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Summary
Lakes form essential ecosystems, play an important role in the Earth’s biogeochemical cycles

and provide various ecosystem services to humans. Lakes undergo natural and human-induced
changes which may influence their ecological integrity and are therefore often monitored with tradi-
tional point-based samplings. Remote sensing techniques can assist the traditional approaches
by supplying spatial information on optically active lake ecology indicators. These are namely
chlorophyll-a (CHL), total suspended matter (TSM), coloured dissolved organic matter (CDOM), and,
especially in optically shallow waters, water depth and substrate composition.

The current generation of land observation satellites with their improved radiometric character-
istics, such as Sentinel-2 and Landsat 8, offer a high potential for a remote sensing based lake
monitoring at high spatial resolution (10-60 m). A comprehensive literature review, conducted in the
present thesis, provides an overview on the current research status concerning lake remote sens-
ing and its added value for lake ecology. The primary focus was on indicators associated with the
lake properties transparency, biota, hydrology, ice phenology and water temperature. The review
shows that time series analyses of indicators derived from archived and operational sensors offer
great benefits for lake ecology analyses and monitoring. In view of new sensors, the present thesis
aims at investigating the suitability of Sentinel-2 and Landsat 8 for lake monitoring as well as their
combination with spatially lower resolved sensors and archived imagery. Two study areas with highly
different optical characteristics served as test sites, i.e. the oligotrophic Lake Starnberg (southern
Germany) and the mesotrophic-eutrophic Lake Kummerow (northern Germany).

Various measurement campaigns were conducted at both lakes to provide a data basis for sensor
evaluations. Using the bio-optical model WASI-2D, Sentinel-2A turned out to be suited for retrieving
low TSM and CDOM concentrations. CHL estimations performed better for higher CHL concentra-
tions. The high spatial resolution enabled the differentiation between bare ground and areas covered
by submerged aquatic vegetation. Water depth estimations performed well until half Secchi disk
depth. Combining CHL, retrieved with the Modular Inversion and Processing System, from different
satellite sensors (MODIS, Landsat 7/ 8, Sentinel-2A) underlined the synergetic use of remote sens-
ing and in situ data for observing phytoplankton development at Lake Kummerow. This synergetic
data composite enabled detailed observations of phytoplankton development and the integration of
satellite data into trophic state assessment. Cross-sensor comparisons demonstrated high correla-
tion of CHL among timely acquired, spatially high and medium resolved sensors. Evaluations with
in situ data showed that most of the sensor-in situ match-ups were within an uncertainty range of in
situ measurements. Analysing a 9-year MERIS time series with FUB/WeW revealed unprecedented
information on temporal trends and seasonal behaviour of CHL, TSM and CDOM at the study area
Lake Kummerow.

The present thesis demonstrates the suitability of Sentinel-2A and Landsat 8 for mapping lake
ecology indicators. It further shows the importance of including in situ measurement uncertainties
into sensor and algorithm evaluations. A synergetic combination of multiple sensors necessitates
sensor-independent algorithms for atmospheric correction over water bodies and for indicator re-
trieval. Such combinations are a step forward to future lake analyses which may integrate remote
sensing data, in situ measurements and environmental modelling.





Zusammenfassung
Als elementarer Teil biogeochemischer Kreisläufe der Erde bilden Seen wichtige Ökosysteme

und stellen uns Menschen verschiedene Ökosystemleistungen zur Verfügung. Seen durchlaufen
natürliche aber auch vom Menschen verursachte Veränderungen, die ihre ökologische Integrität
beeinflussen können. Um dies zu beobachten, werden häufig Indikatoren dieses Zustands mit
etablierten, punktbasierten Messmethoden erfasst. Fernerkundungstechniken können diese Ansätze
unterstützen. Sie stellen räumliche Informationen über optisch aktive Indikatoren der Seeökologie
bereit: Chlorophyll-a (CHL), die Gesamtmenge der suspendierten Partikel (TSM) und die farbgebende
Komponente des gelösten organischen Kohlenstoffs (CDOM). Im Flachwasser kommen die Wasser-
tiefe und die Untergrundbedeckung hinzu.

Die aktuelle Generation der Erdbeobachtungssatelliten, wie Sentinel-2 und Landsat 8, weist
verbesserte radiometrische Eigenschaften auf bei gleichzeitiger, hoher räumlicher Auflösung (10-
60 m) und bietet damit ein großes Potenzial für ein fernerkundliches Seenmonitoring. In dieser
Dissertation wurde eine umfassende Literaturrecherche durchgeführt, die einen Überblick über den
aktuellen Forschungsstand im Bereich der Seenfernerkundung und deren Mehrwert für die Gewässer-
ökologie gibt. Dabei kam heraus, dass Zeitreihenanalysen auf Basis archivierter und operationeller
Sensoren große Vorteile für die Analyse und Beobachtung der Gewässerökologie mit sich bringen.

Im Hinblick auf die neuen Sensoren zielt die vorliegende Dissertation darauf ab, die Möglichkeiten
von Sentinel-2 und Landsat 8 für das Seenmonitoring zu untersuchen und inwiefern diese mit
anderen Sensoren und archivierten Daten kombiniert werden können. Als Untersuchungsgebi-
ete dienten zwei Seen mit jeweils sehr unterschiedlichen optischen Eigenschaften: der oligotrophe
Starnberger See (Süddeutschland) und der mesotrophe-eutrophe Kummerower See (Norddeutsch-
land). Dort wurden mehrere Messkampagnen durchgeführt um eine Datengrundlage für die Evalu-
ierung der Sensoren zu schaffen. Unter Verwendung des bio-optischen Models WASI-2D erwies
sich Sentinel-2A als geeignet um niedrige TSM- und CDOM-Konzentrationen abzuleiten. CHL ließ
sich unter höheren CHL-Konzentrationen besser bestimmen. Im Flachwasser ermöglichte die hohe
räumliche Auflösung eine Unterscheidung zwischen unbewachsenem Boden und mit Makrophyten
bedeckten Flächen sowie die Bestimmung der Wassertiefe bis etwa halbe Sichttiefe. Zudem sind
CHL Produkte mit dem ’Modular Inversion and Processing System’ aus verschiedenen Satelliten-
sensoren (MODIS, Landsat 7/ 8, Sentinel-2A) bestimmt worden. Deren Kombination mit in situ
Daten verdeutlichte wie eine solche synergetische Nutzung zur Beobachtung der Phytoplankton-
entwicklung am Kummerower See eingesetzt werden kann und zeigte, dass Satellitendaten in die
trophische Zustandsbewertung integriert werden können. Die meisten Match-ups der Evaluierung
lagen innerhalb eines Unsicherheitsbereich der in situ Messungen. Aus der Analyse (FUB/WeW)
einer 9-jährigen MERIS Zeitreihe ergaben sich bisher nicht vorhandene Informationen über zeitliche
Trends und saisonales Verhalten von CHL, TSM und CDOM am Kummerower See.

Die vorliegende Arbeit zeigt, dass Sentinel-2A und Landsat 8 für die fernerkundliche Bestimmung
von Indikatoren der Seeökologie geeignet sind. Sie zeigt ferner, wie wichtig es ist, in situ Mess-
unsicherheiten in Evaluierungen von Sensoren und Algorithmen einzubeziehen. Eine synergetische
Nutzung mehrerer Sensoren benötigt aber sensorunabhängige Algorithmen zur Atmosphärenkorrektur
speziell über Gewässern und zur Indikatorableitung. Solche Kombinationen weisen in Richtung
einer zukunftsorientierten Analyse von Seen, die Fernerkundungsdaten mit in situ Messungen und
Umweltmodellierung verknüpft.
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Chapter 1

Introduction

1.1 Monitoring of lakes and assessing water colour

Lakes are highly productive ecosystems with a high biodiversity and play an important role in the
Earth’s biogeochemical cycles (Moss, 2012; Tranvik et al., 2009). Lakes provide essential habitats
for a variety of species. Around 117 million lakes (area > 0.002 km2) cover 3.7 % of the Earth’s
non-glaciated surface (5·106 km 2, Verpoorter et al. 2014). Currently, around 50 % of the Earth’s
population lives in close vicinity (< 3 km) to lakes or rivers (Politi et al., 2016) since humans ben-
efit from a variety of ecosystem services provided by lakes. For instance, we extract lake water
for drinking water and irrigation, enjoy lakes for recreational activities, generate energy from hy-
dropower and benefit from climate regulation (Anzaldua et al., 2018; Millennium Ecosystem Assess-
ment, 2005). Nevertheless, anthropogenic influence subjects lakes to manifold pressures, such as
climate change, eutrophication, harmuful algal blooms (HAB), invasive species, and morphological
alterations which affect their ecological integrity and water quality (Anzaldua et al., 2018; Brönmark
and Hansson, 2002; Brooks et al., 2016). Apart from direct interventions, interferences in their
catchment also have an indirect impact on lakes; lakes therefore are often considered as sentinels
of change in their catchment (Adrian et al., 2009).

Detecting changes in the ecological integrity and water quality of lakes requires a monitoring of
indicators which describe and respond to changes in a lake’s status (Poikane et al., 2014; Tuvikene
et al., 2011). Lake management which aims to preserve or restore a lake’s status also necessitates
monitoring to observe amelioration or deterioration (e.g. Jeppesen et al., 2005; Spears et al., 2016).
Prominent indicators measured in lakes provide information on physico-chemical state (e.g. pH, nu-
trients, electric conductivity, oxygen, harmful substances), on hydro-morphological conditions (size,
water depth, substrate, mixing character, water residence time, shoreline structure) and on biologi-
cal state (e.g. phytoplankton composition and biomass, aquatic vegetation, fish, macroinvertebrates)
(European Commission, 2000). Hitherto, in situ monitoring of such indicators has mainly relied on
individual point-based sampling or diver’s mapping (Pasztaleniec, 2016). Traditional lake monitoring
approaches, however, reach their limitations and are hardly able to tackle the challenges of global
and climate change alone (e.g. Bertani et al., 2017; Brooks et al., 2016; Politi et al., 2016). Prominent
constraints are a limited spatial coverage and temporal frequency which fail to capture for instance
short-living cyanobacterial or phytoplankton blooms (Reyjol et al., 2014), the spatial expansion of
submerged aquatic vegetation (SAV) (Shuchman et al., 2013b) or reoccurring events of high total
suspended matter concentrations hindering SAV colonisation (Giardino et al., 2010a). Costs and
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logistics of in situ sampling cause trade-offs between the ideal and implemented monitoring strategy
(Pasztaleniec, 2016; Schaeffer et al., 2013). Different sampling and analysis protocols constrain
comparative studies among different lakes (Cao and Hawkins, 2011; Diamond et al., 2012). The
European Union’s Water Framework Directive (WFD) aimed to achieve comparable assessments of
all water bodies among the European Union’s member states (Poikane et al., 2015). Nevertheless,
Birk et al. 2012 entitled their paper ’three hundred ways to assess Europe’s surface waters’ which
summarised biological methods applied in the WFD.

Remote sensing may help to overcome the lack of comparability and to fill gaps in lake assess-
ment systems. Satellites provide spatially synoptic data covering entire lakes in temporally regular
intervals. Indicators can be retrieved from standardised products or with standardised algorithms. In-
deed, passive remote sensing can only derive indicators, which have an influence on the radiometric
characteristics of a lake detectable by a remote sensor and depends on cloud free data (e.g. Hestir
et al., 2015a; Mouw et al., 2015; Palmer et al., 2015b). Being aware of the constraints and benefits,
remote sensing offers a great potential for lake monitoring (details in Chapter 3). In combination with
in situ sampling and complex lake models, remote sensing can support the detection of changes in
water quality and improve lake management (e.g. Bertani et al., 2017; Politi et al., 2016; Tyler et al.,
2016).

The principle of lake (or inland waters which may also include rivers) remote sensing origi-
nates from ocean remote sensing research which started in the 1960s (Morel and Gordon, 1980;
Ogashawara et al., 2017b). Compared to lakes, oceans are relatively clear waters. The main op-
tically active constituent, which contributes to the water colour is phytoplankton, in particular the
photosynthetic active pigment chlorophyll-a (CHL). If present, other constituents, such as total sus-
pended matter (TSM) or coloured dissolved organic matter (CDOM) highly covary with chlorophyll-a
(CHL) in the open ocean (Morel and Prieur, 1977). In contrast, CHL, TSM and CDOM occur inde-
pendently in different concentrations and relationships in lakes and other inland waters. The optically
shallow waters of lakes, where the bottom is visible, introduce a further complexity, i.e. the influence
of the bottom substrates (e.g. macrophytes and bare sediment) and the water depth or bathymetry.
Due to these diverse optical characteristics, lakes are called optically complex (Mouw et al., 2015).
Remote sensing of lakes focuses on the physical relationships between concentrations of optically
active water constituents (in optically shallow water additionally bottom and water depth) and the
shape and intensity of the water-leaving radiance, i.e. the water colour (details in section 3.2.1).
CHL-rich waters, for instance, appear in greenish colours owing to a maximum of water-leaving ra-
diance in green wavelengths; relatively clear waters are rather blueish and the strong absorbing
behaviour of CDOM results in a very dark brownish water colour. In shallow water, the water colour
darkens with increasing water depth assuming a homogeneous bottom type; shallow water areas
with bare sediment appear lighter than areas where macrophytes grow. Remote sensing sensors on
different platforms such as spaceborne satellites, airplanes or unmanned aerial vehicles gather the
scattered radiation as a physically measurable quantity of the water colour.

Lakes scatter low amounts of radiation since water is a strong absorber. Additionally, the at-
mosphere and water surface contribute to about 90-98 % of the radiation obtained by a sensor
(Gitelson and Kondratyev, 1991). Remote sensing of lakes therefore requires sensors which offer
spectral and radiometric characteristics sensitive enough to gather the low radiometric signal from
the water (Mouw et al., 2015). Furthermore, an accurate atmospheric correction is the basis to
remove undesired effects from the atmosphere (e.g. absorption and scattering, adjacency effects)
and water surface (e.g. sun and sky glint) to obtain the desired remote sensing reflectance (Rrs) of
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the water body (Gege, 2017; Moses et al., 2017). Various remote sensing algorithms exist which
use this reflectance to derive quantitative information on water constituents, bottom or water depth
(details in Chapter 3).

In the last 30 years, significant progress has been made in developing such algorithms for lake
remote sensing (Ogashawara et al., 2017b). Ogashawara et al. (2017b) recently classified available
approaches into empirically based, semi-empirical, semi-analytical, quasi-analytical and analytical
algorithms. Most scientific studies using these algorithms, however, were based on spatially medium
to low resolved (≥ 300 m x 300 m) data from ocean colour data such as Medium Resolution Imaging
Spectrometer (MERIS), Moderate Resolution Imaging Spectrometer (MODIS) or SeaWiFS and were
therefore concentrated on larger lakes (e.g. Lake Balaton, Lake Taihu, Great Lakes; Dörnhöfer
and Oppelt, 2016; Odermatt et al., 2012) and rarely on small lakes (Lake Zeekoevlei: ∼ 2.5 km2;
Matthews, 2014; Matthews et al., 2010). Analyses of smaller lakes involved less radiometric and
spectrally sensitive sensors such as Landsat 5 (L5)/ Landsat 7 (L7) (Bonansea et al., 2015; Hicks
et al., 2013; Kutser, 2012), RapidEye (Roessler et al., 2013) or WorldView/ Quickbird (Heblinski
et al., 2011; Yuzugullu and Aksoy, 2014). Individual campaigns acquiring airborne hyperspectral
data also represented one main data source for lake remote sensing (e.g. Giardino et al., 2015;
Hunter et al., 2010b).

The advent of new sensors such as Landsat 8 (L8) in February 2013, Sentinel-2A (S2A) in June
2015 or Sentinel-2B (S2B) in March 2017 opened a new era for lake remote sensing. Although these
sensors are technically designed for land applications, they offer improved radiometric and spectral
characteristics at relatively high spatial resolution attributing a potential usage for analysing lakes
at high spatial detail. Constellations of multiple sensors which are identical in construction such as
S2A and S2B have a higher revisit time and increase the probability of cloud-free images. The new
spatially high resolved sensors may be synergetically combined with ocean-colour sensors to derive
temporally high resolved time series of lakes.

Along with these new possibilities, several issues arose or are still outstanding. They have to
be investigated and resolved in order to encourage the widespread use of remote sensing in lake
monitoring:

• Raising awareness and encouraging integration of remote sensing techniques in the lake ecol-
ogy community requires a synthesis on studies connecting remote sensing outcomes with
processes investigated in lake ecology.

• The suitability of newly available sensors was theoretically modelled and discussed. With the
availability of image data, the real performance of different sensors and algorithms should be
evaluated. Since inland waters have diverse optical characteristics, such evaluations should
consider lakes with different optical characteristics.

• Evaluation and validation exercises rely on in-situ data acquired timely (± 2 hours) to satellite
data take. Whereas satellite retrievals are generally evaluated in comparison to established
in-situ methods, evaluations often ignore instrumental, methodological or simply positional un-
certainties associated with in-situ data.

• Combining data from multiple sensors requires algorithms for retrieving water constituents,
SAV and water depths which are sensor-independent and transferable to varying lake condi-
tions. The majority of available algorithms is based on empirical data which are hardly ap-
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plicable to other sensors and lake conditions. Analytical approaches may overcome these
constraints but are rarely used by users due to their complexity (Odermatt et al., 2012).

• Analytical approaches rely on the spectral shape and intensity of lake reflectance and therefore
require an accurate atmospheric correction. Now, image- and look-up-table-based approaches
are available (e.g. Sen2Cor for Sentinel-2 (S2); Müller-Wilm (2016)) and also specifically de-
signed for atmospheric correction over water bodies (e.g. ACOLITE for S2 and L8 Vanhelle-
mont and Ruddick (2015, 2016); MIP Heege et al. (2014); iCOR previously OPERA Sterckx
et al. (2015a)). These approaches should be tested for their applicability with analytical re-
trieval algorithms.

The research objectives of this thesis consider the listed issues in order to contribute to the
research progress in the field of lake remote sensing.

1.2 Research objectives and structure of the thesis

Inland water remote sensing gained increasing awareness in the remote sensing community. Spe-
cial issues initiated by highly ranked journals such as Remote Sensing of Environment (Palmer
et al., 2015b) or Remote Sensing (Zhang et al., 2017) and large research projects (e.g. Globo-
Lakes, INFORM, GLaSS) have contributed to a rising number of scientific publications. The prospect
of the launch of new sensor systems such as S2 and L8, and Sentinel-3 (S3) as a successor of
MERIS boosted research activities in remote sensing of lakes and other inland waters. Algorithms
for analysing water colour of lakes required adaptations and advancement with respect to these new
sensors. The launch of L8 in 2013 and S2A in 2015 and subsequent data availability demanded for
assessing sensor and algorithm performance under on-orbit conditions. Evaluating the performance
of the new sensors necessitate timely in situ data from lakes with different optical characteristics.
Outlining open research issues in Section 1.1 pointed out that scaling issues and in situ data un-
certainties should be considered in such evaluations. The availability of several sensors potentially
well-suited for lake monitoring from space creates the opportunity for multi-sensor data combination.
Synergetically combining different satellite sensors, however, faces a variety of challenges: different
sensor characteristics lead to different accuracies and require separate evaluations. Additionally,
sensor-independent algorithms for atmospheric correction and indicator retrieval must be the basis
for the analysis to avoid algorithm-induced differences.

In this context, the main research questions of this thesis were (1) whether the new sen-
sors fulfil the promise on their predicted suitability and (2) whether different satellite sensors
can be synergetically used to contribute to lake monitoring.

To answer the main research questions and address anticipated challenges, this thesis focuses
on four specific objectives:

1) Reviewing the research status of optical remote sensing for lake ecology and outlining future
directions

2) Evaluating the suitability of the new S2Asatellite for mapping lake ecology indicators

3) Combining multi-sensor data (MODIS-AQUA (MODAQ), MODIS-TERRA (MODTE), L7, L8, S2A)
for phytoplankton monitoring
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4) Assessing the value of archived MERIS satellite imagery for monitoring lake ecology indicators

The assessed indicators of lake ecology were CHL, total suspended matter (TSM), coloured dis-
solved organic matter (CDOM), water depth and substrate composition. To retrieve these indicators
different algorithms for water constituent retrieval and shallow water analyses were tested and eval-
uated, i.e. the bio-optical inversion models WASI-2D (Water Colour Simulator; Gege (2014b)) and
MIP (Modular Inversion and Processing System; Heege (2000); Heege et al. (2014)) and a neural
network approach FUB/WeW (Case-2 water Properties Processor from Free University of Berlin;
Schroeder et al. (2007a,b)). Furthermore, different atmospheric correction algorithms, i.e. Sen2Cor
(Müller-Wilm, 2016), ACOLITE (Vanhellemont and Ruddick, 2015, 2016) and MIP (Heege, 2000;
Heege et al., 2014), were compared to radiometric in situ measurements. This thesis further em-
phasised the consideration of in situ data uncertainty in evaluation exercises conducted at two lakes
with different optical characteristics (Chapter 2).

