1,297 research outputs found

    Temporal regularity effects on pre-attentive and attentive processing of deviance

    Get PDF
    Temporal regularity allows predicting the temporal locus of future information thereby potentially facilitating cognitive processing. We applied event-related brain potentials (ERPs) to investigate how temporal regularity impacts pre-attentive and attentive processing of deviance in the auditory modality. Participants listened to sequences of sinusoidal tones differing exclusively in pitch. The inter-stimulus interval (ISI) in these sequences was manipulated to convey either isochronous or random temporal structure. In the pre-attentive session, deviance processing was unaffected by the regularity manipulation as evidenced in three event-related-potentials (ERPs): mismatch negativity (MMN), P3a, and reorienting negativity (RON). In the attentive session, the P3b was smaller for deviant tones embedded in irregular temporal structure, while the N2b component remained unaffected. These findings confirm that temporal regularity can reinforce cognitive mechanisms associated with the attentive processing of deviance. Furthermore, they provide evidence for the dynamic allocation of attention in time and dissociable pre-attentive and attention-dependent temporal processing mechanisms

    Unpredictability of the “when” influences prediction error processing of the “what” and “where”

    Get PDF
    The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes.publishedVersio

    Unpredictability of the “when” influences prediction error processing of the “what” and “where”

    Get PDF
    The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes

    Brain‑correlates of processing local dependencies within a statistical learning paradigm

    Get PDF
    Statistical learning refers to the implicit mechanism of extracting regularities in our environment. Numerous studies have investigated the neural basis of statistical learning. However, how the brain responds to violations of auditory regularities based on prior (implicit) learning requires further investigation. Here, we used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of processing events that are irregular based on learned local dependencies. A stream of consecutive sound triplets was presented. Unbeknown to the subjects, triplets were either (a) standard, namely triplets ending with a high probability sound or, (b) statistical deviants, namely triplets ending with a low probability sound. Participants (n = 33) underwent a learning phase outside the scanner followed by an fMRI session. Processing of statistical deviants activated a set of regions encompassing the superior temporal gyrus bilaterally, the right deep frontal operculum including lateral orbitofrontal cortex, and the right premotor cortex. Our results demonstrate that the violation of local dependencies within a statistical learning paradigm does not only engage sensory processes, but is instead reminiscent of the activation pattern during the processing of local syntactic structures in music and language, reflecting the online adaptations required for predictive coding in the context of statistical learning.publishedVersio

    Personal audiovisual aptitude influences the interaction between landscape and soundscape appraisal

    Get PDF
    It has been established that there is an interaction between audition and vision in the appraisal of our living environment, and that this appraisal is influenced by personal factors. Here, we test the hypothesis that audiovisual aptitude influences appraisal of our sonic and visual environment. To measure audiovisual aptitude, an auditory deviant detection experiment was conducted in an ecologically valid and complex context. This experiment allows us to distinguish between accurate and less accurate listeners. Additionally, it allows to distinguish between participants that are easily visually distracted and those who are not. To do so, two previously conducted laboratory experiments werere-analyzed. The first experiment focuses on self-reported noise annoyance in a living room context, whereas the second experiment focuses on the perceived pleasantness of using outdoor public spaces. In the first experiment, the influence of visibility of vegetation on self-reported noise annoyance was modified by audiovisual aptitude. In the second one, it was found that the overall appraisal of walking across a bridge is influenced by audiovisual aptitude, in particular when a visually intrusive noise barrier is used to reduce highway traffic noise levels. We conclude that audiovisual aptitude may affect the appraisal of the living environment

    Familiarity Affects Entrainment of EEG in Music Listening

    Get PDF
    Music perception involves complex brain functions. The relationship between music and brain such as cortical entrainment to periodic tune, periodic beat, and music have been well investigated. It has also been reported that the cerebral cortex responded more strongly to the periodic rhythm of unfamiliar music than to that of familiar music. However, previous works mainly used simple and artificial auditory stimuli like pure tone or beep. It is still unclear how the brain response is influenced by the familiarity of music. To address this issue, we analyzed electroencelphalogram (EEG) to investigate the relationship between cortical response and familiarity of music using melodies produced by piano sounds as simple natural stimuli. The cross-correlation function averaged across trials, channels, and participants showed two pronounced peaks at time lags around 70 ms and 140 ms. At the two peaks the magnitude of the cross-correlation values were significantly larger when listening to unfamiliar and scrambled music compared to those when listening to familiar music. Our findings suggest that the response to unfamiliar music is stronger than that to familiar music. One potential application of our findings would be the discrimination of listeners’ familiarity with music, which provides an important tool for assessment of brain activity

    Predictability effects in auditory scene analysis: a review

    Get PDF
    Many sound sources emit signals in a predictable manner. The idea that predictability can be exploited to support the segregation of one source's signal emissions from the overlapping signals of other sources has been expressed for a long time. Yet experimental evidence for a strong role of predictability within auditory scene analysis (ASA) has been scarce. Recently, there has been an upsurge in experimental and theoretical work on this topic resulting from fundamental changes in our perspective on how the brain extracts predictability from series of sensory events. Based on effortless predictive processing in the auditory system, it becomes more plausible that predictability would be available as a cue for sound source decomposition. In the present contribution, empirical evidence for such a role of predictability in ASA will be reviewed. It will be shown that predictability affects ASA both when it is present in the sound source of interest (perceptual foreground) and when it is present in other sound sources that the listener wishes to ignore (perceptual background). First evidence pointing toward age-related impairments in the latter capacity will be addressed. Moreover, it will be illustrated how effects of predictability can be shown by means of objective listening tests as well as by subjective report procedures, with the latter approach typically exploiting the multi-stable nature of auditory perception. Critical aspects of study design will be delineated to ensure that predictability effects can be unambiguously interpreted. Possible mechanisms for a functional role of predictability within ASA will be discussed, and an analogy with the old-plus-new heuristic for grouping simultaneous acoustic signals will be suggested
    • 

    corecore