilistic work has assumed.
By replacing the temporal ordering the need for parameter estimation can be removed,
and the techniques that have been developed for high-level behaviour inference become
available to data-scarce domains.

64

Chapter 3

Feature-Based Behaviour Recognition

Nomenclature:

D Desired feature Bi The ith behaviour

C Set of currently achieved features Pr(Bi) Prior probability of Bi

ck The kth element of C CPT Conditional Probability Table

T Set of target features α Set of detectable features

I Behaviour Interruption α i The ith element of α

A Activity (feature) observed

yt Generic observation at time t

Z Collective state encapsulating C,T,D, I

This chapter introduces the idea that behaviours can be recognised from a sequence of
observations without model parameter estimation. This allows recognition in domains
where training corpora are unavailable and is a critical contribution of this chapter. The
behaviours in question are assumed to be high-level and complex, and are generated as a
result of an agent performing actions to achieve a high-level goal. Portions of behaviour
often correspond to planning elements such as sub-goals, and thus the underlying concept
is that the observance of a set of sub-goals should allow the over-all goal to be identified.

The next section will formally introduce the fundamental principles of feature-based be-
haviour recognition. This is followed by a graphical representation of the approach as
a Bayesian Network which enables Bayesian inference to be employed. Although the

65

model does not represent the real temporal ordering of behavioural components, a weak
temporal ordering can be imposed to take advantage of the fact that behaviours are se-
quential in nature. This weak temporal ordering is provided via a Dynamic Bayesian
Network (DBN), and will be introduced in Section 3.3.

3.1 Principles of The ‘Bag-of-Features’

Motivation for feature-based behaviour recognition is drawn from object detection re-
search, which is concerned with learning and detecting the presence of objects in static
images and video. Identifying a robust modelling approach is a key challenge in this
domain, as objects may undergo operations such as rotation, translation, and changes in
appearance (e.g lighting). This challenge has led to the development of a number of dif-
ferent techniques for identifying invariant object features. To this end, it is not uncommon
to transform an object image into the frequency or scale domains [88, 90], where invariant
salient features can be more readily identified. Although this approach breaks the pixel
relationships of objects, which is counter intuitive, this process does in fact work very
well. This knowledge fuels the idea that perhaps the temporal relationships in behaviours
can also be removed without hindering recognition.

Drawing parallels between object detection research and other application domains is
not uncommon. Csurka et al. identified similarities between object detection and text
categorisation [31]. In text document classification bags of keywords are used to represent
a document class. Documents that discuss the same subject matter can then be detected by
comparing their content to the known feature classes. Csurka et al. applied a similar idea
to object detection, reporting promising results using bags of visual (SIFT [89]) features
to represent objects. SIFT features are calculated for small image patches and thus the
spatial orderings within the image are not maintained by the features.

The similarities between object recognition and behaviour recognition have also been
highlighted before, with Patron et al., identifying that many of the challenges are shared
[115]. Recognising these similarities this chapter argues that like objects and text docu-
ments, human behaviours can also be represented using sets of salient features. These may
be identified by breaking the temporal relationships between different behavioural com-
ponents, and is akin to splitting pixel relationships for object detection [88, 90]. By re-
moving these temporal constraints the model changes from “Expect these ordered events”

to “Expect these events“, and means that model parameter estimation from corpora is no
longer required. There are many domains in which large libraries of training corpora sim-

66

(a) Exit AgentEnter Agent Place Item

Leave Item

Part Group

 LeaveItem
 EnterAgent

 ExitAgent

 PartGroup
 PlaceItem

(b)

Figure 3.1: (a) The temporal representation of the Watched Item Behaviour. (b) The
Bag-of-Features representation of the Watched Item behaviour.

ply don’t exist, and thus this approach allows existing inference techniques to be applied
to a new set of problem domains.

To give an example, Figure 3.1 shows two representations of the Watched Item behaviour.
Recall that this behaviour is frequently seen at public transport hubs and represents the
scenario where two people are travelling together. One traveller leaves their luggage in
the custody of the other while they leave the scene, and thus their luggage is watched by
their companion.

Behaviours are traditionally represented as a temporally ordered sequence of activities as
shown in Figure 3.1a. However, in a feature-based approach the temporal constraints are
removed, as illustrated in Figure 3.1b . The ellipse represents a complex behaviour as
a bag of features with cardinality: one. Formally, denote a behaviour/bag by Bi where
superscript denotes the i’th behaviour in a collection, and will refer to Bi as the agent’s
target behaviour (synonymous with goal). Each bag element is drawn from the set of
detectable features α , where a feature represents some activity.

The agent’s progress towards a target behaviour can be monitored by tracking the features
it generates. Fundamentally, the features should be consistent with Bi if Bi correctly
represents the agent’s behaviour. For instance, if feature α i is observed but α i /∈ Bi, then
α i must be a false detection, or Bi is not the agent’s true behaviour.

As time increases more features of Bi should be generated. If it is assumed that each

67

element of a behaviour is only performed once, then the set of expected future features
are the elements of Bi not yet observed. For example, if Bi = 〈γ,δ ,ε〉 and feature γ has
already been observed, then the set of expected features is 〈δ ,ε〉. This set of expected
future features is continually updated and can be used to apply a weak temporal ordering
to the elements of Bi. The sets of expected features is conceptually similar to the ‘pending
sets’ proposed by Goldman et al. in the context of Probabilistic Horn Abduction [120],
although they use temporal constraints to add and remove elements from the set.

It is important to acknowledge that the temporal ordering of some features could be im-
posed without requiring parameter estimation. For instance, one cannot detect that an
object has been removed before it has been placed, and an agent cannot exit the scene
before they have entered. However, in many respects these constraints do not need to be
modelled if it is assumed that real data is being observed. For example, the video pro-
cessing sub-system cannot detect that an object has been removed if it has never been
detected as placed and thus ‘incorrect’ orderings cannot arise. That said, there are un-
doubtedly behaviours that do contain temporal feature dependencies and this is one area
in which future work might proceed.

If C is defined to be the set of currently observed features, and T as the target feature set
for some behaviour Bi, then T\C is the set of expected (future) features. At each time step,
features in T\C have equal probability, while all other features have zero probability. This
probability distribution encapsulates the assumption that each feature is only truthfully
generated once per behaviour, and is consistent with other work in the field (e.g. [76]).
It should be noted that this limitation is not inherent to the approach, but rather time
constraints did not allow for its removal within the confines of this research. Several
suggestions for the removal of this assumption are proposed as future work (Chapter 11).

By saying ‘truthfully’ generated that is to say that a goal behaviour cannot require the
same feature to be performed twice. That is not to say that the feature cannot be detected
twice through miss-detection. Similarly, goal repetition does not contravene this assump-
tion: If a goal is performed twice and thus generates two occurrences of the same feature,
each feature is still classed as having been generated by a different goal (if only different
in time). Crucially, if the goal-behaviour can be represented without repetition, then it can
be represented by this approach.

68

3.1.1 Worked Example

Using the Watched Item behaviour from Figure 3.1 as an example, at time step t = 0
each of the 5 features (LeaveItem, EnterAgent, ExitAgent, PartGroup, PlaceItem) has
equal probability and C = /0. Carry forward that in this example, P(EnterAgent) =
1
5 . Let us assume that EnterAgent is observed at time-step 1 and thus at time-step 2
C = {EnterAgent}. Because of the single-occurance assumption P(EnterAgent) = 0 at
time-step 2. Again, the elements of T that are not in C get uniform probability and thus
∀i ∈ T\C : P(i) = 1

4 . This process repeats until all elements of T have been observed.
Note that any element that is not in T has a zero probability at all time-steps. Further-
more, when all elements of T have been observed no further agent activity is expected.

Note that it is assumed that an agent with goal behaviour T will not perform detectable
features that are not components of T . Furthermore, for the example at hand it is assumed
that false-positive (noisy) detections do not occur, although the next section will explain
how false-positive observations are addressed.

3.2 Bayes Network Representation

This bag-of-features approach can be modelled as a Bayes Network. Consider the network
in Figure 3.2a which represents the network for a single behaviour. As before, T = Bi

indicates that node T represents a target set of features for the i’th behaviour. Similarly,
node C is the set of observed features and is a subset of Bi : ∀ck ∈C,ck ∈ T . The network
also contains two new variables; nodes D and A. Node D represents the probability of a
desired feature conditioned on T and C, while node A represents the feature detected and
is conditionally dependent upon the agent’s desire.

When modelling unknown agents it is not known what their goal behaviours are, nor
which elements of those goals have been achieved, or which goal element they intend to
perform next. Nodes C,T and D are thus latent (hidden) variables, while variable A is
directly observable. If the variables C,T and D are collectively referred to as Z, and the
observation A as y, then the network is reduced to the generic form: Z → y. This gives
rise to what is commonly referred to as the observation model: P(y|Z), which expresses
the probability of observing y given that the system is in state Z.

Having defined the edges and vertices of the network the only remaining parameter is

69

Desire D

Activity AA

D

C T
Currently Observed Features C

Target Features T

}
}

Z

Y

(a) (b)

Figure 3.2: a) A Bayesian Network for representing behaviour using features. b) The
generalised form

the conditional probability table (CPT). Various techniques exist for deriving the CPT
for Bayes Nets, including model learning, and using probabilities defined by experts.
However, a fundamental assumption of this thesis is that training data is unavailable,
rendering model learning techniques unavailable. This thesis also makes no assumptions
about the availability of an expert.

Instead, the CPT can be calculated algorithmically at run-time. This is possible due to the
‘single-occurrence-assumption’ made in section 3.1. Given the previous definitions of T

and C, the conditional probability for D is:

p
(
D = α i)= p

(
D = α j)∀i, j : α i,α j ∈C\T (3.1)

p
(

D = αk
)
= 0∀k : αk /∈C\T (3.2)

For simplicity, assume that there is a one-to-one relationship between the agent’s desired
activity and the performed activity1. The observation model can then be defined by the
function E (At ,Dt):

E (At ,Dt) = p
(
At = α i|Dt = α j) (3.3)

= 1 : i = j (3.4)

= 0 : i 6= j (3.5)

Finally, the prior probabilities must be defined for variables C and T . Again, because
it is assumed that training data is unavailable, the uniform prior is applied to T . For C,
an additional assumption is made that behaviours are fully observed, that is, elements

1A one-to-one mapping is not required by the approach and this emission distribution could be replaced
with another where appropriate.

70

are not performed before the agent enters the scene. Under this assumption the prior
P(C = /0) = 1.

The Bayes Net described so far represents a single behaviour in which the target feature
set remains constant. However, there are many occasions where the goal of an agent
might change. For instance, the completion of a goal is likely to lead to a new goal being
chosen. Similarly, goals may be abandoned or postponed before their completion due to
the influence of external factors. These factors may be observable (e.g. a locked door) or
unobservable (internal changes to goal-prioritisation), and present interesting challenges.

In previous work researchers have identified goal abandonment by a sudden lack of goal
evidence [50]. Others have specifically focused upon interleaved goals, where the set of
observed actions can be partitioned into two sets, each supporting a different goal [63].
In this thesis an assumption is made that only one goal is pursued at a time, and thus
interleaved goals remain out of scope of this research.

Chapter 4 will discuss how goal changes are detected within the bag-of-features frame-
work, however, the current discussion will focus upon how goal-changes are integrated
into the Bayes Network once they have been detected.

A new node I is integrated into the Bayes Network (Figure 3.3) to indicate that a behaviour
interruption has occurred. Interruptions influence an agent’s goal and thus a dependency
is added between nodes I and T . This structure imposes the rule that the target features
can only change when an interruption occurs. Similarly, a new dependency has been
added to node C to indicate that the currently achieved features must be consistent with
the target feature set. This dependency implies that an agent can only perform features
that support the target behaviour and ensures that ∀ck ∈C,ck ∈ T .

In addition to changes in the agent’s goal behaviour, interruptions also occur when a false-
positive observation has been made. Again, Chapter 4 will discuss how false-positive ob-
servations are determined and how they are processed by the inference algorithm. How-
ever, to summarise here, a false-positive interruption means the agent’s desire is not con-
strained to T\C, and correspondingly, there is a dependency between I and D.

71

Desire D

Activity AA

D

C T
Currently Observed Features C

Target Features T

Interruption I

I

Figure 3.3: The addition of an ‘Interruption’ node I into the bag-of-features DBN

Dt-1

At-1

Dt

At

Ct-1 Tt-1 Ct Tt

It-1 It

Figure 3.4: The full DBN for ‘bag-of-features’ inference

3.3 Adding A Temporal Model

The Bayes Network representation becomes a temporal model by converting it to a Dy-
namic Bayesian Network with hidden nodes {C,T,D, I} and observable node A. Because
the model is discrete the transition model is binary. To fully specify the DBN the prior,
conditional and transitional dependencies are described below and formally represented
in Table 3.1. When an agent changes their behaviour node I = T PCh (True-Positive
Change) and when an activity is misdetected I = FP (False-Positive). The temporal de-
pendencies encapsulated within the transition model are visually represented in Figure
3.4 via the dashed edges between the time-slices.

1. When there is no interruption (It = T PS) the target feature set remains the same.

2. When a change of behaviour is detected (It = T PCh) the target feature set is re-

72

Table 3.1: Prior, Conditional and Transition probabilities between time steps t− 1 and t
for the DBN in Figure 3.4

Priors: P(C1 = /0) = 1 P(I1 = T PS) = 1 P(T1 = Bi) = |B|−1

1 P(Tt = Tt−1|It = T PS) = 1 Same behaviour
2 P

(
Tt = Bi|It = T PCh

)
= |B|−1 Behaviour changed

3 P(Tt = Tt−1|It = FP) = 1 Mis-detection

4 P(Ct =Ct−1∪Dt−1|It−1 = T PS) = 1 when Dt−1 = At−1
5 P(Ct =Ct−1∪Dt−1|It−1 = T PS) = 0 when Dt−1 6= At−1
6 P(Ct = /0|It = T PCh) = 1 Behaviour changed
7 P(Ct =Ct−1|It−1 = FP, It−1 = T PS) = 1 misdetection at t−1

8 P
(
Dt = α i|Ct ,Tt , It 6= FP

)
= |Ct\Tt |−1 ∀i : α i ∈C\T

9 P
(
Dt = α i|Ct ,Tt , It 6= FP

)
= 0 ∀i : α i 3C\T

10 P
(
Dt = α i|Ct ,Tt , It = FP

)
= |α|−1 ∀i : α i ∈ α

11 P
(
At = α i

∣∣Dt = α i)= 1

initialised according to the uniform distribution

3. When a misdetection occurs, the target feature set remains the same.

4. The set of currently observed features (Ct) gains the agent’s last desire (Dt−1) when
it matches the last observation (At−1) and there was no interruption.

5. The set of currently observed features (Ct) remains the same as Ct−1 when the last
desire (Dt−1) does not match the last observation (At−1) and there was no interrup-
tion.

6. When the target set has changed (It = T PCh) the set of currently observed features
becomes the empty set.

7. The set of currently observed features (Ct) remains the same as Ct−1 when the pre-
vious time-step was a misdetection (It−1 = FP).

8. The desire (Dt) has a uniform probability for all elements in C\T when I 6= FP.

9. The desire (Dt) has a zero probability for any element not in C\T when I 6= FP.

10. The desire (Dt) has uniform probability for all elements in α when I = FP.

11. There is a 1-to-1 relationship between desires and activities.

73

T
 (

Se
t

of
 t

ar
ge

t
fe

at
u

re
)

C (Set of currently observed features)

It =FP or Dt = At

It =TPS and Dt = At

It =TPCh and Dt = At

t

t+1

t+1

t+1

Figure 3.5: A visualisation of the state transition model

To help visualise the temporal model Figure 3.5 shows a two-dimensional representation
of the state space. The vertical axis represents different values for T (the set of target
feature) while the horizontal axis represents different values of C (the set of currently
observed features). When either a False-Positive observation is assumed at time t (It =
FP) or the desired feature does not match the observed feature (Dt 6= At), variables Ct

and Tt transition to the same state at t +1. Correspondingly, Ct+1 =Ct and Tt+1 = T t , as
illustrated by a loop transition to the same state in the figure. When a True-Positive Same

observation is assumed at time t (It = T PS) and the desired feature matches the observed
feature (Dt = At), variable Ct will transition to a new state at t + 1 to indicate that Dt

has been observed (Ct+1 = {Ct ∪Dt}), while Tt will remain in the same state because the
behaviour has not changed. This is shown in the figure via a horizontal only transition.
Finally, when a True-Positive Change observation is assumed (It = T PCh) and the desired
feature matches the observed feature (Dt = At) both Ct and Tt transition to new states at
t +1. As before, the horizontal transition represents a change in the state of Ct , although
under these conditions Ct+1 = Dt . Similarly, the vertical transition indicates a change in
the target behaviour where the value of Tt+1 is determined by the uniform distribution.

74

3.4 Summary

This chapter has introduced the fundamental principles of bag-of-features inference which
uses a bag to model the individual activities of a behaviour. This bag is considered the
agent’s target feature set and is represented by node T in the Bayes Network. As the
agent performs activities and generates features, we keep track of which elements of T

have been observed using the currently observed feature set (node C). The agent’s next
desire (D in the Bayes Net) is drawn from the set of ‘expected features’ by conditioning
upon T and C. Each element of the ‘expected features’ set has uniform probability, while
all other features have zero probability. When the agent performs their desire they emit a
detectable activity, denoted A.

Transitioning from one time-step to the next, the agent’s desire becomes an element of
C whenever an interruption has not occurred. The target feature set T remains constant
throughout each time step unless a True-positive Change occurs, in which case T is reini-
tialised according to the uniform prior, and C becomes the empty set.

Having defined the Bayesian representation of the approach the next chapter will discuss
how efficient inference may be performed on this structure by using Particle Filtering.

75

Chapter 4

Efficient Inference

Nomenclature:

Dt Agent’s desire at time t ℜt Set of regeneration particles at time t

Ct The set of currently achieved features at t M Number of particle in ℜt

Tt The set of target feature at time t θt Set of re-initialised particles (θt ⊂ℜt)
At The observed activity at time t E Number of particles in θt

yt Generic observation at time t Ft Particles assuming false-positive at time t

y j→k y that can be explained by Beh. k but not j V Number of particles in Ft

Y A set of observations (y1,y2,y3, ...yT) `t Set of eligible particles at time t

Z Generic state encapsulating C,T,D, I L Number of particle in `t

rt Sampled components of Zt πt Updated set of eligible particles at time t

zt Marginalised components of Zt Q Number of particle in πt

S Number of observations in sequence G Number of (goal) behaviours

N Number of particles α Set of detectable features

ξ i
t ith sampled particle at t α i The ith element of α

ω i
t Weight of particle i at time t αFWD A feature

αBWD A feature that reverts αFWD

Chapter 2 introduced Dynamic Bayesian Networks (DBNs), which were then used to
formally represent bags-of-features in the previous chapter. This representation used a
discrete state-space based on features, so exact recursive Bayesian estimation could be
used to perform inference. However, prior work has noted that even in discrete cases,

76

large DBNs cause inference times that are exponential in the number of hidden nodes
[33, 38].

Because one of the objectives of this research is to perform real-time behaviour recog-
nition, it is important that inference time can be strictly controlled. Correspondingly,
this chapter will focus on approximate recursive Bayesian estimation for bag-of-features
inference. The foundations for approximate recursive Bayesian estimation have already
been introduced in Chapter 2 with the Sequential Importance Sampling with Re-sampling
(SIR) algorithm. The concept of Rao-Blackwellisation was also introduced, which utilises
the structure of a model to reduce the number of variables that must be sampled.

Combing Rao-Blackwellisation with the SIR algorithm has produced promising algo-
rithms in previous work (e.g. [24]), and is applied to the bag-of-features representation in
the next section (4.1). This basic algorithm communicates the underlying procedure for
bag-of-features inference. Once the basic algorithm has been introduced several enhance-
ments will be presented in Section 4.2 leading up to the advanced algorithm. This more
complex algorithm will be discussed in relation to three new concepts: partial behaviours,
feature repetition and concatenated behaviours.

4.1 Basic Algorithm

Recall that the objective of Rao-Blackwellisation is to reduce the number of components
that must be sampled. This is achieved by segmenting the variables into two sets: the
sampled components, and the exact components. It is fundamental that the exact compo-
nents can be easily marginalised out conditioned upon the sampled components, and thus
the structure of a DBN must be analysed.

If one looks back at the DBN in Figure 3.4 on page 72 it can be seen that variable Dt is
conditionally dependent upon variables {C,T, I}t . Recall that variable Dt represents the
agent’s desire: the next feature to be performed, and is trivial to calculate conditioned
upon {C,T, I}t , as shown below:

P(Dt = α i|Ct ,Tt , It 6= FP) = |Ct\Tt |−1 ∀i : α i ∈C\T (4.1)

P(Dt = α i|Ct ,Tt , It 6= FP) = 0 ∀i : α i /∈C\T (4.2)

P(Dt = α i|Ct ,Tt , It = FP) = |α|−1 ∀i : α i ∈ α (4.3)

77

Dt

At

Ct Tt

It

tt-1

Figure 4.1: Incorporating the latest observation into the RB-Posterior reverses the edge
between At and Dt

This dependency structure between nodes C,T, I and D is particularly useful for Rao-
Blackwellisation, which can be applied by segmenting the state (Bayes Net) into two
components. Define rt = {C,T, I}t and zt = {D}t . Recall that rt is the sampled component
and zt is the exact component. The Rao-Blackwellised Particle Filter (RBPF) calculates
the posterior probability of P(Zt |y1:t) using these two components as follows:

P(Zt |y1:t) = P(yt |zt ,rt)P(zt |rt ,y1:t)P(rt |y1:t−1) (4.4)

Section 2.1.8 introduced the Rao-Blackwellised Posterior P(zt |rt ,y1:t−1) and highlighted
that better inference could be achieved by incorporating the latest evidence into the pos-
terior. This evidence reversal produced the alternate posterior P(zt |rt ,y1:t), which has
the effect of reversing the edge between nodes At and Dt in the DBN. This is visually
represented in Figure 4.1.

Using this new RB-Posterior, particles will only predict desires that are consistent with
the latest observation. The RBPF therefore consists of N random samples of the form
{{r,z}i

1:t ,ω
i
t}N

i=1 that characterise the posterior density P(Zt |y1:t), where each sample
point {r,z}i

t has an associated weight ω i
t such that ∑N

i=1 ω i
t = 1. The posterior density

at time t is approximated as:

P(Zt |y1:t) ≈
N

∑
i=1

ω iδ
(
{r,z}t ,{r,z}i

t
)

(4.5)

≈
N

∑
i=1

ω iδ
(
{C,T, I,D}t ,{C,T, I,D}i

t
)

(4.6)

78

As shown in Section 2.1.6, the Two-Kernel weight update equation is given by:

ω i
t ∝ ω i

t−1
Q({r,z}t ,{r,z}t−1,yt)

K({r,z}t ,{r,z}t−1,yt)
(4.7)

∝ ω i
t−1

P(yt |{z,r}t)P({z,r}t |{z,r}t−1)

P({z,r}t |{z,r}t−1,yt)
(4.8)

Re-writing this in terms of the DBN gives:

ω i
t ∝ ω i

t−1
P
(
At |Di

t
)

P({C,T, I,D}i
t |{C,T, I,D}i

t−1)

P
(
{C,T, I,D}i

t |{C,T, I,D}i
t−1,At

) (4.9)

Unfortunately, the dependencies in Equation 4.9 are too complex to calculate accurately
without parameter estimation. This is a problem for the approach, as it is assumed that
training data is unavailable. However, the underlying principle of particle weighting is
that more probable particles obtain higher weights than less probable particles. If a heuris-
tic weight sufficiently encapsulates the dependencies of equation 4.9, model convergence
should still occur. This thesis explores this premiss by defining a heuristic weight com-
posed of two factors:

1. P(Zi
t |yt): the true positive probability of the observation: T P(yt)

2. The proportion of features in the target feature set that are currently achieved: |Ct |
|Tt |

Recall that there is a one-to-one relation between desires and activities, and thus any
inconsistency between the two implies that yt is a false detection. Under this circumstance
the P(Zi

t |yt) is the false-positive detection rate of yt . Otherwise, the observation can be
assumed to be a true positive detection with probability equal to the true-positive detection
rate of yt . This heuristic component will therefore give a lower weight to particles that
are unlikely given the current observation, and higher weights to more likely particles
(assuming the true-positive rate is greater than the false-positive rate).

The second factor considers the proportion of an agent’s behaviour that a particle can
explain. Consider two particles ξ i and ξ j, each with the same target feature set. The par-
ticle that can explain more observations has more elements in set C, and correspondingly,
will obtain a greater factor than one with less elements in C. Therefore, particles that can
explain more observations are favoured which is also consistent with the principles of
particle weighting: more likely particles should obtain more weight.

79

Taken together, these factors both support the principles of particle weighting, and can
be combined via Equation 4.10. Note that it must be ensured that a particle that cannot
explain any observations (C = /0) does not receive a zero weight because this is the initial
particle state (no features have been observed). Weights of zero are prevented by adding
1 to both the enumerator and denominator. An evaluation of this weighting strategy is
given in Chapter 10.

ω i
t = ω i

t−1×P(Zi
t |yt)×

|Ci
t |+1
|T i

t |+1
(4.10)

Because the particle weights must sum to one, a normalisation step is required after the
initial particle weights are calculated. This process is trivial.

4.1.1 Sample Regeneration

Section 2.1.8 stated that evidence reversal improved inference by incorporating the latest
evidence (observation) into the RB-Posterior P(zt |rt ,y1:t). However, a limitation of this
approach is that a false-positive detection will affect the distribution. Traditionally, parti-
cle filtering assumes that although observations may be noisy, false-positive observations
(classification errors) do not occur. However, in a discrete filter such as the one described
above, noise takes the form of false-positive detections (classification errors). If the latest
observation is a false-positive, there is the potential for the following to occur:

P(Di
t = d j|Ci

t ,T
i

t , I
i
t 6= FP,Ai

1:t) = 0 ∀d j ∈Ci
t \T i

t (4.11)

In essence, the sample point cannot explain A1:t . Furthermore, there is the potential that
no particle can explain A1:t , which will lead to particle filter collapse (all particles have
zero weight). In order to address false-positive detections one solution would be to add
a noise model that predicts false-positive observations. This is similar to how many non-
discrete filters operate. However, false-positive detections are not the only possible cause
of filter collapse, with two additional causes being:

• The observed feature cannot be explained by any behaviour.

A DBN representing behaviour Bk can only model the states of an agent performing
that behaviour. If the set of all behaviours (and the associated set of DBNs) does
not contain feature α i, then P(Dt = Ai) must be zero for all behaviours.

• Sample impoverishment

80

If ∃Bk : At ∈ Bk, but ¬∃ i : At ∈Ci
t \T i

t then P(Di
t |At) must be zero for all i where

i represents particle index.

The addition of a noise model cannot address these two additional causes of filter collapse,
and thus a combined solution is provided via sample regeneration.

This is achieved by inserting an additional step into the RBPF algorithm to identify par-
ticles that will collapse during the next iteration. This can be achieved by identifying
where P(yt |Zt ,y1:t−1) = 0, or more specifically, evaluating P(Ai

t |{C,T, I}i
t ,A

i
1:t−1)∀ i. The

particles identified form the regeneration set ℜ, while the remaining particles (where
P(yt |Zt ,y1:t−1) 6= 0) form the eligible set `, where {ℜt ∪ `t}= {Zi

t}N
i=1and {ℜt ∩ `t}= /0.

The regeneration set encapsulates all particles that cannot explain the current observation.
Note that when At cannot be explained by any behaviour (i.e. At * {Bk}G

k=1) all particles
will be contained within ℜ.

A noise model can now be applied to ℜ by sampling particles (without replacement)
according to the false-positive probability of At , i.e. 1− T P(At), where it is assumed
the true positive rate of feature At is known. It should also be noted that the detection
probability could alternatively be used if available. These sampled particles form the set
of ‘false positive’ particles F . Because P(yt |Zt ,y1:t−1) = 0 the particles in F are given a
weight λ , which replaces the heuristic in Equation 4.10, where λ is some small factor. A
value of 0.01 was arbitrarily chosen and shown to work well during experimentation.

The remaining regeneration particles (ℜ\F) represent a true-positive observation. Sup-
pose that At ⊂ {Bk}G

k=1 and thus sample impoverishment is the cause of all particles in
ℜ \F . The simplest mechanism to re-generate these particles is to re-initialise them
according to the prior P(Z1)

1

In section 3.3 the interruption variable was introduced as having an influence on the target
feature set and currently observed features. It is in fact regeneration that changes the
interruption variable for all particles in ℜ.

1A more efficient mechanism will be introduced in Section 4.2.

81

Worked Example

To assist understanding and demonstrate the effect of the algorithm consider an example
with the following three behaviours:

1. Passing Through 1 (Beh. 1) - This behaviour represents an agent entering and
leaving the scene. The target features are {EnterAgent,ExitAgent}.

2. Passing Through 2 (Beh 2.) - This behaviour represents an agent entering the scene,
placing an object on the ground, removing the object again and then exiting the
scene. The target features are {EnterAgent,PlaceOb ject,RemoveOb ject,ExitAgent}.

3. Abandon Object 2 (Beh 3.) - This behaviour represents an agent entering the scene,
placing a luggage item on the ground and then exiting the scene. The target features
are {EnterAgent,PlaceOb ject,ExitAgent}.

Assume that we wish to identify which of these behaviours is most likely to have produced
a sequence of agent observations. For simplicity, we will focus on only two observations:
EnterAgent followed by PlaceOb ject.

The first step of the algorithm is to initialise the particle filter, which in this example
will involve initialising 600 particles. Recall from Table 3.1 (page 73) that the prior
distribution initialises the currently achieved features to empty (C = /0) and applies the
uniform distribution to the target feature set (T). This can be seen in Figures 4.2 and 4.3,
which should be viewed as two sides of one large horizontal figure. In these figures the
numbers on the far left relate to the steps of Algorithm 4.1.To differentiate from these,
written line numbers in the text will refer to ruled lines in the figure. The first three lines
of the figures show the initial number of particles representing each behaviour and their
initialised values for C and T .

When the first observation arrives (EnterAgent) particles that will collapse are identified
by evaluating P(yt |Zt ,y1:t−1) = 0. At the current stage P(EnterAgent|C,T) 6= 0 for all
particles, so no particles will collapse and variable I = T PS to indicate a true-positive-
same behaviour. At this point each particle can now calculate the Rao-Blackwellised (RB)
posterior distribution of D by conditioning on variables C,T , I, and A. In this case P(D =

EnterAgent|C,T, I,A) = 1 because no other element of T can explain A (the observation
EnterAgent), as shown on the fifth line in the figures. In the next step of the algorithm
each particle chooses a value for D according to the RB-Posterior distribution.

82

Each particle now has values for each variable and can be weighted using Equation 4.10.
This is shown on the eighth line in the figures, which shows the weight that each particle
will obtain. Note that the true positive rate for the EnterAgent feature is assumed to be
0.956 in this example and is taken from the performance of our real detector (introduced in
Chapter 7 and used in our experiments). It is important to identify that particles represent-
ing Behaviour 1 obtain the highest weights, followed by Behaviour 3 and then Behaviour
2. This is because Behaviour 1 has the fewest elements in T (this will be discussed fur-
ther later in the example). On the ninth line the N particle weights are normalised so that

∑N
i=1 ω i

t = 1.

At the next iteration of the algorithm (starting on the tenth line) the first step is to resample
the particles with replacement. Upon completion the particles will be distributed accord-
ing to the probability density estimate from line nine, and correspondingly, this will lead
to a redistribution of particles such that 43% represent behaviour 1, 32% behaviour 3 and
25% behaviour 2. The tenth line shows an approximation of the associated numbers of
particles.

As before, the algorithm then identifies particles that are about to collapse. This time,
P(PlaceOb ject|C,T) = 0 for all particles representing behaviour 1 and they become
members of regeneration set ℜ. Of these particles, a proportion equal to the false-positive
rate of the observation are selected to assume a false-positive hypothesis. In this example,
PlaceOb ject has a true-positive detection rate of 0.73, and correspondingly, 27% of ℜ
(70 particles) are selected for the false-positive hypothesis. This is shown on line 13 of
Figure 4.2. These particles are weighted with λ = 0.01 (line fourteen).

Recall that the remaining particles in ℜ (≈ 188 for Behaviour 1) are reinitialised accord-
ing to the priors. This means that their target feature set (T) variables are uniformly dis-
tributed between the behaviours, and currently achieved feature sets are emptied (C = /0).
Note that this operation was not performed for the particles making a false-positive as-
sumption, which have still achieved the EnterAgent feature. At this point it is also logical
to highlight why Figures 4.2 and 4.3 are separated as they are. Note that the Behaviour
1 particles that have been re-initialised into Behaviour 2 and 3 particles have achieved
fewer features than their neighbours in Figure 4.3. This mean that these particles will
obtain different weights and thus must be illustrated separately.

Having dealt with all particles in ℜ the algorithm proceeds by calculating the RB-Posterior.
Note that it does not matter what the distribution is for the false-positive particles because
they have a fixed weight. For the ‘true-positive’ behaviour 1 particles P(D=αi)= 0∀αi ∈
α , so in essence these particles have a zero distribution and cannot make a prediction. The

83

behaviour 2 and 3 particles can all explain the observation via D = PlaceOb ject, and thus
this instantiation has probability = 1.