The thesis is structured into seven main chapters. Chapter 1 provides the reader with a brief
introduction to the scientific background of monitoring lakes and remote sensing. It highlights the
research motivation and the research objectives. Chapter 2 gives an overview on the studied lakes,
the conducted field measurements and underlines the differences in optical characteristics between
the two lakes.

Chapter 3 summarises the theoretical background of lake remote sensing and lists suitable sen-
sors for application. The review about the research status focuses on case studies retrieving and
analysing indicators of lake ecology, i.e. water transparency (suspended particulate matter (SPM),
CDOM, Secchi disk depth, diffuse attenuation coefficient, turbidity), biota (phytoplankton, cyanobac-
teria, submerged and emergent aquatic vegetation), water depth, water temperature (surface tem-
perature) and ice phenology (ice cover, ice-on, ice-out). The discussion delineates present chal-
lenges and assets of integrating remote sensing into lake monitoring. This chapter is published as
Dörnhöfer K., Oppelt N. (2016) Remote sensing for lake research and monitoring – Recent advances. Ecolog-
ical Indicators 64:105-122. doi: 10.1016/j.ecolind.2015.12.009.

Chapter 4 focuses on the suitability of S2A for mapping water constituents, substrate composition
and water depth in the relatively clear waters of the oligotrophic Lake Starnberg. This analysis
comprises a comparison between three different atmospheric correction approaches to radiometric
in situ data. Adapting WASI-2D (Gege, 2014b) to S2A’s spectral characteristics enabled the retrieval
of SPM and CDOM in optically deep waters; water depths, substrate composition (SAV and bare
sediment) and CDOM were derived in optically shallow water. A specific emphasis was placed on
the consideration of sun glint during bio-optical inversion. This chapter is published as Dörnhöfer K.,
Göritz A., Gege P., Pflug B., Oppelt N. (2016) Water Constituents and Water Depth Retrieval from Sentinel-
2A – A First Evaluation in an Oligotrophic Lake. Remote Sensing 8:941. doi: 10.3390/rs8110941

Chapter 5 concentrates on the combination of different data sources for monitoring phytoplankton
development in the CDOM-rich and eutrophic Lake Kummerow. The analysis combines different
in situ data (CHL and cyanobacteria biomass) from own measurement campaigns (group Earth
Observation and Modelling (EOM) of Christian-Albrechts-Universität zu Kiel (CAU)) and official lake
monitoring programme (LU-MV, 2015b) with satellite data. Comparing own water sampling results
with results from an external laboratory allowed the estimation of an in situ data uncertainty range.
Using products from the sensor-independent, physical model Modular Inversion and Processing
System (MIP) (Heege, 2000; Heege et al., 2014) allowed a combination of high and low spatial and
temporal resolution satellite sensors, i.e. MODAQ, MODTE, L7, L8 and S2A. CHL concentration
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and an indicator on potential harmful algal bloom (eoHAB), both derived from satellite data, were
compared to in situ data. The combined time series of in situ and satellite data revealed benefits
of combining both approaches but also methodological discrepancies. This chapter is published
as Dörnhöfer K., Klinger P., Heege T., Oppelt N. (2018) Multi-sensor satellite and in situ monitoring of
phytoplankton development in a eutrophic-mesotrophic lake. Science of The Total Environment 612:1200-
1214. doi: 10.1016/j.scitotenv.2017.08.219

Chapter 6 contains a nine-year time series of the MERIS archive and underpins the informa-
tion gain on water constituent development at Lake Kummerow exploiting non-operational, archived
satellite data. CHL, TSM and CDOM were retrieved with an established neural-network approach,
the FUB/WeW (Schroeder et al., 2007a,b). Using this time series allowed the calculation of trends
and seasonal behaviour of water constituent concentrations. Qualitative and quantitative evalua-
tions revealed the need for permanent measurement sites. This chapter is accepted for publication
as Dörnhöfer K., Scholze J., Stelzer K., Oppelt N. (2018) Water colour analysis of Lake Kummerow using time
series of remote sensing and in situ data. Journal of Photogrammetry, Remote Sensing and Geoinformation
Science. doi: 10.1007/s41064-018-0046-3

Finally, Chapter 7 provides a synthesised summary of the key achievements from Chapter 3 to 6
and discusses them in relation to the specific objectives and main research questions. Furthermore,
Chapter 7 points out still unresolved challenges that need to be addressed in order to advance lake
remote sensing research.
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Chapter 2

Description of study areas and
measurements

Since lakes are known as optically complex waters, remote sensing studies advancing retrieval algo-
rithms and evaluating sensor performance consider more than one lake covering a range of optical
characteristics. This thesis included two different lakes located in northern and southern Germany
(Fig. 2.1). Lake Starnberg (47.896◦ N, 11.313 ◦ E), an oligotrophic lake, formed during the last glacial
period in the pre-alpine region. The second studied lake, Lake Kummerow (53.808◦ N, 12.856◦ E),
also formed during the last glacial period as a proglacial lake but in the northern German lowlands
and exhibits a mesotrophic-eutrophic character.
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Figure 2.1: Location and official bathymetry contours of both study areas, i.e. Lake Starnberg (left; data source: Bavarian
Environmental Agency, 2000) and Lake Kummerow (right; data source: LU-MV, 2002b). Background: Sentinel-
2A true-colour-composite acquired on 3 Aug 2015 (left) and 6 Aug 2015 (right), hillshade elevation map of Europe
and large lakes (middle; data source: European Environmental Agency).
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2.1 Lake Kummerow

General information
Lake Kummerow’s size of about 33 km2 and oval shape is advantageous for satellite based

remote sensing studies since high- and medium-scale satellite data cover the lake. Its close lo-
cation to the remote sensing calibration and validation site Durable Environmental Multidisciplinary
Monitoring Information Network (DEMMIN) which belongs to Terrestrial Environmental Observato-
ries (TERENO) Northeastern German Lowland Observatory increases the chance for on-demand
satellite data and airborne hyperspectral image acquisitions for research purposes.

With an average depth of 8 m, the lake is relatively shallow (maximum depth: ∼ 24 m; Fig.
2.1). The lake is located in the northeastern German young moraine landscape within the natural
park ’Mecklenburg Schweiz and Lake Kummerow’. The wind-exposed location and shallow depth
result in a polymictic mixing character meaning that the lake is entirely mixed most of the year. The
lake rarely develops thermal stratification, generally following several windless, hot summer days
(see alsp Sections 5.2.1 and 6.2). Naturally, the Lake Kummerow is mesotrophic and has a short
water residence time (< 2 years). Inflows from agriculturally used areas (∼ 50 % of the catchment)
have led to increased nutrient levels (eutrophic conditions; Wöbbecke et al., 2003). After periods
with intense easterly winds, the low gradient between the outflow at the northern end of the lake
(Peene river) and the Baltic Sea leads to backwater effects (Wöbbecke et al., 2003). Mean annual
precipitation measured at German Weather Service (DWD) station Teterow (within the catchment) is
about 556 mm, i.e. lower than the German average. Precipitation is lowest during the first months of
the year (February to April: ∼ 30 mm per month). Mean annual air temperature is 8.2 ◦C (Deutscher
Wetterdienst, 2016b).

Water quality monitoring
At Lake Kummerow, the Department of lakes Mecklenburg-Western Pomerania (LU-MV) con-

ducts measurements at two sampling sites within the lake monitoring programme of the federal state
Mecklenburg-Western Pomerania. Fig. 2.2 summarises monthly average values about nutrients,
total organic carbon (TOC), CHL and Secchi disk depth between 2005 and 2015.

Between March and October, total phosphorous (P) concentrations rise from 0.05 g·m -3 up to
0.18 g·m -3. In contrast, total nitrogen (N) exhibits a decreasing behaviour (from 2 to 1 g·m -3) in
the same period (Fig. 2.2). Several peat bogs and wetlands draining into the lake explain the high
total organic carbon (TOC) concentrations (> 10 g·m -3). Secchi disk depth varies between 1.5 and
2.5 m and negatively correlates with CHL concentrations. Higher CHL concentrations, for instance
during spring blooms (March) and summer (August/September), are accompanied by lower Secchi
disk depths. Phytoplankton analyses from LU-MV revealed a seasonally varying composition: during
spring, diatoms predominate phytoplankton biomass; during late summer/autumn, the composition
shows a mixture of different classes whereas cyanobacteria have the highest share (Fig. 2.3).

This strong variation in phytoplankton composition, the pronounced CHL cycle with a spring
bloom followed by a clear water phase and massive phytoplankton development during summer
provide in seasonally varying optical characteristics within one lake. The high TOC concentrations
lead to a strongly absorbing water body which is challenging for lake ecology indicator retrieval with
remote sensing. These conditions, however, make the lake highly interesting for remote sensing
analyses.
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Figure 2.2: Monthly average values of Secchi disk depth (a), chlorophyll-a (CHL) (b), total organic carbon (TOC) (c), total
phosphorous (P) (d) and total nitrogen (N) (e) at the two sampling sites ’deepest point’ (solid line) and ’Höhe
Gorschendorf’ (dashed line) at Lake Kummerow between 2005 and 2015. Vertical error bars depict the standard
deviation (data source: LU-MV, 2016). Modified from Dörnhöfer and Oppelt (2018).
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Figure 2.3: Phytoplankton biomass composition as measured from a mixed sample at the deepest point of Lake Kummerow
during 2015 (data source: LU-MV, 2016). Modified from Dörnhöfer and Oppelt (2018).

Remote sensing validation measurements

The LU-MV measurements aim to fulfil the requirements of the WFD. Evaluations on the per-
formance of new sensors and algorithms require further measurements relevant for remote sensing
which are temporally proximate to satellite data acquisitions. Hitherto, Lake Kummerow lacked any
published or available data related to remote sensing validation campaigns. From 2014-2016, sev-
eral measurement campaigns were conducted to create a data basis for remote sensing analyses
at Lake Kummerow as an example for eutrophic lake conditions. Most campaigns were organ-
ised between June and September 2015 on days with presumably clear sky conditions and satellite
(Sentinel-2A, Landsat 8, RapidEye) or airborne hyperspectral (HySpex) data acquisitions (Fig 2.4).

01.04.15 01.05.15 01.06.15 01.07.15 01.08.15 01.09.15 01.10.15

In Situ measurements

RapidEye RapidEye

HySpex HySpex HySpex HySpex HySpex

Sentinel-2A

RapidEye RapidEyeRapidEyeRapidEye

Landsat 8 Landsat 8 Landsat 8 Landsat 8 Landsat 8 Landsat 8

Figure 2.4: Overview of in situ measurement campaigns and (partially) cloud-free satellite and HySpex data acquisitions at
Lake Kummerow during summer 2015. Modified from Dörnhöfer and Oppelt (2018).
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During the measurement campaigns, students and colleagues from the EOM group helped to
perform measurements and to take water samples. At each measurement date, 3-5 sites spread
throughout the northern half of the lake were sampled; sampling site coordinates were tracked with
a Trimble Juno SB GPS device having 2-5 m positional uncertainty. Measurements comprised radio-
metric light field assessments, weather conditions, limnological parameters and water sampling for
subsequent laboratory analyses. Table 2.1 provides an overview on the measured parameters and
used devices.

Table 2.1: List of in situ measured parameters and used devices.

Parameter Device
Weather conditions
air temperature [◦C] Ahlborn FHAD36RS
dew point temperature [◦C] Ahlborn FHAD36RS
air pressure [hPa] Ahlborn FHAD36RS
relative humidity [%] Ahlborn FHAD36RS
Limnological parameters
pH [-] WTW 330i
electric conductivity [µS·cm-1] Ahlborn FYA641LFL1
visibility depth [m] Secchi disk
water temperature [◦C] Ahlborn FYA641LFL1
Radiometric measurements
upwelling radiance Lu(λ) [mW·m-2·nm-1·sr-1] TriOS RAMSES ARC-VIS
downwelling irradiance Ed(λ) [mW·m-2·nm-1] TriOS RAMSES ACC-VIS
land surface reflectance [%] ASD LabSpec5000

Radiometric measurements
Radiometric measurements on the lake were conducted at each measurement site with two

RAMSES sensors (Table 2.1) mounted on a flouting frame which could be lowered into different
depths below the water surface (Fig. 2.5). Downwelling irradiance (Ed(λ)) measurements in different
depths (z) below water surface were the basis to calculate the diffuse attenuation coefficient of
downwelling irradiance (Kd(λ)) according to Eq. 2.1 (Kirk, 2011).

Kd(λ)[m−1] = − 1

∆z
ln(

Ed(z1, λ)

Ed(z0, λ)
), with|z1| > |z0| (2.1)

-0.67 m

-0.37 m

-0.21 m -0.21 m

0+

Ed 
[mW/(m2 nm)]

Lu
[mW/(m2 nm sr)]

Figure 2.5: Schematic illustration of RAMSES measurement setup with a TriOS ARC-VIS (Lu) and ACC-VIS (Ed) measuring
radiometric quantities in different water depths (a). RAMSES measurements during an algal bloom at Lake
Kummerow (b). Adopted from Dörnhöfer and Oppelt (2018).
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Dividing upwelling radiance (Lu(λ)) by Ed(λ) yielded under water reflectance [sr-1] for each mea-
surement depth. remote sensing reflectance (Rrs(λ)) was derived according to Eq. 2.2 with Lw(λ)
being the water-leaving radiance.

Rrs(λ)[sr−1] =
Lw(λ)

Ed(λ)
(2.2)

Log-scaled Lu(λ) measurements from different depths were linearly extrapolated to just beneath
the water surface and adjusted for the air-water interface (Mobley, 1999) to obtain water-leaving radi-
ance (Lw(λ)) as described in Fritz et al. (2017a). Fig. 2.6 shows exemplary Rrs(λ) spectra and Kd(λ)
coefficients of Lake Kummerow acquired at different dates. At the beginning of June, the lake was
relatively clear (clear water phase). High CDOM absorption leads to a low reflectance intensity, in
particular in the blue wavelengths. During late summer and early autumn, strong presence of phyto-
plankton further decreases reflectance in the blue wavelengths; pronounced reflectance minima at
∼ 620 nm and ∼ 670 nm result from phycocyanin (pigment of cyanobacteria) and CHL absorption
at these wavelengths (Matthews, 2011). The strong presence of highly absorbing constituents, i.e.
CDOM and phytoplankton, leads to high Kd(λ) coefficients.
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Figure 2.6: Median of exemplary measurements of Rrs(λ) spectra (a) and Kd(λ) coefficients (b) from a deep water measure-
ment site at Lake Kummerow on different dates. The grey shaded area indicates 25 % and 75 % percentiles of
measurements. Modified from Dörnhöfer and Oppelt (2018).

Water constituent analyses
At each measurement site, water samples were manually taken just below the water surface

(∼0.2 m), i.e. 3 x 1 L for CHL and 3 x 1 L for TSM. The transport to the laboratory followed under
cool (cooling box) and dark conditions. Colleagues from TU Munich analysed CHL using a photomet-
ric approach (Lichtenthaler and Buschmann, 2000) and High Performance Liquid Chromatography
(HPLC). Dörnhöfer et al. 2018a described the procedure of CHL analyses in detail.

Measuring TSM concentration followed similar to the descriptions in DIN 38 409-2: 1 L water
sample was filtered through pre-weighted cellulose-acetate filters (pore size: 0.45 µm). The loaded
filter was weighted (balance: Kern ABT 120-4M) after drying at 105 ◦C (1 hour) and cooling in a
desiccator. Subtracting the filter’s empty weight from the loaded weight and relating to the filtrated
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volume yielded TSM concentration [g·m-3]. Similar to CHL analyses (see Dörnhöfer et al., 2018a), an
external laboratory (UCL Kiel) analysed an additional sample per measurement site for uncertainty
purposes. Filtration of different water volumes according to Röttgers et al. (2014) with glass fibre
filters (pore size: 0.7 µm) was applied during campaigns in 2016. This procedure allowed for the
separation of the organic and inorganic parts of TSM through combustion at 550 ◦C (1 hour) (see
DIN 38 409-2; Strömbeck and Pierson, 2001). To have a basis for comparison, the 2015 procedure
was applied to one additional sample per measurement site.

CDOM is the visible light absorbing part of dissolved organic matter which is often quoted as an
absorbing value [m-1] at a reference wavelength, e.g. 440 nm (Brezonik et al., 2015). To remove any
undissolved particles, 100 ml of three pre-filtered water samples (from CHL analyses) were filtered
manually through 0.2 µm syringe filter holders. Previously, these filters have been cleaned with dis-
tilled Milli-Q water. Until further analyses, the samples were stored in dark and cool conditions in
a refrigerator. To obtain CDOM absorption (similar to Bricaud et al., 1981; Sun et al., 2009), trans-
mission (T) of the filtrate was measured in a 1 cm cuvette using a Perkin Elmer spectro-photometer
(UV/VIS Spectromtere Lambda 2S, sampling interval: 1 nm, range: 200-900 nm) against Milli-Q
water as a reference for pure water T. T was converted into optical density (OD) and subsequently
absorption (a) (Eq. 2.3). Subtracting the arithmetic mean OD value between 710 and 720 nm cor-
rected OD measurements for scattering (Bricaud et al., 1981, Eq. 2.4).

OD(λ) = −log10(
T (λ)

100
) (2.3)

ODcor(λ) = OD(λ)−OD710−720nm (2.4)

Conversion from OD into absorption of CDOM (aCDOM(λ)) followed Eq. 2.5 (Bricaud et al., 1981).

aCDOM (λ)[m−1] =
2.303

0.01
·ODcor(λ) (2.5)

Fitting the measured curve exponentially using R (R Core Team, 2016) yielded aCDOM at 440 nm
and the exponential slope value, i.e. SCDOM.

Table 2.2 summarises the measured water constituent concentrations during the summer months
of 2015. According to these values, the lake is considered as an example for CDOM-rich waters with
high summer CHL concentration and a strong seasonal phytoplankton variability.

Table 2.2: Summary of measured water constituent concentrations at Lake Kummerow during summer 2015.

Parameter Min Max Mean Standard deviation Methodology
CHL [mg·m-3] 0.1 143.8 9.3 16.5 HPLC
CHL [mg·m-3] 0.7 57.5 9.0 7.7 photometric (Lichtenthaler and Buschmann, 2000)
TSM [mg·m-3] 0.1 19.9 2.8 2.7 gravimetric (∼DIN 38 409-2)
aCDOM [m-1] 0.87 1.67 1.28 0.15 photometric and exponential fit
SCDOM[nm-1] 0.0150 0.0215 0.0172 0.0011 (∼ Bricaud et al., 1981; Sun et al., 2009)
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2.2 Lake Starnberg

General information
Lake Starnberg’s elongated form and size of about 56 km2 also makes it suitable for remote

sensing analyses. The lake is relatively deep with an average of 53.2 m and a maximum depth of
127.8 m (Fig. 2.1). Lake Starnberg has a monomictic character and regularly develops a thermal
stratification between April and October (Wöbbecke et al., 2003, see also Section 4.2.1). Mean
annual precipitation measured at DWD station Starnberg is about 959 mm with maxima (∼ 120 mm)
during summer months. The annual mean air temperature is 8 ◦C (Deutscher Wetterdienst, 2016a).

Water quality monitoring
The Bavarian Environmental Agency (BEA) regularly measures water quality indicators at the

deepest point of Lake Starnberg throughout the year (GKD Bayern, 2013b). Lake Starnberg has an
oligotrophic character with a long residence time since inflows mainly originate from groundwater.
After a period of anthropogenically induced eutrophication, lake restoration programmes successfully
reduced nutrient concentrations, in particular total phosphorous (P) (details in section 4.2.1). Thus,
the lake offers optical characteristics typical for relatively clear waters low in nutrients (Fig. 2.7).
Secchi disk depths range between 4 and 11 m. Reduced water clarity occurs along with higher
phytoplankton biomass volume (Fig. 2.8) and CHL concentrations (Fig. 2.7) during summer. TOC
is about 3 times lower at Lake Starnberg than at Lake Kummerow expecting a less absorbing water
body. The low nutrient concentrations (nitrogen (N) < 0.4 g·m-3 and P < 0.008 g·m-3) cause low CHL
concentrations (LfU, 2012). Nevertheless, CHL increases from spring to late summer whereas the
maximum concentration remains on a low level (CHL < 4 mg·m-3; Fig. 2.7).

