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Intelligent systems are becoming increasingly ubiquitous in daily life. Mobile de-

vices are providing machine-generated support to users, robots are “coming out of

their cages” in manufacturing to interact with co-workers, and cars with various de-

grees of self-driving capabilities operate amongst pedestrians and the driver. However,

these interactive intelligent systems’ effectiveness depends on their understanding and

recognition of human activities and goals, as well as their responses to people in a

timely manner. The average person does not follow instructions step-by-step or act in

a formulaic manner, but instead varies the order of actions and timing when perform-

ing a given task. People explore their surroundings, make mistakes, and may interrupt

an activity to handle more urgent matters. The decisions that an autonomous intelli-
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gent system makes should account for such noise and variance regardless of the form

of interaction, which includes adapting action choices and possibly its own goals.

While most people take these aspects of interaction for granted, they are complex

and involve many specific tasks that have primarily been studied independently within

artificial intelligence. This results in open-loop interactive experiences where the user

must perform a fixed input command or the intelligent system performs a hard-coded

output response—one of the components of the interaction cannot adapt with respect

to the other for longer-term back-and-forth interactions. This dissertation explores

how developments in plan recognition, activity recognition, intent recognition, and

autonomous planning can work together to develop more adaptive interactive ex-

periences between autonomous intelligent systems and the people around them. In

particular, we consider a unifying perspective of recognition algorithms that provides

sufficient information to dynamically produce short-term automated planning prob-

lems, and we present ways to run these algorithms faster for the real-time needs of

interaction. This exploration leads to the introduction of the Planning and Recogni-

tion Together Close the Interaction Loop (PReTCIL) framework that serves as a first

step towards identifying how we can address the problem of closing the interaction

loop, in addition to new questions that need to be considered.
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PREFACE

As a scientist, I study what we do not understand about the world.
As a teacher, I explain to others what we believe we understand about
the world. As an artist, I take what we know we understand about the
world and challenge it.

— Richard (Rick) G. Freedman

Whether with the world, other people, or a medium of expression, interaction is

involved in everything I do. It does not just apply there; interaction is in the world

all around us, from the simple things like opening doors to the complex phenomena

of having complete conversations with people across a room using just gestures and

signals. The goal of this work is to begin exploring this amazing feat as it applies

to the complex interactions between intelligent agents: understanding others enough

to make informed decisions about what to do next, and using expectations of conse-

quences from our decisions to identify when things are going as planned or need to

be revised.
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CHAPTER 1

MOTIVATION: WHY INTERACTIVE ARTIFICIAL
INTELLIGENCE MATTERS

Interaction is something we do all the time, from things as simple as
opening a doorknob to things as complex as living our daily lives amongst
all the people around us. ... We do it so much that we take the ability to
interact with others for granted, but for machines, such as our computers,
mobile devices, and robots, this is actually really hard. ... Hopefully one
day, machines can interact with us, just like how we interact with each
other.

— Richard (Rick) G. Freedman,
excerpts from his Three-Minute Thesis finalist speech

As artificial intelligence (AI) technology develops, interactive intelligent systems

have become more personalized and context-aware, serving people beyond the role

of instrumental tools towards ‘smart’ and cooperative assistants/companions [1, 201,

210, 243] in our daily lives. More complex intelligent systems are thus increasingly in-

teracting with people at work [145, 247], at home [109, 251], and on the road [28, 287].

For these systems to be effective, it is crucial to develop a far better understanding

of how to recognize human activities and respond appropriately in a timely man-

ner. People engage in the world via dialogue and by taking goal-directed actions.

A wide array of sensors can provide computers some insights into what a person is

doing [10, 262, 291]. Ideally, the sensors’ insights can inform automated decision-

making algorithms about what is happening so that it has sufficient understanding

of the situation to determine in which ways to respond or engage in an interaction.

In e-learning, for example, intelligent tutoring systems are becoming increasingly

interactive, tracking students’ skill levels, forming hypotheses about their solution
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strategies, and providing machine-generated support when necessary to increase learn-

ing gains [7, 163, 234]. In manufacturing, robots are “coming out of their cages” and

interacting closely with coworkers in the same space [54, 174, 209]. Self-driving cars

with varying degrees of autonomy interact with both pedestrians [278] and the hu-

mans in the driver’s seat [136, 288] to transport passengers while handling traffic

situations. The rapidly growing elderly population has motivated the development

of robots that can keep them company [34, 181], assist with therapy [72, 139], and

keep them safe [62, 241]. Other examples of interactive intelligent systems include

text prediction in mobile phones [261] and augmentative and alternative communi-

cation (AAC) devices [78, 274, 275, 118], personal desktop assistants [204], robotic

assistants [13, 273], and robots that can help children learn [286, 155].

Furthermore, users can provide feedback to present-day intelligent systems, such

as selecting suggestions from recommender systems [49, 212], that can affect future

interactions. The recent revival of explainable AI [3, 76] and responsive push for in-

terpretable AI [236] allow systems to provide human-understandable and acceptable1

justifications for the actions that they take [138, 31]. These advances allow machines

to operate with high levels of autonomy, yet still collaborate with human partners in

joint human-machine teams [8, 270, 44]. The dynamic and long-term nature of these

interactions raise the need for agents that close the loop between recognizing users’

activities and generating actions that sustain the collaboration [108, 142, 162, 290].

One major challenge for such interactive intelligent systems is that unlike machines

that follow instructions step by step, humans do not act in a predictable, formulaic

manner. There are many different ways to perform a task [285], and an individual may

use whichever action sequence seems more convenient. Humans often explore their

1The notion of acceptance is important because people can understand explanations of the form
“I took this action because it got the highest score using my internally-programmed equations.”
However, they often have similar validity to the blanket justification “I took this action just because
I felt like it.”
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surroundings, use trial-and-error, make mistakes, and learn from these extraneous

actions [193]. They also intermittently perform seemingly irrelevant actions, such

as answering the phone, adding noise to the observed activity. A person’s exact

goals are often unknown and subject to change from these actions, which adds to the

complexity of understanding what is happening.

A second challenge is the need to interpret the human’s activity and determine

whether and how to respond under tight time constraints. Recognition algorithms need

to infer what people’s goals are and how they are achieving their goals. A robot can

infer that a person is going to the kitchen, but it also needs to know which route the

person is likely to take to avoid colliding with the person. Pausing for a long period of

time to compute not only seems unnatural in an interactive situation, but could render

the system impractical. Humans are willing to give a robot control of a situation if

it raises efficiency [99, 42], whereas lack of efficiency lowers the likelihood that a

person will consider future collaboration. Hence the machine’s computed responses

need to be optimized given the scenario’s time constraints. Solution techniques must

therefore rely on anytime algorithms [298], which offer adjustable runtime and a

tradeoff between time and solution quality. Finally, it is crucial to establish a degree

of confidence about the result. For example, an interactive intelligent tutoring system

should not offer help before it is fairly confident about the student’s confusion.

1.1 Overview of Past Approaches

Several areas of AI; particularly automated planning, plan recognition, activ-

ity recognition, and intent recognition (the latter three are abbreviated together as

PAIR); are developing component solutions to these challenges. Automated planning

is devoted to methods and algorithms for autonomous, goal-driven action selection.

It is usually considered together with decision making and problem solving; we dis-

cuss automated planning in more details in Chapter 2. Considered to be automated
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planning’s inverse process, PAIR focuses on using observations to identify the driving

goal; observations are commonly in the form of others’ actions and/or changes to

the world. Though considered together, each specialization within PAIR identifies

a different aspect of the goal. Plan recognition matches tasks and overall plans as

explanations that complement an agent’s recent activity. Activity recognition finds

higher-level representations of what is observed, serving as the gateway between the

real world and the plan recognition model when sensor data are involved. Intent/goal

recognition predicts future actions and/or how the environment will change upon

accomplishing the goal. We discuss PAIR in more details in Chapter 3.

There has been tremendous progress in these areas as PAIR evolved into its own

field of research, spurring a wave of dedicated professional meetings (e.g. [96]), pub-

lished monographs (e.g. [263]), and the development of numerous applications. Uni-

fying principles behind the developed approaches have emerged, leading to the intro-

duction of generalized algorithms [35, 74, 202, 227]. However, these algorithms typi-

cally process the observed activity and output recognized information [128, 283, 296].

The system computes a response to the user, if at all, using a separate planning

algorithm. Automated planning algorithms have been studied for a wide variety of

problem classes using approaches such as heuristic search [113, 27], decision-theoretic

methods for nondeterministic domains [21, 61, 141], and decomposition methods that

recursively break down tasks into subtasks [70, 11, 257]. Despite all this work, cur-

rently automated planning and each research area in PAIR mostly studies its own

specific problem(s) independently of the others.

In the few exceptional cases where these research areas have been combined, re-

searchers simply pipelined the information from one algorithm to another. This para-

graph provides a brief overview of a few examples for motivation, and some of them

will be discussed in more detail when relevant to later chapters. Kelley et al.’s intent

recognition algorithm [151, 152] combines multiple hidden Markov models (HMMs)
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to identify what action a user is trying to perform based on point-cloud information

from a red, green, blue, depth (RGB-D) sensor. However, their interactive system

acts using a table of response actions for each recognized intention, and the response

is only selected from the table once the intention is recognized. In another example,

Levine and Williams [174, 176] use a planner’s precomputed sequence of actions as

instructions that a user must follow; branching points identify where the user may

make a choice. An observing robot monitors the user’s execution of the plan and iden-

tifies the action selected at each branch point. Again, the robot is not able to plan or

act until the user’s choice is determined. Geib et al.’s [90] recent work introduces col-

laborative behavior between a robot and human that instead acts independently on

subtasks. After the observing agent is able to make a confident prediction using the

plan recognition component, it can identify the remaining subtasks from a library of

plans and “negotiate” them with the human. The plan library is again pre-calculated

and the robot is unable to help without permission, but it can preform these negotia-

tions at any time. It is important to note that the independent subtasks prevent direct

interaction between the human and robot, but Levine and Williams’s [174, 176, 175]

approach does allow direct interaction between the agents.

Reinforcement learning (RL) and inverse reinforcement learning (IRL) have been

used to determine how to act in each world state [265, 104] and identify the user’s

preferred states [169, 268], respectively. However, these approaches also have their

limitations, particularly generalizing to large state spaces. Research on transfer learn-

ing can handle simple changes to the state space [203], but not to varying user pref-

erences for which little training data may be available. Unfortunately, this is not

just a limitation in RL/IRL, but also in automated planning and PAIR methods.

As pointed out by Zhang and Parker for their highly accurate activity recognition

algorithm [296], any small change to the environment degrades performance because

the input representation is not generalizable outside the trained space.
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Consequently, existing methods often restrict the user’s input actions. This is

perhaps reasonable in software applications that use fixed buttons, but not in systems

handling more open-ended human interactions. At the present moment, they often

restrict the number of gestures [67, 294], phrases [5], or buttons/cards representing

the available inputs [56, 297]. Imagine a manufacturing robot that can only hand a

human a tool if she outstretches her hand, or a robot serving beverages that requires

the client to place the cup in just the right location to trigger pouring [221]. This

places severe restrictions on possible interactions.

1.2 Complexity of Interaction

Computational complexity measures the difficulty of solving problem types with

respect to the resources (time and memory) necessary for finding a solution as the

problem instance’s size increases. The simplest problem types have instantaneous so-

lutions no matter how large the problem instances become, and increasing difficulty

amounts to eventually checking every possible solution (though confirming a solution

can require significantly different amounts of resources depending on the complex-

ity). We can similarly compare the computational complexity of different types of

interaction scenarios, where instances scale in domain size (rather than number of

agents). Research on complexity for single-agent decision making has generally found

that the amount of uncertainty plays a role in distinguishing difficulty, and we will

discuss how this also applies to decision making for interaction. Most importantly, we

explain how this insight provides further motivation for integrating recognition with

decision making as a means of reducing uncertainty.

Collective interactions, such as centralized multi-agent systems, are often compiled

into single-agent problems with multiple actuators (like a single organism operating

multiple limbs). Thus we strictly discuss decentralized multi-agent systems where the
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notion of a “hive mind” is absent and each agent acts autonomously and indepen-

dently.

1.2.1 Increasing Complexity for Automated Planning

Within automated planning for single-agent tasks, complexity increases as pre-

dictability decreases for various elements. Classical planning enforced many assump-

tions to avoid these uncertainties [237], and the standard logical representations (such

as STRIPS) have polynomial space (PSPACE)-complete complexity [37]. However,

including non-determinism (unpredictability of action outcomes) using logic-based

factored representations can dramatically increase the complexity [179]. Likewise,

partial observability (unpredictability from hidden information) increases the com-

plexity [182]. These are the most common forms of uncertainty currently studied in

automated planning, but others have been considered such as generalizations (un-

predictable quantities of things in the world and task specifications) [256, 127, 126,

180, 242, 20] and incompleteness (unpredictability of how actions work) [207]. We

are unaware of any research on their complexity.

1.2.2 Increasing Complexity for Game-Theoretic Situations

The game-theoretic perspective does not need to consider how the agents will in-

teract because each agent has its own personal payoffs/rewards based on everyone’s

action decisions, and solutions that maximize everyone’s payoff with respect to ra-

tional play are called Nash Equilibrium. Finding Mixed Nash Equilibrium (the most

generalized Nash Equilibrium) for any number of agents is in PPAD-complete, a spe-

cial complexity class where the worst-case approach is trying every option because

at least one of them is guaranteed to be the solution [58]. However, our interaction

scenarios require agents to complete tasks rather than optimize payoffs. This is a

different class of problems because solutions, in this case instructions for what each

agent should do, are not guaranteed to exist.
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For any type of interaction with complete unpredictability, simply giving every

agent its specific tasks privately and no prior knowledge of other agents in the world

is a partially-observable stochastic game (POSG). When all the POSG agents have

the same reward function (taking an action in a certain moment receives the same

payoff), the worst-case complexity is solving a problem represented by a decentralized

partially-observable Markov decision process (DEC-POMDP) [23]. Finding a solution

for such a problem is in NEXP-complete, which is far more complex than PSPACE-

complete for classical planning problems. If the POSG agents’ reward functions are

designed to be competitive with each other, then finding solutions is NEXPNP-hard

[98], which is even more complex than NEXP-complete. All these problems generally

take a long time to solve even if we could check every possible solution simultaneously.

1.2.3 Increasing Complexity for Interaction

We respectively consider interactive scenarios by how predictable the interactive

partner is. As the simplest case, suppose that each interactive partner Rk for k ∈

{1, 2, . . . , K} follows a fixed policy πk : S → Ak where S is the set of possible states

in the world and Ak is the set of actions Rk can take. This means that Rk will always

perform the same action in a given state of the world. If the interactive intelligent

system R0 knows all these policies, then R0 can perfectly predict what each Rk will do

at all times. ThusR0 can complete the interactive scenario like an automated planning

problem; the interactive partners are simply modeled as part of the environment. In

particular, the interactive intelligent system composites all the agents’ actions with

its own action a for the state transition function T : S ×
⋃K
i=0 Ak → S from state s0:

s′ = sK+1 such that si = T
(
πσ(i−1) (si−1) , si−1

)
and πσ(0) (s0) = a

where σ denotes the permutation of agents under turn-order. If agents can act simul-

taneously, then any conflicts between their actions’ effects will need resolution; this is
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represented with a transition function that instead allows the cross-product of chosen

actions as inputs T× : S × (A0 × A1 × . . .× AK)→ S:

s′ = T× ((a, π1 (s0) , . . . , πK (s0)) , s0) .

Upon introducing any degree of unpredictability to the interactive partners, we

need to consider the types of interaction between agents because their motivations

will impact the heuristics available. For our discussion, we present three primary

classes of interaction:

Assistive Agents have tasks that are intended to synergize. This can be in the form

of (1) all agents sharing a common goal and receiving mutual benefits, such as a

competition team, or (2) some agents being assigned a task in the form of “help

other agents accomplish their goals”, such as collaboration tasks and helping.

Adversarial Agents have tasks that are intended to conflict. This can be in the

form of (1) all agents sharing a common goal with exclusive benefits to a subset

of them, such as a race, or (2) some agents being assigned a task in the form

of “prevent other agents from accomplishing their goals”, such as interception

tasks and bullying.

Independent Agents have individual tasks that are related by coincidence. This

means that the agents can work on their own simultaneously; there is no ex-

pectation of aiding or hindering other agents. However, the completion of their

tasks might overlap beneficially or require the use of more resources than are

available. Though these interactions are assistive or adversarial by nature, the

agent’s motives make this nature unintentional. Taking turns, waiting, shar-

ing, and other such strategies might be necessary for agents to accomplish their

otherwise independent goals when these intersections occur.
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One aspect of unpredictability will be over a collection of J fixed policies per

interactive partner πjk : S → Ak for j ∈ {1, 2, . . . , J}. Multiple policies can represent

different approaches to doing a single task, a set of possible goal conditions to satisfy,

hypotheses regarding how the agent behaves, etc. If the interactive intelligent system

R0 knows all these policies in advance, then it must reason over which policy each

agent will follow at a particular state. That is, Rk has a set of actions that it may

perform at each state s: π1
k (s) , . . . , πJk (s). For turn-based adversarial situations

between exactly two agents, it might be possible to use the minimax algorithm if

the notion of progress for one agent corresponds to preventing progress for the other

agent. Then the interactive intelligent system wants to perform actions that generate

states that hinder progress for the interactive partner regardless of which policy it

follows. Unfortunately, these tree-based algorithms are not as reliable when there

are more than two agents because the heuristics for multiple agents’ progress are not

easy to compare with trichotemy relations. Aggregate measurements are also difficult

because of opportunities for ad-hoc team formation and betrayal.

When the interaction is assistive or independent, an intelligent interactive system

wants to perform actions that generate states that enable progress for the interactive

partners regardless of which policies they follow. However, doing this at the price of

making its own progress is not ideal (especially for independent interactions). Thus

some form of agreement between agents is sometimes necessary. As briefly mentioned

above, many interactive interfaces currently restrict the set of user inputs and/or set

of system outputs. This is an enforced social cue that is inherently followed by the

design of the system, but it places restrictions on the interactive partners’ policies

that facilitate its own decision making for its interactive tasks [244]. When social

norms are not assigned to the world for resolution, communication protocols will

be necessary to inform and restrict policy choices. This can be done silently via
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legible actions [65], verbally via negotiations [90, 55], or directly via explanations and

requests [271, 235].

Another form of unpredictability, which will be the primary one addressed in

this work, is the lack of knowing each interactive partner’s goal. If the interactive

intelligent system knows a list of possible goals a priori, then observing the other

agents can assist in narrowing down the options [227]. If the environment is designed

in such a way that each task’s solution has unique features or a fixed policy [156],

then this might have similar complexity to knowing a set of fixed policies because the

agents’ actions are limited. However, we cannot design everything in such a way due

to reconstruction costs or constraints on functionality/purpose, and then it becomes

more difficult than simply knowing which actions must be taken at each state. In

particular, all applicable actions are possible, and performing a small number of

actions in a few states can appear to be task-ambiguous. As of the time writing this,

Shvo and McIlraith recently considered dynamically acting in the world to affect the

environment for similar consequences [246].

We address decision making for interaction when this ambiguity occurs in Chap-

ter 5. For adversarial interaction, identifying the goal is important in order to make

sure that actions actually hinder the correct task; one does not want to wait at the

end of a hallway to intercept someone who can crawl out a window to reach their

destination. In assistive interaction, it is equally important because R0 will not be

considered ‘helpful’ if the agent does not do anything relevant to the task. In indepen-

dent interaction, this is not as critical, but it can be practical to determine whether

there is a chance of overlapping tasks or resources–following the adage “an ounce of

prevention is worth a pound of cure” in the case that the overlap is a conflict with

another agent’s goal and the adage “hitting two birds with one stone” in the case

that the overlap benefits all the agents’ goals at once.
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1.2.4 The Potential to Reduce Complexity through Recognition

The sections above presented the names of multiple computational complexity

classes without any background other than their relative comparisons of difficulty.

Although we will not discuss all of the them, we will present some details for two that

are relevant to motivating the approach in this dissertation. As a disclaimer, we use

the term ‘-complete’ while describing ‘-hard’. The difference is that the problems C

in the ‘-complete’ version of the complexity class are a subset of the ‘-hard’ version

of the complexity class where any problem in the ‘-hard’ class H can be reduced to

(a.k.a. turned into) C using a polynomial-time algorithm with respect to H’s size.

Effectively, this reduction means that we can solve any H if we can already solve C,

and the conversion used for this property is computationally efficient compared to

the efforts needed to solve H (and thus C).

PSPACE-complete complexity requires a solution program whose tape-encoding

is polynomial in size with respect to the tape-encoding of the problem instance’s in-

put. If PSPACE6=NP2, then PSPACE-complete problems conceptually require noth-

ing simpler than an Alternating Turing Machine in order to verify a solution. The

alternation is between existential and universal quantification.

“For all accepting states s∀I , there exists a state s∃I transitioning to
s∀I such that, for all possible states s∀I−1 transitioning to s∃I , there exists
a state s∃I−1 transitioning to s∀I−1 such that, . . . for all possible states s∀0
transitioning to s∃1, there exists a state s∃0 transitioning to s∀0 such that
the problem instance’s input can also transition to s∃0.”

The s∃· states reveal a solution in the form of a collection of paths in the Alternating

Turing Machine that lead to the accepting states.

As a more concrete example, the game of Geography/Shiritori in its abstract form

is PSPACE-complete. In this game, two players have to name unique locations/words

that start with the last letter of the previous word—a player who cannot think of a

2The author believes this is likely true, but the equality is still an unsolved problem.
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novel word under these constraints loses. The typical problem decides whether the

player who goes first can win3 with a specified starting word and list of words that

each player knows. Thus s∃· are the words the first player can choose to say and s∀·

are the possible responses the second player can say; the latter states are accepting

when they contain no possible responses.

However, one can technically solve games with a finite set of possible states such

as Geography/Shiritori through brute force and exhausting all possible states. This is

considered to be constant runtime with respect to the input size, even if that constant

is very large, because there is no scaling of the game to alter the problem’s difficulty.

Thus the computational complexity version of the question abstracts the game to

become generalized (not to be confused with generalized planning mentioned above)

with respect to arbitrarily long vocabulary lists and number of letters available in the

language; this creates a directed graph where edges denote what words may be used

based on the most-recently chosen word [178]. Scaling the problem size now scales

the graph size via the number of nodes and/or number of edges.

NP-complete complexity requires a solution program whose runtime is nondeter-

ministic polynomial with respect to the size of the tape-encoding of the problem

instance’s input. If P6=NP4, then NP-complete problems conceptually require noth-

ing simpler than a Turing Machine running a polynomial-time tape in order to verify

a solution. The nondeterminism relates to running the verification on all possible so-

lutions in parallel simultaneously. The solution program can return the first solution

that the verification program accepts, but the program realizes there is no solution

in the worst case once all the verification program rejects all possible solutions.

3The potential to win is important because it allows inspection before the game starts, regardless
of what the players actually choose to do.

4The author believes this is likely true, but the equality is still an unsolved problem.
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As a more concrete example, the k-subset sum puzzle is NP-complete. In this

puzzle, a set of non-negative numbers S is given along with a desired sum k—the

challenge is to find a subset of numbers in S whose sum is k. The typical problem

decides whether a solution exists to this puzzle given some S and k. Thus the set of

possible solutions is the powerset 2S, and each element of 2S can be verified within

c |S| steps (for some constant c ∈ N) by adding its contents and comparing the sum

to k. Scaling this problem is therefore agnostic of k, but increasing the size of S will

increase the verification efforts.

From a layperson’s perspective, NP-complete problems are solved using “guess-

and-check” methods while PSPACE-complete problems are solved using an “I’m

thinking that you’re thinking that I’m thinking. . .” approach. It is hopefully clear

that this makes solving PSPACE-complete problems much more difficult than solv-

ing NP-complete problems. The concrete examples also start to expose the nature of

problems in each complexity class: PSPACE-complete problems often involve games

between two decentralized agents and NP-complete problems often involve puzzles

for a single agent. This is an allusion to Section 1.2.3’s increase in complexity as

well: when the policies that other agents follow are known, then the interaction can

be solved like a puzzle rather than a game. Therefore, employing recognition in the

process of deciding how to interact ideally sheds light on what the other agents are

doing to reveal their motives and upcoming actions. If R0 recognizes enough to make

each Ri predictable, then we can effectively decrease the complexity of deciding how

to respond to others.

As a proof-of-concept for complexity reduction, we prove in Appendix A that the

currently popular mobile videogame Fire Emblem HeroesTM in its generalized form

is NP-complete because a deterministic expert system controls the in-game opponent.

As far as we are aware, this is the first time that a two-player game of any form, even

if one player’s actions are constrained without the ability to reason, has been proven
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to be NP-complete. However, this is not intended to claim that integrating recogni-

tion with planning will reduce the complexity of decision making for interaction all

the way down to NP-complete. Instead, this provides evidence that complete pre-

dictability of other agents essentially transforms the decision-making-for-interaction

problem into a single-agent decision-making problem, which means that the com-

putational complexity of the single-agent decision-making problem is the lower-bound

complexity to which the decision-making-for-interaction problem can be simplified. Re-

call above that classical planning for a single agent alone is PSPACE-complete [37];

thus the potential complexity for deciding how to interact through something like a

DEC-POMDP (whose complexity is far worse than PSPACE-complete [23]) might be

simplified to PSPACE-complete in the best case using recognition to predict other

agents’ behavior.

1.3 Videogames: A Motivating Interactive Domain

Although we initially discussed motivations in household robotics, elder care,

robotic coworkers in the factory, children’s education, vehicles with varying levels

of autonomy, and personal assistants within devices, it is important to select one as

a focus for this dissertation and running examples. The methods introduced will be

applicable to many of the situations described above, and thus choosing one to which

we apply the approach will not limit how things work. However, it will serve as a

simpler testbed for us to understand the ideas and examine them in a more controlled

environment.

Videogames have been a form of entertainment with its rises and falls in interest.

Following the increased ubiquity of mobile devices and games being designed on them

for short-term play sessions that can appeal to casual players as much as hardcore

players, they are now a major source of interaction between users and their electronic

devices [29]. They are not just ubiquitous and a clear example of interaction, but
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their design is very convenient for research testing. For example, unless relying on

the screen’s image like the Angry Birds AI Competition [229], the game’s internal

data structures yield a fully observed state without any noise. Likewise, a user’s

interactions via buttons and touch screens have little-to-no noise so that the player’s

actions are more easily available. That is, we can avoid many forms of uncertainty

found in autonomous planning to reduce the computational complexity to no more

than what is necessary, focusing on the forms of uncertainty specific to decision mak-

ing for interaction. Lastly, the virtual nature of videogames means that integrating

computer-controlled players is often as simple as a socket connection to a program,

and the human players might not be aware of who is controlled by a human (to avoid

bias between playing against a computational agent and another person).

In the majority of the research discussed in this dissertation, the ongoing video-

game environment is based on a common toy problem in the autonomous planning

community called Block Words (also called Blocks World). A table contains stacks

of blocks that each have a letter inscribed on them, and the agent is tasked with

picking-and-placing blocks until there exists a stack of blocks whose inscribed letters

spell a specific goal word when read from top-to-bottom. Actions either pick up a

block that is on top of any stack or put down a held block on top of any stack or the

table, but an agent can only hold up to one block at a time. Our extension includes

two agents, each able to hold up to one block at a time, that take turns performing

actions. Either agent may pass their turn with a no-op action. Though we will

discuss adversarial and independent interaction during the theory and concepts, our

current implementation for the computer-controlled agent is exclusively assistive for

experimental evaluation.
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1.4 Overview of Introduced Framework

In order to close the interaction loop, we will first provide background and recent

developments on the relevant areas of study. Chapter 2 covers automated planning,

primarily the classical representations since our initial implementation will use them

with some discussed extensions. Chapter 3 discusses plan, activity, and intent recog-

nition both individually and as an overall concept. Chapter 6 introduces the Planning

and Recognition Together Close the Interaction Loop (PReTCIL) framework and

shows how to use or extend the work in the previous chapters to create an initial

implementation of the framework. This introduction to the PReTCIL framework

builds upon research in Chapters 4 and 5, which respectively discuss integrating in-

dividual components and their challenges. Lastly, we discuss experimental setups,

tests, and results for the interactive aspects of our implementation of the PReTCIL

framework in Chapter 7. We also provide a postmortem regarding this implementa-

tion of the PReTCIL framework because many concepts that made sense in theory

encountered issues in practice. Although negative results are rarely published, we

prefer the reader be aware of these misteps to avoid repeating them. Inspired by the

PReTCIL framework and work in this dissertation, Chapter 8 concludes this pri-

marily hypothesis-generating research with a discussion about new research directions

concerning decision making for interaction.

The goals of the PReTCIL framework address the fact that, though part of the

environment, interactive agents have their own decision making processes that do

not necessarily follow the natural physics and rules of the environment itself. This

removes the patterns that are usually assumed in classical automated planning, and

planning under uncertainty can easily become intractable considering what to do for

every possible decision an interactive agent might make. Thus we propose recognizing

these interactive agents’ actions, plans, and intents to help guide the decision making

process. Likewise, the decision making process can inform a recognition component
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Figure 1.1. An illustration of how automated planning and recognition work to-
gether in the PReTCIL framework.

about what to expect so that interaction quality and anomalies may be better evalu-

ated. Therefore, integrating both planning and recognition algorithms into processes

that work simultaneously and share information will introduce ways to make decisions

in the environment while accounting for interactive agents and their interactions. Fig-

ure 1.1 previews the PReTCIL framework.

1.5 Dissertation Contributions

Following the overview and summary in the previous section, we briefly denote the

research contributions of this dissertation. Each one also notes the section in which

it is located for quick reference.

1.5.1 Primary Contributions

• The unification of plan, activity, and intent recognition as multiple perspectives

of an overarching problem: Section 3.5.
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• Introducing plans as bags, rather than strictly sequences, of actions to enable

simultaneous activity recognition and approximate plan recognition: Chapter 4.

This includes investigations of representation (Section 4.2) and model designs

(Section 4.3) for such algorithms.

• Formalizing the responsive planning problem, which introduces decision making

that accounts for what others are doing in the environment, and providing initial

approaches to solve it: Chapter 5.

• Integrating automated planning and recognition for interaction in the PReT-

CIL framework, including a library for developers to use with their own code:

Chapter 6.

1.5.2 Additional Contributions

• A formal proof that the generalized form of Fire Emblem HeroesTM is NP-

complete, which contributes to the motivations discussed in this chapter: Ap-

pendix A.

• Introducing a metric to evaluate interaction based on an agent’s helpfulness:

Section 5.3.

• Identifying how to run Recognition as Planning (RaP) algorithms using heuristic

search in a general state space, rather than just a STRIPS-represented state

space: Section 6.4.

• Investigating various approaches to improve the run-time performance of RaP

algorithms: Section 6.5.

• An explanation about how plan libraries and planning domains, two separate

approaches to recognition tasks, are related under commonly used conditions

and assumptions 6.5.2.2.

19



• Experiments exploring how actual people perceive the interactive experience

with an agent using our implementation of the PReTCIL framework: Chap-

ter 7.

• A list of new open problems related to decision making for interaction, includ-

ing additional motivation for more human-aware design of human-aware AI:

Chapter 8.
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CHAPTER 2

AUTOMATED PLANNING

So remember to work hard, be healthy, and play safe. Now that is a
PLAN [points at brain] that YOU [points at the audience] should always
put into ACTION [changes pointing hand into a thumbs-up gesture]!

— Richard (Rick) G. Freedman,
concluding the public service announcement in an educational video

submitted to the AAAI Video Competition

One of the earliest challenges posed to the AI community involved machines being

capable of making decisions autonomously at or above the level of human experts

(a person with sufficient knowledge to make an informed decision). This led to the

establishment of the automated planning and scheduling community that particularly

studies representation of tasks, problem solving under various conditions ranging from

uncertainty to resource constraints, and higher-level decision making processes such

as metareasoning.

Throughout this chapter, we will investigate some common automated planning

frameworks and see their specific perspectives on the following generalized formal

definitions:

Definition 1. A planning problem is a tuple P = (D, I, G) where D is a domain that

models the world, I provides the initial setup of the world, and G lists the problem’s

completion conditions.

Definition 2. A planning domain models the world in which the agents act. The

contents of its tuple should describe the set of states S and the set of actions A that

transition between states.
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Definition 3. The state space Denum is a graph derived from planning domain D

with vertices S that are joined by edges from instances of elements in A. The di-

rection of the edges show the before-and-after relationship (a state transition) for

performing the action associated with the edge, and bidirectional edges indicate that

an action is reversible. This is like a roadmap navigating the manipulation of the

world, illustrating how various actions change it.

Many automated planning solvers are based on search techniques through Denum

that find paths from I to some s ∈ S that satisfies G. Each path is analogous to a list

of actions that change the environment from the initial state (the ‘now’ moment) to

some goal state that satisfies the problem’s completion conditions. Failing to find a

path (with a complete search algorithm) means that there is no solution for P using

its current formulation, but it can also be the case that a solution is found that is

difficult to perform in reality. Much like the programming adage, AI methods can

only do what they are told, regardless of whether it is what the user wants.

2.1 Logic-Based Factored Representations

Classical approaches to automated planning applied various assumptions to sim-

plify the problem, which aids the application of theoretical analysis. The repre-

sentation that satisfied all the assumptions was named STRIPS after the STanford

Research Instistute’s Problem Solver (STRIPS) [73], which was the representation lan-

guage used for the solver’s inputs. It introduced a logic-based factored representation

that has become the inspiration for most present-day representations, especially the

Planning Domain Definition Language (PDDL) [191, 75]. Factored representations

decompose a state into sets of features that are viewed and manipulated indepen-

dently, similar to how pieces of a jigsaw puzzle represent a small aspect of a complete

picture.
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Definition 4. A fluent f is a logic statement, evaluating to either true or false,

that can describe the world. The set of all defined fluents will be called F , and each

STRIPS state s ∈ S is a set of defined fluents that are true in its corresponding world

instance. That is, S = 2F .

Definition 5. The closed-world assumption states that anything that is not acknowl-

edged to be true must be false. That is, nothing can be unknown, and one näıvely

assumes that the unknown simply cannot be true. Specificially, the fluents not listed

in a state, F − s, are false in s.

Definition 6. A STRIPS action a ∈ A is a tuple that describes a way to manipulate

the world. The tuple contains a name namea, preconditions prea ⊆ F , add effects

adda ⊆ F , and delete effects dela ⊆ F . The action is applicable in state s ∈ S when

the preconditions are true prea ⊆ s, and performing an applicable action changes the

state to a (s) = (s− dela) ∪ adda. That is, the effects take place so that all the add

effects become true and all the exclusive delete effects (in case a fluent appears in both

sets) become false. It is also possible to assign each action a unique cost costa ∈ R≥0.

Without such an assignment, it is assumed that all actions in A have a uniform cost.

Definition 7. A STRIPS domain is a tuple D = (F,A) where F is the set of fluents

and A is the set of actions. Denum = (S, {(s, a (s)) |s ∈ S, a ∈ A, prea ⊆ s}) is the

resulting state space where directed edges connect state changes by their applicable

actions.

Definition 8. A STRIPS problem is a tuple P = (D, I, G) where D = (F,A) is

a STRIPS domain, I ∈ S = 2F is the initial state, and G ⊆ F is the set of goal

conditions. A state satisfying the goal conditions happens to be any s ∈ S such that

G ⊆ s.

With this formulation, we can search for solutions to P using traditional search

methods (see Algorithm 1) in the search space beginning with I and stopping when
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either (1) a state satisfyingG is explored or (2) all reachable states from I are explored.

In the former case, we can trace the searched path back to I and recover the actions

performed in order. The action sequence is the actual solution that we return.

Input: STRIPS problem P
Output: A path π from P .I to P .G or NIL

1 initialize frontier data structure;
2 initialize explored hashmap;
3 initialize π to an empty list;

//Each pair is of the form (state, parent)
4 insert pair (P .I,NIL) into frontier;
5 while frontier is not empty do
6 insert frontier.top() into explored with key frontier.top().f irst;
7 current← frontier.remove().f irst;

//When the goal state is explored, recover its path to return
8 if current satisfies P .G then
9 ancestor ← explored.get(current);

10 repeat
11 append ancestor.first to π;
12 ancestor ← explored.get(ancestor.second);

until ancestor.second is NIL;
13 return reverse(π)

end
//Expand the state into all its children

14 foreach action a ∈ P .D.A do
15 if a is applicable in current then
16 insert pair (a (current) , current) into frontier;

end

end

end
//If no return yet, then no goal was found in the entire state space

17 return NIL
Algorithm 1: Traditional Search for Automated Planning

Definition 9. A plan π is a sequence of actions a1, a2, . . . , a|π| ∈ A such that each

action is applicable when performed in order from the initial state

preai+1
⊆ ai (ai−1 (. . . a1 (I) . . .)) for all i from 1 to |π|
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and the resulting state after completing all the actions in order satisfies the goal con-

ditions

G ⊆ a|π|
(
a|π|−1 (. . . a1 (I) . . .)

)
.

If the actions have uniform cost, then the cost of π is costπ = |π|. If the actions have

assigned costs, then the cost of π is the total action cost costπ =
∑|π|

i=1 costai.

Definition 10. A plan π∗ is optimal for STRIPS problem P if there does not exist

an alternative plan π′ that also solves P and has a lower cost (costπ∗ > costπ′).

Humans are able to reason over search directions and find solutions faster than

systematic search methods such as breadth-first (frontier is a queue data structure)

and depth-first search (frontier is a stack data structure). This led to the development

of heuristic search algorithms that select search directions based on how ‘close’ states

seem to be from satisfying the goal conditions, using priority queue data structures

for the frontier.

Definition 11. A heuristic function h : S → R≥0 approximates the remaining cost

of a plan, with respect to the goal conditions G, from some state in the state space.

Ideally, h is quick to compute.

Definition 12. A heuristic function h is admissible if its approximations from every

state never overestimate the remaining optimal plan cost from that state. That is, for

all s ∈ S, h (s) ≤ costπ∗ where π∗ is an optimal plan for a STRIPS problem with the

same domain and goal conditions, but I = s.

The most popular heuristic search algorithms are best-first search, which selects

the state with the smallest heuristic value

argmins∈frontierh (s) ,
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and A* search [113], which selects the state with the smallest estimated total path

cost

argmins∈frontierg (s) + h (s) .

g : S → R≥0 is a function that returns the least-cost path from I to state s ∈ S found

so far. When the heuristic is admissible, g happens to be optimal so that the first

plan found using A* search is also optimal.

This ideal property of A* search has led to lots of research on good admissible

heuristic functions because each one produces a different footpath through the state

space (exploring more or less states than others). One important finding was that

greater heuristic values, which are more accurate when constrained by admissibility,

require exploring fewer unnecessary states. Thus it is good practice to employ sev-

eral different admissible heuristic functions and take the greatest one at each state.

Although having knowledge about the domain is ideal to make these more accurate

estimations, domain-independent heuristics have also been discovered based on the

simplified properties of logic-based representations [123, 116, 64, 30]. One of the

earlier ones is derived from the method described in Section 2.2.

2.1.1 Knowledge Engineering: Expressive Factored Representations

STRIPS representations unfortunately seem restrictive to describe realistic states

and actions, and many extensions have been introduced to handle these situations.

The research area of knowledge engineering specifically focuses on identifying how to

best represent scenarios for accurate, understandable, and efficient automated plan-

ning. The majority of these have been wrapped into the PDDL representation men-

tioned above, and its documentation [191, 75, 93] is the best resource to learn about

all the features that should be available.

Two of the most noticeable differences are the language’s use of first-order pred-

icates and actions as well as the distinct separation of the domain and problem into
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two separate files. These features enable the domain to be a representation of the

world in general and the problem to provide the specifics for this instance. That is,

predicates and actions with (often typed) variables describe the form of states and

transitions in the domain’s state space. This form is grounded into an actual state

space via the problem’s list of (often typed) objects, and the problem also provides

the particular search problem to perform via a particular initial state and goal con-

dition written as conjunctions of fluents (which are grounded predicates, substituting

specific objects for each variable).

The domain-independent heuristics applied to various automated planning solvers

work under restrictions that only certain features are used. Without such conditions,

the approximation methods might become inaccurate (including losing admissibility)

or incomputable1. Despite such limitations, it is actually possible to revise many of

the features into a STRIPS representation. So the ones that are not supported can be

rewritten by the knowledge engineer to still use the software of choice. We introduce

only a few of the features below, particularly those that will be discussed throughout

this dissertation.

Negative preconditions address a seemingly overlooked case that would seem

common in representing domains. An action a ∈ A can set fluents to be false via delete

effects, but preconditions can only list what must be true about the world. As the name

implies, this simply allows us to also have two precondition sets prea,¬prea ⊆ F such

that a is applicable if and only if both prea ⊆ s ∈ S and ¬prea ∩ s = ∅. That is,

everything in prea must be true in state s while everything in ¬prea must be false in

state s.

1PDDL has a ‘:requirements’ keyword for this reason—the knowledge engineer should acknowl-
edge the features used, and the solver should politely reject the domain-problem pair if it cannot
support any of the listed features.
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To convert negative preconditions into STRIPS, we must introduce a new fluent

¬f for each fluent f ∈ F where ¬f means “the opposite of f”. Then we can use the

appropriate fluent, either f or ¬f , as an element of prea. It is important that the

add and delete effects maintain consistency in this case: adda = adda ∪ ¬dela and

dela = dela ∪ ¬adda where ¬X is the set {¬f |f ∈ X }. This is not efficient for the

state space representation because f and ¬f can never have the same truth value at

the same time, but states where both are true and false simultaneously will exist in

the space. Luckily, most search algorithms generate states as they are explored, and

these contradictory states should never be reachable from any realistic initial state

using any action.

ADL (Action Description Language) [215] introduces natural consequences when

actions are performed in addition to the intended effects. These are represented as a

set of conditional effects conda∈A whose elements c are of the form P c → (Ec
add ∧ Ec

del).

P c ⊆ F is a set of preconditions for the condition and Ec
· ⊆ P are the respective sets

of effects for the condition. When action a is performed, each element of conda with

satisfied preconditions P c will append its add and delete effects to the action’s; that

is,

adda = adda ∪
⋃

{c∈conda|P c=true}

Ec
add and dela = dela ∪

⋃
{c∈conda|P c=true}

Ec
del.

To convert conditional effects into STRIPS, we create 2|conda| versions of action

a to account for whether or not each conditional effect would have been applied.

The best way to do this conversion is to create two actions a+ (satisfied c) and a−

(unsatisfied c) from a single conditional effect c, remove c from conda+ and conda−,

and recursively perform this process with both new actions until no conditional effects

remain:
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prea+ = prea ∪ P c adda+ = adda ∪ Ec
add dela+ = dela ∪ Ec

del conda+ = conda−

prea− = prea ∪ ¬P c adda− = adda dela− = dela = conda \ c

Similarly, ADL allows goal conditions to be conditional via set Gcond with elements

c of the form P c → (Ec ∧ Ec
¬). Then a goal state s ∈ S not only satisfies G ⊆ s, but

also has to satisfy Ec ∈ s and Ec
¬∩s = ∅ for each c such that P c ∈ s. Conditional goal

conditions cannot be converted to STRIPS the same way as conditional effects because

only one goal can guide the heuristic search (see Section 6.5.1 to see how the lesser-

known multiple goal heuristic search algorithm actually can do this). Instead, one

must create a new fluent done; create an action goal where pregoal = G, condgoal =

Gcond, addgoal = {done}, and delgoal = ∅; and change the goal condition to G′ =

{done}. Then this new action with conditional effects is converted to STRIPS.

The more unique feature that ADL introduced is the use of logic quantifiers for

preconditions and goal conditions. The application of first-order and higher-order

logic in AI was not novel due to research on automated theorem proving [45], but

it was not considered in automated planning due to the separation of domains and

problems. As the definition of the world, domains do not consider how many in-

stances of each typed entity exist. So requiring an unknown number of fluents to

perform an action was not possible beforehand (regarding universal quantification

∀), and disjunction was not an option for single sets of fluents (regarding existential

quantification ∃). In order to make existential quantification possible, ADL also intro-

duced the ‘or’ keyword for disjunction. Due to their functionality not being possible

with STRIPS, there is unfortunately no way to convert disjunction or the quantifiers

properly. The closest hack for universal quantification is to list all the objects in the

world in the domain (as constants) and enumerate the fluents via substitution for

every constant—then the domain is less generalized and the specific problems only

differ in assignments to I and G.
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Equality simply allows an additional precondition fluent that determines whether

the constants/objects assigned to two parameters are the same. This only makes sense

when parameters are used in action definitions because the truth value is otherwise

known at the time of creating the domain. It is thus simple to convert equality into

STRIPS when there are no parameters similar to the hack for universal quantification.

Rather than enumerate the fluents, we enumerate the actions with the parameter

substitutions that match the ones in the precondition.

Numeric values generalizes the factored state representation from logic-based flu-

ents to numeric fluents2. The simple approach that PDDL uses only generalizes the

variables to store real numbers, but this includes the performance of arithmetic op-

erations such as addition and multiplication. Assignment is also allowed in some

automated planning software, but equality checking is usually available. Besides rep-

resenting numbers in states, numeric values enable action costs for optimality criteria.

A variation of numeric values that is worth mentioning is the state variable. We do

not give them their own section because they are not supported in the current version

of PDDL. Instead, they are part of the SAS+ [16] representation as a replacement of

logic-based fluents. The state variable is constrained to a set of values V instead of just

true/false or the real numbers. The domain transition graph (DTG) is a special

structure that shows how the values for a single state variable can change, and it

enables a domain-independent heuristic that estimates the number of actions needed

to change all the DTGs of state variables specified in the goal conditions [116, 279].

SAS+’s state variables can be converted into a STRIPS representation by creating a

fluent per assignable value: ‘state variable X has value v ∈ V ’. Assignments to a state

variable are synonymous with an add effect for the assigned value and delete effects

2For those who write PDDL representations, the ‘:fluents’ keyword is used to list numeric fluents
while the ‘:predicates’ keyword is used to list the logic-based fluents. It may be a bit confusing, but
syntax is syntax.
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for all the values not in the assignment. Because numeric values can be continuous

and infinite, they cannot be converted into STRIPS unless the closure of the values

the numeric fluent may have in its lifetime is discrete and finite. In such a case, the

numeric fluent is like a SAS+ state variable.

2.1.2 Generalizing Factored Representations with Abstractions

A large benefit of factored state representations is that we can describe the impor-

tant aspects of actions without overly specific state details. However, this introduces

a potential for actions to fail when performed in the real world if those details actually

mattered. However, automated planning at very fine-grained levels is computation-

ally intractable due to the massive increase in the state space’s size. Motion and

path planning have become their own field of study [171] to find sequences of actions

that will work in the real world, and most of them focus on well-distributed sampling

techniques to avoid exploring most the space.

When motion and path planning only involve navigation tasks, hierarchical search

methods [32, 166] can perform an initial search over the coarse-grained state space

(usually a grid with large regions) and constrain the more fine-grained state space

(a grid with smaller regions) to only search states that are within the coarse-grained

state space’s plan. This incrementally refines the plan to navigate efficiently around

obstacles without exploring too much of the state space. Cambon and Alami intro-

duced a similar method for performing automated planning at the high-level (factored

states) and at the low-level (with the specific state details), but it can apply to non-

navigation tasks [41]. The analogy to the granularity of grids is the abstraction of

state information.

Definition 13. An abstraction function f : S → X, where X is some generic set,

provides information about the input state.

31



Definition 14. For some set of abstraction functions F = {f1, f2, . . . , fn}, the ab-

stracted state space is the set SF = {(f1 (s) , f2 (s) , . . . , fn (s)) |s ∈ S }.

Definition 15. For some set of abstraction functions F , the concretized state oper-

ator [·]F : SF → 2S returns the set of all states s ∈ S that have the same abstract

state s′ ∈ SF .

Similar to the hierarchy of grids, we can define a hierarchy of abstraction func-

tions that produce abstracted state spaces of varying cardinality. Planning in the

abstracted state space with the smallest cardinality is the most coarse-grained search,

and its plan can constrain the states visited in state spaces with greater cardinality.

Specifically, we can restrict the space to the union of the concretized states

|π|⋃
i=1

[ai (. . . a1 (IF ) . . .)]F ∪ [IF ]F

where IF is the abstracted initial state. If each Xi is simply the set of truth values

{true, false}, then SF would be a STRIPS representation of the state space. Mod-

ifications are sometimes necessary for the actions’ preconditions and effects, and the

abstractions can still miss enough details that either the coarse-grained plan exists

when no fine-grained plan exists [258] or the coarse-grained plan omits a crucial part

of the concrete state space via its constraints that prevents finding the solution (a

controller that updates the abstraction function set can help with this issue [255]).

When developers are producing code for their applications, though, it is not guar-

anteed that they will have the resources to create a factored-state representation in

one of the languages for which automated planning software is developed. Likewise,

their code might be too domain-dependent for a generic representation to sufficiently

represent all the features. Many representation languages and automated planning

programs are also not friendly to average users who lack expertise in the area, which

recently revived interest in creating better user interfaces for them [77]. Without ease
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of use, there is not a lot of evidence to the general public that automated planning

methods can be useful AI tools for their applications.

We thus introduce the direct implementation of abstraction functions in code as

a simple way for developers to use basic automated planning techniques. This is

a by-product of the implementation of our framework discussed in Chapter 6 due

to the library developed to manage the search techniques. Rather than encode it

to read classical planning representations and take advantage of those techniques, we

instead programmed a vanilla heuristic search where the developer encodes the domain

information using whatever representation they see fit. In particular, for programs

that have already been written, there is no requirement to re-implement the code in

a unique representation language just to perform classical planning.

Without any form of abstraction, states are defined in code as classes and struc-

tures containing variables. At this finest granularity, the state space S is broadly the

set of all assignable values to each variable (all possible bit combinations). The set of

actions A are the methods/functions/subroutines that change the values of some or

all the variables. When actions directly change one state into another state without

a factored-state representation3, it is most convenient to represent the outcomes of

actions via a transition function T : S × A → S. In practice, the table for T can

be quite large; so it is ideal to have a collection of functions that perform fail-fast

precondition checks (that specify when an action is applicable) and apply the effects.

The latter are likely already implemented in the developer’s code that imports our

library.

Precondition checking can be directly implemented in the code without using a

special representation language. First, the developers implement each abstraction

3One may argue that each variable’s finite byte size makes it a state variable for the SAS+ rep-
resentation. However, dynamic memory for data structures violates this unless we have a maximum
size limit. The SAS+ representation can apply if the state’s variables do not dynamically allocate
memory.
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function as a method/function/subroutine that takes a state parameter and returns

the desired information. These may be as simple as calling accessor functions for some

variable’s value, but they can also be more complex and interpret information based on

several variables’ values. Then a precondition method/function/subroutine for some

action a ∈ A receives a state argument and evaluates a boolean statement composed

of operations involving the abstraction function methods/functions/subroutines. If

the implemented precondition check returns true, then a is applicable and we can

continue to execute the respective method/function/subroutine that is already in the

code. This will modify the current state just like an action’s effect, but it applies to

a transition in the fine-grained state space rather then the coarse-grained one.

Despite the effects taking place at a different level of abstraction, the updated

state can now be passed into the implemented abstraction functions, indirectly ap-

plying the effects to the coarse-grained state without having to specify them. That

is, one can effectively run automated planning algorithms without using a represen-

tation language if they implement the preconditions at a high-level (or multiple for a

hierarchy of abstractions) and the effects at a low-level. Furthermore, the application

of effects in the original state space avoids the issues of abstracting away impor-

tant information—the plan should succeed if the code validly emulates the domain.

Although this method grants access to the use of search techniques in application-

driven code, domain-independent heuristics will not be available due to their uses of

their respective factored representation features. Furthermore, the branching factor

of available actions is at the discretion of the developer’s choice of granularity, which

yields the risk of being too broad or too constrained during search.