As before, the particles are weighted and note that the ‘true-positive’ behaviour 1 particles
attain a weight of zero because they cannot explain the observation. In essence these 62
particles collapse and will never be resampled. Also note that the behaviour 2 and 3
particles in Figure 4.2 attain lower weights than their neighbours in Figure 4.3 due to
the |C|+1

|T |+1 component of the weight formula. As in the previous iteration, the N particle
weights are normalised so that ∑N

i=1 ω i
t = 1, as shown on the last line of iteration 2. Finally,

the total weight attributed to each set of particles is shown.

In Figure 4.3 the same process is performed for the particles representing behaviours 2
and 3. The last line of Figure 4.3 shows the total weight for each behaviour hypothesis,
calculated by summing the weights of the particles representing the same target behaviour.
This allows us to estimate the probability of a target behaviour Bk as P(T2 = Bk|A1:2) =

∑N
i=1 δ (T i

t ,B
k). This is shown at the bottom of Figure 4.3 where one can see that P(T =

Beh1|A1:2) = 0.005, P(T = Beh2|A1:2) = 0.392, and P(T = Beh3|A1:2) = 0.603. Given
that behaviour 1 cannot explain all of the observations one would expect this behaviour
to have the lowest probability. Similarly, more features for Behaviour 3 than Behaviour 2
have been observed , and thus Behaviour 3 is currently the most likely explanation for the
observations.

This aspect of the approach deserves a little further discussion, as it is in contrast to
more common approaches such as the Hidden Markov Model where one would expect
compatible models to have the same probability. The bag-of-features approach is referred
to as a ‘minimal explanation’ technique because it gives the highest probability to the
shortest behaviour that can explain the set of observations. This can be observed in Figure
4.4 which shows the probability of behaviours as a sequence of observations arrives. This
figure extends the previous example, although the Figure also includes probabilities for
four additional behaviours used within our evaluation.

Consider the probabilities of Passing Through 1 (PT1), Passing Through 2 (PT2) and
Abandon Object 2 (AO2) after the first observation. In an HMM approach with uniform
priors all three behaviours would have a similar probability, which is in stark contrast to
the bag-of-features results. Although at first this might seem like a flaw in the approach,
this is not an undesirable effect. Assume that after one observation no further observations
are made. If PT1 were being observed, this indicates that one feature was missed, while
two features must have been missed for AO2 and three for PT2. If it is assumed that
features can be reliably detected, it is true that PT1 should be more probable.

84

Algorithm 4.1 The Rao-Blackwellised Particle Filter algorithm
1: Init: Generate [{{C,T}i

1,ω
i
1}N

i=1]∼ P(Z1) and ω1
2: for t = 1 to S do {where S is the length of the observation sequence}
3: for i = 1 to N do
4: Resample {C,T}i

t ∼ {{D,C,T, I}i
t−1,ω

i
t−1} via Algorithm 2.3 on page 26

5: Transition with P(ri
t |Zi

t−1) to obtain {r}i∗
t = {C,T}i∗

t
6: end for
7: Partition into sets {ℜm

t }M
m=1 (Regeneration) and {`l

t}L
l=1 (Eligible)

8: for m = 1 : M do
9: if random()< 1−T P(At) then

10: Flag ℜm
t as ‘false positive’ and weight 0.01.

11: Move ℜm
t into set Ft where Ft = {F v

t }Vv=1
12: else
13: Reset ℜm

t according to the prior and move to set Θt where Θt =
{Θe

t }E
e=1

14: end if
15: end for
16: {πq

t }Q
q=1 = {`l

t}L
l=1∪ {θ e

t }E
e=1

17: for q = 1 : Q do
18: Calculate RB-Posterior: P(Di

t |{C,T, I}i
t ,A1:t)

19: Predict πq
t = {rq∗

t ,zq
t } from RB-Posterior giving {D,C,T, I}q

t
20: Weight πq

t according to Equation 4.10 on page 80
21: end for
22: Zt = {F v

t }Vv=1∪{π
q
t }Q

q=1
23: Normalise Zt
24: end for

85

1. No. Particles:

Behaviour 1

200

{}

EnterAgent

ExitAgent }}
 C:

 T:

Obs 1: EnterAgent

(TP =0.956)
P(D=Ent|C,T,I,A)=1

19. Prediction: D=EnterAgent

20. Particle Weights: 1 x 0.956=0.32

3(|C|+1)/(|T|+1)xTP

23. Normalised Weights: 0.0021

3 - 6. Resample: 43%

 No. Particles: 258

Obs 2: PlaceObject

(TP =0.73)
P(A=Plc|C,T,I,A)=0

 No. Particles Assume FP:

13. No. Particles Reset:

70

188

 No. Particles: 62 62 62

19. Prediction: D={} D=Place D=Place

20. Particle Weights: 0
(|C|+1)/(|T|+1)xTP

1 x 0.73=0.15

5

1 x 0.73=0.18

4
0.01

23. Normalised Weights: 0.000074 0.00108 0.00135

 Total Weight: 0.06708 0.08384

{} {}

Behaviour 2 Behaviour 3

}EnterAgentPlaceObject

ExitAgent}
EnterAgent

PlaceObject

RemoveObject

ExitAgent
}}

{} C:

 T:
EnterAgent

ExitAgent}}

{EnterAgent}

EnterAgent

ExitAgent}}

70

FP

0.00518 A B C D

0

0

Cont...

10 - 11. (No. Particles:) 258

 C:

 T:

{EnterAgent}

EnterAgent

ExitAgent}}

Beh 1: Passing Through 1

Beh 2: Passing Through 2

Beh 3: Abandon Object 2

Legend:

7.

7.

End of iteration 1

End of iteration 2

3 - 6. Distribution unaffected because all

particles have uniform weight

8 - 15. M=0 so loop not entered

Figure 4.2: A worked example of the basic inference algorithm (Part 1). Please refer to
the text for a detailed discussion. Line numbers relate to Algorithm 4.1

86

200 200

{} {}

P(D=Ent|C,T,I,A)=1 P(D=Ent|C,T,I,A)=1

D=EnterAgent D=EnterAgent

1 x 0.956=0.19

5

1 x 0.956=0.24

4

0.0013 0.0016

3 - 6. Resample: 25% 32%

150 192

No. Particles Assume FP:

No. Particles Reset:

No. Particles:

P(D=Plc|C,T,I,A)=1 P(D=Plc|C,T,I,A)=1

19. Prediction: D=Place D=Place

20. Particle Weights:

(|C|+1)/(|T|+1)xTP

2 x 0.73=0.29

5

2 x 0.73=0.37

4

23. Normalised Weights: 0.00216 0.0027

200

 Total Weight: A 0.325 + C 0.519 + D

 P(T|Obs): 0.005 0.392 0.603

Cont...

=0.325+0.06708 =0.519+0.08384

Behaviour 1 Behaviour 2 Behaviour 3

}EnterAgentPlaceObject

ExitAgent}
EnterAgent

PlaceObject

RemoveObject

ExitAgent
}}

Beh. 1 cannot explain next observation so
27% Beh. 1 particles assume a false-positive
obs. Remaining 73% are reset and distributed
uniformly. Beh. 2&3 can both explain next obs.

1. No. Particles:

 C:

 T:

Obs 1: EnterAgent
(TP =0.956)

19. Prediction:

20. Particle Weights:
(|C|+1)/(|T|+1)xTP

23. Normalised Weights:

{EnterAgent} {EnterAgent}

}EnterAgentPlaceObject

ExitAgent}
EnterAgent

PlaceObject

RemoveObject

ExitAgent
}}

 C:

 T:

7.

 No. Particles:

7 - 15.

Obs 2: PlaceObject

(TP =0.73)

End of iteration 1

P(D=Plc|C,T,I,A)=0

End of iteration 2

8 - 15. M=0 so loop not entered

3 - 6. Distribution unaffected because all particles have uniform weight

Figure 4.3: A worked example of the basic inference algorithm (Part 2). Please refer to
the text for a detailed discussion. Line numbers relate to Algorithm 4.1

87

EnterAgent PlaceObject RemoveObject ExtitAgent
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

PT1

PT2

AO2

Figure 4.4: The minimal explanation changes as observations arrive. At the first obser-
vation (EnterAgent) PT 1 (Passing Though 1) gains the highest probability because it is
the shortest explaining behaviour. By the second observation (PlaceOb ject) PT 1 can no
longer explain the observations and reduces in probability, while AO2 (Abandon Object
2) becomes more likely as the next shortest behaviour that can explain the observations.
This happens again at observation three where PT 2 (Passing Through 2) becomes and
remains the most probable explanation.

88

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(|C|+1) / (|T|+1)

P
ro

b
ab

il
it

y

Figure 4.5: The cumulative distribution function used by Algorithm 4.1.

4.1.2 Summary

To draw this section together, the simple RBPF based algorithm is presented in Algorithm
4.1. After initialisation of C and T according to their priors the core algorithm is repeated
for each observation time-step. The first stage of the algorithm re-samples the particles
as discussed in Section 2.1.7. The re-sampling process itself involves the construction
of a cumulative distribution function (CDF). If one considers the ratio |C|+1

|T |+1 as a random
variable representing the proportion of a behaviour that has been performed then Figure
4.5 can be used to graphically represent such a CDF. In this figure the CDF represents a
generic set of particles where it is assumed that each particle has a uniform weight from
the previous time step and can explain the current feature. In reality this would not be
the case, however it is much more difficult to visually represent more complex scenarios.
Moving along the CDF particles with higher |C|+1

|T |+1 ratios have a higher probability of
selection, and thus particles that can explain more observations will be selected more
often.

Once re-sampled, the transition kernel is applied to the particles. Because the transition
kernel is binary a particle will gain its last predicted desire such that Ci∗

t = {Ci
t ∪ Di

t−1}
whenever a particle did not assume a false positive observation at the previous time-step.
Note that one may be mistaken for thinking that a binary particle transition indicates that
sampling is unnecessary, especially given that the state space itself is discrete. However,

89

it must be remembered that while particles either transition to the next state or die (have a
weight of 0), the hypotheses that these particles represent may be different. For example,
Figure 4.6 shows two particles representing two behaviours and an observation sequence
of three features. In this example the first observed feature (a) can only be explained by
behaviour T 1, and thus any particle representing T 2 must either assume a false-positive
observation, assume a true-positive-change to T 1 or a true-positive-change to T 2. How-
ever, this last transition still cannot explain feature a and will ultimately gain a weight
of zero and die (will never be re-sampled). A similar process occurs at observation two
when feature a is again observed, and again at observation 3. It is important to note that
in the final time-slice each particle represents a unique hypothesis, including those with
the same final state. Thus, one can see that even for this relatively short observation se-
quence and only two behaviours the particle state-space grows quickly and thus sampling
is required if efficient (real-time) inference is to be achieved.

The next step partitions the particles into the Eligible (`) and Regeneration (ℜ) sets ac-
cording to P(yt |Zi

t ,y1:t−1) = 0 or 6= 0. The Regeneration set is processed first, with par-
ticles being flagged as ‘false positive’ observations according to the false-positive rate
of the observation. The remaining elements of the Regeneration set have their state re-
initialised according to the prior and are appended to the Eligible set.

For particles in the Eligible set, the Rao-Blackwellised posterior calculates the distribu-
tion of variable Di

t and then selects a value according to that distribution. At this point a
particle represents a full sample of (C,T,D, I) and can be weighted using Equation 4.10.
Finally, the two sets of particles are joined and the normalised particle weights are calcu-
lated so that ∑N

i=1 ω i = 1.

4.2 Advanced Algorithm

The previous section outlined a basic algorithm for performing inference with the bag-
of-features approach. This section now considers three methods for improving algorithm
efficiency during particle regeneration.

1. Recall that Section 4.1.1 suggested that particles could be regenerated using the
following priors:

• Re-initialising T (the target feature set) according to the uniform distribution

• Setting C = /0

90

T1
C={}

T1
C={a}

I=TPS
T1

C={a}

I=FP

T1
C={a}

I=TPCh

T1
C={a,b}

I=TPS

T2
C={}

I=TPS

T2
C={b}

I=TPS

T2
C={}

T2
C={}

I=FP

T1
C={a}

I=TPCh

I=TPCh

T2
C={}

T2
C={}

T1
C={a}

T2
C={b}

I=TPS

T2
C={}

I=TPS

T1
C={a,b}

I=TPS
I=TPCh

I=FP

T1
C={a}

I=FP

T1
C={a}

I=TPCh

T1
C={a,b}

I=TPS

T2
C={}

I=TPS

T2
C={b}

I=TPS

Observations:

Time

a a b

Behaviour 1 (T1) = {a,b}

Behaviour 2 (T2) = {b,c} Particle Dies (zero weight)

x Observed feature 'x'

Active Particle (non zero weight)

Key:

Figure 4.6: Example particle state growth for two particles and two behaviours while
observing a 3 features sequence.

91

This method of regeneration has the effect of erasing the history of the agent, mak-
ing an assumption that a new goal (behaviour) is being performed and no compo-
nents of it have been observed. However, such an assumption is naive and fails
to consider that some components of the second behaviour may have already been
observed during the first behaviour. In other words, the observation stream might
be a partial union of two individual behaviours.

2. Furthermore, in some circumstances the activities of an agent might be considered
as repeatable. For example, consider a physical agent in a scene. Exiting the scene
means the agent is no longer present, and it is therefore permissible to observe them
re-enter. This kind of repeatable behaviour is not possible within the algorithm
described thus far due to the single occurrence assumption, although an alteration
can be made to allow some repetition.

3. Finally, a further enhancement can be made to more efficiently deal with concate-
nated behaviours. Like partial behaviours, concatenation also causes a stream of ob-
servations from two behaviours, with the key difference being that both behaviours
are performed in their entirety. In this section all three of these scenarios will be
addressed via three small enhancements.

4.2.1 Partial Behaviours

Partial behaviours are typically observed when an agent abandons one goal to perform
another. Note that it is assumed that both goals are performed within the view of the
sensors and thus the set of observations Y for a single agent can be considered Y ⊂B j∪Bk,
where B j is the first behaviour and Bk is the second.

Denote y j→k as the first observed feature from Bk that cannot also be explained by B j.
That is, y j→k ∈ Bk ∧ y j→k /∈ B j . Furthermore, recall that ℜ is the set of particles that
cannot explain the current observation, as will occur when y j→k is observed. When y j→k

is observed it is expected that a large number of particles will be present in ℜ\F (recall
that F is the subset selected to represent false positive detections).

If particles are regenerated using the previously suggested scheme (i.e Ci = /0∀ i∈ℜ\F)
elements of Ci ∈Bk will be removed. For example, assume that the PlaceOb ject feature is
an element of both behaviours and that it has been observed before y j→k. When a particle
is regenerated it loses the knowledge that PlaceOb ject has been observed.

92

This loss of knowledge in essence throws away information and will ultimately lead to
suboptimal inference. To prevent this occurring the updated Algorithm 4.2 can be applied
to only remove elements from Ci when they are not consistent with the new target be-
haviour T i. The new algorithm thus keeps knowledge of all previously observed features
that are relevant to the new behaviour Bk, and removes only those that are not.

4.2.2 Feature Repetition

Repeatable features are sequences of features that revert the state of the agent. For ex-
ample, the features PlaceOb ject and RemoveOb ject can be considered repeatable when
the object in question is the same. This poses the question, if RemoveOb ject is observed,
should it be added to Ci, or should PlaceOb ject be removed from Ci?

The answer to this question largely depends upon the application area, or more specifi-
cally, whether the behaviours being modelled include revertible features. If one needs to
model a behaviour that includes a pair of revertible features then it will be necessary for
both features to be added to Ci when they are observed. In the opposite case, where re-
vertible features do not need to be modelled, it may be safe to take the alternate approach
of removing the ‘reverted’ feature from Ci. The remainder of the discussion will focus on
the more complicated scenario where the application needs to model revertible features.

The limitation of adding both features to Ci is that they cannot subsequently be repeated.
This is because of the ‘single-occurrence-assumption’ that states that each behaviour is
defined by a set of features without repeats. Yet it has just been acknowledged that placing
and removing an object reverts the state of the agent, and one could argue that the agent
should be permitted to place the object once more (or indeed, place and remove the object
any number of times).

Consider the two generic features αFWD and αBWD, where αBWD reverts αFWD. Further-
more, let us assume that a behaviour Bk is defined such that:{αFWD, αBWD} ⊂ Bk, and
that there exists a particle i such that Ci

t = {αFWD, αBWD} and T i
t = Bk. This particle

represents the scenario in which a pair of revertible features have both been observed.

Because of the single occurrence assumption, P(Di
t =αFWD) = 0. If the agent causes fea-

ture αFWD to be observed again, or in other words, At = αFWD, then
P(Di

t = αFWD|{C,T, I}i
t ,A1:t) = 0 and particle i will be regenerated. Thus there is the

potential for revertible activities to be detected and processed during the regeneration step

93

of the algorithm.

Define RevertedFeatures(α i) as the function that returns the features reverted by α i. Fol-
lowing the example above, RevertedFeatures(RemoveOb ject) = {PlaceOb ject}. Corre-
spondingly, the regeneration algorithm can be updated to
regenerate Ci

t : Ci
t =Ci

t�{RevertedFeatures(α i)∪α i}, or in other words, to remove any
sets of revertible features that exist in Ci

t .

By performing such an operation P(Di
t = αFWD|{C,T, I}i

t ,A1:t will become non-zero,
in effect allowing repeatable features2. This updated approach can be summarised by
Algorithm 4.3.

4.2.3 Behaviour Concatenation

Concatenation occurs when an agent performs one behaviour followed by another. Note
that this is different from partial behaviours in that it is assumed that the preceding be-
haviour is performed in its entirety before the second behaviour begins. Concatenation
is the simplest algorithm enhancement as it simply requires a check for Ci

t = T i
t during

particle regeneration. If this condition is true T i
t should be reset according to the prior

as usual, but additionally, Ci
t should also be emptied to indicate no features from the new

behaviour have been observed.

Having now defined these new algorithmic concepts this chapter is drawn to a close by
summarising them in Advanced Algorithm 4.4.

4.3 Summary

This chapter has introduced two generic inference algorithm for feature-based behaviour
recognition. At the beginning of the chapter the Basic Algorithm was described as a
combination of the Rao-Blackwellised Particle Filter with the bag-of-features Dynamic
Bayesian Network, and was summarised in Algorithm 4.1.

2Note that only sets of revertible features may be repeated. A single feature that is not reverted by
another is still subject to the single occurrence assumption.

94

Algorithm 4.2 Improving particle reset to enable behaviour switching
1: for i = 1 to M do {where M = |ℜ\F}
2: Ci∗ = /0
3: for e = 1 : E do {where E = |Ci|}
4: if Ci

e ∈ T i then
5: Ci∗ =Ci∗∪ {ci

e} {Keep the previously observed feature}
6: end if
7: end for
8: Ci =Ci∗

9: end for

Algorithm 4.3 Particle ‘Reset and Revert’ algorithm
1: for i = 1 to M do {where M = |ℜ\F}
2: Ci∗ = /0
3: for e = 1 : E do {where E = |Ci|}
4: if Ci

e ∈ T i then
5: Ci∗ =Ci∗∪ {ci

e}
6: end if
7: end for
8: for e = 1 : E do {where E = |Ci|}
9: if (ci

e ∈Ci∗∧ RevertedFeatures(ci
e) 6= /0 then

10: {Remove any feature ci
e reverts, and then ci

e}
11: for r ∈ RevertedFeatures(ci

e) do
12: Ci∗ =Ci∗ \ r
13: end for
14: Ci∗ =Ci∗ \ ci

e
15: end if
16: end for
17: Ci =Ci∗

18: end for

95

Algorithm 4.4 The Advanced Rao-Blackwellised Particle Filter algorithm
1: Generate [{{C,T}i

0,ω
i
0}N

i=1]∼ P(Z0) and ω0
2: for t = 1 to S do {where S is the length of the observation sequence}
3: for i = 1 : N do
4: Resample {C,T}i

t ∼ {{D,C,T, I}i
t−1,ω

i
t−1} via Algorithm 2.3

5: Transition with P(ri
t |Zi

t−1) to obtain {r}i∗
t = {C,T}i∗

t
6: end for
7: Partition into sets {ℜm

t }M
m=1 (Regeneration) and {`l

t}L
l=1 (Eligible)

8: for m = 1 : M do
9: if random()< 1−T P(At) then

10: Flag ℜm
t as ‘false positive’ and weight 0.01.

11: Move ℜm
t into set Ft [where Ft = {F v

t }Vv=1]
12: else
13: if Cm

t = T m
t then

14: Reset ℜm
t according to the prior and move to set Θt

15: else
16: Reset ℜm

t via Algorithm 4.3 and move to set Θt [where Θt =
{Θe

t }E
e=1]

17: end if
18: end if
19: end for
20: end for
21: {πq

t }Q
q=1 = {`l

t}L
l=1∪ {θ e

t }E
e=1

22: for q = 1 : Q do
23: Calculate RB-Posterior: P(Di

t |{C,T, I}i
t ,A1:t)

24: Predict πq
t = {rq∗

t ,zq
t } from RB-Posterior giving {D,C,T, I}q

t
25: Weight πq

t according to Equation 4.10 on page 80
26: end for
27: Zt = {F v

t }Vv=1∪{π
q
t }Q

q=1
28: Normalise Zt

The second half of the chapter presented some more complex behaviour concepts: par-
tial behaviours, concatenated behaviour, and repeatable features. The basic algorithm is
limited in its ability to deal with these concepts, but can be easily adapted to improve its
capabilities. Algorithm 4.4 presented the updated inference procedure in pseudo code,
and forms the final algorithm in this chapter. Having now described the theory of bag-
of-features inference, the next chapter will consider how this theory can be extended to
encapsulate behaviour hierarchies. This extension will build upon all of the ideas pre-
sented so far and requires very few changes to the algorithms.

96

Chapter 5

Hierarchical Recognition

Nomenclature:

Dt Agent’s desire at time t Zl Generic state at level l

Ct The set of currently achieved features at t α Set of detectable features

Tt The set of target feature at time t α i The ith element of α

At The observed activity at time t αl Set of detectable features at level l

yt Generic observation at time t Bk
l The complex feature k at level l

Z Generic state encapsulating C,T,D, I ω i
t Weight of particle i at time t

l Hierarchy level S Total number of observations in sequence

D̃ Hierarchy depth

In the previous chapters behaviours were defined as sets of features representing activities.
In assuming the independence of behavioural features the strict temporal ordering of a
behaviour was removed to give the bag-of-features representation.

This representation can be considered flat because it fails to represent the hierarchy often
found in behavioural models. However, a more natural representation is to consider the
individual sub-goals and activities that the behaviour encapsulates, as shown in Figure
5.1. In such a representation the overall behaviour is defined via a goal behaviour, which
is decomposed into individual sub-goals and activities. Correspondingly, the bottom layer
in the model is essentially the flat representation found in the earlier chapters.

97

Abandon
Object 2

Goal

Enter Area
Subgoal

Enter
Area

Place
Object

Leave Object
Subgoal

Exit
Area

Figure 5.1: An example of how goal behaviours are hierarchically decomposed into sub-
goals and activities

Hierarchical representations are not uncommon in prior work, with noted examples in-
cluding [18, 24, 107, 108]. This wide-spread use is not only due to the ease with which
behaviours can be represented hierarchically, but also because it can provide additional
inference benefits. For instance, hierarchical composition not only partitions actions into
meaningful subsets, but also promotes component re-use.

The merits of component re-use have been documented by Nguyen et al. in their work
with the Hierarchical Hidden Markov Model [108]. They note that model parameters can
be estimated on a component by component basis which reduces the number of parame-
ters for each component. The reduction in state space improves estimation performance
and allows more complicated structures to be represented. A further benefit is found when
attempting to explain detections to an operator. There are potential benefits to explaining
reasoning in terms of sub-goals, especially as the complexity of a behaviour increases to
the point where a single (flat) collection of activities would be difficult to communicate.

In this chapter a behaviour hierarchy will be applied to the bag-of-features framework to
achieve three objectives:

• Enable multi-agent behaviour to be modelled

• Aid behaviour specification via re-usable components

• Facilitate the explanation of recognised behaviour

98

This process of hierarchicalisation will be performed in two steps. Firstly, the principles
of the bag-of-features approach will be re-defined in terms of a hierarchy, and will then
be followed by a conversion of the filtering algorithm to utilise that hierarchy.

5.1 Representation

The underlying principles of feature based recognition remain the same as in Chapter 3.
Recall from Chapter 1 that the term primitive feature (synonymous with activity) refers
to features at the bottom of the behaviour hierarchy, while complex features are those that
are composed of a number of primitive and/or complex features. To give a concrete ex-
ample from Figure 5.1, PlaceObject is considered a primitive feature, while LeaveObject

is a complex feature composed of the primitives PlaceObject and ExitArea. Similarly,
AbandonObject is a complex feature composed of EnterArea and LeaveObject.

The DBN structure remains largely the same as before, with the key difference being that
variable T , the target feature set, may now contain primitive or complex features, while
in the previous chapters it only ever contained primitive features. Define Bk

l as the k’th
behaviour at level l in a hierarchy of depth D̃, where l = 1 at the top. At l = D̃ there
are no complex features, and thus there are no target behaviours (and consequently no
DBNs). At l = D̃− 1 in Figure 5.1 there are two behaviours: B1

D̃−1
= EnterArea and

B2
D̃−1

= LeaveOb ject. Because this additional notation is crammed the level will only be
indicated where essential. When omitted it should be assumed that all variables are at the
same level.

First, consider the distribution of Dt when l = 1. Recall that the agent’s desire Dt is depen-
dent upon the currently observed feature set Ct and the target feature set Tt . Furthermore,
recall that the conditional distribution of Dt (when It = T PS) was defined by:

P
(
Dt = α i)= P

(
Dt = α j) ∀i, j : α i,α j ∈Ct\Tt (5.1)

P
(

Dt = αk
)
= 0 ∀k : αk /∈Ct\Tt (5.2)

To aid with an example, if it is assumed that Ct = /0, Tt = {EnterArea, LeaveOb ject}, and
It = T PS, then:

P(Dt = EnterArea|{C,T, I}t) = P(Dt = LeaveOb ject|{C,T, I}t) = 0.5 (5.3)

99

However, it should be clear from Figure 5.1 that the LeaveOb ject feature contains more
primitives than EnterArea and thus when the temporal order is not modelled, a primitive
from LeaveOb ject is more likely to be seen. Consequently P(Dt = EnterArea|{C,T, I}t)
should be less than P(Dt = LeaveOb ject|{C,T, I}t), where the ideal posterior is:

P(Dt = EnterArea|{C,T, I}t) = 0.3̇ (5.4)

P(Dt = LeaveOb ject|{C,T, I}t) = 0.6̇ (5.5)

In other words, the probability of a complex feature is proportional to the number of prim-
itives it generates. Formally, define ch(α i) as the function that returns the children of α i,

and numPrim(α i) as a recursive function that returns the number of primitives that can be
generated from α i. Note that the recursive element means that if α i defines only complex
features, those complex features will in-turn be evaluated. Such a function can be sum-
marised in pseudo-code by Algorithm 5.1, and would return
numPrim(AbandonOb ject) = 3.

Next, let us consider Ct . Because there are cases where ch(α i) 6= 1 it is incorrect to
consider α i as complete unless all of its primitives have been performed. To address
this Ct must distinguish between complete and incomplete features, and can most easily
be achieved by considering an entry in Ct as the chain between complex feature α i and
primitive feature α j. For instance, Ct = {PlaceOb ject :: LeaveOb ject} would represent
the observance of PlaceOb ject, but not ExitArea. For simplicity, assume that the target
entries in Tt are represented in a similar manner.

To update the distribution of Dt to include the behaviour hierarchy, define prims(α i) as
a further recursive function that returns the primitive chains of α i, and remain(Ct ,α i) as
the function that returns |prims(α i)|− |prims(α i) ∈Ct |. As an example:

If : Ct = { EnterArea :: EnterArea,PlaceOb ject :: LeaveOb ject}
Tt = { EnterArea :: EnterArea,PlaceOb ject :: LeaveOb ject,

ExitArea :: LeaveOb ject}
It = T PS

then : remain(Ct ,EnterArea) = 1−1 = 0
remain(Ct ,LeaveOb ject) = 2−1 = 1

For simplicity, assume that remain(Ct ,Tt) returns the sum of remaining primitives for all
features in Tt , and thus remain(Ct ,Tt) = 3−2 = 1 in this example.

100

The distribution on Dt can now be updated so that for each feature α i, P(Dt = α i) is
proportional to the number of primitives that have yet to be observed normalised by the
the total number of primitives. Formally, the updated distribution of Dt becomes:

∀i α i ∈ Tt : P
(
Dt = α i)= remain

(
Ct ,α i)

remain(Ct ,Tt)
(5.6)

∀ j α j 3 Tt : P
(
Dt = α j)= 0 (5.7)

This can be solidified with the following examples:

If : Ct = {} Tt = { EnterArea :: EnterArea,

It = T PS PlaceOb ject :: LeaveOb ject,

ExitArea :: LeaveOb ject}

then : P(Dt = EnterArea) = 1
3 = 0.3̇

P(Dt = LeaveOb ject) = 2
3 = 0.6̇

If : Ct = {EnterArea :: EnterArea} Tt = { EnterArea :: EnterArea,

It = T PS PlaceOb ject :: LeaveOb ject,

ExitArea :: LeaveOb ject}

then : P(Dt = EnterArea) = 0
2 = 0

P(Dt = LeaveOb ject) = 2
2 = 1

Having now defined the updates to variables Ct ,Tt and Dt it should be highlighted that
variable At , which represents the observation, has the same form as Dt . That is, when Dt

represents a complex feature so too does At , and inversely, when Dt represents a primitive
feature At is primitive (as in the Chapter 3). Furthermore, in the original model the DBN
transitioned such that Ct = {Ct−1 ∪ Dt−1} when Dt−1 = At−1. This is fundamentally
the same in the new model, only Dt−1 is a complex to primitive chain and the primitive
element of Dt−1 is compared to At−1.

The only remaining aspect that should be re-iterated is that in Chapter 3 a DBN repre-
sented a single behaviour, but now represents a complex feature. To model the behaviour
in Figure 5.1 thus requires three DBNs: one to model the goal behaviour (Abandoned
Object 2), and two to model the sub-goals EnterArea and LeaveOb ject. Taken in con-
junction with other goal-behaviours and their associated sub-goals, the set of DBNs can

101

Goal Behaviour 2
Goal Behaviour 1

Sub-Goal 2
Sub-Goal 1

Figure 5.2: To model a set of behaviours requires two stacks of DBNS. One set for the
goal behaviours, and one set for the sub-goals.

be graphically represented as in Figure 5.2.

5.2 The Hierarchical Filter

As in Chapter 4 the goal is to calculate the posterior P(ZT |y1:T). However, Z1:T previously
consisted of a sequence of states up until time T at a single level, but must now represent
the entire behaviour hierarchy. First, consider the joint probability below, where D̃ is the
depth of the behaviour hierarchy as in the previous section, and yl

t is the observation at
that layer.

P(Z1:T ,y1:T) =
T

∏
t=1

D̃−1

∏
l=1

P
(

yl
t |Zl

t

)
P
(

Zl
t |Zl

t−1,y
l
1:t−1

)
(5.8)

Assume that once commenced, an agent performs a complex feature
(goal/sub-goal) independently from its parent. In essence, this means that each layer
of the hierarchy is decoupled and can be recognised independently using the approximate
inference algorithms from Chapter 4. To recognise a set of hierarchical behaviours thus

102

requires a particle filter for each layer forming a collection of D̃−1 filters approximating
[P(Zl

T |y1:T)]
D̃−1
l=1 .

P(Zl
T |y1:T) is the posterior filtering distribution of a complex feature given the set of

observations up until time T . To give a concrete example, consider when l = 2 in Figure
5.1. The associated filter can be used to estimate P(LeaveOb ject|{PlaceOb ject}), or
in other words, the probability that sub-goal LeaveOb ject is being pursued given the
sequence of observations (in this case there is only one: PlaceOb ject). Recall from
Chapter 4 that particles are weighted by the heuristic:

ω i
t = ω i

t−1×P(Zi
t |yt)×

|Ci
t |+1
|T i

t |+1
(5.9)

To define P(Zt |yt) in the hierarchical case one must first return to the behaviour decom-
position from Section 5.1. Recall that ch(α i

l) returns the children of complex feature α i
l ,

where each child is itself a complex feature when l < D̃−1. For a set of complex features
at level l, a single particle filter approximates P(Zl

T = α i
l |y1:T), and thus P(Zl

T = α i
l |y1:T)

can be can recursively calculated for any level by starting at the bottom of the hierarchy
(D̃− 1) where P(ZD̃−1

T |yD̃−1
1:T) = T P(yT). At each level l < D̃− 1, P(ZT |yT) is approxi-

mated via P(Zl+1
T = α i

l |y1:T) and is estimated via the filter at l + 1. The over-all filter-
ing procedure can then be performed as per Algorithms 5.2 and 5.3, where the function
stepFilter(f ,y, p) provides observation y to filter f , and the posterior estimate from the
previous level: P(Zl+1

T = α i
l |y1:T).

5.3 Example

To help illustrate Algorithms 5.2 and 5.3 Figures 5.1 on page 98 and 5.3 on page 106
will be used in an example. To generate the particle filters required Algorithm 5.2 re-
curses down each goal-tree defining a behaviour. Figure 5.1 showed the goal-tree for the
Abandon Object behaviour and it is assumed that 1 of the k goal-trees is to be recog-
nised. Starting at the root node, the behaviour’s target features are defined to be the
node’s children. In this example the Abandon Object 2 behaviour has the target feature
set {EnterArea,LeaveOb ject}. Taken into context with the remaining k− 1 behaviours
a total of k target feature sets are generated. These sets are represented by groups of par-
ticles in the Level 1 particles filter (bottom of Figure 5.3). In this particular filter k = 3
behaviours and thus there are three distinct groups of particles.