Diatoms predominate the phytoplankton character during most of the year. During autumn, how-
ever, the share of diatoms decreases and cyanobacteria have the highest share but a very low
biomass level (Fig. 2.8). Warm water temperatures which cool down slowly during autumn favour
cyanobacteria survival (LfU, 2012).

Remote sensing validation campaigns
Lake Starnberg was already part of previous remote sensing research. The focus was placed on

spectral behaviour of SAV (Pinnel, 2006; Wolf, 2014; Wolf et al., 2013), mapping SAV with remote
sensing data (Roessler et al., 2013; Rößler, 2014; Rößler et al., 2012, 2013) and bathymetry (Gege,
2014a). Thus, archived in situ data and hyperspectral imagery were available. To obtain data for new
sensor validation, such as Sentinel-2A, colleagues from TU Munich and German Aeropace Center
(DLR) conducted and provided in situ measurement data concurrently to Sentinel-2A and airborne
hyperspectral data acquisitions. Furthermore, they offered seasonal reflectance measurements from
different SAV species. Table 2.3 summarises water constituent concentrations analysed at Lake
Starnberg during summer 2015. Dörnhöfer et al. (2016b), Fritz et al. (2017b) and Fritz and Schneider
(2018) describe details about the measurements. According to these concentrations, Lake Starnberg
is considered as an example for relatively clear waters with low concentrations of CHL, TSM and
CDOM.

Due to the low concentrations of strongly absorbing water constituents, in situ Rrs(λ) Rrs(λ) mea-
surements with RAMSES sensors were distinctly higher than at Lake Kummerow (Fig. 2.9a). Ac-
cordingly, the Kd(λ) coefficient was lower (Fig. 2.9b).
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Figure 2.7: Monthly average values of Secchi disk depth (a), CHL (b), TOC (c), total phosphorous (d) and total nitrogen (e) at
the sampling site ’deepest point’ (solid line) at Lake Starnberg between 2004 and 2014. Vertical error bars depict
the standard deviation (data source: GKD Bayern, 2013b). Modified from Dörnhöfer and Oppelt (2018).
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Figure 2.8: Phytoplankton biomass composition as measured from a mixed sample at the deepest point of Lake Starnberg
during 2011 (data source: GKD Bayern, 2013a). Modified from Dörnhöfer and Oppelt (2018).

Table 2.3: Summary of measured water constituent concentrations at Lake Starnberg during summer 2015. TSM and CDOM
values were only obtained during an airborne hyperspectral (HySpex) campaign on 12 Aug 2015.

Parameter Min Max Mean Standard deviation Methodology
CHL [mg·m-3] 0.2 1.1 0.5 0.2 HPLC
CHL [mg·m-3] 0.8 1.9 1.2 0.4 photometric (Lichtenthaler and Buschmann, 2000)
TSM [mg·m-3] 0.1 1.9 0.7 0.5 gravimetric (∼DIN 38 409-2)
aCDOM [m-1] 0.418 0.732 0.515 0.098 modelled from RAMSES
SCDOM[nm-1] 0.0125 0.0167 0.0151 0.0014 (Dörnhöfer et al., 2016b)
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Figure 2.9: Median of exemplary measurements of Rrs(λ) spectra (a) and Kd(λ) coefficients (b) from a deep water measure-
ment site at Lake Starnberg on different dates. On 12 May, location and RAMSES sensors are different in a and
b. Modified from Dörnhöfer and Oppelt (2018).
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Abstract
Lakes are important ecosystems providing various ecosystem services. Stressors such as eutrophication or
climate change, however, threaten their ecological functions. National and international legislations address
these threats and claim consistent, long-term monitoring schemes. Remote sensing data and products provide
synoptic, spatio-temporal views and their integration can lead to a better understanding of lake ecology and
water quality. Remote sensing therefore gains increasing awareness for analysing water bodies. Various em-
pirical and semi-analytical algorithms exist to derive remote sensing indicators as proxies for climate change or
ecological response variables. Nevertheless, most monitoring networks lack an integration of remote sensing
data. This review article therefore provides a comprehensive overview how remote sensing can support lake
research and monitoring. We focus on remote sensing indicators of lake properties, i.e. water transparency
(suspended particulate matter, coloured dissolved organic matter, Secchi disk depth, diffuse attenuation coeffi-
cient, turbidity), biota (phytoplankton, cyanobacteria, submerged and emerged aquatic vegetation), bathymetry,
water temperature (surface temperature) and ice phenology (ice cover, ice-on, ice-out). After a brief background
introducing principles of lake remote sensing we give a review on available sensors and methods. We cate-
gorise case studies on remote sensing indicators with respect to lake properties and processes. We discuss
existing challenges and benefits of integrating remote sensing into lake monitoring and ecological research in-
cluding data availability, ready-to-use tools and accuracies.

Keywords
Water quality, Lake ecology, Accuracy, Monitoring, Remote sensing
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3.1 Introduction

Inland waters, and especially lakes, have important functions in the environment. They provide habitat for a
wide range of species and form essential components in hydrological, nutrient and carbon cycles (Moss, 2012).
Humans benefit from various ecosystem services offered by inland waters, i.e. water bodies that are not di-
rectly connected to the sea (Carpenter et al., 2011). Water extraction serves for drinking water and irrigation;
other usages encompass energy production, transportation, fishery and recreational purposes (Carvalho et al.,
2013a; Stendera et al., 2012). Anthropogenic exploitation and multiple interacting stressors, however, threaten
ecological functions of inland waters over the entire globe (Adrian et al., 2009). Prominent stressors include
eutrophication, inorganic and organic contaminants, morphological alterations and climate change effects such
as acidification or increasing water temperatures (Brönmark and Hansson, 2002; Dudgeon et al., 2006).
Several national and international directives address these problems and aim to improve the ecological state
of inland waters. Examples are the US Clean Water Act (United States Congress House, 2002), South African
National Water Act (Government of South Africa, 1998), National Water Management Strategy of Australia and
New Zealand (Australian Government, 2000), the Canada Water Act (Government of Canada, 1985), and the
Water Framework Directive in Europe (European Commission, 2000). A common target of these directives is
to improve water quality by identifying stressors and by implementing sustainable management strategies sup-
ported by a more or less frequent monitoring (e.g. Birk et al., 2012; Gray and Shimshack, 2011; Warne, M. S. J.
et al., 2014). Currently, most monitoring programmes are field based even if sampling and analysis are labour,
cost and time intensive (Schaeffer et al., 2013). Although providing information on species level, single mea-
surements or unevenly distributed sampling points are problematic and may result in erroneous water quality
classifications (Bresciani et al., 2011c; van Puijenbroek et al., 2015). Moreover, in situ measurements hardly
capture the temporal and spatial variability of phenomena such as short-living cyanobacterial or phytoplankton
blooms (Reyjol et al., 2014).
For a comprehensive understanding of lake ecology and the role of lakes “as sentinels, integrators and reg-
ulators of climate change“ (Williamson et al., 2009) integrative, frequent and consistent long-term monitoring
approaches are required globally (Hestir et al., 2015a; van Puijenbroek et al., 2015). Ecologists repeatedly
proposed to integrate remote sensing into water quality research and monitoring to benefit from earth observa-
tion via satellite sensors (Birk and Ecke, 2014; Chen et al., 2004; Reyjol et al., 2014; Williamson et al., 2009).
Remote sensing techniques have already been successfully integrated in terrestrial ecosystem service assess-
ments (e.g. Andrew et al., 2014; de Araujo Barbosa, C.C. et al., 2015; Kandziora et al., 2014), for assessing
indicators of terrestrial habitat quality (e.g. Spanhove et al., 2012) and for supporting management of marine
and coastal protected areas (e.g. Kachelriess et al., 2014; Walshe et al., 2014). Until recently, remote sensing
based studies of lake ecology and water quality were mainly carried out with airborne data or limited to large
water bodies where ocean colour sensors with coarse spatial resolution such as MERIS or MODIS (spatial res-
olution represents the area on ground covered by an image element, which in the case of MERIS and MODIS
is ≥ 300 m) have been used (e.g. Bresciani et al., 2011a). Maybe therefore the number of publications applying
remote sensing in lake ecology or water quality lags far behind those without using remote sensing (Fig. 3.1)
although various methods exist to derive proxies for water quality (e.g. Matthews, 2011; Odermatt et al., 2012).

Since 2010, the number of studies slightly increased (Fig. 3.1), which may also be due to several large
projects funded by national authorities (e.g. Australia’s water for a healthy country flagship, Great Britain’s
GloboLakes, North American Great Lakes Restoration Initiative, USA’s Harmful Algal Bloom early warning sys-
tem project), space agencies (e.g. Diversity II, A Wealth of Water) and the European Commission (e.g. GLaSS,
INFORM). Furthermore, recently launched sensors, such as NASA’s Landsat 8 and ESA’s Sentinel-2, offer
spatial and radiometric resolutions which suit for inland water applications (Drusch et al., 2012; Pahlevan et al.,
2014; Palmer et al., 2015b). The radiometric resolution defines how many brightness levels a sensor can per-
ceive. A recently published special issue on inland water remote sensing of “Remote Sensing of Environment“
(Palmer et al., 2015b) supports the observation that remote sensing based lake monitoring is gaining impor-
tance. To further encourage integration of remote sensing for lake monitoring and research this review article
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Figure 3.1: Number of published literature (2000-2014) listed in Web of Knowledge containing the terms “lake water qual-
ity/ecology“ or “inland water quality/ecology“ (light grey) and the former in addition with “remote sensing“ (dark
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gives an overview of methods currently available that provide a better understanding and a foundation for future
innovation in this field. To this end, a brief background of inland water remote sensing is given, followed by
a section reviewing studies on retrieving remote sensing indicators for lake ecology, in particular, water trans-
parency, biota, hydrology, ice cover and surface water temperature. The last section discusses potential and
limitations of remote sensing based methods to promote integrated lake research.

3.2 Remote sensing indicators of lake ecology

Climate change poses an increasingly apparent stressor for lakes (Hering et al., 2010) and influences lake water
quality and ecology (Moss, 2012). In a comprehensive review Adrian et al. (2009) summarised lake properties
and their key response variables to climate change. These response variables are related to both trophic states
of lakes and catchment processes (Adrian et al., 2009) and therefore may be used as response variables of
lake ecosystem health (Zhang et al., 2013a) and ecology (Poikane et al., 2015). Based on these response
variables we selected indicators feasible to be achieved by remote sensors (remote sensing indicators); Table
3.1 therefore provides an overview how remote sensing can support lake research and monitoring. Recently
published literature shows that case studies cover the entire globe; two agglomerations, however, exist in Eu-
rope and North America (Fig. 3.2). Fig. 3.2 also indicates that several lakes seem to be intensely investigated
and have been analysed repeatedly, i.e. Lake Trasimeno and Garda (Italy), Lake Starnberg (Germany), Lake
Balaton (Hungary) and the Laurentian Great Lakes (USA, Canada).



20 3.2. Remote sensing indicators of lake ecology

Table 3.1: List of lake properties, response variables (modified from Adrian et al., 2009) and related remote sensing indica-
tors.

Lake properties Response variables Remote sensing indicator Abbreviation
Transparency Dissolved organic carbon (DOC) Coloured dissolved organic matter CDOM

Turbidity Suspended particulate matter SPM
Turbidity Turb
Diffuse attenuation coefficient Kd

Secchi disc depth Secchi disc depth ZSD

Euphotic depth Zeu

Biota Algal blooms Chlorophyll-a (phytoplankton) CHL
Phycocyanin (cyanobacteria) Cyano

Phenology Time series analyses of CHL
Species composition Submerged aquatic vegetation SAV

emerged vegetation
lake bottom sediment

Hydrology Water level Bathymetry zB

Temperature Epilimnic temperature Surface temperature Tsurf

Ice phenology Ice-out Ice-out; time series analyses Ice
Ice duration Ice-out; time series analyses Ice

3.2.1 Background of inland waters remote sensing

Remote sensing, in general, analyses radiation measured by a distant sensor to derive information of a certain
object or, in case of lakes, of the water body. To obtain information on lake properties such as water trans-
parency, biota and hydrology, the water leaving radiance in the visible and near-infrared wavelengths, i.e. the
wavelength region where water reflects and scatters most of the incoming solar radiation (400-900 nm) is of
major interest (Dekker et al., 2002). Before the incident solar radiation interacts with the water body it has to
pass the atmosphere where it is modified by absorption and scattering (see Fig. 3). At the water surface radi-
ation is either reflected or it passes the water surface according to Snell‘s law and further propagates through
the water body. In the water column, optically active constituents, e.g. SPM, CDOM and CHL, alter radiation
by absorption and scattering characteristic for each constituent. The sum of these constituents represents the
inherent optical properties of a water body (Odermatt et al., 2012). The apparent optical properties such as
attenuation (represented by the diffuse attenuation coefficient Kd) or remote sensing reflectance (i.e. the ratio
of water leaving radiance and downwelling irradiance) depend on the water itself and additionally on the radia-
tion geometry (e.g. parameters such as solar angles or the angle incoming radiation hits the water surface, i.e.
incidence angle) (Dekker et al., 2002). In optically deep water, water surface, water body and water constituents
are the main sources of radiation from within a lake. In optically shallow water, the water leaving radiance partly
includes radiation which has been reflected at the bottom. The water leaving radiance then contains, addition-
ally to water constituents, information on bottom substrate and bathymetry (Mouw et al., 2015). By passing
the water surface the water leaving radiation is again refracted and, through its way towards an airborne or
satellite sensor, is affected once more by atmospheric absorption and scattering. Altogether, about 90-98 % of
the signal obtained by a remote sensor originates from contributions of the water surface and the atmosphere
(Gitelson and Kondratyev, 1991). The remaining 2-10 % include the signal interesting for water remote sensing,
i.e. the water leaving radiance. For that reason, an accurate removal of effects due to the atmosphere and
water surface is essential (Mouw et al., 2015).

Separation of the various contributors from the water leaving radiance allows to obtain quantitative in-
formation on water constituents (e.g. SPM, CDOM, phytoplankton or cyanobacteria) and, for shallow water,
bathymetry and bottom substrate (e.g. benthic vegetation, sediment). To this end, various empirical and semi-
analytical algorithms exist. Empirical approaches require in situ measurements of the variable of interest which
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Figure 3.2: Location of lakes included in case studies and investigated lake properties. Size of circle indicates the number of
times a lake appeared in literature (lakes and reservoirs shape file source: Lehner and Döll (2004)).

Figure 3.3: Interaction between radiation, remote sensing indicators of lake ecology and sensors.

serve as a basis for establishing an empirical relationship (e.g. linear or non-linear regression) with the water
leaving radiance measured in one or multiple sensor bands. The regression equation is then applied to ev-
ery image element (i.e. pixel) providing a spatial depiction of the respective indicator. The setup of empirical
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models is relatively easy; their application, however, is often limited to a specific study site and/or a particular
sensor (Giardino et al., 2010b). Advanced, semi-empirical algorithms such as artificial neural networks rely on
large data sets of remote sensing and accompanying in situ data (e.g. Ceyhun and Yalçın, 2010; Doerffer and
Schiller, 2007). Using large parts of this database the artificial neural network is trained to derive a statisti-
cal relationship between remote sensing data and one or multiple optical constituent(s). Similar to empirical
approaches the remaining data serve as a validation basis to derive performance criteria. Matthews (2011)
provides a systematic overview of empirical and semi-empirical algorithms.
Owing to the complex optical behaviour of lakes various scientists developed semi-analytical algorithms based
on radiative transfer in the water column (e.g. Gege, 2014b; Giardino et al., 2012; Mobley, 1989). Applying the
radiative transfer equation enables to separate optically active constituents from the water leaving radiance.
Semi-analytical models, however, require detailed spectral information of optically active water constituents in
a lake. Nevertheless, due to their physical basis these models are broadly applicable (Giardino et al., 2010b).
Solving the radiative transfer equation mainly follows two approaches, i.e. via look-up tables and inversion
methods. Look-up tables consist of a large spectral database containing water leaving radiance spectra with
known constituent concentrations, inherent optical properties, bathymetry and bottom properties. Image spec-
tral signatures and data base records are compared until the closest match for all variables is found. Dekker
et al. (2011) provide a comparison of different look-up table approaches in coastal waters. Inversion approaches
simulate spectral signatures according to the radiative transfer and a set of constant and variable model pa-
rameters characterising lake inherent and apparent optical properties. For each pixel, variable parameters are
modified iteratively until deviations between simulated and image spectral signatures reach a minimum. The
resulting maps provide spatial distributions of water constituents, bathymetry or bottom substrates.
Empirical classification approaches (supervised and unsupervised) are another possibility to derive bottom
substrates such as submerged aquatic vegetation and sediment types. Unsupervised classifiers assign image
pixels to classes according to statistical similarities in their spectral signatures. Afterwards the user defines
thematic attributes for each class (e.g. Dogan et al., 2009; Oppelt et al., 2012). In a supervised classification
the user defines training pixels with known class properties prior to classification. Using the spectral signatures
of the training pixels the classifier then allocates each image pixel to one of the predefined classes (e.g. Hunter
et al., 2010a; Oppelt et al., 2012).
Table 3.2 summarises key points of methodologies to assess remote sensing indicators. The aforementioned
methods mainly use the visible and to some extend near-infrared wavelengths; to obtain water surface temper-
atures we need sensors measuring radiation in the thermal infrared (7-13 µm). The earth emits radiation de-
pending on the temperature (Stefan-Boltzmann law) and the emissivity of a surface (Kuenzer and Dech, 2013).
To retrieve surface temperatures several approaches exist including semi-empirical and physically based algo-
rithms (Hulley et al., 2011). Several authors developed semi-empirical, mono-window (i.e. one thermal band
located in one atmospheric window) algorithms which are mainly applicable for Landsat imagery (1972-2011).
They use approximations of he radiative transfer equation relying on estimates of atmospheric water vapour to
specify the atmospheric transmissivity (Jimenez-Munoz et al., 2009). Semi-empirical, split-window (i.e. thermal
bands in two different atmospheric windows) algorithms have been developed for sensors with more than one
thermal band. The differences in two neighbouring bands enable an enhanced estimate of the atmospheric
transmissivity which increases retrieval accuracy (Rozenstein et al., 2014).

Assessing accuracies of obtained remote sensing indicators requires in situ measurements of related pa-
rameters contemporary to image acquisition since lake conditions may change rapidly. Retrieved water con-
stituent concentrations often are compared with water samples from the upper water column which are analysed
in laboratory (Odermatt et al., 2012). The validation of bottom substrates is challenging since it requires map-
pings from boat or by divers (e.g. Hunter et al., 2010a). The same applies for shallow water bathymetry which
may be validated using, rarely existing, echo sounding data (e.g. Gege, 2014a). In situ measurements of water
temperature near the surface enable a comparison with remote sensing based temperature measurements.
Visual observations are the basis to validate remote sensing indicators of ice phenology (Latifovic and Pouliot,
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Table 3.2: Methodical key points of remote sensing indicators of water transparency, biota and lake hydrology.

Method Algorithms Key points Remote sensing indicators
Empirical Statistical regressions with band ra-

tios, single/multiple bands algebra
Easy to apply, in situ data re-
quired, difficult to transfer

CDOM, SPM, ZSD, CHL,
zB,Tsurf

Artificial neural networks Advanced algorithms with huge
data bases; tools already avail-
able; improves with study area
specific adaptation

CDOM, SPM, ZSD,Z90,
Kd,CHL, Cyano

Unsupervised/ supervised classifica-
tion

Assigns pixels to semantic
classes based on statistic mea-
sures (acc. to pre-defined
spectral signatures)

SAV

Semi-
analytical

Look-up tables Based on radiative transfer in
the water column; need large
data bases

CDOM, SPM, CHL, SAV, zB

Inversion models/ bio-optical models Apply radiative transfer equa-
tion to obtain the spectral sig-
nature and inherent optical
properties for each pixel; re-
late inherent optical properties
to constituent concentrations

CDOM, SPM, CHL, SAV, zB

2007). In most cases, coefficients such as the coefficient of determination (R2) or the root mean square error
(RMSE) serve as accuracy measures, while only a few approaches include simulated data sets (Odermatt et al.,
2012).

Satellite sensors suitable for retrieving remote sensing indicators (Table 3.3) are mainly multispectral (e.g.
Landsat, RapidEye), i.e. they record reflected or emitted radiation in a few spectral bands that cover a relatively
broad range of the electromagnetic spectrum. Hyperspectral sensors measure “contiguously across the elec-
tromagnetic spectrum in numerous narrow bands“ (Oppelt et al., 2015). Hyperspectral systems are available
for airborne platforms; planned satellites are e.g. EnMAP, HySpIRI and PRISMA. The high spectral resolution
of these sensors allows analysis of narrow spectral features such as CHL absorption at ∼670 nm.
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Table 3.3: Archived and operating satellite sensors used and upcoming sensor suitable for lake monitoring (Sources: Dekker and Hestir, 2012; Drusch et al., 2012; Hestir et al., 2015a; Lee

et al., 2015a). Spatial resolution = area on ground covered by one pixel; temporal resolution = time period between a sensor can image the same area on ground.

