34 research outputs found

    Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images

    Get PDF
    Eutrophication is characterized by excessive plant and algal growth due to the increased of organic matter, carbon dioxide and nutrients in water body. Although eutrophication naturally occurs over centuries as lakes age, human activities have accelerated it processes and caused dramatic changes to the aquatic ecosystems including elevated algae blooms and risk for hypoxia as well as degradation in the quality of drinking water and fisheries. Monitoring eutrophic processes is therefore highly important to human health and to the aquatic environment. However, the spatial and seasonal distribution of the phenomena and its dynamic are difficult to be resolved using conventional methods as water sampling or sparse acquisition of remote sensing data. This research work proposes a methodology that takes advantage of the high temporal resolution of Sentinel-2 (S2) for monitoring eutrophic reservoir. Specifically, it uses large temporal series of S2 images and advanced temporal unmixing model to estimate the abundance of [Chl-a] and algae species in San Roque reservoir, Argentina, in the period August 2016 to August 2019. The spatial patterns and the temporal tendencies of these aquatic indicators, that have a direct link to Eutrophication, were analysed and evaluated using in situ data in order to assess their contribution to the local water management.Fil: German, Alba. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ferral, Anabella. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Shimoni, M.. Belgian Royal Military Academy; Bélgic

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet

    Analyse der Wasserfarbe von Seen mithilfe räumlich hoch und mittel auflösender Satelliten

    Get PDF
    Remote sensing techniques can assist traditional lake monitoring approaches by supplying spatial information on optically active lake ecology indicators, i.e. chlorophyll-a (CHL), total suspended matter (TSM), coloured dissolved organic matter (CDOM), and, especially in optically shallow waters, water depth and substrate composition. The present thesis provides an overview on the current research status concerning lake remote sensing and the benefit of time series analyses for lake ecology. To investigate the suitability of Sentinel-2 and Landsat 8 for lake monitoring and their combination with other sensors this thesis focused on two study areas with highly different optical characteristics, i.e. the oligotrophic Lake Starnberg (southern Germany) and the mesotrophic-eutrophic Lake Kummerow (northern Germany). Using the bio-optical model WASI-2D, Sentinel-2A turned out to be suited for retrieving low TSM and CDOM values. The high spatial resolution enabled the differentiation between bare ground and areas covered by submerged aquatic vegetation. Water depth estimations performed well until half Secchi disk depth. Cross-sensor comparisons demonstrated high correlation of CHL among timely acquired, spatially high and medium resolved sensors. Evaluations with in situ data showed that most of the sensor-in situ match-ups were within an uncertainty range of in situ measurements. Analysing a 9-year MERIS time series with FUB/WeW revealed unprecedented information on temporal trends and seasonal behaviour of CHL, TSM and CDOM at the study area Lake Kummerow. Combining CHL, retrieved with the Modular Inversion and Processing System, from different satellite sensors (MODIS, Landsat 7/ 8, Sentinel-2A) enabled detailed observations of phytoplankton development. Such combinations are a step forward to future lake analyses which may integrate remote sensing data, in situ measurements and environmental modelling.Fernerkundungstechniken können das Seemonitoring mit räumlichen Informationen über optisch aktive Indikatoren der Gewässerökologie liefern, z.B. Chlorophyll-a (CHL), suspendierte Schwebstoffe (TSM), Gelbstoffe (CDOM) und insbesondere in optisch flachen Gewässern, Wassertiefe und Substratbedeckung. Die vorliegende Arbeit gibt einen Überblick über den aktuellen Forschungsstand zur Seefernerkundung und den Nutzen von Zeitreihenanalysen für die Seeökologie. Um die Eignung von Sentinel-2 und Landsat 8 für ein Seenmonitoring und deren Kombination mit anderen Sensoren zu untersuchen, konzentrierte sich diese Arbeit auf zwei Untersuchungsgebiete mit sehr unterschiedlichen optischen Eigenschaften: den oligotrophen Starnberger See (Süddeutschland) und den mesotroph-eutrophen Kummerower See (Norddeutschland). Mit dem bio-optischen Modell WASI-2D erwies sich Sentinel-2A als geeignet, um niedrige TSM- und CDOM-Werte zu bestimmen. Die hohe räumliche Auflösung ermöglichte eine Unterscheidung zwischen unbewachsenem und mit Makrophyten bewachsenem Untergrund. Die Wassertiefenbestimmung verlief bis zur halben Sichttiefe gut. Sensorübergreifende Vergleiche zeigten eine hohe Korrelation von CHL zwischen zeitnah erfassten, räumlich mittel und hoch aufgelösten Sensoren. Auswertungen mit in-situ-Daten zeigten, dass die meisten Sensor-in-situ-Match-ups innerhalb eines Unsicherheitsbereichs von in-situ-Messungen lagen. Die Analyse einer 9-jährigen MERIS-Zeitreihe mit FUB/WeW ergab neue Informationen über zeitliche Trends und saisonales Verhalten von CHL, TSM und CDOM im Untersuchungsgebiet Kummerow See. Die Kombination von CHL aus verschiedenen Satellitensensoren (MODIS, Landsat 7/ 8, Sentinel-2A) mit dem Modular Inversion and Processing System ermöglichte detaillierte Beobachtungen der Phytoplanktonentwicklung. Solche Kombinationen sind ein Schritt für zukünftigen Gewässeranalysen, die Fernerkundungsdaten, in-situ-Messungen und Umweltmodellierung integrieren sollten