103

Algorithm 5.1 Recursively evaluate the number of primitive of α i.
1: Prototype: [n] = numPrim(α i)
2: Init: n = 0
3: for ce ∈ ch(α i) do
4: if ch(ce) = /0) then {ce is primitive}
5: return 1
6: else
7: for l f ∈ ch(ce) do
8: n = n+numPrim(l f)
9: end for

10: end if
11: end for

Algorithm 5.2 Hierarchical Filter Generation
1: Prototype: generateFilters({Gk}K

k=1, l, f)
2: Input: Set of K goal tree root nodes, current level, the set of filters
3: Procedure:
4: T = /0
5: for k = 1 : K do
6: {Recurse down the goal tree}
7: generateFilters(ch(Gk), l +1, f)
8: {Create a target feature set for this goal root}
9: T k = ch(Gk)

10: end for
11: {Start the goal filter at this level}
12: f l = startRaoBlackFilter({T k}K

k=1)

Algorithm 5.3 The over-all inference procedure
1: Prototype: bagO f FeatsIn f ({Gk}K

k=1,D)
2: Input: Set of K goal tree root nodes, tree depth D
3: Init:
4: f = /0
5: generateFilters({Gk}K

k=1, 1, f)
6: for t = 1 : S do {where S is the number of observations in the sequences}
7: {Re-initialise the posterior to the true-positive detection rate}
8: PD = P(Zt |yt) = T P
9: for l = D−1 : 1 do

10: Pl = stepFilter(f l,yt ,Pl+1)
11: end for
12: end for

104

Returning to Figure 5.1, Algorithm 5.2 also recurses down to the next level of each be-
haviour. Continuing the Abandon Object example, the LeaveOb ject feature has two chil-
dren: PlaceOb ject and ExitArea. Correspondingly, the LeaveOb ject feature is repre-
sented by the target feature set {PlaceOb ject,ExitArea}. The other child of Abandon

Object (EnterArea) only has one child: EnterArea, and thus its target feature set contains
only one element : {EnterArea}. There are thus two target feature sets at this level which
are represented by a Level 2 particle filter. This can be observed at the top of Figure 5.3.
Note that this step occurs for each of the k behaviours to obtain k level 2 filters.

The process just described is performed in the initialisation step of Algorithm 5.3. The
main iteration loop is then performed, stepping forward the particle filters for each obser-
vation. An example of the core particle filter algorithm has already been walked through
in Chapter 4, which has relatively few changes in its hierarchical form. The key difference
to note is that the level 1 particle filter predicts features that are not directly observable,
and for which the true-positive detection rate (P(Feature = α i|ObservedFeature = α i))
is not directly available. The P(Feature = α i|ObservedFeature = α i) can however be
approximated via a probability density estimate from the level 2 particle filters. This is
represented in Figure 5.3 via directed edges between the level 2 particle filters and the
level 1 weighting process. The probability density of the Level 2 particle filter can thus
be used to approximate the probability of an agent’s sub-goal behaviour, and the level 1
filter approximates their complex goal behaviour.

5.4 Summary

This chapter has gone beyond the flat behaviour representation presented in the previous
chapters and extended the approach to contain multiple-levels of abstraction. Observable
activities are now referred to as primitive features, while goals and sub-goals are referred
to as complex features. Our hierarchical representation uses a separate filter to model be-
haviour at each level of abstraction and thus a goal-tree of depth three uses two filters. The
first filter receives activity observations (primitives) and calculates the posterior density
of each sub-goal, the second filter then uses these estimates to calculate the probability of
each goal.

Using a hierarchical representation brings a number of benefits. Firstly, at the defini-
tion stage behaviours can be represented more naturally and components can be re-used
for different behaviours. Furthermore, the framework becomes capable of recognising
abstract concepts such as sub-goals, which facilitates the explanation of detections to

105

Com. 2 (Passing Through 1)
T={EnterAreaCom,LeaveObjCom}

Com. 3 (Passing Through 2)
T={EnterAreaCom,TransObjCom,ExitAreaCom}

Com. 1 (Abandon Object 2)
T={EnterAreaCom,LeaveObjCom}

Level 1
Particle Filter

Com. 5 (LeaveObjCom)
T={PlaceObjPrim,ExitAreaPrim}

Com. 4 (EnterAreaCom)
T={EnterAreaPrim}

Level 2
Particle Filter

Input:
Observation

P(Com4|Observation)
P(Com5|Observation)

Output:

Predictions Weighting

P(Com1|Observation)
P(Com2|Observation)
P(Com3|Observation)

Output:

Predictions Weighting

1

k

Figure 5.3: Algorithms 5.2 and 5.3 produce two levels of particle filters. The level 1 filter
approximates the probability density of the agent’s high-level behaviour, while the level
2 filters approximate the probability of different sub-goals. Note that for k high-level
behaviours there are also k level 2 filters, but only one level 1 filter. Estimates from the
level 2 filters are utilised by the level 1 weighting step.

106

operators. However, the greatest benefit is that it allows the recognition of multi-agent
behaviour and this will becomes the focus in the next chapter.

107

Chapter 6

Multi-agent Behaviour Recognition

Nomenclature:

Dt Agent’s desire at time t α i < Feature,Role > tuple

Ct The set of currently achieved features at t α i
F The feature component of α i

Tt The set of target feature at time t α i
ℜ The role component of α i

ℜ1 Agent 1 f A Filter

yℜ1
t Observation for agent 1 at time t f ℜ1,2 Filter for agents 1&2

Zℜ1,2
t State for multi-agent behaviour between f i

t The ith particle in filter f at time t

agents 1&2 B The number of behaviours

St State distribution for solo behaviours B f
b The bth behaviour in filter f

Mt State distribution for multi-agent behaviours Bs Set of solo behaviours

γ/ι Example subgoals Bm Set of multi-agent behaviours

N Number of agents S Set of particles representing Bs

ω i Normalised weight for particle i M Set of particles representing Bm

ω i∗ Un-normalised weight for particle i f B
t Filter representing behaviour type B at time t

A benefit of the hierarchical filter is that it can model multi-agent behaviours. This is
achieved by assigning agent-roles to complex features with the implication that if sub-
goals γ and ι are assigned roles 1 and 2 respectively, all sub-features of γ must be per-
formed by one agent, and all sub-features of ι by another.

Let us consider the Theft example in Figure 6.1. In this behaviour the agent fulfilling role

108

Theft
Goal

R1:
Enter Area

Subgoal

R1:
Place Object

Subgoal

Enter
Area

Place
Object

R2:
Enter Area

Subgoal

R2:
Steal Object

Subgoal

Enter
Area

Exit
Area

Remove
Object{ {

Must be performed by Role 1 Must be performed by Role 2

Figure 6.1: The Theft behaviour has two distinct agent roles

1 enters the scene and places an object. The agent fulfilling role 2 also enters the scene,
and steals the object by removing it and exiting.

By assigning roles to sub-goals there is minimum impact on the bag-of-features represen-
tation. Indeed, the only alteration required to the underlying DBN is the addition of role
information to variables Ct and Tt and an update to the posterior probability of Dt . This
is most easily done by considering α i as not only a feature, but as a feature/role tuple
α i =< α i

F ,α i
ℜ >. The distribution of Dt can then be represented as:

∀i α i ∈ Tt : P
(
Dt = α i)= remain

(
Ct ,α i)

remain
(
Ct ,Tt ,α i

ℜ
) (6.1)

∀ j α j 3 Tt : P
(
Dt = α j)= 0 (6.2)

Where function remain
(
Ct ,Ttα i

ℜ
)

returns the number of primitives for role α i
ℜ ∈ Tt less

the number of primitives for role α i
ℜ ∈Ct , and remain(Ct ,α i) returns the number of prim-

itives for feature α i less the number of those primitives in Ct (this is the same as in Section
5.1). In other words, the probability is evenly distributed over the features for role ℜ that
have not yet been observed.

Thus far it has been assumed that the actions of a single agent are being filtered. The
addition of multi-agent behaviours complicates the filtering in a number of ways. Firstly,
it should be clear that to recognise a multi-agent behaviour through filtering, the observa-

109

tions of both agents must be provided to the filter. This in itself is not difficult, but raises
the important question: What happens when multi-agent and solo-agent behaviours exist?

To see when problems occur consider the following example. Denote a sequence of two
observations {yℜ1

1 = α i,yℜ2
2 = α j}, where subscripts denote order and superscripts de-

note the agent generating the observation. Suppose that agents 1 and 2 are known to be
performing a multi-agent behaviour Bm, but that the filter also contains a solo behaviour
Bs. Under these conditions the top-level filter contains a set of |M| particles representing
Bm where {T i

t }
|M|
i=1will contain features for roles 1 and 2. There will also be a set of |S| par-

ticles representing Bs where {T i
t }
|S|
i=1will contain features for role 1 only. For simplicity,

assume that both behaviours can explain {α i
F ,α j

F}.

When observation yℜ1
1 arrives, both sets of particles will be able to explain the observa-

tion. However, when yℜ2
2 arrives the particle sets will react differently. Because 1 6= 2, set

M will attempt to find a second role in {T i
t }
|M|
i=1 and will find one. However, when set S

attempts to find a second role in {T i
t }
|S|
i=1 it will not find one because they represent a solo

behaviour. Consequently, the particles in set S will be regenerated as described in Chapter
4 while the particles in set M will not. Because the particles in M will be able to explain
more observations they will gain more weight, resulting in P(Z2 = Bm) > P(Z2 = Bs).
Recall that it was assumed that the agents were performing a multi-agent behaviour and
thus the filter gives the correct result in this scenario.

Now suppose that agents 3 and 4 are not performing multi-agent behaviour Bm, but are
instead both performing Bs. Denote the new observations {yℜ3

1 =α i,yℜ4
2 =α i,yℜ3

3 =α j}.
Note that both agents perform feature α i. As before, when observation yℜ3

1 arrives, both
sets of particles will be able to explain the observation. But this time, when observation
yℜ4

2 arrives, neither set of particles will be able to explain the observation. The discussion
will focus on set S as the more interesting set in this scenario. This set will have already
assigned role 1 to agent 3, and thus the particles must be regenerated if they are to explain
yℜ4

2 . However, this does not solve the problem because the inverse will occur when
observation yℜ3

3 arrives: role 1 will already be assigned to agent 4.

110

The solution to this problem is two-fold. Firstly, solo and joint behaviours must be par-
titioned into separate filters and the results merged to provide an overall posterior. Sec-
ondly, each filter must be associated with the agents being filtered and with an observation
stream that provides observations of those agents only. In this work it is assumed that ob-
servations are associated with a target identifier, and thus the partitioning of observations
is trivial. The second example above would require three filters:

• f ℜ3 Filtering solo behaviour for agent 3

G receiving observations from agent 3 only

• f ℜ4 Filtering solo behaviour for agent 4

G receiving observations from agent 4 only

• f ℜ3,4 Filtering multi-agent behaviour for agents 3 and 4

G receiving observations from agents 3 and 4

6.1 Combing Filter Results

Having identified that solo and multi-agent behaviours must be filtered independently
some mechanism is required to merge the results of the multi-agent filter M and solo filter
S such that:

P(Zt |y1:t) ≈
N

∑
i=1

ω iδ (Zi
t ,Zt) (6.3)

≈
|M|
∑

m=1
ωmδ (Zm

t ,Zt)+
|S|
∑
s=1

ωsδ (Zs
t ,Zt) (6.4)

To keep similar notation to before, denote P(St |y1:t) as the posterior probability of solo
behaviours, and P(Mt |y1:t) as the posterior for multi-agent behaviours such that:

P(St |y1:t) ≈
|S|
∑
s=1

ωsδ (Ss
t ,St) (6.5)

P(Mt |y1:t) ≈
|M|
∑

m=1
ωmδ (Mm

t ,Mt) (6.6)

111

Where as a normalised particle weight is denoted ω i, let ω i∗ denote the un-normalised
particle weight. Also, if f ∈ {S, M} is a filter representing the solo or multi-agent be-
haviours, and B f is the set of associated behaviours, then f i

t is the i’th particle in filter f

and δ (f i
t ,B

f
b) = 1 when particle i represents the b’th behaviour in B f . The un-normalised

weight of filter f can then be given by FW f :

FW f =
|B f |
∑
b=1

FW f
b =

|B f |
∑
b=1

| f |
∑
i=1

ω i∗δ (f i
t ,B

f
b) (6.7)

Where | f | indicates the number of particles in filter f . To merge the posteriors from each
filter requires a number of weighted average and re-normalisation steps. Re-normalisation
is required because ∑N

i=1 ω i = 1 for each filter, yet the approximation of P(Zt |y1:t) needs
to be normalised to be bounded by [0,1]. Furthermore, a weighted average must be cal-
culated to consider the un-normalised weights in each filter.

Step 1: Calculate the relative importance of each filter

The first step is to calculate the relative importance of each filter. For example, if FW S =

100 and FW M = 50 then the importance of each filter can be described as Imp(FW S) =
100
150 = 0.67 and Imp(FW M)= 50

150 = 0.33. However, it should be noted that this calculation
is only correct if the number of particles in each filter is equal. If one filter has more
particles than the other then the filter weights must first be equalised by normalising with
the number of particles in each filter (| f |):

Eq(FW f) =
∑|B

f |
b=1 FW f

b
| f | =

∑|B
f |

b=1 ∑| f |i=1 ω i∗δ (f i
t ,B

f
b)

| f | (6.8)

In the example above suppose that both filters have 100 particles, then, the equalised filter
weights will be the same as before:

Eq(FW S) =
100
100

= 1 (6.9)

Eq(FW M) =
50

100
= 0.5 (6.10)

112

=⇒ Imp(Eq(FW S)) =
Eq(FW S)

∑ f Eq(FW f)
=

1
1.5

= 0.67 (6.11)

=⇒ Imp(Eq(FW M)) =
Eq(FW M)

∑ f Eq(FW f)
=

0.5
1.5

= 0.33 (6.12)

Step 2: Re-normalise each behaviour

The second step is to recompute the likelihood of each filter behaviour B f
b via re-normalisation.

This is achieved by multiplying the filter importance by the original filter posterior:

P(Zt = B f
b |y1:t)≈ Imp(Eq(FW f))∗P(ft = B f

b |y1:t) (6.13)

To demonstrate the merge process in its entirety, Table 6.1 shows the original and com-
bined probabilities for two filters, each with two behaviours. Note that at the end of the
process behaviours {BehA,BehC,BehD} all have the same posterior probability of 0.17.
This is as one should expect, given that the particles for these behaviours all gained the
same total weight of 25 in their individual filters.

6.2 Identifying Multi-agent Behaviour

The previous chapter introduced the hierarchical filter and it has been shown how the
results of two (or more) filters can be merged. This allows multi-agent and solo be-
haviours to be filtered individually and yet produces a single estimate for the posterior
P(ZT |y1:T). Until now the discussion has not considered how many agents are to be fil-
tered, nor how those involved in multi-agent behaviour are known. These considerations
are clearly application dependent and for some domains the number of agents and ‘collab-
orators’ are known and fixed. However, there are other domains in which this information
is not known and must be derived. This section will introduce approaches for discovering
multi-agent behaviour within the context of the hierarchical filter.

It has already been identified that each filter must be associated with the agent(s) being
filtered and with an observation stream that provides observations of those agents only.
Correspondingly, if there are two agents in the scene (1 and 2) then using the approach
outlined produces three top-level filters; two filters for solo behaviours (one per agent),
and one filter for the multi-agent behaviours. Initially, consider merging the results of

113

Filter S:
BS

1 = BehA FW S
1 = 25 P(BS

1|y1:t) = 0.25
BS

2 = BehB FW S
2 = 75 P(BS

2|y1:t) = 0.75
Filter M:

BM
1 = BehC FW M

1 = 25 P(BM
1 |y1:t) = 0.5

BM
2 = BehD FW M

2 = 25 P(BM
2 |y1:t) = 0.5

Step 1:
FW S = 25+75 = 100
FW M = 25+25 = 50

Eq(FW S) = FW S

NumParticles(S) = 100
100 = 1

Eq(FW M) = FW M

NumParticles(M) = 50
100 = 0.5

Imp(Eq(FW S)) = Eq(FW S)

∑ f Eq(FW f)
= 1

1.5 = 0.67

Imp(Eq(FW M)) = Eq(FW M)

∑ f Eq(FW f)
= 0.5

1.5 = 0.33

Step 2:
P(BehA|y1:t) = Imp(Eq(FW S)) ×P(BS

1|y1:t)
= 0.67×0.25
= 0.17

P(BehB|y1:t) = Imp(Eq(FW S)) ×P(BS
2|y1:t)

= 0.67×0.75
= 0.5

P(BehC|y1:t) = Imp(Eq(FW M)) ×P(BM
1 |y1:t)

= 0.33×0.5
= 0.17

P(BehD|y1:t) = Imp(Eq(FW M)) ×P(BM
2 |y1:t)

= 0.33×0.5
= 0.17

Table 6.1: Worked example of filter merging

114

the solo filter for agent 1 and the multi-agent filter 1,2. In essence the merged filter
results estimate the overall posterior of agent 1 performing solo behaviours vs multi-agent
behaviours with agent 2.

Now assume that agents 1 and 2 are not in fact engaged in multi-agent behaviour. One
would expect that there will be a solo behaviour BS

b that is more probable than any other
behaviour: P(Zt =BS

b|y1:t)>P(Zt =B f
b′|y1:t)∀ f ,b′ b 6= b′. The same holds true if the results

for solo filter 2 are merged with multi-agent filter 1,2. If the behaviour with the highest
posterior is selected as the most likely explanation of an agent’s behaviour, and both
behaviours are solo, then it has been determined that agents 1 and 2 are not performing
multi-agent behaviour.

This raises the question: what happens if the most likely behaviour for agent 1 is solo but
the most likely behaviour for agent 2 is multi-agent? This predicament can be solved by
computing the joint probability of each combination and selecting the combination with
the higher joint (Approach 1).

Approach 1

if: max(P(Zℜ1
t = BS

b1|y1:t)×max(P(Zℜ2
t = BS

b2|y1:t))∀b1,b2

>

max(P(Zℜ1,2
t = BM

b |y1:t)×P(Zℜ2,1
t = BM

b |y1:t))∀b

then: 1 and 2 solo
else: 1 and 2 multi-agent

Note that P(Zℜ1,2
t =BM

b |y1:t) 6=P(Zℜ2,1
t =BM

b |y1:t) because P(Zℜ1,2
t =BM

b |y1:t) is a merge
of agent 1 solo behaviours with 1,2 multi-agent, while P(Zℜ2,1

t = BM
b |y1:t) merges agent 2

solo behaviours. In each case the probability has been normalised and thus the joint prob-
ability P(Zℜ1,2

t = BM
b |y1:t)×P(Zℜ2,1

t = BM
b |y1:t) must be considered to ensure that both

agents are considered. If max(P(Zℜ1,2
t = BM

b |y1:t),P(Z
ℜ2,1
t = Bm

b |y1:t)) was compared to
max(P(Zℜ2

t =BS
b2|y1:t)) then there is potential for the behaviour with maximal probability

to not be shared by both agents.

For example, Table 6.2 shows some hypothetical probability estimates for agents 1 and
2. The most likely solo behaviours are BS

1 for agent 1 and BS
2 for agent 2, having a

joint probability of 0.32. If max(P(Zℜ1,2
t = BM

b |y1:t),P(Z
ℜ2,1
t = Bm

b |y1:t)) was used to
identify the most likely multi-agent behaviour then P(BM

1) = 0.5 and correspondingly

115

Agent ℜ1 Solo Behaviours Agent ℜ2 Solo Behaviours

P(Zℜ1
t = BS

1|y1:t) = 0.4 P(Zℜ2
t = BS

2|y1:t) = 0.8
P(Zℜ1

t = BS
2|y1:t) = 0.1

Agent ℜ1,2 Multi-agent Behaviours Agent ℜ2,1 Multi-agent Behaviours
P(Zℜ1,2

t = BM
1 |y1:t) = 0.5 P(Zℜ2,1

t = BM
1 |y1:t) = 0.2

Table 6.2: Example probability distributions for two agents.

P(BM
1) would be chosen as the most likely behaviour. However, this is clearly wrong

because P(Zℜ2,1
t = BM

1 |y1:t) = 0.2, and when the most likely behaviour for agent 2 is de-
termined it will be solo behaviour BS

2. In this situation agent 1 is engaged in multi-agent
behaviour with agent 2 but agent 2 is not involved. This is clearly nonsense. However, if
max(P(Zℜ1,2

t = BM
b |y1:t)×P(Zℜ2,1

t = Bm
b |y1:t)) is used instead, a value of 0.1 is obtained

and the individual solo behaviours will be chosen as being most probable.

An alternative approach would be to compare the integrated probability of solo behaviour
with the integrated probability of multi-agent behaviour (Approach 2). Then, having se-
lected the most likely sets of behaviours, choosing the individual most likely behaviours
for each agent from those sets.

Approach 2

if:
∫

P(Zℜ1
t = BS

b|y1:t)db+
∫

P(Zℜ2
t = BS

b|y1:t)db

>
∫

P(Zℜ1,2
t = BM

b |y1:t)db+
∫

P(Zℜ2,1
t = BM

b |y1:t)db

then: A and B solo
else: A and B multi-agent

Approach 1 has been adopted in this research due to the simplicity of its implementation,
though it is hypothesised that both approaches should give similar performance.

Approach 1 will identify whether agents 1 and 2 are engaged in multi-agent behaviour
and by extension the same process can be applied to scenarios with more than two agents.
The only difference is that the joint probabilities must include all agents, not just pairs of
agents. Otherwise, an agent might be selected as engaged in multi-agent behaviour with
more than one agent. This process of calculating the joint probabilities can be considered
an optimal assignment problem, where the goal is to maximise the joint probability of all
agent behaviours.

116

If the application domain demands that the most likely behaviour be identified each time
a feature is observed, then filter merging and behaviour selection optimisation must be
performed for each observation. Filter merging can be performed in O(BN) time, where
N is the number of agents in the system and B is the number of behaviours. In practice
this operation is performed quite quickly (full run-time analysis is presented in Chapter
8), although subsection 6.4 identifies some fundamental limitations with the underlying
approach of having multiple filters.

Behaviour selection optimisation is significantly more expensive and has a best-case run-
time of O(B2N2). Although this is feasible for small B and N, this combinatorial problem
has an inherent scaling issue.

Heuristic Methods

Where as combinatorial optimisation generates possible solutions and identifies the best
one, heuristic methods find good, but not necessarily optimal solutions. Because they are
not guaranteed to find the optimal solution the complexity of heuristic algorithms is lower,
at the trade-off that only a good solution is provided.

There are a number of heuristic algorithms for performing combinatorial search, with
two popular approaches being Genetic Algorithms [99] and Simulated Annealing [70].
Genetic Algorithms are inspired by the principles of evolution: survival of the fittest.
Through the process of natural selection organisms adapt to optimise their chances of
survival. Better equipped organisms survive longer and have the opportunity to multiply,
while weaker ones do not. As organisms multiply, random mutations occur that change
the genetic make-up of children. If those mutations prove useful to survival then the
children also survive longer, giving those mutations the opportunity to spread via the
children’s own offspring.

A genetic algorithm (GA) consists of a population of candidate solutions for a given
optimisation problem. Members of the population are randomly selected to re-produce
based upon some function of fitness that characterises how good the solution is. The ‘off-
spring’ of these solutions are constructed by combing aspects from both parent solutions
(cross-over), and with the addition of small random changes (mutations) new solutions
are generated. Each candidate solution in the population has its own fitness, and as evo-
lution continues ‘fitter’ (better) solutions increase and are explored further, while weaker
solutions ‘die out’ from the population.

117

Genetic Algorithms suffer from a number of problems that make their use limited. Firstly,
each solution must be represented as a bit-string, which is unnatural for many prob-
lems. Furthermore, the process of exploration via cross-over and mutation is inefficient.
These operations do not use any knowledge of the problem at hand, and thus fail to make
progress in any structured way. As a result, many new (child) solutions are inferior, and
progress towards better solutions is slow [128].

Simulated Annealing is an alternative heuristic method that draws its inspiration from the
physical process of cooling metal [128]. When metal is cooled too quickly it becomes
brittle, while a gradual reduction in temperature provides a better result. In thermody-
namics the state of a system is determined by the energy of its particles, where higher
temperatures increase energy. For the problem at hand, one can represent the probability
of transitioning from lower state energy Ei to higher energy E j via the probability:

P(Ei,E j,Temp) = e−
(e j−ei)
KBTemp (6.14)

where KB is a constant. This distribution has several important attributes. Firstly, as the
temperature decreases, so too does the probability of transitioning from a lower energy
state to a higher energy state. Secondly, smaller jumps in energy are more likely than
bigger jumps.

The Simulated Annealing algorithm uses a similar concept, where physical particles are
replaced by assignments that have an energy represented by cost. Ordinarily, the objective
of simulated annealing is to minimise the overall cost of the system. However, for the
problem at hand, the assignment energy is associated with its probability, and thus higher
probabilities are preferred. The objective thus becomes to maximise the probability of the
system. To reflect this goal, the system transition probability is updated by removing the
negative from the exponent:

P(Ei,E j,Temp) = e
(e j−ei)
KBTemp (6.15)

Changing an assignment is akin to a particle changing states. With the new goal of max-
imising assignment probabilities, any transition that leads to an increase should be ac-
cepted, while negative transitions penalised. However, if negative transitions were always
rejected it is highly likely that the system would become stuck in a local maxima.

Instead, negative transitions are accepted according to the probability distribution 6.15.

118

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability

T
em

p
er
at
u
re

Figure 6.2: The probability of accepting a negative transition (-0.02) as the temperature
changes

That is, when the temperature is high, an assignment change that reduces the system’s
overall probability will be accepted with a high probability. However, as the system
temperature reduces, the probability of accepting a negative change decreases. This is
illustrated in Figure 6.2 which shows the probability of accepting a negative transition of
-0.02 as the system temperature decreases.

Algorithm 6.1 summarises the application of Simulated Annealing to the multi-agent de-
tection problem. It is provided with the merged posterior estimates for all agent combina-
tions and returns the best assignment found. The transition step changes the assignment
of one or more agents, where an assignment might be that agents 1 and 2 are engaged
in multi-agent behaviour, or that agents 1 and 2 are solo. If the joint probability of the
new assignment with all other (unaltered) assignments leads to a higher probability, the
change is accepted. If it leads to a lower probability, it is accepted according to the anneal-
ing distribution in Equation 6.15. Changes to the assignment are proposed for a specified
number of iterations before decreasing the temperature. The whole process then repeats
until the solution becomes stable. Details of the exact implementation of this algorithm
can be found in Chapter 7.

To illustrate the algorithm with an example, Figure 6.3 shows a simple trace of one it-
eration of the algorithm. The algorithm is invoked each observation and is sequentially

119

Algorithm 6.1 Simulated Annealing for Multi-Agent Behaviour Detection
1: Prototype: [S] = simAnnealing([P(Zt |y1:t)])
2: Init:
3: S = initialSolution()
4: Temp = initTemperature() {Typically 1}
5: KB = InitialKb() {Typically 1-10}
6: α = initTemperatureDecrementRate() {Typically in [0.8,0.99]}
7: repeat
8: for i = 1 : numIterations do {Typically 100-1000}
9: C = generateRandomTransition(S)

10: if P(C)≥ P(S) then
11: S =C
12: else
13: if e

(P(C)−P(S))
KBT > random([0,1]) then

14: S =C
15: end if
16: end if
17: end for
18: {Reduce the temperature by α}
19: Temp = Temp×α
20: until no change in S

executed after the particle filters have generated the probability density estimates for each
agent/behaviour. This is shown in line 1 of the example where it is assumed there are a to-
tal of two agents and three possible behaviours. In lines 2-6 the algorithm is initialised as
can be seen in the figure. In this example the initial solution is generated by assuming that
all agents are performing solo behaviours, and thus their most probable solo behaviours
can be observed in the figure. On line 8 the first iteration of the algorithm begins, and
a random solution transition is generated on line 9. In this example the transition is that
agents 1 and 2 are involved in multi-agent behaviour and thus both agent assignments are
changed in the candidate solution C. After calculating the joint probability of the original
(initial) and new (candidate) solutions one can see on line 10 that the new solution is an
improvement, and thus the transition is accepted and forms the new (working) solution
(line 11). The algorithm would then repeat for a fixed number of iterations before decre-
menting the temperature, and this process in turn would repeat until a stable solution was
found.

Although in this simple example only two agents are present and only one multi-agent
behaviour exists, a more complex scenario could involve many more agents. A transition
might switch a multi-agent behaviour to a solo behaviour (for both agents), or could alter
the agent:agent assignment. Such an alteration might swap agents 1 and 2 being involved
in behaviour 3 for an the assignments: agent 1 and agent 3 (and their most probably
multi-agent behaviour), and agent 2 being changed to a solo behaviour.

120

1. Input: Probability estimates from particle filters for t=1:S for all agents and all behaviours

Agent 1 Solo Behaviours

P(Behaviour1) = 0.1

P(Behaviour2) = 0.4

P(Behaviour1) = 0.2

P(Behaviour2) = 0

Agent 2 Solo Behaviours

Agent 1,2 MultiAgent Behaviours

P(Behaviour3) = 0.5

Agent 2,1 MultiAgent Behaviours

P(Behaviour3) = 0.8

2 - 6. Initialisation:
Temp = 1

alpha = 0.9

Kb = 1

Agent 1 Agent 2

Behaviour

Probability

Beh. 2

0.4 0.2

Beh. 1

S =

8. Iteration i = 1 begins

9. Generate Random Transition:

Agent 1 Agent 2

Behaviour

Probability

Beh. 3

0.4 0.2

Beh. 3

Agent 1 Agent 2

Behaviour

Probability

Beh. 3

0.5 0.8

Beh. 3 = C

P(S) = 0.4 * 0.2 = 0.08 P(C) = 0.5 * 0.8 = 0.4

10. P(C) > P(S)

11. S = C (Accept the new solution)

17 - 18. Algorithm repeats for fixed number of iterations before reducing temperature

20. Algorithm repeats until solution becomes stable

Temp = Temp * alpha = 1 * 0.9 = 0.9

Figure 6.3: A simple example trace of the simulated annealing algorithm.

121

6.3 Predicting Agent Behaviour

The simulated annealing algorithm not only identifies which agents are engaged in multi-
agent behaviour, but also identifies what behaviour each agent is performing such that the
overall probability of the observations is maximised. At its simplest, predictions can be
generated based on this information alone. However, the annealing algorithm does not
indicate how much of a behaviour has been observed, nor how stable that assignment is.
Because it is likely that such information would be extremely useful for many applica-
tions, this section considers how it might be obtained from the filter.

The inherent structure of the DBN provides some very useful information about what
behaviour has been observed. The set of currently observed features tracks not only the
observations, but also the behavioural roles that they satisfy. By extracting this informa-
tion from all particles in a filter a generalised picture can be formed and used as part of
the prediction process.

Recognising where in the behaviour the agent is, or how much of it has been performed,
is likely to be extremely useful for determining how reliable the current prediction (most
likely behaviour) is. If only a quarter of a behaviour’s features have been observed then
the confidence in that prediction should remain reasonably low. Yet if three-quarters
of a behaviour have been observed our confidence should be increased. For any given
behaviour Bb, the status distribution can be represented as:

P(Ct |Tt = Bb)≈
N

∑
i=1

ω iδ (Ci
t ,Ct)δ (T i

t ,Bb)∀i ∈ f B
t (6.16)

where f B
t represents the filter for behaviour type B (e.g. solo) at time t. From this posterior

one can determine the probability that a subset of features have been observed.

It may be desirable for predictions to only be communicated to an operator when at least
half of a behaviour has been observed. This could be trivially achieved as follows:

∃n : P(Cn
t |Bb)> T h∧ |Cn

t |
numPrim(Bb)

> 0.5 (6.17)

where T h is some certainty threshold. A similar approach can be taken in determining to

122

which role agents have been assigned, allowing a prediction to be explained to an operator
in terms of ‘who did what’.

Although the filtering distribution itself tells us how stable a behaviour prediction is, what
it does not tell us is the stability of the solo/multi-agent assignment. For this, the output of
the simulated annealing algorithm must be tracked. Assignments that frequently change
between observations are likely to be unreliable, and thus the associated behaviour pre-
dictions, which are restricted by the assignment, are also unreliable. That is because a
‘multi-agent’ assignment between agents 1 and 2 enforces predictions based on the multi-
agent filter f ℜ1,2, and thus discounts solo behaviours and multi-agent behaviours with
other agents.

Because behaviour prediction is restricted by multi-agent assignments the overall predic-
tion process is reliant upon good simulated annealing results. This makes the annealing
process a critical point in the architecture, as it has the ability to negate much of the ef-
forts of the particle filters. Such a property is undesirable and represents a limitation of
this approach, although no scalable alternatives are apparent.

6.4 Limitations

Throughout this chapter it has been hinted at that the process of identifying multi-agent
behaviour presents a scalability issues. When the behaviours being filtered are restricted
to a maximum of two agents the solution scales well if the agents performing a multi-agent
behaviour are known. But this is not so true if those involved in multi-agent behaviour are
not known. In a three-agent environment there are three potential pairs of ‘collaborators’
and thus three filters are required just to represent the multi-agent behaviours. If only
the goal behaviour filters for each solo/pair are considered, then three agents requires six
filters, four agents requires ten, and five agents requires fifteen filters. It should be clear
that this is polynomial growth and thus presents a scaling issue.