Sensor Spectral bands
(400-1000 nm)

Spatial resolu-
tion [m]

Temporal reso-
lution

Availability Operating time Indicators Sections x - Y)

CDOM SPM ZSD Turb Kd CHL Cyano SAV zB Tsurf Ice
Archived imagery
AATSR 3/Thermal 1000 2-3 days Web-enabled, free 2002-2012 x
AVNIR-2 4 10 46 days Web-enabled, free 2006-2011 x x
Landsat-TIR Thermal 60 16 days Web-enabled, free 1982-2011 x x
Landsat-TM 4 30 16 days Web-enabled, free 1982-2011 x x x x x
MERIS 15 300 2-3 days Web-enabled, free 2002-2012 x x x x x x x
Operating sensors
ASTER 3 15 Daily Web-enabled, free since 1999 x
AVHRR Thermal 1000 Daily Web-enabled, free since 2005 x x
Landsat ETM 4 30 16 days Web-enabled, free since 1999 x x x x x x
Landsat OLI 5 30 16 days Web-enabled, free since 2013 x x
Landsat TIRS Thermal 100 16 days Web-enabled, free since 2013 x
MODIS 2-9 250-1000 daily Web-enabled, free since 1999 x x x x x x
Proba-1 CHRIS 18-63 18-36 On-demand Scientific use since 2001 x x
Quickbird 4 2.6 On-demand Commercial, at a cost since 2001 x
RapidEye 5 6.5 On-demand Commercial, at a cost since 2008 x x
Sentinel-2 9 10-60 5-10 days Web-enabled, free since 2015 x x x x x x x x
WorldView-2 8 2 On-demand Commercial, at a cost since 2009 x x
Upcoming sensors
EnMAP 90 30 On-demand Free for scientific users planned 2018 x x x x x x x x
HySpIRI VSWIR 60 30 16 days Web-enabled, free planned x x x x x x x x
HySpIRI TIR Thermal 30 5 days Web-enabled, free planned x
PRISMA 60 20 On-demand Free for scientific users planned 2018 x x x x x x x x
Sentinel-3 21/Thermal 300 daily Web-enabled, free planned 2015 x x x x x x (x) x x
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3.2.2 Indicators of transparency

Water transparency is an essential lake property influencing light availability (Peeters et al., 2009). Light avail-
ability is important for biological, chemical and physical processes such as primary production and formation
of macrophytes and is therefore a physical sentinel of climate change and water quality (Peeters et al., 2009;
Williamson et al., 2009). Inherent optical properties influence water transparency and therefore light availability
due to absorption and scattering (Kirk, 2011). Secchi disc depth (i.e. the depth where a white Secchi disc is
no longer visible for human eye (Kirk, 2011)), euphotic depth (i.e. the depth where the radiation available for
photosynthesis is 1 % of its value at surface (Kirk, 2011)), Z90 (i.e. the zone from which 90 % of water-leaving
radiance originates (Doerffer and Schiller, 2007)) and the diffuse attenuation coefficient of downwelling irradi-
ance Kd represent widely used remote sensing indicators for transparency. Using semi-analytical or advanced
empirical approaches indicators are often derived together (Table 3.4).



26
3.2.

R
em

ote
sensing

indicators
oflake

ecology
Table 3.4: Studies deducing indicators of lake transparency. When several algorithms have been tested, the table indicates the approach with the highest accuracy. rRMSE = relative root

mean square error, R2 = determination coefficient, WFD = Water Framework Directive. *Airborne, hyperspectral sensor.

Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Binding et al.
(2010)

Empirical band ra-
tios

MODIS Surface SPM 0-20 g·m-3 rRMSE: 40% Lake Erie (Canada/
USA)

2003-2007 Time series analy-
ses; seasonal and
event-driven cycles of
SPM

Semi-analytical
model

Water column
SPM

0-200 g·m-3 - Calculation of water col-
umn SPM

Bonansea et al.
(2015)

Linear empirical
models

Landsat
TM, ETM

CHL 0-133 mg·m-3 rRMSE: 7.25% Río Tercero
reservoir
(Argentina)

2003-2010 Time series analyses;
Interaction of ST,
rainfall, transparency
and phytoplankton

zSD 0.3-6 m rRMSE: 30.8%
Tsurf 10-31 ◦C -

Chao
Rodríguez et al.
(2014)

Emprirical band
ratios

Landsat
TM

CHL 0.4-20 mg·m-3 -
Lake Arreo (Spain)

2000-2012 Temporal dynamics of
water quality
parameters;
development of model

zSD 1.33-7.53 m RMSE: 0.48 m
Tsurf 5-25 ◦C RMSE: 4.18 ◦C

Giardino et al.
(2015)

Bio-optical inversion
BOMBER (Giardino
et al., 2012)

MIVIS* SPM 2.3-5.75 g·m-3 R2: 0.91 Lake Trasimeno
(Italy)

September
2009

Interaction of SPM and
SAV and water depth

CHL 0.25-4.45
mg·m-3

R2: 0.71

CDOM 0.3-0.72 m-1 R2: 0.78
SAV 0-100 % Qualitative
Water depth 0-4 m R2: 0.84

Giardino et al.
(2014b)

Neural network
MERIS C2R

MERIS CHL 0-12 mg·m-3

Qualitative; referring to
reference studies

Lake Maggiore
(Italy)

2003-2011
Spatiotemporal
dynamics and trend
analyses; WFD
monitoring

CDOM 0.03-0.2 m-1

SPM 0-2.8 g·m-3

Z90 4-25 m
Landsat
8

Tsurf 10-16 ◦C

Giardino et al.
(2010a)

Neural Network
MERIS C2R

MERIS CHL 0-20 mg·m-3 Qualitative; temporal
and spatial mismatch of
sensor and in situ data

Lake Trasimeno
(Italy)

2005-2008 Relation between land
use and water
transparency;SPM 3-21 g·m-3

Continued on next page
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Table 3.4 – Continued from previous page
Authors Techniques Sensor Parameter Range Accuracy Study area Time Process

Z90 0.5-5 m
MODIS product MODIS Tsurf 4-30 ◦C 2003-2008 Improvement of

environmental
knowledge; WFD
reference conditions

Decision tree clas-
sification, Maximum
Likelihood classifi-
cation

Landsat
TM,
MSS,
AVNIR-2,
ASTER

Land use/
cover, SAV

Qualitative 1978-2008

Giardino et al.
(2010b)

Empirical regres-
sion

AVNIR-2 SPM 0-250 g·m-3 R2:0.924 Lakes in Mount
Everest region

October 2008 Information on remote,
hardly accessible lakes;
glacier-lakeinteractions

Hicks et al.
(2013)

Empirical regres-
sion

Landsat
ETM

SPM 3.9-145 g·m-3 R2:0.939 34 lakes in New
Zealand

2000-2009 Filling information gaps
on water clarity for un-
monitored lakes;

Horion et al.
(2010)

Regionally adjusted
bio-optical
algorithms

MODIS CHL 0-5 mg·m-3

Blooms: 10-20
mg·m-3

R2: 0.66 Lake Tanganyika
(Burundi, Congo,
Tanzania, Zambia)

2002-2006 Phytoplankton and
primary productivity
dynamics; Bloom
detectionKd(490 nm) 0.07-0.23 m-1 R2:0.56

Kutser et al.
(2009)

Empirical band ra-
tios

ALI,
Landsat
ETM,
IKONOS

CDOM 0-20 m-1 - Boreal lakes in Swe-
den, Finland, USA,
Canada

July 2003 July-
August 2002

Large scale CDOM as-
sessment; regional dif-
ferences

Kutser (2012) Empirical band ratio
regression

Landsat
TM, ETM

CDOM 0.5-6 m-1 R2: 0.62 Lake Malären (Swe-
den)

1984-2011 Long-term trend infor-
mation on lake carbon
content; climate change

Lobo et al.
(2015)

Non-linear empirical
regression

Landsat
TM,
ETM, OLI

SPM 2.5-301 g·m-3 R2: 0.94 Tapajós River Basin
(Brasil)

1973-2013 Relation to gold-mining
activities; spatiotempo-
ral information on water
quality

Long and Pavel-
sky (2013)

Empirical band ratio
regression

MERIS SPM 0-2500 g·m-3 Spearman’s p: 0.97 Lake Athabasca
(Canada)

2000-2011 Relation of river dis-
charge and SPM

Majozi et al.
(2014)

Neural network
MERIS C2R;
MERIS EL

MERIS Kd(490 nm) 1.7-11.9 m-1 RMSE: 0.26 m-1 Lake Naivasha
(Kenya)

September
2010

Relation between Kd,
Zeu and CHL, CDOM,
SPMZeu 0.7-1.1 m RMSE: 0.17 m

Continued on next page
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Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Matthews et al.
(2010)

Neural network
MERIS EL; MERIS
C2R; empirical
regression

MERIS CHL 50-240 mg·m-3 RMSE: 9.8 % Lake Zeeklovei
(Africa)

April 2008
Spatio-temporal
dynamics; Integration
into monitoring

SPM 46-55 g·m-3 RMSE: 14.1 %
CDOM 1.9-2.8 m-1 RMSE:13 %
zSD 0.23-0.3 m RMSE: 8.0 %

Shi et al. (2014) Empirical regres-
sion

MERIS Kd(PAR) 0-24 m-1 R2:0.74 Lake Taihu (China) 2003-2010 Seasonal and spatial
variations in Kd; relation
to wind speed and other
constituents
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3.2.2.1 Coloured dissolved organic matter

CDOM is a quantifiable remote sensing indicator calculated as absorption in m-1 at a specific wavelength
λ (aCDOM(λ)), often 440 nm. CDOM is used as a proxy for the lake carbon content indicator DOC (Kutser et al.,
2015). This relationship is well established for boreal lakes but varies depending on the CDOM source which
may be allochthonous (e.g. decaying wooden plants in the catchment) or autochthonous (e.g. decaying aquatic
plants within the lake) (Brezonik et al., 2015; Kutser, 2012). Showing an exponential decrease of absorption
with increasing wavelengths CDOM strongly absorbs radiation in the ultraviolet and blue wavelengths (Nguy-
Robertson et al., 2013). Absorption by CDOM thus influences the spectral distribution of radiation available
in water bodies; high amounts reduce penetration depth of light. Since CDOM is a main absorber, CDOM-
rich waters offer very low water leaving radiances which complicates remote CDOM derivation (Brezonik et al.,
2015).Valid sensors offer bands in the visible wavelength with high radio-metric resolution and signal-to-noise
ratio (Kutser et al., 2009).The hyperspectral sensor MIVIS offers these characteristics so that Giardino et al.
(2015) obtained aCDOM(440) with high accuracy (R2= 0.78) in a relatively low concentration range (0.30-0.72 m-1)
at Lake Trasimeno (Italy). Higher CDOM concentrations in boreal lakes enabled Kutser (2012) and Kutser et al.
(2009) to empirically retrieve aCDOM(440) from multispectral data. Although being less accurate (R2= 0.62, Table
3.4) these data allow gathering information from the past to derive, e.g. seasonal trends of CDOM (e.g. Kutser,
2012) or spatially large scale assessments (e.g. Kutser et al., 2009).Temporal and spatial distribution of CDOM,
indicating DOC concentrations over wide geographic scales, is essential to fully understand the role of lakes
in carbon cycling and climate change (Kutser, 2012)(Williamson et al., 2009). Accurate atmospheric correction
remains challenging for CDOM retrieval (e.g. Matthews et al., 2010) but also is necessary for generating time
series.

3.2.2.2 Suspended particulate matter

SPM enters a lake through tributaries and originates from soil and bedrock erosion in its hinterland (Lindström
et al., 1999) or from internal resuspension (Madsen et al., 2001). Thus, SPM is an important carrier of nu-
trients and contaminants. SPM attenuates light which leads to decreasing transparency with increasing SPM
concentrations (g·m-3 or mg·l-1), yet it also scatters light which results in increased water leaving radiances
(Giardino et al., 2015). Using hyperspectral data Giardino et al. (2015) distinguished small increments of SPM
with high accuracies. Case studies retrieving SPM from multispectral sensors showed similar high accuracies
(R2≥0.9); depending on the study area SPM varied between medium (0-20 g·m-3) and high concentrations (up
to 2500 g·m-3). Most studies focused on time series of archived MERIS and Land-sat data to analyse spatio-
temporal dynamics of SPM and its drivers (e.g. Binding et al., 2010; Giardino et al., 2014b, 2010b; Lobo et al.,
2015). Binding et al. (2010) detected storm driven resuspension events and seasonal SPM cycles at Lake Erie
(USA/Canada) by combining remote sensing SPM and wind speed data. Lobo et al. (2015) investigated wa-
ter siltation effects by gold mining activities in Brazil and defined reference conditions for SPM concentrations
before the mining activities. Long and Pavelsky (2013) combined measured river discharge and SPM distribu-
tion to determine threshold values for the discharge required to replenish periodic lakes at Peace-Athabasca
Delta (Canada). Remote sensing further provides monitoring options for lakes with difficult access or which lack
regular in situ monitoring (Giardino et al., 2010a,b; Hicks et al., 2013; Matthews et al., 2010).

3.2.2.3 Further indicators of transparency

Water transparency in terms of the diffuse attenuation coefficient of downwelling irradiance Kd describes the
exponential decline of irradiance with increasing water depth (Kirk, 2011) and is often measured at 490 nm.
Absorption by pure water, CDOM, phytoplankton and scattering by SPM influence Kd. Kd of the photosyn-
thetically active radiation (PAR) determines the availability of light for phytoplankton and macrophytes, which
makes it an important descriptor of lake transparency also used for primary production estimates (see Section
3.2.3.1). Several case studies revealed that remote sensing data allow retrieval of a wide range from low Kd
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(0.07-0.23 m-1 indicating high transparency, Horion et al., 2010) to high Kd values (up to 24 m-1, Shi et al.,
2014) from MERIS and MODIS data which offer bands at 490 nm. Detected seasonal and spatial variations
assist investigating lake primary production (Horion et al., 2010; Majozi et al., 2014; Shi et al., 2014). Analysing
Kd time series also revealed strong correlations between Kd and wind speed (Shi et al., 2014). Various studies
obtained Secchi disc depth and Z90 as proxy for water transparency using MERIS and Landsat imagery (Table
3.4). Retrieved values ranged from 0.3 m (Matthews et al., 2010) up to 25 m (Z90 Giardino et al., 2014b). Majozi
et al. (2014) calculated the euphotic depth using MERIS Kd. The broad majority of studies, however, focused
on analysing spatio-temporal dynamics of Secchi disc depth or Z90 proving the additional value for lakes which
lack regular in situ monitoring (Hicks et al., 2013) and the suitability for integration into existing water quality
monitoring (e.g. Giardino et al., 2014b; Matthews et al., 2010).

3.2.3 Indicators of biota

Indicators of biota play a key role in lake ecology (Birk et al., 2012; Brucet et al., 2013; Reyjol et al., 2014). Some
biological indicators such as phytoplankton, submerged macrophytes and riparian vegetation can be retrieved
directly by remote sensing (Table 3.5).
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Table 3.5: Studies deducing indicators of lake biota. When several algorithms have been tested, the table indicates the approach with the highest accuracy. k = Kappa coefficient, OA = overall
accuracy, r = correlation coefficient, RMSE = root mean square error, R2 = determination coefficient, WFD = Water Framework Directive. *Airborne, hyperspectral sensor.

Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Phytoplankton and Cyanobacteria
Bresciani et al.
(2011c)

Neural Network
MERIS C2R (Do-
erffer and Schiller,
2008)

MERIS CHL 0-20 mg·m-3 - Perialpine lakes 2003-2009 WFD monitoring

Gómez et al.
(2011)

Empirical band
regression

CHRIS CHL 0-250 mg·m-3 RMSE: 8.6 mg·m-3 Albufera of Valencia
(Spain)

2001-2005 WFD monitoring
MERIS Cyano 0-250 mg·m-3 RMSE: 12.92 mg·m-3

Hunter et al.
(2010b)

Empirical band ratio
regressions,
semi-analytical

CASI-2* CHL 0 - >150
mg·m-3

R2: 0.832 Loch Leven,
Esthwaite Water
(UK)

13, 26 Apr, 22
Aug 2007

Monitoring
cyanobacterial bloomsAISA* Cyano R2: 0.984

Kauer et al.
(2015)

MERIS NN C2R MERIS CHL 0-100 mg·m-3 R2: 0.92 Lake Peipsi, Lake
Vőrtsjärv (Estonia)

2005-2009
Phytoplankton primary
production modelMERIS FUB Kd(PAR) 0-3 m-1 R2: 0.82

Keith et al.
(2012)

Empirical band ratio
regression

Hyper-
OCR*

CHL 2-90 mg·m-3 R2: 0.97 49 lakes in New
England (USA)

15-17 Sep 2009 Trophic status assess-
ment, CWA monitoring

Matthews
(2014)

Maximum Peak
Height algorithm
(Matthews and
Odermatt, 2015)

MERIS
CHL 1-500 mg·m-3 r: 0.72

50 lakes in South
Africa

2002-2012
Time series analyses,
trends, monitoring
blooms

Cyano 1-50 % -
Surface scum
area

0.01-10 % -

Palmer et al.
(2015c)

MERIS FLH
algorithm (Gower
et al., 2004)

MERIS
CHL 0->60 mg·m-3 R2: 0.87 Lake Balaton

(Hungary)
2002-2012

Phytoplankton
phenology,
spatio-temporal trends
and changes

Phenology fea-
tures

Days, rates 0.58 <R2< 0.84

Wu et al. (2015) Empirical (Floating
Algal Index)

MODIS Cyano bloom
areas

100-800 km2 - Lake Taihu (China) 2000-2011 Cyanobacterial blooms
and wind speed

Submerged aquatic vegetation and littoral vegetation
Birk and Ecke
(2014)

Manual detection UAV
RGB
camera

31 macrophyte
taxa

- Evaluation of trophic
metrics

72 Swedish lakes 2007-2010 Implementation for
WFD monitoring

Continued on next page
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Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Bolpagni et al.
(2014)

Supervised classifi-
cation

APEX*
Floating, sub-
merged, emer-
gent, littoral
macrophytes

Discrete
classes

k: 0.83
Mantua lakes (Italy) 21 Sep 2011

Interaction of
phytoplankton and
macrophytes

Empirical band ratio
regression

CHL 0-60 mg·m-3 r: 0.92

Bresciani et al.
(2011b)

Empirical band re-
gression

GeoEye-
1

Emergent reed
beds

Leaf area index
m2·m-2

R2: 0.84 Lake Garda (Italy) 2009, 2010 Management effects on
physiological status of
reed beds

Brooks et al.
(2015)

SAVMA
(Shuchman
et al., 2013b)

Landsat
TM

Bottom sub-
strate: sand,
dense SAV, less
dense SAV

Discrete
classes

OA: 83% Laurentian Great
Lakes (USA,
Canada)

2008-2011 Baseline map, trends in
SAV coverage

Biomass 129 kt
Dogan et al.
(2009)

Unsupervised clas-
sification

Quickbird 4 SAV classes;
SAV coverage

Discrete
classes

k: 86.5% k: 65.95% Lake Mogan
(Turkey)

6 Aug 2005 Monitoring macrophytes

Giardino et al.
(2007)

Bio-optical inversion MIVIS* Sand, SAV
(Bathymetry)
(CHL, CDOM,
SPM)

0-100%; 1-7 m qualitative Lake Garda (Italy) 1997, 2005 Changes in macrophyte
patterns

Giardino et al.
(2015)

Bio-optical inversion
MIVIS* SAV 0-100% qualitative

Lake Trasimeno
(Italy)

12 May 2009
Relation between SPM
and SAV colonisation

SPM 0-10 g·m-3 R2 > 0.7
Bottom depth 0.1-3.8 m -

Heblinski et al.
(2011)

Bio-optical model
QuickBird

Bottom cover-
age

%
Qualitative

Lake Sevan
(Armenia)

2006-2008
Effects of water level
changes on aquatic
vegetation structureSupervised classifi-

cation
Vegetation
types

Discrete
classes

Hunter et al.
(2010a)

Supervised classifi-
cation

CASI* Growth-habitats
(submerged,
floating,
partially-
emergent,
emergent); SAV
species

Discrete
classes

k: 0.72; k: 0.84 Upper Thurne re-
gion (UK)

22 June, 28 Aug
2005

WFD monitoring

Continued on next page
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Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Shuchman et al.
(2013b)

Semi-analytical
classification
(SAVMA)

Landsat
TM,
Quick-
bird,
World-
View-2,
MODIS,
MERIS

Bottom sub-
strate: sand,
dense SAV, less
dense SAV

Discrete
classes

OA: 87 % Laurentian Great
Lakes (USA,
Canada)

2009, 2010 SAV monitoring
(Cladophora), biomass
estimates

Roessler et al.
(2013)

Spectral unmixing
of depth invariant
index

RapidEye Bottom cover-
age (bare soil,
Najas marina,
Elodea nuttallii)

0-100 % Qualitative Lake Starnberg
(Germany)

6 May, 3 Sep
2011

Monitoring invasive
macrophytes

Rößler et al.
(2013)

Bio-optical inversion APEX* Bottom cover-
age (sediment,
Najas marina,
Chara spec.)