2.2 The Planning Graph

Because classical automated planning problems using STRIPS and PDDL-like

representations are spatially complex to solve (finding solutions is PSPACE-complete
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[38]), one area of research within automated planning is the development of algorithms

that are more efficient at finding the solution than traditional search. One such

algorithm is GraphPlan [27], which has since had other impacts on automated

planning research besides faster algorithms. It requires a special data structure called

the planning graph:

Definition 16. The planning graph G is a directed partitioned graph representing

the set of valid STRIPS plans for problem P all at once, including their simultaneous

conflicts. Partitions alternate between proposition layers P0, P1, . . . , Pk ⊆ F and

action layers A1, . . . , Ak ⊆ A. Edges represent

• satisfied preconditions Epre = {(u, v) |u ∈ Pi, v ∈ Ai+1, u ∈ prev },

• added effects Eadd = {(u, v) |u ∈ Ai, v ∈ Pi, u ∈ addv },

• deleted effects Edel = {(u, v) |u ∈ Ai, v ∈ Pi, u ∈ delv },

• or mutual exclusion enforcement Eme ⊆ {(u, v) |(u, v ∈ Pi) ∨ (u, v ∈ Ai)}.

Proposition layer Pi lists all fluents that may hold true in the ith state, and action

layer Ai lists all applicable actions that can be performed in the possible states of

the (i − 1)th proposition layer. Because some actions have contradicting effects or

preconditions when performed simultaneously, mutual exclusion edges denote which

fluents and actions cannot be in the same plan. Two fluents f1 and f2 are mutually

exclusive in the ith layer, mei (f1, f2) = true, if one of two cases holds:

• They are negations of each other:

(f1 = ¬f2)⇒ ∀i ∈ {0, 1, . . . , k} .mei (f1, f2) = true
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• Every action whose effect is f1 is mutually exclusive to every action whose effect

is f2:

(∀a1, a2 ∈ Ai. (mei (a1, a2) = true) ∧ f1 ∈ (adda1 ∪ dela1)∧

f2 ∈ (adda2 ∪ dela2))⇒ mei (f1, f2) = true

while two actions a1 and a2 are mutually exclusive in the ith layer, mei (a1, a2) =

true, if one of three cases holds:

• Their effects negate each other (that is, a1 adds some fluent that a2 deletes, or

each action adds/deletes some fluent and its negation):

(∃f ∈ F. (f ∈ adda1 ∧ f ∈ dela2) ∨ (f ∈ adda1 ∧ ¬f ∈ adda2)

∨ (f ∈ dela1 ∧ ¬f ∈ dela2))⇒ ∀i ∈ {1, . . . , k} .mei (a1, a2) = true

• a1 has an effect that will not satisfy some precondition of a2:

(dela1 ∩ prea2 6= ∅)⇒ ∀i ∈ {1, . . . , k} .mei (a1, a2) = true

• There exists some precondition of a1 that is mutually exclusive to some precon-

dition of a2:

(∃f1, f2 ∈ Pi−1. (mei−1 (f1, f2) = true) ∧ f1 ∈ prea1 ∧ f2 ∈ prea2)

⇒ mei (a1, a2) = true

Beginning with the initial state as the first layer P0 = I, GraphPlan procedu-

rally generates the planning graph until a solution is found. The forward step produces

layers Ai+1 and Pi+1 based on the preconditions and effects of the respective previous
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layer, including mutual exclusion edges. The backwards step is not performed until

some layer Pk contains all the goal conditions without mutual exclusion. Once such

a layer is generated and it is thus possible to create a goal state, the backwards step

searches for a set of paths from each goal condition in Pk to any predicate in P0. For

the actions along the set of paths to represent a valid plan, no two paths can pass

through mutually exclusive fluents or actions. Unlike the sequential plans found using

heuristic search, a plan’s actions can be performed simultaneously if they are in the

same layer of the planning graph because they are not mutually exclusive; thus there

is no conflict between their preconditions and effects.

Relaxations to GraphPlan, such as removing Eme, produce admissible heuristics

like fast-forward [123], which was one of the first domain-independent admissible

heuristics. The intuition is that without mutual exclusion, only the forward step is

necessary until layer Pk contains all the goal conditions. Then k is the fewest number

of possible actions that can be taken to solve the task from the state that layer P0

represents. If Pk’s goal conditions happen to not be mutually exclusive and a path

existed from each one to P0, then the heuristic is exact when each layer only contains

one action from the plan.

2.3 Hierarchical Task Networks

PDDL, even with all its extensions (including the ones not described above) to

STRIPS, cannot represent every solvable problem in a way that we can efficiently

find a solution. The plans that solve STRIPS problems are linear sequences, which

are a recovered trace of the path in search space. Even if GraphPlan finds parallel

components, all the actions in a single layer must be performed before proceeding

to the next layer’s actions. This is called partially-ordered, but is still linear with

respect to the found path. Despite these linear solutions, the search process is often

exponential with respect to the number of applicable actions per state because they
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each need to be considered. If we have some information about the tasks, though,

then we can provide additional information in the task representations that help to

find quicker solutions.

Definition 17. Like a context-free grammar, tasks can be terminal or non-terminal.

A non-terminal task T can be decomposed into a sequence of tasks that, if solved, also

solve T . A terminal task t is atomic and cannot be decomposed into equivalent task

sequences.

Definition 18. A task network is a tree where a parent task can decompose into its

children tasks. Thus only leaves of a task network can be terminal tasks.

Definition 19. A hierarchical task network (HTN) [70] is a tuple H = (Tn, Tt, δ)

where Tn is a set of non-terminal tasks, Tt is a set of terminal tasks, and δ : Tn →

2(Tn∪Tt)∗ is a function that maps a non-terminal task to its decompositions, which are

sequences of tasks4.

Definition 20. A HTN Problem is a tuple P = (H, T>) where H is a HTN and T> ∈

(Tn ∪ Tn) is the start symbol that describes the overall task that must be completed.

This generates an initial task network whose root (and only leaf) is T>.

HTN representations are similar to context-free grammars, which is one of the

reasons why it has been the favored representation choice for many recognition al-

gorithms (see Section 3.1.2). Using the decomposition function δ, which returns all

the possible decompositions, automated planning chooses some non-terminal task at

the current task network’s leaves and one of its decompositions. This updates the

current task network incrementally until the process creates a fully-decomposed task

network whose leaves are all indivisible terminal tasks. These terminal tasks, which

4∗ is the Kleene closure, which is the set of all sequences of 0 or more elements from the closed
set. The power set of a Kleene-closed set thus represents a set of sequences.
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may have ordering constraints dictated via the decomposed sequences, form the plan

that accomplishes T>. Depending on the decomposition function’s design, recursion is

possible to perform a terminal task indefinitely until a condition is met; for example,

taking individual steps (terminal task) until successfully moving from one location to

another (non-terminal task).

Another benefit of HTNs are their simpler intuition to people, who are typically

familiar with the notion of breaking a task down into subtasks. As robots are be-

coming more ubiquitous, there have even been studies on developing software that

can help guide average users as they define HTNs for their personal uses of their

robots [197]).

2.3.1 Using HTNs with State-Space Search

The decomposition function δ provides a breakdown of tasks that can constrain

the applicable actions considered from a state during search. To integrate HTNs

with factor-based representations (not just STRIPS, but PDDL, SAS+, etc.) as a

constraint on the search process, it is often the case that Tt = A so that the plan

is the (sometimes partially-ordered) sequence of leaf nodes of the fully-decomposed

task network. It is then also important that there is some non-terminal task that can

represent the set of goal conditions G.

The advantage of employing a HTN to a state-space search is that the HTN prunes

the branching factor to avoid exploring unrelated regions of the state space. Even with

admissible heuristics, many states will be explored because their underestimated path

costs are similar—optimality is only guaranteed when all states through paths of lesser

estimated cost are considered. Thus the HTN guides the search process using domain

knowledge about the problem’s goal rather than blindly relying on a heuristic value.

For example, why considering peeling a banana when the task is to pour a glass of
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water? (If the banana is encountered on the way to the sink, then blind state-space

search will consider this direction just in case it results in a poured glass of water).

With this integration of representations, the application of actions only happens

when the task network decomposes to a terminal task/action. The precondition and

effects of each action still apply to the current state, which might also impact how

automated planners select task decompositions. The preconditions and effects of

actions further introduce ordering constraints between them to avoid conflicts, sim-

ilar to mutual exclusion issues for GraphPlan. In fact, the Simple Hierarchical

Ordered Planner (SHOP [206], SHOP2 [205], and SHOP3 [97]) software’s representa-

tion allows precondition definitions for non-terminal tasks to guide the decomposition

process at earlier stages. Technically, if one was to iterate through every non-terminal

tasks’ decompositions and find a consistent set of preconditions (of the first action

in the sequence) and effects (of the last action in the sequence) between every fully-

decomposed task network, then those could be applied to the said non-terminal task

as its own preconditions and effects.

2.4 Allowing Uncertainty in Automated Planning

Several assumptions made for classical automated planning removed sources of

uncertainty because of the complication they bring to the decision making process.

Each one can be addressed either qualitatively or quantitatively, depending on whether

the uncertainty is measured by probability. When uncertainty is not measured (qual-

itative), it is usually represented as a set of all the possibilities and the objective is

to still accomplish the task with respect to anything that can happen. When uncer-

tainty is measured (quantitative), the elements of these sets have probability mass

for how often they will occur and the objective is to accomplish the task with as great

a probability as possible.
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Non-deterministic action outcomes Determinism guarantees that a plan will

always proceed as expected. Without this assumption, nuances in the agent’s or

environment’s physics could intervene such as dropping something when trying to

pick it up. Fully-observable non-deterministic (FOND) [170, 85] automated planning

removes this limitation qualitatively, listing the possible outcomes per action, while

Markov decision processes (MDPs) [21] remove the limitation quantitatively with

probabilities assigned to each outcome. FOND representations are similar to PDDL,

but disjunctions are allowed in the effects. MDPs can use a factored representation

such as probabilistic PDDL (PPDDL) [293] or Relational Dynamic Influence Diagram

Language (RDDL) [238], but are often defined without factored states:

Definition 21. A MDP is a tuple M = (S,A, T,R) where S is the set of all states,

A is the set of all actions, T : S×A→ S |S| is the transition function, and R : S → R

is the reward function. The transition function produces a distribution over the state

space (Sk =
{
p ∈ [0, 1]k

∣∣∣∑k
i=1 pi = 1

}
is the k-dimensional simplex) such that an

agent in state s ∈ S that performs action a ∈ A will transition to state si ∈ S

with probability equal to the ith element of T (s, a). If a is not applicable in s, then

performing a self-transitions to s with probability 1.

The solutions to FOND problems extend plans with if/then branches called con-

tingencies, assigning actions for all the states that might result from each outcome.

On the other hand, solutions to MDPs further extend this assignment of an action to

every reachable state in the state space from the initial state, regardless of how likely

it will be encountered5.

Definition 22. A contingent plan π is a directed tree with nodes ai,j ∈ A ∪ {NIL}

and labeled edges si ∈ S with the following conditions:

5Reinforcement learning studies ways to approximate these solutions via ‘trial and error’. This is
often quicker than exact computation and can be reasonably accurate, depending on the domain’s
structure and distribution over action outcomes.
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• The root node’s action a0,0 is applicable in the initial state I.

• Each non-root node’s action ai,j is applicable to the state si that labels its in-

coming edge.

• All outgoing edges from a non-leaf node’s action ai,j are distinctly labeled, one

per possible state that can result from performing ai,j in the state si that labels

its incoming edge (or the initial state I if a0,0).

• NIL is assigned to a leaf node ai,j if and only if there does not exist a plan that

solves planning problem (D, si, G) where si is the state that labels ai,j’s incoming

edge.

This implies that for any path from the root node to a leaf node a0,0, ai1,j1 , . . . , aiN ,jN ,

each node’s action is applicable when performed in the path’s order

preain,jn ⊆ ain−1,jn−1

(
ain−2,jn−2 (. . . a0,0 (I) . . .)

)

for all n from 1 to N and the resulting state after completing all the actions in order

satisfies the goal conditions

G ⊆ aiN ,jN
(
aiN−1,jN−1

(. . . ai1,j1 (a0,0 (I)) . . .)
)
.

Definition 23. A policy is a function π : S → A that instructs what action to

perform at each state in the state space.

Definition 24. The expected reward of a policy with respect to MDP M at state

s ∈ S is

EπM [s] = R (s) +
∑
si∈S

T (s, π (si))i · E
π
M [si] .

This value can be computed iteratively using the Bellman update [21].
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Definition 25. The optimal policy π∗ for MDP M is one whose mapped actions

maximize the expected reward at each state. That is, for all possible policies π′ that

apply to M, Eπ∗M [s] ≥ Eπ′M [s] for all s ∈ S.

Most the time, these actions try to return the agent to a state along the optimal

plan’s path if an action’s outcome drives the agent ‘off course’. The reward function

can still heavily influence a policy to prefer unlikely outcomes from actions (such as

playing the lottery), which requires the domain engineer to be careful when defining

it [9]. However, relying on people to provide good reward functions has also introduced

issues such as giving inconsistent rewards based on the novelty of the situation (stop

rewarding after the agent does what is expected) [130] or agent’s current behavior

(punishing for not doing a ‘good thing’ after being ‘good’, but rewarding for not doing

a ‘bad thing’ after being ‘bad’, even if these ‘things’ are the same) [183].

Partial observability Fully observable environments avoided hidden information.

This guarantees that the agent always knows in which state it is so that a plan can be

computed. If any information about the state is missing, then more actions might be

applicable than perceived. This can lead to not finding a solution from the currently

perceived state even though one exists. If the closed-world assumption is applied and

negative preconditions are allowed, then the opposite problem can also happen where

an applicable action cannot really be performed because an unobserved fluent is true

(and the precondition requires it to be false).

The majority of the research studies partial observability together with non-

deterministic action outcomes. Partially-observable non-deterministic (POND) [24]

automated planning removes these limitations qualitatively, listing both the possible

initial states and the possible outcomes per action; conformant planning uses planning

graphs to solve these problems [250]. Partially-observable MDPs (POMDPs) [14, 253]

remove these limitations quantitatively with probabilities assigned over the initial
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state (called an initial belief state) and to each outcome. POND representations are

again similar to PDDL, but disjunctions are allowed in the effects and initial state.

POMDPs can use the same factored representations as MDPs, but are often defined

without factored states just like MDPs. To help orient the agent, each transition also

produces an observation symbol. These observation symbols allow the agent to reason

over the current and/or previous state.

Definition 26. A POMDP is a tuple P = (S,A, T,R,Ω, O) where S is the set of

all states, A is the set of all actions, T : S × A → S |S| is the transition function,

R : S → R is the reward function, Ω is the set of possible observation symbols,

and O : S × A → S |Ω| is the conditional probability distribution over observation

symbols. Given the performed action a ∈ A and resulting state a (s ∈ S) ∼ T (a, s)

(sampled from the transition function), the probability of observing some o ∈ Ω is

O (a (s) , a) = P (o |a (s) , a).

2.5 Applications of Automated Planning in Videogames

Although many videogames rely on expert systems for non-playable characters

(NPCs) to meet the real-time demands of nearly sixty frames-per-second processing

and rendering without lag, planning has been used in quite a few game-related appli-

cations. The most typical case is character navigation via motion planning. A unique

advantage for motion planning in the majority of videogames is that the levels and

maps are designed before the games’ release. Thus it is possible to precompute more

complicated heuristic values [225, 125].

Besides motion planning tasks, the game FEAR [214] developed its own repre-

sentation for AI-controlled agents based on high-level planning representations such

as STRIPS and PDDL. Kelly, Botea, and Koenig [153] used HTNs to create unique

schedules for each NPC to follow. The schedules were generated off-line and used

like expert systems, but the autonomous generation is still noteworthy given that
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most NPC behavior is hand-coded by the game developers. A planning formulation

was also used to create actions as game mechanics given an initial configuration and

completed configuration of a level [301]. This enables content creators to receive sug-

gestions based on what the player-controlled characters need to do in simulation to

complete the level.

2.6 Concluding Remarks: Evolution of Automated Planning

The ability to make decisions is far more complex than the founding scientists

of AI expected. While the ability to solve problems is as simple as searching, the

challenge lies in efficiently searching for the solution. People are able to identify what

features of the environment matter for solving their task and performing actions.

They can also simulate a few steps in their head and quickly abandon options that do

not appear successful. Heuristics and state space pruning techniques still have a lot

of research to go before they can be useful for larger problems that are more realistic.

The current methods require special representation choices for their algorithms to

work, and real-world applications cannot always comply with the assumptions. We

introduced one way that application developers can adapt their code to use some of

the search techniques, but the developers still need to use their domain expertise in

order to implement their own heuristic and pruning shortcuts for efficiency.

Efficiency techniques are still a major challenge for automated planning under

uncertainty as well. Besides modified search techniques and approximations via rein-

forcement learning, one of the popular techniques for solving MDPs is determiniza-

tion [292], which solves a collection of classical planning problems without the proba-

bilities as an approximation of the optimal policy. Likewise, POMDPs can map into

belief MDPs that encode the set of belief states as the observable belief state [141].

Thus the best ways we can currently address complicated decision making problems

45



is to turn them into simpler ones that we can solve, even if we cannot solve those

simpler problems well.
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CHAPTER 3

PLAN, ACTIVITY, AND INTENT RECOGNITION

How many of you have walked into a room [all the students in the
room raise their hand in excitement], saw someone, and wondered, “what
is that person doing?” [several hands go down].

— Richard (Rick) G. Freedman,
explaining his research to a classroom of third-grade students

Several decades since the establishment of automated planning as an area of study,

the AI community has branched into various specialized communities that pursue

specific challenges that have been identified within the scope of AI. Quite a few of

them began to focus on perception tasks, and the majority of the early research on

perception was strictly interpreting sensor data. With much inspiration from the

application of intelligent robotics, this led to a lot of research within areas such as

computer vision [188] and tactile sensing [112]. However, perception involving higher-

level thought was eventually realized in story analysis [150] and understanding user

activities within program applications [184].

The most distinguishing feature between these two forms of perception is the

observation focus. The former, lower-level perception aims to obtain an overall en-

vironment description; this creates a world state in which the perceiving agent can

act. The latter, higher-level perception is associated with understanding agents and

their underlying decision making processes. The focus on observing other agents in-

dependently of the environment itself adds a “black box” around their actions that

must be interpreted in addition to rules of the environment (such as physics), which

all affect how the perceiving agent can act in the world. The formal establishment of
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the plan, activity, and intent recognition (PAIR) community studying this happened

within the past decade [96] following a short series of workshops originally titled

“Modeling Others from Observations” (MOO). The workshop series was eventually

renamed PAIR due to the common methods and themes in presented research, but

there are still discrepancies regarding what PAIR specifically studies in each type of

recognition.

One goal of this dissertation is to begin addressing these discrepancies and inves-

tigate how all the types of recognition are interrelated. Despite their common origin

and being discussed at the same venues, they are not often discussed with respect

to the other types of recognition (though a recent compendium does mention in the

preface that plan and intent recognition are strongly related [263]). Each form of

recognition is considered to be different to some degree, but these degrees have not

been formally described outside qualitative descriptions.

Throughout this chapter, we will introduce each type of recognition in PAIR and

investigate some common challenges and frameworks with respect to their specific

perspectives on the following generalized formal definitions:

Definition 27. A recognition problem is a tuple R = (KB,O,H) where KB is a

knowledge base representing what the observing agent knows (and thus what informa-

tion is at its disposal), O provides a sequence of observations, and H lists the possible

hypotheses that can be recognized.

Many recognition algorithms, despite the type and challenge, broadly resemble

matching O to some element of H based on KB. KB and H are often intertwined

such that the question “is h ∈ H the correct match?” can be answered using a portion

of KB that relates to just h. KB is specifically defined with respect to the observing

agent that performs recognition, Ring. Any information regarding the observed agent

that is recognized, Red, is only in KB if Ring knows or assumes it.
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3.1 Plan Recognition

Plan recognition is viewed as an inverse problem to automated planning because

the observation sequence is composed of executable actions. That is, each o ∈ O

often satisfies o ∈ A. However, O is not often complete; Ring might ‘blink’, a certain

action might not be observable with the available sensors, or a transcription might

only point out ‘key actions’ rather than provide a ‘play-by-play’ summary. Thus the

primary challenge in plan recognition is to answer the question, “what is the agent

doing overall?” H is usually a set of plans or high-level tasks. However, the answer to

the question is paired with the secondary challenge that has received more emphasis

lately [91, 195]: “why is this the correct answer?”

Definition 28. An explanation is a plan or policy π that best resembles O’s sequence

and justifies why some h ∈ H is the answer to plan recognition problem R.

Depending on KB, the explanation may have contingencies, be a task network,

or more. Overall, the structure of, and information in, the knowledge base has the

most impact on the different plan recognition algorithms. Two common knowledge

bases are based on how much Ring knows about Red and the world in which they are

acting.

Definition 29. A plan library is a type of knowledge base that contains precom-

puted plans for solving some set of automated planning problems. This can include a

grammar that constructs plans without solving the automated planning problems.

Definition 30. A planning domain is a type of knowledge base that models the world

in which the agents act. This is identical to Definition 2, but is now a tool for

“thinking in another agent’s shoes” rather than personal decision making.

The knowledge base was partitioned into subsets of matching plans for each pos-

sible hypothesis in earlier research, which became plan libraries [149]. While libraries

are still used and have their advantages, knowledge bases are more expressive and
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generalized when the planning domain itself is provided [226]. In particular, H can

change independently of updating KB as long as novel hypotheses are solvable in the

original domain. However, we demonstrate in Section 6.5.2.2 that there is more over-

lap between plan libraries and planning domains than people might expect, assuming

that H is a constant set of goal conditions (which often holds in present recognition

approaches, even if hypotheses are incrementally pruned [281, 246]).

Unlike automated planning, it is more difficult to define the case where there is no

solution in H. Some algorithms return a distribution over H rather than returning a

subset of elements in H [227], but this is still a relative comparison that implies more

ambiguity as the distribution over some subset of H becomes uniform. In contrast

to the adage “a picture may be worth one thousand words,” they are not always

the correct ones. The spread metric S% [227] and quality metric Q% [68] have been

proposed to quantify the number of most-likely hypotheses in

H% = {h ∈ H | P (h |O ) is at the % percentile or greater}

and how often H% contains the correct answer respectively. Ideally, for greater values

of %, Q% will be large and S% will be small.

3.1.1 Abduction

The earliest work in plan recognition focused on identifying the task from a se-

quence of descriptive observations rather than just observed symbols/actions O [150].

These particular works focused on an application that has since become its own re-

search area called semantic understanding, the process of identifying the meaning of

natural language artifacts such as dialogue and text documents (present day research

in semantic understanding has a heavy focus on search engines). The descriptive ob-

servations can be converted into a logical representation with respect to the current

state of the world, and each action a ∈ A in a logic-based factored representation can
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be converted to a set of logical derivation rules. In relation to a planning problem

with tuple (D, I, G), we find that:

• The observations oi ∈ O are simply a set of fluents oi ⊆ F similar to a state

representation. Like the set of goal conditions, we are not guaranteed full ob-

servability of the state so that the observations are just some features of the

current state.

• The hypotheses are the set of all initial states that can reach the set of obser-

vations

H = {s ∈ S |

∃ [a1, a2, . . . , an ∈ A] . ∀ [o ∈ O] . ∃ [k ≤ n] . ak (. . . (a1 (s)) . . .) ⊇ o} ,

which captures the notion that the initial state contains information about a

task that must be performed. This appears to be counter-intuitive with present-

day definitions due to their emphasis on recognition corresponding to the goal

state and conditions, but information about the task is usually removed from the

state definition in present-day definitions. That is, a feature of such an initial

state was often of the form “Red decides to do task t.” Because many states in

a state space eventually become reachable, a predefined set of possible initial

states serve as the plan library L ⊆ S where each state is assigned a task label.

Then we can restrict H ⊆ L compared to the broad definition above.

• The knowledge base is composed of logical derivation rules from all the actions

KB =

{ ∧
i∈prea

i→

( ∧
i∈adda

i ∧
∧
i∈dela

¬i

)∣∣∣∣∣ a ∈ A
}
.

In particular, if the preconditions of an action are satisfied, then its add and

delete effects may be applied. As it is easy to convert any conditional logic
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statement into a set of Horn clauses, we will assume that KB is a set of Horn

clauses for the remainder of this section.

Definition 31. A Horn clause is a conditional logic statement of the form p1 ∧ p2 ∧

. . .∧py → q. Written as a disjunction, the clause only contains one positive literal, q,

and all p· literals are negative: ¬p1∨¬p2∨ . . .∨¬py∨ q. For Horn clause r, we define

function L (r) = {¬p1,¬p2, . . . ,¬py, q} to decompose r into the set of its literals when

written as a disjunction.

Due to the initial natural language applications, the STRIPS notation was limited

to define actions’ preconditions as entity resolution bindings (often written as ‘is’

or ‘=’ with a variable name and a dictionary definition of the form word#) and

atomic actions whose parameters are arguments. These actions usually had no effects

(∀a ∈ A adda = dela = ∅), which creates a structure Kautz formally defines as an

event hierarchy [150] similar to the grammatical structure used for parsing approaches

in Section 3.1.2. One benefit of this hierarchical design is that we can observe both

actions and some environmental features simultaneously. F may then be viewed as a

union of two sets of first-order logic fluents: dict, a set of entity resolution bindings

to identify objects in the environment, and acts, a set of atomic actions that cannot

be broken down further (acts ∩ A = ∅). Then we use knowledge engineering to

create a different initial knowledge base KB′ that formally defines relations between

elements of dict and acts—this approach was commonly done by actual humans since

computationally-efficient automated annotation systems did not yet exist.

Given this hand-crafted knowledge base and logic rules KBH allocating the non-

atomic actions in A to labeled tasks that Red can select in H1, we attempt to explain

some O using abduction. Much like theorem-proving, abduction is the iterative appli-

1These logic rules have the form h →
(∨

a∈Ah
a
)

for each h ∈ H where Ah is the set of actions
involved in the plan library’s plans that perform the task Red selects in h. We can also convert each
of these rules into a set of Horn clauses when constructing KBH.
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cation of backwards-derivations to find elements of H that “prove” O. We combine

all the knowledge bases together to define the set of rules KB∪ = KB ∪ KB′ ∪ KBH.

For a set ξ, C (ξ) =
∧
i∈ξ i and D (ξ) =

∨
i∈ξ i are treated as a respective conjunction

and disjunction of ξ’s elements in logical evaluations below. Starting with the set of

observed fluents as O0 =
⋃
O∈O

⋃
o∈O o, we find rules Ri ⊆ KB∪ that overlap with

at least one observation o ∈ Oi (overlap with a Horn clause means o is one of the p·

literals in r, which negates them when written as a disjunction) and do not yield a

contradiction ⊥:

Ri =
{
r ∈ KB∪

∣∣(∃ [o ∈ Oi
]
. ¬o ∈ L (r)

)
∧
(
C
(
Oi
)
∧D (L (r)) 6= ⊥

)}
.

We then conjunct one such rule r ∈ Ri to get a new unexplained observation set

Oi+1 = C−1
(
C
(
Oi
)
∧D (L (r))

)
.

The new elements Oi+1 − Oi increase the set of observations to include some ‘as-

sumptions’ that must later be proven true for the conjuncted rule to hold while the

removed elements Oi − Oi+1 are the observations and assumptions that r explains.

H is regarded as the set of axioms that are true by default such that they do not

need to be satisfied. This axiomatic assumption comes from the concept that we

want to recognize the underlying tasks that are the cause of the observations. This

process ends in success if we eventually derive some Ox ⊆ H, which means only the

axiomized hypotheses remain unexplained. This process ends in failure if we can no

longer find any rules Rx to apply to some Ox 6⊆ H even after backtracking to try dif-

ferent selections from each R0≤i≤x. In the case of success, the set of recognized tasks

is R = C (Ox ∩H). For entity resolution to hold in first-order logic representations,

other processes such as Skolemization will also need to be performed throughout the

abduction.
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One difference between abduction for plan recognition and theorem proving is the

uniqueness property. Theorem proving is complete once success occurs because the

observations (formally called a query) are confirmed, which is sufficient to prove a

theorem. The argument/explanation itself does not matter as long as it is valid. On

the other hand, each possible derivation in plan recognition could yield different Ox

from various choices for each R0≤i≤x, presenting ambiguity in what was recognized.

Thus we need to select the best explanation for the observations and choose its respec-

tive Ox as the set of recognized tasks. Multiple explanations are obtainable through

either (1) backtracking and storing each success or (2) simultaneously storing every

sequence of rules that do not yield a contradiction:

Oi+1
r0,r1,...,ri

= C−1
(
C
(
Oi
r0,r1,...,ri−1

)
∧D (L (ri))

)
for each rj ∈ Rj

r0,r1,...,rj−1
.

The latter approach introduces nesting so that each set can conjunct with a different

sequence of rules in future iterations (hence the new subscripts). It becomes easier to

manage this information as an iteratively expanding graph Gi = (Vi, Ei) with vertex

set

Vi =
i⋃

j=0

⋃
r0∈R0

· · ·
⋃

rj−1∈Rj−1
r0,r1,...,rj−2

Oj
r0,...,rj−1

for the individual fluents/hypotheses involved in some derived conjunction after ap-

plying i rules to explain O and directed edge set

Ei =
{
v1 → v2

∣∣(v1, v2 ∈ Vi) ∧ ∃ [0 ≤ j < i] . ∃ [r0 ∈ R0] . ∃
[
r1 ∈ R1

r0

]
.

· · · ∃
[
rj−1 ∈ Rj−1

r0,...,rj−2

]
.
[
rj ∈ Rj

r0,...,rj−1

]
. (¬v1, v2 ∈ L (rj))∧(

v1 ∈ Oj
r0,...,rj−1

∧ v2 6∈ Oj
r0,...,rj−1

∧ v1 6∈ Oj+1
r0,...,rj−1,rj

∧ v2 ∈ Oj+1
r0,...,rj−1,rj

)}
for the explanation relations between derived fluents and hypotheses in Vi. Combining

graph-matching with Occam’s Razor, Kautz [150] proposed creating a set of graphs

reminiscent of the plan library via forward derivations from combinations of elements
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in H, finding matches between these generated plans and Gx (or Gi<x if incrementally

applying process of elimination), and then selecting the one with the fewest hypotheses

used (or more relatable ones in the case of a tie).

Charniak and Goldman [47] extended this to a more probabilistic approach that

infers the probability of each hypothesis node in Gi by converting Gi into a Bayesian

network. This conversion uses a similar graph (though its generation applies the

more advanced pruning techniques that Kautz mentions for removing unnecessary

backwards derivations) with the addition of entity resolution nodes and conditional

probability tables for each node. Each hypothesis in the graph Vi ∩H must be a root

of the network so that it is assigned a prior based on the proportion of plans it has in

the plan library. Then the other nodes in A∪F have conditional probabilities defined

by their parent nodes’ priors based on the rules in KB′. For the disjuncted branches

where multiple explanations are possible, a noisy-or node is added with a conditional

probability table that is set to (1− α) when at least one parent is true and α when

no parents are true. Nodes are assigned evidence representing observed fluents in O0,

and entity resolution nodes that must be true are also assigned evidence. The parent

and child nodes in acts∪H must use the same object in dict for a specific parameter.

This Bayesian network for plan recognition inference appears to have much in common

with Charniak and Shimony’s Bayesian network designed for cost-based abduction

[48] except for the truth assignments and replacement of AND nodes since KB’s rules

now create specific edges. They also allowed ‘definite true/false’ and ‘undetermined’

as assignable evidence and then used probabilities for true/false assumptions.

An alternative approach for handling the ambiguity of multiple explanations was

to use weights specified by the knowledge base’s rules [119]. These weights are rel-

atively determined for each rule in the form of a conditional logic statement (and

Horn clause) (p1 ∧ p2 ∧ . . . ∧ py) → q, which is interpreted as a conjunction of facts
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p1, . . . , py ∈ F ∪ A that can explain claim q ∈ F ∪ A. Then the factors determining

the weights c of each rule r, c (r) ∈ R≥0, are as follows:

• Assume that q has weight c (q) = 1.

• If the explanation of facts is considered easier to believe than the claim it-

self, then it must be the case that c (p1 ∧ p2 ∧ . . . ∧ py) < c (q). Otherwise,

c (p1 ∧ p2 ∧ . . . ∧ py) > c (q). The latter is more common due to Occam’s Razor

preferring the simpler explanation.

• It must hold that
∑y

j=1 c (pj) = c (p1 ∧ p2 ∧ . . . ∧ py). Thus for each fact in

the explanation, its individual weight must be proportional to its contribution

towards the conjuncted explanation. This effectively lets
∑y

j=1 c (pj) serve as a

normalization constant if we have to scale c (p1 ∧ p2 ∧ . . . ∧ py).

With respect to the abduction process, these notions try to find the derivation with

the cheapest hypothesis minh∈H
∑

p∈h c (p). Each hypothesis is simply any possible

explanation for O composed of i rules in KB: Oi
r0,...,ri−1

= hir0,...,ri−1
∈ H, which claims

that everything is seen/explained without further justification than the i rules.

Each clause in the initial observation’s conjunction O0 is assigned an independent

weight for its believability without any explanation. When performing the backwards

derivations at each step, the replaced claim distributes the cost over the claims in the

explanation:

∑
p∈hir0,...,ri−1

c (p) =

 ∑
p∈hi−1

r0,...,ri−2
\qri−1

c (p)

+

c (qri−1

)
·
∑

p∈pri−1

c (p)

 .

While this will usually increase the cost of the hypothesis, entity resolution can unify

multiple instances of the same fluent within the hypothesis. Thus reducing the com-

plexity of the explanation is emphasized not just through simpler conditions and fewer

rules, but also by using the same information to explain multiple claims.
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After this burst of interest in plan recognition using abduction, it seemed to dissi-

pate for almost sixteen years. Claims have been made that the factor that contributed

most to this loss is the exponential computational cost resulting from the sizes of each

Oi
r0,...,ri−1

; most iterations, especially the earlier ones, add more unexplained fluents

per rule than remove explained fluents. Inoue and Inui approached this issue by con-

verting Hobbs et al.’s [119] weighted method above into an integer linear program

(ILP) [129]. In this ILP, each hypothesis hir0,...,ri−1
∈ H has its own equation with

the following binary variables and associated constraints. We also define set FH as

the set of all fluents found in a hypothesis, including duplicates that have not been

unified:

• ILP variable hf∈FH = 1 if and only if there is some 0 ≤ j ≤ i such that f ∈

hmr0,...,rm−1
. This indicates that there exists an explanation for f given the current

hypothesis’s derivations. Because the initial hypothesis is the observation, we

have the constraints

ho = 1 for all o ∈ O0.

• ILP variables uf,g∈FH = 1 if and only if f and g are unified in this particular

equation’s hypothesis. Because unification can only happen when both fluents f

and g are explained by the current equation’s hypothesis, we have the constraint

uf,g ≤ 0.5 (hf + hg) .

• ILP variables rf∈FH = 1 if and only if the weight of f is ignored when computing

the total cost. This occurs if (1) it is replaced when applying some rule in the

backwards chain or (2) it is unified with another instance of smaller weight. This
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is represented by two sets of constraints. The first constraint literally counts

the number of opportunities for which f may be replaced:

rf ≤
∑

e∈explains(f)

he +
∑

g∈smaller(f)

uf,g

where explains (f) = {e |e ∈ FH ∧ {e} ∪ KB |= f } is the set of fluents in some

hypothesis that can derive f (thus it contributes to the count if it is in this par-

ticular equation’s hypothesis) and smaller (f) = {g |g ∈ FH ∧ c (g) < c (f)}

is the set of fluents in some hypothesis whose weight is less than f ’s (thus it

contributes to the count if has unified with f in this particular equation’s hy-

pothesis). The second constraint ensures that the sum over explanations holds

when there is a conjunction since all such literals must be true:

∑
a∈conjunct(f)

ha = hf · |conjunct (f)|

where conjunct (f) ⊆ FH is the set of fluents in some hypothesis that are in

the same conjunction as f . Thus |conjunct (f)| is one less than the number

of fluents in the conjunction itself (f 6∈ conjunct (f)), which requires all ha ∈

conjunct (f) = 1 if hf = 1 or 0 otherwise.

• ILP variables sc∈vars,d∈vars∪consts = 1 if and only if, when unifying two fluents,

one fluent’s variable c is substituted for another variable or a constant d. Be-

cause these variable substitutions must hold consistently for unification to work,

we have constraints

uf,g ≤
∑

(c,d)∈unifySubs(f,g) sc,d

|unifySubs (f, g)|
for each f, g ∈ FH

where unifySubs (f, g) is the set of all variable substitutions that must hold for

f and g to be unified. Furthermore, because a variable can only be equivalent
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to one constant at a time in logic (distinct constants cannot resolve to the same

entity), we have the substitution constraint

∑
z∈constSubs(c)

sc,z ≤ 1 for each c ∈ vars

where constSubs (c) ⊆ consts is the set of all constants to which variable c

may be substituted. Lastly, because a variable may be substituted for another

variable, transitivity of substitutions must be maintained. The transitivity con-

straint is captured using a clustering of variables for each possible substitution

constant and depends on the size of the cluster.

3.1.2 Parsing

In addition to plan recognition’s origins in the study of natural language, Geib and

Steedman formally showed that there are reductions from various natural language

tasks to plan recognition [92]. In their initial work, they do this to explain plan recog-

nition as a parsing problem to identify part-of-speech tags rather than abduction for

semantic understanding. Parsing is a hierarchical breakdown of a natural language

artifact where each component is iteratively composed of smaller components until

those components are atomic sequences of words that cannot be separated. The for-

mulation and structures resemble those used for automated planning with HTNs (see

Section 2.3), as both are derived from the computational structure called a Context-

Free Grammar (CFG). The connections between these concepts are:

• The set of terminal symbols Σ for a CFG are the symbols that may appear in

strings from its language. These are the same as the terminal tasks Tt for a

HTN. We thus observe an individual performing a sequence of atomic actions

o1, o2, . . . , on ∈ Tt.
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• The set of nonterminal symbols Γ for a CFG are the symbols that capture

substructures for string generation. These are non-terminal tasks Tn for a HTN

because specific combinations of atomic actions can solve a task that might be

necessary to complete a more complex task. Because an individual performs

atomic actions to complete these higher-level tasks, they are the tasks that can

be recognized. That is, H ⊆ Tn.

• A transition function δ : Γ → (Σ ∪ Γ)∗ represents the string generation pro-

cess for a CFG where ∗ is the Kleene closure. This substitutes substructures

with more specific substructures and actual characters in the string, and the

generation process recursively applies δ until all substructures are removed. A

HTN also generates plans to solve each subtask as a partially ordered list of

other subtasks and atomic actions that must be completed. Thus the derived

executable plan must recursively satisfy subtasks with more specific actions and

subtasks until only a sequence of atomic actions is present that satisfies every

subtask, including the primary task from which all these decompositions were

made. This means that there exists a fiber (an inverse for a function that is not

one-to-one) of δ to uncover the derivations used to generate a string. Likewise,

there exists a fiber for the process of breaking down subtasks to identify the

HTN’s planning process. The fiber for CFG’s is called a parser.

At the following IJCAI conference, Geib [91] extended this formalization using

Steedman’s combinatory categorial grammar (CCG) [259], an equivalent representa-

tion of the CFG used for natural language processing. The CCG contains atomic

categories A1, A2, . . . , Ax and complex categories C1, C2, . . . , Cy; we will call the set

of all atomic and complex categories A· and C· respectively. Atomic categories are

similar to terminal symbols and atomic actions above, but complex categories embed

the hierarchy’s transitions instead of using nonterminal symbols that decompose. To

notate a complex category, a set {Ai |1 ≤ i ≤ n} represents a set of partially ordered
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atomic categories Ai1 , Ai2 , . . . , Ain and operators / and \ enforce ordering between the

sets. Like a parse tree, these operators represent an edge for a parent-child relation

(the child is below the parent in a tree’s spatial representation—the child is adjacent

to the lower portion of the slant-looking operator in a complex category). A single

complex category can have any number of sets and operators, but children must be

parsed before the parent.

For plan recognition using CCGs, there are also a set of observable action types

Σ (similar to acts in abduction while complex categories are like A, see Section 3.1.1)

and a function f : Σ → (A· ∪ C·) that maps each observable action type to a subset

of all the categories whose embedded tree structures represent the possible plans that

perform the action. Many action types will map to only a respective atomic action

(for example, f (σ ∈ Σ) = Ak ∈ A· where σ and Ak have the same label) if they are

not intended to be explained/broken-down. Hence f defines the plan library (though

Geib calls it a plan lexicon instead). f is not unique because there are multiple ways

to encode each tree using these operators, but the choice of embedding can play a

large role in the computational complexity of parsing.

The parsing process for this application of CCGs is named ELEXIR and takes

advantage of the root-result for each category as the overall task/plan for the category.

Definition 32. For a complex category Ci ∈ C·, the leftmost atomic category in its

embedded tree structure is its root-result. An atomic category Ai ∈ A· is its own

root-result. We notate this with function rr : (A· ∪ C·)→ A·.

Definition 33. The head of a plan for a given atomic category Ai ∈ A· is the set of

observable action types σ ∈ Σ whose root-results are Ai:

h (Ai ∈ A·) = {σ ∈ Σ |rr (f (σ)) = Ai} .
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For the complexity of ELEXIR to be linear with respect to the number of observed

action types, all complex categories must:

1. Have a single atomic category as the root-result α = rr (Ci) (for all Ci ∈ C·)

and

2. Be of the form (α (/βi)
∗) (\γj)∗ where ∗ is the Kleene closure, α is the above

root-result, and each β1, . . . , βi∗, γ1, . . . , γj∗ ∈ A· is a set of partially-ordered

atomic categories. This form guarantees that the first property holds.

This complex category structure creates step-by-step plans where all γj+y must be

completed before γj, γ1 must be completed before α, α must be completed before β1,

and all βi−x must be completed before βi such that βi∗ must be completed last. This

is specifically a plan of the form γj∗, γj∗−1, . . . , γ1, α, β1, β2, . . . , βi∗. ELEXIR receives

a sequence of observed action types [σ1, σ2, . . . , σx] ∈ Σx and iteratively reads each σi

from left-to-right to write a category in f (σi). Geib’s small examples and explanations

prefer to keep the outputs of f small in cardinality so that enumerating all possible

plans is not computationally complex. As categories are written for each read σi, the

required structure of complex categories allows the right-hand sides of the \ operators

to cancel with already-written atomic categories. Then the remaining embedded tree

structure, which looks like a to-do list for an unfinished plan, serves as a possible

explanation for the sequence of observations.

Like in abduction, multiple explanations are derivable. Each such explanation

consists of a combination of mapped categories via f as well as assuming any complex

category will eventually transform into its root-result; let us call this set of possible

explanations E. Thus probabilistic measures are used to compare the likelihood of

each possible explanation in E. Ultimately, the powerset of atomic categories P (A·)

forms the set of recognized goals over which we apply weighted model (explanation)

counting:
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P (p ∈ P (A·) |[σ1, . . . , σx] ) =
∑
e∈E

1 (p ∈ e) · P (e |[σ1, . . . , σx] )

where 1 (·) is the indicator function for statement · . Given that an explanation

contains at most |C·| unique complex categories, we then compute the probability of

each individual explanation as

P (e ∈ E |[σ1, . . . , σx] ) = Z−1 ·
x∏
z=1

P (ez |σz ) ·
∏
Ci∈e

P (rr (Ci))

for a normalizing constant Z. The left product counts the number of times observed

action type σi derives the category ei = f (σi) that it wrote to the explanation e

(compared to all of σi’s derivations). The right product is the prior that an atomic

category in the explanation appears as a root-result. While each derivation for the

left product is simply counted using a corpora, the priors must be manually assigned

based on what one expects the observed individual(s) to do.

Geib updated ELEXIR since proposing this initial algorithm because the model

counting was not able to recognize all valid plans until the observation sequence was

completed [89]. This post-processing vs. real-time issue is becoming a more present-

day concern as researchers in PAIR are moving towards recognition tasks using inputs

other than natural language artifacts such as sensor data [79]. Although one of the

largest contributions to this weakness in ELEXIR is the restriction on the structure of

complex categories, changing the structure would ruin the runtime complexity—this

is not ideal. Geib thus introduces heuristics for predicting future categories written

to the explanations so that the missing root-results (forming the recognized plan)

are considered. The heuristics either maximize or average the change in conditional

probability by writing all categories with a specific root-result, canceling any atomic

categories written along the way. Then the change in the probability shows whether

the new category can simplify the explanation or improve it despite the potential cost

to assume the category.
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3.1.3 Recognition as Planning

Recognition as Planning (RaP) was introduced not only as the first recognition

algorithm for a STRIPS-style representation, but also as a deviation from matching

within a plan library to matching within a plan domain [226, 227]. The advantage

of the domain is that a matching plan is generated at recognition time rather than

hoping that a precomputed plan matches.

The RaP class of algorithms’ hypotheses are the set of goal conditions H =

{G1, G2, . . . , Gx}. The method used to find the best matching hypothesis is to simu-

late the observed agent solving each hypothesized goal with respect to the observation

sequence. This focus on the simulation allows off-the-shelf classical planners to per-

form the majority of the computational efforts. Matching plans are generated during

the recognition algorithm’s execution and then compared, rather than the traditional

approach of precomputing a library of plans per hypothesis for evaluation. We specif-

ically explain the important details for the probabilistic extension [227] because many

variations, including the one discussed in this dissertation, use it as their underlying

framework.

Formally, a probabilistic RaP problem is a tuple R = (D, I,O,G) where D =

(F,A) is the planning domain (the set of logic fluents F and actions A generate

a search space), I is the known initial state from which the observation sequence

O = o1, o2, . . . , om begins, each observation is an action oi ∈ A, and G = H is the set

of hypothesized goal condition sets. By this definition, KB = (D, I). If the correct

set of goal conditions G ∈ G is recognized, then O is a subsequence of some plan

πG = a1, a2, . . . , an≥m that solves the planning problem P = (F,A, I,G). That is,

there exists some monotonically increasing function f : {1, 2, . . . ,m} → {1, 2, . . . , n}

such that oi = af(i). Because it can be difficult to identify the exact goal conditions

when the observation sequence has missing observations or is ambiguous over a subset

of the hypotheses [156], RaP outputs a distribution over how likely each hypothesis
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is given the observation sequence: P (G ∈ G |O ). Using Bayes’s Rule, we rewrite this

probability as Z−1 · P (O |G) · P (G) where Z is a normalizing constant and P (G) is

simply a prior belief over the goals.

The likelihood P (O |G) is further rewritten as a summation over ΠG, the set of

plans that solve G:

∑
π∈ΠG

P (O, G |π ) =
∑
π∈ΠG

P (O |π,G) · P (π |G) .

P (O |π,G) = P (O |π ) is binary because O either is or is not a subsequence of π.

This introduces an opportunity to partition ΠG into the subset of plans that solve

G and contain O as a subsequence, ΠG+O, and the subset of plans that solve G and

do not contain O as a subsequence, ΠG+O. In fact, these sets of plans correspond

to two new sets of goal conditions G + O and G + O that complement each other.

Conceptually, an agent that is intentionally solving G will also be solving G+O. On

the other hand, an agent that is intending to solve some other goal in G should be

solving G + O if they were to solve G coincidentally. This is an assumption of the

observed agent’s rationality [19].

Using this complement, we rewrite the likelihood with a denominator that sums

to 1:

P (O |G) =
P (O |G)

P (O |G) + P (¬O |G)
. (3.1)

As both probabilities have the same form as the likelihood, we get

P (O |G) =
∑

π∈ΠG+O

P (π |G) and

P (¬O |G) =
∑

π∈ΠG+O

P (π |G) .

Furthering the assumption of rationality, we expect the observed agent to act as op-

timally as possible to achieve their intended goal. Thus the probability of performing
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some plan is inversely proportional to its cost; Ramı́rez and Geffner use the Boltz-

mann distribution for this purpose P (π |G) = Z ′ −1 ·e−β·costπ where β is some constant

and Z ′ is a normalizing constant over ΠG—from a physical perspective, the system’s

set of states is the set of plans ΠG that satisfy the goal where each state’s energy is

based on its cost costπ∈ΠG . Because ΠG can be very large, if not infinite, the final

assumption is that the exponential decay will allow the term with the greatest proba-

bility mass to dominate the distribution and thus eliminate the need for a summation.

That is,

P (O |G) ≈ max
π∈ΠG+O

e−β·costπ = e
−β·costπ∗

G+O

where π∗G+O is the optimal plan that solvesG+O with the least possible cost. Likewise,

P (¬O |G) ≈ max
π∈ΠG+O

e−β·costπ = e
−β·costπ∗

G+O .

These optimal plans can be found using any off-the-shelf classical planner—there

are 2 |G| problems to solve. These problems are of the form

PGO = (FO, AO, I ∪ {p0} , G ∪ {pm}) and

PG¬O = (FO, AO, I ∪ {p0} , G ∪ {¬pm})

for each G ∈ G. The set of fluents and actions are augmented to track the simulation’s

progress through the observation sequence:

• FO = F ∪ {p0, p1, . . . , pm} and

• adda∈AO = adda∈A ∪ {pi−1 → pi |oi = a}

where q → r is a conditional effect that adds/deletes r from the state s when a is

performed if and only if q ∈ s. The solution to PGO is a plan in ΠG+O and the solution
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to PG¬O is a plan in ΠG+O, which together are sufficient for computing the probability

estimates and overall distribution P (G ∈ G |O ).

This version of RaP specifically addresses intent recognition (see Section 3.3) be-

cause each hypothesis is a set of goal conditions. That is, we recognize the goals as

the driving motivation behind the observed agent’s actions. However, an analogous

derivation adjusts RaP to perform plan recognition where the hypotheses are a (pos-

sibly infinite) set of plans H = Π̃ that the agent could be performing P
(
π ∈ Π̃ |O

)
[252, 83]. Many of the derivations are analogous to the procedure above when we now

compute P (π |O ) = Z−1 ·P (O |π ) ·P (π) by Bayes’s Rule. We rewrite the likelihood:

P (O |π ) =
∑
G∈G

P (O, G |π ) =
∑
G∈G

P (O |π,G) · P (G |π )

where G is the set of goals that Ring believes Red could be trying to accomplish. The

term P (O |π,G) from above is not too useful now because it is 0 when O is not a

subsequence of π (hence no partitioning since π is the query). However,

P (G |π ) = Z ′′ −1 · P (π |G) · P (G)

using Bayes’s Rule. We found above that

P (π |G) =

 Z ′ −1e−β·costπ if π solves G, π ∈ ΠG

0 otherwise

for some constant β, and the prior is the same from the original equation. The

prior is thus contained in KB for the original algorithm, which means this alternative

probability can be computed for plan recognition as well.

There are quite a few extensions of the Ramı́rez and Geffner method due to

its ability to recognize over a generalized domain rather than a constrained plan
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library. The same authors, Ramı́rez and Geffner, created the simplest extension

the following year to perform recognition in stochastic shortest path (SSP) domains.

This relies on planning with MDPs (see Section 2.4). Sohrabi et al. account for noisy

sensors that can ignore observations in the sequence using additional actions that

omit observations in exchange for a greater cost [252]. The remaining extensions

instead focus on speeding up the recognition algorithm because it is computationally

expensive to run classical planners multiple times (specifically, 2 |H| times). We refer

the reader to Section 3.3.2 for these because they are specifically developed for goal

recognition without a confirmed plan recognition analogue.

3.2 Activity Recognition

Activity Recognition is the process of identifying a higher-level representation of

a single action or subtask given a sequence of observed information at a lower-level

representation. Hierarchical representations such as HTNs often observe the terminal

tasks so that each o ∈ O also satisfies o ∈ Tt, but the low-level information might

range from sensor data to configuration settings at various time stamps. The latter is

unlike plan recognition, which already has the higher-level information as its observed

input. We will discuss both cases, but it is important to distinguish the differences

in representation because their sources will vary both the knowledge base and types

of algorithms used for activity recognition. In either case, the challenge in activity

recognition is to answer the question, “what is the agent doing at the moment?”

Hypotheses are usually a subset of non-terminal tasks H ⊆ Tn for HTN-represented

KB or a subset of actions H ⊆ A when sensor data is observed.

As a disclaimer, the computer vision research community has also studied activity

recognition where the sensor is a camera. They consider additional challenges such

as identifying where the activity occurs in the image and which entities (agents and

objects) are involved in the activity. A survey of the techniques specifically developed
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within the computer vision research community was released within the past decade

[2] and will not be covered in this dissertation. Though we discuss activity recognition

with camera sensors, our focus will be on work within other research communities

such as PAIR.