What’s more, this issue arises when behaviours are restricted to pairs of agents. The
growth rate is larger if behaviours can consist of three or more agents. Chapter 8 will
analyse these growth rates in more detail to identify at what point they becomes unviable.

123

6.5 Summary

This chapter has presented an approach for recognising multi-agent behaviour without
prior knowledge of agent groupings. At its core combinatorial search is used to find
the most likely behaviours for all agents. To achieve this the posterior probability of
each multi-agent behaviour for each pair of agents must be calculated, in addition to
calculating the posterior of each agent performing solo behaviour. The posterior filtering
density of each filter can be combined to give a joint estimate, which is then provided to
the optimisation algorithm.

Simulated Annealing is a heuristic optimisation algorithm that is efficient and delivers
good solutions. This algorithm is used to identify the best joint probability of all agents
performing behaviours which not only tells us the most likely behaviour for each agent,
but also identifies those involved in multi-agent behaviour. Because the approach is built
upon combinatorial search it suffers from an inherent scaling issue. The number of filters
required grows exponentially with the number of agents and this will impact on run-time.

As this chapter concludes the theoretical description of our approach has now been com-
pleted. The next chapter will discuss how this framework was implemented and evaluated
and then proceed to discussing the results in the chapters that follow.

124

Chapter 7

Implementation

Nomenclature:

Blt Set of foreground pixel blobs N Number of agents

Elt Subset of Blt matching ellipsoids Temp Initial temperature

(diameter: 0.4m, height: 1.8m) α Temperature decrement rate

SmBlt Subset of Blt with 0.3≤ height & width ≤ 1m I Number of simulated annealing

r Likelihood ratio iterations

Bk The kth behaviour C Set of observed features

In the previous chapters the bag-of-features approach has been introduced via generic,
domain independent algorithms. To evaluate these algorithms they will now be applied
to the domain of automated visual surveillance. This is one domain in which annotated
corpora is rarely available due to both privacy concerns, and the time consuming nature
of annotating video. As discussed in Chapter 2, the majority of existing research in this
area has focused upon non-probabilistic event matching techniques which are unable to
reason about uncertainty. The application of our approach to this area thus represents a
large step-forwards in probabilistic automated visual surveillance.

The implementation framework can be broadly separated into three levels: Image Pro-
cessing, Reasoning, and Operator Interaction. Within each layer a number of ordered
processes are performed, while different layers are strictly de-coupled to facilitate the in-
tegration and replacement of different processing techniques. The overall framework is

125

}Reasoning

}
Image

Processing

Visual Data

Object Detection &
Tracking

Primitive Feature
Detection

Collaborator
Detection

Complex Feature
Detection

Alert Selection &
Explanation

}
Operator

Interaction

Figure 7.1: The 3-Layer Implementation Framework

visually represented in Figure 7.1. It should be noted that the implementation does not
attempt to inform or improve lower-level recognition as a result of high-level inference,
although such an integration could certainly provide interesting future work.

This chapter’s layout broadly follows that of Figure 7.1. The first section will introduce
the components required to recognise primitive features from raw video data. This is
followed by implementation details for the Hierarchical Rao-Blackwellised Particle Filter
(introduced in Chapter 5), and the multi-agent behaviour detection algorithm (introduced
in Chapter 6). Section 7.3 will then discuss the criteria by which predictions are made and
behaviour explanations generated. Finally, the chapter will conclude with a discussion of
the primitive feature simulator which is used to generate substantially more test cases
than could have been viably generated from video alone. The simulated data is used in
conjunction with real video data throughout the evaluation.

126

7.1 Image Processing

The image processing stage consists of two steps. Firstly, Object Detection and Tracking
provides information about scene objects. The objects of interest are foreground objects,
that is, they enter the scene and are separate from the static background. The movements
of foreground objects are tracked and allow simple semantic events to be detected during
the second step. These events are represented as primitive features, and provide input to
the Reasoning layer of the framework.

7.1.1 Object Detection and Tracking

Static cameras allow foreground pixels to be identified using background subtraction.
This technique was introduced earlier (Section 2.2), but to summarise, it compares the
current video frame with a known background frame. Pixels that are different according
to some threshold are classed as foreground pixels, and connected foreground pixels give
foreground blobs. These blobs will collectively be referred to as Blt . Because calibrated
cameras are used the size and location of each blob can be projected into real-world
coordinates and used to calculate the proximity of different objects. This will prove useful
for primitive feature detection in Section 7.1.2.

Two separate trackers operate on Blt :

Person Tracker

The person tracker consists of a set of SIR filters [54]. These filters implement Sequential
Importance Sampling with Re-sampling, a technique that has already been introduced
generically in Section 2.1. The implementation used has been provided ‘as is’ by [84]
and uses one hundred particles to represent the person’s position on the ground plane,
velocity, and direction of travel. For each video frame, the blobs (groups of foreground
pixels) that contain people are quickly identified from Blt using ellipsoid detection, which
identifies ellipsoids with height ≈ 1.8m and diameter ≈ 0.4m. Denote the set of these
blobs as Elt .

For each element of Elt that cannot be explained by an existing filter, a new filter is

127

instantiated to track that person. The start of a new track thus indicates the entry of an
agent into the scene, while the absence of a track indicates that the person associated
with that tracker has been lost. In order to address the temporary occlusion of a person
(e.g. people crossing paths), particles also contain a visibility variable (0/1) to indicate the
person’s disappearance. This variable applies to all particles in the filter. By combing this
variable with a time limiting threshold, the filter continues to predict the person’s location
for short occlusions, while longer occlusions will cause the track to actually terminate.

In order to distinguish between agents each tracker is initialised with a unique identi-
fier. Tracker output thus consists of time indexed tuples containing the person’s ID, their
coordinates within the image frame, and their real-world coordinates.

Object Tracker

The second tracking component consists of an object detector which is used to detect
static objects having the appearance of luggage. The object detector uses a number of
heuristics to identify static ‘luggage like’ objects. The first heuristic is applied to the
size of the foreground blob and constrains its real-world width/height (x) to: 0.3m ≤
x ≤ 1m. This range encompass a variety of items while excluding overly large or small
blobs. Excluding very-small blobs is particularly important in counteracting the effects of
lighting changes, which spuriously create small foreground blobs. The use of appearance
based heuristics is not unprecedented in automated video surveillance research, with other
examples including [91, 84, 130].

The second heuristic used by the object tracker is location and time based. For each
element in the set SmBlt , which denotes the set of blobs satisfying the size constraints, an
element is classified as a stationary luggage item if its centroid remains within 0.3m of its
original position for one second. A successful classification initialises the tracking of the
object, to which a unique object identifier is associated. As with the person tracker, object
tracks are comprised of the unique object ID and the object’s image frame/real-world
coordinates.

A static object continues to be tracked while its position remains stationary. That is, while
the blob’s centroid remains within the 0.3m sphere around it’s origin. If the centroid
moves outside this region for more than one second, the object track is terminated.

128

Module Description
Agent Tracker Detects the entry/departure of people from

the scene.
Object Tracker Upon luggage detection, associates that

luggage with the closest person. Object
removal is associated with the last closest
agent.

Group Tracker Identifies when people are in close
proximity, and split from a single location.

Table 7.1: The primitive feature detection modules

Parameter Sensitivity

It should be acknowledged that the trackers are reasonably sensitive to the heuristic pa-
rameters discussed. In the case of the person tracker small children cannot be detected,
although outside of this it performs reasonably well at tracking a range of different height
individuals (160−183cm). The object tracker too can be sensitive and these parameters
were drawn both from other work in the field and through manual tuning. This thesis
does not suggest that these trackers would be robust in more complex situations and their
detection accuracies will be discussed in Chapter 9.

7.1.2 Primitive Feature Detection

Primitive features are correlated with a set of simple video events that can be detected
from video tracking information. Detection is handled via three separate modules which
encode simple semantic rules. Each module outputs observations in the form of primi-
tive features, which are provided as input to the reasoning layer of the framework. The
modules are summarised in Table 7.1.

The first module processes person tracking data to identify when tracks begin and end.
The commencement of a track produces the observance of an EnterAgent primitive, while
the termination of a track produces an ExitAgent primitive. It should be noted that no
temporal information is to be assumed when a primitive is detected. For instance, the
occurrence of EnterAgent does not indicate that the agent has recently entered the scene,
but merely that the agent has been identified as a person and is now being tracked. In
severely occluded scenarios, such as when people enter as a group, individual agents are
often not identified until the viewing angle changes or the group structure changes. It
is therefore possible for EnterAgent features to be generated for agents who have been

129

present but undetected in the scene. In a similar vein, ExitAgent primitives only indicate
the absence of an agent previously detected, and could be caused by long occlusions rather
than actual scene departure.

The second module processes both object and person tracking data. Its primary purpose is
to identify when objects are detected or lost, generating Ob jectPlaced and Ob jectRemoved

primitives. Unlike the previous two primitives, object related primitives cannot automat-
ically be associated with an agent. To achieve an association this implementation uses
the naive approach by using agent tracking information to infer object ownership. That
is, the agent closest to the object is chosen as the activity performer. This approach is
consistent with other work in the field (e.g. [91]). There are clearly limitations with this
approach, and although not explored within this research, there is huge scope for utilising
more accurate activity detection techniques to improve detection accuracy.

Finally, it should be highlighted that Ob jectPlaced and Ob jectRemoved are not only as-
sociated with the closest agent, but are also associated with the object identifier that caused
the event. In this way it is clear that Ob jectPlaced(ob j1) and Ob jectRemoved(ob j1) refer
to the same object but that Ob jectPlaced(ob j1) and Ob jectRemoved(ob j2) do not.

The final module is referred to as the Group Tracker and uses agent proximity to deter-
mine when groups of agents form and split (disband). Again, this technique is naive and
could be replaced with more advanced techniques that actually detect group interaction.
The development of such algorithms is beyond the scope of this research, although some
suggestions for future work are presented in Chapter 11.

The Group Tracker uses a number of heuristics to identify group formation/disbandment.
Firstly, groups of agents in this context are assumed to be within close proximity, and thus
agents must be within two metres. Secondly, groups are assumed to have similar motion.
A set of agents are therefore only classed as grouped if they remain in close proximity for
three or more seconds. Thus, for a set of agents having proximity greater than two metres,
who then close their proximity below this threshold and remain close, a GroupFormed

primitive will be generated. Inversely, if the proximity between grouped agents exceeds
the threshold for more than two seconds, a GroupSplit primitive is generated. Finally,
the remaining scenario is when multiple agents enter the scene in close proximity. Under
these circumstances a GroupFormed primitive is not generated because the agents are
already grouped.

Chapter 9 will show that these modules deliver varying degrees of accuracy on the real
video datasets, and it is important to acknowledge that they would be insufficient for more

130

complex video. The focus of this research is high-level inference and thus state-of-the-art
video processing techniques may not have been used. However, the modularity of the
framework allows any component to be swapped, and thus readily supports the adoption
of improved video processing algorithms.

7.2 Reasoning

This section focuses on the reasoning layer of the framework and contains two compo-
nents: Complex feature detection and multi-agent behaviour detection. Complex feature
detection has been introduced in its generic form in Chapter 5 and requires very few im-
plementation specific considerations. However Section 7.2.1 will fully specify the set of
behaviours used in the implementation. Similarly, generic collaborator detection was in-
troduced in Chapter 6 and contains several parameters that must be tuned. Section 7.2.2
will detail the parameter values used in addition to presenting a slightly modified algo-
rithm.

7.2.1 Complex Feature Detection

Seven behaviours were identified to be used throughout the evaluation. Four of these
behaviours can be directly observed in the publicly available PETS 2006 dataset. This
dataset was originally produced for low-level video event recognition. Although no exist-
ing research has considered complex events within the data, its widespread use within the
video community, and its realism, make it a good choice of dataset for future comparisons
between different approaches.

In addition to the four directly observable behaviours, a fifth behaviour can be generated
by merging tracking information from two separate videos. This synthetic scenario en-
capsulates all of the low-level classification errors (noise) and realism of the component
videos and thus synthesis very realistic data. The use of synthetic scenarios is not un-
common in prior work (e.g. [27, 62]), where it is often recognised that extending existing
datasets is a difficult task. Visually, the synthetic behaviour is very similar to others, yet
has important semantic differences that distinguish it as unique. Finally, two further be-
haviours were defined which are not present nor synthesised in the PETS 2006 dataset.
Again, these behaviours were chosen due to their similarity to others, while having dis-
tinctly different semantic explanations. In addition to the PETS dataset, a second video

131

Name Description Present
in PETS

Present
in HW
dataset

Passing
Through 1

(PT1)

Person enters and leaves the scene Y Y

Passing
Through 2

(PT2)

Persons enters, temporarily places luggage,
then leaves the scene (with luggage)

Y Y

Watched
Item (WI)

Two people enter the scene as a group. One
places luggage and leaves the scene without

it. The other person remains in the scene.

S Y

Abandoned
Object 1
(AO1)

Two people enter the scene independently.
The people temporarily form a group. One
person places luggage and leaves the scene

without it.

Y Y

Abandoned
Object 2
(AO2)

Person enters the scene, places luggage and
leaves without it.

Y Y

Theft
(Th)

Person enters the scene and places luggage.
Second person enters scene and removes
other agent’s luggage, leaving the scene

with it.

N Y

Hand-Off
(HO)

Person enters the scene, places luggage and
leaves without it. Second person enters the

scene, removes luggage and leaves the scene
with it.

N Y

Table 7.2: Goal behaviours used in the evaluation

dataset containing all the behaviours was gathered for the evaluation (termed the HW
data) and is fully discussed in Chapter 9.

Table 7.2 summarises the details of each of the seven behaviours, including whether they
are directly observable in each video dataset. Each behaviour is represented by a com-
plex feature in the Hierarchical Rao-Blackwellised Particle Filter. The structure of each
Behaviour can be found in Appendix A.

132

7.2.2 Collaborator Detection

Collaborator detection is heavily based upon the Simulated Annealing algorithm pre-
sented in Chapter 6. There are three parameters to this algorithm:

• Temp: Initial temperature (value used: 1)

• α: Temperature decrement rate (value used: 0.9)

• I: The number of iterations (value used: 50)

During experimentation it was found that several short runs (in terms of iterations) pro-
duced better results than longer runs. The algorithm was thus altered to perform several
cycles, as summarised in Algorithm 7.1. In essence, an additional loop has been in-
serted around the algorithm to initialise the solution in different ways. On the first cycle
the solution is initialised by assigning each agent to the solo behaviour with the highest
probability. However, at the end of each cycle the solution utility (joint probability of
all assignments) is compared against the best solution so far, storing the new assignment
when appropriate. This assignment is then used to re-initialise the solution on the next
cycle.

7.3 Operator Interaction

The Operator Interaction layer provides a window through which operators gain insight
into the behaviours that have been detected. In essence it is responsible for filtering the
information generated during inference to provide a succinct summary of interesting be-
haviour. Interesting behaviour can be defined by two attributes: the criteria defining ‘in-
terestingness’, and the behavioural aspects that are important to an operator. The inter-
estingness of a behaviour thus determines whether a prediction should be presented to
the operator, while the important behavioural aspects determine what details should be
encompassed by a prediction.

133

Algorithm 7.1 Multi-Cycle Simulated Annealing for Collaboration Detection
1: Prototype: [S] = simAnnealing([P(Zt |y1:t)])
2: Init:
3: S = initialSolution()
4: Su = utility(S)
5: T = initTemperature() {Typically 1}
6: α = initTemperatureDecrementRate() {Typically in [0.8,0.99]}
7: Bu = 0 {Best solution utility}
8: Bs = /0 {Best solution}
9: for cy = 1 : 10 do

10: if cy > 1 then
11: if Su < Bu then
12: S = Bs
13: end if
14: end if
15: repeat
16: for i = 1 : numIterations do {Typically 100-1000}
17: C = generateRandomTransition(S)
18: if P(C)≥ P(S) then
19: S =C
20: else
21: if e

(P(C)−P(S))
KBT > random([0,1]) then

22: S =C
23: end if
24: end if
25: end for
26: T = T ×α {Reduce the temperature by α}
27: until no change in S
28: if utility(S)> Bu then
29: Bu = utility(S)
30: Bs = S
31: end if
32: end for

134

7.3.1 Prediction Criteria

In many applications, including visual surveillance, some behaviours can be considered
uninteresting. That is, they are expected and are of no cause for alarm. However, other
behaviours, though routine, may be more concerning and are of particular interest to
operators. Of the seven behaviour used throughout the validation three involve normal
transport-hub behaviour (PT 1, PT 2, WI). The remaining four behaviours are more sus-
picious and involve object abandonment/theft, and should therefore be monitored more
closely (AO1, AO2, T H, HO). One can thus begin to build a set of criteria for ‘interest-
ing’ behaviours based upon the application domain.

Another criteria that can be considered when making predictions is how far a behaviour
has progressed. The bag-of-feature approach is a ‘minimum explanation’ system that
favours shorter explanations, as discussed in Chapter 4. This means that for a set of
observed activities and two behaviours that can explain those activities, the behaviour
with fewer components will be more probable. Even after a single observation, one (very
short) behaviour may be substantially more probable than the others, so it is important that
when making predictions the level of behaviour completion is considered in conjunction
with the behaviour probability.

The experimental evaluation uses both of these criteria for behaviour prediction. Firstly,
predictions are restricted to those behaviours that have been observed in their entirety.
That is, all features representing a behaviour have been observed. This information can
be deduced from the hierarchical particle filter by calculating the mean number of ele-
ments of variable C for the most probable behaviour. Secondly, all behaviours are selected
for communication once they have been observed, although they are partitioned into two
sets. The first set represents less interesting behaviours and it is ensured that the infor-
mation conveyed for these predictions is minimal. The second set contains concerning
behaviours, where additional details are presented to the operator (see next section).

135

7.3.2 Prediction Detail

All predictions have a basic form to indicate the agent and behaviour detected:

“Agent X has performed Behaviour B. Certainty: C”

The certainty is drawn from the set {low,medium,high} and is determined via a numerical
mapping of the likelihood ratio. The likelihood ratio is simply the probability of the
behaviour divided by the next most probable behaviour within the same class. (e.g. solo
behaviours). So for instance, where two behaviours have the same probability a ratio of 1
is produced and is mapped to low certainty. The mapping rules chosen were :

r < 1.5 : low (7.1)

r ≥ 1.5 : medium (7.2)

r > 2.0 : high (7.3)

As a demonstration, suppose that P(B1) = 0.25 and P(B2) = 0.5, giving a likelihood
ratio r = 0.5

0.25 = 2. This implies a high certainty, which seems reasonable given that
B2 is twice as likely as B1 given the evidence. Similarly, consider when P(B1) = 0.25
and P(B2) = 0.3. These probabilities are relatively similar and give a ratio of only 1.2,
indicating a low certainty. Again, this seems reasonable.

For predictions from the concerning set of behaviours additional behaviour specific details
are provided to the operator. These are specified via templates using feature chains to
identify key events. For example, the Abandon Object 1 template is:

“Agent < ROLE− 0 > has left luggage with agent < ROLE− 1 >, but they

are not known companions. < ROLE−0 > may have abandoned an object.

The item was placed around frame < 0 : Ob jectPlacedPrimitive : LeaveOb jectComplex>

and abandoned around frame < 0 : ExitAgentPrimitive : LeaveOb jectComplex>.”

Note that the use of feature chains to specify events is consistent with the currently

achieved feature set variable C. It is trivial to implement the hierarchical particle filter

136

in such as way as to store the time that a feature was observed, and thus the mean time
can be extracted and placed into the template string during the prediction details stage.
This approach allows relevant event times to be communicated to the operator during
prediction.

7.4 Primitive Feature Simulator

Section 7.1 described a framework for processing raw video data into primitive feature
observations. Due to the limited availability of real video datasets, a primitive feature
simulator was also developed to mimic the low-level video processing, allowing more
scenarios to be generated than could be feasibly recorded by actors. The simulator thus
used the set of detectable behaviours as a plan library from which potential observation
sequences could be generated. Similar approaches have also been taken in prior work
such as [78], and allows the rapid generation of potential observation sequences.

In order to preserve realism the simulator incorporated two levels of low-level classifica-
tion errors. Firstly, an over-all classification error insertion rate determined the probability
that a spurious observation would be inserted into the observation stream. A rate of 10%
would thus ensure that one in ten observations was erroneous, where classification errors
were in the form of any primitive feature observation. The distribution of classification
error types was determined via a second parameter associated with each primitive feature
type. This parameter was configured to be similar to the error rate of the real primitive
feature detection modules introduced in Section 7.1 and thus ensured that classification
errors had a realistic distribution. Similarly, the over-all classification error rate was con-
figured at 10% to be similar to the real-video detections.

In addition to primitive feature classification errors the simulator also aided realism by
ensuring multiple agents were concurrently present in the scene. This configurable pa-
rameter allowed any number of agents to be simulated concurrently. Concurrency in this
context means that the observation stream contained primitive features for N agents, and
thus all agents are potential collaborators.Algorithm 7.2 illustrates the simulation process
via pseudo code. The algorithm is called with an error rate and model so that classification
errors (discrete noise) can be inserted, in addition to the number of agents the scenario
should contain, and the set of all (known) behaviours from which agent behaviours should
be chosen. The algorithm performs three steps:

137

1. Agent behaviour generation: Multiple observation traces are generated until N

agents have been simulated. Generation commences by randomly selecting a be-
haviour from the set of known behaviour, from which an observation sequence can
be produced. Unique agent identifiers are generated as necessary and added to the
set of agents, and thus a behaviour requiring two agents will cause the addition of
two new agents to be added to this set, and a two-agent observation trace to be pro-
duced. This trace is added to the set of scenarios and the process repeats (selecting
a new random behaviour) until a total of N agents have been simulated.

2. Single stream generation: The scenarios produced during the first step are now in-
terspersed to provide a single observation sequence. This interspersion is random,
although the sequential ordering of observations remains consistent. As an exam-
ple, a behaviour trace with one agent and two observations may be split such that
the first observation becomes the first/second/third/etc. observation in the output
sequence, and the second observation may become the last/second from last/etc.
The output of this step is thus a single sequence of observations containing each
agent behaviour trace in a sequentially consistent, but randomly interspersed order.
An example of this is shown in Figure 7.2 for three fictitious behaviours and four
agents.

3. Error insertion: The final step of the algorithm is to apply the error model to the
single observation sequence. This is performed by selecting random points in the
observation stream into which classification errors should be inserted. For each
error location the error model is used to determine the observation (feature) to in-
sert, which is then attributed to a randomly selected agent from the list of generated
agents. The final observation stream (S) is thus a mixture of N agent traces and
an ER proportion of classification errors. Again, Figure 7.2 shows an example of
this process, in which one classification error is inserted into the final observation
stream.

7.5 Summary

The components that will be used for the evaluation have now been introduced. The
chapter began with a discussion of the image processing framework, where the first level
dealt with object and person detection and their tracking between video frames. This
tracking information provided input to the second level of processing where activities
were detected and their associated primitive features were emitted. These features formed
input to the reasoning layer of the framework where high-level inference is performed

138

Individual Behaviour Traces:

Behaviour TraceAgents

1 Ag1(Prim1), Ag1(Prim2), Ag1(Prim3)

2 & 3 Ag2(Prim1), Ag3(Prim1), Ag2(Prim2), Ag2(Prim3), Ag3(Prim2), Ag2(Prim4)

4 Ag4(Prim1), Ag4(Prim2)

Conversion To Single
Observation Sequence

Single Observation Trace:

Ag2(Prim1) Ag3(Prim1)Time-step

Observation Ag2(Prim1) Ag1(Prim1) Ag3(Prim1) Ag4(Prim1) Ag1(Prim2) Ag2(Prim2) Ag2(Prim3)

1 2 3 4 5 6 7

Time-step

Observation Ag4(Prim2) Ag1(Prim3) Ag3(Prim2) Ag2(Prim4)

8 9 10 11

Addition Of
Classification Errors

Final Observation Trace:

Ag2(Prim1) Ag3(Prim1)Time-step

Observation Ag2(Prim1) Ag1(Prim1) Ag3(Prim1) Ag4(Prim1) Ag1(Prim2) Ag2(Prim2)

Time-step

Observation Ag2(Prim3)

1 2 3 4 5 6 7

Time-step

Observation Ag4(Prim2) Ag3(Prim2) Ag2(Prim4)Ag1(Prim3)

8 9 10 11 12

Ag2(Prim2)

Figure 7.2: Primitive Feature Simulator Example: Individual agent behaviours are merged
into a single observation stream upon which the error model is then applied to insert
classification errors.

139

using bag-of-features inference. The Operator Interaction layer forms the top layer of the
implementation framework and serves as an interface between high-level inference and
human operators. This layer determines when behaviour predictions should be made by
determining when a behaviour terminates. If the behaviour is regarded as interesting the
detection report includes pertinent information such as event times, while less interesting
behaviours are merely reported as having occurred and by who.

In addition to the video data the evaluation also makes use of simulated data. This data is
generated by the primitive feature simulator which produces streams of primitive feature
observations. To ensure realism primitive feature classification errors are inserted into the
observation streams with a similar distribution to the real data. Furthermore, the number
of concurrent agents can be manually selected allowing complex multi-agent scene to be
simulated.

140

Algorithm 7.2 Generating a simulated scenario
1: Prototype:
2: [S] = GenerateScenario(ER,EM,N,AllB)
3: {where ER=Error Rate, EM=Error Model, N = Number of agents, AllB = Set of all

known behaviours}
4:
5: Init:
6: numberO f Agents = 0
7: scenarioIndex = 0
8: scenarios[] = /0
9: agents[] = /0

10: observationSequence = /0
11: S = /0
12: {Step 1: Generate scenarios for N agents}
13: repeat
14: beh = SelectRandomBehaviour(AllB)
15: numberO f Agents = numberO f Agents+numberO f AgentsRequired(beh)
16: seq = GenerateObservationTrace(beh,agents)
17: scenarios[secenarioIndex] = seq
18: secenarioIndex = secenarioIndex+1
19: until numberOfAgents ≥ N
20: {Step 2: Merge the scenarios into a single observation sequence}
21: repeat
22: i = RandomInteger(scenarios.Size())
23: currentSeq = scenarios[i]
24: observation = currentSeq.RemoveFirstElement()
25: observationSequence.Append(observation)
26: if currentSeq.Size()=0 then
27: scenarios = RemoveEmptyIndex(scenarios, i)
28: end if
29: until scenarios.Size() = 0
30: {Step 3: Apply the error model to the sequence at the appropriate error level}
31: S = observationSequence
32: for i = 1 : observationSequence.Size() do
33: r = RandomDouble()
34: if r < ER then
35: classi f icationError = GenerateRandomError(agents,EM)
36: S.Insert(classi f icationError, i)
37: end if
38: end for
39: return S

141

Chapter 8

Experimental Evaluation via Simulation

Nomenclature:

Dt Agent’s desire at time t FN False negative rate

At Observed activity at time t DT Density threshold

T P True positive rate N Number of particles

FP False positive rate

The performance of bag-of-features inference on a high-level behaviour recognition task
is now considered. This evaluation is performed in the automated surveillance domain
and can be partitioned into two stages: experiments on simulated data, and experiments
on real video data (Chapter 9). Because suitable video surveillance datasets are limited the
simulated data allows data variability to be increased and thus more rigorous experiments
can be performed. These results are then combined with the experiments performed on
real video data to demonstrate end-to-end processing and validation of the overall recog-
nition framework.

All of the experiments make use of the behaviours introduced in the previous chapter and
summarised in Table 8.1. Again, the structure of these behaviours can also be found in
Appendix A. For brevity the results and discussion will generally refer to behaviour short
names. Multi-agent observation sequences were generated using the primitive feature
simulator. Each simulated sequence contained a varying number of agents (10−20) and
low-level classification errors in the form of random primitive features. There are two

142

Full Behaviour Name Short Name Notation Multi-agent/Solo
Passing Through 1 PT1 S
Passing Through 2 PT2 S

Watched Item WI M
Abandon Object 1 AO1 M
Abandon Object 2 AO2 S

Theft TH M
Hand-Off HO M

Table 8.1: Summary of evaluation behaviours

Feature Name Probability
EnterAgent 0.03
ExitAgent 0.03

PlaceObject 0.21
RemoveObject 0.4

FormGroup 0.32
SplitGroup 0.01

Table 8.2: Classification error distribution model

components to the classification error model:

• Rate - the proportion of features inserted into the observation sequences. A rate of
10% was used for all the experiments in this chapter except where stated otherwise
(primarily Section 8.3).

• Distribution model - the distribution of the features selected for insertion. To facili-
tate comparison of results with the video based experiments the distribution model
was configured to be similar to the video event recognition modules. This distribu-
tion is summarised in Table 8.2.

Chapter 4 identified the two parameters used during bag-of-features inference. The first
of these is the true-positive detection rate P(D|A) which is required for each primitive
feature, and the second is the number of particles in each filter. As with the classification

Feature Name Probability of true-positive
EnterAgent 0.96
ExitAgent 0.96

PlaceObject 0.73
RemoveObject 0.5

FormGroup 0.6
SplitGroup 0.99

Table 8.3: Primitive feature true-positive detection rates

143

error model, the true-positive detection rates were configured to be similar to the video
event recognition modules (summarised in Table 8.3). In the majority of experiments
(except where stated) 220 particles were used per complex feature. This ensured that
the number of particles in a filter scaled evenly with the number of complex features it
represented and ensured good state-space representation. Correspondingly, a filter with
three complex features would utilise 660 particles. 220 particles was empirically derived
as a good trade-off between accuracy and speed in Section 8.3.

In the majority of experiments the results are used to generate the number of true positive
(TP), false positive (FP) and false negative (FN) classifications. From these one can derive
several evaluation metrics that are commonly used in behaviour recognition research (e.g.
[18, 136, 104, 20, 19, 125]):

• Precision - The positive prediction rate calculated as:

Number o f correct classi f ications f or behaviour
Total number o f classi f ications f or behaviour

=
T P

T P+FP
(8.1)

• Recall - The true positive rate (sensitivity) calculated as:

Number o f correct classi f ications f or behaviour
Number o f instances o f behaviour

=
T P

T P+FN
(8.2)

• F-Score - A weighted average of a classifier’s precision and recall with range [0 : 1],
where 1 is optimal. It is calculated as:

2×Precision×Recall
Precision+Recall

(8.3)

It is important to highlight that the precision metric defined in 8.1 does not consider the
number of false negatives, and thus it is possible for a classifier to achieve a precision of
1 even if 99% of the classifications are false negatives, with the remaining 1% being true-
positives. This logic often defies conventional wisdom, which might expect a precision
of 0.01 in such a scenario. Taken in isolation the precision defined above can be mislead-
ing, and thus its combination with the recall metric (8.2) is essential. Recall specifically
focuses on the number of false-negatives a classifier makes while ignoring false-positive
classifications.

144

Using precision and recall facilitates performance comparisons with prior work, and ad-
ditionally, helps to identify where a classifier’s performance is hindered. For example, a
classifier with low recall but high precision communicates that:

• The classifier frequently fails to classify instances of a class...

• ...But when classifications are made they are normally correct (true positives)

In this example the metrics might indicate that a trained model has been over trained, or
that a classification threshold is too high. This level of analysis can be important when
trying to analyse where a classifier is failing, and is also useful for comparing and com-
municating the performance of a classifier. One of the aims of this research (as outlined
in Chapter 1) was to deliver low false-positive rates, and thus the precision metric is par-
ticularly useful for evaluating this aspect. In contrast, when the overall performance of a
classifier is required the F-Score metric is useful because it encapsulates both precision
and recall, and is more aligned with the conventional way in which classifier performance
is often considered.

145

8.1 Recognition Accuracy

Hypothesis: End-of-simulation prediction will be more accurate than in-sequence
prediction.

This section evaluates recognition accuracy at two distinct time points; during the sim-
ulation (when a behaviour terminates), and at the end of the simulation (post-sequence).
The hypothesis is that post-sequence prediction will provide more accurate predictions
because all agent behaviours will have been observed in their entirety and thus more in-
formation is available to the inference process.

Experimental Design

For each time-point the ground truth will be compared to the most likely multi-agent/behaviour
assignments. This will allow each classifier’s F-Score to be calculated. Support for and
against the hypothesis will then be derived by comparing the two F-Scores produced.

The first set of experiments will consider post-sequence prediction and will be achieved
by suspending all predictions until the end of the simulation. This will ensure that all
behaviours have been observed in their entirety. In contrast, the second set of experiments
will use a prediction criteria to determine when each behaviour terminates. When a ter-
mination is detected a collaborator/behaviour prediction will be made, providing earlier
recognition than in the first approach.

To ensure that the prediction time was isolated as the only changing variable a single
dataset was shared between both sets of experiments and all other parameters (e.g. num-
ber of particles, primitive feature true-positive rates) remained constant. The dataset (gen-
erated by algorithm 7.2 on page 141) contained a total of 490 behaviour traces, 70 for
each behaviour. The simulation algorithm was seeded with a target number of agents of
10, and thus each scenario generated contained 10-20 concurrent agents, each perform-
ing a (potentially different) solo behaviour or one half of a multi-agent behaviour. As per
the previous description of the algorithm, each behaviour trace is interspersed to provide a
single observation sequence containing a mixture of all agent observations. The simulator
was seeded with an error level of 0.1 and thus each simulation contained 10% of primitive
feature classification errors (distributed per Table 8.2) to represent the errors that low-
level classification algorithms would make when processing real sensor data. Because the

146

PT1 PT2 WI AO1 AO2 TH HO
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
−
S
c
o
re

Figure 8.1: F-Score for each behaviour prediction

simulation data contains low-level errors it is not anticipated that perfect recognition will
be achieved in either set of experiments, although a high degree of recognition (≥ 0.7)
can be reasonably expected.