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data

    Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters

    Get PDF
    Ocean colour-based monitoring of water masses is a promising alternative to monitoring concentrations in heterogeneous coastal seas. Fuzzy methods, such as spectral unmixing, are especially well suited for recognition of water masses from their remote sensing reflectances. However, such models have not yet been applied for water classification and monitoring. In this study, a fully constrained endmember model with simulated endmembers was developed for water class identification in the shallow Wadden Sea and adjacent German Bight. Its performance was examined on in situ measured reflectances and on MERIS satellite data. Water classification by means of unmixing reflectance spectra proved to be successful. When the endmember model was applied to MERIS data, it was able to visualise well-known spatial, tidal, seasonal, and wind-related variations in optical properties in the heterogeneous Wadden Sea. Analyses show that the method is insensitive to small changes in endmembers. Therefore, it can be applied in similar coastal areas. For use in open ocean situations or coastal or inland waters with other specific inherent optical properties, re-simulation of the endmember spectra with local optical properties is required. However, such an adaptation requires only a limited number of local in situ measurements

    Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission

    Get PDF
    AbstractFreshwater ecosystems underpin global water and food security, yet are some of the most endangered ecosystems in the world because they are particularly vulnerable to land management change and climate variability. The US National Research Council's guidance to NASA regarding missions for the coming decade includes a polar orbiting, global mapping hyperspectral satellite remote sensing mission, the Hyperspectral Infrared Imager (HyspIRI), to make quantitative measurements of ecosystem change. Traditionally, freshwater ecosystems have been challenging to measure with satellite remote sensing because they are small and spatially complex, require high fidelity spectroradiometry, and are best described with biophysical variables derived from high spectral resolution data. In this study, we evaluate the contribution of a hyperspectral global mapping satellite mission to measuring freshwater ecosystems. We demonstrate the need for such a mission, and evaluate the suitability and gaps, through an examination of the measurement resolution issues impacting freshwater ecosystem measurements (spatial, temporal, spectral and radiometric). These are exemplified through three case studies that use remote sensing to characterize a component of freshwater ecosystems that drive primary productivity. The high radiometric quality proposed for the HyspIRI mission makes it uniquely well designed for measuring freshwater ecosystems accurately at moderate to high spatial resolutions. The spatial and spectral resolutions of the HyspIRI mission are well suited for the retrieval of multiple biophysical variables, such as phycocyanin and chlorophyll-a. The effective temporal resolution is suitable for characterizing growing season wetland phenology in temperate regions, but may not be appropriate for tracking algal bloom dynamics, or ecosystem responses to extreme events in monsoonal regions. Global mapping missions provide the systematic, repeated measurements necessary to measure the drivers of freshwater biodiversity change. Archival global mapping missions with open access and free data policies increase end user uptake globally. Overall, an archival, hyperspectral global mapping mission uniquely meets the measurement requirements of multiple end users for freshwater ecosystem science and management

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    Remote sensing in shallow lake ecology