3.2.1 Hidden Markov Models and Their Generalizations

Sensors give insights into the environment, but their insights can still be limited.

The hardware can only receive signals for which it is designed (cameras for light,

microphones for audio, chemical detectors, etc.), and sensors are not always reliable

due to potential hardware faults and physical variability in the world. To address this

uncertainty of the environment from sensor data limitations, models analyzing sensor

data are often probabilistic. Rather than traditional probability of single events,

the stream of information from sensors is ongoing and is expected to change as the

environment changes over time.

Definition 34. A Markov chain is a sequence of random variables X0, X1, . . . , Xn ∈

V where V is the set of assignable values and Xi’s value only depends on the value of

Xi−1. The sequence shows a progression of how the observed value changes over time.

Definition 35. The transition matrix of a Markov chain is a |V |× |V | matrix where

entry

Ti,j = P (Xk = vj ∈ V |Xk−1 = vi ∈ V ) for all k ∈ Z≥1.

This is the probability that the random variable’s assignment changes from value vi

to vj between two consecutive discrete time steps in the sequence.

When the environment is assumed to be a Markov chain, the set of assignable

values is the set of states V = S. Then the sensor measures its respective signal based

on the environment’s state. Because the sensor is rarely complete (with respect to

the environment) and sometimes unreliable, the measurement is also a probability

distribution.
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Figure 3.1. A graphical model of a HMM with global transition matrix T . Shaded
nodes represent observed random variables and edges u → v contain a conditional
probability table P (v |u).

Definition 36. A hidden Markov model (HMM) is a probability model with random

variables X0, X1, . . . , Xn ∈ V and O1, O2, . . . , On ∈ Ω where X· form a Markov chain

and each Oi’s value only depends on the value of Xi. The O· random variables are all

observed, but the X· random variables are not observed. See Figure 3.1 for a graphical

model representation.

The role of a HMM is to infer the actual state of the environment given just the

observations from the sensor, which allows prediction of the upcoming states via the

transition matrix. This transition matrix is similar to the transition function (see

Definition 21) assigned to each action, which is the key to using HMMs in activity

recognition as well as early speech recognition [87]. Specifically, performing an action

or addressing a task has direct changes on the environment based on its current

state; thus each action/task corresponds to its own Markov chain. If S is not known

in advance, especially when the environment is the real world itself, then the number

of underlying states is often assumed and each action’s/task’s transition matrix is

learned from recorded observation sequences. This reduces activity recognition to

a supervised machine learning classification problem where the inferred transition

matrix is the input feature and the action/task that was recorded is the output label.

The set of observable values Ω will depend on the available sensor information and
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should be included in KB. Likewise, information needed to generate and run the

classifier or probabilistic model should be included in KB.

When using HTN representations rather than sensor data, it is often the case

that Ω = Tt and H = Tn. However, the HMM’s single transition of states lacks

the hierarchical structure implicit to the representation of task networks. If a non-

terminal task T> decomposes into more non-terminal tasks T1, T2, . . . , Tn that can each

be recognized, then the transition matrix for T> might not have a single, constant

transition matrix—it would transition between transition matrices for T1 through

Tn based on the ordering constraints of the chosen decomposition. This led to the

notion of nesting different HMMs within each other so that a state either generates

an observation or transitions to another state, either at its level (the same Markov

chain), a lower level (a start state for a different Markov chain), or back one level (a

termination state for the current Markov chain) [74]. Called a hidden HMM (HHMM),

it was later generalized to the abstract HMM [36] and then redefined using this

abstract definition [35]. Blaylock and Allan compromised this generality with a bound

on the number of levels, which creates a simpler model for computational purposes

called the cascading HMM (CHMM) [25]. The CHMM simply rolls out the underlying

Markov chains to create a grid of states with a unidirectional, bifurcating flow of

information: from greatest level of abstraction to lowest as well as over time.

Once the deep learning craze began, though, this route for activity recognition was

quickly abandoned. HMMs were replaced with temporal-based deep learning methods

such as long-short term memory (LSTM) networks [120]. The output layers of these

deep neural networks use the high-level action/activity labels as training output with

the corresponding temporal layers as training inputs [213].
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3.2.2 Latent Semantic Analysis

Latent semantic analysis (LSA) is a generative modeling approach that assumes

that the observations in a dataset (especially for a single entry) are similar in semantic

meaning and are thus relevant to each other. However, even though each observation

has its own set of meanings, it is unknown which ones explain its relation to the other

observations. That is, there is a set of hidden definitions that describes what overall

kinds of information are observable, and identifying these definitions should explain

the phenomena captured in the dataset.

From a graphical modeling perspective, we represent these latent semantics as un-

observed nodes containing distributions over the set of observations. As a generative

model, the ‘story’ explaining their presence in the dataset’s creation involves sampling

some distribution over distributions (such as the Dirichlet2), and then those distribu-

tions are sampled to identify the actual observations. Learning the hyperparameters

that shape these distributions creates clusters of observations, and the modes of each

cluster represent its semantic interpretation.

The simplest example of LSA is actually simpler than the HMM in design because

it assumes independence over time. Thus the latent variable is the underlying state,

which is sampled from some unknown distribution that does not does not change with

respect to information about any former state. However, this latent variable’s value

does have some correlation to the observed value.

Definition 37. A bag of words (BOW) model is a probabilistic model with random

variables X0, X1, . . . , Xn ∈ V and O1, O2, . . . , On ∈ Ω where all X· are sampled from

some global distribution D independently of each other and each Oi’s value only de-

2The Dirichlet is a random probability mass function that captures the variance of distributions
identified from observed events that actually occur based on some true distribution [84]. For example,
flipping a fair coin should produce heads half the time when observed over many trials, but getting
heads forty-nine percent of the time would also not be too surprising. However, getting heads ten
percent of the time is unlikely.
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Figure 3.2. A graphical model of a BOW with global distribution D. Shaded
nodes represent observed random variables and edges u → v contain a conditional
probability table P (v |u).

pends on the value of Xi. The O· random variables are all observed, but the X· random

variables are not observed. D is typically unobserved as well. See Figure 3.2 for a

graphical model representation.

One of the most well-known applications of LSA is topic modeling; the obser-

vations are words in a document and the latent semantic distributions are topics.

Because the modes of a distribution over related words are easily interpreted as their

shared definition, topics are easily defined by the learned clusters of words. The most

frequently used and tweaked topic model is Latent Dirichlet Allocation (LDA) that

accounts for the fact that a document can be described topically without needing

to know the order of the words [26]—this is an extension of the BOW model due to

adding additional steps before sampling each observation fromD. Its graphical model,

generative process, and mathematical representation are presented in Figure 3.3.

Of the well-known LSA methods, topic models such as LDA gained popularity

in activity recognition prior to the deep-learning fad, especially for applications that

use out-of-the-box statistical models [139, 51, 233, 50]. Activity recognition methods

that use vanilla LDA have to assume that in a similar manner to topic modeling,

describing what generally happens during a sequence of sensor readings does not

rely on the ordering. Then the clusters of sensor readings can be interpreted by the

modes, if interpretation is desired at all. Huŷnh et al. [128] initially used LDA with
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Figure 3.3. LDA’s generative process, graphical model, and mathematical represen-
tation.

on-body sensors to recognize daily routine activities. They used the learned model

to develop a system that can automatically annotate future recorded data from the

sensors. Their original work provided interpretive evidence for recognizing clusters of

wearable sensor data as daily activities by aligning the learned topic clusters with an

annotated timeline of activities, but few other applications have had access to such

annotations.

Wang and Mori [283] trained a LDA model using annotated video sequences to

recognize predefined actions—they named the approach Semilatent Dirichlet Allo-

cation because it was not completely unsupervised like traditional LSA methods.

Zhang and Parker [296] used LDA without any modifications to cluster readings from

a RGB-D sensor attached to a robot. While Wang and Mori simply used the pixe-

lated image data with flow fields, Zhang and Parker compressed the three-dimensional

point-cloud data using local spatio-temporal features into vectors of four-dimensional

cuboids. However, both approaches map their representations to codebooks with a

finite set of symbols; unsupervised clustering methods derive the mapping from the

sensor data to a symbol in the codebook. This limits future observations because they
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must also map to a predefined symbol in this codebook. Novel, unique inputs will

consequently be misassigned to an input symbol. Freedman (the author of this dis-

sertation), Jung, and Zilberstein previously suggested a third representation to avoid

this limitation by simply discretizing the joint-angles describing the observed agent’s

posture [79, 80]. The joint-angles are independent of scale, identical for the same

postures between different body shapes, and exist within a reasonably-sized space

based on the granularity parameter (so a codebook is not necessary). We investigate

how discretization granularity affects the size of the library of available input symbols

and the impact on the performance of LDA in Section 4.2.1.

Once the deep learning craze began, though, this route for activity recognition

was quickly abandoned just like HMMs. LDA was replaced with unsupervised deep

learning methods such as deep autoencoders [160]. Some compressed middle layers

within these deep neural networks are used as the feature inputs for classification

rather than the latent variable’s values [17].

3.2.3 Activity Recognition in the Wild

Unlike the aforementioned methods that assume a still camera and/or scripted

data collection method, Gori et al. [103] placed a RGB-D sensor on a mobile robot

and tried to train and recognize activities in the wild. This phrase is becoming

more popular to refer to research that has a real-time component in the real world

rather than a controlled laboratory setting. In this case, the robot wandered through

hallways inside an academic institutional building and recorded people without any

prior arrangement. Thus the humans in the data act naturally (with respect to

being watched by a passing robot) without a script to dictate what to do during the

recording session.

Despite the variety of possibilities that one would expect, the authors manually

annotated the data and found nine distinct activities worth classifying. The dataset,
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which is now available to the public, ignores a few anomalous activities and contains

an additional tenth class for false sensor readings. For their own activity recognition

research, Gori et al. used the RGB-D data and robot’s position data (both via open

odometry and closed map positioning). Since multiple representations of RGB-D

have been proposed, they compared the recognition results for five representations.

New challenges they encountered from their ‘in the wild’ recording were identifying

observed humans’ velocities and distances, which were changing on both the observed

humans’ behalf and the moving camera’s. The change was identified by applying the

robot’s kinematic rotation matrix (how its heading and position changed in the world)

between two time frames to the human’s position in the first of these frames; this

gives the human’s change in position and adjusting it for the elapsed time yields their

velocity.

To reduce the dimensionality of all the data, they applied the standard codebook

process using k-means clustering on the set of features to assign the vast range of

inputs to one of k values. Unlike other work described in Section 3.2.2, each feature

uses a separate codebook such that the actual feature vector is a concatenation of

each feature’s cluster number. Each video’s feature vector input and labeled activity

output trained a non-linear support vector machine with a χ2 kernel. Of the repre-

sentations, the depth image without any joint position information provided the best

results. The authors hypothesize that this is a result of the moving sensor since cur-

rent methods for identifying joints within depth images assume a still camera. They

also found that the inclusion of the additional non-image features (robot’s position,

human velocity, and human distance from robot) further improves the recognition

accuracy in the test set.
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3.2.4 Activity Recognition for Assistive Technologies

The domain of assistive technologies has greatly benefited from PAIR research

since observing users with special needs allows the system to autonomously act with

respect to the recognized prediction and provide help. Previously, such technologies

were nothing more than tools that were engineered to merely reduce the overload for

users with special needs while still requiring them to do all the work; this can still

impose additional stress and difficulty for daily life activities.

Chu et al. [53] created a system that monitors the daily living activities for users

with cognitive disabilities who might forget to continue a task that is in-progress or

even forget to start the task. Given a schedule of tasks with executable time ranges

(start intervals, end intervals, and duration spectrum), a temporal planner is used to

construct a schedule with some slack. Then the system must act to ensure that the

monitored user maintains this schedule.

Because the user is only measured by a collection of sensors including infrared

(IR), radio-frequency identifiers (RFID) placed on objects, and appliance activation

sensors, the actual state of the user and their progress is estimated over an entire set

of world states. The estimation is a belief state, which is a distribution over states,

in a POMDP (see Section 2.4). Thus the set of recognizable activities includes those

on the schedule given the assumed world state from the collection of sensor data.

Because a POMDP is computationally complex, Chu et al. infer the activity using

the traditional HMM over each sensor input’s stream of data. It is usually able to take

advantage of the schedule’s enforced structure on the POMDP to prune the space of

hypotheses, easily identifying the activity. This acts as a higher layer in a hierarchy

to narrow the focus of the POMDP for localized policies that decide which actions

to take in response to the user’s progress. When the level of uncertainty in the belief

state is great enough that the system’s next action (reminding the user which task

to perform, telling the user to stop a particular task, waiting, etc.) would change, it
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may query the user for their current activity to make a more precise approximation.

However, frequent querying introduces unnecessary impingement on the user’s life

and the cognitive load might provide additional stress. Thus activity recognition is

preferred over frequent questioning.

To measure when the level of uncertainty was too great in belief state b, the first

step simply normalizes the entropy of the distribution H (b) and compares it to a

small threshold δ. If the threshold is surpassed, then the entropy is considered great

enough that assuming the state in b with the greatest probability mass is the true

state is too risky. Hence the second step determines whether this ambiguity will result

in a change of actions that is too important to miss. If the missed opportunity to

act is not so vital, then waiting is preferred to avoid the consequences of querying

the user as well as take advantage of updated sensor data at a later time step. The

expected value for taking action a that is correct for only one of two ambiguous states

at current time t is

V (b, a, t) ≈ b (s1) ·Q (s1, a, t) + b (s2) · (ErrorPenalty +Q (s2,WAIT, t))

where Q : S × A → R is a function that approximates the expected reward EπM [s]

when policy π enforces performing action a in state s (in this case, t is considered

part of s). This is computed for the inquiry action, the wait action, and each possible

action the POMDP can take at b. The action a with the greatest expected value

V (b, a, t) is the action the system will take.

3.3 Intent and Goal Recognition

Intent Recognition has the most vague definition among the types of recognition

because it studies the ‘driving motivation’ behind what is observed. In most cases,

the underlying motivation for doing something is characterized as the goal or some
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subset of possible goal conditions. Logic-based representations define H ⊆ 2F where

F is a set of features that can describe states in S and task hierarchies define H ⊆ Tn

(or H = Σ when using a CCG representation) as a set of high-level tasks (much

like plan recognition). This is the reason that the term goal recognition is also used

by some PAIR researchers. However, goals themselves can be selected for various

reasons. We are not aware of any research on recognition at the metareasoning level,

but Callaway et al. trace users’ decision making processes to study their planning

and information-gathering strategies [40]. Without approaching metareasoning for

decision making, it is viable that some actions are performed for the sake of facilitating

another action that is crucial to Red’s plan. This resembles taking actions to repair

missing causal links that are required to perform upcoming actions in a plan [174]. If

these reparation actions are not useful for the goal’s completion, though, then there

might be a misinterpreted motive. In this case, intent recognition can be viewed as a

prediction problem instead where H ⊆ A or H ⊆ S.

Though there is potential overlap with plan recognition’s formulation, the funda-

mental question is different: “why is the agent doing this?” (both ‘overall’ and ‘at

the moment’). The variation of RaP cited at the end of Section 3.1.3 modified H

from sets of goal conditions to sets of plans, but others made variations for intent

recognition with a focus on only identifying the goal conditions rather than the plan

or policy explanations [228, 69, 217]. In all the intent recognition approaches men-

tioned so far, each observation o ∈ O is again an executable action such that o ∈ A.

However, prediction based on agents’ trajectories in continuous space [277, 281] is

usually observed as either spatial coordinates such as o ∈ R2 or kinematic configura-

tion spaces consisting of rotations and translations of joints [186]. Likewise, Sohrabi

et al. motivate observations from sensing fluents in the environment o ⊆ F [252].

As with plan recognition and activity recognition, KB will contain the underlying

information to construct any models that are used in the intent recognition algorithm.
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Though the specific implementations are different depending on representation choice,

they are typically probabilistic models, plan libraries, and/or plan domains.

3.3.1 Prediction of Upcoming Actions and Underlying Motives

One of the greater challenges in prediction tasks is the level of specificity because,

unlike recognition tasks that usually have a limited set of plans, activities/actions,

or goal conditions to select, the number of intentions is nearly uncountable. Reasons

can span from simple recognition explanations to complex superstitious rules and

even lack of motivation (‘just because’). One reason for this variety is that intentions

are person-specific [173] rather than fact-based. Lesh approached this variation with

the introduction of the Adapt algorithm, which modifies the results of generic goal

recognition algorithms based on each user’s recent behavior and an allowable set of

adaptations for the given algorithm (thus the adaptations are specific and vary per

algorithm).

In order to evaluate the goal recognition algorithm’s behavior and determine which

adaptations to make, Lesh proposes a formalized definition for goal recognition:

Definition 38. A goal recognizer is a function R : acts∗ → G∪{nil} where acts is the

set of observable actions (see Section 3.1.1), ∗ is the Kleene closure, and G is the set

of goals (having a variety of forms rather than being limited to just states). An output

of nil indicates that the goal recognizer failed to determine a goal from the current

observation sequence input. Lesh emphasizes that R cannot return a distribution over

G.

Lesh also introduces two measurements that involve a set of persons Q and two

fluents of the form exec (q ∈ Q,O ∈ acts∗) = “person q is observed performing action

sequence O” and goal (q ∈ Q, g ∈ G) = “person q has goal g”. To supply context

with respect to the notations that we use in this dissertation, the observing agent

Ring uses recognizer R to observe agent Red ∈ Q:
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Definition 39. The coverage metric determines how many observable action se-

quences R can use to successfully identify the intents of person q ∈ Q:

COV (R, q) =
∑

s∈{O∈acts∗|R(O)6=nil }

P (exec (q, s))

Definition 40. The accuracy metric identifies how many of the action sequences in

the coverage metric return instances that are correct for the given individual q ∈ Q:

ACC (R, q) =
∑

s∈acts∗

P (goal (q, R (s)) |exec (q, s)) · P (exec (q, s))

COV (R, q)

if the coverage is non-0 (otherwise the accuracy is 0). The fraction within the summa-

tion is derived from Bayes’s Rule, which further explains coverage as a normalizing

constant for the probability that a person executes a sequence of actions given their

intended goal P (exec (q, s) |goal (q, R (s))). This addresses the fact that coverage only

cares about the recognizer returning a goal regardless of its correctness.

With these measurements, a theoretical hierarchy of adapted recognizers exists

for each individual. However, the hierarchy introduces a trade-off of more accuracy

for less coverage so that a recursive traversal of the hierarchy is recommended to get

the most predictions at their greatest accuracy. For a domain-specific score function

S (COV (R, q) , ACC (R, q)) ∈ R and q’s user history, we can identify the best trade-

off between accuracy and coverage to adapt R for a specific person q in a given domain.

The Adapt algorithm does this optimization using hill climbing where configurations

of R add/remove up to one adaptation per evaluation. q’s history would have to

be complete (all observable action sequences acts∗) in order to be exact, but this is

infinite. Despite its drawback of having high computational complexity for all the

user history simulations, Adapt is both anytime and parallelizable so that a solution

does not take too long to obtain.
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3.3.2 Recognition as Planning

Detailed previously in Section 3.1.3, we revisit the overall class of RaP algorithms

because the set of hypotheses can change the focus between plan recognition and

goal recognition. The original derivation, which assigns H = G ⊆ 2F , is the primary

focus for many PAIR researchers at the moment. Besides the probabilistic version we

derived above that returns a distribution over H, others have focused on the original

version [226] that only returns a subset of H as the recognized goals. The primary

motivation for many of these variations is to speed-up the RaP algorithm’s runtime,

which requires 2 |G| calls to an off-the-shelf planner.

Shortly after RaP algorithms were introduced, Masters and Sardina investigated

its application to the popular GridWorld domain [189]. Because an agent acting in

GridWorld can move freely to any adjacent space without an obstacle, they realized

that there are almost always multiple plans that optimally solve the goal. With

enough observations, they further argue that at least one of these optimal plans should

not match the observation sequence and the specific plan does not matter for intent

recognition (the calculations above only use the plans’ costs). Therefore, they solved

the original planning problem for each goal G ∈ G as a precomputation, assuming it to

be the respective solution to PG¬O. This cut the number of off-the-shelf planner calls

in half. A second speed-up technique that Masters and Sardina performed applies a

stronger assumption that the observation sequence was complete. Then they could

avoid the overhead of generating the augmented fluent and action sets and instead

solve the original planning problem from the current state as the new initial state,

adding its cost to the cost of the observation sequence, to solve PGO .

As both a response and follow-up to this research of RaP on the GridWorld

domain, Kaminka, Vered, and Agmon focused on motion planning over continuous

Cartesian surfaces [144]. To improve the runtime of RaP, Vered and Kaminka previ-

ously found two heuristics that prune the set of hypothesized goals G over time [281].
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The first one compares the distance between the most recently observed state/action

and the goals. If this distance surpasses a threshold, then they assume that it is un-

likely that the agent is actively pursuing that goal; removing each unlikely goal from

the set of hypotheses reduced the number of off-the-shelf planner calls. The second

heuristic evaluates whether the newest observation will impact the ranking of the

hypotheses, skipping computational effort that will return the same general results as

before and reducing the number of planner calls that iteration to 0.

E-Mart́ın, R-Moreno, and Smith later investigated a more domain-agnostic ap-

proach that took advantage of the planning graph representation of classical planning

problems [68]. This representation allowed them to quickly compute interaction es-

timates, relative weights for various tuples of fluents being true simultaneously, via

propagation over the graph with constraints defined via the observation sequence. Due

to the alternative representation and lack of solving any problems with off-the-shelf

planners, their approach is one of the first re-imaginings of RaP. Their results show

that, though faster overall, there were some cases where their approach was slower

or incorrect. Due to the differences in implementation, further research is needed to

better understand what causes these variations in runtime and performance.

The most recent re-imagining of RaP returns closer to its roots[217]. The key

observation Pereira, Oren, and Meneguzzi provide has some relation to Vered and

Kaminka’s second heuristic. Specifically, they take advantage of the fact that not

all observations drastically impact the most-likely hypothesis unless they indicate

a deviation from the set of more optimal solutions to some goal. These particular

deviation moments are strongly correlated with landmarks, (features of) states that

must hold at some point in order to solve the problem no matter which plan the

agent uses. Using this assumption, they created a special data structure that identifies

landmarks and their partial ordering for each hypothesized goal. There are off-the-

shelf planners that can identify these landmarks, which allow their version of RaP
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to precompute the data structures and then monitor them—hypothesis ranking is

approximated based on a heuristic for how many landmarks the observation sequence

satisfies in each data structure.

3.3.3 Goal Recognition Design

Rather than develop an algorithm that improves intent recognition, Keren et

al. decided to design environments in ways that reduce the challenge for current

intent recognition algorithms [156]. For a typical recognition problem, KB is constant

and embeds the state space within which the agent acts. Goal recognition design

manipulates this state space to find a KB that removes ambiguity between solving

different tasks. This is measured with respect to H:

Definition 41. A sequence s1, s2, . . . , sn is a prefix of sequence t1, t2, . . . , tm≥n if and

only if si = ti for all i ∈ {1, 2, . . . , n}.

Definition 42. Let D be an automated planning domain, I be an initial state, and

G be a set of goal conditions; then we can define automated planning problems Pi =

(D, I, Gi ∈ G) with their respective set of optimal plan solutions Π∗i . A sequence of

actions π is non-distinctive if there exists unique problems P1 and P2 (that is, G1 6=

G2) such that π is a prefix of both some optimal plan π∗1 ∈ Π∗1 and some other optimal

plan π∗2 ∈ Π∗2.

Definition 43. The worst case distinctiveness (WCD) is the greatest amount of

ambiguity possible between optimal plans for two different goals given an automated

planning domain D, initial state I, and set of goal conditions G. That is,

wcd (D, I,G) = max
π∈ΠI→GD

|π|

where ΠI→G
D is the set of all non-distinctive paths for D, I, and G.

84



Greater WCD measurements mean that it is possible for an agent to appear am-

biguous by executing a plan that is illegible for a long time between at least two

different goal conditions. This increases the difficulty of a recognition task because

the observing agent cannot confidently identify to which set of plans the observa-

tions match. On the other hand, lesser WCD measurements imply that there is little

overlap between each goal condition’s optimal plans and the environment enforces

legibility rather than legibility being an agent’s choice. WCD does assume that the

agent acts optimally, which is clearly an unrealistic assumption. This was accounted

for in an extension the following year [157]. Goal recognition design with respect to

stochastic action outcomes [284] uses similar definitions to those above with policies

instead of plans.

It is typically the case that the hypothesized goal conditions cannot be altered,

but the state space S and initial state I can. Though this is the end result that will

be created, goal recognition design’s reduction algorithm actually removes individual

grounded (substituting parameters to become very specific) actions from the set of

all actions A . After searching for the reduced set of actions A′ that yields an optimal

WCD, a designer can modify the environment to ensure that the preconditions for all

actions in A−A′ are always violated. It suffices to prevent entry into states in which

any a ∈ A−A′ is applicable, but modifying S can make the enforcement more subtle.

For example, in a navigation task where there are doors at the end of the left and right

sides of a hallway, actions walking down the center of the hallway should be removed

to reduce ambiguity. A designer then prevents agents from walking down the center

of this hallway by forcing a forked path with a crowd-control barrier (connectable

poles found at the movies, airport security, and other places where people line up and

form long queues).
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3.4 Applications of Recognition in Videogames

Plan recognition with probabilistic bounds has been applied to StarCraft to iden-

tify HTN-represented player strategies [266]. Poo Hernandez, Bulitko, and Spetch

[224] recognized themes from player choices in a choose-your-own adventure story

to guide the events so that their presentation better connected emotionally with the

player. A MDP whose actions represent the player’s choices tracked these emotions.

Likewise, predicting a player’s intent of where to hide in a first-person shooter game

allows computer-controlled agents to better decide where to go [267]. Using stacked

denoising autoencoders rather than traditional clustering, Min et al. [192] identified

general tasks that players were performing in an open-ended educational game that

did not explicitly reveal the goals to the players. Underlying user goals in educational

simulators have also been recognized using another HTN-like representation called an

exploratory grammar [195]. However, more than single-player strategies can be iden-

tified. Hajibagheri et al. [110] studied logs from massively multiplayer on-line games

in order to study the formation and evolution of ad-hoc groups.

3.5 Concluding Remarks: A Unification of PAIR

In order to focus on what each type of recognition shares and how they complement

each other, we need a single context in which they all apply. As discussed throughout

this chapter, PAIR revolves around understanding other agents from their actions

(whether observed directly or through changes to the world). Thus we will consider

the generative planning context in which Red selects actions that are then performed

while Ring observes [83]:

1. We assume that Red generally uses some automated planning algorithm A to

solve its problems. We will also assume that Red has some degree of awareness so

that Red knows about the surrounding environment and can reasonably identify

the current state of the world.
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2. Suppose that Red now has a goal G that must be satisfied, either directly as-

signed by some agent or derived from some personal desire [231] or interactive

task [82].

3. Using the assumptions, Red is able to construct an automated planning problem

P using the current world state (or belief if there is partial observability) for I,

knowledge about the environment for D, and the given G.

4. Red now uses A to solve P . Depending on A, the plan or policy π can be a

sequence of actions, have contingencies, only map a subset of the state space,

be a task network, etc.; what matters most is that Red now has instructions for

how to act.

This process provides insight into two components of recognition problems: KB

and H. Specifically, the knowledge base is primarily built upon the assumptions about

Red and the hypotheses are derived from the possible ways that a goal can be assigned.

Because we do not know exactly what Red knows or is thinking (if we did, then

recognition would be a more trivial task), these are designed for Ring to use as models

for each observed agent. Interactive systems that combine recognition and planning

sometimes impose Ring’s own knowledge on those it observes [174, 176, 175, 82] such as

shared planning algorithms and/or plans, and others use unique models for Ring and

Red [90]. However, the thought process alone is not often sufficient for the recognition

problem because Ring needs to observe the actions itself. This progresses the process

above to Red’s execution of actions and how they affect the world state:

5. Without any form of intervention, only the ‘natural physics’ of the environment

apply as a closed system. We can represent this closed system as a Markov

chain (see Section 3.2.1) because it is usually not the case that every physics

calculation is accounted for. In a deterministic world where they are perfectly
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predictable, each row of the transition matrix is simply a vector of all 0’s except

for a single entry with value 1 for the guaranteed state transition.

6. When Red performs a particular action a ∈ A that manipulates the environment,

a’s effects will change the world state with respect to its own transition matrix.

As a generalized case, consider a corresponding Markov decision process’s state

transition function T that yields the distribution over states given a current

state and the action performed. Then we have a new Markov chain for the

environment while this action is being performed; this should also account for

the intervention of ‘natural physics’ alongside Red’s action. If the action is

deterministic alongside the world, then the transition matrix rows will again be

vectors of all 0’s and a single 1.

7. Observations are restricted by Ring’s available sensors. They might provide

information about some part of the current state such a subset of state features

F [252] (hardware sensor readings or environment descriptions), the action that

was performed [150] (a story or broadcast), or Red’s underlying thought process

[194, 90, 76] (querying the agent directly).

The observations about the other agents and/or the environment are thus depen-

dent on Ring’s sensing capabilities and the state of the world. This implies that the

sequence of observations O are constrained snapshots of the world state. Because the

state transitions with respect to one of many Markov chains, we can view a short-

term version of this context as a HMM. Red’s current action ar ∈ π determines which

transition matrix to apply to the latent states, and Ring extracts some information

from these states to get some oi, . . . , oi+j ∈ O. Then the action changes to ar+1 based

on what π says to do next, which also changes the transition matrix between the

latent states while Ring perceives oi+j+1, . . . , oi+j+k ∈ O. This continues until Red

satisfies G.
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Figure 3.4. A visualization of Red’s decision making and action execution processes.
Directed edges indicate a dependency between two components, but dependencies
are not necessarily probabilistic. The dashed boxes indicate the same variable under
two different names to bridge the HMMs: sk,nk = sk+1,1. Shaded nodes indicate
observations. The partially shaded action nodes a1, a2, . . . , ai are the executed actions
according to π, which might be observed depending on the observation inputs. Plan
recognition typically identifies π and intent recognition typically identifies G or some
ai+j where j ≥ 1. A, D, and I are not shaded nodes because they are assumed, rather
than observed.
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Figure 3.5. A focus on a single action execution HMM from Figure 3.4, broken down
into its steps. Activity recognition typically identifies a1 given o1,1, . . . , o1,n1 ∈ O.
These observations can range from raw signal data to discrete actions.
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Given a subsequence of O over the duration of a single action, activity recognition

with simple-action hypotheses H = A can be performed in a similar fashion to early

works in speech recognition using HMMs [87]. Specifically, O and KB provide enough

information to infer the sequence of states that generated the observations. This

sequence of states provides information about the transition matrix that defines the

Markov chain, and the transition matrix is more likely associated with certain actions

in A. Likewise, given a sequence of these performed actions either directly observed

or obtained via lower-level activity recognition, we have a new observation sequence

where each o ∈ O′ also satisfies o ∈ A. Then higher-level activity recognition with

complex-action or macroaction hypotheses can be performed based on the transition

function between inferred states in which the observed actions are applicable.

When there are no further abstractions over the actions, or if there is a task

hierarchy in KB, the action sequence serves as observations O′′ for plan recognition.

This is because O′′ is effectively a subsequence of π, which Red is using to solve G. A

is assumed to be included in KB, and Ring had some degree of knowledge about the

world state when it began observing so that I ∈ KB as well. Then we only need to

define H based on the environment’s context and possible plans.

If we instead define H to be sets of possible goal conditions (ideally including

G), then we are performing intent recognition to identify the motives behind why

Red computed π in the first place. If we do not have enough observations for such

an all-encompassing recognition problem, then we can also try to predict upcoming

actions in π that come after the last action in O′′ using intent recognition.

From this perspective of reverse-engineering the plan generation and execution

steps, all the types of recognition in PAIR rely on each other in order to completely

understand the observed situation. An illustration of these interdependencies with

respect to the HMM, higher-order latent variables, and step-by-step procedure are

shown in Figures 3.4 and 3.5.
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CHAPTER 4

INTEGRATION OF ACTIVITY RECOGNITION AND
APPROXIMATE PLAN RECOGNITION

Think of it like a flipbook; so each page’s picture is a word. If people
can look at a bunch of words and say, “that’s their common topic,” then
people can probably look at a bunch of pictures from an animation reel
and say the same thing.

— Richard (Rick) G. Freedman,
justifying the rationale behind his Masters research

Section 3.2.2 introduced the use of LSA for activity recognition, but this is limited

to shorter sequences of sensor readings that represent a single action. However, just as

extending HMMs into a hierarchy also extends their recognition of single actions to full

tasks (explained in Section 3.2.1), we hypothesize that LSA methods whose models

contain a hierarchy can recognize more than single actions. Many LSA approaches

specifically use topic models, which apply a bag-of-words (BOW) assumption that

justify applying BOW models (see Definition 37):

Definition 44. The bag-of-words assumption states that each input (word, sensor

reading, etc.) is sampled independently of the others. That is, for all i ∈ N and

j ∈ N \ i, P (Xi = x |Xj ) = P (Xi = x).

We consider the following reasons why a BOW assumption applies to observation

sequences based on observed agent Red’s plan execution:

• A plan π is described by its actions, but partial ordering allows some actions to

be performed interchangeably. Thus two executions of the same plan might have

distinct action sequences, but the frequency counts of each action’s execution
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are the same. Viewing the frequencies as a distribution over the set of actions

A, these distinct executions of the same plan appear identical.

• An agent is rarely required to execute its plan perfectly, and the environment can

introduce distractions that might take the agent’s focus away from performing

π. These diversions are small anomalies that do not affect the plan itself,

and their independence from the actual plan’s actions enforces this notion. The

frequency counts of such actions should be small enough that the corresponding

distribution over A is unaffected.

Based on the above justification, this chapter explores how to employ topic mod-

els for activity recognition. The approach introduces a convenient side effect that

implies that we can perform approximate plan recognition simultaneously with the

activity recognition algorithm, but its potential still remains to be studied. However,

many challenges exist for the activity recognition aspect alone, including sensor rep-

resentations and a challenge to the BOW assumption—we will introduce them with

deeper investigations and theoretical discussion. Even with the recent transition of

the activity recognition field towards deep-learning approaches, these challenges still

persist because they are often analogues to non-deep machine learning models that

replace some components with deep neural networks.

4.1 Topic Model Approach and Analogy to Recognition

Of the probabilistic topic models available in the literature, we use latent Dirichlet

allocation (LDA) [26], which is illustrated in Figure 3.3. A popular unsupervised

machine learning model at the time this research was conducted, LDA’s corresponding

generative process yields a set of D documents from a set of T topics:
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• Each topic is a distribution ~φ = {φ1, . . . , φT} over the set of all word tokens

in a V -token vocabulary. Thus for some topic t ∈ {1, 2, . . . , T}, φt (v) =

P (word = v |topic = t) and
∑V

v=1 φt (v) = 1.

• Each document d contains Nd tokens, written as a text sequence ~wd =

[wd,1, wd,2, . . . , wd,Nd ]. As each word has some semantic meaning within d, a

hidden transcription of the text is the sequence of topics pertaining to each

word ~zd = [zd,1, zd,2, . . . , zd,Nd ]. All the documents are described topically (“the

document is about...”) as a distribution ~θ = {θ1, . . . , θD} over T . Thus θd (t) =

P (topic of word = t |document = d) and
∑T

t=1 θd (t) = 1.

• Entries of ~φ and ~θ are drawn from a Dirichlet distribution with a hyperparameter

in H = {α~m, β~n}. Each hyperparameter is a product of a scalar pseudocount

α, β ∈ R≥0 and vector prior mean ~m ∈ SD, ~n ∈ SV where Sk is the k-dimensional

simplex [260].

As an analogy, we view a plan execution as a single document, an action in the

plan as a topic, and a single sensor reading as a word token. Then a plan execution

appears to be an observed sequence of sensor readings, but is actually composed

from a distribution over actions. Each action is consequently a distribution over

sensor readings, which introduces a hierarchy of distributions that describe the plan

execution in a manner similar to Section 3.5’s unification of PAIR approaches.

Formally, agent Ring’s sensor observes Red executing various plans

π1, π2, . . . , πD, receiving data such that only the low-level signal tokens

~w = {[w1,1, . . . , w1,N1 ] , [w2,1, . . . , w2,N2 ] , . . . , [wD,1, wD,2, . . . , wD,ND ]}

are recorded. Processing this sequence of signal data is like reading words in text

documents. We then need to infer the latent activity variables per recorded token ~z
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that will serve as our activity recognition system. Inferring ~z allows us to approximate

~θ as ratios of frequencies, which serves as an approximation of the executed plans—

we do not have the order of actions, but we can still explain the plan execution as a

distribution over actions.

For training, we use collapsed Gibbs sampling [106] to assign values to ~z. By

the conjugate prior property of the Dirichlet distribution, we can integrate-out the

parameters ~φ and ~θ to approximate the sampling likelihood

P
(
zi
∣∣~z\i, ~w,H ) ∝ N

\i
zi (wi) + βnwi∑V
v=1 N

\i
zi (v) + β

· N
\i
d (zi) + αmzi∑T
t=1N

\i
d (t) + α

= fφ · fθ (4.1)

where N
\i
t : {1, . . . , V } → Z≥0 is the number of times signal token v is assigned action

t excluding the token at the sampled index i

N
\i
t (v) =

D∑
d=1

Nd∑
j=1

1 (index (d, j) 6= i ∧ wd,j = v ∧ zd,j = t)

and N
\i
d : {1, . . . , T} → Z≥0 is the number of times a signal token in plan execution

d is assigned action t excluding the token at the sampled index i

N
\i
d (t) =

Nd∑
j=1

1 (index (d, j) 6= i ∧ zd,j = t) .

In these counting functions, 1 is the indicator function. As
(∑T

t=1 N
\i
d (t) + α

)
is

a constant value Nd − 1 + α with respect to the sampled variable zi, it only serves

as a normalizing factor of the sampling likelihood and can thus be excluded. Then,

to use LDA as an integrated activity recognition and approximate plan recognition

procedure, we similarly derive the predictive probability of new observation sequences

~w′ =
{[
wD+1,1, . . . , wD+1,ND+1

]
, . . . ,

[
wD+D′,1, . . . , wD+D′,ND+D′

]}
given the training

data and new observations up to the current one:
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P (z′i |~z, ~z′<i, ~w, ~w′<i, H ) ∝ f+
φ · f

+
θ =

N ′ <iz′i
(w′i) +Nz′i

(w′i) + βnw′i∑V
v=1

(
N ′ <iz′i

(v) +Nz′i
(v)
)

+ β
·
N ′ <iD+d (z′i) + αmz′i∑T
t=1N

′ <i
D+d (t) + α

where we first perform Gibbs sampling on the previous new observations’ action

assignments ~z ′<i as done during training. Although the previous activity assignments

were already classified and are likely being used by the decision making components

of the proposed PReTCIL framework (introduced in Section 1.4), we still resample

them to refine our likelihoods. This will improve the recognition for future actions

and get the most likely distribution to approximate each θD+d for approximate plan

recognition.

4.2 Domain-Independent Representations for Signal Data

There are many different ways to represent signal data from sensors, the input for

many activity recognition algorithms. The choice of representation critically affects

the trade-off between the value of information and complexity of recognition algo-

rithms. For example, a text prediction system can learn that its user types ‘you’

after the words ‘where are’ when the GPS is at latitude y and longitude x, clock

reads h hours and m minutes, and accelerometer is tilted (θ, φ, ρ) degrees. This rule

is clearly too specific; not all the information is necessary to learn the higher-level

pattern. However, consider instead a factory domain where a robot needs to collect

heavy boxes from a coworker and transport them across the facility. Then it is im-

portant to know that the coworker stands in a specific posture, d units away from

a delivery truck, with boxes located directly in front of them. This level of clarity

further applies to what information the system can portray to users as explanations
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or interpretations because people may not be aware of the reason for the system’s

decisions during their interaction.

For example, RGB-D sensors provide not just a camera image, but also an over-

laid infra-red scan to obtain three-dimensional point clouds of their surroundings.

Due to their present availability, affordability, and growing popularity [134, 276], we

focus on these particular sensors. Although standard camera images can be used,

problems with pixelated raster images such as lack of scalability and indiscriminate

boundaries about objects have limited the utility of computer vision methods such as

flow field analysis [283] and color blotches for object segmentation [254]. Combining

such computer vision techniques with an infra-red scan of distances from the sensor

makes it possible to actually detect distinct objects. A panoptic dome consisting of

a variety of RGB-D sensors and traditional cameras even enables the distinction to

be made from almost any perspective [137].

In particular, two-dimensional camera images can be projected into three dimen-

sions when given pixel depths and/or multi-ocular setups, which aid segmentation

and associating individual components’ directions of motion [117, 295]. Zhang and

Parker detect regions with the largest change between consecutive recordings within

the point cloud for their compressed vector format [296]. Kelley et al. use point

cloud representations to actually identify objects with which humans interact in their

fixed environment [152]. Others used point clouds to identify sets of objects with

pre-registered properties as related to human activities [135, 164]. These works also

use the fact that RGB-D sensors view the human as a collection of body-part objects

in the point cloud. Therefore, an individual’s body can now be denoted through

the sensor as a collection of positions and orientations of joints relative to a central

world frame [245]. This stick figure rendering is also referred to as a joint-angle rep-

resentation. Faria et al. recently used the joint-angle representation to extract 51

features that they found useful for an ensemble of classifiers with dynamically updat-
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ing weights [71]. It is possible to also identify human posture data using a variety of

other sensors, including traditional motion capture [121] and IMU sensors attached

to the body [140], but they are neither as mainstream nor as portable. Depending on

the trends of wearable fashions in the future, though, these downsides might become

less applicable [154].

We believe that this bare-bones joint-angle representation easily generalizes across

multiple domains. That is, posture distributions for a given set of activities will

remain consistent across typical domains, but other features such as specific objects

might vary by location and time. On the other hand, relying on the joint-angles

that construct a raw posture may not help to realize all possible activities. A few

representations worth considering, some applying to more than just RGB-D sensor

data, thus include:

• Joint-Angles Joint-Angles are the rawest format for the posture represen-

tation. Often provided as a triplet of Euler angles per joint (θj, φj, ψj), but

sometimes in quaternions to avoid gimbal lock (an issue involving ambiguity

when visualizing the angle), these values derive the matrix rotation transfor-

mations that render the stick figure. Translations come from the link lengths,

which vary per individual, but the rotations are generally independent of the

individual. This makes them ideal for generalizing the learned activity models

to other people who might interact with the robot, and they allow training data

to come from multiple subjects. It is also the reason that the relative distance

or position of points in Cartesian space is less ideal for representing the stick

figure instead. Although these generalizations are advantageous, more steps are

required to extrapolate joint-angles from the sensor’s raw point data—this can

be an issue if the recognition system performs under real-time constraints.

• Derivatives Just as the rawest format of a posture is the joint-angles, the

rawest format between consecutive postures is the change in joint-angles. Mo-
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tion is a continuous process, which has been used to find keyframes in motion

capture videos and present them in comic book form with ‘whoosh’ lines to sum-

marize the motions [52]. This allows embedding the temporal aspect within the

representation to a very small extent, but still keep the dimensionality much

smaller than through the use of a sliding window. By computing approximations

of the derivative as the difference between joint-angles in consecutive frames,

each derivative is still easy to obtain and then use right away (assuming the

joint-angles are already computed). However, without a frame of reference such

as a starting joint-angle configuration, these derivatives can be very vague and

lead to ambiguity during clustering. For example, raising the arm above the

head from in front will be identical in this representation to raising the arm to

the front from the side.

• Features We discuss the extraction of features mathematically from a single

human posture in more detail in Section 4.2.2. In short, the posture can be

broken down into labeled features such as whether each arm is bent, the back

is straight, a leg is raised, etc. If such information is already available, then

it may be worth clustering feature vectors directly so that one can inspect the

shared features between the modes of a cluster. Furthermore, because many

of the features have finite possibilities (e.g. the arm is above the head, at the

side, or in front of the body), it is possible to take advantage of the Bayesian

Case Model that broke its inputs/observations down in a similar way [158]. A

prototype would be a posture with specific parts of the body in fixed relative

positions (joint-angle) or simple motions (derivative) while the rest the body

remains flexible. This is different from unsupervised feature learning [177],

which employs unsupervised learning techniques on a dataset to get clusters as

lower-dimensional features. These clusters are used to aid in supervised learning

tasks; thus unlabeled features are obtained for classification with labeled classes.
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Instead, we propose extracting lower-dimensional labeled features from data to

use for classification without labeled classes.

• Parametric In contrast to the above representations that view each frame as a

single observable input, it is possible to break the information down into smaller

pieces. For example, each joint’s joint-angle or derivative can be viewed as an

individual triplet (versus concatenating all the joints’ together) and each fea-

ture can also be inspected independently. Although such perspectives cannot

be handled by traditional topic models that use single word inputs, we can ad-

just the generative models with new ‘stories’ that better explain the generation

of human postures for various activities. One such model that could be of use

for this is Parameterized LDA [80], which runs LDA with a single latent topic

across multiple vocabularies simultaneously. In this case, each vocabulary may

seem identical such as the interval triplet [−π, π]3 for a single joint-angle, but

it would allow the separate distributions to be more informative than a single

joint distribution about how each joint is involved in an activity’s description.

A uniform distribution over this space would imply that the joint has no sig-

nificance because its high entropy is not discerning, but a multi-modal peak

would imply that some angles or derivatives for this joint are more commonly

associated with the clustered activity. Section 4.3 provides additional details

about Parameterized LDA.

• Multimodal The increase in amount and types of sensors has also led to a

boom in multimodal learning. This allows synergy because one sensor may

identify things that can complement the information missing from another sen-

sor. Besides using additional sensors to provide more information than the

human’s posture, we consider combining multiple representations of the same

data. Because they all have different interpretations and a strong chance of
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recognizing different activities, we should consider taking advantage of multiple

perspectives at once to get the ‘complete picture’ at each frame. However, it is

also important to consider the dimensionality of the data because the space of

inputs will grow drastically as more representations are used simultaneously.

4.2.1 Representing RBG-D Data with Joint-Angles

Related works that learn each activity’s distribution over frames of image-based

sensor data using methods such as topic models require a countable vocabulary with

some duplicates to avoid a nearly uniform distribution over observed poses. Wang

and Mori [283] and Zhang and Parker [296] created codebooks to accomplish this by

clustering the inputs in their training set and selecting each cluster’s center as a word

in their discretized vocabulary. However, codebooks are difficult to generalize because

inputs appearing exclusively in the test data are assumed to resemble an input from

the training data rather than be considered new. Hence, it is hard to accommodate

new user sensor inputs after training these recognition systems. We instead propose a

discretization of the joint-angle values so that novel postures are not subject to being

“clustered away” when they are not similar to anything that was observed during

training [79].

We discretize the space [−π, π] for each angle with respect to a granularity param-

eter γ ∈ N. We map each angle ϕ to integer 0 ≤ i < γ such that (i / γ) ·2π ≤ ϕ+π <

((i+ 1) / γ) · 2π. This reduces the vocabulary to {0, 1, . . . , γ − 1}3|J | where J is the

set of all joints, which is still large in size for small γ. However, many of these poses

do not represent feasible body postures ; the limitations of each joint’s range of motion

will prevent observing joint-angles that include hyperextended limbs, for example.

This is analogous to the fact that many combinations of orthographic letters do not

form actual words used in a natural language.
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Figure 4.1. A plot of unique word tokens in a collection of forty recorded plan
executions at various granularities.

Figure 4.1 plots the number of unique word tokens generated from a small collec-

tion of plan execution recordings at various granularities. As expected, increasing the

granularity reduces the number of duplicate poses because each interval is smaller.

One interesting feature of the plot is the drastic difference between the number of

unique tokens based on the parity of the granularity. This phenomenon is explainable

through kinematics. When an even granularity is chosen, small joint movements near

the vertical axis ϕ ∈ [−ε, ε] will be assigned to one of two different groups: (γ / 2)

if ϕ ≥ 0 or (γ / 2) − 1 if ϕ < 0. On the other hand, an odd granularity will always

assign these movements to group ((γ − 1) / 2). Natural, small body movements and

oscillations about the vertical axis, such as an arm swaying slightly at the user’s side,

will then map between two groups rather than one when γ is even. This yields a

significantly larger number of distinct integer combinations compared to odd γ.

4.2.2 Interpretability of Representations

While the joint-angle representations discussed above for RGB-D sensor data are

easy to interpret for a single observation, it is typically more difficult for a person

to explain how a collection of them (such as the joint-angle-derived stick figures in

Figure 4.2) are related. For unsupervised learning methods in natural language pro-
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Figure 4.2. These most likely postures for some activity appear to share relations
for ‘sitting’ such as legs bent and perpendicular to the torso, but how do we know
this for certain?

cessing (NLP) such as the topic models, the learned topic distributions are typically

viewed as a collections of common words that are deemed relatable without any fur-

ther explanation. The domain expert who collected the data and/or ran the algorithm

interprets the learned distributions’ modes, and others can confirm the interpretations

via the normative semantic definitions found in natural languages. However, such

semantic definitions do not yet exist for many sensor data inputs.

The challenge with distributions that unsupervised PAIR algorithms generate is

that users cannot easily identify or agree on what was recognized. Hence a qual-

itative, feature-based representation for human interpretability is just as important

as a quantitative one for algorithmic use and evaluation. With a little effort, like

knowledge engineers developing a logic-based factored representation of a domain

for autonomous planning, we can derive qualitative features using the quantitative

information.

For example, an elbow joint might be considered bent if the angle between the

upper and lower arm links is in the interval [0, 3π/4] and straight if it is in the interval

(3π/4, π]. Given lengths for each link in the observed agent’s body, the joint-angle

measurements from the shoulder to the elbow, and the joint-angle measurements

from the elbow to the wrist, we can assume that the shoulder is at coordinate lo-

cation
−−−−−−→
shoulder = (0, 0, 0) and then compute the positions of the elbow

−−−→
elbow and

wrist
−−−→
wrist using homogeneous translation and rotation transformations. With these
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coordinates, the law of cosines allows us to find the angle between the upper and

lower arm:

cos(∠elbow) =
−
∣∣∣−−−−−−→shoulder −−−−→wrist

∣∣∣2 +
∣∣∣−−−→elbow −

−−−−−−→
shoulder

∣∣∣2 +
∣∣∣−−−→wrist−

−−−→
elbow

∣∣∣2
2 ·
∣∣∣−−−→elbow −

−−−−−−→
shoulder

∣∣∣ · ∣∣∣−−−→wrist−
−−−→
elbow

∣∣∣ .

This quantitative angle is now translatable into a qualitative feature for whether the

arm is bent [81]. Figure 4.3 illustrates such labels throughout a single posture. We

can use this approach to actually formulate sensor data directly into a factor-based

representation. A SAS+ state variable’s assignment would be based on the interval(s)

containing the computed quantities. Besides these exact assignments, there are two

ways that we can instead generate distributions over the values :

1. Instead of a single cut-off partitioning the intervals for each value assignment,

we can probabilistically interpolate within an interval about the cut-off. In

the example for a bent elbow, we could select some ε ∈ R>0 and then assign

probability mass P (elbow bent) = (3π/4 + ε− ∠elbow) /2ε when ∠elbow ∈

[3π/4− ε, 3π/4 + ε].

2. If we apply a granularity parameter γ to discretize a continuous interval of

values, then we can sample over the interval of continuous values to determine

a distribution over the features for each integer. The sampling would thus

approximate ratio

|{v ∈ Vγ (i) |∠elbowv ∈ [0, 3π/4]}|
|Vγ (i)|

where Vγ (i), the set of all signal values that map to integer i when discretized

with granularity γ, is sampled uniformly1.

1A non-uniform distribution will be more accurate if certain signal values are more common than
others, much like how many joint-angle postures are physically impossible.
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Figure 4.3. Some human-interpretable features for a posture.

A complete factor-based representation listing all the features of a single observa-

tion is similar to the feature vector Kim, Rudin, and Shah create for their Bayesian

Case Model [158]. To aid users interpreting collections of clustered items, their fea-

tures highlight one element from each cluster as the representative prototype and

emphasize the specific features that the prototype shares with the rest the cluster.

They also used this prototype as a heuristic to improve the quality of their learned

distributions when reclustering. Hayes and Shah [115] recently introduced another ex-

plainable activity recognition algorithm that uses features and temporal information

to produce simple sentences explaining what the algorithm is observing for classifica-

tion.