For each experiment the inference algorithm was executed with 220 particles per complex
feature and utilised the primitive feature true-positive rates defined in Table 8.3.

8.1.1 Post-Sequence Prediction

Figure 8.1 shows the F-Score for each behaviour, with the mean F-Score being 0.83. The
poorest performer can be clearly seen as the HO behaviour, which yields an F-Score of
0.73. This is consistent with the confusion observed in Table 8.4 where all behaviours
show instances of confusion with HO. Indeed, the recall of HO remains relatively high at
0.79, but its F-Score is impacted by a precision of only 0.68. This is substantially lower
than all of the other behaviours, where the next lowest precision is 0.8 (AO1).

Table 8.4 shows the confusion matrix for the seven behaviours. Each column represents
instances of a predicted behaviour, while each row represents the instances of an actual

147

PT1 PT2 WI AO1 AO2 TH HO
PT1 0.74 0.06 0 0.04 0.01 0 0.14
PT2 0 0.89 0 0.04 0.01 0 0.06
WI 0 0 0.77 0.09 0.02 0.08 0.05

AO1 0 0 0.01 0.91 0 0.01 0.06
AO2 0 0.04 0.01 0.04 0.89 0 0.01
TH 0 0.01 0.01 0.01 0.09 0.81 0.06
HO 0 0.10 0.01 0 0.06 0.03 0.79

Table 8.4: Behaviour confusion matrix for post-sequence prediction

behaviour. The top left entry shows that PT 1 is correctly classified as PT 1 in 74% of
cases, while the top right entry shows that PT 1 is misclassified as HO in 14% of cases.
A cursory scan of the table will show that PT 1 is in fact the most misclassified behaviour
while AO1 is the least.

8.1.2 In-Sequence Prediction

Figure 8.2 compares the F-Score for each post-sequence behaviour prediction against the
in-sequence predictions. The most striking result in this figure is that the F-Score in-
creases by as much as 0.2 (HO), and shows a minimum improvement of 0.05 (AO2/T H).
Correspondingly, the average F-Score increases from 0.83 to 0.92, a 9% improvement.
Table 8.5 shows that behaviour confusion is much smaller for in-sequence prediction
with WI and HO being the most confused behaviours (7% confusion). On the other hand,
PT 1 is no longer confused with any behaviour, while it was the most commonly confused
during post-sequence prediction. The mean level of confusion for any behaviour is only
4%.

These results suggest that the hypothesis should be rejected because post-sequence pre-
diction does not deliver a higher level of recognition performance than in-sequence pre-
diction. Investigating the reason for these unexpected results identified that low-level
classification errors caused incorrect predictions to be made during post-sequence pre-
diction. To illustrate why this occurs Figure 8.1.2 shows three hypothetical behaviours
and an observation trace for two agents. Behaviours 1 and 3 are both solo behaviours
while behaviour 2 is a multi-agent behaviour involving two actions for one agent and one
multi-agent feature performed by both agents (feature: E1,2).

In the observation traces Agent 1 is performing behaviour 1, but note that two classifica-
tion errors also occur: F1 and E1,2. Agent 2 is performing behaviour 3, however, their

148

PT1 PT2 WI AO1 AO2 TH HO
0

0.2

0.4

0.6

0.8

1

F
−

S
co

re

In−Sequence Prediction

Post−Sequence Prediction

Figure 8.2: In-sequence prediction F-Score vs. post-sequence F-Score

observation trace also contains an erroneously detected E1,2 feature. In such an example
in-sequence prediction would detect that Agent 1 completes Behaviour 1 after observing
B : 1, although the observance of F : 1 is likely to reduce the probability of B : 1 over
observing the behaviour without any classification errors. Similarly, Behaviour 3 would
be detected for Agent 2 after observing feature D : 1. No other behaviours are performed
in their entirety so in-sequence prediction would make a total of two predictions, both of
which would be correct.

In contrast, post-sequence prediction would include the E1,2 classification error when
determining the most likely behaviour for each agent. Thus, even though Agent 1 and 2
have performed complete behaviours, if the joint probability for all of their actions yields
a higher likelihood for joint behaviour 2 then this will be predicted for both agents. In
this example the presence of the additional F1 classification error means that the proba-
bly of behaviour 1 for agent 1 is lower than it would be otherwise, making it more likely
for behaviour 2 to yield a higher probability. Thus, the presence of classification errors
(which could in theory occur even after the agent has left the scene) means that the most
likely behaviour can change. However, the prediction criteria used by in-sequence pre-
diction helps to filter out the effect of these classification errors, thus delivering improved
performance. Going forwards, the rest of the results will report in-sequence predictions.

149

PT1 PT2 WI AO1 AO2 TH HO
PT1 1 0 0 0 0 0 0
PT2 0 0.96 0 0 0.04 0 0
WI 0 0.04 0.93 0.03 0 0 0

AO1 0 0 0 0.97 0.03 0 0
AO2 0 0.03 0 0 0.97 0 0
TH 0 0 0 0 0.04 0.96 0
HO 0 0 0 0 0.07 0 0.93

Table 8.5: Behaviour confusion matrix for in-sequence prediction

Behaviour

2

D:1 E:1,2C:1

Behaviour

1

A:1 B:1

A:1

Behaviour

3

C:1 D:1

B:1 E:1,2F:1

C:1 D:1 E:1,2

Agent 1
Observations

Agent 2
Observations

Multi-agent
Feature

{

Time

Figure 8.3: Example observation trace in which an erroneous multi-agent feature (E1,2)
occurs.

150

TransientObject LeaveObject
0

0.2

0.4

0.6

0.8

1

D
en
si
ty

Figure 8.4: The density of particle weights associated with two explanations (complex
features) for the set of primitives: {PlaceOb ject,RemoveOb ject}. One third of the par-
ticle weights are assigned to the assumption that RemoveOb ject was a false positive and
explain the PlaceOb ject primitive with a LeaveOb ject complex. The remaining two
thirds of particle weight assume that both observations were true positives and explain
them via the complex feature TransientOb ject.

The event detail extracted during post-sequence predictions were found to be optimal.
That is, by selecting explanations using a weight density threshold (DT) of 0.5 the filters
always identified the correct complex features during explanation generation. For exam-
ple, Figure 8.4 shows the density of particle weights associated with two explanations for
the set of primitives {PlaceOb ject,RemoveOb ject}. Because P(TransientOb ject)> DT

it is selected as the most likely explanation and those particles are used to identify the
event times. The explanations that were generated for behaviour predictions contained
the correct event times in all of the cases examined.

151

8.2 Behaviour Variability

This section is comprised of five experiments which consider the effect of behaviour vari-
ability on recognition performance. In this context variability refers to behaviours that are
different from those defined and include ones that are entirely different as well as small
mutations of know behaviours. Each experiment focuses on a particular hypothesis as
defined below:

1. Unknown behaviours are not misclassified

2. Behaviours can be recognised when their features are observed in a different order
to the behaviour definition

3. When two concatenated behaviours are observed each behaviour can be recognised

4. When one (partial) behaviour is switched to another (partial behaviour) the second
behaviour can be recognised

5. Behaviours can be recognised in the presence of superfluous (repeated) features

8.2.1 Unknown Behaviours

Hypothesis: Unknown behaviours are not misclassified

In contrast to Section 8.1, which showed that known behaviours could be recognised, it
is hypothesised that unknown behaviours are not misclassified (no prediction is made).
An unknown behaviour is any sequence of activities that is vastly different from those
defined.

Experimental Design

To test this hypothesis a set of unknown behaviours were required on which inference
could be performed. The null hypothesis gains support if the inference algorithm mis-
classifies the behaviours as known, while a lack of classifications supports the hypothesis.
To provide observation traces containing unknown behaviours a modified version of the

152

primitive feature simulator was used. This modified algorithm can be found in listing 8.1
on page 174.

The first difference between this algorithm and the original is that the set of all complex
features is added as a new parameter (AllC). The remaining parameters are as defined be-
fore: ER=Error rate, EM=Error model, N=Number of agents, AllB=Set of all behaviours.
The algorithm also contains a new Step 0, which generates a new (random) behaviour are
inserts it into the set of all behaviours. This random behaviour is used to represent a novel
(unknown) behaviour, with its length determined at random to be between two and eight
complex features in length (line 5).

It is important to note that a complex feature may require multiple agents. As in Chapter
6, agent roles are used to distinguish between different agents within a behaviour. A solo
behaviour involves one role while a two agent multi-agent behaviour will involve two
roles. It should be highlighted that line 8 chooses a random role from those generated,
and thus a multi-agent behaviour can be generated containing both solo and multi-agent
features for both agents. At the end of Step 0 the new behaviour is added to the set of all
behaviours and can be selected for simulation during Step 1 of the algorithm. Steps 1-3

of the algorithm are the same as in the original (see page 141).

To isolate the experimental variables the same inference parameters and dataset are used
for all generated behaviour traces. Using algorithm 8.1 to generate the test dataset a total
of 240 behaviour traces were produced. This consisted of 30 traces for each behaviour
(including 30 unknown behaviours). As before, the simulation algorithm was seeded
with a target number of agents of 10, and thus each scenario generated contained 10-20
concurrent agents, each performing a (potentially different) solo behaviour or one half
of a multi-agent behaviour. As with the original algorithm, each behaviour trace was
interspersed to provide a single observation sequence containing a mixture of all agent
observations. The simulator was also seeded with an error level of 0.1, so each simulation
contained 10% of primitive feature classification errors (distributed per Table 8.2).

As before, inference on each scenario was performed using 220 particles per complex
feature and utilised the primitive feature true-positive rates defined in Table 8.3. The
inference algorithm was not aware of the random behaviours generated during the dataset
generation process.

To evaluate the hypothesis the results of the experiment will be compared against those in
Section 8.1.2, in which only known behaviours were present. Because the simulation data
contains low-level errors it is not anticipated that perfect recognition will be achieved for

153

PT1 PT2 WI AO1 AO2 TH HO
0

0.2

0.4

0.6

0.8

1

F
−

S
c
o

re

7 Behaviours

7 Behaviours + Random

Figure 8.5: Comparing F-Scores when unknown behaviours are observed. Unknown be-
haviours have minimal impact on recognition performance. Of the 30 unknown (random)
behaviours only 4 (13%) were misclassified, with no classifications made for the remain-
ing 87%.

the known behaviours, although it is anticipated that performance will be aligned with
the results of Section 8.1.2 if the hypothesis is correct. If the hypothesis is incorrect this
will be evidenced by lower recognition F-Scores, caused by the misclassification of the
unknown behaviours.

Results

Figure 8.5 compares the recognition F-Scores for each behaviour with those obtained in
Section 8.1.2. One can see that there are no major differences in the results although
AO2 and T H both show a slightly more significant drop in performance over the other
behaviours. Further analysis shows that these differences are a feature of the dataset
rather than the influence of misclassified ‘unknown’ behaviours. The average F-Score for
the known behaviours was 0.89, representing a 3% drop in performance over observing
known behaviours only. These results provide a small amount of support the null hypoth-
esis because 13% of the unknown behaviours are misclassified. However, one can see
that only a small proportion of misclassification occur.

154

8.2.2 Ordering Mutation

Hypothesis: Behaviours can be recognised when their features are observed in a
different order to the behaviour definition

It is hypothesised that recognition of a behaviour will be unaffected by small changes to
the primitive feature ordering during observation.

Experimental Design

To test this hypothesis requires a comparison of recognition performance under two con-
ditions:

• Observations matching the defined behaviour order

• Observation with small changes to the primitive feature ordering.

Similar inference recognition performance under both conditions will provide support
for the hypothesis, while a significant difference in performance will support the null
hypothesis.

Recall that a complex feature represents a behaviour sub-goal as a sequence of contiguous
primitives. For example, the complex feature LeaveOb ject is modelled by the contiguous
primitives {PlaceOb ject,ExitAgent}. The validation behaviours contain four complex
features with two or more primitives: LeaveOb ject,TransientOb ject, PersonInteraction

and StealOb ject. Of these only PersonInteraction and LeaveOb ject exist in scenarios
that allow the contiguous order to be interrupted and thus this experiment evaluates order
mutations on the WI and AO1 behaviours only. Recognition performance of the other
five behaviours will be ignored in this experiment, although instances of these behaviours
were present in the scenarios in order to ensure that the test conditions were consistent
with the other experiments.

For this experiment a new dataset was generated in which the ordering of the WI and
AO1 primitives was manipulated. This manipulation was done via an interactive tool
that allowed a specific observation ordering to be constructed. Figure 8.6 shows the pro-

155

{Performed by Role 1{Performed by
Role 2{Performed by

Role 1
Performed by

Role 1 & 2 {
Enter
Area

Enter
Area

Exit
Area

Place
Object

Split
Group

Form
Group

Enter
Area

Enter
Area

Exit
Area

Place
Object

Split
Group

Form
Group

Normal
Ordering

New
Ordering

{Performed by Role 1

Enter
Area

{Performed by
Role 1

Enter
Area

{Performed by
Role 2

Exit
Area

Place
Object

Split
Group

{Performed by
Role 1 & 2

Enter
Area

Enter
Area

Exit
Area

Place
Object

Split
Group

Normal
Ordering

New
Ordering

Watched Item (WI) Reordering

Abandon Object 1 (AO1) Reordering

Figure 8.6: The primitive features in the WI and AO1 behaviours being reordered

cesses that were performed during this operation, while all other behaviours remained un-
changed. For the purpose of this experiment these new orderings replaced the standard or-
derings produced by the primitive feature simulator, although it should be highlighted that
the final sequential ordering of observations were interspersed between different agents
as with the other experiments. The simulator was seeded with a target number of agents
of 4, and thus each scenario generated contained 4−8 concurrent agents. An error level
of 0.1 was also used, in addition to the standard classification error distribution (Table
8.2). The resulting data contained 24 instances of each behaviour giving a total of 168
behaviour traces. Inference was performed using 220 particles per complex feature and
utilised the primitive feature true-positive rates defined in Table 8.3.

156

Results

The experiments showed that interrupting contiguous behaviours had no impact on over-
all behaviour recognition performance for the AO1 and WI behaviours, but did effect the
probability distributions. This is shown in Figures 8.7 and 8.8, where example probabil-
ities for each complex feature for WI and AO1 sequences are presented. In Figure 8.7a
the observation order is the same as that modelled, while part (b) shows a re-ordering of
the two LeaveOb ject components (PlaceOb ject,ExitAgent). The x-axis represents each
observed feature with time increasing from left to right, while the y-axis shows the proba-
bility for each complex feature. Looking at the last column in the graphs one can see that
there is relatively little difference in the likelihood of the LeaveOb ject complex, although
there is a slightly broader distribution of probability in part (b) where the modelled order
was disrupted by one observation (SplitGroup).

Similarly, Figure 8.8 shows the probability of each complex feature as AO1 sequences
are observed. Again, part (a) shows observations in the modelled order, while part (b)

shows a mutated order, where this time, LeaveOb ject is disrupted by two observations
(FormGroup, SplitGroup). Again, the last bar shows that the mutation only causes a
small change in the probability of the LeaveOb ject complex feature with a slight broad-
ening of the distribution to include other complex features. These results support the
hypothesis that behaviours can be recognised when their features are observed in a differ-
ent order to the behaviour definition. However, it should also be acknowledged that this
support is restricted to the AO1 and WI behaviours included in the experiment, although
it may be reasonably expected that additional behaviours would offer similar support.

8.2.3 Behaviour Switching and Concatenation

Hypothesis 1: When two concatenated behaviours are observed each behaviour can
be recognised

The inference algorithm has been designed such that when a behaviour terminates via
completion (all primitives have been observed), a new behaviour can be initialised. This
means that if two concatenated behaviours are observed, both components should be cor-
rectly recognised and predicted by the inference algorithm.

157

Enter

Exit

LeaveObject

SplitGroup

Interaction

TransientObject

PlaceObject

StealObject

Enter-A Enter-B SplitGrp PlaceObj-A Exit-A

(a)

Enter-A Enter-B SplitGrpPlaceObj-A Exit-A

(b)

P
ro

ba
bl

y
of

 C
om

pl
ex

 F
ea

tu
re

P
ro

ba
bl

y
of

 C
o

m
p

le
x

F
ea

tu
re

{
{

Figure 8.7: Probability density for each complex feature as observations are made (Be-
haviour: WI). (a) is consistent with the model order, (b) shows an alternative order. When
PlaceOb ject and ExitAgent are observed contiguously the LeaveOb ject feature (which
is comprised of PlaceOb ject and ExitAgent) has a higher probability density than when
they are separated by another observation.

158

Enter-A Enter-B SplitGrpPl.Obj-A

(b)

Exit-AFrmGrp

Enter-A Enter-B Exit-A

(a)

SplitGrpFrmGrp Pl.Obj-A

P
ro

ba
bl

y
of

 C
om

pl
ex

 F
ea

tu
re

{
P

ro
ba

bl
y

of
 C

o
m

p
le

x
F

ea
tu

re

{
Figure 8.8: Probability density for each complex feature as observations are made (Be-
haviour: AO1). (a) is consistent with the model order, (b) shows an alternative order.
When PlaceOb ject and ExitAgent are observed contiguously the LeaveOb ject feature
(which is comprised of PlaceOb ject and ExitAgent) has a higher probability density than
when they are separated by two observations.

159

Experimental Design 1:

This hypothesis can be tested by performing inference on a dataset in which both con-
catenated and un-concatenated behaviours exist. By comparing recognition performance
of the second (concatenated) behaviour against scenarios in which only un-concatenated
scenarios are present it will be possible to determine whether concatenated behaviours can
be recognised, and if so, how this recognition compares to un-concatenated scenarios. En-
suring that concatenation is the only non-static variable is also a necessary step, and thus,
in addition to using the same inference parameters, each combination of behaviours must
be considered.

To perform this experiment a new dataset was generated using an interactive tool in
combination with Algorithm 7.2. The tool allowed individual behaviours to be selected
for concatenation and produced a single (concatenated) behaviour trace. Additional be-
haviours were then generated using Algorithm 7.2 with an error rate of 0. The output of
each process was then mixed and noise added to give a final output scenario. This process
can be summarised by Algorithm 8.2 on page 175.

As with earlier experiments an error level of 0.1 was used in addition to the standard error
distribution model. Similarly, the simulation was seeded with a target number of agents of
10. The resulting dataset consisted of 770 observation sequences where each individual
behaviour was represented 54 times in each position (first/second).

The anticipated result of the experiment was that the recognition F-Score of the first be-
haviour classifier was comparable with when the behaviour was not concatenated, while
the second behaviour classifier should achieve a lower F-Score. This expectation is due
to the sampling nature of the inference algorithm.

Results 1:

Figure 8.9 shows that when concatenating behaviours the detection F-Score of the second
behaviour is lower (0.73) than the first (0.92). This represents a 19% drop in performance
but supports the hypothesis that the second behaviour in a concatenated scenario can be
recognised.

160

1 2
0

0.2

0.4

0.6

0.8

1

Behaviour Position

F
−

S
c
o

re

Figure 8.9: When two behaviours are observed directly after one another the second be-
haviour suffers a 24% loss of recall. In combination with a 4% drop in precision this leads
to an overall F-Score of 0.73.

Hypothesis 2: When one (partial) behaviour is switched to another (partial be-
haviour) the second behaviour can be recognised

The second hypothesis is based on the convergence property of the inference process. At
the point at which the first behaviour is abandoned a high proportion of particles will be
tracking this behaviour, but through particle reset, these particles should converge to the
second behaviour.

Experimental Design 2:

This hypothesis can be tested by performing inference on behaviour traces containing
switched behaviours. If, at the end of a switched behaviour trace all features of the sec-
ond behaviour have been observed (through a union of the first and second behaviours),
then the behaviour should be recognised. Therefore, this hypothesis can be tested gener-
ating data containing switched behaviours, in addition to standard behaviours, and com-
paring recognition performance of the final behaviour in each switched scenario with the
recognition performance of each behaviour being performed in an isolated scenario (not
switched).

161

The approach taken for generating such a dataset closely mimics Algorithm 8.2, with a
key difference being that on line 9 a check is inserted to ensure that the behaviours are not
the same, and do not represent behaviour PT 1. The PT 1 behaviour is excluded from this
experiment because of its complete overlap with all other behaviours, while we ensure that
the behaviours are different because the goal is switch from one behaviour to another. The
second change to the algorithm is a replacement of the function call GetConcatTrace with
a call to the function GetSwitchedTrace(behaviour1,behaviour2). This function gener-
ates a partial observation sequence of behaviour1 followed by behaviour2, where the
termination point of behaviour1 is randomly selected, as is the beginning of behaviour2.
This resulting simulation algorithm is summarised in Algorithm 8.3 on page 176.

For simulation an error level of 0.1 was used, in addition to the standard error distribution
model and a target number of agents of 10. The output dataset consisted of 240 observa-
tion sequences where each behaviour (except PT 1) was represented by 40 examples.

Results 2:

When observing switched behaviours the first behaviour is never completed and thus the
prediction criteria are never met. Correspondingly, the first behaviour is never predicted.
However, the second behaviour is completed and a prediction is made. An F-Score of 0.68
is achieved for recognition of the second behaviour, representing a 24% decrease in per-
formance over observing a standard single behaviour. Although recognition is degraded
over the base case, an F-Score of 0.68 does provide support for hypothesis 2.

8.2.4 Superfluous Activity

The final experiment in this section considers the effect of superfluous activities on pre-
diction performance. Superfluous activities do not contribute towards the achievement
of a goal behaviour but cannot be considered classification errors because the activities
are correctly detected. An example might be an agent who places and removes an object
several times before abandoning it, where the placement and removal are not considered
as contributing to the abandoning object goal.

162

Hypothesis: Behaviours can be recognised in the presence of superfluous (repeated)
features

The inference algorithm has been designed such that when a particle is reset, reversed
features are removed from the set of observed features. This means that the algorithm
should be able to recognise behaviours with repeated components.

Experimental Design:

To test this hypothesis superfluous features were inserted into all behaviour scenarios
except PT1, which was excluded from the experiment. Specifically, the simulation algo-
rithm was updated to insert contiguous instances of {PlaceOb ject and RemoveOb ject},
and {FormGroup and SplitGroup} into each behaviour trace. 50% of instances involved
single pair insertion, while the remaining 50% involved two pair insertion. This version
of the simulation process is summarised in Algorithm 8.4 on page 177.

As in the previous experiments, an error level of 0.1 was used, in addition to the standard
error distribution model and a target number of agents of 10. The resulting dataset con-
sisted of 252 behaviour traces in which each behaviour was represented by 36 examples.
The inference algorithm was configured with the standard parameters.

By comparing the recognition performance of these behaviours with their recognition per-
formance under standard conditions (Section 8.1.2) support for or against the hypothesis
will be obtained.

Results:

The results in Figure 8.10 show that accuracy is badly effected by the additional features
with the lowest F-Score being 0.39. However, there is also a large range in F-Scores,
with the highest performer (AO1) still achieving an accuracy of 0.86. The average F-
Score is 0.64, which is significantly lower than the performance obtained in Section 8.1.2
(0.92). Nevertheless, the results provide some support the hypothesis that behaviours can
be recognised in the presence of superfluous features, albeit with a negative impact on
performance.

163

PT1 PT2 WI AO1 AO2 TH HO
0

0.2

0.4

0.6

0.8

1

F
−
S
c
o
re

Figure 8.10: Pairs of superfluous activities (e.g. {PlaceOb ject,RemoveOb ject}) cause a
reduction in mean F-Score from 0.92 to 0.64.

8.3 Effect of Feature Classification Errors

This section studies the impact of classification errors on recognition performance. To
recap, classification errors represent erroneous primitive feature observations and are
caused by sensor noise and lower-level classification mechanisms. In this implementa-
tion those classification mechanisms are found within the image processing layer of the
video surveillance framework (Chapter 7). When a particle in the particle filtering al-
gorithm cannot explain an observation, low-level classification errors can be the cause,
and the particle will assume that the detection is erroneous with a probability equal to the
observation false-positive classification rate.

Hypothesis: Recognition performance should reduce gradually in the presence of
increasing low-level classification errors.

When a particle assumes that an observation has been caused by a classification error
that observation is ignored. This allows a subset of particles to filter classification errors
and should facilitate their recognition of the correct underlying behaviour. Because this
filtering of errors is an approximation achieved via sampling it is hypothesised that overall

164

behaviour recognition performance will gradually reduce as the level of input errors is
increased. The null hypothesis is that performance will not reduce gradually.

Experimental Design:

To test this hypothesis the algorithm’s performance was evaluated under five different
conditions. For each condition a different, fixed level of classification errors were present
in the observation stream, while all other algorithm parameters remained static. Five
datasets were generated using Algorithm 7.2 on page 141, where each dataset used the
same parameter values for the error model (Table 8.2), number of agents (10) and set of
all behaviours (Table 8.1). However, each dataset used a different value for the error rate,
where the first dataset used a value of 0, the second a value of 0.1, the third a value of 0.2
and so forth until the fifth dataset with an error rate of 0.4. Each dataset was comprised
of 490 behaviour traces in which each behaviour was represented 70 times.

To isolate the error level as the only moving variable the inference algorithm was executed
using the same parameters for all five datasets. That is: 220 particles per complex feature,
and the primitive feature true-positive rates defined in Table 8.3. Under these conditions
one would expect the inference algorithm to recognise behaviours with an F-Score of
close to 1 with the dataset containing zero noise, and the lowest F-Score to be achieved
with the 0.4 error level dataset.

Results:

Figure 8.11 shows support for the hypothesis. A recognition F-Score of 0.97 is achieved
at zero classification errors, and drops by approximately 0.1 for every 10% increase in
input classification error. It is encouraging that the accuracy reduces reasonably linearly
although it would be difficult to estimate performance for higher levels of error due to the
change in gradient between the 0.3−0.4 levels.

As anticipated, an F-Score close to 1 was achieved under zero noise. This is a reasonable
performance, and it is hypothesised that perfect recognition was not achieved because the
number of particles used was insufficient. This hypothesis will be considered further in
the next section when the number of particles will be altered in isolation and tested against
some of the same datasets as above.

165

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

% of classification errors in observation stream

F
−

S
c
o

re

Figure 8.11: Effect of primitive feature classification errors on recognition F-Score [up-
date to use levels]

8.4 Effects of Scaling

To help identify limitations of the approach the effects of scaling were analysed. There
are primarily two factors that can be scaled: the number of particles in each filter, and
the number of agents concurrently monitored. The number of particles in each filter is
interesting because as this number increases, filter accuracy should improve at the cost of
increased runtime. It is important to understand how effective the filters are under differ-
ent conditions so that the accuracy/speed trade-off can be appropriately judged. Further-
more, in the previous section it was observed that an F-Score below 1 was obtained when
no classification errors were present in the observations, and it was hypothesised that this
was caused by inference with an insufficient number of particles. Section 8.4.1 will test
this hypothesis by evaluating performance with the same dataset, but this time altering the
number of particles.

The number of concurrently monitored agents is also important for identifying runtime
limitations. Chapter 6 identified that the algorithm for identifying multi-agent behaviour
is quadratic in the number of agents, a factor that will be analysed in detail in this sec-
tion. The number of agents that inference can accommodate is a very important factor in
identifying limitations with the approach.

166

It should be noted that this section does not analyse the number of behaviours being fil-
tered. This is because behaviour confusion is dependent upon the similarity of behaviours.
One cannot simply evaluate the approach with increasing numbers of behaviours without
also controlling their similarity. The validation behaviours being used are meaningfully
defined and exhibit non-uniform similarity. Although behaviour similarity could be con-
trolled by defining a theoretical set of behaviours, such an experiment would still be of
limited utility and thus such an experiment has not been performed.

8.4.1 Number of Particles

Hypothesis 1: Behaviour recognition performance will decrease as the number of
particles is reduced

Particle filtering theory informs us that as the number of particles is increased, the asso-
ciated probability density estimates approach the true values [9]. Given that behaviour
recognition is based on these probability estimates it is hypothesised that recognition per-
formance will decrease as the number of particles is reduced.

Hypothesis 2: Increasing the number of particles sufficiently will allow a recognition
F-Score of 1 to be achieved when observing behaviours with zero input classification
errors

If there are zero classification errors in the behaviour observations it is hypothesised that
the algorithm will be able to achieve an F-Score of 1 if the number of particles is suffi-
ciently high to model the state-space.

Experimental Design:

To test these hypotheses two of the datasets from Section 8.3 will be used:

• Dataset 1: Behaviour observation traces containing zero classification errors

• Dataset 2: Behaviour observation traces containing errors at a rate of 0.1.

167

These datasets will be used without modification. However, in contrast to Section 8.3 the
experiment will alter the number of particles per complex feature. As before, Table 8.3
provides the primitive feature true-positive rates used during inference.

The experiment consists of two scenarios, one for each dataset. For both datasets it is
anticipated that reducing the number of particles will decrease recognition performance
and such a result will provide support for hypothesis 1. Section 8.3 showed that as the
level of input classification errors was increased, behaviour recognition performance de-
creased. It is therefore expected that if the recognition performances for datasets 1 and
2 are compared for a given number of particles, the results with dataset two will always
be below those achieved with dataset 1. Based on the results from the previous section
it is also anticipated that a recognition F-Score ≥ 0.92 will be achieved when the num-
ber of particles per complex feature is higher than 220 and zero classification errors are
observed. Such a result will provide support for hypothesis 2.

Results:

Figure 8.12 shows the effect of the number of particles on the behaviour recognition F-
Score. The results support hypothesis 1 because as the number of particles reduces, so too
does recognition performance. Furthermore, one can see that as expected, performance
with dataset 2 is lower than dataset 1 due to the presence of classification errors in the
input and is consistent with Section 8.3.

When there are no classification errors in the input observations the input can be con-
sidered ‘best-case’ conditions. It is encouraging to see that as the number of particles is
raised from 10−100 recognition accuracy quickly improves to over 0.9. By 200 particles
accuracy reaches 0.95, and then continues to converge towards 1 as N is further increased.
An F-Score of 1 is achieved with 300 particles, supporting hypothesis 2. The second re-
sult in Figure 8.12 shows recognition accuracy with an input error level of 0.1. This error
level is similar to that produced when applying the video event detectors from Chapter 7
to the video datasets. Again, the recognition accuracy increases sharply as the number of
particles is increased, but plateaus at approximately 0.9 accuracy.

168

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of Particles

F
−

S
co

re

Dataset 1 − Input error level: 0

Dataset 2 − Input error level: 0.1

Figure 8.12: Effect of number of particles on F-Score

Hypothesis 3: For any given observation the runtime of the approach should be
linear with the number of particles

If the number of particles is isolated as the only variable, the runtime of the algorithm
should change linearly with the number of particles. As the number of particles used is
increased, so too should the runtime.

Experimental Design:

To test this hypothesis requires that all variables are held static except the number of parti-
cles used. This is difficult to achieve because the number of agents in the inference process
is dependent on the proportion of the observation sequence that has been observed. That
is, if an observation sequence of length S contains six agents and is partially observed by
time t (where t < S), but only three agents have been observed by t, then only three agents
will be involved at the inference process. However, at the final observation (t = S) all six
agents will have been observed and the inference process will therefore involve six agents.
Because the number of particle filters directly correlates with the number of agents upon
which inference is being performed, these two time-steps will involve different numbers
of filters.

169

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

Number of Particles

A
v

er
ag

e
R

u
n

ti
m

e
p

er
 O

b
se

rv
at

io
n

 (
m

s)

Figure 8.13: Effect of number of particles on runtime

To solve this problem a dataset containing six agents was generated, however, the mean
runtime of the processing time for each sequence is used as an approximation of the
runtime for each observation. It is acknowledged that this cannot be used as an accurate
estimate of runtime for each observation, however, it cam be used as a comparative value
when altering the number of particles. By performing inference on the same dataset
multiple times, but using different quantities of particles, one can compare the mean run-
times whilst all other variables remain static.

To generate the dataset Algorithm 7.2 on page 141 was used with an error level of 0.1, the
error model from Table 8.2, six agents and the set of all behaviours from Table 8.1. The
resulting dataset contained 26 instances of each behaviour giving a total of 182 behaviour
traces.

Inference was performed multiple times on the same dataset using Table 8.3 to provide
the primitive feature true-positive rates. Only the number of particles per complex feature
was altered per experiment. It is anticipated that as the number of particles is increased
the mean runtime per observation will increase linearly, and will support hypothesis 3.

170

Results:

Figure 8.13 shows that the experiments provide support for hypothesis 3. This figure plots
the mean filter runtime for each observation as the number of particles increases from
10 to 500, and shows that runtime increases approximately linearly. One can see that
for every additional 100 particles the mean inference time increases by approximately
1000ms.

Cross-referencing Figures 8.13 and 8.12 shows that a range of 200− 300 particles will
deliver an F-Score≥ 0.8 in around 3 seconds. These metrics are of course implementation
dependent, but demonstrate a relatively effective method for determining the number of
particles to use.

It should be noted that the X-axis in Figure 8.13 represents the quantity of particles used
for each complex feature, rather than the total number of particles. Furthermore, recall
from Chapter 6 that six agents require 21 hierarchical filters to detect all solo and multi-
agent behaviours. It is the total runtime of all (21) hierarchical filters that is presented in
Figure 8.13.

8.4.2 Number of Agents

This section analyses the growth rate of the number of goal filters required to identify
multi-agent behaviour. Rather than proposing and evaluating a hypothesis, the purpose of
this evaluation is to better understand the growth rates involved, and to visually represent
this data.