    Get PDF
    Shallow lakes are an important ecological and socio-economic resource. However, the impact of human pressures, both at the lake and catchment scale, has precipitated a decline in the ecological status of many shallow lakes, both in the UK, and throughout Europe. There is now, as direct consequence, unprecedented interest in the assessment and monitoring of ecological status and trajectory in shallow lakes, not least in response to the European Union Water Framework Directive (2000/60/EC). In this context, the spatially-resolving and panoramic data provided by remote sensing platforms may be of immense value in the construction of effective and efficient strategies for the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing new, spatially-explicit, insights into the function of these ecosystems and how they respond to change. This thesis examined the use of remote sensing data for the assessment of (i) phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and ecophysiological status in shallow lakes with a view to establishing the credence of such an approach and its value in limnological research and monitoring activities. High resolution in-situ and airborne remote sensing data was collected during a 2-year sampling campaign in the shallow lakes of the Norfolk Broads. It was demonstrated that semi-empirical algorithms could be formulated and used to provide accurate and robust estimations of the concentration of chlorophyll-a, even in these optically-complex waters. It was further shown that it was possible to differentiate and quantify the abundance of cyanobacteria using the biomarker pigment C-phycocyanin. The subsequent calibration of the imagery obtained from the airborne reconnaissance missions permitted the construction of diurnal and seasonal regional-scale time-series of phytoplankton dynamics in the Norfolk Broads. This approach was able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic cyanobacterial bloom. It was further shown that remote sensing can be used to map the distribution of aquatic plants in shallow lakes, importantly including the extent of submerged vegetation, which is central to the assessment of ecological status. This research theme was subsequently extended in an exploration of the use of remote sensing for assessing the ecophysiological response of wetland plants to nutrient enrichment. It was shown that remote sensing metrics could be constructed for the quantification of plant vigour. The extrapolation of these techniques enabled spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient enrichment to be characterised and assisted the formulation of a mechanistic explanation for the variation in reedswamp performance in these shallow lakes. It is therefore argued that the spatially synoptic data provided by remote sensing has much to offer the assessment, monitoring and policing of ecological status in shallow lakes and, in particular, for facilitating the development of pan-European scale lake surveillance capabilities for the Water Framework Directive (2000/60/EC). It is also suggested that remote sensing can make a valuable contribution to furthering ecological understanding and, most significantly, in enabling ecosystem processes and functions to be examined at the lake-scale

    Using Band Ratio, Semi-Empirical, Curve Fitting, and Partial Least Squares (PLS) Models to Estimate Cyanobacterial Pigment Concentration from Hyperspectral Reflectance

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This thesis applies several different remote sensing techniques to data collected from 2005 to 2007 on central Indiana reservoirs to determine the best performing algorithms in estimating the cyanobacterial pigments chlorophyll a and phycocyanin. This thesis is a set of three scientific papers either in press or review at the time this thesis is published. The first paper describes using a curve fitting model as a novel approach to estimating cyanobacterial pigments from field spectra. The second paper compares the previous method with additional methods, band ratio and semi-empirical algorithms, commonly used in remote sensing. The third paper describes using a partial least squares (PLS) method as a novel approach to estimate cyanobacterial pigments from field spectra. While the three papers had different methodologies and cannot be directly compared, the results from all three studies suggest that no type of algorithm greatly outperformed another in estimating chlorophyll a on central Indiana reservoirs. However, algorithms that account for increased complexity, such as the stepwise regression band ratio (also known as 3-band tuning), curve fitting, and PLS, were able to predict phycocyanin with greater confidence

    Challenges and New Advances in Ocean Color Remote Sensing of Coastal Waters

    Get PDF
    Knowing that coastal areas concentrate about 60% of the world's population (within 100 km from the coast), that 75-90% of the global sink of suspended river load takes place in coastal waters in which about 15% of the primary production occurs, the ecological, societal and economical value of these areas are obvious (fish resources, aquaculture, water quality information, recreation areas management, global carbon budget, etc). In that context, precise assessment of suspended particulate matter (SPM) concentrations and of the phenomena controlling its temporal variability is a key objective for many research fields in coastal areas. SPM which encompasses organic (living and non-living) and inorganic matter controls the penetration of light into the water and brings new nutrients into the system, both key parameters influencing phytoplankton primary production. Concentrations and availability of SPM are also known to control rates of food intake, growth and reproduction for various filter feeder organisms. Phytoplankton is highly sensitive to environmental perturbations (such as nutrient inputs, light, and turbulence). The abundance, biomass and dynamics of phytoplankton in coastal areas therefore reflect the prevailing environmental conditions and represent key parameters for assessing information on the ecological conditions, as well as on the coastal water quality. Because phytoplankton is highly sensitive to environmental perturbations [1], its distribution patterns and temporal variability represent good indicators of the ecological conditions of a defined region [2, 3]. Coastal waters also host complex ecosystems and represent important fishery areas that support industry and provide livelihood to coastal settlements. The food chain in the coastal ocean is generally short (especially in upwelling systems, having as low as three trophic levels) whereas the open ocean food web presents up to six trophic levels [4]. As a result, when compared to the open ocean, a relative lower fraction of the primary production gets respired in the coastal ocean while a higher fraction reaches the uppermost trophic level (fish) [5] or is exported to adjacent areas (coastal or open sea)..
    corecore