The Bayesian Case Model [158] mentioned above describes each cluster k using

a prototype pk ∈ Vk = {v ∈ {1, 2, . . . , V } |∃d, i. wd,i = v ∧ zd,i = k} and subspace

feature vector ωk ∈ {0, 1}|F | where F is the set of features. Specifically, pk is a repre-

sentative example of all the inputs in the cluster with respect to the subspace feature

vector, which indicates the important features {f ∈ F |ωk (f) = 1}. This model learns

the clusters, prototypes, and subspace feature vectors simultaneously using a gener-

ative approach that assumes that, for a given cluster k, all sensor inputs in Vk and

the current prototype should share the same assigned value for all the important

features’ variables. Values assigned to the variables of unimportant features (where

ωk (f) = 0) may be arbitrary. Then the Bayesian Case Model’s optimization criteria

is to minimize the Hamming distance of important features between the prototype and
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all inputs in the cluster

d (pk, v ∈ Vk) =
∑
f∈F

1 (pk (f) 6= v (f)) · ωk (f) .

For our feature-based representation, we can also derive interpretable features to

describe the learned distributions over signal tokens φk. From the activity recogni-

tion perspective, we want to identify the qualitative features that best describe the

majority of the sensor readings that each cluster, effectively an instance of samples

from the learned distribution, represents. We use the same set of features that de-

scribe each individual signal token. Our description measures the relevance of each

feature over all tokens with respect to their proportion of the cluster, preferring the

relevance of more common signal tokens. Then our description does not need to exist

in the training data like a prototype, instead representing an ‘average’ signal token

that would hypothetically belong in the cluster. Our optimization criteria is to min-

imize the distance of relevance between the feature descriptor and all feature vectors

of tokens in the cluster, allowing slack for less common inputs

d (−→xk,−−→xv∈V ) =
∑
f∈F

|xk (f)− xv (f)| · φk (v)

where −→xk is the vector of values assigned to each feature for cluster k and −→xv is the

vector of values assigned to each feature for signal token v. Using the set of −→xv for all

v ∈ {1, 2, . . . , V }, we propose the following three approaches for computing −→xk; each

has its own advantages and disadvantages.

• Expected Value If we consider each −→xv as a feature vector, then each token v

is located at some point within the |F |-dimensional simplex S|F |. Because v also

has probability mass φk (v) within cluster k, we can describe the most relevant
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features of the most common inputs in k as the expected value of each feature

f ∈ F :

−→xk =
V∑
v=1

φk (v) · −→xv .

This method is most similar to explicit semantic analysis (ESA) [86] where a

sentence is described as the sum of the feature vectors for each of its words

(the features for a word are measurements of relation to a set of keywords).

This is similar to a distribution over the set of words that is proportional to

the sentence’s word frequencies. Although simple to compute, this approach

is näıve because it simply finds the weighted union of features. Thus a single

v with a large φk (v) would contribute all its features to the cluster’s feature

descriptor even if no other objects with considerable mass share some of them.

• Agglomerative Clustering As an alternative to the union of features found

in the expected value approach, we also introduce a method that includes

the intersection of features. Agglomerative clustering hierarchically builds a

partition of the set of signal tokens {1, 2, . . . , V } such that each subset’s sig-

nal tokens share like features, beginning with singleton subsets that contain

each token separately and then iteratively combining similar subsets until the

larger partitions are too distinct to combine. The likeness between two subsets

C1, C2 ⊆ {1, 2, . . . , V } with respect to cluster k is measured using

d (C1, C2) =

∣∣∣∣∣∑
v∈C1

φk (v)−
∑
v∈C2

φk (v)

∣∣∣∣∣ · ||−→xC1 −−→xC2||1

where −→xCi is the feature descriptor for subset Ci. d is not a metric because a dis-

tance of 0 does not guarantee that the two subsets are equal. However, it does

emphasize which pairs of subsets would have a smaller degree of change when

their individual feature descriptors are intersected. The comparison of probabil-

ity mass within φk is also used to avoid placing inputs with lesser representation
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of cluster k into the same partitions as inputs with greater representation of

cluster k, following our optimization criteria above.

In contrast to the union of feature vectors, which resembles an expected value,

we define the intersection of feature vectors for elements of combined subclusters

C1 and C2 as

−−→xC1,2 =
⊙

v∈C1∪C2

−→xv

where � is element-wise multiplication. This consequently describes combined

subcluster C1,2. Intersection might be too strong because it has the opposite

problem of the union: a single token with large probability density could lack

one feature (xv (f) ≈ 0) that is greatly relevant to the remaining sensor inputs

with significant probability. This feature would consequently be excluded from

the cluster’s set of describing features. To address this, we further introduce

the unweighted average of subclusters as a soft intersection that accounts for

the number of objects sharing the presence/lack of a feature. We compute

−−→xC1,2 = |C1 ∪ C2|−1 ·
∑

v∈C1∪C2

−→xv

as the soft intersection of the feature vectors of the elements of combined subsets

C1 and C2. With respect to interpretability, 0 means that a feature is not

relevant to any inputs representing the cluster, 1 means that a feature is relevant

to all inputs representing the cluster, and a value of 0.5 means that a feature

is not useful for a description since it is equally present and absent from the

inputs representing the cluster.

When the distances between subsets become too great, we have partitions ex-

pressing unique features that each describe the cluster. We hypothesize that the

expected value over the partitions’ feature vectors will be more informative for

describing clusters than the expected value over each sensor input’s feature vec-
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tors. However, there are also advantages to using a disjunction of the subsets’

weighted feature vectors to describe the cluster: any exclusive-or relationships

between features can be obscured by combining them. For example, using the

RGB-D case, if one set contains postures with “the left arm raised and the

right arm not raised” and the other set contains postures with “the left arm not

raised and the right arm raised,” then this may imply that the cluster contains

postures with exactly one arm raised—adding these together for an expected

value would instead yield a compromise that the right and left arms might or

might not be raised (an irrelevant feature weight near 0.5).

• Supervised Learning The last approach acknowledges the fact that some

supervised learning output representations such as decision trees learn inter-

pretable functions, which is also a motivation for wordification [218, 219]. For

example, the traversal from a decision tree’s root to any leaf node produces a

conjunction of conditions that explains the leaf’s classification assignment. If

we consider every input, including duplicates, as a separate data point, then

we have supervised inputs −−→xwd,i with assigned outputs zd,i from our unsuper-

vised learning model. We can use off-the-shelf supervised learning algorithms

to learn a function mapping between each signal token’s feature vector and its

associated cluster rather than independently computing feature descriptors for

each cluster. Changuel and Labroche [46] used such off-the-shelf classifiers to

learn missing metadata values from present ones to improve categorization of

library resources. The only limitation is that each algorithm has a specific type

of function that it can learn. For example, decision trees can only learn per-

pendicular partitions of the feature space. Thus different supervised learning

methods will yield different justifications for the unsupervised algorithm’s label

assignments.
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4.3 Using Temporal and Spatial Relations

We now consider ways to improve the performance of unsupervised activity recog-

nition (and approximate plan recognition) techniques via temporal and object rela-

tions in addition to just signal tokens, such as postural data from RGB-D sensors.

Temporal relationships can help recognize activities with cyclic structure and are of-

ten implicit because plans have degrees of ordering actions. Relations with objects

can help disambiguate observed activities that otherwise share a user’s posture and

position.

Even though much more information such as temporal and spatial relations is

available, our initial approach used only the postural information from the RGB-D

sensor because input representations that are too specific limit generalizability across

domains (see Section 4.2 for a deeper discussion). However, activities can describe

more than just one’s pose or motion. Zhang and Parker [296] as well as Koppula

and Saxena [164] developed activity recognition models that take into account both

temporal and spatial relations. Instead of combining all these factors into a single

token representation like they do, we propose extending traditional models with con-

ditionally independent modular components that each account for a distinct aspect of

the available information. Figure 4.4 summarizes the model extensions that will be

discussed below.

This multi-modal approach still allows generalized recognition models where mod-

ules may be added, removed, or interchanged depending on the environment and avail-

able sensor information. Additionally, the aspects that these modules address can be

left constant or toggled off to speed up computations when real-time constraints apply.

This potential benefit involves future research on metareasoning to determine when

the modules would provide sufficient information efficiently; it will not be explored

in this dissertation.
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LDA —– temporal −→ Composite Model
| relations |

object object
relations relations
↓ ↓

Parameterized temporal Parameterized
LDA —– relations −→ Composite Model

Figure 4.4. Proposed models enhancing LDA, based on their additional information.

1 for each topic t ∈ {1, . . . , T} do
2 draw φt ∼ Dirichlet (β~n)
3 draw Ωt ∼ Dirichlet (γ~o)

end
4 for each state c ∈ {2, . . . , C} do
5 draw ϕc ∼ Dirichlet (δ~u)

end
6 for each state c ∈ {0, . . . , C} do
7 draw ξc ∼ Dirichlet (ε~π)

end
8 for each document d ∈ {1, . . . , D} do
9 draw θd ∼ Dirichlet (α~m)

10 assign sd,0 ← 0
11 for each index i ∈ {1, . . . , Nd} do
12 draw topic zd,i ∼ θd
13 draw state sd,i ∼ ξsd,i−1

14 if sd,i = 1 then
15 draw word token wd,i ∼ φzd,i

end
16 else
17 draw word token wd,i ∼ ϕsd,i

end

18 for each index j ∈
{

1, . . . , Kwd,i

}
do

19 draw parameter pd,i,j ∼ Ωzd,i

end

end

end
Algorithm 2: Generative Process for Parameterized Composite Model

110



w

zαm

βn

θ

ϕ

T

D

Nd

pγo Ω
Kw

si

φ
C-1

δu

si+1

ξ
C+1

επ

Figure 4.5. Graphical model representation of the parameterized composite model
with LDA, the composite model, and parameterized LDA as subgraphs.

4.3.1 Capturing Temporal Relations with the Composite Model

NLP research, an area suggested to have much in common with plan recognition

[92, 79], has raised similar concerns about assuming only local temporal dependencies

between word tokens in text.

Definition 45. The k-degree Markov assumption (the degree is often omitted when

k = 1) states that each input (word, sensor reading, etc.) is sampled indepen-

dently of all others except the x-most recent inputs others. That is, for all i ∈ N,

P (Xi = x |Xi−1, Xi−2, . . . , X0 ) = P (Xi = x |Xi−1, . . . , Xi−k ). We note that k = 0 is

the BOW assumption from Definition 44, which ignores local temporal dependency.

Local temporal dependencies enforced by models such as HMMs place a strong

emphasis on syntactic properties of phrases without any consideration of semantics.

The global dependencies that topic models enforce instead emphasize the seman-

tic features of text without acknowledging its syntax. Griffiths et al. developed the

composite model [107] to bring HMMs and LDA together for a single model that

111



takes both syntax and semantics into account. We suggest that the composite model

might also be useful for analyzing sequences of signal token observations for improved

activity recognition and approximate plan recognition.

The composite model integrates LDA with a HMM over C hidden states by setting

one of the states to call LDA for selecting a semantic word. We remain consistent with

Griffiths et al.’s notation and let state 1 call LDA. The remaining states contain their

own distributions ~ϕ = {ϕ2, . . . , ϕC} over the vocabulary of word tokens {1, 2, . . . , V }

so that they may select words during the document generation.

They empirically supported that most of ~ϕ’s probability mass is found about

stopwords, tokens with very high frequencies that usually have to be removed before

running LDA. Without the removal of stopwords, their high frequency causes them

to appear with decent probability mass in almost every learned topic by random

chance. Stopwords typically serve a syntactic purpose in documents rather than

a semantic purpose, which is what LDA captures. The HMM captures structure

through its dependency on the previous state in the latent Markov chain overseeing

the document’s composition. The transition functions ~ξ = {ξ0, ξ1, . . . , ξC} represents

this Markov chain, and the distribution ξ0 determines its initial state. The black

and blue subgraphs in Figure 4.5 form the composite model’s graphical model, which

supports the generative process composed of lines 1, 2, 4-7, and 8-17 of Algorithm 2.

Unlike the notation, we must use different variable names from Griffiths et al. because

our other models in this section have naming conflicts.

In activity recognition, it is possible to encounter signal tokens that act like stop-

words if some subset of signal data is very common in the observation sequences [79].

Although these are typically removed prior to training and testing, the framework

laid out by these poses can be beneficial for recognition tasks. A transition between

certain states might serve as a boundary between actions if the observation sequence

needs to be segmented into distinct activities. It also provides an ordering for the
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poses associated with activities so that some structures such as loops in plans might

become easier to identify.

Similar to LDA, we only observe the poses ~w extracted from the postural data.

Unlike LDA, we now have to infer two latent variables per observation: the latent ac-

tivity variables ~z and the latent HMM state variables ~s. Because Gibbs sampling only

samples one random variable at a time, we must alternate between sampling zi and

si. Like other topic model computations, we use the conjugate prior to approximate

the sampling likelihood of the latent activity:

P
(
zi
∣∣~z\i, ~w,~s,H ) ∝ f

1(si=1)
φ · f1(si 6=1)

ϕ · fθ

= f
1(si=1)
φ ·

(
N
\i
si (wi) + δuwi∑V
v=1 N

\i
si (v) + δ

)1(si 6=1)

· fθ

where 1 (x) is the indicator function that returns 1 if x is true and 0 otherwise,

N
\i
c : {1, . . . , V } → Z≥0 is the number of times token v is assigned HMM state c

excluding the token at the sampled index i

N\ic (v) =
D∑
d=1

Nd∑
j=1

1 (index (d, j) 6= i ∧ wd,j = v ∧ sd,j = c) ,

and N
\i
t now only considers tokens assigned to HMM state 1 (i.e., the tokens that

LDA generates)

N
\i
t (v) =

D∑
d=1

Nd∑
j=1

1 (index (d, j) 6= i ∧ wd,j = v ∧ zd,j = t ∧ sd,j = 1) .

Because the current HMM state is fixed during this computation,

f
1(si 6=1)
ϕ ·

(∑T
t=1N

\i
d (t) + α

)
is constant with respect to the sampled random vari-

able and may thus be omitted from the sampling likelihood. We note that N
\i
t and
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(∑T
t=1 N

\i
d (t) + α

)
are part of fθ’s definition from Equation 4.1. After reassigning

the latent activity, we sample the HMM state using the sampling likelihood:

P
(
si
∣∣~s\i, ~w, ~z,H ) ∝ f

1(si=1)
φ · f1(si 6=1)

ϕ

· F
\i\i+1
si−1 (si) + επsi∑C
c=1 F

\i\i+1
si−1 (c) + ε

·

(
F
\i+1
si (si+1) + επsi+1∑C
c=1 F

\i+1
si (c) + ε

)1(i<Nd)

where F
\i
c1 : {1, . . . , C} → Z≥0 is the number of times the transition from HMM state

c1 to HMM state c has occurred excluding the transitions both to and from the HMM

state at the sampled index i

F \ic1 (c) =
D∑
d=1

Nd∑
j=1

1 (index (d, j) 6= i ∧ sd,j−1 = c1 ∧ sd,j = c) .

For this sampling likelihood, only
(∑C

c=1 F
\i\i+1
si−1 (c) + ε

)
is constant with respect to

si so that it may be ignored during the computation. After training, the predictive

probability of an observation in ~w′ given the training data and new observations up

to the current one requires computing the joint probability of both the latent activity

and the latent HMM state:

P (z ′i , s
′
i |~z, ~z′<i, ~s, ~s′<i, ~w, ~w′<i, H ) ∝ f+

θ · f
+
ξ ·
(
f+
φ

)1(si=1) ·
(
f+
ϕ

)1(si 6=1)
=

f+
θ ·

F ′ <is′i−1
(s′i) + Fs′i−1

(s′i) + επs′i∑C
c=1

(
F ′ <is′i−1

(c) + Fs′i−1
(c)
)

+ ε

·
(
f+
φ

)1(si=1) ·

 N ′ <is′i
(w′i) +Ns′i

(w′i) + δuw′i∑V
v=1

(
N ′ <is′i

(v) +Ns′i
(v)
)

+ δ

1(s′i 6=1)

When performing Gibbs sampling on the previous new observations, we again alter-

nate between activity assignments ~z<i and HMM state assignments ~s<i.
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4.3.2 Capturing Object Relations with Parameterized LDA

Besides using temporal information, recognition systems can benefit from informa-

tion regarding relations between the observed agents and objects in the environment

because the observing agent’s interactions with the user will likely involve handling

the same objects. For example, when moving furniture [200], both agents need to

handle the same object in order to coordinate carrying it. Furthermore, the object

can provide information about the observed user’s plan/action that is not available

from their posture and position. For example, the most notable difference in a kitchen

environment [254, 60] between cleaning a spill and mopping sauce from a plate is hold-

ing a napkin versus using a slice of bread. This has also been addressed in the field

of robotics under tool affordances, a psychological theory stating that people perceive

the functionality of objects based on the object’s features [95].

Our proposed parameterized extension of LDA considers documents whose word

tokens may contain a list of parameters. That is, a single word in a document is now

a K-ary proposition of the form wi (pi,1, . . . , pi,Ki) where Ki is the arity of token wi.

Due to Ki’s notation relying on the index, rather than the token itself, the number of

parameters may vary between identical tokens to account for the observation instance.

We assume that these arguments are elements of a second vocabulary ofQ items. Each

topic has an additional distribution ~Ω = {Ω1, . . . ,ΩT} over this second vocabulary

that is drawn from a Dirichlet distribution with hyperparameter γ~o ∈ H. Thus its

graphical model is the black and red subgraphs in Figure 4.5 and lines 1-3, 8, 9, 11,

12, 15, 18, and 19 from Algorithm 2 detail its generative process.

This model essentially runs an additional Ki LDA topic models simultaneously

that all share the same topic. That is, we sample each parameter as in LDA, but

from a distribution over objects only conditioned on the topic of the current word

token Ωzi . We note that parameterized LDA applies the BOW assumption to the
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parameters so that each argument is independent of the others and the order does

not matter.

For our application of activity recognition, each parameter is an object with which

the observed agent Red is interacting. Identifying which objects should be considered

as parameters per token is left for future research. We currently use objects that

are within a fixed distance from Red’s joints based on the RGB-D sensor. Song et

al.’s [254] extraction of clauses for recognizing activities with a Markov logic network

identifies objects by such proximity to the observed agent’s hands. By considering

other joints, we can also extract localization information such as one’s position in a

room (near a refrigerator) and consider items near the head or feet that might become

involved as the activity progresses (such as picking up an object from the ground).

Poses and objects together can remove ambiguity that the other one would indicate

about the activity alone. For example, Freedman, Jung, and Zilberstein acknowledged

that some discretized poses for activities such as squatting and jumping appeared

identical because they generated similar signal tokens. If the ground is an object

within the vicinity of such a pose, then we are more likely to recognize the activity

as squatting than jumping. This is because objects provide semantic context to the

activity and plan. Inversely, Jain and Inamura [133] explain that more than one

activity can use a single object depending on its orientation and utilized affordances.

To accommodate the different orientation and/or affordance, it is likely the case that

the pose of the agent differs as in their example that uses the back end of a screwdriver

as a hammer—the arm would alternate between rising and falling rather than rotating

in place.

We assume that our system has a sensor that can perform object recognition

in addition to its typical sensor’s signal data so that we observe token-object pairs
−−−→
(w, ~p) = [(w1,1, ~p1,1) , . . . , (wD,ND , ~pD,ND)] where ~pd,i =

(
pd,i,1, . . . , pd,i,Kwd,i

)
. Hence

we still need to infer just the latent activity variables ~z. We continue to use Gibbs
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sampling to assign values to ~z using the same techniques described for approximating

the sampling likelihood in other topic models:

P
(
zi

∣∣∣~z\i,−−−→(w, ~p), H
)
∝ fφ · fθ · fΩ =

fφ · fθ ·
Kwi∏
j=1

A
\i
zi (pi,j) + γopi,j∑Q
q=1A

\i
zi (q) + γ

where A
\i
t : {1, . . . , Q} → Z≥0 is the number of times object q is assigned topic t

excluding the parameters in the token-object pair at the sampled index

A
\i
t (q) =

D∑
d=1

Nd∑
j=1

1 (index (d, j) 6= i ∧ zd,j = t ∧ ∃k. pd,j,k = q) .

As in LDA, we can omit (
∑T

t=1 N
\i
d (t)+α) from the computation because it is constant

with respect to the sampled variable zi. For a new sequence of observed token-

object pairs
−−−→
(w, ~p)′ =

[
(wD+1,1, ~pD+1,1), ..., (wD+D′,ND+D′

, ~pD+D′,ND+D′
)
]
, the predictive

probability of a single observation given the training data and the new observations

up to the current one is:

P
(
z′i

∣∣∣~z, ~z′<i,−−−→(w, ~p),
−−−→
(w, ~p)′<i, H

)
∝ f+

φ · f
+
θ · f

+
Ω =

f+
φ · f

+
θ ·

Kw′
i∏

j=1

A′ <iz′i

(
p′i,j
)

+ Az′i
(
p′i,j
)

+ γop′i,j∑Q
q=1

(
A′ <iz′i

(q) + Az′i (q)
)

+ γ

As with LDA for activity recognition, we must perform Gibbs sampling on the pre-

vious new observations’ activity assignments ~z′<i.

4.3.3 The Parameterized Composite Model

The parameterized composite model combines parameterized LDA with the com-

posite model by simply changing state 1’s call from LDA to parameterized LDA.
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However, we assume that the object parameters only have semantic information and

cannot be used for syntax. Thus the parameters are generated from the latent topic

even if the HMM state is not 1. From an automated planning perspective, we in-

terpret this as passing arguments between consecutive actions in a plan. When local

ordering between actions is necessary, the order is usually important because a subset

of the next action’s prerequisites are only satisfied by the effects of the current action.

This is the key idea behind causal links in the classic UCPOP planner [216]. Fig-

ure 4.5 displays this hybrid graphical model and the entirety of Algorithm 2 explains

the generative process.

The parameters are conditionally independent of the token and HMM state given

the activity so that we simply multiply the sampling likelihood of the topic by the

approximate likelihood of the parameters given the topic:

P
(
zi

∣∣∣~z\i,−−−→(w, ~p), ~s,H
)
∝ f

1(si=1)
φ · f1(si 6=1)

ϕ · fθ · fΩ

Due to the independence assumptions depicted by the directed edges in Figure 4.5, the

sampling likelihood for the HMM state does not change from the composite model.

The new terms for parameters ~pi are constant with respect to all HMM state random

variables as long as the activity zi is observed. On the other hand, the joint predictive

probability does receive an update based on the observed parameters and token:

P
(
z′i, s

′
i

∣∣∣~z, ~z′<i, ~s, ~s′<i,−−−→(w, ~p),
−−−→
(w, ~p)′<i, H

)
∝ f+

θ ·
(
f+
φ

)1(si=1) · f+
Ω ·
(
f+
ϕ

)1(si 6=1) · f+
ξ

4.3.4 Empirical Evaluation of Alternative Topic Models

We implemented LDA and the three topic models described above such that each

component is a module with the same underlying framework, as Figure 4.5 and their

computations portray. Although not as efficient as some state-of-the-art implemen-

tations of LDA, our implementations offer a basis for a fair comparison between the
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methods with respect to their relative runtimes and performance. These factors are

important for recognition systems in actual applications because there are often real-

time constraints on the machine’s response time. A computer or robot must be able to

successfully identify the Red’s actions and/or plan before providing a valid response.

Hence we focus on the relative trade-offs between performance and runtime for these

models in order to investigate the practical extents of including temporal and object

information. We assume that relative results would be proportional if more efficient

implementations are made using state-of-the-art versions of LDA such as Mallet [190].

For these comparison tests, we used the Cornell Activity Dataset 120 (CAD-120)

[15]. It contains 124 recordings of short plan executions (the authors call them activ-

ities) with a total duration of approximately eleven minutes. Each RGB-D recording

is fully annotated with orientation and position information for the acting agent’s

posture, objects used, object affordance labels based on how each object is used in

each frame, activity labels, and segmented subactivity labels for training supervised

learning-based algorithms.

When converting the dataset to a corpus of documents, we ignore the activity

and subactivity labels because our models are intended for unsupervised learning

approaches. We use each frame’s orientation data to generate the observed agent’s

posture as a signal token using the modified joint-angle representation described in

Section 4.2.1 with granularity parameter γ = 21. This gives us a vocabulary contain-

ing V = 42588 unique signal tokens out of 65133 total in the corpus. The dataset

depicts objects in each frame using a two-dimensional bounding box from the RGB

image based on SIFT features without depth. Hence we are only able to identify

parameters as objects whose bounding boxes are within 150 millimeters of a joint

of the observed user in the x- and y-directions, which we assume accounts for the

bounding box not always capturing the entire object. Due to the design of CAD-120,
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the lack of the z-direction in these proximity calculations does not greatly affect the

list of parameters for each word.

To ensure optimal performance of each topic model with CAD-120, we trained the

topic models using a sweep of parameter settings for T and C and then selected the

values yielding the greatest log-evidence of generating the training dataset. While

hyperparameters α, β, γ, δ, ε, and ~m were optimized throughout the Gibbs sampling

process, ~n, ~o, ~u, and ~π could not be optimized due to biases they introduced during

training. The number of activities T and HMM states C were held constant once

initialized. Initial hyperparameter concentration values were always set to α = T ,

β = δ = 0.02V , γ = 2Q where Q = 10, and ε = C; prior means ~m, ~n, ~o, ~u, ~π were

always set to a uniform distribution. A burn-in period of twenty-five iterations was

applied to make sure that the state sequences were truly random before optimizing ε

in the transition functions. We trained the models on 99 sequences (80% of CAD-120)

and then tested them on the remaining 25. To avoid an anomaly, five such partitions

were randomly generated a priori for use in each parameter setting, and the same

training and testing partitions were used across all models for a fair comparison. The

number of signal tokens in each partition P1 through P5’s test set is 11388, 12438,

14855, 12406, and 11647 respectively.

4.3.4.1 Runtime Performance

Table 4.1 displays the empirical time to test and train each model in seconds. We

also provide the number of Gibbs sampling iterations used to converge to the max-

imized log-evidence during training since this varied per model and likely impacted

the runtime. Because the train-test set choice did not impact runtime significantly,

we only present the results with partition P1.

Although the training set is larger than the testing set, the testing times take

longer for the less computationally intensive models due to the step that resamples
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Table 4.1. Elapsed Runtimes for Optimally-Trained Models (P1)

Gibbs (iterations) Train (seconds) Test (seconds)

LDA 50 362.398 1318.926

Parameterized LDA 100 1122.416 2411.291

Composite 540 4080.849 2915.388

Parameterized Composite 540 4945.438 3436.523

Table 4.2. Log-Evidence of Test Sets with Optimally-Trained Models

LDA Parameterized LDA Composite Parameterized Composite

P1 −112096.2 −111055.4 −111097.6 −109512.0

P2 −123786.9 −123084.8 −122722.0 −122156.1

P3 −148437.2 −147803.2 −146915.9 −146763.1

P4 −121191.7 −119860.2 −118929.7 −119477.9

P5 −115952.3 −114871.8 −113931.9 −114142.1

every newly observed pose before classifying the next observation. These times show

that the inclusion of temporal relations can greatly increase the training time needed

to perform recognition. On the other hand, the inclusion of object relations appears

to increase the amount of time to a lesser degree. Regardless of the degree of increase,

any of the models extending LDA take about two times longer or greater to perform

recognition.

4.3.4.2 Recognition Performance

We measure the recognition performance by the log-evidence of the testing set after

training. For generative models, this value tells us the logarithm of the probability

that following the step-by-step procedures described within Algorithm 2 would have

actually generated the observation sequences in the testing set. A greater log-evidence

implies that the model is a better fit for the observed data. Table 4.2 provides these

log-evidence values. In all cases, the modifications to LDA develop a model that

better fits the data. This implies that LDA itself is a simplification of the generation

process and omits information used for generating the observations. Although the
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results provide evidence for the case that temporal relations are more informative

than object relations, we believe this may not be concluded due to CAD-120’s method

for annotating objects (SIFT features in two-dimensional space); a dataset with more

precise recording of objects in the environment is necessary for confirmation. It is

particularly worth noting that the parameterized composite model outperforms both

parameterized LDA and the composite model in three of the train-test partitions and

outperforms one of them in the other two partitions. Thus the use of both temporal and

object relations appears to often be more informative than either relation alone. This

synergistic evidence supports our hypothesis that these relations contain mutually

exclusive information regarding the observed agent’s activity.

4.3.4.3 Topic and State Investigation

Because unsupervised learning algorithms identify their own patterns in data, it

is important to study the learned clusters and ensure that the results are coherent.

The learned topic/activity and state distributions might not resemble what a hu-

man would classify as a distinct category, but some distinctions should be evident

within and between the distributions as discussed in Section 4.2.2. This also provides

an opportunity to compare what kinds of information the different models capture.

Table 4.3 lists the the optimally-trained models’ actual values of T and C for each

train-test partition. We observe that the models extending LDA were assigned very

similar numbers of topics/activities T regardless of the partition. This number is

the edge case of our parameter sweep, which implies that increasing the range would

have further improved performance. It could also indicate concern that the choice of

γ yielded a vocabulary of signal tokens that do not share the properties of a natu-

ral language that allow topic models to work as intended—besides the explicit BOW

and Markov assumptions, many models have implicit assumptions based on unrealized

properties of the domain, including various autonomous planning benchmark defini-
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Table 4.3. Number of Topics/Activities T and HMM States C in the Optimally-
Trained Models per Partition of CAD-120.

P1 P2 P3 P4 P5

LDA T = 61 T = 63 T = 45 T = 59 T = 55

Parameterized LDA T = 89 T = 83 T = 89 T = 89 T = 89

Composite T = 62 T = 62 T = 62 T = 62 T = 62

C = 4 C = 6 C = 2 C = 5 C = 6

Parameterized Composite T = 92 T = 92 T = 89 T = 92 T = 86

C = 6 C = 4 C = 3 C = 2 C = 3

tions [122]. However, the models’ log-likelihoods of generating the training data were

reaching the asymptotic limit and the log-evidence would most likely only experience

marginal increase, if any.

We thus want to identify in which ways the different topic models classify the

plan executions in CAD-120. Because they have different log-evidence values, it

would seem to be the case that each one is recognizing something unique in compari-

son to the other models. Figure 4.6 displays a frame-by-frame breakdown of inferred

~z (by activity/topic) and ~s (by HMM state) for a plan execution in P1’s training

set. The first thing to notice is that LDA infers a single topic for all postures in a

single execution. This implies that LDA is only able to classify the overall activity,

but we must consider that the length of an average recording in CAD-120 is less

than twenty seconds (600 frames). Although this chapter proposes that the entire

execution represents the plan execution so that θ is a distribution of actions through-

out the entire recording, it is possible that these documents are too short for such

analysis. In the case that there are too few signal tokens, θ should be unimodal so

that activity recognition is nominally plan recognition. That is, the plan consists of

a single action/activity to recognize. Despite this potential setback, we are unaware

of other datasets that record object relations and continue to use CAD-120.

We also observe that the parameterized variations infer a single topic for the

entire document. However, these topics are different from those in LDA due to the
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Figure 4.6. Visualization of each model’s inferred topic and HMM state assignments
for an execution of ‘having a meal’ which breaks down into ‘moving’ (1-83; 101-134;
156-194; 241-276; 346-370; 385-444), ‘eating’ (84-100; 371-384), ‘reaching’ (135-155;
333-345), ‘drinking’ (195-240), and ‘placing’ (277-332).

Figure 4.7. A heat map illustrating the distributions over objects Ωt for each activity
t in the optimally-trained parameterized LDA with respect to P1. Each column is
single topic where red indicates the greatest probability mass and dark blue indicates
the least probability mass.

inclusion of object relations. Table 4.3 shows that there are more topics in these

models, allowing more precise cases during recognition. Evidence of this diversity

exists within the learned object distributions ~Ω for each topic. Figure 4.7 illustrates ~Ω

for the optimally-trained parameterized LDA on P1 as a heat map (the parameterized

composite model’s heat map is very similar). We identify three distinct distribution

types among ~Ω:

• The unimodal distribution contains one red dot per column. This likely indicates

an activity whose signal tokens commonly interact with a single object.

• The uniform distribution is a solid blue column. This presents a lack of prefer-

ence for objects, which seems to indicate that either no objects are involved or

the signal tokens are distinct enough that the objects involved in such activities

do not matter for recognition.
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• The bimodal distribution has two dots each ranging in hue from light blue to

orange. We only find this distribution type with objects ‘box’ and ‘bowl’ as the

modes. These two objects are commonly found together in the ‘making cereal’

activities in CAD-120, which implies that the objects are expected as a pair for

‘making cereal’.

Although we hypothesized that objects with similar affordances would be clustered

together in each activity’s Ω distribution, it is likely the case that ten objects are

too few to identify these higher-level functional purposes. CAD-120 only provides

annotated affordance labels based on the activity so that a single object will appear

to change during the plan execution if we were to use their affordance labels in place

of the objects themselves. A more robust dataset with longer plan execution recordings

and a greater variety of objects will be necessary for a full analysis of the impact of

object relations in our models for unsupervised recognition.

On the other hand, the (parameterized) composite model’s inferred states have

a more distinguishable trend. The majority of the inferences for ~s are dark blue,

which represent state 1 where (parameterized) LDA is used for sampling the signal

token. However, there are a few streaks where the color changes to indicate that

a different state was inferred. Figure 4.6’s caption reveals that most the streaks

appear as a transition between two annotated subactivities. This alludes to the

syntactic properties that Griffiths et al. observed when they introduced the composite

model for analyzing text documents. This appears to imply that despite the shorter

length, the underlying structure is recognizable even if the actual activities cannot

be distinguished. The learned transition functions ~ξ were almost always unimodal

favoring state 1. If the transition from some state did not favor state 1, then it favored

transitioning back to itself (which would explain the streak of a single color rather

than a variety of colors). As both ~ξ and ~Ω were similar between the parameterized

composite model and the respective composite and parameterized LDA topic models,
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there appears to be little overlap between the information gained from temporal and

object relations.

4.4 Concluding Remarks: Recognizing Activities and Plans

A single moment in time can provide a surprising amount of insights into what an

agent is doing, but proper sensing and representations are both necessary to make this

effective for computational systems. Without the correct sensor, Ring cannot be aware

of the information’s presence unless there exists some other means to infer it. If the

information is sensed or inferred, then Ring still needs to encode that information in

a way that is useful for recognition—such representation choices apply to designing

both the recognition models and their inputs. This chapter has begun to merely

scratch the surface when Ring uses a single RGB-D sensor, yet humans have a wider

variety of sensing abilities.

Although the field of activity recognition has generally moved to deep learning,

the importance of these challenges still persist. We described throughout Section 3.2

how LSA and HMM models both have replacements, and it is important to acknowl-

edge that a replacement of a function is simply its implementation. So creating

useful inputs is still necessary to get practical outputs, and the implementation is

still a constructed model. In this case, a story deriving the data with an interpretable

graphical model representation is now a ginormous graphical model with connections

between various nodes representing substructures that have empirical evidence of spe-

cific purposes. Whether constructing a story or connecting functional substructures,

knowledge of the how the sensed information relates to Red’s decision-making process

should play a role in the process.

If the activity recognition algorithm is designed using some form of topic modeling,

then we have provided evidence that the inferred topic zd,i per signal token wd,i serves

as a form of activity recognition. However, the actual activity label is unknown and
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might not be easy for a human to interpret because such models are unsupervised.

We proposed several approaches to automatically generate interpretations of each

activity/topic, but much still remains to be done in terms of their verification.

In contrast to the unlabeled actions within a sensed plan execution d, each ex-

ecution is a discrete entity whose ID number serves as a label to a possibly unique

plan πd in the worst case. This means that we infer the activities ~zd as a by-product

of training the topic model, which yields an approximation of distribution θd. After

observing a new plan execution d′ for some unknown plan πd′ , activity recognition

infers ~zd′ and thus also approximates θd′ . This means we can compare θd′ with each θ1

through θD in the training dataset and determine which πd share a similar distribu-

tion of actions with πd′ . This yields an approximate form of plan recognition because

we are ultimately matching the observation sequence of signal tokens to an execution

sequence. This approach must be done as post-processing in order to have a complete

θd approximation, which is not ideal for the real-time constraints of interaction in the

PReTCIL framework. Although we could create partially-complete distributions

θd,1..i when performing activity recognition so far over wd′,1 through wd′,i, this does

not guarantee accounting for partial ordering of actions or noise.
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CHAPTER 5

INTEGRATION OF RECOGNITION AND AUTOMATED
PLANNING

I am not holding the door for you because I am a gentleman. I am
holding the door to help you because your hands are full with all those
pizza boxes, and I can tell you plan to take them somewhere outside this
room. So I can at least get the door so you don’t have to struggle with it.

— Richard (Rick) G. Freedman,
in a conversation with a colleague after hosting an event

In order for an agent, whether they are a robot, computer, or human, to interact

with others around them, they cannot be aware of just the presence of others. The

interactive agent must also be able to understand what they are doing. In particular,

interaction involving multiple agents requires some form of coordination during plan

execution. Communication or executing a precise, predetermined plan can be achieve

coordination, but plenty of interactions begin spontaneously (such as aiding someone

who seems to be struggling with a task) with nothing more than observations available

to direct the coordination efforts. Maeda et al. [185] collected data from human

teams performing tasks that enabled robots to mimic the interaction after learning

probabilistic motion primitives from the data. This form of interaction is reactive,

serving as a low-level reflex to the partners’ motions. We instead focus on responsive

interaction, considering the partners’ activities at a higher level and deciding how to

act alongside them.

Despite the past separation between automated planning and PAIR research, the

integration of these areas is crucial for responding well to others. Recognizing the

plans and goals of those with whom an agent interacts provides a context for the task
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and an expectation of how the other agents are approaching it. Planning within a

similar context and accounting for the other agents’ potential actions as constraints

allow the observing agent to identify a sequence of actions that work well with ev-

eryone else. This is not a one-directional relationship because the recognized/inferred

actions may not be exactly correct, or the other agents might vary their behaviors and

invalidate the observed agent’s responding plan. Thus interactive agents must per-

form recognition continuously in order to confirm the validity of their current action

choices and update the information for potential replanning. To account for these

circumstances and the fact that people often vary their approach, recognition should

be as general as possible and planning a response should be as flexible as possible.

This chapter investigates the impacts that recognition and automated planning

can have on each other, introducing the study of responsive planning. There are mul-

tiple components to responsive planning once recognition is complete, and each one

presents new challenges from other areas of research. Goal reasoning [280] normally

assigns goals to agents based on the circumstance, but the in-the-moment nature of

interaction can cause the circumstance to evolve more rapidly. Using current informa-

tion from recognition algorithms, we explore the process of developing intermediate

goals that can guide the agent for the near-future of the interaction. However, be-

cause the family of recognition algorithms we use primarily assume that the observed

agent completed its task, we further consider how to make the algorithms’ outputs

more prudent. It is also ideal to measure the quality of the generated response, a

plan solving this intermediate goal. We introduce the notion of helpfulness for this

purpose, and we provide a preliminary investigation exploring its potential uses and

definition challenges.

Our approach to responsive interaction relies on the probabilistic predictions from

Ramı́rez and Geffner’s recognition as planning (RaP, see Section 3.1.3) algorithm.

However, the RaP family of recognition algorithms were not designed with interaction
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tasks in mind, and this leads to a few necessary modifications. After explaining the

primary changes, we discuss how RaP provides sufficient information for responsive

interaction.

5.1 Foresight Using Survival Analysis

Despite the recognized distributions over H in the probabilistic RaP experiments

[227] appearing to be very effective, the performance was best when a reasonable

percentage of the actions in the agent’s (possibly optimal) plan execution are observed.

This is because a greater number of observations increases the probability of including

one of the later actions taken in the sequence. Although the earlier and intermediate

actions of a plan π play a role in the recognition algorithm, the later ones impose

constraints near the goal-satisfying states that require an agent to go out of their way

to follow/avoid the observed action(s). Such distinguishing actions motivate goal

recognition design’s WCD [156] mentioned in Section 3.3.3, revealing the observed

agent Red’s intentions as early as possible.

The influence of the most-recent observation is visually evident in Ramı́rez and

Geffner’s random walk example, shown in Figures 1 and 2 of their work—the values of

P (G ∈ H) for each step of a noisy random walk produced a plot whose goal location(s)

with the greatest probability was(were) closest to the current location of the agent at

that time step. The approach is thus greedy with respect to assuming that Red acts

optimally because it motivates finishing the task as soon as possible. This creates

a bias towards recognizing locally short-term goals and ignoring tasks that require a

plan of greater cost. The bias from this RaP-defining assumption is ideal for post-

processing when it is known that Red already completed their plan execution and

satisfied the goal.

However, for recognition while the plan’s execution is in-progress, applying fore-

sight to recognize long-term goals earlier is necessary in order to properly predict the
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tasks that require more effort. Otherwise, it might be too late to determine a proper

response and/or interact. We counter-balance RaP’s greedy likelihood computation

from Section 3.1.3 with a prior that is biased towards the more costly tasks that are

typically ignored. This is most important at the beginning of the interaction when

one cannot observe enough actions to solve any of the more costly tasks. However,

it is not beneficial to continue favoring plans corresponding to long-term goals after

there are enough observations to confidently identify Red’s task. That would reverse

the direction of the bias towards future tasks when the current ones are the most

likely.

We introduce a dynamic prior that favors long-term goals with greater-cost op-

timal plans when the plan execution time/resource consumed r is lesser, and it con-

verges to the true prior P (G) as r increases so that the likelihood’s optimality as-

sumption later takes precedence. To do this, we revise the probabilty formulation to

include r for a joint distribution over the observed agent’s task G ∈ H and resource

consumption r ∈ N ∪ {0}:

P (G|O, r) = Z−1P (O|G, r) P (G|r)

where P (O|G, r) = P (O≤r |G) is the likelihood for the observation prefix with cu-

mulative cost ≤ r and P (G|r) = Z ′′ −1P (r|G) P (G) is the prior over the joint distri-

bution. We define the newly introduced probability P (r|G) using survival analysis.

Definition 46. A plan π that successfully solves a planning problem with goal G is

in-progress at step i if G’s conditions are not yet satisfied after performing π≤i.

Definition 47. A plan π that successfully solves a planning problem with goal G is

maintaining if G is already satisfied while performing each π≥j for j < |π|.

We only consider plans without any maintaining actions. Then a plan is surviving

as long as it is in-progress, and it ceases execution once the goal conditions are
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satisfied. Clearly any plan for some goal G ∈ H must survive at least costπ∗G (such

as |π∗G| actions) because the optimal solution is the least cost needed to complete the

plan. Depending on Red’s optimality, we might observe some additional amount of

resources k spent during the plan’s execution. As this is counting a finite quantity

of events (additional amount of discrete resources/executed actions) within a specific

time window (one plan execution), we assume that the probability of a plan π’s cost

to solve G is

P (costπ = r |G) =


0 if r < costπ∗G

(λ+1)
r−costπ∗

G
+1(

r−costπ∗
G

+1
)

!·(eλ+1−1)
otherwise

based on the Poisson distribution. Situations involving counts of events over a fixed

time window use the Poisson distribution

Poisson (k ∈ N ∪ {0} ;λ ∈ N) =
λk

k!eλ

where λ is the expected count and standard deviation. So for expected plan execution

cost costπ =
(
costπ∗G + λ

)
, an optimal agent should have parameter λ = 0 while a

less optimal agent should have a greater λ value. However, the Poisson distribution

cannot allow λ = 0 because the numerator would always be 0. We instead use the

positive Poisson distribution

Poisson+ (k ∈ N;λ ∈ N) =
λk

k! (eλ − 1)

[248] in the ‘otherwise’ case above and increment both k =
(
r − costπ∗G

)
and λ by 1

to address the removed 0. Besides Bayesian updating to find a more accurate prior

P (G), we can update λ through multiple trials or interactions as Red is observed and

better understood.
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Survival analysis is an area of statistics that determines the probability that some-

thing continues to live with respect to a life-expectancy distribution. Thus, given the

piecewise equation above as the life-expectancy of a plan solving goal G, the probabil-

ity of the plan’s survival is relative to how likely it is still in-progress for the current

cost r:

P (r|G) = P (costπ ≥ r |G) = 1− cdfr (costπ |G)

where cdfr is the cumulative distribution function from 0 to r. The hazard function

h (r) = P (costπ = r |G) /P (costπ ≥ r|G) also tells us the likelihood that the plan

will terminate execution after total cost r, which might be useful for reasoning about

whether the observed agent is almost finished with its task.

Instead of using the hazard function, we only use the survival function as foresight

to advance the resource consumption. When computing the likelihoods for RaP, we

can find the plan with the fewest consumed resources satisfying the current observa-

tions to identify a current value for r. Because the likelihood prefers goals that will

not consume too many more resources than r, we then compute the prior at future

time r+ε for some ε ≥ 0. If there is enough variation between costπ∗G for each G ∈ H,

then this will bypass the goals that the likelihood prefers and redistribute probability

mass to the long-term goals that cannot yet be achieved. Specific assignments for

ε will vary by many factors such as the variation of the goals’ optimal plan costs,

time already elapsed (if r becomes too large, then all the goals will be surpassed for

a more uniform prior), and preferred amount of look-ahead for interactive purposes.

We leave the investigation of how these factors impact choices for ε to future work.

5.2 Finding Intermediate Interaction Tasks with Necessities

Up to this point in the dissertation, we have only discussed recognition algorithms

to interpret Red’s actions. As a partner in the interactive experience, we introduce the

observing agent Ring. Ring plans their own responses with respect to their predictions
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of the observed agent Red. We use the output from probabilistic RaP, which is a

distribution over H, to extract the goal conditions that Red most likely intends to

solve:

Definition 48. For a set of hypothesized goals H and a probability distribution over

H, the necessities are an intermediate goal composed of overlapping features or con-

ditions of the most likely elements of H according to the distribution.

Definition 49. Let H be a set of STRIPS-represented goals, each a conjunction of

fluents from some set F . The necessity of a propositional fluent f ∈ F with respect

to H and a sequence of observed actions O is the expected probability that f is a goal

condition given O. That is,

N (f ∈ F |O ) =
∑
G∈H

P (G |O ) · 1 (f ∈ G)

where 1 is the indicator function.

A necessity of 1 implies that all hypotheses with non-0 probability require f as a

goal condition, and a necessity of 0 implies that no hypotheses with non-0 probability

require f as a condition. Then for some threshold τ , we define

ĜRed = {f |N (f |O ) ≥ τ }

as the estimated goal conditions that Red is trying to satisfy, which represents the

necessities. Using this estimation in addition to their own set of actions ARing and

current state Inow, we define the responsive interaction problem as a centralized multi-

agent planning problem of the form

PRing =
〈
F ′ ∪ FRed+Ring , I

′, ARed+Ring , GRing

〉
.
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If PRing has no solution due to conflicting necessities, such as f,¬f ∈ GRing for

some f ∈ F , then Ring does not have enough knowledge about the necessities and

continues to observe without interaction1. We specifically propose three forms of

responsive interaction based on the types introduced in Section 1.2.3. We define

them using a STRIPS-style representation to continue RaP’s tradition of using off-

the-shelf classical planners, but Chapter 6 explains through our implementation that

one can use alternative representation languages.

Definition 50. Assistive Interaction means that Ring’s goal is to only help Red ac-

complish their goal. This planning problem PAssistiveRing
is of the form F ′ = F , I ′ = Inow,

ARed+Ring =
(
ARed ∪ {no-op} × ARing ∪ {no-op}

)
∪ AJoint, and GRing = ĜRed.

The remaining forms of interaction indirectly use ĜRed through a new fluent that

denotes whether Red accomplished these conditions. We call this fluent success and

add it through the additional add effect

success ∨
∧

g∈ĜRed

g → success

for each action in ARed , implying that solving the goal conditions once is sufficient to

complete the task. We respectively call these modified sets F S and AS.

Definition 51. Independent Interaction means Ring has a personal goal G′ to ac-

complish, but should avoid preventing Red from accomplishing its own task at the

same time. This planning problem PIndependentRing
is of the form F ′ = F S, I ′ = Inow,

ARed+Ring =
((
ARed ∪ {no-op} × ARing ∪ {no-op}

)
∪ AJoint

)S
, and GRing =

G′ ∪ {success}.

1In Section 7.2.2, we present an issue with this concept in practice. There are cases where doing
nothing can be detrimental to the interactive experience, and some alternative, domain-specific
default behavior is the better response.
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Definition 52. Adversarial Interaction means Ring’s goal is to prevent Red from

achieving their goal for some duration d (rather than STRIPS, a representation lan-

guage such as linear temporal logic [223] must be used when d = ∞). This planning

problem PAdversarialRing
is of the form F ′ = F S∪{0, 1, . . . , d}, I ′ = Inow∪{0}, ARed+Ring =(((

ARed ∪ {no-op} × ARing ∪ {no-op}
)
∪ AJoint

)S)step
, and GRing = {¬success, d}

where {·}step applies an incremental add effect i→ (i+ 1).

For each form of interaction, Ring derives the joint optimal plan

π∗GRing
=

y

©
i=1

(
aRed,i, aRing ,i

)

that Ring and Red should perform alongside each other. They can find π∗GRing
using

the same off-the-shelf classical planner that they used to perform RaP. However, this

plan is optimistic because Red acts independently and is not guaranteed to follow the

joint plan unless there is direct communication where Ring tells Red what actions to

perform. If there was communication, then it would have been possible (though not

required) for Red to reveal G to Ring in the first place; so we consider the case where

direct communication between the agents is absent. Then Ring can only perform its

assigned actions from π∗GRing
, which we call

πRing =
y

©
i=1

aRing ,i.

This introduces the need for replanning with new observations throughout the inter-

action. There should be more observations available after performing πRing for more

accurate recognition, meaning that ĜRed should also become more specific. We de-

fer finding the ideal moment(s) to replan to future work, but Section 6.2.3 considers

replanning based on monitoring Red’s plan execution with respect to each aRed,i.
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5.3 Helpfulness as a Measure of Impact on the Interaction

As Ring performs the actions in their plan πRing , new changes to the state will

also occur that might affect Red’s performance of π∗G. Assistive interaction intends for

these changes to facilitate Red’s ability to complete task G, changes from independent

interaction should not greatly affect Red’s plan unless there is a resource conflict to

resolve, and changes from adversarial interaction should inhibit Red from completing

G. For all these categories, we can run another execution of the off-the-shelf classical

planner to measure πRing ’s helpfulness. Instead of using a transformation similar to

the one in RaP algorithms, we simulate πRing within Red’s centralized multi-agent

planning problem such that Red plans according to Ring’s response. We define

PRed←Ring =
((
FH ,

(
ARed ∪ {no-op} × ARing ,H ∪ {no-op}H+

)
∪ AJoint,H

)
, IH , G

〉

where

FH = F ∪
{
pi
∣∣0 ≤ i ≤ y + 1 =

∣∣πRing ∣∣+ 1
}

, IH = Inow ∪ {p0}, and {·}H and {·}H+

are the following modified sets of actions in · :

• adda,H = adda,H+ = adda ∪
{
pi−1 → pi

∣∣a = πRing ,i
}

• dela,H = dela,H+ = dela

• prea,H=prea ∪

py+1 ∨
∨

i∈{j|a=πRing,j }
(pi−1 ∧ ¬pi)


• prea,H+ (a) = prea ∪

py ∨
∨

i∈{j|a=πRing,j }
(pi−1 ∧ ¬pi)


Thus the fluents pi now signify the performance of each action in πRing , and the

impossible precondition py+1 of {·}H forces Ring to execute no-ops once their plan

is completely executed—these no-ops could become other actions if replanning is
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performed later. Similar to the derivation of πRing , the new actions that Red will

perform as adaptation to Ring’s responsive actions are

πRed←Ring =
z

©
i=1

aRed,i

where the optimal solution to PRed←Ring is

π∗G+πRing
=

z

©
i=1

(
aRed,i, aRing ,i

)
.

Definition 53. The helpfulness of a responsive plan πRing is the change in cost from

agent Red acting on their own to both agents working simultaneously

H
(
πRing

)
= costπ∗G,≥now − costπRed←Ring .

We assume costπ =∞ if π does not exist.

Lemma 1. If Ring knows G, Ring is being assistive or independent, and there exists

a non-invasive sequence of actions such that Ring never affects a precondition of any

action in π∗G, then H
(
πRing

)
≥ 0.