Figure 8.14 shows the number of goal filters that are required to identify multi-agent
behaviour as the number of agents increases. When agent behaviour is restricted to solo
and paired collaborators the growth rate appears gradual, although it should be noted that
it is still quadratic. 20 agents requires 210 goal filters, while 24 agents requires 300. When
agents can perform solo behaviours, or collaborate in pairs or triplets, the figure shows that
the growth rate quickly becomes exponential. Under these constraints 20 agents requires
1350 filters, and 24 agents requires 2324.

171

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Agents

N
u

m
b

er
 o

f
T

h
re

ad
s

Max 2 Collaborators

Max 3 Collaborators

Figure 8.14: Thread growth rates

8.5 Summary

The experiments in this chapter focused upon rigorously testing different scenarios using
simulated data. Under standard conditions (10% classification errors, 220 particles, single
behaviours) the best performance was achieved by using prediction criteria to determine
when a behaviour terminates and making predictions at that point only. An F-Score of
0.92 was achieved which is 9% better than when predicting behaviour at the end of a
simulation. Furthermore, the experiments showed that event details (frame time, agent)
could be accurately extracted from the filters once a behaviour had been detected allowing
accurate behaviour summaries to be reported to operators.

Four types of behaviour variability were considered: presentation of unknown behaviours,
ordering mutations on known behaviours, behaviour switching/concatenation and super-
fluous activities. When unknown behaviours were observed these sequences were gen-
erally ignored; that is, they were not misclassified as known behaviours. The average
F-Score was 0.89, with the slight change in performance being largely due to dataset
variability rather than the presence of unknown behaviour. Small ordering mutations
interrupted contiguous sub-goals by 1− 2 observations, which had negligible effect on
recognition. Although some impact was observed on the posterior distributions these
changes were not significant enough to effect prediction accuracy. However, concate-
nated and switched behaviour did effect performance. When a concatenated behaviour

172

was performed the F-Score dropped by 19% to 0.73, and dropped to 0.68 when behaviour
switching occurred. A similar score (0.64) was also obtained when superfluous activities
were observed such as placing and removing a luggage item multiple times.

To evaluate performance under more complex conditions the level of classification errors
was also altered to range from 0− 40%. Performance decrease is approximately linear,
dropping by 0.1 for every 10% increase in primitive classification error. The approach
also scales well with the number of particles, with sharp improvements in performance as
the number of particles is raised from 10−100, and more gradual improvements there af-
ter. Optimal performance was achieved under zero classification error, while a maximum
accuracy of 0.9 was achieved under 10% classification error using up to 500 particles.
Aside from recognition performance, the number of particles also effects runtime with an
increase of approximately 1000ms per observation for every 100 additional particles (with
six concurrent agents). Where the approach scales less well is with regards to the number
of agents, which is exponential. On an Intel Dual Core 2.4Ghz with 8GB RAM a limit
of approximately 20 agents was encountered if real-time processing was to be achieved
under standard conditions.

173

Algorithm 8.1 Generating a simulated scenario with random agent behaviours
1: Prototype: [S] = GenerateUnkownBehaviourScenario(ER,EM,N,AllB,AllC)
2: Init: numberO f Agents = 0,scenarioIndex = 0,scenarios[] = /0,
3: Init: agents[] = /0,observationSequence = /0,S = /0
4: {Step 0: Add a random behaviour}
5: numFeaturesInBehaviour = RandomInteger(2,8) {Range [2 : 8]}
6: beh = /0,roles[] = {1}
7: for f = 1 : numFeaturesInBehaviour do
8: role1 = roles[RandomInteger(1,roles.size()] {Get a random role}
9: f eature = RandomFeature(AllComplex)

10: if IsMultiAgentFeature(feature) then
11: if roles.Size() = 1 then
12: roles.Append(2)
13: role2 = 2
14: else
15: role2 = roles.Not(role1)
16: end if
17: beh.Append(feature, role1, role2)
18: else
19: beh.Append(feature, role1)
20: end if
21: end for
22: AllB.Append(beh) {Add to the set of all behaviours}
23: {Step 1: Generate random scenarios for N agents}
24: repeat
25: beh = SelectRandomBehaviour(AllB)
26: numberO f Agents = numberO f Agents+numberO f AgentsRequired(beh)
27: seq = GenerateObservationTrace(beh,agents)
28: scenarios[secenarioIndex] = seq
29: secenarioIndex = secenarioIndex+1
30: until numberOfAgents ≥ N
31: {Step 2: Merge the scenarios into a single observation sequence}
32: repeat
33: i = RandomInteger(scenarios.Size())
34: currentSeq = scenarios[i]
35: observation = currentSeq.RemoveFirstElement()
36: observationSequence.Append(observation)
37: if currentSeq.Size()=0 then
38: scenarios = RemoveEmptyIndex(scenarios, i)
39: end if
40: until scenarios.Size() = 0
41: {Step 3: Apply the error model to the sequence at the appropriate error level}
42: S = observationSequence
43: for i = 1 : observationSequence.Size() do
44: r = RandomDouble()
45: if r < ER then
46: classi f icationError = GenerateRandomError(agents,EM,AllPrims)
47: S.Insert(classi f icationError, i)
48: end if
49: end for
50: return S

174

Algorithm 8.2 Generating a dataset containing concatenated behaviours
1: Prototype: [S] = GenerateConcatenatedScenario(ER,EM,N,AllB)
2: Init: F = /0,S = /0
3: for a = 1 : AllB.Size() do
4: for b = 1 : AllB.Size() do
5: scenarios[] = /0
6: observationSequence = /0
7: beh1 = AllB[a]
8: beh2 = AllB[b]
9: concatTrace = GetConcatTrace(beh1,beh2)

10: scenarios.Add(concatTrace)
11: stdTraces = GenerateScenario(0,EM,N,AllB)
12: scenarios.AddAll(stdTraces)
13: {Next: merge the scenarios into a single observation sequence}
14: repeat
15: i = RandomInteger(scenarios.Size())
16: currentSeq = scenarios[i]
17: observation = currentSeq.RemoveFirstElement()
18: observationSequence.Append(observation)
19: if currentSeq.Size()=0 then
20: scenarios = RemoveEmptyIndex(scenarios, i)
21: end if
22: until scenarios.Size() = 0
23: {Next: Apply the error model to the sequence at the appropriate error level}
24: Temp = observationSequence
25: for i = 1 : observationSequence.Size() do
26: r = RandomDouble()
27: if r < ER then
28: classi f icationError = GenerateRandomError(EM,AllPrims)
29: Temp.Insert(classi f icationError, i)
30: end if
31: end for
32: S.Add(Temp)
33: end for
34: end for
35: return S

175

Algorithm 8.3 Generating a dataset containing switched behaviours
1: Prototype: [S] = GenerateSwitchedScenario(ER,EM,N,AllB)
2: Init: F = /0,S = /0
3: for a = 1 : AllB.Size() do
4: for b = 1 : AllB.Size() do
5: scenarios[] = /0
6: observationSequence = /0
7: beh1 = AllB[a]
8: beh2 = AllB[b]
9: if beh1 6= beh2∧beh1 6= PT 1∧beh2 6= PT 1 then

10: concatTrace = GetConcatTrace(beh1,beh2)
11: scenarios.Add(concatTrace)
12: stdTraces = GenerateScenario(0,EM,N,AllB)
13: scenarios.AddAll(stdTraces)
14: {Next: merge the scenarios into a single observation sequence}
15: repeat
16: i = RandomInteger(scenarios.Size())
17: currentSeq = scenarios[i]
18: observation = currentSeq.RemoveFirstElement()
19: observationSequence.Append(observation)
20: if currentSeq.Size()=0 then
21: scenarios = RemoveEmptyIndex(scenarios, i)
22: end if
23: until scenarios.Size() = 0
24: {Next: Apply the error model to the sequence at the appropriate error

level}
25: Temp = observationSequence
26: for i = 1 : observationSequence.Size() do
27: r = RandomDouble()
28: if r < ER then
29: classi f icationError =GenerateRandomError(EM,AllPrims)

30: Temp.Insert(classi f icationError, i)
31: end if
32: end for
33: S.Add(Temp)
34: end if
35: end for
36: end for
37: return S

176

Algorithm 8.4 Generating scenarios with superfluous features
1: Prototype:
2: [S] = GenerateScenarioWithSuper f luousFeatures(ER,EM,N,AllB)
3: Init: numberO f Agents = 0,scenarioIndex = 0,scenarios[] = /0
4: Init: agents[] = /0,observationSequence = /0,S = /0
5: {Step 1: Generate scenarios for N agents}
6: repeat
7: beh = SelectRandomBehaviour(AllB\PT 1)
8: numberO f Agents = numberO f Agents+numberO f AgentsRequired(beh)
9: seq = GenerateObservationTrace(beh,agents)

10: numSurpPairs = RandomInteger(1,2) {Insert one or two pairs}
11: for loop=1:numSurpPairs do
12: if RandomBoolean() then
13: seq.InsertRandomly({PlaceOb ject,RemoveOb ject})
14: else
15: seq.InsertRandomly({FormGroup,SplitGroup})
16: end if
17: end for
18: scenarios[secenarioIndex] = seq
19: secenarioIndex = secenarioIndex+1
20: until numberOfAgents ≥ N
21: {Step 2: Merge the scenarios into a single observation sequence}
22: repeat
23: i = RandomInteger(scenarios.Size())
24: currentSeq = scenarios[i]
25: observation = currentSeq.RemoveFirstElement()
26: observationSequence.Append(observation)
27: if currentSeq.Size()=0 then
28: scenarios = RemoveEmptyIndex(scenarios, i)
29: end if
30: until scenarios.Size() = 0
31: {Step 3: Apply the error model to the sequence at the appropriate error level}
32: S = observationSequence
33: for i = 1 : observationSequence.Size() do
34: r = RandomDouble()
35: if r < ER then
36: classi f icationError = GenerateRandomError(agents,EM)
37: S.Insert(classi f icationError, i)
38: end if
39: end for
40: return S

177

Chapter 9

Experimental Validation using Video

This chapter evaluates performance of the end-to-end video recognition framework de-
scribed in Chapter 7. The experiments make use of two video datasets. The first is the
publicly available PETS 2006 dataset [139], which was recorded by London Transport
Police at a public transport hub. This thesis utilised the following videos in which the
behaviours PT 1, PT 2, AO1, and AO2 are all directly observable.

• S1-T1-C Camera 3

• S3-T7-A Camera 3

• S4-T5-A Camera 3

• S6-T3-H Camera 3

Additionally, the WI behaviour was synthesised by merging tracking data from two differ-
ent videos (S4-T5-A and S6-T3-H), but unfortunately there are no instances of the T H or
HO behaviours in the data. The PETS data makes use of three common types of luggage
item: a briefcase, a wheeled cabin suitcase and a 25 litre rucksack.

A major disadvantage of the PETS data is that the size of the dataset is very limited. Aside
from the lack of T H and HO behaviours, many of the other behaviours are only exhibited
twice. This makes it challenging to not over-tune the video event detection modules.
To overcome this data limitation a second dataset was recorded by the author in which
all behaviours were demonstrated twenty-four times. Again, a selection of different size
luggage items were used to increase the variability of the data and included: a wheeled

178

suitcase, two flight cases and a 25 litre rucksack. This dataset is termed the Heriot-Watt
dataset, or HW for short.

9.1 The Video Based Inference Process

Details of the implementation framework have already been discussed in Chapter 7. How-
ever, to place this framework in the context of the experiments this section will describe
the inputs and outputs of each process and will identify where errors were typically ob-
served during video based inference.

Person and Object Tracking

The person tracker (see Section 7.1.1) operates directly on the input video and associates a
unique identifier with each tracked person. When a new person is identified a time-stamp
(frame number) based trace of their real-world x, y position begins, and is output against
their unique identifier. If the agent is lost by the tracker the agent trace is terminated, and
if they are subsequently re-identified, they will be associated with a new agent Id. The
person’s real-world coordinates are identified by using the PETS camera calibration data
to project image coordinates to the ground plain (see [84]). The x,y origin for the PETS
scene can be seen in Figure 9.1, while example output from the person tracker for several
frames can be observed in Figure 9.2.

The static object detector also outputs tracking information in a similar format and con-
sists of the following fields:

• X, Y position (Real World/Ground plain)

• Object Id

• Frame Number

Like the person tracker, an object trace commences when a static luggage item is first
identified, and the output is terminated when the object is lost. Similarly, if an object
is re-identified after it has been lost it will be tracked with a new object identifier. The

179

The
Origin

Figure 9.1: Camera calibration data for PETS scene S1-T1-C (Camera 3) showing the x,y,
origin.

Frame 955Frame 955Frame 955Frame 955

Output: Agent Track

Person Tracker

Person Tracker Person Tracker

Person Tracker

-4.46146, 4.13827, 7, 955

-4.46315, 4.13627, 7, 956

-4.47845, 4.13534, 7, 957

-4.46521, 4.12147, 7, 958

X Y Agent Id
Frame

Number

Input; Video Frames

Figure 9.2: Example output from the person tracker for PETS scene S1-T1-C (Camera 3)

180

implications of having a single object with multiple object Ids will be discussed further in
the next section.

Video Event Detection

Section 7.1.2 outlined six primitive features that can be detected from person and ob-
ject tracking information. Each detected feature becomes an observation for the bag-of-
features inference algorithm, and thus high-level inference is decoupled from the original
sensors that provide agent and object observations. As an example, Figure 9.3 shows
the chain of low-level inference steps leading to an EnterAgent observation: the person
tracker identifies person 7 as a new track and starts outputting tracking information. This
is consumed by the Agent Tracker, which detects an EnterAgent event at frame 995. In
turn, the Agent Tracker outputs an EnterAgent primitive into the bag-of-features obser-
vation stream, upon which high-level inference is performed.

However, in addition to genuine tracking information, errors in the tracking data also
cascade into the event detection modules. Tracking errors include agents and objects
that are detected multiple times, and prematurely terminated tracks. These errors cause
feature classification error and missed detections. Furthermore, the naivety of the feature
detection modules means that certain conditions also lead to addition classification errors
being generated. These are described in Table 9.1.

As a result of such errors the video processing stage of the inference framework outputs a
stream of primitive feature observations containing classification errors, and ties in with
the simulated classification errors discussed in the previous chapter. Positioned side-by-
side in Figure 9.4 one can thus see how the simulated behaviour traces mimic the video
processing framework.

181

Frame 955

Person Tracker

-4.46146, 4.13827, 7, 955

-4.46315, 4.13627, 7, 956

-4.47845, 4.13534, 7, 957

-4.46521, 4.12147, 7, 958

X Y Agent Id
Frame

Number

Input; Video Frames

Output: Agent Track

. . .

Agent Tracker

. .

Input: Agent Tracks Feature: EnterAgent

Agent Id: 7

Frame: 955

Output: Primitive Feature

Observation

Bag-Of-Features
Inference

Figure 9.3: Person tracking information is provided to the Agent Tracker which detects
and EnterAgent event. This event is output as a Primitive Feature and provided as input
to the bag-of-features inference algorithm.

182

Error Type Feature Description
Classification
Error

EnterAgent
ExitAgent

If a tracked agent is lost without the agent
leaving the scene (e.g. view is obstructed)
this will cause the agent’s track to terminate
and an ExitAgent feature to be generated. If
the agent returns to the field of view they will
be associated with a new agent Id, causing
a new EnterAgent feature to be generated.
Occurrences of such an event thus cause two
classification errors to be generated in the
observation stream.

Classification
Error

EnterAgent
ExitAgent

Similar to above. A fast moving agent will
sometimes cause an agent to be lost and re-
found. This will cause the termination of the
original track and the generation of a new
track with a different agent Id. Erroneous
EnterAgent and ExitAgent features result.

Classification
Error

PlaceOb ject
RemoveOb ject

When a dark shadow moves across an object
this can cause the perceived size of the ob-
ject to change. If the centroid of the new
object is > 0.3m away from its original a
new object will be detected and an erro-
neous PlaceOb ject feature generated. Re-
moval of the shadow or original object will
then cause erroneous RemoveOb ject feature
observations.

Classification
Error

FormGroup
SplitGroup

Agents travelling in close proximity can
cause erroneous FormGroup features to be
generated. Any subsequent increase in dis-
tance between such agents can then cause a
SplitGroup detection.

Missed
Classification

EnterAgent
ExitAgent

Two agents travelling in very close proxim-
ity can cause a single agent track with a
single agent Id. This means that only one
EnterAgent feature will be generated. If
both agents remain in very close proximity
for the duration of their time in the scene,
an ExitAgent will never be generated for the
second agent when the agents leave the field
of view.

Missed
Classification

PlaceOb ject
RemoveOb ject

In scenes with strong shadows it is not un-
common to observe that a static object is
not recognised. This is because the person’s
shadow and object overlap and thus the size
constraints imposed by object detection are
not met. This prevents the generation of a
PlaceOb ject feature, and any subsequent re-
moval of that object will fail to generate a
RemoveOb ject feature.

Table 9.1: Tracking errors are the normal cause of missed classifications, and are partially
responsible for classification errors.

183

Bag-Of-Features

Inference

Primitive Feature

Detection

Object Detection &

Tracking

Visual Data

EnterAgent
PlaceObject

.

.
ExitAgent

Video Datasource

Synthetic Classification

Errors Added

Primitive Feature

Generation

Primitive Feature Sim.

Figure 9.4: The video processing components of the framework provide a stream of primi-
tive feature observations to the Bag-of-features inference algorithm. The primitive feature
simulator also provides such a stream and incorporates synthetic classification errors to
mimic video processing failures.

184

Module Parameter Value/Range
Person Tracker Ellipse height 1.8m

Ellipse width 0.4m
Object Tracker Min width/height 0.3m

Max width/height 1.0m
Max distance from
original centroid

0.3m

Min static time 1 sec
Group Tracker Min distance between

members
2.5m

Min grouping time 3 sec
Bounce time 2 sec

Table 9.2: The parameters used with the tracker and event detection modules.

9.2 Event Recognition Performance

Hypothesis: The event detection modules can detect events from PETS and HW
Video frames

To establish whether complex behaviours can be recognised from video it must be deter-
mined whether the primitive features can be detected from video. Support for the hypoth-
esis would be gained by successfully recognising the primitive events from video taken in
multiple environments. The null hypothesis is that the events cannot be recognised across
both datasets.

Experimental Design

To test this hypothesis the experiment was designed to determine the precision and re-
call of the detectors when presented with the PETS and HW data. To ensure that the
video processing modules were not over-tuned for each environment the modules were
configured so that one set of parameters delivered reasonable recognition performance on
both datasets. A single exception to this rule was made for the object detector, where the
pixel change threshold was altered to overcome a change to the lighting configuration that
occurred during HW data collection.

The trackers (person/object) and the event detectors used the fixed set of parameter values
defined in Table 9.2.

185

To obtain performance information the videos from each dataset were presented to the
person and object trackers, and their output was in turn presented to the event detection
modules.

Results

Figure 9.5 shows the precision of each of the six detection modules: EnterAgent, ExitAgent,
FormGroup, SplitGroup, PlaceItem and RemoveItem. One can see from the figure that
the FormGroup event has a very low precision in the PETS data (0.33), and is slightly
higher (0.62) in the HW data. This is because the PETS data only exhibits one example
of the FormGroup event, although two false-positives were also detected in a particu-
larly challenging scene (S1-T1-C). Frames from this scene are shown in Figure 9.6 where
one can observe that four agents enter the scene in close proximity. This in itself causes
problems for the person tracker, which changes the persons associated with the green and
yellow ellipses, and fails to detect two agents at all.

The HW data contains eight true-positive FormGroup detections but five false positives
are also generated during some of the T H behaviours. The RemoveOb ject event is also
detected with particularly low precision in both datasets (HW: 0.65, PETS: 0.5), while
the other events are detected with reasonable accuracy (≥ 0.74).

Figure 9.7 shows that the recall of the events is generally high. Again, the primary ex-
ception is the FormGroup event which has a recall of only 0.47 in the HW data. All other
events have a recall of ≥ 0.73 on both datasets. Combining the precision and recall over
both datasets leads to a mean event recognition F-Score of 0.78.

These results provide some support for the hypothesis, although it is clear that the event
recognition performance is limited. The majority of events can be recognised with a
precision ≥ 0.74 and a recall ≥ 0.73, although some events are recognised with poorer
performance. This is likely to be caused by the naivety of the event detection modules,
with the method of group detection (proximity based) particularly unreliable. That said,
there is clear support that the events can be recognised from both video datasets.

186

Ent. Ext. Frm. Spl. Pla. Rem.
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

PETS

HW

Combined

Figure 9.5: Video event detection precision

Figure 9.6: Frames from PETS scene S1-T1-C. A group of agents entering the scene
together and travelling as a group causes tracking errors and false FormGroup detections.

187

Ent. Ext. Frm. Spl. Pla. Rem.
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

PETS

HW

Combined

Figure 9.7: Video event detection recall

9.3 Behaviour Recognition Performance

Hypothesis: Complex behaviours can be recognised from video by integrating video
processing and Bag-of-features inference.

By using the video processing framework to convert raw video data into primitive feature
observations an observation stream can be provided for bag-of-features inference. If the
sample behaviours can be successfully recognised by the inference algorithm then it can
be concluded that bag-of-features inference can be performed on video based data. The
null hypothesis is that they cannot be recognised from video-based data.

Experimental Design

To test this hypothesis experiments were performed with each video in the PETS and
HW datasets. As highlighted at the beginning of the chapter, the PETS dataset consisted
of scenarios S1-T1-C, S3-T7-A, S4-T5-A and S6-T3-H. Additionally, a synthetic PETS
scenario was generated through a combination of scenarios S4-T5-A and S6-T3-H. This
was achieved by truncating the tracker output from S4-T5-A at video frame 1000 and

188

Behaviour HW PETS
PT1 24 68
PT2 24 1
WI 24 2

AO1 24 2
AO2 24 2
TH 24 0
HO 24 0

Table 9.3: The number of instances of each complex behaviour in the datasets.

joining this with the tracker output for S6-T3-H commencing with frame 1370.

Table 189 shows the number of instances of each behaviour within the two datasets. Bag-
of-features inference was performed with 220 particles per complex feature and the primi-
tive feature true-postive rates defined in Table 8.3 on page 143. As in the previous section,
the trackers and event detectors used the parameters from Table 185.

Results

Figure 9.8 shows behaviour recognition accuracy on the PETS data. One can clearly
see that excellent results are achieved with a mean F-Score of 0.99. This is however an
indicator that the dataset is of an insufficient size to obtain a realistic measure of perfor-
mance. All behaviours are detected with a very high F-Score, with PT 1 being the only
behaviour detected imperfectly with an F-Score of 0.96. These inaccuracies were gener-
ated as a result of the person tracker incorrectly detecting luggage items as people, with
two examples of this shown in Figure 9.9.

When the framework is applied to the HW data the results obtained are much more varied.
Figure 9.10 shows that the PT 1 behaviour is still recognised with the lowest F-Score and
has dropped to 0.62. Again, tracking errors are generally the cause of these inaccuracies.
The remaining behaviours are all detected with an F-Score≥ 0.7 and have a mean F-Score
of 0.77. These results provide support for the hypothesis.

Through analysing the scenarios in which incorrect behaviour classifications were made
it was determined that tracking errors (specifically: multiple/missed person detections)
and group detection errors were the primary reason for incorrect behaviour recognition. It
is expected that better behaviour recognition performance could be achieved if these two
sources of low-level classification errors were to be improved.

189

PT1 PT2 WI AO1 AO2
0

0.2

0.4

0.6

0.8

1

F
−
S
c
o
re

Figure 9.8: Behaviour recognition accuracy on the PETS data

Scene S3-T7-A
Frame 786

Scene S3-T7-A
Frame 261

Figure 9.9: Two examples of the person tracker misclassifying luggage as people on the
PETS dataset.

190

PT1 PT2 WI AO1 AO2 TH HO
0

0.2

0.4

0.6

0.8

1

F
−
S
c
o
re

Figure 9.10: Behaviour recognition F-Scores on the HW data

9.4 Summary

This chapter focused on experiments using real video taken from the PETS 2006 dataset
and a new (HW) dataset. To demonstrate the performance of the activity detectors, upon
which high-level inference relies, the first set of experiments considered video event de-
tection accuracy. Most of the events are detected with reasonable precision (≥ 0.74),
although the FormGroup event is recognised with a precision of 0.33 in the PETS data
and 0.62 in the more extensive HW data. The RemoveOb ject event also suffers from low
precision, ranging from 0.5− 0.65. These two events also suffer from the lowest recall,
with FormGroup only achieving 0.47 on the HW data. A recall of 0.73 is achieved for
RemoveOb ject, with all other events performing better.

While evaluating behaviour recognition performance against the PETS data our mean
F-Score of 0.99 shows that this dataset is limited by size. On the more extensive HW
data the mean F-Score drops to 0.77 with individual scores ranging from 0.62 to 0.94.
Nevertheless, this performance is quite impressive given the relatively poor accuracies of
the video event detection modules.

191

Chapter 10

Discussion

Nomenclature:

N Number of particles yt Observation at time t

Bk The kth behaviour y1:T Observation sequence (y1,y2, ...,yT)

|Bk| Number of features in Bk Zt State at time t

This thesis proposed that probabilistic behaviour recognition could be achieved by de-
composing behaviours into bags of features. It was argued that the primary advantage
of this approach was that training corpora was no longer required, allowing probabilistic
recognition to be performed in domains where training data is scarce. This chapter will
discuss the support that the experimental results give to the approach, as well as evaluating
the wider recognition framework in which it was set. This will include a discussion on its
ability to meet real-world constraints such as operating in noisy environments generting
low-level classification errors.

10.1 Feature Based Recognition

The experiments demonstrate encouraging support for the approach with in-sequence pre-
dictions showing very little behaviour confusion. Table 8.5 on page 150 showed that the
mean false positive rate is only 0.34% on the simulated experiments. This rate increases

192

0 0.2 0.4 0.6 0.8 1
0

0.5

1

False Positive Rate
T

ru
e
 P

o
s
it

iv
e
 R

a
te

Simulated Data

Random

0 0.2 0.4 0.6 0.8 1
0

0.5

1

False Positive Rate

T
ru

e
 P

o
s
it

iv
e
 R

a
te

Video Data

Random

Figure 10.1: In-sequence prediction results plotted in ROC space. Optimal x,y coordi-
nates: (0,1)

slightly to 3.4% in the combined video based experiments, but is none the less an ex-
cellent result. One can visualise these results by temporarily treating each behaviour as
a binary classifier and plotting their performance in Receiver Operating Curve (ROC)
space. This is shown in Figure 10.1, where one can see that all of the results are well
above the ‘random’ decision boundary.

Section 8.1 showed that this accuracy is only achieved when applying prediction crite-
ria that determines when a behaviour terminates. Chapter 7 introduced the prediction
criteria used and the results show that enforcing these constraints improves the recogni-
tion F-Score by 0.09 over using the posterior filter densities alone. The high accuracy
of behaviour prediction demonstrates that simulated annealing often identifies the correct
assignments when a behaviour terminates. However, it was also observed that simulated
annealing often identifies poor assignments both before and after behaviour termination.
This means that a correct assignment made part-way through a simulation may not still
be present by the end. It is for this reason that the prediction criteria proves very useful
and significantly improves performance over post-simulation prediction.

It should be noted that changes to behaviour/collaborator assignments should be expected.
Consider two agents who have partially performed two solo behaviours. If a multi-agent
behaviour has a higher probability of having generated the set of their combined activities
verses two individual behaviours, then it is correct that a collaborative assignment should

193

be made. As more observations arrive the probabilities for each behaviour will change in
light of this further information, and again it should be expected that assignment changes
will occur.

Because one cannot ever determine when a behaviour terminates using posterior filter
density alone, one will always encounter the problem of changing assignments. The
prediction criteria has demonstrated its ability in identifying behaviour termination and
choosing the correct assignment, and thus this approach seems a suitable mechanism for
achieving high-accuracy predictions. That said, this does imply that behaviours can only
be predicted accurately when they are observed in their entirety.

These results are reasonable because a human can also only reliably predict the outcome
of an event by using prior knowledge. For example, assume that an agent is observed
entering the scene and placing luggage. A surveillance operator can anticipate that the
agent will remove the luggage because of prior knowledge, but they will remain uncertain
until such an action is observed, or the agent is observed abandoning the object. The bag-
of-features approach is built upon the premiss that there is no prior knowledge, and thus
one cannot expect the approach to make reliable early predictions.

There are also arguments against using (some types of) prior knowledge. Indeed in this
scenario one might suggest that not using prior knowledge might be advantageous, be-
cause that prior knowledge may be incorrect. For example, a surveillance officer may
choose to focus on one person rather than another because of racial prejudices, which are
essentially (incorrect) priors. A report by the Missouri Attorney General has found that
racial profiling by police officers actually lowers the rate of successful stop-and-search
procedures, and can distract officers from using more effective policing techniques [4].
One cannot of course say that all priors are harmful because many are not, but there is
none the less an argument that a human’s priors may be ineffectual, and thus a prior-free
approach could potentially outperform a human operator.

10.1.1 Earlier Prediction

To obtain earlier detections with the approach one must change the prediction criteria so
that a smaller number of features have to be observed. A natural choice is |Bk|− 1: one
less than the number of features defining each behaviour Bk. Figure 10.2 shows the affect
that this has on prediction accuracy, and compares performance against the original (all
features) results.

194

PT1 PT2 WI AO1 AO2 TH HO
0

0.2

0.4

0.6

0.8

1

F
−

S
c
o

re

Behaviour

|B
k
| Features

|B
k
|−1 Features

Figure 10.2: F-Scores for each behaviour B as the number of features required for predic-
tion is altered. When predictions are made with one outstanding feature expected there is
a 0.28 reduction in mean F-Score from 0.92 to 0.64.

It should be clear from the figure that altering the prediction criteria has a negative effect
on accuracy. The mean F-Score reduces by 0.28 from 0.92 to 0.64, with the HO behaviour
the most badly affected. Further analysis shows that HO has substantial confusion with
AO2 (48%) and T H (25%). Because the features in AO2 are a subset of HO this confusion
is to be expected if collaboration is not correctly detected. Furthermore, HO and T H

differ by only one feature, with HO containing an additional instance of ExitAgent. The
approach’s minimal explanation feature is likely to be a part of this confusion.

One can conclude from the experiments that bag-of-features inference performs very well
when presented with complete behaviours under moderate (10%) classification errors. To
achieve low false-positive rates and high precision and recall the prediction criteria are
essential for identifying when behaviours terminate. If one adjusts the prediction criteria
to make earlier predictions, performance is damaged due to the lack of prior knowledge.
Assuming that increased errors are an acceptable cost for early prediction there is no rea-
son why the approach cannot be configured to operate in this manner, refining predictions
as further observations are made.

195

10.1.2 Heuristic Particle Weights

Recall from Chapter 4 that the inference algorithm made use of a weighting function.
This function was defined by Equation 4.9, although it was identified that the equation’s
structure was too complex to estimate in the absence of training data. It was then proposed
that if a heuristic weight encapsulated the underlying principles of particle weighting then
convergence should still have been achievable. Equation 5.9 was the heuristic suggested
and was used throughout the experiments.

Aside from measuring prediction accuracy the results can also be used to determine the
efficacy of the heuristic weight. The theoretical underpinning of particle filtering tells us
that as the number of particles in a filter (N) increases, the estimated density of P(ZT |y1:S)

should converge to the true value [9]. One would therefore expect that behaviour pre-
dictions should also improve until some maxima is reached. With this premiss in mind
Figure 8.12 on page 169 can be used to analyse how well the heuristic weight performs
by showing recognition accuracy as the number of particles is varied.

It is encouraging to see from the figure that recognition accuracy quickly improves to over
0.9 as the number of particles is raised from 10−100. By 200 particles accuracy reaches
0.95, and then continues to converge towards 1 as N is further increased. The fact that
recognition accuracy approaches 1 as N → ∞ shows that the heuristic works well in this
domain and provides some support that the heuristic encapsulates some of the complex
dependencies of Equation 4.9.

The figure also shows the effect of the number of particles under 10% classification errors,
although optimal performance is not obtained by 500 particles. Unfortunately, it is unclear
from the results whether optimal performance would ever be achieved under these condi-
tions. Above 500 particles the run-time efficiency of the implementation prevents further
data collection, although the gradient of the graph indicates that large improvements in
accuracy would be unlikely without very large quantities of particles.

10.1.3 Behaviour Confusion

Table 8.5 on page 150 showed that behaviour confusion was minimal with no significant
errors. One attribute of interest is that HO is often misclassified as AO2. To recap, the
HO behaviour involves two agents. The first enters the scene, places luggage and leaves.

196

This sub-behaviour is identical to AO2. The second agent then enters the scene, removes
the luggage and leaves the scene. This second sub-behaviour is very similar to PT 2,
with the only difference being that in PT 2, the (same) agent places the luggage first.
Further investigation showed that some combinations of erroneous features would cause
the joint probability of both agents performing HO to drop below the probability of one
agent performing AO2 and the other performing PT 2. This leads to the HO confusion
observed. Because the PT 2 behaviour is not observed in its entirety a classification error
is not made for this agent, but the recall is effected instead.

10.2 Real-World Application

One might argue that because the evaluation was performed within a visual surveillance
domain the approach should be compared against a human baseline. However, there are a
number of reasons why such a comparison is both infeasible and unnecessary. The wide
spread deployment of Closed Circuit Television has led many to question the effectiveness
of existing installations and has led to a growing base of literature. Howard et al. have
identified that there are many factors affecting operator performance and state that visual
overload is just one major difficulty [61]. They found that operator performance was
effected by monitoring multiple targets, having to multi-task, and by the number of feeds
that must be monitored. Other studies have found that sheer boredom and poor motivation
are also major problems [129].