0-100 % Qualitative Lake Starnberg
(Germany)

2011 Monitoring invasive
macrophytes
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3.2.3.1 Algal blooms and phenology

Being closely related to nutrient availability phytoplankton represents a prominent indicator of the trophic state
of fresh water ecosystems (Solheim et al., 2013). CHL is a proxy for phytoplankton (Carvalho et al., 2013b), and
assessment via remote sensing uses its characteristic absorption features between 440 and 560 nm and at ∼
670 nm (Matthews, 2011). In recent times, public media reported an increasing number of cyanobacteria blooms
(Bojanowski, 2014; Zimmer, 2014) as they affect water usage for drinking, irrigation and recreational purposes
(Carvalho et al., 2011). Due to their toxicity monitoring of cyanobacterial blooms requires rapid response and
forecast tools that assist local authorities to swing into action timely. Just as for CHL, various empirical and
semi-analytical algorithms exist for cyanobacteria retrieval (Table 3.5). To assess cyanobacteria concentrations,
however, most authors use the absorbing feature of phycocyanin at ∼ 620 nm (Matthews, 2011).Various remote
sensing algorithms are available to assist monitoring of algal phenology and blooms (Table 3.5). Using airborne
hyperspectral and MERIS data case studies retrieved CHL and cyanobacteria concentrations in broad ranges
(0-500 mg·m-3) with high accuracies (R2 ≥ 0.83). Bresciani et al. (2011c) and Gómez et al. (2011) focused on
analysing CHL with respect to Water Framework Directive monitoring. Keith et al. (2012) classified the trophic
state from remotely sensed CHL to support lake monitoring with in the Clean Water Act. Several studies assisted
cyanobacterial monitoring and risk assessment (e.g. Gómez et al., 2011; Hunter et al., 2010b; Matthews, 2014;
Wu et al., 2015). Some authors used times series to support understanding of phytoplankton phenology (e.g.
Palmer et al., 2015c). Kauer et al. (2015) integrated algal phenology into a lake primary production model.

3.2.3.2 Submerged aquatic vegetation and emerged vegetation

Benthic vegetation plays an important role in lake ecosystems and therefore serves as a widely used indicator
for lake ecology (Søndergaard et al., 2010). SAV is sensitive to changes in water temperature, water level and
transparency; as a result SAV is a valuable indicator for trophic state assessment (Penning et al., 2008; Poikane
et al., 2015; Søndergaard et al., 2010). The species composition further indicates habitat persistency or pres-
ence of invasive species (Ginn, 2011). Mapping approaches include empirical classifications (e.g. Hunter et al.,
2010a; Oppelt et al., 2012) and semi-analytical, spectral unmixing algorithms (e.g. Dörnhöfer and Oppelt, 2014;
Giardino et al., 2015). Emerged vegetation is often assessed through classification approaches and band ratios
(e.g. Bresciani et al., 2011b; Villa et al., 2013).
Case studies (Table 3.5) mainly use multispectral sensors with high spatial resolution or airborne, hyperspec-
tral data. Accuracy assessments often are qualitative; in case of quantitative assessments accuracy measure
showed good to very good performance (k ≥ 0.7). Most studies retrieved percentage coverages of few single
species or discrete growth habitat classes. Birk and Ecke (2014) identified 31 macrophyte species via visual
image interpretation and integrated their results into a trophic metric of the Water Framework Directive. Semi-
automated classification approaches distinguished less species. Macrophytes on growth habitat level,however,
improved understanding of interactions with phytoplankton (e.g. Bolpagni et al., 2014) and supported field map-
pings (e.g. Dogan et al., 2009; Hunter et al., 2010a).
To minimise the influence of the water overlying SAV several authors developed depth-invariant indices (e.g.
Brooks et al., 2015; Roessler et al., 2013; Shuchman et al., 2013b). By analysing a 30-year time series Brooks
et al. (2015) demonstrated that SAV distribution maps can reproduce impacts of previous water management
strategies, e.g. to reduce phosphorous inputs. Roessler et al. (2013) also created depth invariant indices, which
allowed distinguishing two invasive macrophyte species (Najas marina, Elodea nuttallii) and uncovered sedi-
ment. Semi-analytical models such as BOMBER (Giardino et al., 2012) integrate the influence of water, water
depth and water constituents in a radiative transfer model. For optically shallow water, BOMBER also includes
a linear unmixing approach of up to three bottom substrates. Comparing obtained SAV distribution maps from
different dates thus allowed to detect changes in SAV patterns (e.g. Giardino et al., 2007). Furthermore, the
spatial information helped to analyse interactions of SAV and SPM concentrations (e.g. Giardino et al., 2015) or
to detect distribution of invasive macrophytes (e.g. Roessler et al., 2013). Further studies monitored effects of



Chapter 3. Remote sensing for lake research and monitoring - Recent advances 35

management strategies (Bresciani et al., 2011b) and changing water levels (Heblinski et al., 2011) on benthic
vegetation structure.

3.2.4 Indicators of lake hydrology

Concerning hydrological properties of lakes Adrian et al. (2009) placed the water level to the list of key response
variables. In shallow waters remote sensing is a valuable method to derive water levels (also referred to as wa-
ter depths or bathymetry). Gao (2009) presented a review on empirical and analytical methods for bathymetry
retrieval. While various studies exist for coastal bathymetry (e.g. Dekker et al., 2011; Garcia et al., 2014) less
attention was paid to inland waters. Instead, shallow water areas have often been ignored or masked, espe-
cially when using ocean colour sensors. With airborne imagery and the advent of sensors with high spatial
resolutions retrieval of lake or river bathymetry became feasible (Table 3.6, e.g. Flener et al., 2012; Legleiter
et al., 2009). Recent bathymetric studies, however, focused on developing algorithms rather than using existing
products (Table 3.6). Empirical derivation of bathymetry using multispectral satellite data with high spatial res-
olution showed high accuracies (R2 > 0.9) in areas with homoge-nous substrate and water column properties
(e.g. Legleiter et al.,2014; Yuzugullu and Aksoy, 2014).
As mentioned previously, bio-optical models account for different substrates and water constituent concen-
trations. Gege (2014a) presented a study at Lake Starnberg (Germany) which focused on improved model
parameterisation and bathymetry retrieval. He used airborne, hyperspectral data and the recently published
bio-optical tool WASI-2D (Water Colour Simulator, Gege, 2014b); resulting bathymetry values ranged between
0 and 8 m and showed high accuracy (RMSE = 0.37 m). To obtain information on substrates in optically shallow
water Giardino et al. (2007, 2015) applied BOMBER to airborne, hyperspectral data at Lake Garda (Italy) and
Lake Trasimeno (Italy). Focusing on satellite imagery for bottom substrate mapping, Giardino et al. (2014a)
applied BOMBER to RapidEye and Landsat 8 data retrieving promising results.

Table 3.6: Studies deducing indicators of lake hydrology, in particular water depth. When several algorithms have been tested
the table indicates the approach with the highest accuracy. RMSE = root mean square error, R2 = determination
coefficient. *Airborne, hyperspectral sensor.

Authors Techniques Sensor Parameter Range
[m]

Accuracy Study area Time Process

Gege
(2014a)

Bio-optical
inversion

HySpex* water
depth

0-8 RMSE: 0.37
m

Lake Starn-
berg (Ger-
many)

14 May
2012

Model
paper

Giardino
et al.
(2007)

Bio-optical
inversion

MIVIS* Sand,
SAV, water
depth

1-7 Avg. de-
viation
from official
map 1.3 %
(1997), 4.7
% (2007)

Lake Garda
(Italy)

1997, 2005 Changes
in macro-
phytes
patterns

Giardino
et al.
(2014a)

Bio-optical
inversion

Rapid Eye,
Landsat 8

water
depth

0-7 Qualitative Lake Garda
(Italy)

10 June
2014

Model
paper

Giardino
et al.
(2015)

Bio-optical
inversion

MIVIS* SPM, CHL,
CDOM,
SAV, water
depth

0.1-3.8 R2: 0.84 Lake Trasi-
meno (Italy)

12 May
2009

Relation be-
tween SPM
and SAV
colonisation

Legleiter
et al.
(2014)

Empirical
band re-
gression

WorldView-
2

water
depth

0-10.45 0.87< R2<
0.92

Supra-
glacial
lakes
(Green-
land)

18 and 23
July 2012

Water stor-
age volume
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Yuzugullu
and Ak-
soy
(2014)

Empirical
band re-
gression

WorldView-
2

water
depth

0-6 R2: 0.9 Lake Eymir 28 July
2010

Outlook for
water qual-
ity

3.2.5 Indicators of temperature

Water temperature in general is linked to heat and energy fluxes and regulates thermal stratification (Politi
et al., 2012). Changes in water temperature thus affect ecosystem functions of lakes and result in changes
of species composition and oxygen concentration (Williamson et al., 2009). Epilimnic temperature is regarded
as a lake property directly affected by climate change (Adrian et al., 2009). Remote sensing provides spatial
information on the radiometric skin surface temperature which may indicate epilimnic temperature; depending
on wind speed, however, skin surface temperature tends to be cooler than the upper 50 cm bulk layer of the
water column (Crosman and Horel, 2009).
A variety of studies showed that thermal remote sensing data can obtain surface temperature. Table 3.7
presents literature that used surface temperature products and retrieval algorithms for lake monitoring. Most
studies applied sensors with coarse spatial resolution (MODIS, AVHRR and AATSR, Table 3.7) which provide
images on a daily basis (e.g. Alcântara et al., 2010; Politi et al., 2012). Authors generally referred to generic
product accuracies; if in situ measurements were available, high accuracies were achieved (R2 ≥ 0.9). Sima
et al. (2013) benefited from the high temporal resolution to monitor diurnal, monthly, seasonal and inter-annual
variations of surface temperature and to calculate lake water budgets. Analysing time series further enabled to
detect global trends in lake surface temperature with respect to climate warming (Schneider and Hook, 2010),
to complement data gaps of in situ archives (Politi et al., 2012), to investigate interactions with CHL patterns
(Bresciani et al., 2011a), to indicate periods of lake mixing or thermal stratification (Alcântara et al., 2010) or to
improve numerical weather prediction models (Pour Kheyrollah et al., 2014). Simon et al. (2014) recommended
the Landsat archive with higher spatial but lower temporal resolution for obtaining spatially explicit, historical
surface temperature. Chao Rodríguez et al. (2014) used the Landsat archive to develop a model which enables
analysis of lake temperature cycles from 2002 to 2012.

Table 3.7: Studies deducing surface temperature as indicator of lake water temperature. When several algorithms have
been tested, the table indicates the approach with the highest accuracy. RMSE = root mean square error, R2 =
determination coefficient.

Authors Techniques Sensor Range
[◦C]

Accuracy Study area Time Process

Alcântara
et al. (2010)

Tsurf product
(diurnal,
nocturnal)

MODIS 12-35 - Itumbiara
hydroelec-
tric reservoir
(Brazil)

2003-
2008

Time series of Tsurf,
analyses of heat fluxes
and influence of meteo-
rological variables, cal-
culation of surface en-
ergy budget

Bresciani
et al.
(2011a)

Tsurf product MODIS 0-30 - Lake Trasi-
meno, Lake
Garda (Italy)

2005-
2008,
2004-
2009

Relationship between
Tsurf and CHL

Chao Ro-
dríguez
et al. (2014)

Empirical
band ratios

Landsat
TM

5-25 RMSE:
4.18 ◦C

Arreo lake
(Spain)

2000-
2012

Temporal dynamics of
water quality parame-
ters; Development of
model

Continued on next page
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Table 3.7 – Continued from previous page
Authors Techniques Sensor Range

[◦C]
Accuracy Study area Time Process

Politi et al.
(2012)

Split-window
algorithm

AVHRR 0-30 R2>0.9 Lake Geneva
(Switzerland),
Balaton (Hun-
gary), Vattern
(Sweden),
Oulujarvi (Fin-
land)

1993-
1996;
2001-
2005

Temporal and spa-
tial trends in Tsurf of
European lakes

Pour Khey-
rollah et al.
(2014)

Tsurf product MODIS
AATSR

-2->0 - Lakes > 6 km2

in northern Eu-
rope

Winter
2010/11;
2011/12

Improvement of lake
description in numeri-
cal weather prediction
model

Schneider
and Hook
(2010)

Split-window
algorithm

AATSR
AVHRR
Night-
time

- RMSE:
0.013 ◦C
y-1

167 large inland
water bodies
globally

1985-
2009
(Jul-
Sep;
Jan-
Mar)

Trends in lake Tsurf re-
lated to climate change

Sima et al.
(2013)

Tsurf product MODIS 5-30 R2: 0.92 Urmia Lake
(Iran)

2007-
2010

Spatial and temporal
Tsurf variation; relation
to lake evaporation

Simon et al.
(2014)

Mono-
window
algorithm

Landsat
TM

4-25 R2>0.9,
RMSE:
1-2 ◦C

Lake Bari-
ousses, Lake
Bimont (France)

2009-
2013

Suitability of Landsat
archive for information
on historical lake Tsurf

3.2.6 Indicators of ice phenology

For lakes with periodic ice cover ice phenology is an essential lake property influencing the underwater light
climate, energy balance and biogeochemical processes. Brown and Duguay (2010) as well as Kirillin et al.
(2012) defined two parameters most important for analysing the interplay between lake ice and climate: ice-
on when ice occurs on a lake for the first time in a season, ice-out on a lake due to thawing. Apart from air
temperature ice-on depends on parameters such as lake depth, heat storage, inflows and internal currents; for
ice-out air temperature is the major driver (Brown and Duguay, 2010). Compared to water the albedo of ice
and snow is high (Kirillin et al., 2012) which is important for detecting ice cover with optical sensors. Most ice
phenology studies are based on point data records dating back to the 19th century (Brown and Duguay, 2010).
A long-term trend analysis of lake ice records (1855-2004) in the northern hemisphere revealed that ice-on
occurred 0.3-1.6 days/decade later, while ice-out now happens 0.5-1.9 days/decade earlier; lake-ice duration
therefore decreased between 0.7 and 4.3 days/decade depending on the investigated time period (Benson
et al., 2012).
In general, satellite monitoring of lake ice is amenable to operational monitoring on a regional to global scale.
Using passive optical remote sensing, major limitations are cloud cover (e.g. Arp et al., 2013) and low sun
angles during ice-on periods (Latifovic and Pouliot, 2007) which aggravate image acquisition and processing.
Being less affected by cloud cover and illumination passive and active microwave remote sensing therefore
are primarily used for ice phenology studies, but are beyond the scope of this paper. Passive remote sensing,
however, also serves as a valid tool for lake-ice monitoring. Case studies mainly used large scale sensors with
low spatial resolution. Comparing in situ observations with satellite derived phenological parameters showed
reasonable accuracies (Table 3.8). Remote sensing supported filling data gaps in in situ records (Latifovic and
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Pouliot, 2007) and further enabled a spatially more explicit monitoring of ice phenology and its drivers (e.g. Arp
et al., 2013; Kropáček et al., 2013). Combining lake ice phenology and its main drivers Brown and Duguay
(2012) as well as Shuter et al. (2013) simulated effects of climate change scenarios on lake ice phenology.

Table 3.8: Studies deducing indicators of lake ice phenology. When several algorithms have been tested, the table indicates
the approach with the highest accuracy. RMSE= root mean square error, MAE = mean absolute error.

Authors Techniques Sensor Parameter Accuracy Study area Time Process
Arp et al.
(2013)

Visual inter-
pretation

MODIS Ice-out RMSE: 7.1
days

55 large
lakes in
Alaska
(USA)

2007-
2012
(1.4.-
1.7.)

Spatial and tempo-
ral variation among
lakes; Baseline of
ice-out for change
analyses

Brown and
Duguay
(2012)

MODIS
snow pro-
duct

MODIS
IMS
product

Ice phenol-
ogy

Average pro-
duct accuracy
93 %

Lakes in
Québec
(Canada)

2000-
2001
2004-
2011

Model for ice phe-
nology; Climate
change projection

Kropáček
et al.
(2013)

MODIS
8-days
composite

MODIS Ice phenol-
ogy

RMSE: 9.6
days

59 large
lakes in
Tibetan
Plateau

2001-
2010

Drivers of ice phe-
nology

Latifovic
and Pouliot
(2007)

Temporal
reflectance
profiles

AVHRR Ice-on start MAE: 9.8 days 42 Cana-
dian lakes

1985-
2004

Trends in ice phe-
nology; Filling in situ
data gaps

Ice-on end MAE: 7.4 days
Ice-out
start

MAE: 11.9
days

Ice-out end MAE: 4.2 days
Shuter
et al.
(2013)

Data from
Latifovic
and Pouliot
(2007)

AVHRR Ice phenol-
ogy

See Latifovic
and Pouliot
(2007)