Proof. Because Ring knows the correct goal, GRing = G. This implies that the prob-

lems PRing and PRed←Ring are identical (the additional fluents and action modifications

only ensure following the solution). Thus π∗GRing
= π∗G+πRing

, and Ring can at least

perform the non-invasive sequence of actions as πRing while Red performs its initial

plan such that costπ∗G+πRing

≤ costπ∗G,≥now . Hence H
(
πRing

)
≥ 0.

Lemma 1 shows that, with a good prediction from recognition, the observing agent

will rarely hinder the observed agent’s progress unless the domain and current state

force Ring to get in the way. Clearly this should not hold for adversarial interaction
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because such an agent wants to provide as little help as possible. However, it is

more difficult to guarantee not being helpful due to the fact that there is usually

more than one (optimal) plan. That is, Red can perform an alternative sequence of

actions that πRing does not ‘block’ and still complete the task—this phenomenon is

strongly related to Section 1.2.4’s explanation about why many two-player games are

PSPACE-complete.

Lemma 2. If Ring knows G, Ring is being adversarial, and there exists an invasive

sequence of actions such that Ring always affects a precondition of some action in

every possible π∗G, then H
(
πRing

)
≤ 0.

Theorem 1. −∞ < H
(
πRing

)
≤ c (π∗G)−c

(
π∗Red+Ring

)
where π∗Red+Ring

is the optimal

plan that solves the centralized multi-agent planning problem
((
F,ARed+Ring

)
, I, G

)
and ARed+Ring = ARed ∪ {no-op} × ARing ∪ {no-op}.

Proof. The lower bound follows from Lemma 2 because Ring can perform some action

that permanently prevents Red from satisfying the preconditions of all actions whose

effects satisfy one of G’s conditions. The upper bound extends from the proof of

Lemma 1; the best case is that both agents work together from the beginning (even

if that means Ring does nothing). As each time step progresses, the cost for both the

single-agent plans and the multi-agent plan will decrease uniformly so that costπ∗G −

costπ∗Red+Ring
= costπ∗G,≥now − costπ∗Red+Ring,≥now .

5.3.1 Challenges with Computing Helpfulness

This section elaborates on an ongoing discussion between Richard G. Freedman,

the author of this dissertation, and Steven J. Levine, the creator of Pike [174, 176]

and Riker [175]. When performing some comparison experiments between Riker

and the PReTCIL framework (implemented using RaP and responsive planning,

139



see Chapter 6) for Levine’s dissertation [175]2, they chose helpfulness as a means of

comparing the results of the interaction frameworks. However, discussions throughout

the experiments led to new ideas and challenges related to helpfulness as a measure

of interaction quality.

5.3.1.1 Helpfulness without Bias from Problem Instances

One of the earliest concerns arose from fairness in comparisons: how do we avoid

the bias of more opportunities to improve helpfulness for plans with greater cost? For

example, suppose one interactive agent R1
ing’s responses always cut the cost of π∗G

in half while the other interactive agent R2
ing’s responses always reduce the cost of

the plan by some constant amount k. We cannot best express this with respect to

the approaches’ helpfulness because costπ∗G ’s variance between trials (and even in the

benchmark design) plays a large role in the collection of computed H
(
πRing

)
. In this

case, simpler problems where costπ∗G ≤ k yield H
(
πR2

ing

)
= costπ∗G and H

(
πR1

ing

)
=

0.5costπ∗G . On the other hand, more complex problems where costπ∗G ≥ 2k present

H
(
πR2

ing

)
= k and H

(
πR1

ing

)
= 0.5costπ∗G ≥ k. In the former, R2

ing’s approach

appears to be more helpful; yet R1
ing’s approach is more helpful if k is reasonably

small.

Besides a fair comparison of approaches, the fact that different goals have vary-

ing optimal solution costs might provide contrasting insights for a single approach.

Like the short-sighted side-effect of RaP algorithms (see Section 5.1), there are far

fewer opportunities to be helpful when responding to a plan of cost c compared to

responding to a plan of cost 10c. Helpfulness returns the difference in costs, which

is reasonable for a single-case, post-processing comparison in which Red will perform

2We refer the reader to this dissertation for the experimental results. They are not reprinted in
this dissertation to (1) avoid plagiarism and (2) not present ‘outdated’ results because the PReTCIL
framework implementation was a prototype at the time of the experiments. Unfortunately, time
constraints prevented Freedman and Levine from rerunning the experiments.
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a task with or without Ring’s assistance. However, the difference does not reflect the

potential to be helpful, which matters in situations where Red can decide whether to

perform the task and they are aware of Ring’s intentions to interact—in this case,

helpfulness can serve like value of information. As a grounded example, consider the

two tasks where

• Red has to move a large piece of furniture across a room [200] and

• Red needs to move all the furniture in a room onto a moving truck.

The first task is inherently lower-cost so that Red can consider moving the piece of

furniture alone, and any help Ring provides is a nice bonus. The second task is much

more costly to perform and Red will likely want to ensure that Ring will provide

sufficient help relative to the task’s effort before starting to execute a plan. This can

extend to waiting for Ring to be ready to interact in a more helpful manner [299] or

finding another interactive partner who is available to provide sufficient help [235].

This issue of varying input sizes is not unique to computing helpfulness. The

term frequency-inverse document frequency representation is one such solution for

documents of different lengths; the normalized vectors allow the cosine similarity

metric to provide semantic comparisons between the documents’ contents [249]. In a

similar way, Levine proposed normalizing helpfulness to account for how much Ring

could help in the first place.

Definition 54. The normalized helpfulness of a responsive plan πRing is the ratio

comparing the helpfulness H
(
πRing

)
to the maximum helpfulness where Red and Ring

worked together simultaneously from the start

H1
0

(
πRing

)
=
costπ∗G,≥now − costπRed←Ring
costπ∗G,≥now − costπ∗Joint,≥now

.

The plan π∗Joint assumes that both Red and Ring know the shared goal G.

141



Normalized helpfulness clearly applies most to assistive interactions, and Levine

created both Pike and Riker exclusively for such interactions. The more assistive

an agent is, the more H1
0

(
πRing

)
approaches 1 regardless of the lowest-cost solution

to the problem. Normalized helpfulness can also apply to independent interactions,

where Ring’s lack of aid and interference is expected to yield values of H1
0

(
πRing

)
closer to 0. Adversarial interactions will be more difficult to assess because a joint

plan implies that both agents work together to accomplish the goal; so a different

definition of normalized helpfulness is necessary. However, Theorem 1 indicates that

normalized helpfulness can be feckless for studying adversarial interactions if there

exists a plan πRing that completely hinders Red, which would set the denominator of

the ratio to ∞.

5.3.1.2 The Roles of Cost in Computing Helpfulness

The next challenge Levine and Freedman encountered was the actual definition of

‘cost’ for plans involving multiple agents, including πRed←Ring and π∗Joint. Tradition-

ally, a plan’s cost is the sum of the costs of all the actions, no matter which agent

performs them. This is because automated planning is primarily concerned with prob-

lem solving more than agent contribution, which means all optimal plans are equally

ideal even if each agent’s efforts are disproportional. Freedman proposed exclusively

counting the costs of Red’s actions in such plans, which already coincides with the

extraction of actions from π∗G+πRing
to create πRed←Ring .

This enables Ring to be more helpful if they can perform more actions in the

centralized multi-agent problems, but it also introduces new issues to keep in mind.

If Red and Ring are both capable of solving the problem on their own, then normalized

helpfulness is only maximized when Ring does all the work. If they are ever assigned a

utility function to maximize Ring’s helpfulness (see Section 5.3.2), then this effectively

142



encourages Ring to act like a servant or slave to Red and also encourages Red to be as

lazy as possible and take advantage of Ring.

As we defined actions on a simultaneous-move basis (indicated by the action tuples

in the multi-agent plans), we addressed this issue by assigning the no-op action a non-

0 cost. Specifically, we assumed that all actions, including no-op, have unit cost like

traditional STRIPS planning. Thus Red’s portion of the plan has some cost even

if they do nothing, and the multi-agent planner then finds optimal solutions where

Red and Ring split the workload in tandem to reduce the number of actions and no-

ops. However, it is reasonable to question whether no-op should have a cost, and

this comes down to what ‘cost’ specifically measures. An agent is unlikely to expend

resources such as energy when doing nothing, but doing nothing for the duration

that the other agent acts is spending resources such as time. Freedman and Levine’s

experiments counted the number of turns taken to solve the problems, which is an

instance of time. However, what happens when time is not as important as energy?

Should these cases force Ring to do everything when helpfulness matters?

5.3.1.3 Helpfulness at the Local and Global Perspectives

Though less of an issue, Freedman and Levine began to consider the moments at

which (normalized) helpfulness changed in their approaches. Although Riker and

the PReTCIL framework are both interactive, they do not plan their interactions

with respect to the same events. Riker precomputes a library of plans and compiles

them into a single probabilistic temporal plan network with choice nodes that branch

according to differences between plans in the library. On the other hand, the PReT-

CIL framework uses the responsive planning techniques described in this chapter,

which are iterative and replan given the new observations. This means that the over-

all policy is constant for Riker throughout the global interactive experience, but it

is dynamic for the PReTCIL framework. This distinction is the reason for Levine’s
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observation that Riker runs faster than the PReTCIL framework in exchange for

less robustness to Red executing unexpected actions [175]. Despite this difference,

both approaches have dynamic intermediate plans πRing within the local interactive

experience because Red’s ongoing actions affect how Ring responds in its future plan.

Ultimately, responsive planning continuously updates a single plan πRing and con-

sequently overwrites actions that Ring did not yet execute. For each iteration, we can

compute the (normalized) helpfulness and see how it evolves over the course of the

interaction. In contrast to this, Riker does not commit to later actions until it can

deduce which action Ring must take at an upcoming choice node. This incremental

extension of πRing makes it difficult to examine the evolution of the helpfulness value.

If we assume that an agent employing Riker for interactive decision making performs

only no-op actions from the next unresolved choice node, then we can explore how

(normalized) helpfulness refines over the course of the interaction. Upon completing

the interaction, it is possible to evaluate the response’s (normalized) helpfulness in its

entirety by defining πRed←Ring as the actions Red performed throughout the interac-

tion and πRing as the actions Ring actually performed throughout the interaction. The

results in Levine’s dissertation only include the analysis of normalized helpfulness in

its entirety.

5.3.2 Helpfulness as a Heuristic

A future direction of research worth considering is how to apply measuring helpful-

ness actively during interaction rather than passively as a post-hoc analysis. Lemma 1

indicates that increasing helpfulness is ideal for assistive interaction, and Lemma 2

similarly implies that decreasing helpfulness is ideal for adversarial interaction. This

motivates our hypothesis that helpfulness can guide Ring’s decision making process

throughout their interaction.
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Currently, the type of interaction exclusively plays a role in Ring’s intermediate

goal generation, and the search process then finds any path to this goal from the initial

state Inow. Although this sequence of actions satisfies the intermediate goal upon

completion, there is no guarantee that the interaction type is acknowledged throughout

the responsive plan’s execution. Research in legible planning [66, 168, 196] shows that

optimal-cost plans to the goal are often less interpretable for communicating one’s

intents, and additional criteria need to influence the planner to account for a higher-

cost, but more legible plan. In most cases, these criteria adjust the heuristic or

constraints to reshape the search progression because the path to the goal matters as

much as the goal itself.

In place of legibility, it is ideal for the responsive plan πRing to be assitive, inde-

pendent, or adversarial throughout. A search state should not be considered ‘near a

goal state’ simply because its cost is lower, but also because it is a state that exhibits

some degree of helpfulness with respect to the interaction type. In assistive interac-

tions, helpfulness can serve as a tie-breaking strategy between states on the frontier

with the same lowest expected cost to the goal [12]—the state whose current plan

(path from Inow) has greatest helpfulness should be considered first. For independent

interactions, helpfulness might not matter as much as long as Ring does not interfere

with Red’s expected goals. However, to ensure that Ring’s plan is minimally invasive,

helpfulness can serve as a tie-breaking strategy by selecting the state whose current

plan’s helpfulness has the least absolute value. As the final extreme, adversarial inter-

actions should prioritize tie-breaking towards states whose current plan has the least

helpfulness. To ensure that helpfulness is not ignored when tie-breaking is unneces-

sary during search, we can also consider the measurement as an additional evaluation

of states and adjust the heuristic to account for both expected cost and helpfulness as

either a linear combination [111] or a lexicographic preference for multiple objectives

[289].
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As an analogy to the correspondence between preferred helpfulness values and the

type of interaction, consider the utility/evaluation function in the minimax algorithm

[237]. For traditional adversarial search, the function involves a difference of player

scores such as scoremax−scoremin. The minimizing agent min prefers to take actions

that yield states with smaller values (ideally negative) and the maximizing agent

max prefers to take actions that yield states with greater values (ideally positive).

Due to the function’s range including positive and negative values, both agents are

maximizing the absolute value of the function when they have the greater score and

minimizing the absolute value of the function when they have the lesser score. This

approach favors increasing the difference between their scores while in the lead, which

increases the chances of maintaining the lead. However, the approach also favors de-

creasing the difference between their scores while behind, which increases the chances

of taking the lead from the other agent in the adversarial scenario. If both players are

maximizing agents with an evaluation function that is a single score scoremax, then

they both want to increase the score and take actions with this mutual benefit; this is

assistive behavior. Lastly, the traditional game tree for turn-based game-theoretic sit-

uations [63] without minimax assigns each player personal payoffs [scoremax scoremin]

to maximize with respect to a mutual understanding that other agents also intend to

maximize their own payoff. The subgame Nash Equilibria solutions for such games

are analogous to independent behavior.

In a turn-taking-style interaction such as the above game-tree-represented inter-

actions, Ring should apply the search modifications on their turn and only use the

traditional cost-based heuristic h on Red’s turn unless their interaction type is known.

Unfortunately, evaluating states in simultaneous-move-style interactions might be a

bit more complicated due to contrasting heuristic values between Red and Ring.

However, the greatest foreseeable challenge in this research direction has to do

with approximating helpfulness given the plan up to a search state and the necessities
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rather than Red’s real goal. As a post-interaction computation, helpfulness is easy to

compute because the goal is known when searching for Red’s single-agent plan and

we know what actions Red took to accomplish their goal. Without knowing the true

goal or Red’s future actions, we must approximate both of these in the search. This

is prone to compounding error if the necessities are incorrect, and the computational

efforts involved to predict Red’s remaining actions could be high unless we make trivi-

alizing assumptions such as Ring no longer acting (like measuring Riker’s helpfulness

incrementally in Section 5.3.1.3). This assumption would reduce predicting the cost

of Red’s remaining actions to the traditional cost heuristic from the current search

state scur. Then costπ∗G,≥now would be the traditional cost heuristic from Inow to some

goal state satisfying the necessities ĜRed and costπRed←Ring would be the sum of the

predicted cost for Red’s remaining actions and Red’s actions’ costs in the plan up to

scur, similar to the breakdown of g (s) + h (s) in A* search (Section 2.1):

H
(
π
Inow→scur→ĜRed

)
≈ h (Inow)−

(
costRedπInow→scur

+ h (scur)
)
.

Will these simplifications and possible errors still yield appropriate responsive behav-

iors for the interactions?

5.4 An Illustrated Example of Responsive Planning

To demonstrate the process of responsive interaction, we create a two-agent prob-

lem based on the BlockWords domain from Ramı́rez and Geffner’s dataset3 [227].

Similar to the traditional Blocksworld toy problem, each block contains a letter so

3Note that the legacy code borrowed for our implementation does not scale to cases larger than
the problems used in the International Planning Competition for which it was designed. The com-
petition’s problems turned out to be too limited to illustrate our work due to the types of problems
available (grid world-like problems do not introduce many interaction opportunities) and their typ-
ical solution lengths (Ring would not have sufficient information to interact until Red completes the
short tasks).
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OTHER (16, 6) LATHER (18, 8) HATER (12, 6)
BOTHER (22, 10) MASTER (16,8) LATER (12, 6)
MOTHER (18, 6) FASTER (16, 8) WATER (12, 6)

Figure 5.1. Initial state and goals for our example problem with tuple(
costπ∗G , costπ∗Red+Ring

)
. The specific problem instance’s goal word is bold-faced.

that stacks of blocks spell words from top-to-bottom. Figure 5.1 illustrates the initial

state and lists the 12 possible ‘goal words’ that will be the hypothesis set H for our

example. To extend BlockWords for two interacting agents, all actions in ARed+Ring

are performed in parallel when different blocks are involved, and actions that share

blocks are modified to account for joint actions: putting down the same block that

is picked up is considered a handover, and two consecutive blocks might be picked

up or put down in a stack simultaneously. We omit pairs of actions that have race

conditions, such as placing a block on top of one that is being picked up.

5.4.1 Assistive Interaction Example

We assume that Ring only computes one responsive plan without replanning; so

the decision of when to join can be evaluated as well. Red uses a planner to find

an initial optimal plan π∗G that solves their assigned goal G: spelling MASTER. As

Red performs each action at in π∗G, Ring observes it and then computes P (G |O, r )

where O≤t = π∗G,≤r. Figure 5.2 presents these recognition results for several choices

of foresight parameter ε. We observe marginal differences for smaller ε, but larger ε

exaggerate the probability of more costly goals as each action is taken. We will use

ε = 3 because it maximizes the necessities, but the threshold τ = 0.3 (slightly less

than the greatest probability mass given to a goal at the beginning) yields the same

propositions for all ε ≤ 5.
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Figure 5.2. Recognized distribution over H as each action of π∗G is taken. The value
of foresight parameter ε increases from left to right, top to bottom. The most costly
goal, spelling BOTHER, becomes more likely as ε increases to look further ahead.

Because all the goal words share the same last two letters ER, we note that the

necessity for ‘stack E on top of R’ and ‘place R on the table’ are always 1. So for

any τ , these two conditions will be part of ĜRed . When the distribution is more

uniform at the earlier timesteps, any goal condition that frequently appears in H

has greater necessity. For example, observing the first two actions (Red takes H off

T and places it on the table) does not disambiguate any of the goals so that the

conditions ‘stack H on top of E’ and ‘stack T on top of E’ both have necessity 0.5;

half the goals end in HER and the other half end in TER. However, both conditions

cannot be true simultaneously so that ĜRed = GRing has no solution and Ring is

unable to join in yet. After performing the sixth action (Red places S on top of T

in Figure 5.3), the recognition algorithm identifies MASTER and FASTER as the

most likely candidates and their shared goal conditions become the only ones with

sufficient necessity—greater ε also deem their conflicting conditions necessary. The

red lines show the conditions that are already satisfied, and the green dotted lines

show the unsolved condition: ‘stack A on top of S’. πRing and πRed←Ring complete this

together in 4 steps rather than Red completing it alone in 8 steps. Red then stacks M
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Figure 5.3. The state after Red

performs the sixth action in its
plan. The identified necessities
are shown in red (satisfied) and
green (unsatisfied) overlaid lines.
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Figure 5.4. The state after Ring

performs its assistive responsive
plan alongside Red’s plan. All the
necessities are satisfied so that Red

just needs to stack the final block
and complete its spelling task.

on top of the stack in Figure 5.4 to complete G. Hence H
(
πRing

)
= 4, indicating a

helpful assistance in solving the task.

5.4.2 Adversarial Interaction Example

In the case that the assistive interaction example above was instead adversarial,

we would need to consider the scenario for several durations d. Recall that Ring’s

goal is to ensure that G is never complete within d actions after the current time

step. Thus, using the same example and again waiting until Red performs the sixth

action, Ring easily accomplishes their goal with any arbitrary plan if d < 2 and almost

any arbitrary plan if d < 10. These cases are simpler because the quickest Red can

accomplish the task is costπ∗G = 16 alone and costπ∗Red+Ring
= 8 with an assistive

partner. We emphasize ‘almost’ because any πRing that helps to spell G’s goal word

can complete G within the reduced duration if two agents can solve the task together

within that time.

However, once d is great enough that Red can solve the plan on its own, then Ring

has to execute plans that prevent at least one of G’s conditions from being satisfied

at every time step. For our BlockWords example, there is a ‘trivial plan’ πhoard
Ring

where Ring picks up one of the required blocks, such as S, and then performs no-ops

indefinitely. Red is unable to obtain the block held by Ring and can never complete
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Figure 5.5. The state in Figure 5.3 two actions later, modified with respect to
Ring’s adversarial responsive plan πRing . Stacking S on top of M undid two satisfied
necessities while Red began to uncover the A block.

the task; thus H
(
πhoard
Ring

)
=−∞. As most off-the-shelf automated planners use search

in place of such logic, we instead expect πRing to continue to pick up and rearrange

the blocks that will undo Red’s progress. Such πRing will usually have a finite negative

helpfulness so that it is possible to find a (less optimal) solution πRed←Ring . Figure 5.5

displays the state after unstacking S from the goal word and stacking it on top of

M, but Red can still complete the task if this is the entire πRing . Ring will eventually

need to replan and resume taking the tower of blocks apart. This back-and-forth

interaction of Ring’s deconstruction and Red’s reassembly emphasizes the need for

planning and recognition to continuously update each other.

5.4.3 Independent Perspective

Lastly, let us consider two independent interactions where G′1 is to spell the word

HOWL and G′2 is to spell the word WOLF, both using the same blocks. G′1 is

the simpler case because none of its blocks are involved in the necessities after Red

performs the first six actions. Thus πRing will eventually pick up W and put it on

top of L, which helps Red by reducing the number of actions needed to reach the A

block. Then πRing will later pick up O in order to place it on top of W, but Ring

will first need to move the M block. Ring will not place M on top of the stack of

blocks spelling G’s goal word because that will prevent success from becoming true

(see Figure 5.6) unless A was already put on top of S. Likewise, if Ring had to move

other blocks afterwards (in this case, they just pick up H and place it on top of O),
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Figure 5.6. The state in Figure 5.3 four actions later, modified with respect to Ring’s
independent responsive plan πRing with a personal goal of spelling HOWL. Red does
not use responsive planning and thus covers H with F, but Ring also moves M instead
of helping Red uncover A as they did during assistive interaction.

then they would not place the blocks on top of M because ĜRed contains a condition

to leave nothing on top of the M block (in case G spells MASTER).

Because ĜRed also contains a condition to leave nothing on top of the F block in

case G spells FASTER, G′2 is more difficult to accomplish. The most Ring can do is

uncover the W, O, and L blocks and start to stack them. However, stacking them

is not practical because Ring will have to undo the stack in order to place them on

top of F later. Thus more observations may be necessary before Ring interacts in this

case so that it can later update ĜRed and confirm that ‘stack nothing on top of F’ is

not a necessity. Unless Red stacks a block on top of F, then this would unfortunately

require Ring to wait until G is already complete due to the ambiguity of the two goals.

This presents an interesting path of future work where both agents are simultaneously

observing each other for independent interaction.

5.5 Concluding Remarks: Responding through Observation

The majority of decision-making systems today define tasks as concrete goals,

telling the agent(s) exactly what they must do in order to accomplish the assigned

task. Though humans do not always describe the goal conditions or reward functions

correctly [130, 183] such that the intelligent agent might execute unexpected actions

that people will question or deem unsafe [9] (or, like the classic programming adage,

do what the person says instead of what the person wants), their descriptions are

of the form “affect/change the environment in this way.” Such a format does not
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readily address tasks with abstract goals such as the three types of interaction dis-

cussed throughout this chapter: assistive, independent, and adversarial. Such tasks

have descriptions of the form “help us’,’ “do not get in the way”, and “stop them”,

respectively.

Although these task descriptions are vague, they usually become concrete over

time once the agent knows the means of accomplishing the abstract task :

• “Help us carry the groceries to the kitchen.”

• “Do not get in the way while we vacuum the carpet.”

• “Stop them from making too much noise.”

Even if goal-driven agents Red do not communicate the concrete portion of the task

directly, it is possible for the interactive intelligent agent Ring to observe them both

before and during the interactive experience. Using various recognition algorithms,

including the ones described throughout Chapter 3, Ring can take advantage of these

observations to predict Red’s goals and upcoming actions. Even when there is un-

certainty between goals at the earlier stages of the interaction, the reason for this

ambiguity is the overlapping satisfaction criteria between those goals and their cor-

respondence to Red’s most recent actions. Until further observations are available to

disambiguate the concrete task, the overlapping criteria likely need to solved regardless

of Red’s true goal. This yields the necessities of Red’s current task, which generate a

concrete, intermediate goal that allows Ring to initiate interaction while continuing to

observe Red. Automated planning methods, including the ones described throughout

Chapter 2, can find a solution to this intermediate goal.

The abstract nature of the task is generally evaluated more holistically than the

associated concrete task as well. It is often easy to be successful with respect to the

interaction’s description, but Red could deem Ring’s level of success lackluster:
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• Ring carries only a single bag of pretzels to the kitchen to help, but Red carries

the remaining groceries including heavy milk cartons and canned food.

• Ring treads around the carpet’s perimeter to avoid getting in the way, but trips

over the cord and disconnects the vacuum from the wall outlet. So Red has to

stop and plug the vacuum back into the wall outlet.

• Ring hides all the musical instruments and the television remote in another

room, which delays Red from creating noise until they find the hiding spot.

We introduce helpfulness as a means of measuring the degree to which Ring reduced

Red’s efforts, and ideal values for this measurement depend on the type of interaction.

It is likely that helpfulness can play a deeper role in the decision-making process so

that the responsive plan adheres to the abstract task for the entirety of the interaction,

rather than as a consequence of achieving each intermediate concrete task.

While this seems sufficient for closing the interaction loop because the interactive

intelligent agent makes decisions to act with respect to their perceptions of others,

there are a few more steps involved. Unlike closed-loop control in an environment

devoid of decentralized agents, other agents such as Red have their own autonomy.

This means they can observe Ring and might change their own plans in an attempt

to accommodate those predictions. Red can also become distracted or change their

goals mid-execution, which will invalidate some, most, or all of Ring’s expectations

that guided the responsive planning so far. We explore these remaining issues for

closed-loop interaction in more depth in the following chapters of this dissertation,

but they ultimately tie into responsive planning.
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CHAPTER 6

THE PRETCIL FRAMEWORK AND AN
IMPLEMENTATION

I study how machines can play with people.

— Richard (Rick) G. Freedman,
elevator pitch opening

We just need to implement code for a planner and a recognizer, and
then we write a little more code to connect them as they share information
indefinitely. If we agree on the data structures beforehand to synchronize
their representations, then this will not take long at all. It should be done
before you submit grad school applications!

— Richard (Rick) G. Freedman,
famous last words when mentoring Roman Ganchin and Yi Ren Fung

We have covered enough topics to finally introduce the Planning and Recognition

Together Close the Interaction Loop (PReTCIL) framework, an integrated approach

for building interactive intelligent systems in which automated planning and recog-

nition algorithms share information as previewed in Figure 1.1 and now detailed in

Figure 6.1. The key element of the PReTCIL framework is that each step is not con-

nected as a pipeline, but instead running concurrently and the arrows show the flow of

information shared between steps. Open-loop interaction uses a pipeline architecture

to repeatedly complete a step and pass its outputs as inputs to the next step. This

causes the limitations to the interactive experience that Chapter 1 describes. Closing

the interaction loop through integrating each step will not only improve the dynamic

qualities of the interactive experience, but also allow each step to provide useful in-

formation that guides the others. Continuing from Chapter 5, we investigate a more

complete integration of PAIR algorithms (see Chapter 3) and automated planning
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Figure 6.1. The PReTCIL framework’s planning and recognition interaction loop.
Components pass information forward for processing (gold) or backwards to improve
performance in later iterations (green).

algorithms (see Chapter 2) that closes the loop of an interactive intelligent system

Ring. Besides identifying and deciding how to reach the currently perceived goals of

an observed user Red from the currently perceived state, this includes predicting how

others will respond to Ring’s responses as well as monitoring how well the interaction

is going.

To connect all the components, it is crucial that their inputs and outputs work

together with a shared representation. Hence the choice of sensor data represen-

tations, intermediate data structures, and world representations must relate to the

characteristics of the integrated algorithms that will produce or process them. Other-

wise, an implementation of the PReTCIL framework can use any algorithm and/or

model that is appropriate for the corresponding component(s). We chose to integrate

recognition as planning (RaP, see Section 3.1.3) and responsive planning (see Sec-

tion 5.2) without a dynamic prior in our preliminary implementation. In order to
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make this implementation functional and feasible, this chapter also develops a state-

space variation of these approaches, provides details about the program, and includes

a postmortem describing the tribulations encountered.

6.1 Related Closed-Loop Interaction Approaches

Closed-loop interactive intelligent systems act with respect to the users’ actions

and intents, creating an ongoing dynamic and adaptive interactive experience. While

many of today’s commercial digital assitive agents appear to exhibit closed-loop inter-

active behavior, either the set of user inputs or agent outputs are often constrained to

some preprogrammed behaviors. The primary applications of artificial intelligence in

these systems include processing the input (for example, speech-to-text) or perform-

ing the output (for example, motion planning), but they do not actually understand

the user better and make decisions based on such an understanding.

Several closed-loop interaction frameworks have recently been proposed, each in-

tegrating some approach for plan, activity, and/or intent recognition (PAIR) with

another approach from the decision making literature. No one approach, including

the PReTCIL framework, is superior in any way. In fact, each has trade-offs that

support different scenarios and use cases. To provide a source of comparison, we

briefly introduce the two other approaches of which we are aware.

6.1.1 Integrated Execution Monitoring and Automated Planning

As far as we know, Levine and Williams introduced Pike [174, 176] as the first al-

gorithm for closed-loop interactive agents. Designed for cooperative team applications

where all agents share the same global task, such as coworkers in a factory domain,

Pike assumes that the agents involved in the interaction all share the same goal(s)

and will be able to coordinate prior to the task execution. However, it is possible

that agents have unique action niches based on their design—people can perform
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dexterous tool-related tasks more effectively than a robot, but an industrial robot is

generally strong enough to pick up very heavy objects.

Following the assumption that all agents share the same set of goals, Pike first

runs offline with the set of goals to generate a library of centralized multi-agent plans

that solve each goal, including alternative solutions. Rather than store this plan

library as a collection of action sequences, though, Pike compiles all the plans into

a single data structure called a Temporal Plan Network (TPN) [159]. Due to Pike’s

use of classical planners such as OPTIC [22] that account for durative actions, this

data structure schedules the actions in the plan so that agents know within which time

intervals to execute actions in order to avoid timing-related plan execution failures.

Pike shares the TPN with all other agents, both human and machine, because the

target domains know that all agents will work together from the start without any

ad-hoc team transformations [94].

The unique feature of Pike’s TPNs is that they include choice nodes where an

agent selects one of several tasks to perform. This addresses the alternative ap-

proaches for solving a single goal and allows overlapping subsequences of actions

between solutions accomplishing different goal conditions. People have the most

flexibility in these TPNs because they can select any of their available actions at

corresponding choice nodes. The computational agents employing Pike instead use

their choice nodes as an opportunity to complement the humans’ choices and ensure

that at least one action is applicable at their next choice node. Pike annotates the

TPN with causal links to indicate which actions’ effects satisfy preconditions of later

actions. By monitoring Red’s actions throughout the plan execution, particularly

at choice nodes, Pike then uses the annotations to refine the applicability of future

actions and resolve missing causal links through deciding how to act at Ring’s own

choice nodes while accounting for time constraints.
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Levine later extended Pike to Riker [175], which extended the TPN to include

probabilistic transitions at the choice nodes. Although this extension sounds sim-

ple, it encourages significant changes to interactive decision making that Pike could

not do. Reasoning over external factors, such as the weather and personal habits,

Riker has greater foresight about teammates’ future choice node selections and dy-

namically adjusts the choice nodes’ distributions. This enables computational agents

employing Riker to prepare their own actions further in advance, which is crucial

in time-sensitive plan execution. Furthermore, Riker has a risk threshold parameter

that allows Ring to select actions whose long-term effects may or may not guarantee

successful plan execution—the probability distributions affect Riker’s risk analysis

towards success. Empirical results indicate that increasing Riker’s risk threshold

parameter correlates to Ring deciding to take actions that more often result in plan

failure, but also increases their helpfulness in the cases where the team is successful

because Ring is willing to participate sooner in the interactive experience. Riker’s

plan libraries typically contain plans with forced start-time delays for Ring, which

guarantees no-op as an option at their early choice nodes.

6.1.2 Confirmation and Negotiation between Recognition and Planning

Around the same time that we introduced responsive planning [82], Geib et al. in-

troduced a framework for interactive intelligent agents [90] that combines the Elixir

plan recognition algorithm from Section 3.1.2 [89] with the Planning using Knowl-

edge and Sensing (PKS) [220]. Similar to Pike and Riker, agents employing this

framework are strictly involved in assitive-type interactions. Discussions with Geib

confirmed that Elixir is now the name of the overall framework, and the plan recog-

nition component is renamed LEXrec while the component running PKS is called

LEXgen. We thus use the same naming convention, despite whatever names appeared

in the original work.
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LEXrec begins recognition in its typical iterative parsing fashion. As users perform

actions, the algorithm updates the probabilistic likelihoods of various parses as ex-

planations according to the combinatory categorical grammar (CCG). The assistive

agent does not involve themself in the interaction until some set of explanations have

a likelihood above a specified threshold. Unlike Riker’s risk threshold parameter,

this threshold accounts for confidence in explaining Red’s plan.

Confidence matters because the step after LEXrec is actually not LEXgen, but an

unnamed negotiation component. To our knowledge, the negotiation component is

the first explicit form of communication in a closed-loop interactive system. Agents

employing Elixir use this component for two purposes:

1. To confirm the recognized task is correct and

2. To request permission to perform remaining tasks in the explanation associated

with the confirmed task.

Sorting the threshold-surpassing explanations in order from most likely to least likely,

Ring asks Red whether the name of the explanation’s complex category (this is not

always the same as the root-result of the explanation) is their intended task. Red sim-

ply responds to either confirm or deny the query, and denial causes Ring to propose

the next most-likely explanation in its sorted list. Failure when Red denies all expla-

nations surpassing the confidence threshold is thus less severe. The plan’s execution

does not necessarily fail because Ring continues to run LEXrec, but Ring did impinge

on Red’s cognitive load.

When Red confirms one of Ring’s proposed explanations σ, then the second phase

of negotiation begins where Ring investigates the names of incomplete tasks in σ. To

avoid any challenges of multi-agent coordination, Elixir assumes that Ring and Red act

on their own for all tasks without overlap of actions and resources. For each remaining

task that satisfies this assumption, Ring requests permission from Red to perform the
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task. Like in the first phase of negotiation, Red simply responds to each request with

confirmation or denial. Once this phase of negotiation concludes, Ring knows the list

of permissible tasks that are assigned to them. Red should complete the denied tasks,

which gives Ring the freedom to run LEXgen. Elixir translates the assigned task names

into goal conditions for LEXgen, which then computes a corresponding sequence of

actions. Ring performs this plan in parallel with Red’s continued plan execution, and

the two agents no longer need to interact with each other.

Although LEXgen ends the interaction framework such that Elixir appears to be

open-loop during plan execution, PKS happens to account for sensing actions that

still make it aware of the environment and indirectly aware of Red’s future actions.

For example, if Ring has a task that involves taking items from a drawer, then the

PKS-computed plan should enforce a sensing action to determine whether the drawer

is open. Whether Red has been opening or closing the drawer throughout the inter-

action, Ring is able to act accordingly. Furthermore, the negotiation step establishes

a mutual understanding between both Red and Ring; each agent knows which task(s)

the other will accomplish so that Red can at least plan around Ring through expec-

tations. Humans are still far better at adaptive decision making than machines, and

giving people sufficient information to prepare to work around the machines is a very

effective, often low-cost approach to creating an acceptable interactive experience.

6.2 Overview of PRETCIL Framework

The primary feature of the PReTCIL framework is the integration of perceiving

interaction partners and making decisions about how to respond such that these two

aspects influence each other throughout the interactive experience. Activity recogni-

tion abstracts low-level observations, such as raw sensor information, into higher-level

action labels/descriptions for both plan recognition and intent recognition. These two

forms of recognition estimate Red’s goals and predict what actions they will take to
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achieve them. With these predictions, a planner selects Ring’s actions to respond to

the estimated goals with respect to Red’s expected actions. If the decisions are too

high-level, then execution determines how Ring can perform the chosen actions. Given

this response, intent recognition can also predict how Red will respond to Ring’s ac-

tion. Lastly, activity recognition completes the interaction loop by again abstracting

what the interaction partner does, which also confirms whether or not the predicted

response is correct.

6.2.1 Example: Perception via Planning as Recognition

When the interactive experience begins, Ring has no model of the interactive part-

ners Red. This means that Ring is not aware of what they want to do and must first

observe them in order to make any informed decisions. Virtual environments encode

information about the program, including the interface, to easily describe Red’s per-

formed actions at a higher-level representation. In real-world environments, Ring will

likely observe everything through raw sensor data, which contains no semantic infor-

mation without some degree of data processing. Activity recognition should process

the data stream to identify Red and how they are affecting the world, generating these

higher-level action representations.

The plan and intent recognition components receive these actions as observa-

tions. For probabilistic RaP algorithms, the plans generated for each hypothesis’s

comparisons serve as the output for plan recognition. The plans specifically provide

information about what the user is expected to do by themself when satisfying each set

of completion criteria. The costs of these recognized plans determine the distribution

over the different hypotheses through probabilistic RaP as well. This distribution is

the output for intent recognition because the distribution identifies how likely each

criteria motivates the user’s actions.
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6.2.2 Example: Decision Making via Responsive Planning

When deciding how to respond to Red’s possible intents, it is important to consider

the long-term interaction as much as the current action being taken. This is especially

important at the beginning of the interactive experience because their initial actions

are often relevant to completing multiple criteria—this ambiguity is the worst-case

distinctiveness [156] that measures the maximum number of actions that the start

of two optimal plans can share despite solving different goals. Furthermore, if Ring

‘assists’ Red towards completion criteria that do not belong to Red’s intents, then

Ring might hinder the experience and reduce Red’s trust and willingness to work with

them.

Our implementation of the PReTCIL framework identifies the necessities (see

Section 5.2) to account for this concern. With respect to the distribution over the

possible goal criteria that the intent recognition component provides, the necessities

are the weighted sum over the parts of each completion criteria. It is rarely the case

that different intents are mutually exclusive of each other; so Ring can complete the

common tasks that progress towards all the likely completion criteria and ideally

begin to assist Red until they perform some action that further disambiguates their

intent.

The necessities generate an intermediate goal for Ring, and we can reuse probabilis-

tic RaP’s planner to find a sequence of actions that will accomplish this generated

goal. The planner generates the plan from the current state as output, assigning

actions to both Ring and Red until they both accomplish the intermediate goal. Al-

though Red is not aware of this joint plan between the agents, Ring follows the plan

and has an expectation of what Red might do.
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6.2.3 Example: Simple Execution Monitoring

Although Red does not know the joint plan, Ring assumes that Red will perform the

actions that the joint plan assigns to them. Through this assumption, Ring’s future

actions will execute successfully without uncertainty. Our implementation of the

PReTCIL framework thus uses this plan for the second purpose of intent recognition:

to predict how Red will respond to Ring’s actions. If Red’s action returned from the

activity recognition component matches the joint plan’s, then we assume that the

interaction is going smoothly and Ring executes their next action according to the

joint plan. If Red’s action does not match, then there is a chance that Ring recognized

incorrectly and reassesses the completion criteria with the newest observation(s). We

call this trivial execution monitoring system that compares Red’s actual actions to

the expected ones Single-Plan Action Matching (SPAM).

SPAM completes the interaction loop because it continues to observe Ring’s be-

havior and use those observations to influence what Red decides to do during the

interaction. From a metareasoning perspective, SPAM determines whether to rerun

the plan recognition, intent recognition, and automated planning components (when

the match fails) or to skip directly to the execution component (when the match suc-

ceeds). The former case allows Ring the flexibility to adapt to any response from Red,

and the latter case avoids spending seemingly unnecessary resources when the stored

plan (and the predictions on which it is established) still hold. However, increasing

the set of joint plans for alternative matching options could make the latter case apply

more often—this supports using Pike [174, 176] and Riker [175] from Section 6.1.1

above as ideal replacements for SPAM in future iterations of our implementation.

6.3 Overview of Implementation

The above example of the PReTCIL framework integrates probabilistic RaP

[227] with responsive planning [82], actively searching for possible plans during the
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interaction and then getting the weighted average over the plans’ corresponding goal

conditions to create an “intermediate goal”. Although the weighted average formu-

lation in Definition 49 assumes that the states have a STRIPS-style representation,

many real-world problems are not easy to represent as a set of logic predicates. Fur-

thermore, using off-the-shelf planning software exchanges the ease of implementation

with the need to daisy-chain multiple pieces of software together and sacrifice efficiency

from separate processes in the system not taking advantage of shared information.

We1 developed a software library in C/C++ that addresses these issues for our initial

implementation of the PReTCIL framework based on the example. The library’s

more generic state-space representation allows developers to write customized code

and represent their domains that are more difficult to capture in STRIPS alone, but

this feature comes at the price that developers need to implement some additional

functions on their own. In this section, we explain our software library’s general

structure and show what developers need to implement for their specific application.

6.3.1 Library Structure

Figure 6.2 illustrates the primary components of the library that we developed

for our implementation of the PReTCIL framework. The library’s built-in classes

are all defined using C++ templates for state and action representations. In general,

developers need to implement their own domain information and application. This

grants them the freedom to use data structures that best suit their representation in

addition to the freedom of expressing how the world changes using traditional code.

1The team at early stages of development included Richard G. Freedman, the author of this
dissertation, alongside student mentees Roman Ganchin and Yi Ren Fung. Upon joining SIFT,
Freedman completed the library and implementation independently using internal research and
development funding.
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6.3.2 State-Space Planning

Both probabilistic RaP and responsive planning require the use of an underlying

planner, which we implemented as a suite of heuristic forward-search algorithms (see

Sections 6.4 and 6.5 for more details). Although many search-based off-the-shelf

classical planners rely on optimized domain-independent heuristics for specific state

representations that correspond to some subset of PDDL specifications, we instead

pass the responsibility of heuristic implementation to the developers because there

are no constraints to their state representations. Furthermore, there are typically

more accurate domain-specific heuristics.

In addition to computing distances between states, the developer needs to both

identify whether a state satisfies the goal criteria and generate the successor states

during node expansion. These functions are all defined within the search node ma-

nipulator -derived class, which performs operations given search node inputs. Search

nodes store the state and parent information, which does not require domain-specific
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modifications—developers can simply use typedef for search nodes with the instan-

tiated templates rather than create a subclass.

6.3.3 Probabilistic Recognition as Planning

To account for observation sequences, RaP algorithms modify the domain to in-

clude a “progress bar” that fills as each observation is satisfied. STRIPS-represented

domains do this through the inclusion of new fluents that count observation suc-

cession, and our library augments the observation progress bar in the search node

(observable) and search node manipulator (observable) classes. These are subclasses

of the search node and search node manipulator classes, respectively. The developer

needs to implement one new function for the manipulator to properly adjust the

progress bar: evaluating when an observation is satisfied. Besides observing actions

like the original algorithms, we also include the previous and current states to allow

observations of the state-transitions and/or sensed features [252]. It is up to the de-

veloper to decide how the observed states in the transition and/or action match an

observation, based on both their representation and which information matters for

their application.

6.3.4 Responsive Planning Agent

The responsive planning agent manages the interactive experience through the

integration of automated planning and recognition that defines the PReTCIL frame-

work. A single responsive planning agent stores an observation sequence and state-

space planner per agent in the application’s environment, which serves as their models

(that is, how Ring internally describes Red). This information allows the probabilistic

recognition as planning component to compute a distribution over the hypothesized

sets of goal conditions per agent. Due to the developer’s freedom to implement states

(and thus goal conditions) as they see fit, it is also necessary for the developer to
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implement a function that uses this distribution to generate a set of “intermediate

goal” conditions called necessities.

The responsive planning agent also has a joint-multi-agent planner that assumes

all agents act in a centralized fashion, which plans out all their actions. As a trivial

execution monitoring system, SPAM (see Section 6.2.3) simply checks whether other

agents follow the joint plan. If they do, then the responsive planning agent continues

to perform their next action in the joint plan and does not need to rerun recognition

as planning, necessities computation, or joint-multi-agent planning. If the expected

action does not match, then the agent uses the updated observation sequence to rerun

these components and generate a new joint plan. Because the developer defines the

domain’s actions, we recommend they also override the function defining which action

to perform next. If the joint-plan does not exist or is exhausted, then it throws an

error, but the developer can provide a default action to perform instead.

6.4 Recognition as Planning using Heuristic Search

Heuristic search serves as the underlying process of most classical planning meth-

ods and is a viable approach for finding solutions to problems that cannot be rep-

resented classically. However, the domain-independent classical planning heuristics

have been the key to simultaneously handling the two objectives in recognition as

planning algorithms—they solve the original problem and find plans that do (not)

contain the observed agent’s action sequence. Referring to the equations throughout

Section 3.1.3, the new pairs of planning problems PGO and PG¬O encode two tasks into

their set of goal conditions. Preserving G indicates the first task: solving the orig-

inal problem. Including {pm} or its negation introduces the second task: following

or disregarding the observation sequence. We can only add pm to the current state

upon performing all the actions in O in order throughout the plan; each pi cannot be

removed once it is added to the state. This means that solving the original problem
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PG = (F,A, I,G) will inherently solve one of these two new planning problems, but

which one would be arbitrary.

The domain-independent heuristics developed for classical planning representation

languages can naturally address solving both tasks because the problem itself does

not affect the estimation algorithm. Both the original and new problems’ STRIPS

representations provide all the information to create the heuristic. Simply including

pm or ¬pm as a goal condition is enough to alter how the heuristic evaluates each node

in the search space. To implement RaP algorithms without assuming a STRIPS-like

representation language, this means that we must adjust the heuristic that guides the

search to target goal states that address both objectives simultaneously for each new

planning problem. This is not the same as a multi-objective search problem [187]

because it is a mandatory conjunction of task criteria rather than a choice of cost

trade-offs to condition the solution set.

This section introduces two approaches that we designed in an attempt to address

this challenge while searching in a generic state space. Although there are flaws in

each approach, exploring their pros and cons provides new insights. The scientific

community generally frowns upon negative results, and this dissertation is one of the

few opportunities to disseminate the findings. We hope the reader learns something

useful or identifies how to build off this work to create something successful. For the

actual approach in our library’s implementation, we direct the reader to Section 6.5.

6.4.1 Notation

When searching over a state space that is not constructed from a classical planning

representation language, we must manually implement the search space and heuristic.

Specifically, we only assume that the following are available from the initial planning

problem implementation that is encoded in some programming language L:
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• The set of states S is the set of all assignable values to a set of variables2

(primitives, instances of classes/structures, data structures, etc.),

• Each action a ∈ A is a deterministic function mapping a : S → S∪{nil}, which

changes the input state when it can be applied and returns nil otherwise,

• The initial state I ∈ S is a specific assignment of values to all the variables in

the state definition,

• The goal check function G : S → {true, false} evaluates to true if and only if

the input state satisfies the task criteria,

• And the heuristic function hG : S → R≥0 estimates the cost of a plan satisfying

G starting from the input state.

When encoding O in L, we allow components of the transition function’s input

and output to be observed as a single observation.

Definition 55. An observed transition is a tuple

(before (s, a) , doing (a) , after (a (s) , a))

that represents an agent performing action a ∈ A while in state s ∈ S. before and

after are abstraction functions that map states to some subset of their features that

are relevant to the performed action. If nothing about a state is relevant, then nil

is returned. doing is an abstraction function that returns the relevant portion of the

name of the performed action (which allows obfuscated observations [167]) or nil.

2This is similar to defining a SAS+ [16] state because computer memory is finite, and SAS+ vari-
ables may be assigned any value within a finite domain. However, classical planning representation
languages do not create new objects; all possible values are predefined per variable’s domain. So this
is more general unless every possible binary encoding within a memory address space is enumerated.
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This representation not only accounts for Sohrabi et al.’s inclusion of observable

state features [252], but also addresses the fact that classical planning representation

languages often embed relevant before/after information about the state in the action

name. To account for the observation sequence in our heuristic search solver, we

modify the search space using a counter similar to the {p0, . . . , pm} fluents:

Definition 56. The observation space is an augmented state space DOenum that ac-

counts for O through vertices SO and edges from instances of elements of AO where:

• SO = {(s, i) |s ∈ S ∧ i ∈ {0, 1, . . . ,m = |O|}}

• aO ∈ AO is a deterministic function mapping aO : SO → SO ∪ {nil} such that

aO (s, i) =



nil if a (s) = nil

(a (s) , i+ 1) if oi+1 abstracts

from (s, a, a (s))

(a (s) , i) otherwise

The observation space effectively makes (m+ 1) copies of the original search space

Denum,0,Denum,1, . . . ,Denum,m and transitions from copy Denum,i to Denum,i+1 whenever

the observed transition matches the next oi+1 ∈ O. It follows that the initial state,

similar to the traditional recognition as planning definition, is (I, 0). Likewise,

G+O : (s ∈ {s ∈ S |G (s) = true} , |O|) 7→ true and

G+O :
(
s ∈ {s ∈ S |G (s) = true} , i ∈ Z≥0

<|O|

)
7→ true

are the new goal check functions in the observation space for PGO and PG¬O respectively.
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6.4.2 Approach 1: Sequence of Heuristic Searches

As a baseline approach to solving problems PGO and PG¬O for each G ∈ H, we pro-

pose an algorithm that runs multiple instances of heuristic search over the observation

space.

The modifications made to solve PG¬O are very minimal aside from the conversion

to observation space because it is likely that many solutions to PG will not contain

O as a subsequence [189]. Rather than precompute a plan for PG and assume that

it will have the same cost as some other plan that will never contain O, we introduce

a trivial extension to the original heuristic function that we call BOOM (Block Off

Observation m):

hG+O (s, i) =

 ∞ if i = |O|

hG (s) otherwise
.

BOOM avoids states in Denum,m. This näıve search lazily pursues each solution to PG

sequentially until it violates being a solution to PG¬O. In the case that many solutions

happen to contain O as a subsequence, BOOM will be inefficient because it does not

abandon undesirable paths to the goal until the last possible opportunity (when the

observation sequence becomes a subsequence).

The modifications made to solve PGO are not quite as simple and involve a two-part

search algorithm to address each implicit task independently : matching the observa-

tion sequence and reaching a goal state. As the observation sequence must be a sub-

sequence of the plan before reaching a state that satisfies the goal conditions, there

is a priority for matching the observation sequence first. This first planning problem

PO in the observation space uses the traditional initial state (I, 0), but replaces the

goal check function with

O : (s ∈ S, |O|) 7→ true

that only cares about finding some state in Denum,m. To guide this search process, we

introduce a trivial heuristic that only pays attention to the counter
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hO (s, i) = |O| − i.

The solution to PO is the prefix of the plan solving PGO as it addresses the first implicit

task of containing the observation sequence.

The second planning problem PG ′O conceptually continues from the end of the

prefix to find a state that satisfies G. However, we perform heuristic search in the

original search space with the given goal check G and heuristic function hG because

we already satisfied the criteria of matching the observation sequence. The only

difference is the new initial state I ′, which is the goal state (I ′, |O|) that the prefix

plan reaches. The solution to PG ′O is the suffix of the plan solving PGO ; thus the two

sequences of actions are appended to obtain the actual plan π̂∗G+O.

When all action transitions in the state space Denum are bidirectional/reversible,

we do not need to worry about the Sussman Anomaly despite addressing the two

subproblems sequentially because we restart the heuristic search algorithm between

them. This means that backtracking to a previous state s in the original search space

is possible, but it would technically correspond to distinct states (s, i < |O|) and

(s, |O|) in the observation space. However, caution is necessary when there exists

a unidirectional/irreversible action a// in Denum because the solution to PO might

include this action. If all the goal states satisfying G that are reachable from I are

not also reachable from I ′, then the Sussman Anomaly applies because PG ′O will not

have a solution—the search cannot undo a// from the prefix plan to reach the goal

states.