For instance, Tickner and Poulton compared operator detection performance when vary-
ing the numbers of monitors an operator must observe. They reported a drop in detection
accuracy of 19% when moving from nine to sixteen monitors [140]. This is consistent
with further research by the UK Police Scientific and Development Branch, which re-
ported that observers viewing one, four, six and nine monitors achieved respective detec-
tion accuracies of 85%, 74%, 58% and 53% on a simple observation task [142]. This is
just one variable that would have to be controlled in any human performance comparison
and would require large video datasets to provide meaningful results.

Aside from visual overload the literature also suggests that human operators are funda-
mentally flawed. Studies by Norris and Armstrong found that 40% of people targeted
by surveillance officers were targeted for no obvious reason and were chosen primarily
for belonging to a particular subculture or group [110, 111]. One can argue that an au-
tomated visual surveillance system is beneficial not only for combating operators that
are distracted from identifying real threats [61], but also because such systems are non-

197

discriminatory.

Furthermore, a study by Smith revealed the shocking drawback of requiring officers to
choose which feeds to monitor [129]. They quote an operator from their study:

“I can’t tell you how many things we’ve missed when we have not been
watching the other screens. Break-ins, assaults and car thefts have been going
on whilst we’ve been operating the other cameras” ([129] page 385)

The inefficiencies of human operators are widely acknowledged in the literature and one
can conclude that any automated system would be beneficial if it could reliably moni-
tor concurrent feeds. In validating the effectiveness of an automated visual surveillance
system one can still ask whether the system can outperform an operator, but the number
of operational variables makes such a comparison of limited use. The more prevalent
question is how well the system can detect behaviours of interest, which would allow the
flagging of interesting behaviour when an operator is distracted or overloaded.

10.2.1 Explaining Behaviour

One of the arguments for behaviour recognition over anomaly detection is that reasoning
can be explained to an operator while anomaly detection can only identify portions of
video that are ‘interesting’. Although anomaly approaches are frequent in previous re-
search [145, 8, 144, 12, 98, 97, 74], Dee and Velastin state in their summary paper on the
field that:

“It could also prove necessary to produce easily comprehensible output,
as any system designed to integrate within an existing CCTV control room
environment will need to be accepted and understood by the operatives. As
a human computer interaction problem, this has not received a great deal
of attention to date;” “Any system performing (for example) behaviour
summarisation will need to be able to produce results in a form that makes
sense to those unfamiliar with computer vision.” [36]

Section 8.1.2 of the results not only presented the high accuracy and recall of the ap-
proach but also highlighted that behaviour explanations were optimal. An example ex-
planation from the PETS data can be seen in Figure 10.3 from which one can say with

198

Figure 10.3: Example explanation from the PETS dataset (Scenario 4). The text reads:
“Agent H5 has left luggage with agent H7, but they are not known companions. H5 may
have abandoned an object. The item was placed around frame 878 and abandoned around
frame 1941. (High certainty)”

some certainty that the detailed description is aligned with Dee and Velastin’s vision of
comprehensible output.

A further argument for the approach was that the need to operate in noisy environments
calls for probabilistic methods to be used. Indeed, Dee and Velastin advocated probabilis-
tic approaches by stating that reasoning about uncertainty is paramount in successfully
achieving high level behaviour recognition [36]. In surveillance applications low-level
video processing errors generate uncertainty about what has really been observed. How-
ever, this problem is not unique to video surveillance, with many applications relying upon
signal processing techniques to provide low-level observations. Indeed, early behaviour
recognition techniques were often based upon first-order-logic [68], but their inability to
reason about uncertainty has largely led to their demise in modern behaviour recognition
research.

To demonstrate how the approach performs in noisy environments Figure 8.11 on page 166
showed recognition accuracy with simulated classification errors with a fixed number of
particles. The results showed that accuracy dropped linearly as primitive classification er-
rors increased and it is hypothesised that this reduction in performance is partly due to the

199

significant overlap of the validation behaviours. In several instances it is possible to con-
vert one behaviour to another by adding only one or two primitive features. An analysis
of the simulation data showed that various conversions did indeed occur. For example, the
PT 1 behaviour can be converted into AO2 via an erroneous PlaceOb ject feature. Further-
more, additional classification errors compounded the problem of HO→ AO2 confusion.
Nevertheless, the approach’s ability to correctly recognise such behaviour is evident with
an F-Score of 0.76 still achieved when observing behaviour containing 30% classification
errors.

Having observed performance under simulated classification errors it is surprising that the
video-based experiments deliver poorer performance than expected. In the simulations
with 10% classification errors the average F-Score was 0.92, while the combined results
from both video datasets gave an F-Score of 0.81. Given that the video event detectors
generate classification errors at approximately 11% and have a similar distribution to the
simulated data one would expect the two F-Scores to be closer. One of the reasons for this
discrepancy is likely to be the error model used in the simulated experiments. Although
the error model inserted erroneous observations it failed to take into consideration missed
observations. This is tantamount to assuming that the event modules had a recall of 1,
while in reality the modules achieved a mean recall of 0.8.

In competing approaches the temporal ordering of activities has helped to identify ‘miss-
ing’ observations. For example, Geib and Goldman considered behaviour recognition
for detecting computer network intrusions (an Intrusion Detection System) [51]. Given
a library of known computer attacks their approach attempted to recognise hacker be-
haviour in what is commonly referred to as hostile behaviour recognition. That is, an
agent’s actions are observed without the agent’s knowledge or interaction and are poten-
tially disguised. The authors argue that it should be expected that some actions will not
be detected, and make use of the temporal constraints between actions to identify when
this occurs.

Because bag-of-features recognition only imposes a weak temporal ordering it is more
difficult to detect when an action has been missed. This is especially true when one
considers the recall distribution in Figure 9.7 on page 188. Notice that the recall rates
for placing and removing objects are correlated: one cannot detect that an object has
been removed if it has never been detected as placed. However, there is still the potential
that a filter could acknowledge that an object (for example) has been removed without
acknowledging that it has been placed. Some kind of loose dependence could be encoded
in the approach to overcome such errors, although identifying the benefits of such an
alteration falls outside the time constraints of this research.

200

Approach PETS Precision PETS Recall PETS F-Score
ObjectPlaced Module 0.83 1.0 0.91

Grabner et al. [55] 0.94 0.97 0.95
Smith et al. [130] 0.96 0.86 0.91

Table 10.1: Comparison of luggage detection (PlaceOb ject) accuracy

10.2.2 Event Detection Comparison

Comparing the accuracy of the event detection modules with competing approaches is
somewhat difficult due to a lack of published results. However, one of the modules that
can be compared is the Ob jectPlaced module, which has more frequently been a compo-
nent of other research efforts.

Table 10.1 compares the module’s accuracy on the PETS dataset against two other ap-
proaches using the PETS data. Smith et al. use an approach that is actually very similar
to the one described in Chapter 7, with the key difference being that they prevent dupli-
cate object detections by filtering any object candidates (small foreground pixel blobs)
that lie on-top of other objects [130]. It is highly likely that a similar filtering step would
have improved the precision of the Ob jectPlaced module, where duplication errors were
the primary reason for false-positive detections. However, one should also observe that
the recall of Smith’s approach is only 0.86, suggesting that their filtering may also be
removing true-positive detections. If one calculates the appropriate F-Scores it becomes
apparent that Smith’s approach and the Ob jectPlaced module are actually comparable as
they have the same score.

Grabner et al. use an entirely different approach to detection based upon on-line AdaBoost
[55]. Their approach performs well in comparison to the others, although it should also be
highlighted that their results are based upon only two of the PETS scenarios. Furthermore,
these scenarios differ from those used during this research and by Smith et al., making it
difficult to relate the results fairly.

Another research area that has attracted some publications is group formation and split-
ting. Marques et al. specifically looked at tracking groups of 2−4 pedestrians, identifying
when merging and splitting occurred [93]. Their approach is based upon Bayesian Net-
works and makes use of several probabilities: a merging probability, splitting probability,
occlusion probability and new track probability. They reported that their approach was
able to correctly solve most situations, but did not publish any metrics against which the
FormGroup and SplitGroup modules can be compared. Similarly, Bose et al. also track
groups of pedestrians, although their work focused more upon tracking agents through

201

Approach F-Score
Bag-of-features 1.0

Auvinet et al. [10] 1.0
Guler and Farrow [56] 0.8

Krahnstoever et al. [73] 0.86
Martinez-del-Rincón et al. [94] 1.0

Li et al. [80] 1.0
Lv et al. [91] 1.0

Smith et al. [130] 0.86

Table 10.2: Comparison of the Abandon Object (AO2) detection accuracy with competing
techniques

group formation and splitting rather than detecting the events themselves [23]. In their
approach two agents passing each other are considered as forming and splitting a group,
which differs from the definitions used in this research.

10.2.3 Behaviour Detection Comparison

The high-level nature of the behaviours used within this research makes it difficult for
results to be compared with competing approaches. Research in complex video event
detection is disjointed and has few standard behaviours/datasets and ranges from aero-
plane arrival procedures [46] to kitchen activities [76]. However, there is one behaviour;
the detection of abandoned objects, that has received considerable attention. Unlike this
research competing approaches normally use the distance of objects to their owners to
identify abandonment [10, 56, 73, 94, 80, 91, 130], and thus no high-level understanding
of the video is actually occurring. However, that is not to say that these approaches can-
not be compared to the bag-of-features technique. Indeed, there are several papers from
the PETS 2006 workshop with which results can be directly compared for the abandoned
object (AO2) behaviour.

Table 10.2 compares video recognition performance for the PETS data with several com-
peting approaches. To ensure fairness F-Scores have been calculated from the results for
videos 1,3,4 and 6, which were the same videos used in this research. The table shows
that the bag-of-features approach is comparable with four of the competing techniques,
all achieving optimal recognition. Furthermore, it performs considerably better than three
of the competing approaches, offering 0.2 and 0.14 improvements.

Although the automated video surveillance community is extremely active there are rel-
atively few other results with which performance can be compared. Hakeem and Shah

202

have published research using normalised cuts to identify clusters of correlated activities.
Their datasets include surveillance scenarios and a theft behaviour is mentioned, but there
are no further details other than the mean results [57]. They report an F-Score of 0.87
for their surveillance scenarios, which is marginally higher than the F-Score achieved by
bag-of-features inference (0.83). However, it is extremely unlikely that the behaviours
being considered are the same in both pieces of research, and indeed it is unclear what
behaviours were being recognised by Hakeem and Shah. Furthermore, because their work
focused on behaviour recognition they justified their use of manual object identification
and labelling. This removes some of the video processing tasks performed within this
research and has the potential to significantly reduce the level of low-level classification
errors under which high-level recognition must take place. In this research no manual
object identification or labelling has been performed and thus there is an additional noise
element under which our approach has had to perform.

Symbolic networks are another competing approach for complex-event recognition and
thus some comparison of performance would be useful. Symbolic networks perform con-
straint satisfaction and are constructed from nodes representing video activities, and edges
denoting spatio-temporal rules. Recent work by Fusier et al. has shown that complex be-
haviours can be recognised utilising spatio-temporal rules such as before and during [46].
In some ways spatio-temporal rules are more robust than bags-of-features because they
can define event relationships. The bag-of-features approaches cannot represent relation-
ships and is thus more restrictive of the types of behaviour that can be represented.

Although constraint satisfaction can represent complex relationships their primary lim-
itation is that they cannot reason about uncertainty. Fusier et al. use real-world data
for their evaluation and provide end-to-end recognition in a similar vein to this research.
However, although they report that several complex behaviours are identified including
two multi-agent scenarios, they provide no metrics regarding precision or recall. Fur-
thermore, their validation environment considers aircraft arrival procedures and is thus
relatively controlled in the number of actors concurrently present in a scene. This means
that no performance comparison can be drawn with Fusier et al., although such a compar-
ison would prove interesting future work.

10.2.4 Runtime Scaling

Figure 8.13 on page 170 showed that the number of particles in a filter has a large impact
on inference time. Recall that this experiment was performed with a constant number of
six agents. At the far left of the graph it can be seen that even with only 100 particles

203

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

Number of Agents

A
v

er
ag

e
R

u
n

ti
m

e
(m

s)

Filter Only

Filter + Sim. Annealing

Figure 10.4: Runtime vs. number of agents with fixed 220 particles

runtime is approaching 2 seconds per observation. Video surveillance frame rates tend
to range from 7 to 24 frames per second, which would require a processing speed of
approximately 42−142 ms to achieve real-time processing. However, although the filters
are operating slower than video frame-rate, the filters process video events, not video
frames. Video event rates are data dependent and are primarily determined by scene
occupancy, although a typical scene from the PETS dataset (scene 6) produced a rate of
1 event every 3.5 seconds. With such a rate up to 300 particles could be used to maintain
real-time event processing performance.

Although the figure shows that real-time processing can be achieved, what may be unclear
is that the number of agents changes the number of active filters, and thus also affects
the over-all runtime. Furthermore, as the number of agents increases so too does the
complexity of the simulated annealing algorithm, further increasing the run-time. To try
and demonstrate this, Figure 10.4 shows both filter runtime and combined filter/annealing
runtime with 220 particles. Because each filter executes independently the run-time data is
affected by operating system scheduling, making it difficult to obtain precise information.
However, the general trend of the data can be identified and is plotted in the figure.

One can see from the data that both run-times appear to increase linearly. As the number
of agents increases more filters are required which gradually increases the filtering run-
time. The combined filtering/simulated annealing run-time increases more sharply as

204

the simulated annealing algorithm requires longer to identify good multi-agent behaviour
assignments. It is apparent from the figure that both the number of particles and the
number of agents have a large impact on runtime. In some ways the number of agents
is a more concerning variable because the number of particles remains fixed and can be
tuned to the environment. However, the number of agents is likely to be determined by
the environment in which the approach is deployed. If real-time processing is required
it is clear that the number of agents must remain capped or else some other approach is
required to reduce the run-time. Some ideas for progressing in this direction in the future
will be discussed in Chapter 11.

10.2.5 Complexity of Human Behaviour

One of the challenges in observing human behaviour is that behaviours can frequently
change. The results in Section 8.2.2 showed that the relaxed temporal model allowed
small changes in component order without affecting recognition accuracy. This is an
important attribute of the approach because it shows that different instantiations of the
same behaviour can be recognised via a single representation. The experimental data
used for Figure 8.8 on page 159 demonstrated a single representation of AO1 recognising
two different orderings.

These results show that modelling strict temporal order is not necessarily beneficial, even
though it may appear logical. For instance, one might argue that if two activities are
clearly dependent (e.g. placing an object and removing it), why remove that information?
However, this thesis proposes that such strong dependencies do not need to be modelled
in many cases and actually reduces generality. The results in Section 8.1.2 support this
proposition by the very fact that different variations of the same behaviour can still be
recognised via a single definition.

Laxton et al. adopted the alternative approach of partially fixing temporal order in their
model, where each sub-goal activity was totally ordered while individual sub-goals were
unordered [76]. The limitation of their work remains as described above; they require
multiple sub-goal representations in order to match different orderings. Their validation
domain utilised very strict ordering constraints (cooking) and thus their approach per-
formed well, but in a scenario with more variable orderings the bag-of-features approach
might demonstrate that its more generic behaviour descriptors are beneficial.

Aside from changes to activity ordering there are also a number of behavioural com-

205

plexities that arise when the goals of an agent change. This can lead to the pursuit of
one goal followed by another (concatenation), goal abandonment, and interleaved activi-
ties from multiple goals. These aspects of recognition apply to many domains, although
it is primarily plan recognition researchers that have considered them in previous work
(e.g. [100, 27, 63, 48]). Despite their relevance to automated visual surveillance, to the
author’s knowledge there are no prior examples of these concepts being applied within
video surveillance applications.

While not the focus of this research these concepts have nevertheless remained prominent
and have been considered during algorithm design. Correspondingly, the particle reset
mechanism was designed to facilitate the recognition of concatenated and switched goals,
while concurrent and interleaved goals remained outside the scope of this research. Re-
call from Chapter 4 that the particle reset mechanism is activated for particles that cannot
explain an observation. If that particle has observed all features from its current be-
haviour hypothesis it is re-initialised according to the prior distribution which should aid
the recognition of a new goal being commenced (concatenation). In contrast, if a particle
has not observed all features the target behaviour is re-initialised and the set of consistent
observed features is maintained. This mechanism should allow goal abandonment and
switching to be detected.

Concatenated Behaviour

Focusing initially on goal concatenation, the results showed a 19% drop in mean recog-
nising performance (F-Score: 0.73) for a concatenated (second) behaviour. This drop in
performance seemed to be caused by the fact that not all particles represent the same state
and thus only some of the particles were reset when a behaviour completed. Resultingly,
a subset of the particles attempt to explain all observations, reducing overall filter accu-
racy. Having observed this phenomenon it was hypothesised that an alternative approach
would be to reset all particles when a behaviour prediction occurred. It has already been
observed that standard behaviour prediction achieves an F-Score of 0.92 and thus this
should provide a reliable way of triggering particle reset for an entire filter.

To test this hypothesis an additional experiment was performed which highlighted a num-
ber of further issues. Firstly, because the HO behaviour contains the AO2 behaviour, this
ordinarily causes an AO2 prediction to be generated, followed by a retraction and an HO

prediction as further observations are made. However, when particles are reset at predic-
tion this prevents the full HO behaviour from being recognised. Furthermore, even if one
removes the HO behaviour from the experiment, the results show that recall falls by 14%

206

for the other behaviours causing an overall F-Score of 0.6 (precision remained compara-
ble). Analysis showed that the multi-agent behaviours are responsible for this decrease
and is caused by the initial (first) behaviours of each agent terminating at different points.
This prevents the joint set of features from their second behaviours from being correctly
identified.

If one removes all collaborative behaviours from the test an F-Score of 0.73 is obtained,
although this only represents a 6% improvement if one isolates the solo behaviours from
the original results. Correspondingly, it can be concluded that resetting all particles at
behaviour prediction is no more effective than the original approach, which also delivered
an F-Score of 0.73.

Goal Abandonment/Switching

Turning now to the recognition performance of switched behaviours, the results show that
a performance drop is observed with a mean F-Score of 0.68. Again, it is not possible
to directly contrast this result with previous research, although it may be discussed in
relation to similar research by Geib and Goldman [48]. Rather than detecting switched
behaviour their research focused exclusively upon goal abandonment, where an agent
pursuing several goals ceased performing activities for one of them. Their approach eval-
uated the likelihood that a set of observations didn’t support a goal and used a threshold
termed the probability abandonment threshold (PAT). The PAT could be adjusted to re-
duce the number of false-positive ‘abandoned’ classifications, and achieved an optimal
accuracy of 75%. Geib and Goldman remark that the length of the evaluation behaviours
was one of the causes of this limited performance. Increasing the PAT should in theory
have allowed the number of false positives to be reduced to zero, but as the PAT was in-
creased the limited length of the test sequences meant that the threshold could not always
be reached before the sequence terminated.

It is speculated that both the limited length, and large overlap of the behaviours, also relate
to the poor recognition performance in this research. If only a relatively few activities are
observed after a behaviour has switched it is difficult for the filter to correctly converge to
the new behaviour, while longer sequences might have allowed this to occur.

A partial comparison can be made with Chai and Yang’s work on complex behaviour
recognition [27]. Their research specifically looks at recognising three types of complex
behaviour: concatenation, concurrency (activities supporting multiple goals), and inter-

207

Approach Single goal performance Multi-goal performance
Bag-of-features 96.4% 88%

Chai and Yang [27] 94.6% 91.4%

Table 10.3: Comparing precision with Chai and Yang’s MG-Recogniser

leaving. Although interleaved goals and goal abandonment/switching are not identical,
they do produce a similar effect: the switching of one behaviour to another. There are
thus two similarities between our research and [27], with concurrent goals remaining
completely out of scope of this research.

Chai and Yang’s work introduces the concept of behaviour suspension. That is, when a
behaviour ceases to be recognised with a high probability it enters a suspended mode that
may or may not be resumed at a later point. A time limiting threshold is applied such that
behaviours that are not resumed after some period are classified as terminated/abandoned,
while other behaviours continue to be suspended/resumed until termination is observed.
They partition their experiments into two scenarios: single-goal, and multi-goal (incorpo-
rating all three types defined above), and have published the recognition accuracies shown
in Table 10.3.

These results can be compared to the bag-of-features approach by merging the results
for concatenation and switching to generate comparative multi-goal results. One can see
from the table that the two approaches offer very similar performances, with Chai and
Yang achieving a 3.4% improvement on multi-goal behaviour but are out-performed on
solo-goal behaviours by 1.8%. It can be concluded that our results are aligned with related
work in the field for detecting multi-goal behaviours.

However, it should also be emphasised that while results are comparable, Chai and Yang’s
approach relied on training data and thus could not be applied in data-scarce domains.
With this consideration in mind, the bag-of-features approach has performed very well,
given that comparable performance has been achieved without with use of model training.

Superfluous Activities

A further complexity of human behaviour was also demonstrated in Figure 8.9 on page 161,
which showed that superfluous activities also harm recognition performance and cause the
average F-Score to drop to 0.64. One important thing to note about superfluous activi-
ties is that they consisted of pairs of repeatable features such as placing and removing

208

an object. Section 4.2 discussed the algorithms used to process repeatable feature sub-
sets, and it should be highlighted that the technique was integrated with algorithms for
dealing with classification errors. It is possible that these algorithms are insufficient to
allow repeatable subsets, with classification error filtering altering particle densities so
that the ‘repeating features’ hypotheses have insufficient weight. Indeed, a final exper-
iment disabled repeating subsets from the algorithm, meaning all superfluous features
were considered classification errors. The results showed that accuracy dropped by only
3%, suggesting these algorithmic elements were having limited effect.

10.3 Generic Application

Considering the wider context of the results several aspects should be discussed. Firstly,
it is apparent from Figure 10.2 on page 195 that the approach is poorly effected by in-
complete behaviour traces. It appears that this is at least in part because of the overlap
between the behaviours, meaning that they can often only be distinguished from one an-
other once all behaviour features have been observed. Having a prediction criteria that
requires the observance of all features delivers very good results, but limits the approach
because partial behaviours cannot be recognised. If there were less overlap between the
behaviours it is possible that the prediction criteria could be relaxed and more accurate
earlier/partial behaviour recognition could be achieved. Due to time constraints exploring
this hypothesis must be left for future work.

None the less, these results do have implications for the wider application of the approach.
For instance, digital assistants are a growing area in which behaviour recognition technol-
ogy has a place. Microsoft’s Clippy was an early example of a recommender system in
which an animated paper-clip attempted to recognise simple tasks so that they could be
automatically performed on behalf of the user. Although Clippy is generally considered as
a user interface failure, digital assistants are once again becoming popular, with Siri from
Apple being a current example [5]. The integration of digital assistants with behaviour
recognition techniques may again re-surface, however, a key factor of recommender sys-
tems is that the user’s behaviour is detected before their task is complete. In this respect
the bag-of-features approach is clearly inappropriate unless the behaviours to be detected
are quite distinct.

Although the validation has focused on indoor video surveillance this area is representa-
tive of a number of other domains. For instance, behavioural awareness is a key factor
in the successful deployment of autonomous vehicles within multi-agent environments.

209

Autonomous vehicles are becoming increasingly common within the underwater [13],
ground [77], and air domains [58] for both civilian and military applications. Providing
these systems with behavioural awareness requires sensory processing and inference tech-
niques and is not dissimilar from the video surveillance field. Video retrieval is another
vibrant area of research in which bag-of-features inference may have a place [131]. If
one can extract distinct events from video then videos containing particular behaviours
could be automatically identified. This could be extremely useful for large archives of
video data and allow filtering of complex behaviours. Inversely, the approach could also
be used to automatically annotate video as it is archived.

10.4 Summary

The beginning of the chapter showed that reliable behaviour predictions can be made by
using a prediction criteria that identifies when behaviours terminate. Because the ap-
proach does not model any prior information it does poorly at recognising behaviours
before all features have been observed, although in-part this is likely to be due to the large
overlap of behaviours.

In evaluating the approach there is evidence to support the use of our heuristic weight.
The results showed us that as the number of particles increases so too does recognition
performance, and tends to optimal as the number of particles approaches infinity.

One of the key aims of this research was that behaviour detections should be explainable
and this has been clearly demonstrated. Explanation templates were associated with each
behaviour with ‘slots’ marked for pertinent information. Upon making a prediction these
templates were consulted and combined with particle filter details to provide complete be-
haviour descriptions. This was demonstrated with an example detection, which identified
the agents involved in a behaviour and identified relevant video frames for key activities.

The approach has been compared to competing techniques using the PETS 2006 data.
Optimal performance was achieved in this respect, which is comparable with several other
approaches and exceeds three. Comparable results were also achieved with regards to
multi-goal recognition, where agents concatenate or change their behaviour.

Finally, it has been shown that the use of combinatorial search to identify multi-goal be-
haviour has led to scaling issues with regards to the maximum number of agents, reach-

210

ing a limit of approximately twenty within this implementation. Within these bounds
real-time recognition can be performed to a high degree of accuracy, but runtime is sig-
nificantly affected after this point. The next chapter will consider several approaches by
which this limitation might be removed in future work, in addition to suggesting several
other extensions to this research.

211

Chapter 11

Conclusions and Future Work

Nomenclature:

f ℜ1 Filter for agent 1

C Set of currently achieved features

T Set of target features

Bs The set of solo behaviours

Bs
b The bth behaviour in Bs

11.1 Conclusions

The goal of this research was to develop probabilistic inference techniques for high-level
behaviour recognition in data scarce domains. It was the author’s thesis that behaviours
could be recognised without model training by using a feature based approach. To this
end a generic framework has been developed and demonstrated within a surveillance ap-
plication. The results have shown that good recognition performance can be achieved
without requiring training data or experts to define model probabilities. The findings of
this research have already been discussed in detail in the previous chapter, however, to
summarise:

212

1. As a probabilistic inference technique the framework has been successful in recog-
nising complex human behaviours without parameter estimation. This has been
achieved by building on Rao-Blackwellised Particle Filters, combining them with
a novel behaviour representation that removed the need for learnt transition prob-
abilities. The experimental results show that the approach is robust to primitive
classification errors, one of our key aims, giving a mean recognition F-Score of
0.92 when evaluating the approach using seven noisy behaviours. Further valida-
tion was provided by means of the video-processing test-harness that employed both
publicly available and newly gathered video data of the same seven behaviours. A
mean F-Score of 0.81 was achieved on the combined video datasets. These results
support the thesis that complex behaviour can be recognised using a feature based
approach.

2. A further objective of this research was the maintenance of low false-positive pre-
diction rates. This is another area in which the results have demonstrated great
success with a mean false-positive rate of only 3.4% on the combined video data,
and 0.31% on the simulated data. Furthermore, these rates have not been achieved
at the expense of recall, which still remains at 0.77 and 0.88 for video and simulated
data respectively.

3. With respect to the goal of real-time inference, the evaluation has shown that the
framework can achieve real-time inference, although under the current implemen-
tation this is only possible when restricting the number of concurrently monitored
agents to twenty. This limitation is a result of multi-agent behaviour detection,
which currently relies on heuristic combinatorial search.

4. A further objective of this research was to develop approaches that could explain
detected behaviour in order to facilitate their integration into real-world environ-
ments. Our video surveillance test-harness has shown that the approach performs
well in this respect, allowing key information such as activity detection times to be
extracted from the particle filters and presented in an explanatory manner.

5. At the very beginning of this thesis it was highlighted that the ability to recognise
behaviour is dependent upon several skills: the ability to sense the environment, the
ability to infer action purpose and the ability to apply knowledge. This research has
focused on the last of these skills, and is thus highly dependent on other systems to
provide low-level sensing and interpretation. It was for this reason that one of the
aims of the thesis was to understand the relationship between low-level errors and
high-level reasoning. The evaluation has shown that poor recall in particular has an
adverse effect on complex behaviour recognition, where the framework lacks the
ability to infer that activities have been ‘missed’ by the detectors. High-level per-
formance does however adapt well, with a linear drop in performance as low-level
precision reduces. As one would expect, good low-level detection accuracy is key

213

to high-level inference, although the results indicate that good (≥ 0.8) performance
can still be achieved with relatively high low-level false-positives (20%).

6. Abandoned object detection is one area where the results can be compared with
competing approaches. Bag-of-features inference offers comparable performance
on this task (compared with others using the PETS data), although it should be noted
that unlike many competing approaches, bag-of-features inference can recognise
many different behaviours and is thus a more generic approach.

7. Inference was demonstrated in the data-scarce domain of visual surveillance, and it
has been shown that our novel framework can be used to provide reliable behaviour
recognition without parameter learning. In prior work automated visual surveil-
lance is one domain in which high-level models have been unable to utilise proba-
bilistic techniques. This has primarily led to two competing approaches; anomaly
detection and constraint satisfaction. Anomaly detection is focused on flagging ab-
normal behaviours without comprehending their meaning. This is quite different
from the bag-of-features approach which reasons about the semantic components
of known behaviours. However, it is recognised that each approach tackles differ-
ent but highly related problems. In reality it is likely that a combination of these
approaches would be most useful in real-world scenarios, harnessing the benefits of
each methodology.

Semantic constraint satisfaction uses complex spatio-temporal relationships to de-
fine behaviours but are unable to reason about uncertainty. This is important not
only because low-level signal processing algorithms generate classification errors,
but because variability makes human behaviour inherently uncertain. The mecha-
nisms for dealing with uncertainty are not traditionally available with semantic rules
and thus one would expect bag-of-features inference to out-perform them on most
occasions. A lack of published results means that a direct comparison of the ap-
proaches cannot currently be drawn, although this would provide interesting future
work. However, one can summarise the benefits of our framework over anomaly
detection and semantic rules by stating that bag-of-features inference can recognise
and explain detections of specific behaviours in uncertain, noisy domains, while
competing approach cannot.

8. The approach has been successful at recognising multi-agent behaviours in addition
to single agent behaviours. This is in great contrast to the majority of behaviour
recognition research where there has been very little exploration of multi-agent be-
haviour recognition. In prior research multi-agent behaviours have generally been
restricted to military manoeuvres and formations (e.g. [134, 136]) for which spatial
pattern recognition techniques have been employed. Within this thesis multi-agent
behaviours have been recognised by considering the semantic relationships between
the activities of different agents.

214

9. One of the ‘extended’ aims of this research was to recognise interleaved, switched
and concatenated behaviour. In this respect the framework delivered performance
that is comparable with other work in the field with a mean F-Score of 0.71 when
detecting multi-goal behaviours. Success was also demonstrated in recognising
different activity orderings of the behaviours, making the approach more robust
than fixing temporal order.

10. As a whole, this research has noted that high-level behaviour recognition research
is particularly effected by a lack of realistic, publicly available data, with many
datasets lacking the richness to expose complex behaviour. Additionally, the use of
video data means that video processing techniques have to be reimplemented and
this distracts research from the overall goal. Future work is likely to yield greater
advances if it is undertaken within a wider research setting in which specialists from
different fields contribute directly towards a common goal.

11.2 Future Work

The time-constraints of this research mean that many questions remain open for future
work. There are also several theoretical challenges yet to be solved, such as how the
approach can be adapted to scale better with the number of agents, and how repeatable
behaviour might be modelled. To this end this section will identify several directions in
which future work might proceed.

11.2.1 Collaborator Detection

As it stands collaborator detection is fundamentally reliant upon combinatorial optimi-
sation. This causes two distinct problems. Firstly, a particle filter hierarchy is required
for each set of potential collaborators which causes exponential growth as the number
of agents increases. The results showed that under the experimental conditions real-time
performance could only be achieved for up to approximately twenty agents. The sec-
ond problem with combinatorial optimisation is that the simulated annealing algorithm
finds good behaviour/collaborator assignments at each observation. Because the algo-
rithm considers all agents as potential collaborators the runtime increases with the number
of agents.

If one makes the assumption that broad temporal behaviours are out of scope for multi-

215

agent behaviour detection (e.g. two agents who enter the scene one hour apart), then
logically, not all agents need to be considered as potential multi-agent behaviour partici-
pants (collaborators). One could thus use temporal rules to inform collaborator detection
and reduce the scope of the combinatorial problem. However, this is still fundamentally
limiting and perhaps better methods can be derived by considering the cognitive pro-
cesses of a human observer. For instance, a human would probably consider agents as
non-collaborators until there is evidence to the contrary. Evidence might be in the form
of direct interaction (e.g. talking, shaking hands) or inferred (e.g. dual manipulation of
same object), and could also be applied to the inference algorithm to trigger new filter
hierarchies. This approach would reduce the filter growth rates shown in Chapter 8, but is
reliant upon the presence of suitable triggers being available.

Another approach for reducing potential collaborators would be to only consider agents
concurrently present in the scene. If agent A leaves the scene before agent B arrives the
two agents would be considered independent, although the return of A would then initiate
a potential collaboration. Again, the approach has the ability to significantly reduce the
filter growth rates, but is restrictive of the behaviours that can be modelled. For instance,
the HO behaviour could not be detected using this strategy.

One final approach for limiting this complexity is to use high-probability predictions to
reduce the space of potential collaborators. Suppose that there are three agents being ob-
served, agents 1,2 and 3, leading to solo filters { f ℜ1, f ℜ2, f ℜ3} and multi-agent filters
{ f ℜ1,2, f ℜ1,3, f ℜ2,3}. Suppose that at time t a prediction is made that agent 1 is per-
forming solo behaviour Bs

b, and that all features for Bs
b have been observed with high

probability. This prediction could be used as a heuristic to eliminate unlikely filters such
as { f ℜ1,2, f ℜ1,3}, and further, can be used to prevent the generation of further multi-
agent filters as additional agents arrive. Thus, if agent 4 is observed after t, only filters
{ f ℜ4, f ℜ2,4, f ℜ3,4} would be generated, but not f ℜ1,4. It should be clear that such an
approach is heuristic and is not guaranteed to produce optimal results. The largest danger
is that Bs

b is incorrect, and thus the removal of other multi-agent filters could prevent the
correct detection of a multi-agent behaviour involving the agent after time t.