42 Cana-
dian lakes

2055 Model linking ice
phenology and
climate; Climate
change projection

Continued on next page

3.2.7 Synthesis

The great variety of case studies emphasises that valid remote sensing approaches are available to assist lake
monitoring and ecological research. Furthermore, recent remote sensing technology and data archives pose
an invaluable asset for retrieving historical information on indicators of lake ecology in non-investigated lakes.
Especially in regions where information is scarce and which lack monitoring in situ networks integrating remote
sensing would add value significantly.
Remote sensing, however, still needs to be integrated in monitoring frameworks such as the Water Framework
Directive (Reyjol et al., 2014) or Clean Water Act (Schaeffer et al., 2013). Keith et al. (2012) performed an
attempt to support the Clean Water Act with airborne remote sensing since in situ monitoring captured only
39 % of US inland waters during the 2004 reporting cycle. Looking beyond established monitoring networks
large data gaps exist fora great variety of lakes. Fig. 3.4 highlights that, on a global level, the share of studies
using remote sensing is similarly low.
To figure out reasons impeding a broader use of remote sensing in water quality management, Schaeffer et al.
(2013) conducted a survey among staff of the US Environmental Protection Agency and revealed costs, data
continuity, product accuracy and programmatic support as the four main aspects mentioned.
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Nowadays, imagery of many archived, operating and future satellite missions are available free of charge (see
Table 3.3). The US missions, the European Copernicus programme with its Sentinel missions and national con-
tributing missions have a free and open data policy (Oppelt et al., 2015). The high temporal resolution of freely
available ocean colour sensors alleviates interferences with clouds; their medium to coarse spatial resolution,
however, impedes the analysis of small lakes (< 1 km2) (Matthews et al., 2010). The Landsat sensors as well
as Sentinel-2 data offer data with improved spectral and spatial characteristics that serve as valuable basis for
a wide range of applications. If required, commercial missions such as WorldView-2 or Quickbird provide data
with very high spatial resolution (<1 m) on a regular basis (Table 3.3).
As expected, users prefer ready products and algorithms which are integrated into software or toolboxes going
along with technical assistance (Gómez et al., 2011; Odermatt et al., 2012). Nowadays, several open-source
tools are available; the European Space Agency (ESA) as well as the National Aeronautics and Space Adminis-
tration (NASA) developed toolboxes including algorithms especially designed for their missions (ESA, 2014a,b;
NASA, 2015). These tools provide easily calculable estimates of lake variables. Additionally, ESA and NASA
provide thematic products which may be downloaded via their websites. Current and near future earth obser-
vation missions also consider data continuity for the next decades (Berger et al., 2012; Oppelt et al., 2015). For
advanced users bio-optical models are also available free of charge (e.g. Gege, 2014b; Giardino et al., 2012).
They enable the assessment of water constituent concentrations, bathymetry and bottom substrate composi-
tion (cf. Section 3.2.1). Training and a fundamental understanding of remote sensing principles, however, are
indispensable to use the models adequately.
Along with the availability and continuity of multi-sensor algorithms and products, accuracies are critical to end
users. Water managers demand product accuracies specific for “their“ water body (Schaeffer et al., 2013);
remote sensing algorithms and global products, however, are validated at specific study areas and sensors.
Therefore adaptation of existing algorithms is often required. Required in situ measurements are costly, time-
consuming and must be taken contemporary to image acquisition. These factors may explain why the majority
of lakes intensely investigated by remote sensing is concentrated in the vicinity of research institutions/groups
focusing on inland water remote sensing (cf. Fig. 3.2). Collaboration of disciplines may further improve both
combination of in situ and remote sensing data and the global coverage of lakes investigated using valid remote
sensing approaches.
For remote sensing products accuracy measures indicate measurement uncertainties, i.e. (relative) root mean
squared error,mean absolute percentage error, coefficient of determination, overall accuracy (OA) or Cohen’s
kappa (k) (cf. tables in Section 3.2.1). An essential problem in validating remote sensing indicators, however, is
the upscaling of discrete in situ measurements to the spatial measurement of a sensor (Dörnhöfer and Oppelt,
2014; Giardino et al., 2010a; Yang et al., 2013). Moreover, uncertainty assessments require field observations
or water samples with given accuracies. In spite of that, uncertainty assessments of in situ measurements
are rare even in monitoring frameworks (Hering et al., 2010). Only few studies mentioned accuracies of in situ
measurements such as GPS positional accuracies (Dörnhöfer and Oppelt, 2014; Hunter et al., 2010a), tem-
perature measurements (Alcântara et al., 2010) or echo soundings (Legleiter et al., 2014). High accuracies
are demanded for remote sensing products whereas in situ measurements intrinsically are accepted as correct
(e.g. Schaeffer et al., 2013). A round robin test among different laboratories in Germany (CHL and phaeophytin)
showed that uncertainty assessments of current methods still are insufficient (AQS, 2008). In this vein, stan-
dardised uncertainty assessments are necessary for remote sensing indicators and in situ data, whereas both
sides would clearly benefit from collaboration.
A major uncertainty in remote sensing of lakes remains atmospheric correction. High reflectance from nearby
land or clouds affecting the reflectance of water bodies (adjacency effect) and difficult parameterisation of
aerosols complicate atmospheric correction (Matthews et al., 2010; Mouw et al., 2015). First approaches de-
signed for inland waters were recently developed (Sterckx et al., 2015b; Vanhellemont and Ruddick, 2015); due
to the lack of operationally available algorithms, authors adopted correction methods developed for land or used
in situ measurements.
Furthermore, radiometric and spectral resolution of a sensor determine the detail at which values of remote
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sensing indicators can be differentiated. Sensors with high radiometric and spectral resolution, such as airborne
hyperspectral or ocean colour sensors, detected even small variations at low concentration ranges (Giardino
et al., 2014b, 2015). Multispectral sensors with lower radiometric resolution enabled assessments of high con-
centrations of CDOM (Kutser, 2012) and SPM (Lobo et al., 2015). in situ measurements can resolve response
variables at finer detail than remote sensing. Moreover, water constituent concentrations retrieved from in situ
samples show higher variability than remote sensing measurements (e.g. Matthews et al., 2010); phytoplank-
ton communities and macrophytes can be differentiated at species level whereas most remote sensing studies
focused on growth habitats. Nonetheless, remote sensing indicators provide information at higher temporal
frequency and a larger spatial extent than in situ based monitorings. Spatial assessments can better char-
acterise average properties of an entire lake than point-based in situ measurements. According to Matthews
et al. (2010) the large sample size in remote sensing images results in smaller standard errors when calculating
average water constituent concentrations. Giardino et al. (2010a) reported that in situ sampling may not be
able to capture reoccurring events of high SPM concentrations due to a ferry route, where dredging hinders
SAV colonisation and induces resuspension, and SPM entering a lake at stream inlets. Sima et al. (2013) mod-
elled lake evaporation in Iran using point-based in situ and spatially explicit remote sensing temperatures.They
revealed a difference in evaporation of 147 mm/year which is essential for water management in a semi-arid
region.
The majority of authors used remote sensing data to analyse time series. Remote sensing data may pro-
vide timely information on rapidly occurring changes in a lake during, for instance, algalblooms, heavy rains or
droughts. Thus, analysing time series of lakeremote sensing indicators and environmental factors improved un-
derstanding of processes in lakes. To further investigate interactions between drivers and response variables,
spatio-temporally explicit remote sensing data also represent a valuable source for lake ecological models (e.g.
Jørgensen, 2010; Kauer et al., 2015).
At present, efforts increase in both lake remote sensing and water management communities (Fig. 3.1), and
combining existing know-how will certainly improve knowledge of lake ecology. Moreover, large scale, multi-
temporal monitoring supports the analysis of spatio-temporal patterns of ecological indicators. It is therefore not
a question of replacing discrete in situ measurements and observations; it is a question of combining different
specialist fields to complete the puzzle of inland water ecology and the role of lakes in climate change and water
quality aspects.

3.3 Conclusions

This review presents how remote sensing can assist lake research and monitoring including the most important
remote sensing indicators of lake properties, i.e. water transparency, biota, lake hydrology, temperature and ice
phenology. Published literature shows that various products, algorithms and ready-to-use tools are available to
support lake research and management.
Operational algorithms and products already exist for indicators such as CHL and SPM. Moreover, data and pro-
duct archives promote a deeper understanding of trends in lake properties and their external drivers. Time se-
ries of phytoplankton and cyanobacteria, for instance, revealed new insights into algae phenology and enabled
identification of critical lake areas. Furthermore, remote sensing based assessments of CHL were evaluated
for integration into monitoring frameworks such as Clean Water Act and Water Framework Directive. Remote
sensing of CDOM, SPM, Kd and Secchi disc depth focused on analysing time series to investigate correlations
with environmental drivers or other lake response variables. Studies on submerged aquatic vegetation consid-
ered detection of invasive species and supported in situ monitoring by identifying growth habitats.
Unless being unable to retrieve temperature depth profiles, thermal data provide a valuable indicator of epil-
imnic temperature and its spatial patterns. Present studies also show that remote sensing supports lake-ice
monitoring and is useful to overcome existing limitations of local observations. Then again, remotely sensed
bathymetry is an indicator which has not yet been used to its possible extent.
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Figure 3.4: Number of published literature (Web of Knowledge data base 2000-2015) which contains the search terms “inland
water quality/ecology“ or “lake water quality/ecology“ (light blue) and “remote sensing“ (dark blue) grouped by
regions (grey levels). Study area location was filtered by searching for state names. Thus, studies which lack
state information in the abstract were not considered (lakes and reservoir shape file source: Lehner and Döll
(2004)). (For interpretation of the references to colour in this legend, the reader is referred to the web version of
the article.)

A synergetic use of in situ measurements and earth observation data can fill data gaps and support water
resource management. We invite lake ecologists, water managers and authorities to benefit from integrating
remote sensing and its synoptic view of lake properties. Remote sensing is certainly unable to capture all
indicators used in lake ecology or to identify the same levels of detail as in situ measurements. Remote sens-
ing data, however, may well support sparsely distributed in situ measurements with spatially and temporally
more frequent data. Furthermore, lake ecological models may also benefit from spatio-temporally explicit in-
formation derived from remote sensing data. Synergetic use of sensors with different temporal, spatial and
spectral resolution such as Landsat 8, Sentinel-2 and Sentinel-3 may overcome limitations of single systems.
The complementary use of conventional measures and remote sensing data/products maximises strengths and
minimises existing weaknesses in lake monitoring. Moreover, currently available and upcoming sensors, open
access and free data policies, operational algorithms and open source tools will certainly further promote re-
mote sensing applications in lake research.
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Changes made to the published version:
To harmonise the style of the entire thesis, chlorophyll-a is abbreviated as CHL instead of Chl-a and Senitnel-2A
as S2A instead of S2A.

Abstract
Satellite remote sensing may assist in meeting the needs of lake monitoring. In this study, we aim to eval-
uate the potential of Sentinel-2 to assess and monitor water constituents and bottom characteristics of lakes
at spatio-temporal synoptic scales. In a field campaign at Lake Starnberg, Germany, we collected validation
data concurrently to a Sentinel-2A (S2A) overpass. We compared the results of three different atmospheric
corrections, i.e., Sen2Cor, ACOLITE and MIP, with in situ reflectance measurements, whereof MIP performed
best (r = 0.987, RMSE = 0.002 sr-1). Using the bio-optical modelling tool WASI-2D, we retrieved absorption
by coloured dissolved organic matter (aCDOM(440)), backscattering and concentration of suspended particulate
matter (SPM) in optically deep water; water depths, bottom substrates and aCDOM(440) were modelled in op-
tically shallow water. In deep water, SPM and aCDOM(440) showed reasonable spatial patterns. Comparisons
with in situ data (mean: 0.43 m-1) showed an underestimation of S2A derived aCDOM(440) (mean: 0.14 m-1);
S2A backscattering of SPM was slightly higher than backscattering from in situ data (mean: 0.027 m-1 vs. 0.019
m-1). Chlorophyll-a concentrations (∼1 mg·m-3) of the lake were too low for a retrieval. In shallow water, re-
trieved water depths exhibited a high correlation with echo sounding data (r = 0.95, residual standard deviation
= 0.12 m) up to 2.5 m (Secchi disk depth: 4.2 m), though water depths were slightly underestimated (RMSE =
0.56 m). In deeper water, Sentinel-2A bands were incapable of allowing a WASI-2D based separation of macro-
phytes and sediment which led to erroneous water depths. Overall, the results encourage further research on
lakes with varying optical properties and trophic states with Sentinel-2A.

Keywords
WASI, atmospheric correction, bathymetry, submerged aquatic vegetation, sun glint, water quality, validation,
inland waters, inverse modelling

4.1 Introduction

The monitoring of lake water quality is gaining increasing importance due to an increase in stressors such as cli-
mate change, eutrophication, contamination of organic and inorganic substances, and anthropogenic influences
which threaten ecological functions (Adrian et al., 2009; Stendera et al., 2012). Humans both benefit from and
depend on a variety of ecosystem services provided by lakes, e.g., drinking water, irrigation, energy production,
fisheries, and recreation (Millennium Ecosystem Assessment, 2005). Therefore, healthy lake ecosystems are
of great importance. International and national legislations such as the European Water Framework Directive
(European Commission, 2000) or the US Clean Water Act (United States Congress House, 2002) include reg-
ular monitoring schemes that observe the ecological states of lakes and detect changes which may influence
lake ecology and water quality (Hering et al., 2010). Most monitoring schemes are based on selective sampling
during summer or installation of measurement buoys (Birk et al., 2012). Deploying these sampling strategies is
labour, time and cost intensive (Schaeffer et al., 2013); yet, it may not allow for the detection of changes which
occur on varying temporal and spatial scales (Reyjol et al., 2014).
To overcome spatio-temporal limitations, remote sensing may assist in situ monitoring since it can extract in-
dicators on water transparency, biota, bathymetry, water surface temperature and ice phenology (Dörnhöfer
and Oppelt, 2016). Empirical and physical-based algorithms can be used to retrieve water constituents, wa-
ter depths and bottom substrates. Several publications provide reviews of existing approaches (Dekker et al.,
2011; Dörnhöfer and Oppelt, 2016; Gao, 2009; Matthews, 2011; Odermatt et al., 2012). Compared to empirical
algorithms, physically-based approaches are broadly applicable and transferable among lakes and sensors.
Suitable sensors must deploy bands in the visible and near-infrared (VNIR) wavelengths with high radiometric
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sensitivity such as ocean colour sensors (e.g., MODIS and MERIS). Owing to their spatial resolution (∼300 m),
studies conducted with these sensors focus mainly on large lakes such as Lake Balaton (Palmer et al., 2015c),
Lake Geneva (Kiefer et al., 2015), Lake Taihu (Jiang et al., 2015)(Luo et al., 2016)(Shi et al., 2015), or Great
Lakes (Binding et al., 2015), but rarely on small lakes (Matthews, 2014; Matthews et al., 2010). Studies on
smaller lakes refer to less sensitive Landsat data (Chao Rodríguez et al., 2014) or to high spatial resolutions
from commercial sensors such as WorldView (Yuzugullu and Aksoy, 2014) or Quickbird (Heblinski et al., 2011).
Moreover, airborne hyperspectral data often are used for mapping bottom substrates or water depths (e.g.,
Bolpagni et al., 2014; Giardino et al., 2015; Hunter et al., 2010a). Though designed primarily for land appli-
cations, the new generation of multispectral sensors such as Landsat 8 and Sentinel-2 offers unprecedented
opportunities for lake remote sensing (Dörnhöfer and Oppelt, 2016; Palmer et al., 2015b). Additional bands in
the VNIR wavelengths, higher radiometric sensitivity, signal-to-noise ratios and, in the case of Sentinel-2 – the
spatial resolution of up to 10 m, enables detailed lake analyses. Synergetic multi-sensor use may increase tem-
poral coverage and allow for cloud-free data (Dörnhöfer and Oppelt, 2016). Landsat 8 has the capabilities for
retrieving water constituents (Eder et al., 2016; Giardino et al., 2014a; Lobo et al., 2015; Slonecker et al., 2016),
water depths (Giardino et al., 2014a, 2016), Secchi disk depth (Lee et al., 2016) and bottom substrates (Gia-
rdino et al., 2016). Model based sensitivity and field data analyses have revealed a high potential of Sentinel-2
for water constituent retrieval (Kutser et al., 2016; Manzo et al., 2015) and bottom substrate mapping such as
coral reefs (Hedley et al., 2012). A study by Toming et al. (Toming et al., 2016a, this special issue) focused on
transferring empirical algorithms to S2A for retrieving water quality parameters in optically deep water.
This study was conducted at Lake Starnberg, a clear, deep lake located in the peri-alpine region; its current
trophic state is oligotrophic (Arle et al., 2013). The shallow waters along the shoreline are partially covered
by submerged macrophytes, sand or stony ground. Earlier studies at Lake Starnberg analysed multi-temporal
RapidEye data with a depth-invariant index to track the development of submerged native and invasive macro-
phytes (Roessler et al., 2013; Rößler et al., 2012). Rößler et al. 2013 applied the bio-optical modelling tool
BOMBER (Giardino et al., 2012) in order to retrieve water constituents and submerged macrophytes from air-
borne hyperspectral imagery. Gege 2014a also used a physical based bio-optical modelling tool, i.e., WASI-2D
(Gege, 2014b), and focused on deriving water depths from airborne hyperspectral imagery.
In this study, we assess the suitability of S2A for retrieving water constituents, water depths and bottom sub-
strates using the physically-based model, WASI-2D. The study is based on the results by Dörnhöfer et al.
2016a who demonstrated the potential of S2A data for retrieving SPM, aCDOM(440) and water depths. We aim
(1) to compare the performance of three different atmospheric corrections over water surfaces (2) to evaluate
the capability of S2A to retrieve absorption by coloured dissolved organic matter (aCDOM), backscattering and
concentration of suspended particulate matter (SPM) in optically deep water; (3) to derive water depths and bot-
tom substrates in optically shallow waters. For validation, we use in situ data acquired during a measurement
campaign concurrently with a S2A image acquisition from August 2015.

4.2 Materials and Methods

4.2.1 Study area and Field Data

Located in the pre-alpine region, Lake Starnberg (11◦19’14”E, 47◦49’34”N) formed during the last ice age. With
an area of 56.4 km2, it is the fifth largest lake in Germany reaching a maximum depth of 127.8 m (average depth:
53.2 m) (Wöbbecke et al., 2003). In comparison to the lake’s total volume (2.999 Mio. m3), the catchment
area, made up primarily of forest and cultivated grassland, is relatively small (315 km2). Inflows are slow,
and consist of groundwater flows, small creeks and streams. Outflows include the river Würm, located at the
northern end of the lake which also has a slow discharge. Low inflow (3.6 m3·s-1 Melzer et al., 2003) and
low discharge (4.5 m3·s-1 Melzer et al., 2003) result in a long residence time of water (21 years) (Wöbbecke
et al., 2003). After showing rising levels of eutrophication, a drainage system was introduced in the 1970s.
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Since then, the water quality steadily increased and the lake turned into a popular recreation area. Between
2004 and 2014, the average total phosphorous concentration was around 6 ± 2 mg·m-3, nitrogen concentration
around 0.3 ±0.1 g·m-3, average chlorophyll-a (CHL) concentration in 2 m water depth was 2.3 ± 1.0 mg·m-3;
Secchi disk depth was on average 9 ± 2 m during winter and 6 ± 2 m during summer season (Bayern, 2013).
Sandy sediments are the predominating substrate, gravel forms the substrate in the very shallow water (<0.5 m
water depth). A variety of submerged macrophytes colonise shallow waters; Chara sp. are the predominating
macrophyte species with interspersed patches of Potamogeton sp. In the northern and western parts of the lake
(Elodea nuttallii, Elodea canadensis) and south-western parts (Najas marina), invasive macrophyte species are
present. Recently, the monomictic lake has been classified as oligotrophic-equal to its natural state (Arle et al.,
2013).
To evaluate S2A ability to retrieve information on lake ecology indicators, such as SPM, aCDOM(440) or bottom
substrates (Dörnhöfer and Oppelt, 2016), we conducted a measurement campaign on 12-13 August 2015. We
compiled field data which allow us to assess performance of atmospheric correction procedures, to adapt and
regionalise a bio-optical model, and to validate resulting S2A derived products. We focused on the southern
lake area with moderately sloping regions (Fig. 4.1). At the end of the text, a list of all used abbreviations is
provided. Fig. 4.2 provides a schematic illustration of the methodological workflow.
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Figure 4.1: S2A true-colour composite (R-G-B: 665 nm-560 nm-490 nm, 13 August 2015, 10 m) of Lake Starnberg, Germany
(a) and location of measurement sites (b).

Close to the satellite overpass, we measured aerosol optical thickness (AOT) with Microtops sun pho-
tometers (AOT = 0.151 at 550 nm, 12:17 UTC + 2). AOT data from a nearby (23 km) Aeronet station “Ho-
henpeißenberg“ (989 m AMSL, AOT = 0.168 at 550 nm, 12:22 UTC + 2) were extrapolated to lake elevation
(AOT = 0.179 at 550 nm) (Riedel et al., 2016). Using an Ibsen FREEDOM VIS FSV-305 spectroradiometer
(390-850 nm, 0.5 nm sampling interval) and a Labsphere reflectance standard with ∼10 % diffuse reflectance
(Labsphere, ated), we measured radiance reflectance spectra nadir-looking approx. 0.5 m above the water sur-
face RBOArs−FREEDOM (0+, λ) at all seven measurement sites concurrently (-1 to +2 h) to the S2A overpass on 13
August 2015 (12:16 UTC + 2). The location and number of measurement sites was a trade-off between covering
different water depths, bottom substrates, deep and shallow water within a narrow time window. Measurement
sites A to E were located in optically shallow water where the ground was visible; F and G were located in op-
tically deep water with a measured mean Secchi disk depth of 4.2 ± 0.3 m. Sediment samples were collected
with a Ekman-Birge type bottom sampler at each measurement site andRBOArs−FREEDOM (0+, λ) recorded ex situ
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Figure 4.2: Simplified methodological workflow of the study.

using the FREEDOM spectroradiometer. We measured downwelling spectral irradiance Ed(z, λ) using a TriOS
RAMSES ACC-VIS sensor, and upwelling spectral radiance Lu(z, λ) with a TriOS RAMSES ARC-VIS sensor
(320-950 nm, 3.3 nm sampling interval). These radiometers and a Tritech PA500 altimeter were mounted on
a custom built frame ensuring that the entrance optics of each instrument were at the same depth (z). This
setup allowed for simultaneous measurements of all instruments at varying sensor depths (z) below (z < 0,
measurement site A-E, G) and above water (z = 0+ F and G). The depth of the sensor level was determined
using a step counter for measuring the cable length (uncertainty for levelling the sensor: Approx. ± 2 cm at
calm conditions ); the distance to the ground was measured in a range from 0 to 10 m at a resolution of 1 mm
with the Tritech PA500 altimeter. Radiance reflectance was calculated simultaneously for each recorded pair of
measurements as Rrs−RAMSES(z, λ) = Lu(z, λ/Ed(z, λ). To account for the spectral differences of the Luand
Ed sensors, we resampled the spectra to a uniform 1 nm grid using cubic interpolation.
A second data set was collected on the previous day at the same seven locations. Geolocation uncertainties
(5-20 m, at D: 50m) due to boat drift and GPS positional inaccuracies were considered in the validation process
as described in Section 4.2.2. During this campaign, we measured Ed(z, λ) and Lu(z, λ) in several depths
with a second set of identical RAMSES radiometers (TriOS, 2015). Furthermore, we collected water samples
from the top (0.3 m) water layer for further laboratory analysis. The temporal offset between water sampling
and S2A overpass is noticeable. Lakes are dynamic systems requiring sampling temporally close to image
acquisition. Water body conditions can change between sampling dates, causing discrepancies and incorrect
validation. The weather conditions were stable and did not indicate changing water constituent concentrations
between both days (Deutscher Wetterdienst, 2016a). RAMSES data of both campaign dates showed similar
reflectances and indicated stable water conditions. Therefore, the water samples taken the day before seem to
be comparable. We determined SPM concentration gravimetrically according to Strömbeck and Pierson 2001;
a 1 L water sample was filtered through pre-weighed cellulose-acetate filters (pore size: 0.45 µm). The filters
were then dried at 105 ◦C and weighed again. To retrieve concentration of CHL, we filtered a 1 L water sample
through a GF/F filter (pore size: 0.7 µm). Pigments were removed from filter using 99.9 % acetone. Pigment
concentration was measured using high performance liquid chromatography.
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For assessing the accuracy of retrieved water depths, we used echo sounding data (BioSonics MX aquatic
habitat echosounder) acquired in June 2012 in the southern part of the lake (near Seeshaupt). Water level
measurements on 13 August (584.3 m AMSL, Bavarian Environmental Agency, 2016) were close to mean
water level measured during June 2012 (584.4 m AMSL, Bavarian Environmental Agency, 2016). The data
therefore seem to be comparable. We distinguished optically deep and shallow water with the 8 m water depth
line in reference to the official bathymetry map (Fig. 4.1 Bavarian Environmental Agency, 2000).