The overall FIREWORKS (Find an Initial state REcognized With the Observa-

tions, then Resume K Searches) algorithm optimizes this two-search procedure by

only solving PO once because it is the same for all G ∈ H. Figure 6.3 illustrates

FIREWORKS over a search space. Because there might be multiple optimal solu-

tions to PO that would place PG ′O ’s initial state closer to or further from a respective
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Figure 6.3. An illustration of the FIREWORKS algorithm overlaid on the original
search space. The prefix path (I → I ′) solving PO requires a single search (solid
shaded), but each goal check must search (dotted borders) for its own suffix (I ′ →
G1≤i≤K=|H|) solving PG ′O .

goal state, there is no longer a guarantee that the solution to PGO is optimal, which is

a key assumption for the traditional RaP algorithms. FIREWORKS further fails to

guarantee optimal solutions to PG
O because the prefix of an optimal solution to PG

O is

not necessarily an optimal solution to PO, which is possible when there are missing

observations in O.

6.4.3 Approach 2: Extended Heuristic for Traditional Search

In contrast to the amalgamation of various search problems above, we also propose

a more uniform approach to solving PGO and PG¬O. In particular, we only perform a

single heuristic search per problem and introduce a pair of heuristics that can address

both implicit tasks simultaneously. Although we will use best-first search where the

priority queue sorts the frontier using only the heuristic value, we assume that the

original priority value function is like the one used in A∗ search fG (s) = g (I, s)+hG (s)

rather than just hG (s). In this case, g (s1 ∈ S, s2 ∈ S) is the exact cost of the path

from state s1 to state s2.

The Distance-to-Observation Progress Linear Ratio (DOPLR) balances between

the two tasks of reaching the goal and (not) matching the observation sequence

hOG (s, i) =
fG (s)

i+ 1
and h¬OG (s, i) =

fG (s)

|O| − i+ 1
.
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The numerator approximates the remaining or total cost to the goal, and a cheaper

cost is preferred. The denominator counts the index of the observation sequence

up to which it is a subsequence of the current path. As the index increases, hOG

decreases to show progress towards satisfying the subsequence goal condition (solving

PGO ), and h¬OG increases to show progress away from satisfying the non-subsequence

goal condition (solving PG¬O). These denominators are similar to the heuristic that

FIREWORKS uses to find the prefix plan.

The DOPLR heuristics have some useful properties to ensure that both tasks are

addressed in tandem. The first property shows that one task will properly handle

tie-breaking for the other. The proofs clearly come from the design of the ratios as

explained above.

Lemma 3. Let (s1, i1) , (s2, i2) ∈ SO be two states in the observation space. The

following statements hold:

• If i1 = i2 and fG (s1) < fG (s2), then hOG (s1, i1) < hOG (s2, i2) and h¬OG (s1, i1) <

h¬OG (s2, i2).

• If fG (s1) = fG (s2) and i1 < i2, then hOG (s1, i1) > hOG (s2, i2) and h¬OG (s1, i1) <

h¬OG (s2, i2).

The second property reveals that we can provide a relative bound on the set of

states that are explored before reaching a particular state. We emphasize the word

‘relative’ because we constrain the states considered to those on the frontier rather

than in the those reachable from the initial state, which is a less traditional bound in

state space exploration.

Theorem 2. Let (s, i) ∈ SO be a state in the observation space. Then before exploring

(s, i) during heuristic search from (I, 0) with heuristic hOG, all states (s′, i′) ∈ SO on

the frontier satisfying

fG (s′) < fG (s) · i
′ + 1

i+ 1
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must have been explored first.

Theorem 3. Let (s, i) ∈ SO be a state in the observation space. Then before exploring

(s, i) during heuristic search from (I, 0) with heuristic h¬OG , all states (s′, i′) ∈ SO on

the frontier satisfying

fG (s′) < fG (s) · |O| − i
′ + 1

|O| − i+ 1

must have been explored first.

The constraint considering only states on the frontier does not guarantee the gen-

eration of some states in observation space because one of those state’s ancestors

must have been explored first. There is no guarantee of this happening either due

to the ordering that Theorems 2 and 3 impose. In particular, the denominator in

the ratios can allow a “runaway” situation where the search pursues a single path

without considering others. In particular, hOG can become too greedy for satisfying

the next observation and h¬OG can become too averse to satisfy the next observation.

However, this is not always the appropriate action to take. PGO ’s solution accepts

actions outside those in O such that hOG should not always assume the first action

satisfying an observation is the one observed, and PG¬O’s solution accepts some in-

complete subsequence of O such that h¬OG should consider some satisfied observations

from time-to-time.

Corollary 1. The path found using heuristic search with heuristic hOG is not always

optimal even if hG is admissible.

Proof: (by example) Suppose we have the observation space shown in Figure 6.4

based on a 3× 3 GridWorld instance with an obstacle in the center and observation

sequence O = up. The only state that satisfies G is g and the initial state is I. Let

hG be the oracle heuristic that always outputs the optimal cost to reach a goal state

(this heuristic is admissible because the exact cost is never an overestimate). Then
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the optimal solution to PGO is the path (I = (2, 2) , 0) → ((1, 2) , 0) → ((0, 2) , 0) →

(g = (0, 1) , 1) that matches the only observation as the last action in the plan. How-

ever, exploring (I, 0) adds both states ((1, 2) , 0) (via action left) and ((2, 1) , 1) (via

action up) to the frontier with heuristic values:

• hOG ((1, 2) , 0) =
1 + 2

0 + 1
= 3

• hOG ((2, 1) , 1) =
1 + 4

1 + 1
=

5

2

Heuristic search selects the state on the frontier with the least heuristic value to

explore next, which is ((2, 1) , 1). This expansion adds two more states to the frontier,

((2, 0) , 1) and ((2, 2) , 1), with heuristic values:

• hOG ((2, 2) , 1) =
2 + 3

1 + 1
=

5

2

• hOG ((2, 0) , 1) =
2 + 3

1 + 1
=

5

2

As both of these states have a lesser heuristic value than ((1, 2) , 0), and according

to Theorem 2, the heuristic search explores them first. These expansions add the

following states and heuristic values to the frontier:

• hOG ((1, 2) , 1) =
3 + 2

1 + 1
=

5

2

• hOG ((1, 0) , 1) =
3 + 2

1 + 1
=

5

2

• hOG ((2, 1) , 1) =
3 + 4

1 + 1
=

7

2
(graph search would ignore this duplicate state)

Selecting either of ((1, 2) , 1) or ((1, 0) , 1) will similarly add the following states and

heuristic values to the frontier:

• hOG ((0, 2) , 1) =
4 + 1

1 + 1
=

5

2

• hOG ((2, 2) , 1) =
4 + 3

1 + 1
=

7

2
(graph search would ignore this duplicate state)

• hOG ((0, 0) , 1) =
4 + 1

1 + 1
=

5

2
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Figure 6.4. An observation space (right, original state space is in the center based
on the grid on the left) that illustrates how to find a non-optimal path from (I, 0) to
(g, 1) first using heuristic hOG when hG is the oracle heuristic.

• hOG ((2, 0) , 1) =
4 + 3

1 + 1
=

7

2
(graph search would ignore this duplicate state)

Lastly, selecting either of ((0, 2) , 1) or ((0, 0) , 1) will similarly add the following states

and heuristic values to the frontier:

• hOG ((0, 1) , 1) =
5 + 0

1 + 1
=

5

2

• hOG ((1, 2) , 1) =
5 + 2

1 + 1
=

7

2
(graph search would ignore this duplicate state)

• hOG ((1, 0) , 1) =
5 + 2

1 + 1
=

7

2
(graph search would ignore this duplicate state)

Regardless of the order in which heuristic search selects the states with heuristic

value 5/2, it will expand the goal state ((0, 1) , 1) and thus find a path of cost 5 before

considering the state ((1, 2) , 0) that lies along the optimal path above of cost 3. �

Corollary 2. The path found using heuristic search with heuristic h¬OG is not always

optimal even if hG is admissible.

Proof: (by example) Suppose we have the observation space shown in Figure 6.5

based on five states S = {I, x, y, z, g} and observation sequence O = o1, o2 where the

observations are the state transitions o1 = I → y and o2 = z → g. The only state that
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satisfies G is g and the initial state is I. Let hG be the oracle heuristic that always

outputs the optimal cost to reach a goal state (this heuristic is admissible because the

exact cost is never an overestimate). Then the optimal solution to PG¬O is the path

(I, 0)→ (y, 1)→ (g, 1) that only matches the first observation (not the second one),

and the first action of the plan satisfies that observation. However, exploring (I, 0)

adds states (x, 0) and (y, 1) to the frontier with heuristic values:

• hOG (x, 0) =
1 + 2

(2− 0) + 1
= 1

• hOG (y, 1) =
1 + 1

(2− 1) + 1
= 1

Heuristic search selects the state on the frontier with the least heuristic value to

explore next, but both states have the same heuristic value. If the tie-breaking

strategy [12] selects (x, 0) first, then its expansion adds the state (y, 0) to the frontier

with heuristic values:

• hOG (y, 0) =
2 + 1

(2− 0) + 1
= 1

The tie-breaking strategy again selects the next state in the frontier to explore. In

the case that it selects (y, 0) first, then heuristic search adds the following states and

heuristic values to the frontier:

• hOG (z, 0) =
3 + 1

(2− 0) + 1
=

4

3

• hOG (g, 0) =
3 + 0

(2− 0) + 1
= 1

According to Theorem 3, the heuristic search will explore state (z, 0) after the other

states currently on the frontier. However, the tie-breaking strategy again selects

between states (g, 0) and (y, 1). If it selects (g, 0), then the heuristic search ends

finding a path of cost 3 rather than the optimal path above of cost 2. �

Corollaries 1 and 2 are both important to consider because the computation steps

in RaP generally assume that the planners are optimal. It is not a requirement, and
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Figure 6.5. An observation space (right, original state space is on the left) that
illustrates how to find a non-optimal path from (I, 0) to (g, i 6= 2) first using heuristic
h¬OG when hG is the oracle heuristic.

even the original RaP experiments tried a planner that did not guarantee optimality

[227]. However, it is an issue worth considering because it can impact the recognition

algorithm’s performance. The proofs both show that the order of exploration matter

so that Theorems 2 and 3 are more limited than one might expect. However, even

without admissibility, techniques such as opticizing search [147] exist that use the plan

to refine the search process as it continues and eventually find an optimal solution.

In our early use of the DOPLR heuristics, we erred the interpretation that the

theorems applied to the entire observation space rather than just the frontier. Doing

so alters one of the corollaries, and we present the following misconception that arises

from this misinterpretation to ensure that the reader does not repeat our mistakes.

Misconception 1. The path found using heuristic search with heuristic hOG is optimal

if hG is admissible.

Proof: (by contradiction) Suppose not. That is, let the path found with heuristic hOG

to goal state (s, |O|) ∈ SO have total cost fG (s) > f ∗G (s′) where f ∗G (s′) is the optimal

path cost to goal state (s′, |O|). Then because hG is admissible, hG (s) = hG (s′) = 0

since it cannot overestimate the distance to the goal state. So fG (s) = g (I, s) and

f ∗G (s′) = g (I, s′), which implies g (I, s) > g (I, s′). This means we explored state

(s, |O|) before state (s′, |O|) despite its cost from the initial state being less. By
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incorrectly interpreting Theorem 2 and substitution, we also find that heuristic search

should have explored (s′, |O|) before (s, |O|) because

g (I, s′) = f ∗G (s′) < fG (s) · |O|+ 1

|O|+ 1
= fG (s) = g (I, s) .

This yields a contradiction where we should have found the optimal path first. �

6.4.4 Experiments

To evaluate our hypothesis that we can perform probabilistic RaP using heuristic

search, we re-implemented a popular PDDL domain from the RaP benchmarks [227]

as a heuristic search problem with a customized heuristic for the domain. Besides

comparing the outputs between the traditional approach (see Section 3.1.3) and our

approaches above, we also compare the performance between our new approaches to

investigate their trade-offs.

6.4.4.1 BlockWords Domain Implementation

Section 5.4 describes the BlockWords planning domain for one and two agents;

these experiments consider the version with one agent. To encode the states and

actions, we used the programming language C++ = L. We represent stacks of blocks

as vectors of characters, and another vector stores all the stacks of blocks to represent

the collection of all stacks of blocks on the table. We store the block that the hand

holds after a pick up action as another character. In order to parallel the STRIPS-

based representation, we define each action as a string for the grounded action name

with its parameters and index them in an array. Due to the action containing all the

information like its STRIPS counterpart, our observed transitions are simply of the

form (nil, a ∈ A, nil).

However, to take advantage of the customized code that is not run through a

generalized, domain-independent classical planner, we generate children directly from
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the current state. For example, if the hand is empty and there exists a stack with

an R block on top of an F block, then we generate a state that moved the R block

from that stack to the hand via the action pick up (R,F ). This is a domain-specific

approach that is much more computationally efficient than checking whether every

pair of blocks satisfies some pick up or put down action, taking linear time with

respect to the number of stacks O (s) compared to quadratic time with the number

of blocks O (b2) where s ≤ b since multiple blocks can be in a single stack.

We also implemented an admissible domain-specific heuristic that accounts for

the facts that (1) all the blocks needed to spell a word must be retrieved from each

stack, (2) a stack that contains the spelled word must have no irrelevant blocks on

top, and (3) pick up and put down actions occur in pairs:

hG (s) =
∑

stack∈s

2 · remove (stack,G)

where remove (stack,G) is the number of blocks on the top of the stack that must be

removed. If the bottom of the stack matches the end of G, then remove (stack,G)

counts the first block not matching from the end of G and upwards. Otherwise,

remove (stack,G) counts the bottom-most block in the stack that G’s spelling needs

and upwards.

6.4.4.2 Procedure

We selected twenty BlockWords problem instances from the benchmark dataset

that share the same initial state configuration I of eight blocks and hypothesis set

H of twenty-one goal words to possibly spell. Of these twenty problem instances,

no more than two of them have the same true hypothesis so that there are a variety

of observed plans. Furthermore, there are four sets of five problem instances per

number of missing observations: 30%, 50%, 70%, and fully observed. We omitted the

five 10% observed problem instances because they contained only one observed action;

182



our domain-specific implementation of the heuristic search does not contain a way to

check for no solution to PG¬O (see Section 6.5.2 for a discussion of this phenomenon)

and all these problem instances timed out while exhausting the search space.

We ran RaP on the selected twenty problem instances using our implementations

for BOOM and FIREWORKS as well as the DOPLR heuristics. For the comparison

with existing probabilistic RaP software, we used Ramı́rez and Geffner’s code with the

FastDownward classical planner [116]. For our methods, we logged the computational

resources (nodes explored, nodes expanded, and time) as well the distribution over

the hypotheses. For the existing methods, we logged only the distribution over the

hypotheses because the differences in state representation and implementation do not

permit a fair comparison of resource consumption.

6.4.4.3 Results

Out of the twenty problem instances, both approaches successfully ranked the

correct hypothesis as the most likely in sixteen instances. However, the instances

in which they were each correct were not the same. In comparison, the original

probabilistic recognition as planning algorithm ranked the correct hypothesis as most

likely in all twenty problem instances. Because our heuristics are not guaranteed

to be optimal except for BOOM, we hypothesize that these instances’ computations

involved non-optimal plan costs. To investigate the differences in the distributions,

we computed the KL Divergence

DKL (RG || ·) =
∑
G∈G

PRG (G |O ) · ln
(

PRG (G |O )

P· (G |O )

)

where · is one of the proposed heuristic search approaches and RG is the traditional

version that uses a classical planner. The KL Divergence indicates the “surprise

factor” if ·’s distribution replaced RG’s distribution, noting to what extent the distri-

butions differ as one observes events sampled from each. Figure 6.6 shows that both
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Table 6.1. Resources Consumed (BOOM and FIREWORKS)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 1321 2278.25 3574 4352 7944523 402780.5
Nodes Generated 5939 8893.25 12731.5 15586.25 7956346 414987.5

Time (seconds) 0.4601 0.6566 0.8450 1.1480 1114.7107 57.0987

Accuracy 16 / 20

Table 6.2. Resources Consumed (DOPLR Heuristics)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 2491 7516.25 12661 24650 7961566 417514.1
Nodes Generated 10439 27900 38398.5 70550.75 7998340 452375.95

Time (seconds) 0.8777 2.4987 3.9017 6.7297 1123.9013 61.8347

Accuracy 16 / 20

approaches’ distributions are quite similar except for the final problem instances (the

fully observed cases) and problem instance 7.

Tables 6.1 and 6.2 present the five-statistical summary and mean of resource

consumption for the proposed approaches over the twenty problem instances. The

maximum value is an outlier on the same problem instance, but the BOOM and

FIREWORKS method generally uses less resources than the DOPLR heuristics. This

provides evidence that the number of resources is reduced when we use a less thor-

ough heuristic. However, there seems to be no trade-off between extra computational

resources and accuracy because their performances are almost identical. Despite this,

they both produce distributions that often make similar predictions to traditional

RaP, confirming our primary hypothesis.

6.5 Algorithms for Faster Recognition as Planning

Real-time applications present constraints on a resource that is more difficult to

work around than others: time. Memory hardware has gradually decreased in size and

cost to allow reasonable scale-up, but people do not have the ability to manipulate the

passage of time outside of developing hardware with more clock cycles and employing

multiple cores or GPUs to take advantage of parallel computation. Even with greater-
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Figure 6.6. KL Divergence comparing the distributions from our approaches to the
original.

frequency processing units, the rate of increased speed-up is decreasing due to physical

limitations. Likewise, the flow of information in an algorithm can restrict how much

of the procedure is parallelizable, and the scale-up is still restricted to the number of

processing units available (compared to a nondeterministic Turing Machine that can

run infinitely many tapes in parallel).

Many algorithms, including the ones for artificial intelligence, have both off-line

and on-line variants to address this concern. The on-line versions usually sacrifice

some quality or metric, such as performance or soundness, in exchange for having

some solution within the specified time limit. Automated planning began to address

this a while ago, beginning with anytime algorithms [300] that gradually improved

the plan’s cost if more time was available after finding an original plan. On the other

hand, the younger, inverse research area of plan, activity, and intent recognition has

only begun to investigate this challenge for some of its currently employed algorithms.

RaP algorithms have a tendency to be relatively slow and run off-line with as

many observations as possible because they require multiple calls to the off-the-shelf

planners. As such, there has been research on approaches for speeding up the orig-

inal algorithm [189, 281, 68, 217]; we reviewed these algorithms in Section 3.3.2.
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Though these methods do improve the runtime of RaP algorithms, the majority of

them employ some assumptions that lead to other potential complications during

on-line performance. This effectively makes them faster off-line algorithms unless the

application uses the same assumptions in its real-time setting.

In contrast to these speed-up approaches that apply assumptions to create algo-

rithmic variations or take advantage of some trick, we propose a simple approach

that takes advantage of a special subset of off-the-shelf planners, which still performs

the original RaP algorithm. Namely, we remove overhead and redundant operations

between some consecutive planner calls through continuing to find solutions with a

single planner call. Shirin Sohrabi and Michael Katz together identified a very simi-

lar approach independently of Richard G. Freedman, the author of this dissertation,

around the same time. They are now working together to formally disseminate the

results, but Sohrabi and Katz kindly granted Freedman permission to include his

original findings before the collaboration in this dissertation.

Before revealing these findings in Section 6.5.2, our implementation builds on

earlier attempts to speed-up RaP using an algorithm that seems to have become

forgotten in the literature: multiple goal heuristic search [59]. Roman Ganchin and

Yi Ren Fung worked under Freedman on this earlier attempt to revive the algorithm3

and use it for faster RaP. Section 6.5.1 explains the algorithm and our empirical

observations, including realizations of when it is better to use multiple goal heuristic

search and when it is better to avoid using it.

6.5.1 Multiple Goal Heuristic Search

When running off-the-shelf automated planning software for RaP algorithms, it

is important to note that only the task’s goal conditions change between planner

3We found out that the original implementation was lost following the unfortunate death of
Dmitry Davidov, the lead author of the multiple goal heuristic search paper.
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executions. The initial state, set of actions, and set of states are only modified once

from the original planning domain, and they do not change between iterations. This

makes sense because RaP simulates the agent performing each task within the same

world while enforcing the same observed actions. We hypothesize that this leads

to redundant computation because independent searches can explore the same state

multiple times.

We further hypothesize that multiple goal heuristic search (MGHS), an algorithm

for web crawling applications that finds as many relevant websites as possible for a

given search query, can help with this issue [59]. Although the concept of contin-

uing the search process after exploring any goal state (a condition that terminates

many traditional search algorithms) sounds trivial, MGHS focuses on developing new

heuristics that better guide the search process to find all the goals more efficiently.

The MGHS heuristic has many responsibilities, including guiding the search progress

in multiple directions (per goal) at once, choosing to explore nodes that make progress

towards larger collections of goals, and handling multiple goal states that satisfy the

same task conditions (biasing the search progress away from goal states for unsolved

tasks’ conditions).

Davidov and Markovitch discuss several theoretical MGHS heuristics that describe

the perfect search cases, but these heuristics are usually impossible to find in reality

without already exploring the entire search space. However, they use those proper-

ties to propose several heuristics for one who already has a distance approximation

function hdist (s, g) for traditional heuristic search, similar to h in the remainder of

the dissertation except that the goal conditions are now an additional parameter:

Sum considers how close a state is to finding each goal state g ∈ SG in the search

space

hsum (s) =
∑
g∈SG

hdist (s, g)
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where SG = {s ∈ S, g ∈ G |s satisfies g} is the set of all goal states. SG’s def-

inition makes more sense for web crawling domains because each state is a

web page over a network, which is likely smaller than the set of possible states

in the reachable automated planning state space (up to 2|F | for STRIPS-like

state representations). We thus consider SG to be the set of goal condition sets

instead.

Progress accounts for the search progress to avoid rapidly switching its focus be-

tween different ‘directions’ (clusters of goal states), which allows the search

progress to focus its limited resources on one cluster at a time. The progress

heuristic first evaluates each state s ∈ S on the frontier with respect to GP (s),

the set of goal states that are closest to it compared to other states on the

frontier:

GP (s) =

{
g ∈ SG

∣∣∣∣hdist (s, g) = min
s′∈frontier

hdist (s′, g)

}
.

Then the progress heuristic computes the ratio of

DP (s) = |GP (s)|−1 ·
∑

g∈GP (s)

hdist (s, g) ,

the average distance to the elements of GP (s) (preferring to find the closest

cluster of goal states), to the actual number of goals (preferring to find as many

goal states as possible in larger clusters):

hprogress (s) =
DP (s)

|GP (s)|
.

If GP (s) = ∅, then hprogress (s) = ∞. Unlike traditional heuristic search, this

requires updating every state’s heuristic value whenever the frontier changes.
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Marginal Utility is a resource-bounded heuristic that tries to optimize the search

tree to find as many goal states as possible with the remaining r resources

(nodes explored, time, etc.). Although the marginal utility heuristic involves

an algorithm that frequently updates tables for every state, which estimates the

value of the theoretical heuristic ratio

MU (s, r) = max
T∈T (s,r)

|Tg (s) ∩ T |
r

,

it performs best when applying many modifications to the search process such

as clustering similar states. These modifications require learning features that

indicate which states are similar to each other in the search space. Conceptually,

T (s, r) is the set of search trees with root node s that spent r resources on the

search process, and Tg (s) is the set of all goal states in SG that s can reach in

the search space. Thus MU (s, r) compares the ratio of retrievable goal states to

the number of resources that must be consumed. This is similar to the progress

heuristic, but it does not use the distance estimate and allocates how many

resources to spend on progress before switching to another ‘direction’.

A single search with MGHS might avoid the redundancy of RaP computation

when SG =
{
G+O,G+O |G ∈ H

}
. If the domain’s representation happens to

be STRIPS-like, then there are plenty of domain-independent heuristics to consider

for hdist that are currently implemented in off-the-shelf planning software [123, 116].

Off-the-shelf classical planners will account for the adherence (or lack thereof) to O

due to its compilation into the state space’s augmented fluent set FO. Otherwise, the

developer needs to define observation matching (see Section 6.3.3) and computing the

distance between two states or a state and a set of goal conditions (see Section 6.3.2).

MGHS cannot re-explore the same states that individual RaP searches repeatedly

explore, but MGHS should ideally explore only states that at least one of those
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Figure 6.7. An illustration of MGHS’s search progression (dotted borders) with
the sum and progress heuristics compared to individual heuristic searches per goal
condition set Gi (solid borders). Overlapping solid-bordered regions indicate redun-
dant exploration that MGHS saves. MGHS unnecessarily explores regions exclusively
within the dotted border and not within a solid-bordered region (shaded).

searches would explore. If the tasks’ goal conditions correspond to states within a local

region of the state space (that is, each G ∈ H is similar enough that hdist (g1, g2) ≤ k

for all g1, g2 ∈ SG and some relatively small k ∈ R≥0), then this is not a large

concern because many states in each individual search overlap. However, tasks with

more diversity might have fewer overlapping states in their individual searches. This

would be the same as performing each RaP search, but there is a chance that MGHS

will explore additional states in regions of the search space between tasks that are

never explored during any individual search—Figure 6.7 illustrates a layout of search

progression for these cases. We hypothesize that the progress heuristic will help with

this because it focuses on sets of goal states to minimize wandering between multiple

tasks.
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Representing tasks as goal conditions introduces a potential side effect that Davi-

dov and Markovitch discuss as an additional consideration (Section 4.5 of their work

[59]). It is usually the case that multiple goal states satisfy a single set of goal con-

ditions, which means that MGHS still factors alternative goal states for a solved task

into heuristic calculations. Because we only need one pair of plans per goal for RaP’s

likelihood approximation4, spending resources on additional plans for a solved task

should not be a priority.

Although we can simply remove the solved task’s goal states from SG and stop

collecting alternative plans, this might reduce RaP’s performance because the MGHS

heuristics are not guaranteed to be admissible like hdist often is for traditional heuristic

search. Coincidentally finding additional plans during search is beneficial if they

happen to have a lower cost than the ones currently found. RaP’s equations prefer

optimality when approximating the likelihood, but we repeat from Section 6.4.4.3

that experiments with a satisficing (finding any solution, not necessarily optimal)

planner still showed reasonable performance [227]. The satisficing planner was faster

than the optimal one, and MGHS’s anytime design is conveniently satisficing.

To postpone SG’s refinement until more tasks have at least one solution, we use

Davidov and Markovitch’s heuristic modification suggestions. The modification con-

siders the distance between a state and the set of already-found goal states

hMGHS
dist (s, g) = hdist (s, g)

(
1 + c1e

−c2d(s,found(g))
)

with parameter scalars c1, c2 ∈ R≥0. We instead count the number of goal states found

for the specified task

hRaPdist (s, g) = hdist (s, g) · e|found(g)|.

4Even if we chose to violate the single-plan/max-replaces-sum assumption, we can recover mul-
tiple plans from a single goal state if we keep track of all states’ parents while they are on the
frontier.
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Table 6.3. Features of MGHS Variations

Variation Heuristic hdist Weighted Update Per Goal
SUM A* UNW sum A* X X
SUM A* W NU sum A* X X
SUM A* W U sum A* X X

PROG A* UNW progress A* X X
PROG A* W progress A* X X

SUM BF UNW sum best-first X X
SUM BF W NU sum best-first X X
SUM BF W U sum best-first X X

PROG BF UNW progress best-first X X
PROG BF W progress best-first X X

The motivation for this difference is that web crawling aims to find a diverse set of

relevant websites and each site is still unique, but diverse goal states for a single task

are redundant for RaP computations. Thus searching for goals that satisfy a specific

task are less favorable when other tasks have not found as many goal state instances,

but the priority increases as other tasks find more respective goal state instances.

6.5.1.1 Empirical Evaluation

We implemented MGHS using both the sum and progress heuristic, including a

few basic variations. Table 6.3 lists the features distinguishing each variation. The

primary classes of features involve defining hdist with respect to A* search (g (s)+h (s))

or best-first search (h (s)), weighting hdist based on the number of found goals (hRaPdist ),

and updating the computation of hRaPdist for all nodes on the frontier whenever MGHS

finds a new goal. Because the progress heuristic requires frequent updates based on

the states in the frontier, we note that these variations update whenever MGHS finds

a new goal by definition.

For our empirical evaluation, we implemented RaP where a single iteration of

some variation of MGHS retrieved plans solving all the pairs of goal condition sets:

SG =
{
G+O,G+O |G ∈ H

}
. The current implementation instructs MGHS to

terminate when either:
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• A plan exists per set of goal conditions or

• The entire search space is exhausted.

Because the search space is often far too large to feasibly explore, we include an

optional ‘give-up’ threshold that throws away all states s ∈ S whose current plan’s

cost g (s) exceed a scalar multiple k of the expected optimal plan’s cost:

If

(
max
g∈SG

hdist (I, g)

)
· k < g (s) , then do not add s to the frontier.

This reduces the size of the search space for quicker exhaustion at the risk of missing a

solution when the heuristic is inaccurate. MGHS returns the most optimal plan found

per goal condition set when it meets a termination condition, and we assume that

all goal condition sets without a plan (the second termination case) have no solution.

Theorem 6 (not introduced until Section 6.5.2) provides a weak justification for the

assumption in this case because MGHS does not guarantee that the most optimal

plan it finds is truly the most optimal solution to the problem.

We ran this RaP implementation and two versions using single-goal searches (with

A* and best-first for hdist) on the same BlockWords domain and suite of problem

instances from Section 6.4.4’s experiments. Rather than use the BOOM and FIRE-

WORKS or DOPLR heuristics from those experiments, we used the original heuris-

tic function as an experimental control—Section 6.5.2.1 provides evidence that this

heuristic is useful despite ignoring the observation simulation progress. Tables 6.4

through 6.9 include the results with ‘give-up’ threshold k = 2 to compare the vari-

ations with respect to their resource consumption. The tables do not include any

variations with the “update per goal” feature because they took more than six hours

to run per problem instance. Although it might be a consequence of a poor implemen-

tation without much optimization, the time to update all the states on the frontier’s

heuristic values far outweighed the time exploring unnecessary states with the other
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variations’ less accurate heuristics. To get a better sense of this scaling trade-off be-

tween runtime and visited states, Table 6.10 presents the resource consumption when

searching over smaller, more trivial BlockWords problem instances.

Regarding the empirical results, the recognition accuracy is generally reasonable

for all the variations. However, it is greater when using A*’s notion of distance to

consider the current plan cost as much as the estimated remaining plan cost, which

is an issue that Davidov and Markovitch also mentioned being worth future consid-

eration. Amongst the MGHS variations that do not update per goal, we notice that

weighting the heuristic upon finding goals generally improves resource consumption

both in the number of visited nodes and runtime. This indicates that MGHS with

the sum heuristic was finding multiple solutions to the same goal condition set in a

nearby region of the search space. Increasing the weight of the newly expanded states’

heuristic value (compared to updating those already on the frontier) after finding the

first such goal dissuades MGHS from continuing to investigate nearby solutions that

are likely redundant for RaP computation. This empirical result supports Davidov

and Markovitch’s conjecture and their proposed solution.

Regardless of the resource savings from applying weights to the sum heuristic, it is

still evident that running RaP with multiple single searches is far more efficient than

running RaP with a single MGHS. While this appears to be a dead-end direction and

reason to abandon MGHS, we revisit Figure 6.7’s conceptual illustration of search

progression. Specifically, the sum heuristic searches the largest region of the state

space in order to find at least one state that satisfies each set of goal conditions. The

sum heuristic considers each goal state’s distance with respect to each unique goal

condition set :

hsum
(
Gj
i

)
=
∑
g∈SG

hdist
(
Gj
i , g
)
,

which appears to contribute to this issue. For example, hsum (G1
1) includes the sum-

mand hdist (G1
1, G0), which are on opposite ends of the search space from the initial
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Table 6.4. Resources Consumed (RaP with Single-Goal A*)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 7102 88119 324233 579397 1283969 424814
Nodes Generated 22962 194414 618263 838837 1429749 636698

Time (seconds) 2.1282 25.3894 91.0205 144.8106 313.1597 110.8889

Accuracy 20 / 20

Table 6.5. Resources Consumed (RaP with MGHS SUM A* UNW)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 657720 988145 1168908 1505058 2801828 1291983
Nodes Generated 940983 1291734 1484203 1700347 2758316 1544703

Time (seconds) 331.1712 503.1685 572.4558 713.0611 1153.2303 627.3257

Accuracy 17 / 20

Table 6.6. Resources Consumed (RaP with MGHS SUM A* W NU)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 267597 396689 458022 1415841 2231816 878432
Nodes Generated 523910 649228 751477 1258422 1866089 962897

Time (seconds) 201.7343 249.0654 282.8890 615.0121 1052.3603 461.7122

Accuracy 16 / 20

Table 6.7. Resources Consumed (RaP with Single-Goal Best-First)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 19793 129884 222656 417098 795702 290038
Nodes Generated 22001 119523 183876 360523 616948 232589

Time (seconds) 5.0836 34.2357 59.7817 109.2426 195.2136 73.6835

Accuracy 14 / 20

Table 6.8. Resources Consumed (RaP with MGHS SUM BF UNW)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 547175 913979 1066322 1410752 2260153 1160935
Nodes Generated 653779 1109590 1281681 1360916 2156495 1276209

Time (seconds) 306.1243 472.4070 534.0588 660.0212 954.9943 560.9642

Accuracy 15 / 20

Table 6.9. Resources Consumed (RaP with MGHS SUM BF W NU)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 124033 336739 650518 1125279 2086922 783285
Nodes Generated 255600 594422 853630 971261 1720481 849092

Time (seconds) 95.9842 225.1612 391.5334 557.2130 1009.3003 419.8096

Accuracy 13 / 20
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Table 6.10. Resources Consumed (5-Block→6-Block Domain)

Variation Nodes Explored Nodes Generated Time (seconds)
Single-Goal A* 393→619 890→1782 0.0490→0.1413
SUM A* UNW 384→1372 656→2684 0.0855→0.3414

SUM A* W NU 617→1660 873→3044 0.1014→0.4436
SUM A* W U 900→4906 1074→5594 0.5972→14.5931

PROG A* UNW 576→1276 645→1565 1.5588→10.0335
PROG A* W 516→1274 600→1563 1.3531→10.0948

Single-Goal BF 323→353 558→743 0.0427→0.0513
SUM BF UNW 352→1177 602→2178 0.0709→0.2939

SUM BF W NU 820→2218 919→3224 0.1537→0.4846
SUM BF W U 805→3527 892→3576 0.4350→7.5354

PROG BF UNW 348→1546 475→2057 0.6719→15.0347
PROG BF W 375→3740 523→3238 0.7824→75.8171

state. Because MGHS still explores the frontier in order of least heuristic value to

greatest, this means that it must explore all states whose heuristic values are less

than such large summations (or averages because they multiply the sum by a scalar

constant, which is the number of goal condition sets).

MGHS does not encounter this issue in web crawling applications because the set

of goal criteria are disjunctive; any websites that match at least one goal condition

set is acceptable and satisfies the search results even if none of the found websites

match some specified goal condition set. On the other hand, the set of goal criteria

are conjunctive for RaP; the search results remain unsatisfied until MGHS finds at

least one goal state per goal condition set. This means that we must take caution

when assigning multiple goals to the same MGHS. If the goal states for different goal

condition sets happen to be nearby in the state space, then the sum heuristic between

those goals will remain relatively small and not extend the search progression into

unnecessary regions.

While we leave extensive work on defining the proximity of goal conditions to

future work, we note one obvious case where two goal condition sets are clearly

similar to each other: G + O and G + O for some G ∈ H. We provide a deeper
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Table 6.11. Resources Consumed (RaP with MGHS SUM A* UNW, Goal Pairs)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 21024 95067 236797 416710 1020378 310706
Nodes Generated 46667 163212 375175 519549 1340438 413242

Time (seconds) 6.0025 29.3887 72.4838 123.7634 283.3005 90.0523

Accuracy 17 / 20

Table 6.12. Resources Consumed (RaP with MGHS SUM A* W NU, Goal Pairs)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 39295 307727 438189 942138 2266736 669430
Nodes Generated 69837 351367 484399 950422 2207108 698362

Time (seconds) 11.0762 86.1807 121.6704 247.7545 544.1348 175.1491

Accuracy 17 / 20

theoretical justification for this in Section 6.5.2 below, and Tables 6.11 through 6.14

show the resource consumption in the previous experiments when we reallocate the

goal condition sets into pairs for |H| MGHS searches instead of one. These empirical

results present an interesting trend that the weighted sum heuristic now performs

less efficiently than the unweighted sum heuristic. However, if we consider that the

set of goal condition sets in each MGHS are much closer together than before, then

this reversal makes sense. The incentive to abandon the current portion of the search

space is less ideal when we can guarantee that goal states that satisfy alternative

goal condition sets are nearby. With this in mind, we point out in a comparison

between Table 6.4 and Table 6.11 that RaP with MGHS using the unweighted sum

A* heuristic, given the goal pairings rather than all the goals, is generally faster and

visits fewer states than RaP with single-goal A* searches. This provides evidence

supporting our hypothesis, and better allocating nearby goal condition sets into fewer

MGHS searches will likely improve this performance further.

6.5.2 Continuing the Search Process

As a consensus with the current speed-up techniques in Section 3.3.2, our ap-

proach also identifies that the overhead for augmenting the domain to create two new
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Table 6.13. Resources Consumed (RaP with MGHS SUM BF UNW, Goal Pairs)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 23141 149044 241952 469283 1018513 313381
Nodes Generated 23898 122024 192020 347512 766294 247756

Time (seconds) 5.9818 41.4213 68.0177 128.4404 255.8661 84.0761

Accuracy 16 / 20

Table 6.14. Resources Consumed (RaP with MGHS SUM BF W NU, Goal Pairs)

Resource Min Q1 Median Q3 Max Mean

Nodes Explored 38294 395098 707105 1414980 2169304 890261
Nodes Generated 60729 408550 760000 1404691 2024358 902211

Time (seconds) 11.2258 113.4534 192.2762 331.8237 521.5126 223.8063

Accuracy 16 / 20

planning problems is not necessary to perform RaP. As mentioned at the start of

Section 6.4, solving the original planning problem PG = (F,A, I,G) inherently solves

one of RaP’s two new problems PGO or PG¬O, but which one is arbitrary.

Masters and Sardina’s first assumption that it will often solve PG¬O [189] makes

sense when we can permute many actions in the plan and still have a solution or there

are multiple distinct ways to accomplish the task, but this does not always hold—the

problem instance’s initial state and goal conditions play a large role in the number

of optimal plans and their prefix diversity. As a simple example, let us revisit the

GridWorld example in Corollary 1’s proof. There is a reason that we did not reuse

this example to prove Corollary 25. Figure 6.8 slightly differs from Figure 6.4 because

the goal state for PG¬O cannot have the single observation up satisfied. However, all

solutions to the automated planning problem must contain a single up action. The

same issue thus occurs when O contains one or two left actions. Although these

assumption-violating cases seem obscure because O is so short, this is an extremely

relevant concern at the beginning of an interactive experience when Ring just begins

observing Red and needs to calculate initial responses.

5It is easier for the reader to follow examples that are consistent, which is why we frequently use
BlockWords throughout this dissertation whenever possible.
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Figure 6.8. An observation space (right, original state space is in the center based
on the grid on the left) that illustrates the lack of any solution from (I, 0) to (g, 0).
The red edges in the observation space show the bidirectional edges in the state space
that would transition to the goal state if the up action was not observed.

We similarly consider a BlockWords domain where every block is on the table and

has a unique letter. Because nothing is stacked, there is exactly one optimal solution:

pick up and put down each block sequentially to build a stack that spells the goal

word. If Red solves the problem optimally, then PG¬O has no solution for all possible

O that Ring could observe (accounting for missing observations). On the other hand,

if we have an initial state where

1. A block b1’s letter is not part of the goal word,

2. b1 is on top of a block b2 whose letter is part of the goal word,

3. There is some block b3 on the table whose letter is also not part of the goal

word, and

4. b1 and b3 are both the top-most blocks of their stacks,

then we can trivially branch the observation sequence after picking up b1, placing it

either on the table or on top of b3. If there are more stacks like the one that step

3. describes, then there are additional optimal plans that place b1 on those stacks.
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Furthermore, additional stacks like the one that step 2. describes allow even more

plan flexibility because the first action can pick up either stack’s top-most block.

These plans are not necessarily diverse, but the fact that they are all so similar in-

dicates that they involve similar regions of the state space. That is, the computational

effort to find another plan after the first one should be far less than the computational

effort required to start yet another search from scratch. There are many trivial and

off-the-shelf ways to collect these plans:

• Perform breadth-first or A∗ search up to some stopping condition (resource-

bound, number of goals found, etc.), storing the path to each goal state found.

• Off-the-shelf software for diverse planning [208] can find sets of unique plans for

a single problem.

• Off-the-shelf software solving the top-k-shortest paths problem [6] find the k-

most optimal plans.

• Off-the-shelf software solving the top-k-quality paths problem [148] find all the

plans with cost at most k.

Each plan π that this extended search finds belongs to the set ΠG, which means

π also belongs exclusively to one of its partitioned subsets ΠG+O or ΠG+O. As we

continue to collect more plans, the likelihood that there is at least one plan in each

partition increases—the computations for RaP’s distribution over the hypotheses use

the most optimal plan in each partition. This continued search is faster than running

the planner over the pair of modified problems as long as its consumed resources

do not exceed the resources that two slightly different search problems consume (on

average, the bottleneck of search occurs near the optimal cost due to the exponential

branching factor [12]). Because most off-the-shelf planners use domain-independent

heuristics, we point out that the runtimes and heuristic functions between the above

approaches vary.
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Theorem 4. If k satisfies

k > max
G∈G

max (|UG| , |VG|)

such that

UG =
{
π ∈ ΠG+O

∣∣∣costπ ≤ costπ∗
G+O

}
and

VG =
{
π ∈ ΠG+O

∣∣∣costπ ≤ costπ∗G+O

}
,

then the solution to the top-k-shortest paths problem contains the plans that return

the same probability distribution as the original probabilistic RaP.

Proof: For each G ∈ G, let xG = max
(
costπ∗G+O

, costπ∗
G+O

)
be the cost of the less

optimal of the optimal solutions to the pair of new planning problems in RaP. By

setting k to a value strictly greater than the larger of UG and VG for each G ∈ G,

we are guaranteed to find at least one plan with cost xG in each partition ΠG+O and

ΠG+O. Furthermore, because k is large enough to include all plans with cost xG,

we are guaranteed that there does not exist a more optimal plan in ΠG − (UG ∪ VG)

waiting to be found in the search space. This means that the search results contain

an optimal solution for both PGO and PG¬O, whose costs are the values for the original

probabilistic RaP computations. �

Theorem 5. If k satisfies

k ≥ max
G∈G

max
(
costπ∗G+O

, costπ∗
G+O

)
,

then the solution to the top-k-quality paths problem contains the plans that return the

same probability distribution as the original probabilistic RaP.
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Although Theorems 4 and 5 both guarantee computing the same distributions

as the original probabilistic RaP, the challenge is identifying the correct value of

k. Precomputing k is not ideal because it requires finding the plans that effectively

perform the original probabilistic RaP algorithm. Likewise, assuming a larger value

than necessary for k is risky because it could waste a lot of resources as the search

continues to find plans that are not involved in the probabilistic RaP computation. If

these extraneous resources are too great (that is, the extended search explores more

states than two vanilla searches starting from the initial state), then it will also take

longer than the original algorithm.

There are two possible approaches that address this issue of not knowing the

correct value of k. The brute-force approach is to modify such planners with an alter-

native stopping criteria that terminates when the collection of found plans contains

one for solving each of PGO and PG¬O. Without modifying a planner as extensively,

the second approach applies a bound of allowable error. In particular, continuing to

search with any of the non-diverse planning approaches proposed above collects the

plans in order of increasing cost (though breadth-first search and A∗ might miss some

if using graph search rather than tree search). If the extended search finds all the

plans up to some cost c, then the remaining plans clearly have a cost greater than c.

This fact allows us to conclude the error of stopping probabilistic RaP prematurely

under the assumption that the complementary RaP problem has no solution.

Lemma 4. If there does not exist any solution with cost c or less to PGO , then

P (O |G) ≤ e−βc.

If there does not exist any solution with cost c or less to PG¬O, then

P (¬O |G) ≤ e−βc.
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Theorem 6. If the optimal solution to either PGO or PG¬O has cost costπ∗ and there

does not exist any solution with cost costπ∗ + d or less for some d ∈ R≥0 to the other

problem, then the error of assuming that there is no solution to the other problem is

at most

1− 1

1 + e−βd
for max (P (O |G) ,P (¬O |G))

and
e−βd

1 + e−βd
for min (P (O |G) ,P (¬O |G)) .

Proof: A problem with no solution’s optimal solution has cost ∞. Thus when we

know that there is a solution to one of PGO or PG¬O and assume that there is no solution

to the other, we are effectively assuming that

max (P (O |G) ,P (¬O |G)) = 1

and min (P (O |G) ,P (¬O |G)) = 0

because limx→∞ e
−βx = 0, which is used as substitution for its respective probabilities

in Equation 3.1. However, our assumption is wrong if there is a solution to the other

problem with cost greater than what we explored in the search space. We bound our

error using Lemma 4 for substitution into Equation 3.1:

max (P (O |G) ,P (¬O |G)) ≥ e−βcostπ∗

e−βcostπ∗ + e−β(costπ∗+d)

=
e−βcostπ∗

e−βcostπ∗ (1 + e−βd)
=

1

1 + e−βd
and

min (P (O |G) ,P (¬O |G)) ≤ e−β(costπ∗+d)

e−βcostπ∗ + e−β(costπ∗+d)

=
e−βcostπ∗ · e−βd

e−βcostπ∗ (1 + e−βd)
=

e−βd

1 + e−βd
. �
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6.5.2.1 Variations of Implementation

The insights above explain the motivations for our proposed approach to do the

search on-line with similar results to the original probabilistic RaP algorithm, using

only |H| planner calls rather than the traditional overhead and 2 |H| planner calls.

Though this is the goal of our method, there are cases where we can speed the

approach up further. This is analogous to how other state-of-the-art approaches

described in Section 3.3.2 apply if their assumptions are appropriate for the situation.

The first variation performs off-line bootstrapping for faster on-line use. When

the set of hypothesized goal states H is known before the observing agent begins to

perform recognition, then we can precompute a large set of plans that solve each

G ∈ H. Rather than waste resources, our |H| searches can still perform the off-line

precomputation more efficiently. If we ensure that the set of plans ΠG contains all

plans up to cost c, then the intuition of our approach still applies without needing to

do the search component on-line. Instead, we only need to scan ΠG on-line in order of

increasing cost to identify the most optimal plan solving each of PGO and PG¬O as Ring

observes Red in real time. As long as the least-optimal plan in ΠG is sufficiently large,

then Theorem 6 guarantees that the error is acceptably small when all the plans in

ΠG only satisfy one of the two problems. The worst-case time complexity involves

scanning all the plans in their entirety because none of the plans satisfy PGO , which

is O (|ΠG| ·maxπ∈ΠG costπ).

To avoid the linear scan of each plan on-line, regardless of whether we collect ΠG

on-line or off-line, we can take advantage of the original RaP algorithm’s augmented

versions of the state space FO and AO. That is, we search in the observation space

rather than the original state space. However, instead of separate searches to solve

each of PGO and PG¬O in this altered state space, we perform our approach’s ongoing

single search to solve for the original goal without the augmented condition of (not)

satisfying O. Because the augmented states include the progress through simulating
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the observation sequence, we only need to store each goal state that is found rather

than the entire plan reaching it. The check for each augmented goal state g is trivial:

if pm ∈ g, then g’s plan solves PGO ; if pm 6∈ g, then g’s plan solves PG¬O. Thus, the

scan over found solutions is linear in the worst case that all the goal states only

satisfy one of the two problems, which is O (|ΠG|). This variation of our proposed

approach assumes that the overhead computation for the generation of the augmented

state space does not outweigh the computation saved from the reduced plan scanning

because FO and AO are updated on-line as O increases. That is, the search cannot

be done off-line because the search space depends on O.

Our implementation of RaP for the PReTCIL framework searches through the

observation space as described above. Each of the |H| MGHS calls searches for

both goal states G + O and G + O for G ∈ H as described in Section 6.5.1.1. The

heuristic assigned to both goal conditions in a single MGHS (sum heuristic, A* search,

unweighted) run is simply the original A* heuristic used to search through the state

space. This takes advantage of the case where MGHS’s set of goals are similar enough

to explore the same region of the search/observation space so that we avoid both

redundant and unnecessary state exploration.

6.5.2.2 Connection to Plan Libraries

When Ramı́rez and Geffner introduced planning domains as an alternative to plan

libraries [226], the primary advantage they provided was an increase in flexibility for

recognition. Plan libraries are static due to precomputation and lacking sufficient

information to generate new plans that might satisfy unexpected goal conditions or

observation sequences. On the other hand, the planning domain dynamically com-

putes sets of plans based on the current set of hypothesized goal conditions, initial

state, and observation sequence.
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However, the majority of RaP approaches use a fixed initial state and set of

hypotheses while at most pruning the set of possible goals; they do not generate novel

goals with the exception of E-Mart́ın, R-Moreno, and Smith’s approach that returns

the most-likely fluents to be satisfied without a clear notion of a goal [68]. Many

of these approaches also apply the observation sequence to the search method much

like the original RaP algorithm’s augmented state space. As we explained in our

variations above, this reliance on the observation sequence, which cannot be known

until recognition time, prevents the ability to use much precomputation. The only

speed-up techniques so far that use off-line computation are Masters and Sardina’s

[189], which precomputes the optimal plan that is assumed to not satisfy any possible

observation sequences, and Pereira, Oren, and Meneguzzi’s [217], which precomputes

a data structure based on landmarks for each hypothesized goal.

When one decouples the observation sequence from the search process as in our

approach, then our first variation reveals that precomputation is possible when we

assume that the set of hypotheses H is complete and the initial state is fixed. Pruning

a hypothesized set of goal conditions G is equivalent to ignoring the precomputed

ΠG. That is, the set

L =
⋃
G∈H

ΠG

is a plan library that serves the same purpose as the plan domain for current RaP

algorithms. In the case that our approach generates some L and it is missing a plan,

then Theorem 6 bounds the error of the recognition probabilities.

As HTNs are also used for recognition [92] and represent plan libraries in a more

compact form (as well as have their own scalable approaches [146]), we propose the

option of storing each ΠG ⊆ L as a trie data structure. Rather than prefixes of letters

(one per node) per word overlapping, the prefix of state (one per node) sequences

overlap with edges labeling the actions that make the state transition possible. Due

to the fixed initial state, all plans in ΠG overlap at the root node at a minimum.
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Then matching the observed transitions in O for recognition reduces to traversing the

trie. Additional bookkeeping is necessary to account for missing observations in O,

namely branching pointers at nodes to explore each subtree for the next observation

in the sequence. If one of these pointers reaches a leaf node without matching some

observation in O, then that traversed plan solves PG¬O. If one of the pointers is at

some node in the trie when it satisfies all observations in O, then the set of all plans

in its subtree solves PGO . This recognition algorithm can run on-line, moving pointers

further through the trie with each new observation—the precomputed trie can also

agglomerate all the information about each node’s subtree’s plan costs for the sake of

computing probabilities for RaP.

Due to the abstractness of tasks rather than directly representing states, HTN-

based plan libraries are traditionally more flexible than these plan domain-generated-

plan libraries. That is, changing the initial state will likely require recomputing

the trie. Both versions of plan libraries require updating when the set of considered

hypotheses adds a novel hypothesis. Ultimately, this implies that a whole class of RaP

algorithms remain unexplored that actually take advantage of plan domains’ untapped

potential.

6.6 Concluding Remarks: Influences of Automated Planning

and Recognition on Each Other

From entertainment to personal assistance, intelligent systems are interacting with

people in a variety of applications. However, even when these systems appear to act

autonomously and allow the user free will, there is usually extensive back-end devel-

opment to engineer the interactive experience. Though not as restrictive as expert

systems with hand-coded tables of what to exactly do in every considerable situation,

there is usually a fixed set of inputs or outputs that maps from or to artificial intelli-

gence algorithms. For example, natural language interfaces might perform speech-to-
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text and then map that text to a set of expected inputs through parsing or machine

learning. Likewise, embodied agents might have a preprogrammed finite state ma-

chine that specifies what output behavior to perform, and task and motion planning

algorithms determine how to execute those behaviors given the current environment’s

configuration.

Even though these intelligent systems exhibit artificial intelligence and account for

the environment and stimuli, they are not actually interacting with an understanding

of the user. People act with purpose, explore their environment, make mistakes,

and sometimes change their mind in the middle of doing something. Closed-loop

interaction addresses this by modeling users and making decisions with respect to

those models.