11.2.2 Repetitive Behaviour

One of the assumptions of our approach is that behaviours do not contain repetitive com-
ponents such as repeated sub-goals. This simplifying assumption was made so that one
did not have to consider multiple occurrences of the same feature in the ‘target’ and ‘cur-
rently achieved’ feature sets. In some ways this assumption is overly restrictive because

216

the real issue is with regards to components that can be repeated an infinite or unknown
number of times. This is because uniform probability is assigned to elements in C \T ,
which is undefined when an element of C\T can be repeated an infinite number of times.

There are a number of methods by which the assumption might be relaxed. Components
that have a fixed repetition count are the easiest to accommodate, where each component
could simply be identified uniquely (e.g. FeatureA1, FeatureA2). Some progress could
also be made for behaviours where components are repeated an unknown, but limited
number of times, with several instances of the behaviour being defined with a different
number of component repetitions. This approach grows with complexity as the number of
potential repetitions increases and is exponential with the number of repetitious features.

An infinitely repetitious feature is the most challenging to incorporate. If the distri-
bution of repetitions could be approximated then one could incorporate this distribu-
tion into the model. For instance, if the probability of FeatureA occurring twice is
0.75, and the probability of it occurring once is 0.25, if T = {FeatureA,FeatureB} and
C = /0 , then P(FeatureA|T,C) = 0.66∗0.75+0.5∗0.25 = 0.625 and P(FeatureB|T,C) =

0.33 ∗ 0.75+ 0.5 ∗ 0.25 = 0.375. This distribution is also more scalable than the previ-
ous approach for unknown but limited repetition and could also be applied, in addition to
solving the simplest case of a known number of repeated instances. In all cases the ability
to distinguish multiple instances in C is still required, although this is a trivial task. This
last approach is preferred by the author, but does require the distribution of occurrences
to be reasonably approximated.

11.2.3 Active Vision

This research has specifically focused on high-level inference, and as such the integration
between high-level inference and low-level vision algorithms has been limited. However,
significant performance gains might be achieved through a feedback loop that focuses
video-processing resources in accordance with expected future activities. For instance, in
a crowded surveillance application one might detect that a bag is being abandoned, and
thus focus more sensors/processing time on tracking the offending bag owner. In more
complex scenarios one might even predict future actions, and swap/prioritise different
sensing algorithms that are optimised for the detection of these actions.

217

11.2.4 Ontology Integration

Another direction in which this research could be extended would be to use ontologies
to provide a taxonomy framework upon which behaviours could be generalised. For in-
stance, suppose that two behaviours are to be detected : ‘abandoned object’ and ‘aban-
doned vehicle’. In essence these two behaviours are very similar, with the most apparent
difference being that one tends to consider an object as being reasonably small and a vehi-
cle as being reasonably large. However, in the context of these behaviours the dimensions
of an object are not necessarily as important as the objects’ attributes, such as their abil-
ity to ‘conceal’. Both a vehicle and suitcase could be explicitly defined as having such
a property, although it may also be possible to infer such an attribute using languages
such as OWL: the Web Ontology Language [95]. More generic behaviours could then be
defined by referring to ontological concepts rather than specific real-world objects. An
ontology could then be integrated into the framework between the video processing layers
and the reasoning layers to allow inferred events to be provided as observations.

11.2.5 Comparing Approaches

A disparity between the datasets of published literature means that a direct comparison for
many of the results has not been possible. However, it is expected that the probabilistic
nature of bag-of-features inference means that they will out-perform semantic rule-based
approaches (constraint satisfaction) such as [46], and this is one area in which future work
could provide compelling evidence.

11.2.6 Behaviour Similarity

The experiments identified a number of results which pertain to the similarity of be-
haviours. It was hypothesised that both the similarity and length particularly impacted
the recognition of switched behaviours, where one would logically expect that less sim-
ilarity should aid successful identification. Additionally, fewer similarities should also
facilitate more accurate early prediction and reduce false-positive predictions. A more
theoretical analysis of these factors using controlled behaviours could help to identify
these relationships more clearly and better define the behaviours with which the approach
works best.

218

11.2.7 Video Event Detectors

Validating the approach called for the implementation of several low-level video process-
ing algorithms. Because the implementation time for these algorithms was strictly limited
by the overall goal of high-level recognition there are several areas where the video pro-
cessing could be improved. The simple event detection modules in particular are naive
in their approach, with group detection entirely based upon the proximity of individually
tracked agents. Papadourakis and Argyros argue that groups of agents should be identified
and tracked as part of the tracking process itself, rather than separating tracks and then
trying to recognise groups [113]. It is anticipated that integrating better group tracking al-
gorithms into the framework would significantly improve video recognition performance.

Furthermore, this research utilised an experimental person tracker upon which large im-
provements could be made. The tracker was observed to perform particularly badly at
short range where track precision reduced. This has implications for object association
where ownership is determined via the distance of objects to people. This in turn affected
the recognition performance of the WI and AO1 behaviours, which rely on accurate object
associations. Although object tracking is a very active subject within video processing re-
search there are relatively few trackers available to the wider research community and this
has a significant impact on high-level video recognition research.

11.2.8 Standardised Dataset

Significant benefit could be obtained from the generation of a large, publicly available
dataset for high-level behaviour research. The Performance Evaluation of Tracking and
Surveillance (PETS) workshops have made great strides in this area for lower-level track-
ing researchers and have released numerous datasets (e.g. [139, 45, 44]). However, this
research has shown that the limited presence of complex behaviours within [139] limits
its use for complex recognition research, and was similarly observed with [44]. On the
other hand, [45] is extremely complex at the tracking level and is thus too challenging for
higher level recognition without the availability of good tracking information.

Aside from the PETS workshops, other datasets in a similar vein also exist, with the
BEHAVE [1] and CAVIAR [2] datasets being two other examples of publicly available
data useful for complex behaviour recognition research. For this project these datasets
still lacked a sufficient level of complexity, focusing more on interacting behaviours such
as fighting.

219

One can thus conclude that the availability of a high-level dataset, especially one that
already includes tracking information, would be of substantial benefit to high-level be-
haviour recognition research.

11.3 Closing Remarks

Bag-of-features inference has both been inspired by and built upon different techniques
from a large number of disciplines. Yet as an approach for behaviour recognition, it
is strikingly different from related work. Bag-of-features inference has been born out
of the need for high-level inference in real and challenging environments, where prior
research has had limited success. Its key benefit is that training data is not required,
yet it is able to perform probabilistic inference in challenging domains. This thesis has
shown that many of the limitations of prior work can be overcome by adopting our novel
approach, which has demonstrated very promising results on both real and synthetic data.
Although significant work still remains, these results have brought us one step closer
to the autonomous systems that have captured the human imagination for the past forty
years, and deployable systems that can recognise complex human behaviour in real-world
environments may soon become a reality.

220

221

Appendix A

222

Passing
Through 1

Goal

Enter Area
Subgoal

Exit Area
Subgoal

Enter
Area

Exit
Area

Figure A.1: Structure of the Passing Through 1 behaviour

Passing
Through 2

Goal

Enter Area
Subgoal

Enter
Area

Exit Area
Subgoal

Exit
Area

Transient
Object

Subgoal

Place
Object

Remove
Object

Figure A.2: Structure of the Passing Through 2 behaviour

223

Watched
Item
Goal

R1:
Enter Area

Subgoal

Enter
Area

R1:
Leave Object

Subgoal

R1,R2:
Split Group

Subgoal

R2:
Enter Area

Subgoal

Enter
Area

Place
Object

Exit
Area

Split
Group {

Performed by Role 1

{
Performed by

Role 2

{

Performed by
Role 1

{
Performed by

Role 1 & 2

Figure A.3: Structure of the Watched Item behaviour

Abandon
Object 1

Goal

R1:
Enter Area

Subgoal

Enter
Area

R1,R2:
Interaction

Subgoal

R2:
Enter Area

Subgoal

Enter
Area

R1:
Leave Object

Subgoal

Place
Object

Exit
Area

Split
Group

Form
Group {

Performed by Role 1

{

Performed by
Role 2

{

Performed by
Role 1

Performed by
Role 1 & 2

{

Figure A.4: Structure of the Abandon Object 1 behaviour

224

Abandon
Object 2

Goal

Enter Area
Subgoal

Enter
Area

Place
Object

Leave Object
Subgoal

Exit
Area

Figure A.5: Structure of the Abandon Object 2 behaviour

Theft
Goal

R1:
Enter Area

Subgoal

R1:
Place Object

Subgoal

Enter
Area

Place
Object

R2:
Enter Area

Subgoal

R2:
Steal Object

Subgoal

Enter
Area

Exit
Area

Remove
Object{ {

Must be performed by Role 1 Must be performed by Role 2

Figure A.6: Structure of the Theft behaviour

225

Hand-Off
Goal

R1:
Enter Area

Subgoal

Enter
Area

R2:
Enter Area

Subgoal

R2:
Steal Object

Subgoal

Enter
Area

Exit
Area

Remove
Object {

Must be performed by Role 2

R1:
Leave Object

Subgoal

Place
Object

Exit
Area{

Must be performed by Role 1

Figure A.7: Structure of the Hand-Off behaviour

226

Bibliography

[1] Behave: Computer-assisted prescreening of video streams for unusual activities.
URL http://homepages.inf.ed.ac.uk/rbf/BEHAVE/. Edinburgh University
Informatics Department (2007)

[2] Caviar: Context aware vision using image-based active recognition. URL http:

//homepages.inf.ed.ac.uk/rbf/CAVIAR/. Edinburgh University Informatics
Department (2002)

[3] Collins english dictionary: Complete and unabridged. URL http://www.

collinslanguage.com/. HarperCollins Publishers (2003)

[4] Executive summary on 2005 missouri vehicle stops. URL http://ago.mo.gov/

racialprofiling/2005/racialprofiling2005.htm. Missouri Attorney Gen-
eral (2005)

[5] Siri. URL http://www.apple.com/iphone/features/siri.html. Apple
(2012)

[6] U.k. ministry of defence: Defence technology plan. URL http://www.science.

mod.uk/strategy/dtplan/technologies_default.aspx. UK Ministry of
Defence (2011)

[7] J. Aguilera, H. Wildenauer, M. Kampel, M. Borg, D. Thirde, and J. Ferryman.
Evaluation of motion segmentation quality for aircraft activity surveillance. In
2nd Joint IEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, 293 – 300 (2005)

[8] P. Antonakaki, D. Kosmopoulos, and S. Perantonis. Detecting abnormal human
behaviour using multiple cameras. Signal Processing, 89(9), 1723–1738 (2009)

[9] M. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and S. Ade-
laide. A tutorial on particle filters for online nonlinear/non-gaussian bayesian track-
ing. IEEE Transactions on signal processing, 50(2), 174–188 (2002)

227

[10] E. Auvinet, E. Grossmann, C. Rougier, M. Dahmane, and J. Meunier. Left-luggage
detection using homographies and simple heuristics. In Proceedings of the 9th
IEEE International Workshop on Performance Evaluation in Tracking and Surveil-
lance, 51–58 (2006)

[11] D. Ayers and R. Chellappa. Scenario recognition from video using a hierarchy of
dynamic belief networks. In Proceedings of the 15th International Conference on
Pattern Recognition, volume 1, 835–838 (2000)

[12] A. Basharat, A. Gritai, and M. Shah. Learning object motion patterns for anomaly
detection and improved object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1–8 (2008)

[13] R. Baxter, J. Cartwright, J. Clay, O. Clert, B. Davis, J. Lopez, F. Maurelli, Y. Petil-
lot, P. Patron, and N. Valeyrie. Nessie v turbo : a new hover and power slide capable
torpedo shaped auv for survey, inspection and intervention. In Proceedings of The
Association for Unmanned Vehicle Systems International Conference (2010)

[14] S. Beauchemin and J. Barron. The computation of optical flow. ACM Computing
Surveys (CSUR), 27(3), 433–466 (1995)

[15] M. Beetz, N. v. Hoyningen-Huene, J. Bandouch, B. Kirchlechner, S. Gedikli, and
A. Maldonado. Camera-based observation of football games for analyzing multi-
agent activities. In Proceedings of the fifth international joint conference on Au-
tonomous agents and multiagent systems, 42–49 (2006)

[16] N. Bird, O. Masoud, N. Papanikolopoulos, and A. Isaacs. Detection of loitering
individuals in public transportation areas. IEEE Transactions on Intelligent Trans-
portation Systems, 6(2), 167–177 (2005)

[17] M. Black and A. Jepson. A probabilistic framework for matching temporal
trajectories:condensation-based recognition of gestures and expressions. In Pro-
ceedings of the European Conference on Computer Vision, volume 1, 909–924
(1998)

[18] N. Blaylock and J. Allen. Hierarchical instantiated goal recognition. In Proceed-
ings of the AAAI Workshop on Modeling Others from Observations, 8–15 (2006)

[19] N. Blaylock and J. F. Allen. Fast hierarchical goal schema recognition. In Proceed-
ings of the National Conference on Artificial Intelligence, volume 21, 796–801
(2006)

[20] N. J. Blaylock. Towards Tractable Agent-based Dialogue. Ph.D. thesis, University
of Rochester (2005). P. 133-136

228

[21] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3, 993–1022 (2003)

[22] O. Boiman and M. Irani. Detecting irregularities in images and in video. Interna-
tional Journal of Computer Vision, 74(1), 17–31 (2007)

[23] B. Bose, X. Wang, and E. Grimson. Multi-class object tracking algorithm that
handles fragmentation and grouping. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1–8 (2007)

[24] H. H. Bui and S. Venkatesh. Policy recognition in the abstract hidden markov
model. Journal of Artificial Intelligence Research, 17(1), 451–499 (2002)

[25] J. Candamo, M. Shreve, D. Goldgof, D. Sapper, and R. Kasturi. Understanding
transit scenes: A survey on human behavior-recognition algorithms. IEEE Trans-
actions on Intelligent Transportation Systems, 11(1), 206–224 (2010)

[26] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear
problems. IEE Proceedings on Radar, Sonar and Navigation, 146(1), 2–7 (1999)

[27] X. Chai and Q. Yang. Multiple-goal recognition from low-level signals. In Pro-
ceedings of the National Conference on Artificial Intelligence, 1, 3–8 (2005)

[28] Y.-L. Chen, B.-F. Wu, H.-Y. Huang, and C.-J. Fan. A real-time vision system for
nighttime vehicle detection and traffic surveillance. IEEE Transactions on Indus-
trial Electronics, 58(5), 2030–2044 (2011)

[29] L. Cohen. On active contour models and balloons. CVGIP: Image understanding,
53(2), 211–218 (1991)

[30] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision
system for vehicle tracking and traffic surveillance. Transportation Research Part
C: Emerging Technologies, 6(4), 271–288 (1998)

[31] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In Proceedings of the Workshop on Statistical Learning in
Computer Vision, volume 1, 1–22 (2004)

[32] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects,
ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(10), 1337–1342 (2003)

[33] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.
Computational intelligence, 5(2), 142–150 (1990)

[34] H. Dee and D. Hogg. Detecting inexplicable behaviour. In Proceedings of the
British Machine Vision Conference, 477–486 (2004)

229

[35] H. Dee and D. Hogg. On the feasibility of using a cognitive model to filter surveil-
lance data. In Proceedings of the IEEE Conference on Advanced Video and Signal
Based Surveillance, 34–39 (2005)

[36] H. Dee and S. Velastin. How close are we to solving the problem of automated
visual surveillance? Machine Vision and Applications, 19(5-6), 329–343 (2008)

[37] S. M. I. Dong Zhang; Gatica-Perez, D.; Bengio. Modeling individual and group
actions in meetings with layered hmms. IEEE Transactions on Multimedia, 8(3),
509–520 (2006)

[38] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-blackwellised particle fil-
tering for dynamic bayesian networks. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, 176–183 (2000)

[39] A. Doucet, S. J. Godsill, and C. Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and computing, 10(3), 197–208 (2000)

[40] A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Oxford University Press (2009)

[41] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background
subtraction. In Proceedings of the 6th European Conference on Computer Vision,
volume 2, 751–767 (2000)

[42] M. Endsley. Toward a theory of situation awareness in dynamic systems: Situation
awareness. Human factors, 37(1), 32–64 (1995)

[43] T.-J. Fan, G. Medioni, and R. Nevatia. Recognizing 3-d objects using surface
descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(11), 1140–1157 (1989)

[44] J. Ferryman and A. Shahrokni. An overview of the pets 2009 challenge. In Proceed-
ings of the IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, 25–30. IEEE (2009)

[45] J. Ferryman and D. Tweed. An overview of the pets 2007 dataset. In Proceeding
of the Tenth IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, 49–53 (2007)

[46] F. Fusier, V. Valentin, F. Brémond, M. Thonnat, M. Borg, D. Thirde, and J. Ferry-
man. Video understanding for complex activity recognition. Machine Vision and
Applications, 18, 167–188 (2007)

[47] D. M. Gavrila. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding, 73(1), 82–98 (1999)

230

[48] C. Geib and R. Goldman. Recognizing plan/goal abandonment. In Proceedings
of the International Joint Conference on Artificial Intelligence, volume 18, 1515–
1517 (2003)

[49] C. Geib, J. Maraist, and R. Goldman. A new probabilistic plan recognition al-
gorithm based on string rewriting. In Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling, 91–98 (2008)

[50] C. W. Geib. Assessing the complexity of plan recognition. In Proceedings of The
National Conference on Artificial Intelligence, 507–512 (2004)

[51] C. W. Geib and R. P. Goldman. Plan recognition in intrusion detection systems. In
DARPA Information Survivability Conference and Exposition (DISCEX II) (2001)

[52] C. W. Geib and M. Steedman. On natural language processing and plan recog-
nition. In Proceedings of the International Joint Conference on AI, 1612–1617
(2007)

[53] M. Ghallab. On chronicles: Representation, on-line recognition and learning. In
Proceedings of 5th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, 597–607 (1996)

[54] N. J. Gordon, D. J. Salmond, and A. Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE Proceedings of Radar and Signal Process-
ing, 140(2), 107–113 (1993)

[55] H. Grabner, P. M. Roth, M. Grabner, and H. Bischof. Autonomous learning of a
robust background model for change detection. In Proceedings of 9th IEEE In-
ternational Workshop on Performance Evaluation of Tracking and Surveillance,
39–46 (2006)

[56] S. Guler and M. Farrow. Abandoned object detection in crowded places. In Pro-
ceedings of the 9th IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance, 18–23 (2006)

[57] A. Hakeem and M. Shah. Learning, detection and representation of multi-agent
events in videos. Artificial Intelligence, 171(8-9), 586–605 (2007)

[58] F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a uav tracking
and monitoring application. In Proceedings of the 10th International Conference
on Information Fusion, 1–8 (2007)

[59] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in in-
formation retrieval, 50–57 (1999)

231

[60] T. Horprasert, D. Harwood, and L. Davis. A statistical approach for real-time
robust background subtraction and shadow detection. In Proceedings of the IEEE
International Conferenace on Computer Vision, volume 99, 256–261 (1999)

[61] C. J. Howard, T. Troscianko, I. D. Gilchrist, A. Behera, and D. C. Hogg. Searching
for threat: factors determining performance during CCTV monitoring. Maastricht,
the Netherlands: Shaker Publishing (2008)

[62] D. Hu, X. Zhang, J. Yin, V. Zheng, and Q. Yang. Abnormal activity recognition
based on hdp-hmm models. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, 1715–1720 (2009)

[63] D. H. Hu and Q. Yang. Cigar: Concurrent and interleaving goal and activity recog-
nition. In Proceedings of the 23rd national conference on Artificial intelligence,
1363–1368 (2008)

[64] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance of object
motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 34(3), 334–352 (2004)

[65] S. Intille and A. Bobick. A framework for recognizing multi-agent action from
visual evidence. In Proceedings of the sixteenth national conference on Artificial
intelligence, 518–525 (1999)

[66] P. Jarvis, T. Lunt, and K. Myers. Identifying terrorist activity with ai plan recogni-
tion technology. AI MAGAZINE, 26(3), 73 (2005)

[67] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-
tional Journal of Computer Vision, 1, 321–331 (1988)

[68] H. Kautz and J. Allen. Generalized plan recognition. In Proceedings of the Fifth
National Conference on Artificial Intelligence, 32–38 (1986)

[69] H. A. Kautz. A Formal Theory of Plan Recognition and its Implementation, 69–
125. Morgan Kaufmann (1991)

[70] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.
Science, 220(4598), 671 (1983)

[71] G. Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics, 5(1), 1–25 (1996)

[72] T. Ko. A survey on behavior analysis in video surveillance for homeland security
applications. In Proceedings of the 37th IEEE Applied Imagery Pattern Recogni-
tion Workshop, 1–8 (2009)

232

[73] N. Krahnstoever, P. Tu, T. Sebastian, A. Perera, and R. Collins. Multi-view detec-
tion and tracking of travelers and luggage in mass transit environments. In Pro-
ceedings of the Ninth IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance, 67–74 (2006)

[74] L. Kratz and K. Nishino. Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1446–1453 (2009)

[75] G. Lavee, E. Rivlin, and M. Rudzsky. Understanding video events: a survey
of methods for automatic interpretation of semantic occurrences in video. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
39(5), 489–504 (2009)

[76] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and ordering
constraints for recognizing complex activities in video. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1–8 (2007)

[77] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Fraz-
zoli, A. Huang, S. Karaman, et al. A perception-driven autonomous urban vehicle.
In M. Buehler, K. Iagnemma, and S. Singh (editors), The DARPA Urban Chal-
lenge, volume 56 of Springer Tracts in Advanced Robotics, 163–230. Springer
Publishing (2009)

[78] N. Lesh. Scalable and Adaptive Goal Recognition. Ph.D. thesis, University of
Washington (1998)

[79] N. Lesh and O. Etzioni. Scaling up goal recognition. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
244–255 (1996)

[80] L. Li, R. Luo, R. Ma, W. Huang, and K. Leman. Evaluation of an ivs system for
abandoned object detection on pets 2006 datasets. In Proceedings of the 9th IEEE
International Workshop on Performance Evaluation in Tracking and Surveillance,
91–98 (2006)

[81] Y.-B. Li, T.-X. Jiang, Z.-H. Qiao, and H.-J. Qian. General methods and develop-
ment actuality of gait recognition. In Proceedings of the International Conference
on Wavelet Analysis and Pattern Recognition, volume 3, 1333–1340 (2007)

[82] L. Liao, D. Fox, and H. Kautz. Extracting places and activities from gps traces
using hierarchical conditional random fields. The International Journal of Robotics
Research, 26(1), 119–134 (2007)

[83] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring transporta-
tion routines. Artificial Intelligence, 171(5-6), 311–331 (2007)

233

[84] W. Limprasert. People detection and tracking with a static camera. Technical
report, School of Mathematical and Computer Sciences, Heriot-Watt University
(2010)

[85] D. F. Lin Liao and H. Kautz. Location-based activity recognition using relational
markov networks. In Proceedings of the Nineteenth International Conference on
Artificial Intelligence, 773–778 (2005)

[86] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classification and tracking
from real-time video. In Proceedings of the Fourth IEEE Workshop on Applica-
tions of Computer Vision, 8–14 (1998)

[87] J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal
of the American statistical association, 93(443), 1032–1044 (1998)

[88] Z. Liu and C. Liu. A hybrid color and frequency features method for face recogni-
tion. IEEE Transactions on Image Processing, 17(10), 1975–1980 (2008)

[89] D. Lowe. Object recognition from local scale-invariant features. In Proceedings of
the Seventh IEEE International Conference on Computer Vision, volume 2, 1150–
1157 (1999)

[90] D. G. Lowe. Object recognition from local scale-invariant features. In Proceed-
ings of the Seventh IEEE International Conference on Computer Vision, volume 2,
1150–1157 (1999)

[91] F. Lv, X. Song, B. Wu, V. Kumar, and S. R. Nevatia. Left luggage detection using
bayesian inference. In Proceedings of the Ninth IEEE Workshop on Performance
Evaluation of Tracking and Surveillance, 83–90 (2006)

[92] L. Manevitz and M. Yousef. One-class svms for document classification. The
Journal of Machine Learning Research, 2, 139–154 (2002)

[93] J. S. Marques, P. M. Jorge, A. J. Abrantes, and J. M. Lemos. Tracking groups of
pedestrians in video sequences. In Conference on Computer Vision and Pattern
Recognition, volume 9, 101–108 (2003)

[94] J. Martínez-del Rincón, J. Herrero-Jaraba, J. Gómez, and C. Orrite-Uruñuela. Au-
tomatic left luggage detection and tracking using multi-camera ukf. In Proceedings
of the 9th IEEE International Workshop on Performance Evaluation in Tracking
and Surveillance, 59–66 (2006)

[95] D. McGuinness, F. Van Harmelen, et al. Owl web ontology language overview.
URL http://www.w3.org/TR/2009/REC-owl2-overview-20091027/. (2009)

[96] S. J. Mckenna, S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Tracking groups
of people. Computer Vision and Image Understanding, 80, 42–56 (2000)

234

[97] A. Mecocci and M. Pannozzo. A completely autonomous system that learns
anomalous movements in advanced videosurveillance applications. In Proceedings
of the IEEE International Conference on Image Processing, volume 2, 586–589
(2005)

[98] A. Mecocci, M. Pannozzo, and A. Fumarola. Automatic detection of anomalous
behavioural events for advanced real-time video surveillance. In Proceedings of the
IEEE International Symposium on Computational Intelligence for Measurement
Systems and Applications, 187–192 (2003)

[99] M. Mitchell. An introduction to genetic algorithms. ISBN-10: 0262631857. The
MIT press (1998)

[100] J. Modayil, T. Bai, and H. Kautz. Improving the recognition of interleaved activi-
ties. In Proceedings of the 10th international conference on Ubiquitous computing,
40–43 (2008)

[101] K. P. Murphy. Dynamic Bayesian networks: representation, inference and learning.
Ph.D. thesis, UC Berkeley, Computer Science Division (2002)

[102] J. A. Nate Blaylock. Corpus-based, statistical goal recognition. In Proceedings of
the 18th international joint conference on Artificial intelligence (2003)

[103] J. A. Nate Blaylock. Statistical goal parameter recognition. In Proceedings of the
International Conference on Automated Planning and Scheduling, 297–305 (2004)

[104] J. A. Nate Blaylock. Recognizing instantiated goals using statistical methods.
In Proceedings of the Workshop on Modeling Others from Observations, 79–86
(2005)

[105] J. A. Nate Blaylock. Statistical goal parameter recognition. In Proceedings of the
14th International Conference on Automated Planning and Scheduling, 297–305
(2005)

[106] R. Neil M and R. Ian D. Automatic reasoning about causal events in surveillance
video. EURASIP Journal on Image and Video Processing, 2011 (2011)

[107] N. T. Nguyen, H. H. Bui, S. Venkatesh, and G. West. Recognising and monitoring
high-level behaviours in complex spatial environments. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, 620–625
(2003)

[108] N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. Bui. Learning and detecting
activities from movement trajectories using the hierarchical hidden markov models.
In Computer Vision and Pattern Recognition, volume 2, 955–960 (2005)

235

[109] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action cat-
egories using spatial-temporal words. International Journal of Computer Vision,
79(3), 299–318 (2008)

[110] C. Norris and G. Armstrong. The unforgiving eye: Cctv surveillance in public
space. Technical report, Hull University (1997)

[111] C. Norris and G. Armstrong. The maximum surveillance society: The rise of
CCTV. ISBN-10: 1859732267. Berg Publishers (1999)

[112] N. M. Oliver, A. Garg, and E. Horvitz. Layered representations for learning and in-
ferring office activity from multiple sensory channels. Computer Vision and Image
Understanding, 1(2), 163–180 (2002)

[113] V. Papadourakis and A. Argyros. Multiple objects tracking in the presence of long-
term occlusions. Computer Vision and Image Understanding, 114(7), 835–846
(2010)

[114] N. Paragios and R. Deriche. Geodesic active contours and level sets for the detec-
tion and tracking of moving objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(3), 266–280 (2000)

[115] A. Patron, E. Sommerlade, and I. Reid. Action recognition using shared motion
parts. In Proceedings of the 8th International Workshop on Visual Surveillance
(2008)

[116] M. Piccardi. Background subtraction techniques: a review. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, volume 4,
3099–3104 (2004)

[117] D. Poole. Probabilistic horn abduction and bayesian networks. Artificial Intelli-
gence, 64(1), 81–129 (1993)

[118] D. V. Pynadath. Probabilistic Grammars for Plan Recognition. Ph.D. thesis, Uni-
versity of Michigan (1999)

[119] D. V. Pynadath and M. P. Wellman. Probabilistic state-dependent grammars for
plan recognition. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 507–514 (2000)

[120] C. M. R. Goldman, C.W. Geib. A new model of plan recognition. In Proceedings of
the fifteenth conference on Uncertainty in Artificial Intelligence, 245–254 (1999)

[121] L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77, 257–286 (1989)

236

[122] R. N. Ramprasad Polana and A. Nelson. Low level recognition of human motion
(or how to get your man without finding his body parts). In Proceedings of the IEEE
Computer Society Workshop on Motion of Non-Rigid and Articulated Objects, 77–
82 (1994)

[123] N. Ravi, N. D, P. Mysore, and M. L. Littman. Activity recognition from accelerom-
eter data. In Proceedings of the Seventeenth Conference on Innovative Applications
of Artificial Intelligence, volume 3, 1541–1546 (2005)

[124] N. Robertson, I. Reid, and M. Brady. Automatic human behaviour recognition and
explanation for cctv video surveillance. Security Journal, 21(3), 173–188 (2008)

[125] A. Sadilek and H. Kautz. Recognizing multi-agent activities from gps data. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

[126] S. Sarkar, P. Phillips, Z. Liu, I. Vega, P. Grother, and K. Bowyer. The humanid
gait challenge problem: data sets, performance, and analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(2), 162–177 (2005)

[127] G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2),
461–464 (1978)

[128] S. Skiena. The algorithm design manual. ISBN-10: 1848000693. Springer (1998).
Chapter 5

[129] G. Smith. Behind the screens: Examining constructions of deviance and informal
practices among cctv control room operators in the uk. Surveillance & Society,
2(2/3), 376–395 (2002)

[130] K. Smith, P. Quelhas, and D. Gatica-Perez. Detecting abandoned luggage items in
a public space. In Proceedings of the 9th IEEE International Workshop on Perfor-
mance Evaluation in Tracking and Surveillance, 75–82 (2006)

[131] C. G. M. Snoek and M. Worring. Concept-based video retrieval. Foundations and
Trends in Information Retrieval, 4(2), 215–322 (2009)

[132] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time
tracking. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2, 2246–2252 (1999)

[133] G. Sukthankar, M. Mandel, K. Sycara, and J. Hodgins. Modeling physical vari-
ability for synthetic MOUT agents. In Proceedings of the Conference on Behavior
Representation in Modeling and Simulation (2004)

[134] G. Sukthankar and K. Sycara. Robust recognition of physical team behaviors using
spatio-temporal models. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, 638–645 (2006)

237

[135] G. Sukthankar and K. Sycara. Policy recognition for multi-player tactical scenar-
ios. In Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, 1–8 (2007)

[136] G. Sukthankar and K. Sycara. Hypothesis pruning and ranking for large plan recog-
nition problems. In Proceedings of the 23rd national conference on Artificial intel-
ligence, volume 2, 998–1003 (2008)

[137] M. Swain and D. Ballard. Color indexing. International journal of computer vision,
7(1), 11–32 (1991)

[138] J. Tao and Y.-P. Tan. Color appearance-based approach to robust tracking and
recognition of multiple people. In Proceedings of the Fourth International Con-
ference on Information, Communications and Signal Processing, volume 1, 95–99
(2003)

[139] D. Thirde, L. Li, and J. Ferryman. An overview of the pets 2006 dataset. In
Proceedings of the International Workshop on Performance Evaluation of Tracking
and Surveillance, 47–50 (2006)

[140] B. Tickner and E. Poulton. Monitoring up to 16 synthetic television pictures show-
ing a great deal of movement. Ergonomics, 16(4), 381–401 (1973)

[141] H. Tu, J. Allanach, S. Singh, K. Pattipati, and P. Willett. Information integration via
hierarchical and hybrid bayesian networks. IEEE Transactions on Systems, Man
and Cybernetics, Part A, 36(1), 19–33 (2006)

[142] E. Wallace, D. Diffley, E. Baines, and J. Aldridge. Ergonomic design considera-
tions for public area cctv safety and security applications. In Proceedings of the
13th Triennial Congress of the International Ergonomics Association (1997)

[143] X. Wang, X. Ma, and W. Grimson. Unsupervised activity perception in crowded
and complicated scenes using hierarchical bayesian models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(3), 539–555 (2009)

[144] T. Xiang and S. Gong. Video behavior profiling for anomaly detection. IEEE
transactions on pattern analysis and machine intelligence, 893–908 (2007)

[145] T. Xiang and S. Gong. Video behavior profiling for anomaly detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(5), 893–908 (2008)

[146] A. Yilmaz, X. Li, and M. Shah. Contour-based object tracking with occlusion
handling in video acquired using mobile cameras. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(11), 1531–1536 (2004)

[147] J. Yin, X. Chai, and Q. Yang. High-level goal recognition in a wireless lan. In
Proceedings of the National Conference on Artificial Intelligence, 578–584 (2004)

238