4.2.2 Preprocessing of S2A Data

S2A acquired an image over Lake Starnberg on 13 August at 12:16 (UTC+2). We conducted atmospheric cor-
rection procedures on reprocessed L1C data (processing baseline: 02.01) using three different algorithms, i.e.,
Sen2Cor (Version 2.2.1, Müller-Wilm, 2016), ACOLITE (Version 20160520.1, Vanhellemont and Ruddick, 2015,
2016) and MIP (Modular Inversion and Processing System, Heege, 2000; Heege and Fischer, 2004; Heege
et al., 2014).
Prior to atmospheric correction, Sen2Cor classifies the scene roughly into cloud and land cover classes. The at-
mospheric correction is based on 24 look-up table sets modelled with libRadtran (Müller-Wilm, 2016). Sen2Cor
applied a dense, dark vegetation approach to determine AOT using bands B12 (2190 nm), B04 (665 nm) and
B03 (560 nm). For assessing water vapour column height, the bands B8A (865 nm) and B09 (945 nm) were
used (Müller-Wilm, 2016). We configured Sen2Cor for processing with default settings including correction for
adjacency effects with an adjacency range of 1000 m. We used the rural aerosol model, a SRTM-digital ele-
vation model and selected ozone concentration calculation based on the value provided in the metadata. We
calculated Sen2Cor products on the 10 m pixel size; bands with a spatially lower resolution were only resam-
pled rather than interpolated. Since Sen2Cor has been developed for land surfaces it lacks a correction of
water surface effects and provides the corrected data in units of bottom of atmosphere irradiance reflectance
RBOA(0+, λ). For analysing the water body, we used bottom of atmosphere radiance reflectance RBOArs (0+, λ)

as the sum of remote sensing reflectance and water surface reflectance; we therefore converted RBOA(0+, λ)

to RBOArs (0+, λ) according to Eq. 4.1 (Mobley et al., 2015):

RBOArs (0+, λ)[sr−1] =
RBOA(0+, λ)

π
(4.1)

ACOLITE is an atmospheric correction tool specifically developed for water bodies, currently available for
Landsat 8 and Sentinel-2 (Vanhellemont and Ruddick, 2014, 2015, 2016). ACOLITE amended atmospheric
Rayleigh reflectance using a Second Simulation of the Satellite Signal in the Solar Spectrum (6S)-V look-up
table which considers sensor and sun geometry as well as sun and sky glint (modelled for a wind speed of
1 m·s-1) (Vanhellemont and Ruddick, 2014). Atmospheric pressure correction was conducted for the site eleva-
tion of 595 m AMSL. Pixels having a Rayleigh corrected irradiance reflectance above 0.03 (0.0215 by default)
in band B09 (1610 nm) were masked as non-water. Using the ratio between shortwave infrared (SWIR) bands
B09 (1610 nm) and B10 (2190 nm) ACOLITE estimated the aerosol type over water pixels. The reflectance in
SWIR bands above water bodies was assumed to be zero, observed reflectance was assumed to result solely
from aerosol. Aerosol reflectance was then extrapolated exponentially to VNIR wavelengths (Vanhellemont and
Ruddick, 2015). We chose the option “estimating aerosol type on a per pixel basis“, but also followed the sug-
gestion by Vanhellemont and Ruddick 2016 to conduct the estimation on spatially binned (320 · 320 m2) SWIR
bands to reduce noise effects from low signal-to-noise ratio and low reflectances in these bands. The resulting
RBOArs (0+, λ) dataset was resampled to 10 m pixel size, whereas bands with 20 m and 60 m spatial resolution
were replicated.
MIP is a physics-based, sensor-independent, atmospheric correction software developed for coastal and inland
waters (Heege, 2000; Heege and Fischer, 2004; Heege et al., 2014). Atmospheric scattering and absorption is
calculated based on radiative transfer modelling considering bidirectional properties. Vertical characterisation
of atmospheric layers follows MODTRAN, and considers different seasons, aerosol types and AOT. Further-
more, MIP analytically calculates, and subtracts the contribution of adjacent pixels on the reflectance (Heege
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et al., 2014). Currently, MIP does not correct sun glint for sensors such as S2A. Land and cloud masking is
conducted automatically during processing. The resulting RBOArs (0+, λ) dataset was interpolated to 10 m pixel
size using a regression based filtering approach. Additionally, MIP calculated a quality indicator for each pixel
which documents fit performance and sun glint (Heege et al., 2014). EOMAP GmbH & Co.KG holds MIP, dis-
tributes atmospherically corrected products and conducted data processing.
For evaluating the performance of the three different atmospheric correction algorithms, we resampled the
FREEDOM RBOArs−FREEDOM (0+, λ) measurements to the S2A spectral response curves (ESA, 2015) according
to Eq. 4.2:

RBOArs−FREEDOM (0+, λX) =

∑λmax
i=λmin

r(λi) ·RBOArs−FREEDOM (0+, λi)∑λmax
i=λmin

r(λi)
(4.2)

where RBOArs−FREEDOM (0+, λX) is the band equivalent reflectance for band X, λmin and λmax represent
start and end wavelengths of the filter function for band X, r(λmin) is the relative response for band X at wave-
length λi, RBOArs−FREEDOM (0+, λi) is the reflectance measured by the FREEDOM spectroradiometer at band i
centred at wavelength λi.
In cases with more than 1 resp. 2 measurements at a measurement site, we calculated the mean and standard
deviation of in situ measured reflectance. In the 10x10 m2 pixel size S2A data, we located the pixel corre-
sponding to the GPS location of a measurement site. To address GPS positional inaccuracies, potential boat
drifting and water masses, we calculated the mean spectrum and standard deviation of the S2A RBOArs−S2A(0+, λ)

spectra based on a 7x7 pixel environment for deep water measurement sites (F and G). To reduce the effect of
bottom heterogeneity we chose a 3x3 pixel environment in shallow water (site A to E). We then compared re-
sampled mean in situ RBOArs−FREEDOM (0+, λ) and mean S2A RBOArs−S2A(0+, λ) spectra, and calculated Pearson’s
correlation coefficient (r, Equation 4.3) to evaluate the correspondence in shape.

r =

∑n
X=1(RBOArs−FREEDOM (0+, λX)−RBOArs−FREEDOM (0+)) · (RBOArs−S2A(0+, λX)−RBOArs−S2A(0+))√∑n

X=1(RBOArs−FREEDOM (0+, λX)−RBOArs−FREEDOM (0+))2 ·
√∑7

i=1(RBOArs−S2A(0+, λX)−RBOArs−S2A(0+))2

(4.3)
with RBOArs−FREEDOM (0+, λX and RBOArs−S2A(0+, λX) being the reflectance at band λX (band B01- B07) of re-

sampled in situ respectively S2A data; RBOArs−FREEDOM (0+) respectively RBOArs−S2A(0+) are the mean reflectance
values calculated from band B01-B07 (n = 7).
The second calculated performance indicator was Root Mean Square Error (RMSE, Equation 4.4) which ex-
pressed the absolute difference between both reflectance spectra (Sterckx et al., 2015b).

RMSE =

√∑n
X=1(RBOArs−FREEDOM (0+, λX)−RBOArs−S2A(0+, λX))2

n
(4.4)

We further calculated the Chi-square (X2 , Equation 4.5) which incorporates both shape and intensity of
spectra, and the mean absolute percentage error (MAPE, Equation 4.6) which usually is easier to comprehend
due to the percentage statement.

X2 =

n∑
X=1

(RBOArs−S2A(0+, λX)−RBOArs−FREEDOM (0+, λX))2

RBOArs−FREEDOM (0+, λX)
(4.5)

MAPE =
1

n
·

n∑
X=1

|
RBOArs−FREEDOM (0+, λX)−RBOArs−S2A(0+, λX)

RBOArs−FREEDOM (0+, λX)
| · 100 (4.6)

MIP showed best performance (cf. Section 4.3.1); we therefore used the MIP corrected dataset for further
processing and analysis. The MIP RBOArs (0+, λ) product with 10 m pixel size was resampled to 20 m and 60
m using nearest neighbour approach. For each data set (10 m, 20 m, and 60 m), we calculated the noise-
equivalent remote sensing reflectance difference, NE∆RrsE, as the standard deviation of MIP RBOArs (0+, λ)

spectra within a relatively homogenous area in optically deep water (Brando and Dekker, 2003). It is an indicator
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for the suitability of the data for analysing water constituents concerning random noise. We chose an area of
320 x 320 m2 which corresponds to 32 x 32 pixels in the 10 m product, 9 x 9 in the 20 m, and 3 x 3 in the 60 m
product. Apart from the signal-to-noise ratio, the applied atmospheric correction and environmental conditions
during image acquisition, such as water surface or downwelling irradiance, influence the NE∆RrsE. For
analysing water constituents from remote sensing data, NE∆RrsE < 0.00025 sr-1 is optimal (Giardino et al.,
2015, see black line in Fig. 4.3). Fig. 4.3 shows the resulting band and pixel size dependence of NE∆RrsE.
Mean values of bands B01-B07 were 0.00014 sr-1, 0.00014 sr-1 and 0.00012 sr-1 for 10 m, 20 m and 60 m pixel
size, respectively. Referring to Fig. 4.3 and mean values, spatial binning from 10 m to 20 m barely improved
NE∆RrsE; spatial binning to 60 m reduced NE∆RrsE in bands B01-B04, but slightly increased it in bands
B05-B07. Except for band B01 (10 m and 20 m), all bands achieved values <0.00025 sr-1; concerning noise,
we therefore considered the MIP corrected scene appropriate for further analyses.

Figure 4.3: NE∆RrsE for each band calculated for the MIP atmospherically corrected dataset.

4.2.3 Inverse Modelling with WASI-2D

WASI-2D is a freely available software tool (http://www.ioccg.org/data/software.html) for analysing atmospheri-
cally corrected multispectral and hyperspectral imagery in both optically deep and shallow water (Gege, 2014b).
In optically deep water, absorption and scattering by optically active water constituents such as CHL, SPM,
CDOM and water itself, shape water reflectance. In optically shallow water, bottom reflectance and water depth
additionally influence reflectance (Dörnhöfer and Oppelt, 2016; Odermatt et al., 2012). Satellite sensors, such
as S2A, measure top-of-atmosphere spectral radiances; the atmospheric correction algorithm then converts
them to bottom-of-atmosphere reflectances. Such algorithms often lack a correction of specular reflectance of
sun and sky at the surface, which can be quite significant for water. WASI-2D therefore includes a sky radiance
model for correcting sun and sky glint.
To derive information on water constituents, bottom substrate and water depth from RBOArs (0+, λ) spectra,
WASI-2D includes several analytic models to analyse measured spectra using an optimisation approach. The
optimisation procedure inversely models the RBOArs (0+, λ) spectrum of each pixel adjusting a number of model
parameters, called fit parameters, until the calculated spectrum matches RBOArs (0+, λ) as close as possible. Fit
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parameters vary within a pre-defined range, depending on the study area’s characteristics. Curve fitting termi-
nates when measured and inversely modelled spectra correspond best (residuum < 1.0 x 10-4, least squares).
If the residuum criterion is not met, the fit routine stops after a pre-defined number of iterations. WASI-2D writes
the final values of fit parameters for each pixel to file, resulting in a multi-band raster image where each band
corresponds to a fit parameter. For modelling RBOArs (0+, λ) in optically deep and shallow water, we applied
the analytic equation of Albert and Mobley 2003. In the WASI implementation of this model, SPM and water
comprise the backscattering properties; water, different classes of phytoplankton, CDOM and detritus can be
selected as the absorbing components. In optically shallow water, water depth is additionally included in calcu-
lating reflectance of water; WASI-2D further considers contributions of up to six linearly mixed bottom types. To
address surface reflectance, we applied the implemented model of sky radiance which is based on the down-
welling irradiance model by Gregg and Carder 1990. In our data processing, WASI-2D accounted for reflected
solar irradiance (sun glint) during inverse modelling. We omitted considerations to diffuse reflectance (sky glint)
as it was included in MIP. A detailed description of the models can be found in Gege 2014b.
Inverse modelling was conducted using the MIP atmospherically corrected RBOArs (0+, λ) dataset and bands
B01 (443 nm) to B07 (783 nm). We therefore resampled the WASI-2D spectral database to the S2A spectral
response curves (ESA, 2015) adopting Equation 4.2. According to a previous study at Lake Starnberg dinoflag-
ellates were chosen as phytoplankton type (Gege, 2014a). Based on results of the water sample analysis,
the CHL concentration was fixed to 1 mg·m-3. The CDOM absorption coefficient was modelled according to
Equation 4.7,

aCDOM (λ) = aCDOM (440) · e−SCDOM ·(λ−440) (4.7)

where aCDOM (440)(m−1) was treated as fit parameter while the slope factor SCDOM was set as constant
(0.0155 nm-1, mean of in situ S). Backscattering of suspended matter was calculated according to Equation
4.8,

bb,SPM (550) = SPM · b∗b,SPM (550) (4.8)

with SPM (g·m-3) treated as fit parameter in optically deep water, and set constant in shallow water (1.8 g·m-3,
mean SPM of deep water result). When considering bottom reflectance in modelling shallow water, WASI-2D
requires irradiance reflectance spectra representing the bottom types at the test site. WASI-2D allows for up
to six different bottom types. Giardino et al. 2016 advised using not more than two bottom types for multi-
spectral imagery. We used a sandy sediment spectrum acquired ex situ with the FREEDOM radiometer on 13
August 2015 (Section 4.2.1), and a macrophyte spectrum of the predominating species (Chara sp., WASI-2D
database) growing at the southern part of Lake Starnberg (Fig. 4.4). The sum of fractional area (fA[sediment]
and fA[macrophyte]) was allowed to range between 1.0 and 1.2. Since MIP lacked a correction of sun glint, the
fraction of sun glint per pixel area (gdd) was chosen as a fit parameter in both optically shallow and deep water.

4.2.4 Retrieval of Inherent Optical Properties from in situ Measurements

The downwelling irradiance in water, Ed(z < 0,λ), can be used for determining the concentration of phytoplankton
(Gege, 2012) and CDOM (Linnemann et al., 2013) if sensor depth z is large enough to capture the impact of
absorption by water constituents on the spectral signature of Ed(z < 0,λ). For lakes with CHL and CDOM
concentrations similar to Lake Starnberg, this critical depth is in the order of 1.0-1.5 m (Gege, 2012; Linnemann
et al., 2013). Following this principle, we estimated the CDOM parameters aCDOM(440) and S from RAMSES
Ed(z < 0,λ) measurements in water.
First, we fitted the above water RAMSES measurements of downwelling irradiance Ed(z=0+,λ) in WASI-2D
using the Gregg and Carder model 1990 to derive the atmospheric parameters required as input for modelling
the under-water Ed(z < 0,λ) spectra. The turbidity coefficient and water vapour concentration were treated as
fit parameters, the Angström exponent of aerosol scattering (1.32) and the scale height of ozone (0.45 cm)



52 4.3. Results and Discussion

450 500 550 600 650 700

Wavelength [nm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R 

[-]
sediment
macrophytes

Figure 4.4: S2A resampled irradiance reflectance spectra of the two considered bottom types. The sediment spectrum is the
average of reflectance measurements on 13 August 2015, the macrophyte spectrum originates from the WASI-2D
database.

were kept constant. Second, we retrieved aCDOM(440) and S from Ed(z < 0,λ) measurements with z < -1 m by
inverse modelling. The atmospheric parameters were kept constant at the results of step 1 for the actual site;
phytoplankton was kept constant at 1 mg·m-3. The fractions of the direct and diffuse components of Ed(λ) and
sensor depth were fitted along with aCDOM(440) and S.
Above water measurements of RBOArs (0+, λ) from the RAMSES and FREEDOM sensors were used to estimate
the backscattering coefficient of SPM, bb,SPM (550). Using WASI, we inversely modelled RBOArs−FREEDOM (0+, λ)

and RBOArs−RAMSES(0+, λ) spectra which were measured at the optically deep sites F and G.

4.3 Results and Discussion

4.3.1 Comparison of Atmospheric Correction Approaches

We compared three approaches for atmospheric correction from which two were specifically developed for
water surfaces. Fig. 4.5a-g show resampled in situ spectra and atmospherically corrected spectra of the
corresponding pixel environment. The common feature of the seven measurement sites is that all approaches
retrieved different RBOArs (0+, λ) spectra. Table 4.1 summarises performance indicators for evaluating the results
of the three different atmospheric correction algorithms. MIP outperformed Sen2Cor and ACOLITE at most
measurement sites (Table 4.1).
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Table 4.1: Performance indicators of resampled in situ and atmospherically corrected spectra at measurement sites in opti-
cally shallow (A-E) and deep (F-G) water. Green colour highlights the atmospheric correction algorithm with the
best performance.