We thus introduced the Planning and Recognition Together Close the Interaction

Loop (PReTCIL) framework as a cognitive architecture. Unlike existing closed-loop

interaction architectures, the PReTCIL framework iterates indefinitely to update the

recognized intents and plans using perception and expected user responses while also

revising decisions about how to act based on these updates.

As a general framework, one can apply any appropriate algorithms to the PReT-

CIL framework. In this chapter, we implemented it using responsive planning [82]

and recognition as planning [227] as the primary components. We reviewed the spe-

cific implementations for each component conceptually, theoretically, and empirically,

including versions that did not work out. As such, the approach outlined above is

by no means the only or best way to implement closed-loop interaction. Instead, it

serves as a first step towards accomplishing this important research challenge by con-

sidering the role different AI challenges play in interactive intelligent systems. The

goal of this dissertation is to provide evidence that various areas of AI are mature

enough for integration so that we can begin to address more complex challenges that
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require their intersection. We continue this discussion in Chapter 8 with a roadmap

to possible extensions, revisions, and future challenges.
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CHAPTER 7

HUMAN PERCEPTIONS OF ASSISTIVE AGENTS
USING THE PRETCIL FRAMEWORK

RGF: You know, it will be nice to apply research to something other
than spherical cows.

MCJ: Like cuboid cows? They aren’t equidistant from the center all
over.

RGF: No, no. I mean working with people.

MCJ: Oh, spherical humans seem fine. Carry on.

— Richard (Rick) G. Freedman,
in a typical conversation with Marvin C. Jones

Our primary goal behind the PReTCIL framework’s conception is to better un-

derstand how intelligent systems can interact with others, especially people, in the

same way that people interact with each other. This means that theoretical findings

and computational results are not sufficient to evaluate our overarching hypothesis

that the PReTCIL framework is a first-step towards this goal. We did run an em-

pirical evaluation of two computational agents, one using Chapter 6’s PReTCIL

framework implementation and the other just using a vanilla A* search, for compar-

ison against Riker in Levine’s dissertation [175]. We encourage the reader to read

that dissertation’s experiments if they are interested in such results, but we consider

them insufficient for this goal because A* alone does not appropriately model human

decision making.

To inspect how our agent interacts with people, we must allow people to interact

with an agent employing the PReTCIL framework and receive their feedback and

impressions. Unlike the Turing test, we are not interested in a binary question of the
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form ‘does interacting with this system feel like interacting with a human?’ People

serve as potential interactive partners who decide whether to interact with the system

and for what reasons. They (Red) generally avoid others (Ring) who are less beneficial

when seeking an interactive partner for a task. We use the term‘beneficial’ instead

of ‘helpful’ because the novelty effect [264] is still widespread—people might interact

with intelligent interactive systems because they are new enough to be ‘cool’ and/or

‘fun’ even if they are not helpful.

In preparation for this human subjects experiment, there were several phases that

each had unique challenges and setbacks. For those who plan to run such studies

in the future, we discuss these phases and the evolution of our approach in order to

address the challenges along the way. Following these preparations, we present and

discuss the outcomes of our small, preliminary study. As far as we are aware, this is

the first study with human subjects that involves people’s experience with a closed-loop

intelligent interactive system.

7.1 Human-Subjects Studies with Intelligent Systems

Testing interaction in multi-agent systems when all the agents are machines is

conceptually simple to set-up and run: place the machines together in a controlled

environment, let them interact, collect data, and pause experiments whenever a bug

occurs or a machine malfunctions (resuming/restarting after fixing the issue). The

experiments throughout Chapter 6, which focus on single-agent testing, follow a sim-

ilar procedure. We emphasize the word ‘conceptually’ because this is still easier said

than done—controlled environments can be difficult to design and implement (for

example, search and rescue scenarios [132, 161]), data collection methods can fail or

miss important information (for example, a wall-mounted camera will not record a

robot’s activities when it faces the opposite direction), and fixing malfunctions alone
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can be an intense challenge when a machine’s physical parts need replacement or the

bug corresponds to an obscure edge case.

In comparison, testing interaction in multi-agent systems where some subset of

the agents are humans can be far more difficult. At the moment and likely the near

future, machines lack autonomy at the level of a will of their own and do exactly as

they are told1. On the other hand, people have the ability to decide whether they

want to participate in research studies and determine the extent of their involvement.

Putting machines together into the controlled environment and turning them on is

as simple as the efforts to move the machines into place, but adding people into

these environments is not as trivial as shepherding them into place. Ethics issues

also play a role in defining recruitment strategies and fair compensation practices for

participation. People’s right to withdraw from a study also makes pausing experiments

much less desirable if there is an error. That interaction’s data point is often lost, and

later trials might become delayed such that other people no longer have availability

and cancel rather than reschedule.

The fields of human-computer interaction and human-robot interaction have been

dealing with these challenges for a while and further identified various types of human-

subjects studies. There are far too many to list in this dissertation, but we briefly

introduce the three that are most related to our study in this chapter: Wizard-of-Oz,

human performance change, and human emotional evaluation.

Going beyond a paper prototype to investigate people’s expectations and inter-

pretations of an interface mock-up, wizard-of-Oz (WoZ) studies [232] expose people

to a machine that lacks an implementation of the desired intelligence algorithm. To

compensate for the missing functionality, a human expert hides outside the controlled

1The author is skeptical that computational systems will have such levels of autonomy and/or
intelligence anytime soon based on experience and seeing the progression of state-of-the-art research.
However, an anomalous discovery that could change this belief, however unlikely, is always possible.
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environment and operates the machine remotely ; however, the human subjects are

told that the machine has the missing intelligence algorithm and asked to interact

naturally with the machine. The human expert thus perceives and interacts with the

human subjects via the machine interface, and researchers inspect how people behave

in order to identify their expectations and interpretations of machines employing the

algorithm. This is very helpful for algorithmic design, particularly knowing what

people expect the machine to do and in which ways people will engage with it [198].

As a more traditional case-control experiment, human performance change stud-

ies inspect how people perform with and without the machine’s intervention. Un-

like WoZ studies, the machine already has the desired functionality so that there

is no degree of deception. Short-term studies usually involve human subjects per-

forming the task both with the test machine and on their own/with a comparative

machine, and researchers compare relevant metrics between these instances. Short-

term studies often inspect the immediate benefits of intelligent tools [100], human-

enhancement/augmentation devices [172], or interactive partners [101]. Longitudinal

studies span long periods of time with occasional sessions [140] or ongoing interac-

tions with the machine [264], measuring the human subject’s performance at various

moments throughout the study. The evolution of the performance provides evidence

for the intervening machine’s impacts, which is compared (when possible) with the

evolution of the performance of human subjects who lacked the intervention.

As a middle-ground between WoZ and human performance change studies, hu-

man emotional evaluation studies evaluate how people perceive machines that exhibit

certain properties [165]. Researchers run most human emotional evaluation studies

almost identically to human performance change studies. However, rather than mea-

suring the human subjects’ performance during the interactive experience, researchers

provide surveys that ask them about their perception of the machine and/or expe-

rience. There is not always a before/after trial for comparison, depending on the
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domain—a student is unlikely to learn the same lesson twice both on their own and

with an intelligent tutoring system, but a student can participate in different lessons

[102]. Emotional perspectives are helpful for iterative design, much like WoZ stud-

ies, because programmers can revise their system based on the acquired knowledge

about how people engaged and felt about the machine. They are also a means of

performance evaluation where the performance is subjective to the human rather than

objective to the task.

7.2 Experiment Platform

For our human subjects experiment, people played a turn-based BlockWords game

in a simulated environment shown in Figure 7.1. To influence the human subject’s

goal-driven behavior, the interface displays a specific completion criteria that the in-

teractive agent does not receive. A demonstration prototype (see Section 7.2.2 below)

allowed people the freedom to select from a set of completion criteria instead. The

human-controlled player (Red, for consistency with our theoretical notation in previ-

ous chapters) performs an action on the first turn, which provides some information to

the interactive agent running our implementation of the PReTCIL framework (Ring,

for consistency with our theoretical notation in previous chapters) about which cri-

teria they intend to satisfy. Then the interactive agent performs an action if they

received sufficient information to decide how to respond.

Due to the simulated game setting, user inputs were limited to discrete key/mouse

presses that the computer can easily interpret without raw sensor data. Thus this

implementation of the PReTCIL framework simply performs activity recognition as a

mapping from the input to the game’s corresponding action rather than employing the

topic-modeling techniques from Chapter 4 or some other activity recognition method

from Section 3.2.
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Figure 7.1. Screenshot of the BlockWords two-player game.

After each human-controlled player’s turn, the interactive agent adds the lat-

est action to the observation sequence O. On the interactive agent’s first turn and

any subsequent turn that they do not have a joint-multi-agent plan, the PReTCIL

framework implementation runs RaP with MGHS (pairs of goals, sum heuristic, A*

distance; see Section 6.5), computes the necessities with respect to threshold τ , and

then computes a joint-multi-agent plan that solves the necessities via a single-goal A*

search defined within the MGHS code. Neither the interactive agent nor interface re-

veals this joint solution to the human-controlled player. While this plan is active and

considered correct according to SPAM (see Section 6.2.3), the interactive agent exe-

cutes the plan’s next action on their turn in response to the human-controlled player.

Like the activity recognition component’s implementation, the simulated game set-

ting allows us to simply map the action name to an animation and update the state

without a complex execution algorithm.
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7.2.1 BlockWords: Good for Human-Computer/Robot Interaction?

BlockWords was designed to be a challenging domain for machines, and finding

solutions thus provided evidence of intelligent decision-making capabilities. People of-

ten engaged in similar domains since they were children, especially when playing with

toy blocks spelling words. This gives people an advantage when performing a Block-

Words task, which could interfere with measuring changes in their performance—how

can an intelligent interactive system help someone with a task whose solution is too

trivial to require help?

People are also very good at generalizing their plans and finding patterns that

yield domain-specific strategies. In the case of BlockWords, the generalized strategy

is to uncover and stack each block in order to spell the goal word backwards. For

the next target block b, the player’s best strategy is to find the stack containing b,

remove all blocks on top of b from that stack and place them on the table in their

own stack, and then place b on top of the stack that spells the goal word (when b is

the bottom-most block, then it goes on the table).

A hierarchical task network (see Section 2.3) easily captures this strategy, but our

approach uses state-space search (see Section 6.4) without any domain information.

Therefore, most people will quickly realize and adopt the generalized strategy, finding

an obvious solution to each level while the interactive agent continues to blindly search

from scratch on every level. Future iterations of this study will account for alternative

interactive agent implementations that appropriately apply this domain knowledge,

and we will also investigate other domains that are less trivial for people.

7.2.2 Revisions to Platform

We demonstrated an early implementation of the PReTCIL framework described

above at the Twenty-Ninth International Conference on Planning and Scheduling

(ICAPS) in July 2019. Approximately fifteen conference attendees watched others
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interact or directly interacted with the demonstration over the one-hour period that

it was on display. Based on the authors’ observations of their experiences and feed-

back, new questions and research challenges emerged involving the integration of

automated planning and recognition within an interactive domain. The majority of

these appear in Chapter 8 as future work, but we addressed the ones that had sim-

ple platform revisions and were too important to ignore before running the human

subjects experiment.

The quickest change addressed the “too few observations” issue where problem

PG¬O has no solution at the beginning of the interactive experience. As Section 6.5.2

mentions, BlockWords always has this issue if the first block that is picked up happens

to be on top of a stack containing any block whose letter spells the goal word and that

block exclusively displays the letter. We added a ‘head-start’ parameter ν where the

human-controlled player took ν turns before the interactive agent ran the PReTCIL

framework. For these ν turns, the interactive agent simply performs a no-op action to

pass its turn. The human-controlled player’s accumulated actions greatly increases

the chance that O is sufficiently long enough to not block some solution to PG¬O.

A more effective solution would be to add a domain-specific no-solution check that

abandons a goal condition set prior to searching, similar to how 8-puzzle instances in

different permutation groups cannot reach each other [237].

The most critical issue was a surprisingly frequent case where the interactive agent

stopped acting in the middle of the interactive experience. We identified two primary

reasons for this phenomenon in our implementation:

1. O increased with many observations that were not part of any optimal solu-

tion because people are not expected to solve the puzzles optimally. Thus for

all hypotheses G ∈ H, all solutions to PGO eventually have much greater costs

than the solutions to PG¬O, which are the optimal plans for the original planning

problem PG. Then the probabilistic RaP likelihoods approach 0 for all hypothe-
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ses, but are not actually 0 so that they still normalize to a valid distribution

over H. Unfortunately, computational underflow eventually rounds these small

probabilities down to 0 such that the distribution over H is all 0’s. Then the set

of necessities becomes ∅ and the optimal joint-plan happens to be a plan with

no actions.

2. If the WCD between multiple goal condition sets G ⊆ H is great enough and

one of them is the human-controlled player’s true goal, then each hypothesis

in G will eventually become very likely without any disambiguation between

them, sharing the greatest probability mass and contribution to the necessities.

If these goal condition sets further vary by some small feature that cannot

coexist (for example, placing both the T and H blocks on top of the E block),

then the updated necessities will include these contradictory conditions and no

longer have a solution.

Although each of these causes is an issue to consider fixing, the consequence of any of

these cases is more severe. Without a plan to follow, the interactive agent performs

no-op, often for the remainder of the interaction. People were a little disappointed,

but not concerned, if this did not affect the human-controlled player’s performance.

However, if the interactive agent was initially helping and picked up a necessary block

when this occurred, then they essentially performed the adversarial hoarding strategy

πhoardRing
from Section 5.4 such that the human-controlled player could not complete

their task. The solution to this issue was also simple: redefining the ‘default no plan’

action based on the BlockWords domain:

• If the interactive agent is not holding any block, then they perform a no-op

action.

• If the interactive agent is holding any block, then they perform a put-down

action that places the held block onto the table in its own stack.
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With this default, the human-controlled player still has access to all the blocks to

spell whatever word they desire.

The first reason for the above issue also played a role in the last problem. When

O was long enough that probabilistic RaP returned a distribution of all 0’s over H

due to computational underflow, the program entered a point of no return in ongoing

iterations. The human-controlled player continues to take actions, which further

increases O’s length so that probabilistic RaP continues to return a distribution

of all 0’s over H. Running the probabilistic RaP algorithm is then feckless and

wasting time in the interactive experience. People playing the game showed signs of

irritation when the computer-controlled agent consistently took time to decide what

to do and then simply did nothing (the default action during the demonstration).

Because the distribution of all 0’s was the trigger, our simple fix to this issue was

to check for this case and mark a give-up flag when it occurred. When a later

iteration of our implementation of the PReTCIL framework encounters the give-up

flag, the computer-controlled agent immediately performs the assigned default action.

Upon updating the default action, we removed this feature at the beginning of the

experiments; Section 7.5 explains how this was not a good decision and the give-up

flag was reinstated.

In hindsight of the above revisions, there are likely some better, equally quick

fixes. We will consider them in future iterations, but list them below rather than in

Chapter 8 due to their immediate relevance:

• Log Probability In other fields of computer science and mathematics, multi-

plying many probabilities together has already caused the above computational

underflow problem. To avoid their products turning into 0’s, they usually use

the logarithm of the probabilities to convert the multiplication of small deci-

mal values into the addition of large negative numbers. Likewise, high-cost
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plans yielding small probabilistic RaP likelihoods would instead produce large

negative log-likelihoods.

• Theorem 6 To reduce probabilistic RaP’s runtime and avoid reaching a prob-

ability of 0 so quickly, we can add additional search stopping conditions besides

the give-up threshold k (not to be confused with the give-up flag feature). We

proved the error bound that justifies a ‘corner-cutting trick’ after finding a

solution to one of PGO or PG¬O in Section 6.5.2.

• Restart O When O becomes so long that we can guarantee that the human-

controlled player is not acting optimally, then Masters and Sardina’s assump-

tions [189] both certainly hold when the give-up flag is set. That is, the optimal

plan solving the original problem PG is also the solution to RaP’s subproblem

PG¬O—then we simply store this plan’s cost and only solve PGO . Furthermore,

because we observe the human-controlled player without any missing observa-

tions, we can ignore O and simply solve PG from the current state. Although

we considered this approach, we did not choose to implement it due to the

difference that the computer-controlled player also influences the environment,

which could bias RaP when starting from the current state.

7.3 Participant Recruitment

When preparing the experimental procedures, we initially predicted that the time

for reading/signing the consent form, interaction with the game, and completing the

survey would last around one hour. More importantly, we did not offer any form of

compensation to human subjects for their participation because

• The study was not funded by any grant and

• The researchers, including the author of this dissertation, were all students on

a limited budget.
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The Institutional Review Board (IRB) approved the lack of compensation due to the

researchers’ justifications that:

• The time commitment of one hour is small and

• Playing the game adds a novelty/fun factor for participants in the study.

With the recruitment methods primarily targeted towards undergraduate stu-

dents, it seemed that these would be reasonable incentives. By the time that the

code was ready and recruitment began, though, the lead researcher (and author of

this dissertation) moved to another state and was unable to perform the study there

due to a lack of IRB approval at nearby institutions. The approved recruitment

methods did not generalize to the general public (flyers, announcements in front of

classrooms, and e-mails over listservs), which meant that the lead researcher had to

return to the institution with IRB approval in order to perform the study. Together

with the time constraint for completing the work in this dissertation, this limited

the study’s duration to one week rather than ongoing until enough subjects partic-

ipated. This also limited the time of recruitment to several weeks before the study

and throughout the study’s duration.

The recruitment phase had the most unforeseen challenges due to changes in the

institution’s bureaucratic processes2 between the study’s original submission to the

IRB and the beginning of the study’s execution. Specifically, e-mail listservs that

broadcasted information to undergraduate students were now restricted to institu-

tional use only, which eliminated the primary method of advertising the study and

recruitment. A social e-mail listserv for the graduate students was still available, and

some professors of graduate student-only courses were willing to do the classroom

announcement before the study began. As one would expect, graduate students are

2The author of this dissertation has newfound appreciation for the relatively low bureaucratic
burden at his current employer, Smart Information Flow Technologies (SIFT), LLC.
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much busier and very few signed up to participate in the study with its lack of com-

pensation for one hour’s worth of their time. The department did kindly distribute

fliers in some limited places, but few students seem to pay attention to these bulletin

boards.

Upon arriving at the institution to perform the study, only six participants signed

up out of the goal of twenty subjects. Several participants had to reschedule due to

unexpected events (the original session they gave up was not filled with a replacement

in time), and a few other participants did not show up for their chosen session. During

the week of the study, additional people signed up, but most of them chose time slots

that overlapped with another person who signed up and did not select alternatives.

By the end of the week, a total of seven human subjects kindly participated in the

study.

7.4 Experiment Procedure

The experiments took place in a reserved, private conference room to create a

controlled environment containing only the on-site researcher, laptop running the

experiment platform described in Section 7.2, and current study participant. Each

scheduled trial involved a single study participant, and they came to the reserved

conference room to perform the experiment.

Before beginning the experiments, the on-site researcher thanked the participant

for taking the time to be involved in the study, offered to answer any of the partici-

pant’s questions throughout the study, and then provided an IRB-approved consent

form that the human subject read and signed (each subject received a copy of the

form to keep for their own records). The on-site researcher only answered one question

vaguely, “how does the computer-controlled agent work?”, because the information

could affect the human-controlled player’s behavior and influence the results. To

avoid this concern, the on-site researcher promised to answer the question following
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the trial—all participants who asked this question seemed satisfied with the response,

and the on-site researcher summarized the implementation of the PReTCIL frame-

work following the trial’s completion.

After the participant signed the consent form, the on-site researcher seated them

in front of the laptop and set the game up to run. The game itself is simply a

graphical user interface (GUI) and server that displays the current BlockWords state,

processes the human-controlled player’s actions, and then communicates with other

programs over a socket for the computer-controlled player’s actions. The reason for

this multi-process design was two-fold:

1. We wrote the game in the Processing programming language, which facilitated

the GUI design. However, we wrote the computer-controlled agent in the C++

programming language because of our PReTCIL framework library implemen-

tation (see Section 6.3.1). Socket communication between the separate processes

allowed us to pass information between them without needing to create a wrap-

per software package between languages.

2. In case we reuse the game to run a WoZ study in the future, the socket setup

makes it easy to change who controls the computer-controlled agent(s) in the

game. Specifically, we only need to create a client for human experts to play the

game remotely (in another location away from the human subject). Then this

client communicates with the game’s server in place of an intelligent interactive

system.

After starting the program that ran the game, the on-site researcher executed a

separate program for the agent running the implemented PReTCIL framework. Al-

though the socket communication sometimes caused problems due to race conditions,

the participant pointed out whenever the game seemed to freeze and the on-site re-

searcher restarted the programs at the current level.
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The first two levels of the game are a tutorial, and the on-site researcher joined the

participant at the laptop to watch their performance and provide feedback about how

the game works. The first tutorial level challenges the participant to spell a single

word by themself. This tutorial level teaches the participant about the game’s controls

and how to accomplish the goal. The second tutorial level repeats the initial setup and

goal word, but includes the computer-controlled player. This tutorial level teaches

the participant how turn-taking works with the computer-controlled agent. However,

to avoid any trouble with this agent during the tutorial, the hypothesis set only

contains the goal word. Thus probabilistic RaP guarantees predicting the correct goal

word with probability 1 and copies it into the necessities, which makes the assistive

interaction problem almost trivial.

Upon completing the tutorial, the on-site researcher left the participant alone to

continue playing the game. The on-site researcher remained in the room to answer

any questions and restart the game whenever it seemed to stop working. Levels

throughout the game provided different BlockWords problem instances and either

challenged the participant to play on their own (one-player) or with the computer-

controlled agent (two-player). As the participant played, the game recorded each

player’s action with a relative timestamp. This log can replay a trial, which allows

the researchers to analyze the human performance change with respect to runtime

and number of actions to complete various levels.

After the participant finished all the game’s levels or chose to stop playing, the

on-site researcher provided a survey for the participant to complete. The survey’s

statements address the participant’s emotional response to the interactive experience:

1. It was more interesting to perform the tasks alone than with an interactive

agent.

2. It was engaging to perform the tasks alone.
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3. It was engaging to perform the tasks with an interactive agent.

4. I enjoyed the tasks when performing them alone.

5. I enjoyed the tasks when performing them with an interactive agent.

6. Performing tasks with an interactive agent was more frustrating than performing

tasks alone.

7. I enjoyed working with the interactive agent.

8. At times, I became frustrated while working with the interactive agent.

9. At times, I became annoyed while working with the interactive agent.

10. My decisions were influenced by the interactive agent.

11. Additional feedback or comments:

The first ten statements use a 5-point Likert scale from −2 (strongly disagree) to

2 (strongly agree). The last statement is free-response for the human subjects to

optionally provide any feedback, ideas, or other responses. When the participant

finished the survey, they returned it to the on-site researcher. The on-site researcher

then thanked the participant again for taking the time to be involved in the study

and offered to answer any remaining questions, including “how did the computer-

controlled agent work?” After the participant left the conference room, the on-site

researcher generated a random, unique identifier for the participant and used it to

label the survey in place of their actual name.

To preserve the anonymity of the participants, we locked all signed consent forms

and physical survey responses in a drawer in a secure office space. We then locked a

key mapping each participant’s name to their unique, randomly generated identifier

in a separate drawer. Both the IRB protocol and consent form described this process

for privacy maintenance. Participants have a right to withdraw their information
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following the trial, and this setup allows the researchers to be able to find the par-

ticipant’s data for removal without leaving a connection between them and their data

that someone else could easily compromise.

7.5 Experiment Results

Although seven participants is a small sample size for a study, we further divided

them into two groups. Each group had a small change to the game: the available

levels and the presence of the give-up flag feature (see Section 7.2.2 for details). The

first group (four participants) had fifteen levels, and the last few were difficult for

the computer-controlled agent employing probabilistic RaP and blind search. That

is, more difficult levels have much larger state spaces that require additional time to

search for individual plans. With optimal play, this additional time did not seem to

be too worrisome, and we wanted the experiment to include a variety of performances

to honestly reveal the computer-controlled agent’s best-case and worst-case behaviors.

However, the human subjects did not always play optimally and these worst-case

runtimes became unreasonable, especially under the promise of the study lasting at

most one hour. Some participants requested terminating the interactive experience

early when these long computational times began to occur, and we realized that we

needed to remove the difficult levels and allow the agent to give-up trying to interact.

Thus the second group (three participants) had a suite of thirteen levels, removing

the two levels that were difficult for the computer-controlled agent’s search algorithms

even with the give-up flag feature available.

Due to the small sample sizes in this experiment, we cannot make any formal

conclusions from these results. However, from the perspective of a WoZ pilot study,

these results serve as a source of hypothesis generation for future studies. That is,

we use these results as observations that formulate testable hypotheses. Then, we

can formally test them using well-designed experiments that specifically focus on that
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particular feature, introducing a tighter controlled environment to avoid potential

confounding factors. Unlike traditional WoZ studies that rely on a human actor and

aim to understand how to better design the machine, our WoZ study directly used

the machine itself in order to understand what aspects of the human-computer/robot

interaction are worth investigating.

7.5.1 Human Performance Change

The small sample size and change to the game both hindered the initial design for

testing hypotheses regarding human performance changes. We originally intended for

only the tutorial levels to be fixed while the remaining levels, which would have a con-

stant problem instance, randomly selected the number of players. Then there would

have been two classes of participants, one playing the level alone and the other playing

the level with the interactive agent, and we could compare the differences in the two

sample population’s performance metrics. Our hypotheses were that the execution

time and number of actions (plan cost) would both decrease when the interactive

agent running our implementation of the PReTCIL framework was involved.

These hypotheses appear to imply positive helpfulness, but they compare the

average population’s performance change—helpfulness should be agent-specific, similar

to measuring a treatment’s effects (compare ‘how many individuals improve?’ to ‘does

the average improve?’). We wanted to measure helpfulness (hypothesizing it would be

positive) as we did in the study comparing the PReTCIL framework implementation

prototype against Riker [175], but this is more difficult because the human must

perform the same problem instance both with and without the interactive agent. When

the human-controlled player was another computer simply running A* search for

decision making, we could guarantee a consistent helpfulness measurement for two

reasons:
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1. For a given problem instance, A* will perform consistently, even with random

tie-breaking strategies, to return an optimal plan. A person is not guaranteed

to perform exactly the same way in the same situation. Accounting for this

variance would likely require more than one run of the scenario, and people will

likely get bored of such repetition.

2. Unlike an algorithm that constantly runs the same programmed procedure,

people can learn and adapt how they solve problems. Besides accounting for

reason 1. as the person repeatedly plays the same level, they might remember

their solution from playing with/without the interactive agent when replaying

the level without/with the interactive agent and update their plan. Even with

many levels in between these two instances, we cannot guarantee what the

person will forget and remember.

We thus worried that we could not accurately measure an individual’s performance

with a single-session study design. To appropriately measure helpfulness with a lower

chance of the above reasons taking effect, we propose an alternative study where a

person must play the game over multiple sessions, randomly choosing the number of

players and permuting the levels each session.

Instead of testing the above hypotheses, we collected the execution time and

number of actions per level per participant via the game’s logs. The only hypothesis

we can consider testing is that the inclusion of the give-up flag feature reduces the

execution runtime, but it is better to design an experiment that specifically tests this

rather than consider it ad-hoc based on the sudden experimental design change. As

such, Figure 7.2 displays the consumed temporal resources per subject per level,

separated by group. To allow some degree of consistency during the experiments, we

preassigned the number of players per level and kept the assignments constant for all

seven participants (instead of random assignment as mentioned earlier).

228



0

10000

20000

30000

40000

50000

60000

0 10 20 30 40

Ti
m

e 
M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 1 (2-Player)

Group 1

Group 2

0

5000

10000

15000

20000

25000

0 5 10 15

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 2 (1-Player)

Group 1

Group 2

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 3 (2-Player)

Group 1

Group 2

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 4 (2-Player)

Group 1

Group 2

0

50000

100000

150000

200000

250000

300000

350000

400000

0 5 10 15 20 25

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 5 (2-Player)

Group 1

Group 2

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 6 (1-Player)

Group 1

Group 2

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 5 10 15 20 25 30

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 8 (2-Player)

Group 1

Group 2

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 9 (1-Player)

Group 1

Group 2

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 10 (1-Player)

Group 1

Group 2

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 11 (2-Player)

Group 1

Group 2

0

20000

40000

60000

80000

100000

120000

140000

160000

14.5 15 15.5 16 16.5 17 17.5 18 18.5

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 12 (2-Player)

Group 1

Group 2

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 13 (1-Player)

Group 1

Group 2

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 14 (1-Player)

Group 1

Group 2

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 10 20 30 40 50

Ti
m

e 
(M

illi
se

co
nd

s)

Number of Turns (Plan Cost)

Performance: Level 15 (2-Player)

Group 1

Group 2

Figure 7.2. Temporal resources consumed per non-tutorial level during the human
subjects experiment. Levels with no results are not shown—all Group 1 participants
skipped them, and they were removed for Group 2.
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The most obvious observation about these plots is that there generally appears to

be a positive correlation between the plan cost and time to execute that plan. Assuming

that all actions have uniform cost, this is not very surprising. Only Level 12’s plot

appears to disagree with this trend, but three data points is not sufficient to make

any conclusions.

We measure the execution time as the difference between the time stamps of

the human-controlled player’s first action and last action, which means that ‘thinking

time’ to generate an initial plan is not included. Otherwise, we would have considered

that participants took longer to think of a more optimal solution in Level 12. We

do not include any measurements of this ‘thinking time’ because they greatly varied

between individual participants and levels with no signs of correlation to the actual

temporal resource consumption. Perhaps a larger sample size could reveal different

classes of people who put various amounts of consideration into their initial planning

before starting execution. If we can identify how long someone thinks before they

begin to act, then the interactive agent can take advantage of that ‘thinking time’ for

prudent off-line computation rather than doing nothing until receiving an observation.

The second-most obvious observation about these plots is that there is generally

variance across the x-axis (the plan cost). This confirms that participants did not

always execute optimal plans because the set of optimal plans per level have a single

cost. However, there are two further observations worth making about this variance

in plan costs:

1. The variance in plan cost is greater in two-player levels. This might be a conse-

quence of the interaction if the computer-controlled player makes any mistakes

or violates the human-controlled player’s expectations. A larger number of

participants is necessary to study the impact of such factors.

2. Amongst the one-player levels, the variance in plan cost decreases until everyone

(the one-player levels did not change between groups) performs optimally. This
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might be evidence that people are improving on their own as they continue

to play, supporting our concerns in Section 7.2.1 about the simplicity of the

BlockWords domain.

The final performance-related observation worth noting is that the execution times

are generally lower for participants in Group 2 than those in Group 1. This provides

evidence supporting further investigation of the ad-hoc hypothesis, but we cannot

make any conclusions with the current results. Because we only logged information

from the GUI and not from the agent running the PReTCIL framework implemen-

tation, we cannot easily identify when they should have given up during the Group 1

trials for a fair comparison.

7.5.2 Human Emotional Evaluation

A collection of seven survey responses, split into two groups of four and three,

is far too small to summarize with a five-value summary like the data presented in

previous chapters. Instead, we compute the mean µ and standard deviation σ over

each survey statement’s responses and present them in Tables 7.1 and 7.2 respectively.

We designed our Likert scale to have the following properties:

• A score of 0 indicates indifference towards the emotional statement.

• A score less than 0 indicates disagreement with the emotional statement.

• A score greater than 0 indicates agreement with the emotional statement.

• A score’s magnitude is proportional to the strength of agreement/disagreement

with the emotional statement.

The Law of Large Numbers is clearly not satisfied to assume that these values

describe a normal distribution. First, the majority of the standard deviations are

between 1.5 and 2 when evaluating a 5-point Likert scale, which implies that individual
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Table 7.1. Human Subjects Survey: Response Means

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Group 1 0.25 0.75 -0.25 0.25 -0.75 1.00 -0.25 0.75 1.50 -1.25
Group 2 -0.33 -0.33 1.67 -0.33 1.67 0.67 1.33 0.33 -0.67 -1.00
Overall 0.00 0.29 0.57 0.00 0.29 0.86 0.43 0.57 0.57 -1.14

Table 7.2. Human Subjects Survey: Response Standard Deviations

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Group 1 2.06 1.89 1.71 1.71 1.89 2.00 1.71 1.89 0.58 0.50
Group 2 2.08 1.15 0.58 1.15 0.58 0.58 0.58 1.15 1.53 1.73
Overall 1.91 1.60 1.62 1.41 1.89 1.46 1.51 1.51 1.51 1.07

scores are spread over most the spectrum of options and the mean fails to represent

the majority of the population. We color Table 7.2’s lower standard deviations red

to indicate which statements’ scores might be more focused about a particular value.

The accumulated survey results in Figure 7.3 present the wide variety of responses

between and within the two groups.

Table 7.3 recomputes the mean using the absolute value of the survey responses.

If the absolute value of the means in Table 7.1 is close to the mean of the absolute

values:

1

N

N∑
i=1

|ri| −

∣∣∣∣∣ 1

N

N∑
i=1

ri

∣∣∣∣∣ < ε,

then there is at least evidence of consensus on (dis)agreement with the corresponding

emotional statement. We color Table 7.3’s entries that satisfy this when ε = 0.3

red. If these two means are reasonably different, then there is evidence of a lack of

consensus where some subjects agreed and others disagreed, and the magnitude on

each side is similar. The entries colored red in both tables are almost identical, which

is not surprising because a stronger consensus is expected to have a lower variance

and spread of responses. Thus, we only speculate based on the possible implications of

each result because we cannot guarantee that our samples are a valid representation

of the entire population.
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Figure 7.3. Survey responses from participants in the human subjects experiment.
Participants completed the survey after finishing the game or choosing to terminate
their play session.
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Table 7.3. Human Subject Survey: Absolute Value of Response Means

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Group 1 1.75 1.75 1.25 1.25 1.75 2.00 1.25 1.75 1.5 1.25
Group 2 1.67 1.00 1.67 1 1.67 0.67 1.33 1 1.33 1.67
Overall 1.71 1.43 1.43 1.14 1.71 1.43 1.29 1.43 1.43 1.43

We focus our initial observations on the responses whose distributions appear to

have a greater chance, but no guarantee, of representing the actual population. These

correspond to the values colored red in either Table 7.2 or Table 7.3, which relate

to Figure 7.3’s plots whose response frequencies primarily cluster on one side of the

(dis)agreement spectrum:

Group 1 Participants who played the levels that were more challenging for the

computer-controlled agent (and the agent could not give-up) . . .

• . . . became annoyed while working with the agent. (S9: µ ≈ 1.5, σ ≈ 0.58)

• . . . did not feel that the agent influenced their decisions. (S10: µ ≈ −1.25,

σ ≈ 0.50)

Group 2 Participants who played the levels that were easier for the computer-

controlled agent (and the agent could give-up) . . .

• . . . found performing the tasks with the agent engaging. (S3: µ ≈ 1.67,

σ ≈ 0.58)

• . . . enjoyed performing the tasks with the agent. (S5: µ ≈ 1.67, σ ≈ 0.58)

• . . . were more frustrated performing the tasks with the agent than per-

forming them alone. (S6: µ ≈ 0.67, σ ≈ 0.58)

• . . . enjoyed working with the interactive agent (S7: µ ≈ 1.33, σ ≈ 0.58)

Overall Participants who played either version of the BlockWords game with the

computer-controlled agent . . .
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• . . . did not feel that the agent influenced their decisions. (S10: µ ≈ −1.14,

σ ≈ 1.07)

The most curious of these observations is a trend that might be an anomaly:

Group 2 participants were frustrated playing with the computer-controlled player,

but they were engaged and also enjoyed playing with the computer-controlled player.

In contrast, Group 1 did not have such a trend and were instead annoyed. That is,

do people accept working with a machine that responds sufficiently fast, even if their

behavior is not helpful? Previous research on human-machine teams found evidence

that people are willing to work with their machine partners if they improve the task’s

efficiency [99], but we doubt our agent is improving efficiency if it frustrates the

human subjects. We worry that this observation is either an anomaly of the sampled

population or a novelty effect where the currently unique experience of interacting

with an intelligent interactive system amuses people [264].

Aside from the ten given statements, the majority of the participants’ free-response

answers (S11 in the survey) in both groups stated that the computer-controlled player

was slow. This indicates that despite all the research in Section 6.5, our closed-

loop interaction algorithms are still not fast enough to satisfy human expectations of

response time. This supports employing additional speed-up tricks such as pruning

unlikely goals [281] and avoiding on-line computation, similar to Pike’s [174, 176]

and Riker’s [175] approaches (see Section 6.1.1). However, one participant actually

appreciated the slower computation time and anthropomorphically interpreted it as

a contemplation behavior:

I thought the occasional “hang” was interesting whether it be inten-
tional or due to computations. It gave me a sense of a “live” agent.
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7.6 Concluding Remarks: Can PReTCIL Play with People?

Despite the convenience of sitting in an office with just a whiteboard and computer,

theorizing about how machines can play with people is not enough to actually create

machines that can play with people. The fields of human-computer and human-robot

interaction have developed techniques for studying the relationships between people

and machines, and the communities have begun to extend the definition of machines

to include systems employing artificial intelligence [272, 114].

Using some of these techniques, we began to study real interactions between peo-

ple and our implementation of an assistive interactive agent based on the research

throughout this dissertation. Although there were unexpected challenges that pre-

vented us from running the experiment as planned, this is still the first time that people

experienced an interaction with a closed-loop interactive intelligent system. Between

the data collected directly from this experiment and the feedback from participants at

the ICAPS 2019 demonstration, there are many new research opportunities, ranging

from answering questions to testing hypotheses. Chapter 8 ends this dissertation with

a discussion about such topics, which we leave to future work both for ourselves and

others interested in studying closed-loop interactive intelligent systems. Many novel

situations from interactive experiences and integrated frameworks take traditional ar-

tificial intelligence algorithms out of their original context, and we need to address

them as we continue to study and create intelligent interactive systems that actually

interact with people. Whether using the PReTCIL framework or another model,

the answer to this concluding remarks’ title is, “not yet.”
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CHAPTER 8

THE NEXT STEPS FOR DECISION MAKING FOR
INTERACTION

Many of us have experienced the adage first-hand that closing any door
leads to opening many new ones. Our acquired knowledge leads to new
opportunities, and the answers we receive only lead to more questions.

— Richard (Rick) G. Freedman,
an excerpt from his submission to the University of Massachusetts

Amherst’s Graduate School Commencement speech contest

This dissertation’s initial investigation with the PReTCIL framework provides

evidence supporting the potential for integrating recognition and decision mak-

ing to close the interaction loop for autonomous systems. Deciding how

to interact with others benefits from understanding what they are doing, and those

decisions in turn influence the expectations over how they will respond. This creates

an indefinite procedure for at least the duration of the interactive experience, but in-

dividual interactions are rarely one-shot, independent events over one’s lifetime. The

integration of these interactions define who we are and how others perceive us, and

hopefully interactive intelligent systems will one day be a part of this phenomenon as

well. The hypotheses and novel avenues explored throughout this dissertation have

many possible directions to consider next, and we present their general classes below

as challenge topics for future research.

8.1 Challenge Topic: Sufficient Information to Interact

For the demonstration, we set two parameter values manually when initiating

an interactive session: the necessities threshold and the number of turns that the
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person has for a head-start. The former adjusts the sensitivity of feature selection

when generating intermediate goals from the recognized distributions; the threshold

τ ∈ [0, 1] requires a feature to appear in enough goal criteria that collectively represent

at least τ of probabilistic RaP’s distribution over H. The latter acts as a delay

before the assistive agent begins responding, which allows it to have an observation

sequence that is less ambiguous during recognition. Although parameter tuning is a

common challenge in many algorithms, especially for machine learning performance,

we identified some impacts for choosing different values.

If the necessities threshold is too low, then the intermediate goal adds more fea-

tures unique to specific goal criteria. Although this sounds more robust to accom-

modate the uncertainty at the beginning of the interaction, the present-day norm of

conjunctive goal conditions means that there is a greater opportunity for the goal

to have contradictions. In our demonstration, at most one block can be on top of

another. However, lower thresholds allowed words that shared one letter to require

both of their preceding letters on top—“mother” and “father” could easily require

both the A and O blocks to be placed on top of the T block (in addition to building

the stack that spells “ther”) when τ is sufficiently small. The lack of a solution to

this goal means that the interactive agent cannot find a plan and act that turn, which

makes them appear less helpful to people. Likewise, if the necessities threshold is too

high, then the necessities might not contain any features and the intermediate goal

consequently changes nothing—“mother” and “father” may have a combined proba-

bility of 0.8 in some cases, but that does not identify any intermediate goal conditions

when τ = 0.9. In this case, the solution of doing nothing has the same consequence

as not finding a solution to a goal with contradicting conditions.

The number of head-start turns can be more drastic. If it is low, such as 0 to begin

interacting immediately, then the first few observations can be very ambiguous such

that the assistive agent recognizes a near-uniform distribution over the subset of goal
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criteria that use those actions at least once in their possible solutions. Even with a

reasonable necessities threshold, this distribution can either be spread too thin to find

no features for the intermediate goal or be concentrated enough over almost-distinct

goal criteria that contradicting unique features are added to the intermediate goal.

The latter scenario sometimes selected unique features that did not contradict others,

but were generally incorrect so that the interactive agent performed actions that did

not make sense to people interacting with them. An additional observation would

often prune the extraneous goal criteria from the recognition algorithm’s output,

which is why we added the head-start parameter. When it was set too high, though,

the person made enough progress alone that they found the interactive agent’s late

response less useful.

8.2 Challenge Topic: (Un)Intentional Communication

When the autonomous agent in human-computer/robot interactions has their own

personal goals, they can communicate their intentions to people via legible planning

with low-level motions [65, 196] or high-level actions [168]. However, our assistive

agent’s personal goal is more abstract: “to help the user with their own goal.” So the

interactive agent does not have a personal goal until they compute an intermediate one

through recognition (see Section 5.5). Geib et al. [90] account for communicating the

agent’s newfound goals during the negotiation step, but their assistive agent pipelines

the interaction process so that there is no further recognition after negotiating tasks.

We assumed that the cognitive load of frequent negotiations would not be ideal as the

PReTCIL framework loops indefinitely.

However, our implementation’s planner assumes what people involved in the in-

teraction will do, which sometimes reorders or includes extraneous actions compared

to what each person actually plans to do. These deviations between both agents’ ex-

pectations could be enough to confuse the person instead. In one instance, someone
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trying the demonstration looked at the debug data to read the sequence of assumed

actions and mentioned that providing this information would have been a useful ex-

planation for the unexpected behavior. Providing explanations for decision making

systems [76] has been growing in popularity recently, but we need to be careful that

these explanations do not constrain people’s freedom to act in accordance to what

the machine does [43]. Social media platforms already force people desiring attention

to be “slaves to the algorithm” [33, 124], and we do not wish to extend this trend to

interactive experiences with intelligent systems.

Some people at the demonstration already succumbed to such constraints when

selecting their own actions to ensure legibility to the recognition algorithm, view-

ing the demonstration as a puzzle rather than an open-ended interactive experience.

Does this defeat the purpose of closed-loop interaction if people adjust their own be-

haviors to satisfy the algorithms around them rather than act naturally? Though

we mentioned that Levine and Williams’s assistive agents [176] have more restricted

interactions using a library of precomputed plans, this library often contains mul-

tiple plans that allow the interactive partner flexibility (this is the purpose behind

their choice nodes where the human can take one of several actions). This leads to a

research challenge for finding the balance in a hybrid of closed-loop interaction frame-

works. If a joint-agent planner finds multiple plans to the intermediate goal, then

which plans’ action should the agent use when there are multiple options? That is,

when monitoring the execution, which plans are “going according to plan”?

In the opposite direction of behavior influence, it is also important to identify

when people take actions for signaling purposes rather than goal satisfaction. In

one instance at the demonstration, the interactive agent picked up a block that the

person just put down on top of the goal stack because the necessities did not think

it belonged. Specifically, Ring predicted that Red wanted to spell ‘later’ or ‘water’

rather than ‘master’; implementing the dynamic prior (see Section 5.1) might have
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avoided this issue because it is generally more optimal to spell shorter words. So

the best action for Ring to take after Red picked up the A block was picking up the

recently-placed S block. The person calmly passed their turn with a no-op action,

and the interactive agent then replaced the S block on top of the goal stack. From the

perspective of probabilistic RaP, this means that the action of not putting the A block

on top of the goal stack after the removal of the S block made spelling ‘later’ or ‘water’

less optimal than spelling ‘master’ or ‘faster’ (another option in the demonstration’s

dictionary of possible goal words H). Other people in this situation often put the A

block down elsewhere rather than do nothing, and this usually began to confuse the

recognition algorithm as described in Section 8.3 below because putting the A block

down anywhere other than the goal stack was not optimal for any of the goal words in

H. Although people in both cases performed an action as a responsive signal (stating,

“that is wrong” or “put it back, please”), the interactive agent only interpreted one

case correctly by mere coincidence of the underlying algorithm.

8.3 Challenge Topic: What Information Actually Matters?

While most of the challenges discussed so far involve general issues that relate

specifically to the interactive experience, it is also important to consider some algo-

rithmic challenges. The most critical ones we identified during the demonstration

relate to using all the available information. Some plan recognition algorithms al-

ready address noisy sensing [252] and irrelevant experimental actions while exploring

the environment [195], but these methods still assume that the observed agent Red is

the only actor in the world.

The interactive agent Ring’s actions also change the world, and these need to

be acknowledged during recognition. We simply encoded them as observations be-

cause RaP algorithms handle missing observations by assuming that Red performs

actions that can connect two consecutive observations. However, the potential for
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poorly chosen intermediate goals threw off the recognition algorithms due to the

Ring’s sometimes incorrect actions and state modifications. Classifying these actions

as noise or experimentation might work pragmatically, but they are conceptually dif-

ferent because these actions have purpose and influence the interactive partner’s later

actions toward their goal. Furthermore, for long-term interactive intelligent systems

that people cannot reset as easily as our demonstration, how should they modify

observation sequences over time for relevancy to the current interaction only?

When our demonstration’s assistive agent computed a joint plan to solve their

intermediate goal, the search algorithm used the same heuristics as probabilistic RaP’s

searches even though the state space and set of actions changed to address turn-

taking. The above issues with incorrect intermediate goals present two things to

consider with respect to this approach. First, when the intermediate goal contains

contradicting conditions, is there a way to find a plan that satisfies some largest

possible subset of goal conditions so that the agent can do something? Second, if

the interactive agent is unable to find a plan, should they perform a default action

(as we did in Section 7.2.2) or replan for some default set of goal conditions? We

initially programmed our assistive agent to perform a no-op, but this led to several

failed demonstrations where the human-controlled player needed a block that the

computer-controlled player was holding before they failed to find a plan and started

to execute no-ops. Even if some of these people intended to confuse the assistive

agent with noisy observations, a default goal of not holding any blocks would at least

allow people to complete the task on their own. We implemented this as a default

plan because placing any block on the table cannot interfere with spelling a word,

but the goal variation is more robust in domains where there is no single plan that

guarantees non-interference.
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8.4 Challenge Topic: Integrated Architectures of Algorithms

As domain-dependent heuristics can take advantage of specific information to im-

prove search efficiency, customized code for integrating algorithms can take advantage

of shared information more than simply gluing preexisting implementations together.

While the PReTCIL framework is complex and allows a variety of algorithms to fill

each component’s niche role(s), we hypothesize that implementing the framework as a

single architecture can be more advantageous than pipelining the information between

the algorithms separately. This was part of our inspiration for re-implementing search

and probabilistic RaP algorithms in addition to the other reasons mentioned through-

out this dissertation. For example, Figure 6.2 illustrates how all the algorithms that

involve search share underlying data structures such as hash tables of states and

actions—using pointers that reference a single hashed instance avoids storing many

duplicate object instances in memory between different search executions within the

same state space.

However, there are many additional opportunities to improve the design of our

software library and potentially improve the performance of this PReTCIL frame-

work implementation. One enticing feature of the original class of RaP algorithms

was the ability to do most the work with off-the-shelf classical planning software,

which reduced implementation efforts for recognition algorithms. However, more re-

cent variations have diverged from this reliance to create their own data structures

and algorithms that take advantage of recognition-specific properties that would never

exist in an off-the-shelf classical planner [69, 217]. If we follow in their footsteps, then

we can modify heuristic search in more ways than just searching for multiple goal

states at once (see Section 6.5.1).

One such example involves modification of the search algorithm and node imple-

mentation. Searching through observation space requires augmenting the observation

progress count to the original state space, which means search typically encounters
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the same original state multiple times with a different progress count. This is not

too worrisome memory-wise because we already hashed the original state, yet this

novel state in observation space will generate the same original children states as

the previous one with a modified observation count and increase the runtime for an

almost-redundant search process. If we instead modify the search node to store a

bound on the observation progress and adjust these bounds per node throughout the

search process, then we can perform an ongoing heuristic search in the original state

space (see Section 6.5.2)—this search process only visits, expands, and goal-evaluates

each state one time. Another example, based on discussions with former student Ro-

man Ganchin, would be storing information from one search progression to speed-up

the following ones. MGHS’s marginal utility heuristic [59] uses this to identify how

many goal nodes exist in a search subtree from a given node. Pattern databases [57]

store the oracle heuristic values for subproblems between states, and we can fill in a

table between searches (rather than precompute it all a-priori) so that future search

processes can find the same goal more efficiently.

Beyond the integration of high-level recognition and planning into a single archi-

tecture, there is also the potential to directly include low-level recognition such as the

activity recognition approaches in Chapter 4. The topic modeling-based algorithms

associate sensor data to action labels via probability distributions, but is it possible to

use the distribution more flexibly when matching observations in RaP? Rather than

selecting the most-likely action label and then passing it to a RaP-like algorithm for

independent analysis, the raw sensor data can provide a distribution over possible

action labels as well as the approximately-recognized plan to guide the search pro-

cess(es) solving PGO and PG¬O. The challenge behind this approach is the additional

uncertainty of whether a matched plan is truly a solution to either problem because

the observations themselves are probabilistic.

244



8.5 Challenge Topic: Understanding People, Not Just AI

As of writing this dissertation, it personally seems to the author that many mem-

bers of the AI research community under-appreciate the fact that people exist along-

side intelligent systems. This in no way means that they disregard the existence of

people or their greater competence than the typical intelligent system. Humans have

served the role of experts to improve systems employing AI since the early days of

the field—a few, but far from all, examples include:

• People analyzed case scenarios and proposed solutions during the development

of expert systems [131],

• Apprenticeship learning/learning from demonstration [239] relies on observing

how people do things and receiving their feedback, and

• Active learning [39] asks people for classification advice when there is uncer-

tainty during training and/or testing.

Furthermore, human performance is often a goal for researchers studying some aspect

of AI. The fact that researchers strive to develop computational agents that can

effectively play games against people and win [105] is more than enough evidence

that people are not being ignored.

However, acknowledging people for their intelligence is only considering a fraction

of their potential contributions to developing intelligent systems that co-exist in the

world amongst them. The term “human-aware AI” [143] became a recent buzzword

in AI research that might address this issue, but also has a risk of averting it. At the

moment, most (not all) the literature regarding human-aware AI seems to focus on

one of several areas:

• Personalized Algorithms Applications using a machine learning algorithm

collect data about the specific user and tune their training dataset accordingly.

A popular example is recommender systems [230].
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• Explainability The AI algorithm derives a human-acceptable justification for

their actions [3] so that people can feel more comfortable around machines.

• Cognitive Modeling Intelligent systems observe an individual’s or group’s

behavior and generate a model that can emulate the observed behavior. Recog-

nition algorithms commonly fall into this area, especially when employing theory

of mind [18].

• Ethics To avoid/lessen the risk of intelligent systems causing harm to people,

AI researchers must take responsibility to design algorithms and domains in

such a way that minimize adverse consequences. However, for situations that

even people consider ‘gray areas’ [240], we also need to decide how intelligent

systems will address them.

These AI approaches certainly acknowledge the fact that people exist around them,

but do the researchers creating these approaches acknowledge people any further than

being the targets of human-aware AI algorithms?

Rather than creating methods based on philosophical conjectures of what people

do (providing data, asking for specific forms of justification, making certain classes

of decisions, etc.), there is a lot that AI researchers can learn from actually watching

people do things and studying their co-existence with intelligent systems. This idea is

not novel; it has been studied throughout other fields of research including psychology,

cognitive neuroscience, and human-computer/robot interaction. Rather than working

independently such that AI researchers human-agnostically create “human-aware AI”

and release it into the world for other researchers to study later, there is merit to

working together so that the algorithms are designed based on what people actually

do before dissemination. Furthermore, we can receive emotional and social feedback

from people during these studies that inform researchers about how they feel and what

they do (not) like about the methods.
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Through Chapter 7, it has hopefully been clear that many conceptual ideas re-

garding how decision making for interaction worked did not properly play out as

intended once people tried them out. Our experiments only started to explore peo-

ple’s interactive experiences with closed-loop interactive intelligent systems, and there

is much opportunity for co-studying how both machines and people make decisions

about interacting with each other. As one example for future research, consider the

look-ahead parameter ε and suboptimality parameter λ from our dynamic prior for

probabilistic RaP in Section 5.1. We can sweep values and optimize the results for

some contrived benchmarks, but why not study real people acting in relevant do-

mains first? How suboptimal are people when they solve trivial problem instances

compared to more difficult ones? How much foresight do people apply in various

problem instances as time progresses?

Observing how people interact can benefit more than just recognition algorithms

to guide decision making, but machines can only observe and interpret as instructed.

A human researcher, though, is not restricted by such algorithmic code. They can

observe additional information about people to further improve understanding and

identify new research questions. While conducting the experiments in Chapter 7, the

on-site researcher (who happens to be the author of this dissertation) noticed almost

every participant remark surprise during the second tutorial level—people assumed

the computer-controlled player was adversarial until they put the next block on top

of the goal stack. Human-aware AI on its own would not realize the significance of

this simple event, but we propose the following new research questions from it alone:

1. Why would a person assume that the interaction was adversarial? Does the

nature of playing games affect their prior? Is it a cultural impact from science

fiction’s common theme of adversarial intelligent systems?
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2. How does an interactive agent communicate its type of interaction to people?

This is similar to legibility, but regarding an abstract task (helping, hindering,

etc.) rather than a concretely-defined task (see Section 5.5).

3. How can an interactive agent recognize another agent’s interaction type? That

is, how can they tell if another agent is assisting, being adversarial, or simply

acting on their own independent task?

Considering such questions provides evidence that the PReTCIL framework might

not even have enough components to address such levels of reasoning yet. Much

research remains, but it is clear that machines interacting with people is not just the

goal, but also an essential, iterative part of the research process.

248



APPENDIX

FIRE EMBLEM HEROESTM IS NP-COMPLETE

A.1 Introduction

Fire Emblem HeroesTM (FEH) is a videogame for mobile devices released in Febru-

ary 2017 where two players strategically manipulate pieces with various statistics and

special abilities in a manner similar to a hybrid of Chess and Magic the GatheringTM

[211]. Unlike many classic strategy games where the collection of pieces are the same

for each player and consistent between gameplay instances, FEH has a large collection

of pieces (called “heroes” or “units”, but we will use the more general term for read-

ers who are not familiar with the game’s vocabulary) from which players construct a

team of pieces to use prior to each gameplay instance1. Most matches take place on

a six-by-eight-tile board (called a “map”, with some tiles containing obstacles that

may possess their own attributes) and only allow teams of up to four pieces, but

some modes use alternative board sizes or larger teams where new pieces are added

to the board over time. In general, a player wins by successfully capturing all the

opponent’s pieces from the board first; however, sometimes alternative criteria are

presented such as offense and defense (a turn limit for offense to win, which is a turn

limit for defense to avoid losing) and/or capturing special territory-marked tiles on

the board.

Although FEH supports human players competing against each other, this cur-

rently extends to only selecting the team of pieces and occasionally the game board’s

1A player’s personal collection of pieces will be some subset of all existing pieces in the game
because they must be purchased via a gumball machine-like interface called “summoning”.
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layout. These selections are uploaded to the game’s server and then downloaded to

a client player’s device when the match begins. Thus the client player’s team of

pieces is human-controlled (though there is an auto-battle feature that automates the

client player), but the player’s team that is downloaded from the server is computer-

controlled. Like most traditional videogames, the algorithm the computer follows for

manipulating the team of pieces is an expert system. That is, there is a hand-coded

list of instructions for what the computer should do based on the current board con-

figuration. Some members of the FEH-playing community have invested time into

reverse-engineering this expert system [282, 4], and it has also been concluded through

strong evidence that the algorithm is purely deterministic. This drastically changes

how the gameplay is perceived from an adversarial game to a puzzle game and guar-

antees replicable playthroughs if the board and pieces are identical [199], which allows

players to share solutions that help guide others [222].

These properties are related to the Nondeterministic Polynomial (NP)-Complete

class of problems that are verifiable in polynomial time (with respect to the prob-

lem size) and thus solvable in polynomial time if all possible solutions are guess-

and-checked simultaneously. We show that the FEH decision problem, determining

whether the human-controlled player can win within k turns given board configuration

B, is in this complexity class after explaining the mechanics of the game.

A.2 Playing Fire Emblem HeroesTM Overview

Although FEH has much in common with other strategy games because players

move pieces they control around the board and capture opposing pieces, the manner

in which these steps are executed is not as traditional. In particular, the variety of

statistics and special abilities play a large role in how to perform actions such as

moving and capturing. We thus describe the features of pieces and then outline the

general gameplay procedure.
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A.2.1 Pieces and Their Features

In FEH, a piece represents a single character on the game board. A piece occupies

a single tile, but has many properties assigned to it that vary its performance during

gameplay. Some of these are constant and cannot be modified significantly through

player investment:

Character Flavor Unique identifiers for a piece include its name, epithet, portrait

images, and voice-acted sound clips. These do not affect gameplay.

Movement Type The number of adjacent tiles that a piece can traverse in a single

movement and its obstacle restrictions. There are four types:

Infantry Traverses at most two tiles per movement; a forest obstacle tile counts

as two tiles; and cannot traverse pit, water, or tall object obstacle tiles.

Cavalry Traverses at most three tiles per movement; a trench obstacle tile

counts as three tiles; and cannot traverse forest, pit, water, or tall object

obstacle tiles.

Flying Traverses at most two tiles per movement; and cannot traverse tall

object obstacle tiles.

Armor Traverses at most one tile per movement; and cannot traverse pit,

water, or tall object obstacle tiles.

Five Statistics Integer values that indicate a piece’s proficiency at various aspects

of the game. The sum of a piece’s five integer values is generally equal to

another piece with the same movement type (armor has the greatest sum while

cavalry and flying have the least sum) and weapon type range (explained below,

melee has a greater sum than ranged) if they were both introduced to FEH

around the same time. To entice players to purchase newer pieces, this sum for

each movement and weapon-type-range combination tends to increase over time;
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however, alternative currencies awarded in the game allow players to increase

these values to strengthen their older pieces. The five statistics are:

Hit Points (HP) The ‘stamina’ representing how well a piece can sustain be-

fore being captured. This number generally decreases after each capture

attempt during a gameplay instance, and the piece is captured if its HP

becomes zero or less.

Attack (Atk) The ‘strength’ representing how well a piece can capture other

pieces. If a piece happens to have a special ability that makes it effective

against the opposing piece that it tries to capture, then its attack value is

multiplied by 1.5.

Speed (Spd) A piece attempts to capture twice in a single action if its speed

value is at least five greater than the opposing piece that it tries to capture’s

speed value.

Defense (Def) The ‘physical durability’ representing how well a piece can

withstand capture attempts from pieces with physical weapon types (ex-

plained below).

Resistance (Res) The ‘magical durability’ representing how well a piece can

withstand capture attempts from pieces with magical weapon types (ex-

plained below).

Weapon Type The type of weapon implies the range at which the piece can attempt

to capture other pieces on the board as well as which statistics are used during

the capture attempt. Melee weapon types may attempt to capture opposing

pieces in an adjacent tile to any tile to which the piece can traverse. Ranged

weapon types may attempt to capture opposing pieces exactly two adjacent tiles

away from any tile to which the piece can traverse. If a piece attempts to capture

an opposing piece with the same weapon type range, then the opposing piece

252



will attempt to capture it afterwards if the capture was not successful (called

a “counter”). Weapon types are also either physical; including swords, lances,

axes, beast attacks, daggers, and bows; or magical; including tomes, staves, and

dragon attacks. Of these weapon types, only tomes, staves, daggers, and bows

are ranged; the remaining weapon types are all melee. An additional special

feature of the bow weapon type is that it is effective against pieces with the

flying movement type. Pieces with the staff weapon type have access to special

abilities that can recover another piece’s HP, but they are not allowed to use

many offensive special abilities. Furthermore, pieces with the staff weapon type

multiply their total damage by 0.5 when they attempt to capture another piece.

Weapon Color The color of a weapon is used to add a Rock-Paper-Scissors rela-

tionship between pieces called the “Weapon Triangle”. Of the weapon colors,

red has an advantage over green, green has an advantage over blue, and blue

has an advantage over red. There is also a colorless weapon color that has

no advantages or disadvantages over other weapon colors unless changed by a

special ability. Similar to how effectiveness works, a piece with a weapon color

advantage over a piece that it is attempting to capture (or that is attempting

to capture it) multiplies its attack by 1.2. On the other hand, a piece that has

a weapon color disadvantage over a piece that it is attempting to capture (or

that is attempting to capture it) multiplies its attack by 0.8. Of the weapon

types, swords must be red, lances must be blue, and axes must be green, but

all the other weapon types may be assigned any of the four weapon colors2.

In contrast, a piece’s remaining features can be modified through a player’s in-

vestment of resources, including the payment of various currencies awarded in the

2As of the time of writing this, all pieces with the staff weapon type have the colorless weapon
color. So it might be the case that staves cannot have any weapon color.
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game or other pieces in the player’s inventory. Some of these simply modify the five

statistics similar to a level-up mechanic (“merging”, “support”, and “dragon flowers”)

or during specific modes of play (“blessings” whose benefits depend on the weekly

“season” for arena modes). The rest are related to the special abilities that a piece

possesses during gameplay (when there is more than one option for a single feature,

the chosen one to use during the current game instance is “equipped”), and we will

focus on these below:

Weapon For a piece’s weapon type, there are a variety of weapons available in the

game with a might (Mt) statistic and some special abilities. The might statistic

is an integer value that is added to the piece’s attack statistic (for computational

purposes, FEH refers to this sum as the piece’s “attack”). The other special

abilities either mimic a special ability from a slot skill (defined in a bullet below)

or provide some unique ability. Many pieces also have an exclusive preferred

weapon that can only that specific piece can equip. The list of actual abilities

and preferred weapons is too exhaustive to list, and we will primarily use the

generic weapons with no special abilities in the proof. The only non-generic

weapon ability we will need is the ‘brave’ effect, which allows a piece to perform

two consecutive capture attempts per initiated capture attempt (in exchange for

lesser might than other weapons and a decrease in the piece’s speed statistic).

Assist Skill Besides attempting to capture the opponent player’s pieces, the player

can instead have their own pieces interact with each other if the one moving

has an assist skill and will be in the correct range to another piece on the same

team. Pieces with the staff weapon type have their healing ability assigned as

their assist skill, but other pieces can apply alternative helpful effects. These

include increasing the values of some subset of another piece’s five statistics

(‘rally’), exchanging some conditioned number of hit points (‘ardent sacrifice’

and ‘reciprocal aid’), moving itself and/or the other piece somewhere else on the
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board despite the allowed number of spaces for the movement type (‘reposition’,

‘shove’, ‘smite’, ‘draw back’, ‘swap’, and ‘pivot’—obstacles for each movement

type still apply), and allowing a piece that already moved to move again (‘dance’

and ‘sing’ are limited to specific pieces in the game and these pieces cannot

perform the assist skill on each other if they both have it equipped). A few

pieces have exclusive assist skills as well. No assist skills will be used in the

proof.

Special Skill Special skills are related to an ability that only occurs once in a while,

using a countdown that ‘charges’ when some condition is met and then acti-

vating when the condition is met after completely charging. After activation,

the countdown returns to its maximum value (called the ‘cooldown count’).

Whenever a piece is involved in a capture attempt, unless a special ability is

involved, the charge decreases by 1. Additional events and special abilities

can alter the cooldown count and charge rate, and some levels in the game

(not player-vs.-player content) will charge the special skills of the pieces on the

computer-controlled player’s team before the round begins. The majority of

the special skills increase the amount of damage that a piece performs during a

capture attempt, but there are a few others that reduce the amount of damage a

piece receives during a capture attempt, reduce the HP of the opponent’s pieces

outside of a capture attempt, heal HP during a capture attempt, grant another

movement, etc. A few pieces have exclusive special skills as well. We will only

use the special skill named ‘miracle’ in the proof, which negates a successful

capture and sets the equipped piece’s HP to 1 if (1) it is completely charged,

(2) the piece equipped with this special skill has more than 1 HP before the

opposing piece attempts to capture it, and (3) the opposing piece’s capture

attempt is successful after the damage calculation.
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A/B/C/Sacred Seal-Slot Skills These are the primary special abilities assigned

to a piece, and they have a wide variety of effects. In general, but not always

the case, the skills allowed in each slot have a specific effect property. A-Slot

skills typically provide a benefit to the piece with that skill equipped, B-slot

skills typically alter some game rule such as capture-attempt-order or apply

additional effects when certain events occur (using assist skills, being involved

in a capture attempt, etc.), C-slot skills typically apply changes to nearby pieces

on the gameboard (increasing/decreasing the values of the five statistics, adding

additional effects, etc.), and sacred seal-slot skills can be any other slot skill so

that two abilities pertaining to the same slot can be equipped simultaneously3.

A few pieces have exclusive skills for a subset of their slots as well. The list

of actual abilities per slot skill is far too exhaustive to list, but we will use

the A-slot skill named ‘distant counter’ in the proof. This skill simply allows

an equipped piece with melee weapon type to counter if a piece with ranged

weapon type attempts to capture it.

A.2.2 Gameplay Flow

We will describe the general flow of gameplay, including how some specific events

such as capture attempts play out for resolution. However, FEH has multiple phases

for a variety of events that determine when special abilities activate. As none of these

niche moments are needed for the proof, we will not discuss them to avoid overwhelm-

ing readers who are unfamiliar with FEH. We will only focus on the main mode of

gameplay with the traditional victory criteria of capturing all of the opponent’s pieces

first.

3The available sacred-slot skills are a subset of all the slot skills in the game, but is gradually
expanding over time. They are usually awarded during gameplay and can only be assigned to one
piece at a time.
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A.2.2.1 Setup

The game contains a variety of boards that are six tiles horizontally by eight tiles

vertically. Every board contains markers for where to place each type of obstacle

tile as well as the pieces on both players’ teams. These piece placement tiles enforce

placement based on the player’s ordering of their pieces in the team list; however,

an updated version shortly after the game’s release has since allowed the human-

controlled player to rearrange their pieces’ placement before the round begins4. The

FEH problem’s input encodes the turn limit k and the board after setup and the

player rearranged their pieces (since the team list could have been reordered prior to

setting up the board).

A.2.2.2 Turn Order and Actions

Although FEH is turn-based, the players’ pair of turns together are referred to as

a “turn”. This is important for some special abilities that last ‘until the end of the

current turn.’ A single turn is thus divided into two “phases”. The human-controlled

player always goes first during the “player phase”, and then the computer-controlled

player always goes second during the “enemy phase”. A turn for each player is the

duration of that player’s current phase and the other player’s next phase, which is

effectively the time between that player beginning their consecutive phases.

During their respective phase, the player may perform up to one action with each

piece on their team that is not captured5. This has some similarities to strategy

4This feature provides an advantage to the human-controlled player, but that is a game design-
related discussion that is not relevant to this work. The advertised reason for the feature involves
players no longer having to reset matches to alter their team ordering when playing non-player-vs.-
player levels that require a time or financial payment per try, which is a common feature of mobile
videogames.

5A very recent addition of “duo skills”, which are exclusively to very few rare pieces called “Duo
Heroes”, allow a second action once per game instance that activates the skill. Some modes also
allow “pair-up” actions to be taken anytime during a player’s phase that swap a piece on the board
with a corresponding piece off the board. Due to their late inclusion in the game’s history and being
augmentations to the original rules, we will omit these cases.
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games such as Arimaa where a player takes multiple actions per turn, but the actions

cannot be allocated between pieces freely (that is, a piece can only act once per turn

rather than not move one piece in exchange for two actions with one piece). Like

such strategy games, though, the order in which pieces act is up to the player so that

the available actions per piece might change from the consequences of another piece’s

actions.

A single action combines both moving and interacting with up to one other piece

on the board, which depends on the piece’s movement type and range for weapon

type (if interacting with an opponent’s piece or breakable obstacle) or assist skill (if

interacting with another piece on the player’s team). A piece cannot finish moving

into another tile that is occupied by any other piece. On the other hand, a piece may

freely move through a tile with another piece from the same team (similar to letting

an ally slide past). This benefit does not reciprocate with pieces on the opponent’s

team, which serve as additional tall object obstacles to the ones placed during the

board’s setup. When the interaction is an assist skill, then the acting piece’s assist

skill’s effects simply resolve. Interacting with a breakable obstacle also simply reduces

the obstacle’s hit points by 1, and the obstacle is removed when its hit points reach 0.

Interacting with an opponent’s piece begins a capture attempt, which is formally part

of a more complicated event called “combat”. We describe combat in the following

section.

A.2.2.3 Combat Procedure

When two pieces on an opposing team interact, a combat begins and these pieces

have opportunities to capture each other. Depending on the phase of the turn, one

of the players “initiates” the combat by performing an action with their own piece

Rinit that interacts with an opponent’s piece Rfoe. We will progress through combat

assuming that no special abilities from any weapons or skills are active.
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1. The piece that initiated the combat Rinit attempts to capture the opposing

piece Rfoe. Rfoe’s HP is decreased by the amount of damage it receives, which

is the difference of Rinit’s attack statistic minus Rfoe’s defense statistic (if Rinit’s

weapon type is physical) or resistance statistic (if Rinit’s weapon type is magi-

cal). If Rfoe’s HP becomes 0 or less, then it is captured—the piece is removed

from the board and combat ends.

2. If Rfoe is not captured and it has the same weapon type range as Rinit, then

Rfoe counters and attempts to capture Rinit. Rinit’s HP is decreased by the

amount of damage it receives, which is the difference of Rfoe’s attack statistic

minus Rinit’s defense statistic (if Rfoe’s weapon type is physical) or resistance

statistic (if Rfoe’s weapon type is magical). If Rinit’s HP becomes 0 or less, then

it is captured—the piece is removed from the board and combat ends.

3. If Rinit is not captured and its speed is 5 or greater than Rfoe’s speed, then Rinit

“follows up” and attempts to capture Rfoe again. Rfoe’s HP is again decreased

by the amount of damage it receives. If Rfoe’s HP becomes 0 or less, then it is

captured—the piece is removed from the board and combat ends.

4. If Rfoe is not captured, has the same weapon type range as Rinit, and its speed is

5 or greater than Rinit’s speed, then Rfoe “follows up” and attempts to capture

Rinit again. Rinit’s HP is again decreased by the amount of damage it receives.

If Rinit’s HP becomes 0 or less, then it is captured—the piece is removed from

the board and combat ends.

5. If neither Rinit nor Rfoe is captured yet, then combat ends and both pieces

remain on the board with their updated HP values.

Any time one piece attempts to capture the other during combat, both pieces

decrease their equipped special skill’s countdown by 1 to charge it. For the special
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skill ‘miracle’ that we will use in the proof, its maximum cooldown count of 5 means

that the piece equipping it must be involved in 5 capture attempts as either Rinit

or Rfoe before it can activate. To avoid it not being ready in time, we will take

advantage of the fact that the computer-controlled player’s pieces exclusively equip

it and that FEH has some levels where the computer-controlled player’s pieces have

their specials fully charged before the round begins.

Though this is the common progression of combat, the reader should be aware

that the order can change and additional events can frequently occur during a single

combat based on other pieces’ special abilities (besides Rinit and Rfoe themselves,

nearby pieces can affect them during combat). We will not have any skills with

external effects, but we will equip one piece on the human-controlled player’s team

with a weapon that has the ‘brave’ effect. This effect alters the progression above

such that, when the piece is Rinit, steps 1. and 3. repeat immediately before steps

2. and 4. respectively.

A.3 k-FEH Problem

Given turn limit k and a board B following its setup, we define FEH as a decision

problem that returns > if and only if the human-controlled player can win in k or

fewer turns. However, if we simply limit the format of B and its setup as described

in Section A.2.2.1, then the FEH problem does not scale between problem instances

because the board size is constant. This also bounds the maximum number of pieces

on the board because at most one piece can occupy a tile. Thus, even if the program

would take a long time to run, these FEH instances can be solved in constant O (1)

time with respect to the set of possible values of B by enumerating all possible move

combinations that might exist on every tile at each of the k turns.

We therefore generalize FEH to allow scaling the size of B as input to the problem

instance: a board can have sizes of n tiles horizontally by n tiles vertically with any
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arbitrary assignment of obstacles and players’ pieces to the tiles that is valid (for

example, an infantry piece cannot be placed on a tile with a water obstacle). Our

generalization thus allows either player to have an arbitrary number of pieces on their

team (but at least one), and these team sizes do not have to be identical. Furthermore,

we do not restrict the players to the set of pieces that have been released so far in

FEH—any possible tuple of non-negative integers may be assigned to the piece’s five

statistics, and any combination of movement type, weapon type, and weapon color

is permissible. Due to skills not being as trivial to generalize as a linear combination

of integers or cross product of enumerable sets, we still enforce them to be the set of

skills currently released in FEH belonging to each respective category.

Definition 57. The FEH problem is a decision problem to determine whether, for

integer k and generalized FEH board B, there exists a sequence of actions such that

the human-controlled player can capture all the computer-controlled player’s pieces in

k turns or less. That is, can the human-controlled player win a game within k turns

starting with B’s configuration?

For the proof, we will specifically use only skills that were available upon the

game’s release to confirm that FEH was always NP-complete. This represents the

original boards in FEH because we can pad extraneous rows and columns of the

board with tall object obstacle tiles over which no movement type can traverse.

With this generalization to varying board sizes, we now investigate how the process

of solving the FEH problem scales with respect to n. Following a similar intuition to

the original FEH game, the set of possible solutions for a single value of n is finite

due to the constant turn limit k that is also provided as input. Enumerations are

still bounded to a polynomial quantity with respect to n, though. Because no two

pieces can occupy the same tile, there are at most n2 pieces on the board and at most

n2−1 of them belong to the human-controlled player. In general, this means that the

human-controlled player will take at most n2 − 1 actions per turn. However, due to
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the allowance of additional actions by some assist skills (e.g. ‘dance’ and ‘sing’) and

special skills (e.g. ‘galeforce’), a single piece might be able to take some additional

actions. Due to the game’s rule’s restrictions that

• the special skills that grant an extra action may only be activated once per

piece per turn,

• assist skills that grant an extra action to another piece cannot be applied to

pieces that have such skills equipped, and

• assist skills that grant an extra action to another piece can be applied to a piece

even if it was already affected by such an assist skill earlier in the same turn;

we can bound the number of actions that a single piece can take on a single turn to at

most n2. This includes the piece’s typical action, additional action from its equipped

special skill, and all the remaining n2 − 2 pieces having an assist skill that grants

another action choosing to interact with this piece. This means that the player has

at most (n2 − 1) · n2 = n4 − n2 < n4 actions per turn regardless of B and the pieces

assigned to the player. Due to k being constant, this ultimately means that a solution

for the human-controlled player to win given B is bounded by kn4 actions. This is

O (n4), which is a polynomial number of constant-time actions with respect to n, the

size of B.

A.4 FEH is NP-Complete Proof

This proof is broken into several smaller proofs. In particular, we will show that:

Section A.4.1 A program whose runtime is bounded by a polynomial with variable n

can verify a proposed solution to a given FEH problem. This part shows that

the FEH problem is “simple enough” to check a solution within polynomial time.

However, this only provides an upper bound on the complexity because we could
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possibly generate a solution using an algorithm that is as complex or simpler

than the verification program. The worst case, which is the case of problems in

the NP-complete complexity class, is a guess-and-check approach that runs the

polynomial runtime verification program in parallel over all possible solutions

simultaneously. This is non-deterministic polynomial runtime.

Section A.4.2 The known NP-complete problem Subset Sum [88] is polynomial-time

reducible to FEH. This means that any Subset Sum problem can be converted

into some FEH problem such that the solution to that specific FEH problem

can also be converted into a solution to that specific Subset Sum problem. Due

to this conversion being done in polynomial runtime, the process of solving the

specific FEH problem to find the solution to the specific Subset Sum problem

takes no more than nondeterministic polynomial runtime. Thus if FEH has a

simpler way to generate its solution than the guess-and-check worst-case ap-

proach, then there is now a simpler way to solve the Subset Sum problem that

no longer involves guess-and-check with a polynomial-bound runtime verifica-

tion algorithm. Such a statement is a contradiction because the Subset Sum

problem is already proven to be NP-complete. This establishes the lower bound

on the complexity because the FEH problem cannot be “so simple” that it

inherently solves the Subset Sum problem more easily than the Subset Sum

problem can solve itself.

These two parts essentially act like a computational complexity version of the Squeeze

Theorem, bounding FEH’s complexity class from both directions as NP-complete.

A.4.1 Polynomial-Time Verification

Let B be some arbitrary generalized FEH board of size n tiles horizontally by n

tiles vertically, and let k be some arbitrary positive integer. Then given a sequence π of

at most k (n4 + 1) actions (including “end turn” actions), we can verify in polynomial

263



time with respect to n whether π solves B such that the human-controlled player wins

in at most k turns.

Proof: Given B, k, and π as inputs, we construct the verification program found

in Algorithm 3. In general, the verification program is simply an emulator that runs

FEH with B and simulates the human-controlled player’s actions with each action

sequentially specified in π. If any action in π is invalid and cannot be performed

at that time (the piece cannot move or interact as instructed, a specified piece in

the action is already captured, etc.), then the solution is invalid and the verification

program returns ⊥. This also handles the case where π provides too many actions on

a given turn because there will not be enough pieces to move, rendering one of the

later actions invalid. Likewise, if k turns lapse and the human-controlled player did

not yet win, then the verification program returns ⊥. The case where the human-

controlled player loses is a combination of these two situations. Either π continues

to specify actions that the human-controlled player cannot perform (and are thus

invalid) because all their pieces are captured, or the human-controlled player loses

their last piece on the enemy phase of the last turn so that the computer-controlled

player still has at least one piece on the board after the end of the kth turn. Thus the

verification program only returns > when every action in π is valid, the computer-

controlled player has no more pieces on the board, and the turn number is k or less.

This means that π may contain extraneous valid actions after the human-controlled

player wins; we can trivially remove these by adding an additional victory-condition

check step after performing each action and returning ⊥ when this condition is met

while π is not finished, but we choose to consider these solutions acceptable because

the human-controlled player still wins within the turn-limit and does not perform any

illegal actions. Hence Algorithm 3 performs as expected.

Because k is a constant, the outermost loop runs a constant number of times and

is a scalar multiple to the runtime. The innermost loop runs until π specifies the
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Input: Generalized FEH Board B, Turn Limit k, and Proposed Action
Sequence π

Output: > or ⊥
1 set n to

√
tileCount (B);

2 set action index = 0;
3 for turn from 1 to k by 1 do

//next action is set to NIL if the index is out of bounds
4 set next action to the action indexth element of π;
5 increment action index by 1;

//Simulate the player phase with π
6 while next action 6= “end turn” and next action 6= NIL do
7 if validAction(next action,B) then
8 update B by performing next action;
9 set next action to the action indexth element of π;

10 increment action index by 1;

end
11 else
12 return ⊥

end

end
//Simulate the enemy phase with ξ, which is a sequence of actions

13 set ξ to enemyPhase(B);
14 foreach action a in ξ do
15 update B by performing a;

end

end
//k turns are over, and π should be exhausted

16 set next action to the action indexth element of π;
17 if next action 6= NIL or numberEnemies(B) > 0 then
18 return ⊥

end
19 else
20 return >

end
Algorithm 3: Verification of a Proposed Solution for the FEH Problem
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“end turn” action or π is completely traversed, whichever occurs first. Exhausting π

before all k turns are complete thus terminates the innermost loop for the remaining

turns. The sum of all the iterations of the innermost loop across the k iterations of

the outermost loop is |π| ≤ k (n4 + 1), which is polynomial runtime in O (n4).

This means that the black-box function enemyPhase(B) is the only part of Algo-

rithm 3 whose runtime needs to be determined. This step is literally running FEH’s

enemy phase code to determine what actions to take given the current board state

after the human-controlled player ends their turn. This is where the fact that FEH

operates the computer-controlled player under a hand-coded expert system becomes

important. The order of moving pieces and their actions are guaranteed by known

sets of conditions including prioritizing the performance of ‘rally’ assist skills (in-

creasing the value of some subset of another piece on the same team’s five statistics),

attempting to capture the human-controlled player’s pieces whenever possible6, etc.

Although this expert system is not revealed to players, members of the FEH-playing

community have heavily studied and reverse-engineered it (if not completely, then

mostly) [282, 4]. It is clear from these investigations that the number of tiles, which

can also affect the number of pieces, does not have a significant effect on the computer-

controlled player’s action choices. That is, without any exponential branching factor

to consider ordering of piece actions and options for which actions to perform per

piece, enemyPhase(B) is effectively polynomial-bound runtime over the number of

pieces and thus polynomial-bound runtime with respect to n.

Therefore, Algorithm 3 also has polynomial-bounded runtime with respect to n

in the worst case. �

6This does mean that a computer-controlled piece will “commit suicide” and let itself be captured
if that will be the consequence of the only combat it can initiate. The program does not allow the
piece to “run away” unless it does not have a weapon equipped, which prevents it from attempting
to capture any pieces in the first place.

266



A.4.2 Subset Sum is Polynomial-Time Reducible to FEH

For those who are unfamiliar with the Subset Sum problem, we briefly define it

here.

Definition 58. The Subset Sum problem is a decision problem to determine whether,

for input set of nonnegative integers S and nonnegative integer z, there exists a subset

T ⊆ S such that
∑

t∈T t = z. The Subset Sum problem is NP-complete, where the

factor of scaling is along the cardinality of the input set |S|.

We now show that Subset Sum ≤m FEH, which is done in three parts. First, we

show that there exists a polynomial-time algorithm M that converts any problem in

Subset Sum to another problem in FEH. Second, we prove that the FEH problems to

which we convert each Subset Sum problems share solutions. That is, for all problems

(S, z) ∈ Subset Sum, (S, z) evaluates to > if and only if M (S, z) evaluates to >. As

an if-and-only-if-statement, we must prove each conditional statement/direction.

A.4.2.1 Existence of Polynomial-Time Algorithm

We begin with the construction of our FEH gadget, which defines the structure

of the generalized FEH boards that represent corresponding Subset Sum problems.

To conform with the combinations of features available in the original release of FEH

(to show that it was always NP-complete), we will use pieces with infantry movement

types in our gadget because infantry was the only movement type that was allowed

to equip bow weapon types in the original set of released pieces. It consists of three

types of layers, each shown in Figure A.1:

Enemy Layer The computer-controlled player is given two pieces that are unable

to take any actions because they are surrounded by tall object obstacle tiles on

all sides. They are also given melee weapon types so that they cannot act by

attempting to capture any of the human-controlled player’s pieces when they are
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on the opposite side of the obstacle tiles. Both pieces equip the sword7 weapon

‘iron sword’ (6 might and no special abilities), special skill ‘miracle’ that is

already fully charged before the round begins, and A-slot skill ‘distant counter’.

For the five statistics, both pieces have 0 attack, 0 speed, 5 defense (which is

the might of the ‘brave bow’ weapon in FEH), and 4 resistance (which is the

might of the tome7 weapon type with the weakest might and no special abilities

in FEH). The pieces do differ in the HP statistic value, though. Without loss

of generality, we assign the piece on the left (z + 2) HP and the piece on the

right
((∑

s∈S s
)
− z + 2

)
HP.

Set Element Layer The human-controlled player is given one piece in a constrained

corridor that has tall object obstacle tiles on both sides. This constrains the

movement of this piece along the corridor, and it is given a ranged weapon type

so that it can attempt to capture the computer-controlled player’s pieces when

it is on the opposite side of the obstacle tiles in the Enemy Layer. The piece

in this layer only equips the red-tome7 weapon ‘flux’ (4 might and no special

abilities) with no additional skills. For the five statistics, the piece has s attack

for some s ∈ S, 0 speed, 0 defense, 0 resistance, and 1 HP.

Player Layer The human-controlled player is given one piece in a constrained cor-

ridor that has tall object obstacle tiles on both sides. This piece is also given a

ranged weapon type so that it can attempt to capture the computer-controlled

player’s pieces when it is on the opposite side of the obstacle tiles in the Enemy

Layer. The piece in this layer only equips the colorless-bow weapon type ‘brave

bow’ (5 might and the ‘brave’ special ability that reduces the piece’s speed

7We choose the sword weapon type without loss of generality from lances and axes, which only
differ with respect to weapon color in this gadget. If one of the other weapon types are chosen, then
the tome weapon type of the respective color type should also be chosen in order to avoid the attack
statistic multiplier that results from advantages within the rock-paper-scissors mechanic.
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statistic value by 5 and allows it to perform two consecutive capture attempts

per standard capture attempt during combats that it initiates) with no addi-

tional skills. For the five statistics, the piece has 1 attack, 0 speed, 0 defense, 0

resistance, and 1 HP. We note that the bow weapon type was exclusively col-

orless when FEH first released, but still clarify the weapon color to avoid any

confusion.

To construct the gadget, we sandwich Set Element Layers, one per element of S,

between the Enemy Layer and the Player Layer. This ultimately creates a board of

size 4 tiles horizontally by 2 |S| + 4 tiles vertically, and then we pad the board with

2 |S| columns of tall object obstacle tiles in order to create a square-shaped board.

The scalar value 2 is the vertical size of the Set Element Layer in order to evenly space

out the pieces with respect to their infantry movement type. As the pieces are placed

on the board to complete the gadget’s setup, the piece is the Player Layer does not

depend on S or z, the piece in each Set Element Layer depends on S such that each

layer’s piece corresponds to a unique element in S to set its attack statistic value, and

the pieces in the Enemy Layer depend on both S and z in order to compute their HP

statistic values. We present an algorithm with quadratic runtime M ∈ O
(
|S|2

)
in

Algorithm 4 that constructs this gadget, which confirms that we can encode a Subset

Sum problem as a FEH problem in polynomial time. �

A.4.2.2 Solution to (S, z) Implies Solution to M (S, z)

We now show that for all problems (S, z) ∈ Subset Sum, if (S, z) evaluates to >,

then M (S, z) ∈ FEH evaluates to >.

Proof: Suppose that some arbitrary (S, z) ∈ Subset Sum returns >. Then this

means there exists some T ⊆ S such that
∑

t∈T t = z. Due to the construction of

the gadget M (S, z), the human-controlled player has some subset of their (|S|+ 1)

pieces whose attack statistic values correspond to each element of T . Therefore, we
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(a)
C0 TOO C1 TOO· · ·

TOO TOO TOO TOO· · ·
TOO· · ·

C0 Sword (Red, Melee, Physical) Infantry

We: Iron Sword (Mt: 6) As: - Sp: Miracle
A: Distant Counter B: - C: -
SS: - z + 2 HP 0 Atk
0 Spd 5 Def 4 Res

C1 Sword (Red, Melee, Physical) Infantry

We: Iron Sword (Mt: 6) As: - Sp: Miracle
A: Distant Counter B: - C: -
SS: -

(∑
s∈S s

)
− z + 2 HP 0 Atk

0 Spd 5 Def 4 Res

(b)
TOO Hi TOO TOO· · ·
TOO TOO TOO· · ·

Hi Red-Tome (Red, Ranged, Magical) Infantry

We: Flux (Mt: 4) As: - Sp: -
A: - B: - C: -
SS: - 1 HP si ∈ S Atk
0 Spd 0 Def 0 Res

(c)
TOO H TOO TOO· · ·

H Colorless-Bow (Colorless, Ranged, Physical) Infantry

We: Brave Bow (Mt: 5) As: - Sp: -
A: - B: - C: -
SS: - 1 HP 1 Atk
0 Spd 0 Def 0 Res

Figure A.1. The three types of layers used to construct a FEH gadget given some S
and z. The board joins these layers along the horizontal edges, with one (a) Enemy
Layer on the top, one (b) Set Element Layer per s ∈ S in the middle, and one (c)
Player Layer on the bottom. This sets the vertical tile length of the board, and the
horizontal tile length of the board pads columns of tall object obstacle (TOO) tiles
to make a square board shape.
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Input: Set of Nonnegative Intergers S and Integer z
Output: Generalized FEH Board B and Integer k

1 set size of array surface to (2 |S|+ 4) rows and (2 |S|+ 4) columns;
2 fill surface with tall object obstacle tiles;
3 initialize list pieces;

//First, place the Player Layer in the back row
4 set element of surface at row (2 |S|+ 3) and column 1 to empty tile;
5 insert new Piece(2 |S|+ 3, 1, human, colorless bow, infantry, brave bow,

NIL,NIL,NIL,NIL,NIL,NIL, 1, 1, 0, 0, 0) into pieces;
//Next, append each Set Element Layer and keep track of the sum of S

6 set sum to 0;
7 set set index to 2 |S|+ 1;
8 foreach s in S do
9 increment sum by s;

10 set element of surface at row (set index+ 1) and column 1 to empty tile;
11 set element of surface at row set index and column 1 to empty tile;
12 insert new Piece(set index, 1, human, red tome, infantry, flux,

NIL,NIL,NIL,NIL,NIL,NIL, 1, s, 0, 0, 0) into pieces;
13 decrement set index by 2;

end
//Last, place the Enemy Layer in the front rows

14 set element of surface at row 2 and column 0 to empty tile;
15 set element of surface at row 2 and column 1 to empty tile;
16 set element of surface at row 2 and column 2 to empty tile;
17 set element of surface at row 0 and column 0 to empty tile;
18 set element of surface at row 0 and column 2 to empty tile;
19 insert new

Piece(0, 0, computer, sword, infantry, iron sword,NIL,Miracle-Charged,
Distant Counter,NIL,NIL,NIL, z + 2, 0, 0, 5, 4) into pieces;

20 insert new
Piece(0, 2, computer, sword, infantry, iron sword,NIL,Miracle-Charged,
Distant Counter,NIL,NIL,NIL, sum− z + 2, 0, 0, 5, 4) into pieces;

21 return (new Board(surface, pieces), |S|+ 2)
Algorithm 4: Gadget Constructor M
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construct the following sequence of actions for the human-controlled player to take

each turn:

1. If the piece Hi in the Set Element Layer nearest the Enemy Layer has an attack

statistic value that is in T , then Hi attempts to capture the computer-controlled

player’s piece C0 on the left in the Enemy Layer. Otherwise, Hi attempts to

capture the computer-controlled player’s piece C1 on the right in the Enemy

Layer.

2. All the remaining human-controlled player’s pieces are moved two spaces to-

wards the Enemy Layer. This uses all the human-controlled player’s pieces and

thus ends their turn.

3. If the human-controlled player has more than one piece remaining at the start

of the turn, then return to step 1.. Otherwise, only the piece H from the

Player Layer should remain on the board for the human-controlled player to

use—proceed to step 4..

4. Piece H attempts to capture either C0 or C1. This uses all the human-controlled

player’s pieces and thus ends their turn.

5. Piece H attempts to capture whichever of C0 or C1 remains on the board.

Whenever some Hi (equipped with the ‘flux’ weapon) attempts to capture either

C0 or C1, Hi initiates the combat so that it plays out as follows:

1. C·’s HP is decreased by the amount of damage it receives, which is

Hi.Mt +Hi.Atk− C·.Res = 4 + si − 4 = si. (A.1)

That is, C· receives damage equal to the value of Hi’s corresponding element

in S. If C·’s HP becomes 0 or less and it previously had 1 HP, then it is
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captured—the piece is removed from the board and combat ends. Otherwise,

if C·’s HP becomes 0 or less and it previously had more than 1 HP, then its

‘miracle’ special skill activates so that C·’s HP is set to 1 and it is not captured.

2. If C· is not captured, then it counters and attempts to capture Hi. Although

they do not have the same weapon type range, C·’s A-slot skill ‘distant counter’

allows it to counter anyways. Hi’s HP is decreased by the amount of damage it

receives, which is

C·.Mt + C·.Atk−Hi.Def = 6 + 0− 0 = 6. (A.2)

Hi’s HP of 1 clearly becomes 0 or less so that it is captured—the piece is removed

from the board and combat ends.

Thus combat with some piece Hi effectively allocates its corresponding value in S to

one of two partitions and then removes that value from S because the piece is no

longer able to participate in combat. The computer-controlled player’s two pieces

represent these two subsets based on their HP statistic values: C0 is the subset of

elements in S whose sum should be z and C1 is the complement with the remaining

elements of S that do not contribute to the sum. The damage decreases the HP

(target sum) by the element in S to portray the allocation. The spacing between

the pieces ensures that only one element of S is able to initiate combat at a time,

which is why the pieces are then moved forward like a conveyor belt. As mentioned

during the gadget’s construction, the computer-controlled player is unable to take any

actions during the game at all8 because its pieces are surrounded by obstacles so that

8These games might sound boring because one of the players cannot do anything for the entire
game, but they are legitimate instances of the generalized FEH game. It is unlikely that such boards
will ever appear in the actual game because the game designers are aware that such boards are not
as much fun to play. However, the Aether Raids mode allows players to create their own maps, and
some players use this as a strategy to force the human-controlled player to approach their pieces and
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(1) they cannot move anywhere on the board and (2) they cannot attack with their

weapon type range.

Based on the constructed sequence of actions above, we conclude that C0 received

a total damage of z from the Hi pieces because its HP was reduced by each element of

T . Consequently, C1 received a total damage of
∑

s∈S −z from the Hi pieces because

its HP was reduced by the elements in the subset S−T . However, due to our gadget’s

design, this means that neither C0 nor C1 is captured yet with 2 HP remaining each.

At this point, the human-controlled player took |S| turns (that is, 2 turns remain

according to k = |S| + 2) and only has piece H remaining. Whenever H (equipped

with the ‘brave bow’ weapon) attempts to capture either C0 or C1, H initiates the

combat so that it plays out as follows:

1. C·’s HP is decreased by the amount of damage it receives, which is

H.Mt +H.Atk− C·.Def = 5 + 1− 5 = 1. (A.3)

C·’s HP thus decreases from 2 to 1.

2. Due to the special ability of ‘brave bow’, H is allowed to attempt to capture

C· again because H initiated the combat. So C·’s HP is again decreased by 1,

which means it is now 0. Because it previously had 1 HP, C·’s ‘miracle’ special

ability does not activate and it is captured—the piece is removed from the board

and combat ends.

Thus H’s purpose is simply to “clean up” the computer-controlled player’s pieces and

remove them from the board after taking advantage of the solution to the respective

fall into a variety of traps. Ironically, some traps involve equipping ‘distant counter’ and similar skills
to their pieces that will likely survive when the human-controlled player initiates combat. Perhaps
they are unintentionally creating these gadgets?
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Subset Sum problem. The placement of the computer-controlled player’s pieces allows

H to capture them in this way on the next two turns in either order.

Therefore, we have a guaranteed solution to the FEH problem M (S, z) that takes

exactly k = |S|+ 2 turns to execute. �

A.4.2.3 Solution to M (S, z) Implies Solution to (S, z)

We now show that for all problems (S, z) ∈ Subset Sum, if M (S, z) ∈ FEH

evaluates to >, then (S, z) evaluates to >.

Proof: Unfortunately, reversing the reasoning of the proof in Section A.4.2.2 is not

sufficient to prove this claim. It is possible that an alternative solution exists to the

FEH problem with M (S, z), and it is further possible that this alternative solution

does not translate to the allocation technique applied above so that it fails to solve

(S, z). Therefore, we provide a proof by contradiction.

Suppose there exists some (S, z) with no solution to the Subset Sum problem, yet

there is a solution to M (S, z) satisfying the FEH problem. Then there is a sequence

of actions π that removes both the computer-controlled player’s pieces C0 and C1

from the board B within k = |S|+ 2 turns.

If π takes fewer than k turns to execute, then we will quickly realize that this is

impossible because the pieces are spaced far enough apart that only one piece can

initiate a combat per turn as the other pieces progress through the corridor towards

the Enemy Layer. Specifically, every piece belonging to the human-controlled player

can attempt to capture C0 or C1 at most one time. Based on Equations A.1 and A.3,

we can conclude that the total possible damage these pieces can deal within |S| + 1

turns is
(∑

s∈S s
)

+ 2. This involves each Hi and H attempting to capture once.

However, the sum of C0 and C1’s HP statistic values is
(∑

s∈S s
)

+ 4; thus it is not

possible to deal enough damage to capture both pieces without using all k turns. We
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have a contradiction because there is no solution to M (S, z) that satisfies the FEH

problem.

If π takes exactly k turns to execute, then we at least know that a solution can

exist for M (S, z) based on Section A.4.2.2. However, it cannot be of the same form

as that solution because it inherently implies that there is a solution to the Subset

Sum problem with inputs (S, z). Due to the gadget’s design, it is possible with

enough turns to permute the pieces in the corridor in a manner similar to bubblesort.

However, because sets are order-agnostic, S technically yields any permutation of

Set Element Layers within the gadget when running M depending on the machine’s

implementation of sets. Thus, we extract elements from S as needed for each Hi

without loss of generality—we must still use H last because it is always in the Player

Layer of the gadget. Let us call this sequence R =
[
r1, r2, . . . , r|S|

]
such that each

ri ∈ S and ri = rj if and only if i = j.

We must identify some R corresponding to the order ofHi such that, when followed

by H, both C0 and C1 are successfully captured. Let us first target C0 without loss of

generality until it is captured. As the human-controlled player’s pieces initiate combat

at the start of the round, they perform the respective damage to their target piece

and are then removed from the board due to the ‘distant counter’ skill. Eventually,

C0 will be reduced to a low enough HP statistic value that some piece Hx can perform

its corresponding sx = rx damage where sx ≥ C0.HP.

In the case where this holds and C0.HP = 1, the combat will play out as follows:

1. C0’s HP is decreased by the amount of damage it receives, which is sx by

Equation A.1. Because C0’s HP is no greater than sx, C0’s HP becomes 0 or

less. Because it previously had exactly 1 HP, its ‘miracle’ special skill does not

activate and it is captured. The piece is removed from the board and combat

ends.
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That is, the attempted capture succeeds and the Hx piece remains on the board. Thus

C0 actually required at least
(∑x−1

i=1 ri
)

+ 1 = z + 2 damage in order to be captured.

Rearranging the terms of this equality, we get the following equality that we will need

in a moment: (
x−1∑
i=1

ri

)
− z = 1. (A.4)

So the remaining pieces can target C1 and perform up to
(∑|S|

i=x ri

)
+ 2 damage (the

additional two damage comes from piece H). However, subtracting this from C1’s

total HP yields

[(∑
s∈S

s

)
− z + 2

]
−

 |S|∑
i=x

ri

+ 2

 =

(
x−1∑
i=1

ri

)
− z = 1

using Equation A.4. That is, C1 is not successfully captured because it still has

positive HP after capturing all the remaining pieces via counter during combat. Even

with the ‘brave’ effect associated with H’s equipped weapon, it will not capture C1

and instead become captured. Thus this case yields a contradiction because M (S, z)

does not have such a solution. We note that this is equivalent to the case where C0

is left alone with its 1 HP and all the remaining pieces (Hx through H|S| and H) first

attempt to capture C1 because the same pieces take the same actions in some other

order (except for which piece might capture C0 before attempting to capture C1, but

these all have identical outcomes).

In the case where sx ≥ C0.HP holds and C0.HP > 1, the combat will play out as

follows:

1. C0’s HP is decreased by the amount of damage it receives, which is sx by

Equation A.1. Because C0’s HP is no greater than sx, C0’s HP becomes 0 or

less. However, it previously had more than 1 HP so that its ‘miracle’ special

skill activates. C0’s HP is set to 1 and it is not captured.
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2. Because C0 is not captured, it counters and attempts to capture Hx due to its

‘distant counter’ A-slot skill. Hx’s HP is decreased by the amount of damage it

receives, which is 6 by Equation A.2. Hx’s HP of 1 clearly becomes 0 or less so

that it is captured—the piece is removed from the board and combat ends.

That is, the attempted capture will fail and the Hx piece is still removed from the

board. However, the next piece Hx+1 will successfully capture C0 and not be removed

from the board. Thus C0 actually required (
∑x

i=1 ri) + 1 > z + 2 damage in order to

be captured. Rearranging the terms of this inequality, we get the following inequality

that we will need in a moment:

(
x∑
i=1

ri

)
− z > 1. (A.5)

So the remaining pieces can target C1 and perform up to
(∑|S|

i=x+1 ri

)
+ 2 damage

(the additional two damage comes from piece H). However, subtracting this from

C1’s total HP yields

[(∑
s∈S

s

)
− z + 2

]
−

 |S|∑
i=x+1

ri

+ 2

 =

(
x∑
i=1

ri

)
− z > 1

using Equation A.5. That is, C1 is not successfully captured because it still has

positive HP after capturing all the remaining pieces via counter during combat. Even

with the ‘brave’ effect associated with H’s equipped weapon, it will not capture C1

and instead become captured. Thus this case yields a contradiction because M (S, z)

does not have such a solution.

The one possible exception to this most recent case is where Hx through H|S|

instead attempt to capture C1 and allow H to complete the capture instead. This

would imply that C0’s remaining HP is at most 2 so that H can successfully capture

it. However, the case where C0’s HP is 1 has already been dismissed, which means
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C0’s remaining HP is 2 and the damage dealt so far is
∑x−1

i=1 ri = z. Then the damage

that can be applied to C1 is

 |S|∑
i=x

ri

+ 2 =

 |S|∑
i=1

ri

−(x−1∑
i=1

ri

)
+ 2 =

(∑
s∈S

s

)
− z + 2.

This is exactly enough damage so that both C0 and C1 are captured by this case’s

sequence of actions. Although this confirms that there is a solution to M (S, z), we

point out that the pieces H1 through Hx−1 that attempted to capture C0 inflicted

exactly z damage. Due to the human-controlled player’s pieces’ correspondence with

elements in S, this means that there exists elements s1, s2, . . . , sx−1 ∈ S whose sum

is z. Thus this case also yields a contradiction because (S, z) has a solution.

Therefore, no matter which case holds, we derive a contradiction where either

M (S, z) does not have a solution to the FEH problem or (S, z) does has a solution to

the Subset Sum problem. Hence it must be the case that if M (S, z) ∈ FEH evaluates

to >, then (S, z) evaluates to >. �

A.5 Concluding Remarks: Significance of FEH’s Complexity

This appendix introduces a new NP-complete problem, the generalized form of

Fire Emblem HeroesTM (FEH). In addition to the typical contributions that new

NP-complete problems provide, namely providing another option for polynomial-time

reductions when evaluating other algorithms’ computational complexity, FEH is the

first two-player game in this complexity class to our knowledge. In general, the

computational complexity of determining whether someone can win a two-player game

is PSPACE-hard or greater.

Section A.4.2 only proves that FEH is NP-hard, which is a lower bound on com-

putational complexity. So this alone meant that FEH could still be in the PSPACE

complexity class if verification of solutions required contemplating every possible move
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that the opponent could make. However, Section A.4.1 takes advantage of one unique

property of FEH that is not present in many two-player games: one player uses a fixed

policy so that the player’s behavior is replicable and consequently predictable. These

features enable the player without a fixed policy to perfectly simulate their opponent

and realize the outcomes of their own moves more quickly than considering every

possible way that someone could respond. That is, the uncertainty is eliminated for

simpler verification. Hence this predictability alone yields the upper bound of NP on

the computational complexity, which is the key to proving FEH’s simpler complexity.

In this dissertation, we propose the use of recognition algorithms in order to make

other agents as predictable during interaction. Although such algorithms cannot

guarantee finding their interactive partners’ exact policies, they do provide insights

into motivations and upcoming actions that allow some degree of prediction during the

decision making process for interaction. As the extremes of such insights reduced the

complexity of FEH compared to other two-player games, we believe that frameworks

such as PReTCIL can similarly reduce the complexity of deciding how to interact

around others.
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