A B C D E F G Mean
Shallow water Deep water

Measurement time (UTC) 11:54 11:44 11:20 11:07 12:23 10:50 09:52
MIP (r) 0.990 0.993 0.993 0.985 0.976 0.986 0.984 0.987
RMSE (sr-1) 0.002 0.002 0.001 0.004 0.003 0.002 0.003 0.002
MAPE (%) 46.8 17.7 45.0 98.9 83.6 60.8 72.4 60.7
X2(sr-1) 0.005 0.001 0.004 0.021 0.016 0.007 0.010 0.009
Sen2Cor (r) 0.953 0.953 0.940 0.846 0.757 0.795 0.838 0.869
RMSE (sr-1) 0.002 0.005 0.003 0.002 0.002 0.003 0.002 0.003
MAPE (%) 120.1 96.5 61.6 83.9 95.4 78.6 83.8 88.6
X2(sr-1) 0.021 0.023 0.010 0.010 0.015 0.012 0.012 0.015
ACOLITE (r) 0.979 0.980 0.978 0.960 0.853 0.953 0.953 0.951
RMSE (sr-1) 0.003 0.006 0.003 0.001 0.002 0.002 0.002 0.003
MAPE (%) 131.4 110.2 67.4 76.4 97.4 73.8 77.3 90.6
X2(sr-1) 0.026 0.032 0.011 0.010 0.017 0.011 0.011 0.017

At all measurement sites, Sen2Cor obtained RBOArs (0+, λ) values at band B01 (443 nm) and B02 (490 nm)
significantly lower than the in situ data. This observation presumably resulted from an erroneous aerosol pa-
rameterisation. Sen2Cor obtained an AOT value of 0.185 ± 0.002 (550 nm) for southern Lake Starnberg pixels
which was higher compared to measurements with sun photometers (0.151) and at the Aeronet Station (0.179).
Thus, Sen2Cor overestimated aerosol reflectance resulting in overcorrected RBOArs (0+, λ) spectra. Both, ACO-
LITE and Sen2Cor calculated RBOArs (0+, λ) values in bands B06 (740 nm) and B07 (783 nm) higher than in situ
measurements. ACOLITE lacks a correction of adjacency effects, and reflectance from neighbouring land pixels
therefore contributes to the signal and accounted for higher reflectance values above 705 nm. Extrapolating
aerosol reflectance from the SWIR bands to the shorter wavelengths thus may result in overcorrected spectra.
Similar to Sen2Cor, ACOLITE tended to lower reflectance values compared to in situ measurements, though
inconsistently. Sen2Cor includes a correction for adjacency effects based on a range-independent reflectance
in a large neighbourhood of each pixel, which performs insufficiently for water pixels close to the shoreline. At
wavelengths above 700 nm, the impact of adjacency effects is particularly strong since neighbouring land pixels
show distinctly higher reflectance (Sterckx et al., 2015b). The distance between measurement sites and land
varied between 40 m (B) and 600 m (F); consequently, adjacency effects altered all pixel environments (Fig. 4.5).
The same applies for all lake pixels due to the lake’s width ranging from 1 km to 4.5 km. Sterckx et al. 2011
illustrated that adjacency effects occur even for pixels several hundred metres away from the shoreline. Santer
and Schmechting 2000 indicated that for similar solar elevation, adjacency effects become negligible (less than
0.1%) only for a distance greater than 5 km from the shoreline. Thus, a correction of adjacency effects appro-
priate for the water/land environment is essential for reliable spectra. At all measurement sites, MIP retrieved
reflectances in bands B06 and B07 slightly above zero, similar to the in situ measurements. MIP calculated
zero values for 1.2% of lake pixels in B06 (740 nm) and for 19.0% in B07 (783 nm), which may result from sky
glint overcorrection. At A-C, MIP performed well in retrieving both shape and intensity (high r, low RMSE, low
X2, cf. Table 4.1); at other sites, MIP obtained comparable shapes, but showed higher intensities compared to
in situ measurements and spectra from ACOLITE and Sen2Cor. In the validation area, MIP calculated an AOT
of 0.160 (550 nm) which was close to Microtops measurement values; MIP AOT was lower than AOT calculated
by Sen2Cor which partly explains the significantly higher spectra compared to Sen2Cor. Different treatment of
adjacency effects, sky glint correction and the used aerosol model for calculating atmospheric scattering may
further account for differences in spectral shape.
Apart from temporal differences, one has to bear in mind the problem of upscaling while comparing in situ
measured reflectance over a small area of water (<1 m) compared to the spatial measurement of S2A (10 m,



54 4.3. Results and Discussion

in situ resampled

MIP

Sen2Cor

ACOLITE

Figure 4.5: Comparisons of resampled in situ and mean atmospherically corrected RBOArs (0+, λ) spectra. Error bars repre-
sent the standard deviation within a 3 x 3 ((a-e) shallow water) and 7 x 7 ((f-g) deep water) pixel environment and
standard deviation of in situ spectra. Note different scaling of ordinate axis.
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20 m and 60 m). Measurement sites A-E were located in optically shallow water, where varying bottom charac-
teristics (i.e., different macrophytes or sediments), and water depths, influence water reflectance. The satellite
sensor records a mixed signal from this variance. Statistical approaches to overcome upscaling problems from
point to pixel scale were developed for ocean-colour sensors (Salama and Su, 2011). Furthermore, in situ
measurements also underlie a number of uncertainties such as shading by instrument, boat and changes in
incident radiation due to atmospheric variability (Mueller et al., 2003). Larger error bars (standard deviation) of
both in situ and atmospherically corrected spectra in Fig. 4.5b indicate the resulting higher standard deviations.
For case-1 open ocean water algorithms, the required accuracy of water-leaving radiances is 5% to achieve a
Chl-a product with 30 % accuracy, for instance (International Ocean-Colour Coordinating Group, 2012). To our
knowledge, a comparable accuracy target is not yet defined for atmospheric correction algorithms over inland
waters. The evaluated atmospheric corrections showed MAPE values between 61% and 91% on average and
underpin that atmospheric correction over inland waters still is an unresolved problem. The large differences
of atmospheric corrections are another critical point. Each atmospheric correction model resulted in a different
RBOArs (0+, λ) spectrum from the same S2A at-sensor radiance. An EU-FP7 GLaSS project report also com-
pared different atmospheric correction algorithms retrieving highly varying results (GLaSS, 2014). Caused by
the low reflectance of water, small absolute differences in reflectance rapidly result in large relative differences.
These differences may propagate to the subsequent retrieval of lake ecology indicators when using (analytic)
approaches that rely on both shape and intensity of spectra. Assessing this issue, however, is beyond the scope
of this study and may be expanded to other sensors as well.

4.3.2 Optically deep water

Fit parameters in optically deep water were aCDOM(440) and SPM concentration. Since the RBOArs (0+, λ) data
used during inverse modelling (bands B01-B07) were not corrected for sun glint, we also selected the fraction
of sun glint per pixel area, gdd, as a fit parameter. Table 4.2 summarises in situ and S2A derived values at the
measurement sites. Variations due to spatial resampling were minor. Absence of processing artefacts, such
as stripping, in the resulting parameter maps (Fig. 4.6) shows that processing performed well. Low residuals
(mean: 3.96 x 10-4 ± 3.82 x 10-5) between S2A and inversely modelled spectra underpinned a good modelling
performance. The gdd map (Fig.4.6c) indicates higher sun glint in the northern part of the lake, while the south-
ern region including our measurement sites was only slightly affected. Retrieved aCDOM(440) ranged between
0.10 and 0.74 m-1 (mean: 0.14 ± 0.02 m-1), SPM between 1.1 and 5.1 g·m-3(mean: 1.8 ± 0.2 g·m-3). These
ranges correspond well with concentrations obtained from hyperspectral imagery in other studies at Lake Starn-
berg (Gege, 2014a; Rößler et al., 2013). Referring to the different spatial resolutions, WASI-2D retrieved similar
concentration values (Table 2). Reducing the pixel size of S2A data must not necessarily result in a significant
improvement which might be interesting for analysing small lakes.
Both SPM concentrations and aCDOM(440) showed little variations indicating homogenous and clear lake condi-
tions (Fig. 4.6). SPM in the water column may result from resuspension (Madsen et al., 2001) or from catchment
erosion (Lindström et al., 1999). The lowest SPM concentrations around 1.4 g·m-3 occurred in the northern part
of the lake; slightly higher concentrations around 2.0 g·m-3 were retrieved in the southern part. CDOM orig-
inates from allochthonous sources from rotting plants in the catchment, or from autochthonous sources such
as decomposing phytoplankton or macrophytes (Brezonik et al., 2015). In the S2A data, aCDOM(440) values
were slightly higher in the southern regions compared to the northern part. External input from catchment
of both SPM and aCDOM(440) was presumably low since no rainfall occurred the week prior to image acqui-
sition (Deutscher Wetterdienst, 2016a). Furthermore, Lake Starnberg receives mainly groundwater inflows
(Wöbbecke et al., 2003), thus, the low values of both SPM concentration and aCDOM(440) are reasonable. Chl-a
was considered as a constant parameter during inverse modelling.
Water sample analyses also revealed low concentrations of CHL (∼1 mg·m-3) causing water absorption to be
predominated by CDOM. Both CHL and CDOM absorb in the blue wavelength region (Matthews, 2011). Com-
pared to Landsat 8 OLI, S2A offers an additional band at 705 nm (B06) which may support CHL assessment
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(Vanhellemont and Ruddick, 2016). Under low CHL concentrations, however, other optically active constituents
may superimpose the absorption feature. Empirical NIR-red algorithms based on the feature, for instance, per-
form more reliable at CHL concentrations >10 mg·m-3 (Gitelson et al., 2008; Odermatt et al., 2012). At Lake
Starnberg, CHL concentrations were too low for a retrieval along with aCDOM(440) and SPM.

Table 4.2: Comparison of in situ and S2A (WASI-2D) results in optically deep water. Term in parentheses indicates in situ
data source. SPM values originate from water samples taken the day before image acquisition. Mean and standard
deviation of 5 x 5 respectively 3 x 3 pixel environment were calculated for 10 m and 20 m pixel size, respectively,
and reflect spatial variability. The values of the 60 m pixels correspond to GPS coordinates. Errors for in situ
(RAMSES) are derived from inversion and reflect variability during a measurements series.

Point
Pixel
Size

SPM [g·m-3] bb,SPM(550) [m-1] aCDOM(440) [m-1]

in situ S2A in situ in situ S2A in situ S2A
(Sample) (WASI-2D) (RAMSES) (FREEDOM) (WASI-2D) (RAMSES) (WASI-2D)

F
10

1.9
1.44±0.65

no
measurement

0.015; 0.020*
0.0216± 0.0098

0.436±0.003
0.14±0.06

20 1.72±0.04 0.0258±0.0006 0.16±0.01
60 1.71 0.0257 0.16

G
10

0.4
1.80± 0.04

0.021±0.01 0.021*
0.0270±0.0006

0.418±0.003
0.17±0.04

20 1.77±0.03 0.0266±0.0005 0.16±0.01
60 1.76 0.0264 0.16

*only two measurements.

Spatial patterns of gdd (Fig. 4.6c) revealed high sun glint influence in the northern and western lake regions,
whereas the southern and eastern regions were only slightly affected by sun glint. Sun glint occurs on water
surfaces where radiation is directly reflected to the sensor as a combination of surface roughness, sun position
and sensor viewing angle (Kay et al., 2009). The statistical model for predicting sun glint probability by Cox
and Munk 1954 is widely used in ocean colour remote sensing; it shows that increasing wind speed increases
the probability of the water surface being oriented to cause sun glint. Wind direction was from east-southeast
(120◦, wind speed: 3.0 m·s-1 Deutscher Wetterdienst, 2016a) close to image acquisition (12:00 UTC+2). Due
to a lateral moraine extending from north to south the eastern parts of the lake were less exposed to wind. The
southern part was even more sheltered since the ridge becomes broader and is covered by forest. Thus, the
smoother water surface resulted in less sun glint in sheltered regions; the probably roughened surface caused
higher sun glint in the more wind exposed northern part. Integrating wind maps, if available, into remote sensing
analyses of lakes may further help to understand these patterns. The spatial variability of retrieved sun glint
underpins the need for considering the spatial variability of these parameters. Kay et al. 2009 reviewed existing
correction approaches: the statistical model by Cox and Munk performed insufficiently for sensors with spatial
resolutions <100 m; furthermore, at inland waters local wind fields can hardly be predicted. Approaches based
on zero water reflectance in the NIR often assume spatially constant sun glint and are inapplicable in shallow or
turbid waters (Kay et al., 2009). The spectral model of sun glint implemented in WASI-2D addresses both spatial
variability and spectral dependency. Gege and Groetsch 2016 provide a detailed description and analysis of
this topic.

To assess the performance of SPM and aCDOM(440) retrieval, we compared WASI-2D values with concentra-
tions and backscattering or absorption coefficients from in situ measurements (Table 4.2). A common approach
is to compare SPM mass concentrations derived from water samples with concentrations derived from remote
sensing algorithms (Dörnhöfer and Oppelt, 2016). WASI-2D derived SPM concentrations fell within the range
of measured concentrations; on average, they were slightly higher than measured SPM. Arriving at an identi-
cal match, however, would be credited to mere coincidence rather than a flawless model. We compared two
different methods of SPM estimation: in situ data from a gravimetric measurement of a 1 L water sample, and
SPM from S2A radiance values of selected pixels at varying spatial resolutions, i.e., 10-60 m. Gravimetric
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Figure 4.6: Results of deep water inversion using the MIP 20 m pixel size dataset. Background is gray scaled S2A band B05
(705 nm).

analyses of SPM contain a variety of uncertainties, such as loss of filter or sample material (Röttgers et al.,
2014). Thus, SPM concentrations retrieved from water samples should not be considered absolute. Moreover,
the term b∗b,SPM (550) (Equation 4.8) introduces additional uncertainties while comparing SPM concentrations
retrieved from water samples and S2A data. b∗b,SPM (550) is used to convert bb,SPM(λ) to SPM concentrations
(Equation 4.8). b∗b,SPM (550) depends on mineral composition, size, and shape of particles (Effler et al., 2013;
Peng and Effler, 2012) and therefore is lake specific, but also temporally and spatially variable within a par-
ticular lake. We adapted b∗b,SPM (550) to the study area by inverse modelling of in situ measured RAMSES
reflectance data considering SPM concentrations from water samples as correct. To further assess the suitabil-
ity of S2A for analysing water bodies, we considered an evaluation of a parameter directly retrieved from S2A
RBOArs (0+, λ), i.e., bb,SPM(550). At measurement site F and G, we retrieved bb,SPM(550) from in situ measured
RBOArs−FREEDOM (0+, λ) and RBOArs−RAMSES(0+, λ) using FREEDOM and RAMSES (only G) radiometers. Values
of bb,SPM(550) from in situ and S2A data matched well; on the contrary, modelled and in situ SPM concentrations
differed notably. SPM concentration is often measured in lake ecology or hydrology and is easier to grasp than
bb,SPM(550); retrieval of the latter, however, is more accurate since it is directly assessed from remote sensing
data. Thus, bb,SPM(550) represents the parameter most relevant for assessing quality of remote sensing prod-
ucts.
Table 4.2 compares the S2A derived aCDOM(440) values with aCDOM(440) obtained from under-water RAMSES
Ed(z < 0, λ) measurements. The S2A derived aCDOM(440) values were lower compared to the values retrieved
from Ed(z < 0, λ) measurements.
Bearing in mind that we only have two measurement sites in optically deep water, our results are a first evalu-
ation. Further assessments are required. Our results show that it was possible to distinguish small differences
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in water constituents even for low concentrations – at least for SPM and CDOM. The spatially synoptic view
of S2A across the entire lake showed a relatively clear and homogenous water surface of optically deep water
during image acquisition.

4.3.3 Optically Shallow Water

In optically shallow water, we conducted inverse modelling on the datasets with pixel sizes of 10 m and 20 m.
In some parts of the lake, the shallow zone has a width of less than 100 m; water depth and bottom substrates
may also change, even within 10 m pixels. gdd, aCDOM(440), water depth and the aerial fraction (fA) of two bot-
tom types (macrophyte and sandy sediment) were chosen as fit parameters. SPM was kept constant (SPM =
1.8 g·m-3) to avoid excess fit parameters. Fig. 4.7 illustrates the resulting maps of aCDOM(440) and gdd. Fig. 4.8
presents the retrieved bottom types and Fig. 4.9 the water depth map. Higher reflectances caused slightly
higher residuals on average (4.0 x 10-4 ± 2.8 x 10-4) compared to optically deep water. Similar to deep water,
no processing artefacts such as striping occurred.
The parameter aCDOM(440) varied between 0.1 and 1.5 m-1(mean: 0.15 ± 0.11 m-1) in calculated water depths
above 1 m. Table 4.3 summarises modelled and aCDOM(440) values derived from Ed(z < 0, λ) and water depths.
As in deep water, S2A derived aCDOM(440) was lower compared to aCDOM(440) values from in situ measure-
ments. The parameter gdd showed a consistent spatial distribution as in deep water: higher values in the
northern lake area than in the southern part. The speckled results (zoomed parts in Fig. 4.7b,c) indicate that
gdd alleviates sun glint induced irregularities; thus, the other parameters retrieved in optically shallow water
appeared less noisy.

11°20'E

48°
0'N

47°
58'

N
47°

56'
N

47°
54'

N
47°

52'
N

47°
50'

N

11°20'E

47°
58'

N
47°

56'
N

47°
54'

N
47°

52'
N

47°
50'

N

¯

0 2 41 km Projected coordinate system: UTM-32N WGS1984
(a)

(b)

(a-c) gdd [sr-1]
0.0
> 0.0 - 0.02
0.02 - 0.05
0.05 - 0.07
0.07 - 0.09
0.09 - 0.12
0.12 - 0.2

0 2 41 km

0 0,5 1 km 0 0,5 1 km

0 0,5 1 km 0 0,5 1 km

(b)

(c)

(d)

(f)

(d-f) aCDOM(440) [m-1]
0.10
> 0.10 - 0.12
0.12 - 0.20
0.20 - 0.25
0.25 - 0.35
0.35 - 0.5
0.5 - 1.5

(b)

(e)
(c) (e)

(d)

Figure 4.7: Results of gdd (a-c) and aCDOM(440) (d-f) of shallow water inversion using the MIP 10 m pixel size dataset.
Background is gray scaled S2A band B05 (705 nm).
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Table 4.3: Comparison between in situ measured and S2A (WASI-2D) results in optically shallow water. Term in parentheses
indicates in situ data source. Mean and standard deviation of 5 x 5 respectively 3 x 3 pixel environment were
calculated for 10 m respectively 20 m pixel size and reflect spatial variability. Errors for in situ data (RAMSES) are
derived from inversion and reflect variability during a measurement series.

Point Pixel Size
aCDOM(440) [m-1] aCDOM(440) [m-1] Water depth [m] Water depth [m]
in situ (RAMSES) S2A (WASI-2D) in situ (measured) S2A (WASI-2D)

A
10

0.46±0.06
0.28±0.06

1.65
1.11±0.07

20 0.25±0.07 1.11±0.08

B
10

0.73±0.18
0.17±0.12

0.86
0.58±0.07

20 0.16±0.11 0.65±0.09

C
10

0.52±0.09
0.19±0.07

2.75
1.58±0.18

20 0.17±0.07 1.50±0.16

D
10

0.49±0.06
0.15±0.01

3.85
1.59±0.05

20 0.14±0.02 1.59±0.04

E
10

no measurements
0.13±0.03

1.59
0.92±0.05

20 0.14±0.03 0.96±0.04
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Figure 4.8: Results of bottom substrate unmixing using the MIP 10 m dataset (a); Zoomed areas are Roseninsel (b); Karpfen-
winkel (c) and Seeshaupt (d). Low shares of sediment are illustrated as high macrophyte coverage. Background
is gray scaled S2A band B05 (705 nm).

Accurate information of bottom substrate and water depths is crucial in optically shallow water. Following
the suggestions in Giardino et al. 2016, we differentiated only two substrate types, i.e., macrophytes and sandy
sediment. The resulting map revealed reasonable spatial patterns with sandy sediment predominating along
the south-eastern shoreline close to “Seeshaup“ (Fig. 4.8d). High macrophytes coverage towards deeper water
at Seeshaupt, however, appears unreasonable. Unfortunately, no bottom substrate mappings exist for 2015.
Nevertheless, to check the plausibility, we compared our results with those of previous studies at Lake Starn-
berg conducted in 2011. In accordance to Rößler et al. 2013, the bottom north of the “Roseninsel“ (Fig. 4.8b)
was identified as sandy sediment. At “Karpfenwinkel“ (Fig. 4.8c), WASI-2D retrieved an oval shaped structure
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of sediment; dense macrophytes occurred south-east of it. Rößler et al. 2013 also described these patterns
using airborne hyperspectral data. Nevertheless, bottom characteristics are highly variable at Lake Starnberg;
a variety of macrophyte species are present and also bare substrate varies between stony, sandy and dark or
light coloured. Neither the in situ measured sandy sediment spectrum nor the spectrum of one single macro-
phyte species is able to cover the spectral variability of the entire lake’s bottom. Parameterising classification
algorithms or bio-optical models with appropriate spectra therefore remains challenging. Currently, several ap-
proaches are available such as ex situ measurements (Giardino et al., 2016, 2015, this study), image based
derivation (Gege, 2014a) or seasonal dependent reflectance models based on empiric measurements (Wolf
et al., 2013). Assessing the suitability of S2A for distinguishing bottom types in detail may therefore be of inter-
est for subsequent studies.
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Figure 4.9: Results of water depths retrieval during shallow water inversion using the MIP 10 m pixel size dataset (a); Zoomed
areas are Karpfenwinkel (b); validation area Seeshaupt (c) and Roseninsel (d). Background is gray scaled S2A
band B05 (705 nm).

Bottom substrate unmixing is accompanied by fitting water depths. Fig. 4.9a depicts water depths around
the entire lake and for regions with extensive shallow water areas. Water depths reasonably increased from
the shore line towards the deep water mask, remained, however, in most parts of the lake below 2.0 m. At the
northern end of the lake, calculated water depths rarely exceeded 1.5 m which is a clear underestimation of
the actual water depths. The shallow water mask was oriented at the 8 m depth line (Fig. 4.1) of the official
bathymetry map. A reason could be that bottom type spectra were inappropriate for this area. in situ measure-
ments were conducted at the southern end. At measurement sites, S2A-derived water depths underestimated
measured water depths about 0.5 m (Table 4.3). At measurement site D, water depths differed more than
2.5 m. This measurement site is located close to a ledge; minor GPS variations and positioning inaccuracy may
therefore result in contradicting values; nevertheless, geolocation uncertainties exclusively hardly explain such
a strong deviation (next paragraph).
To quantitatively evaluate the capability of S2A 10 m data for water depth retrieval, we used echo sounding



Chapter 4. Water Constituents and Water Depth Retrieval from Sentinel-2A – A First Evaluation in
an Oligotrophic Lake

61

data (Fig. 4.1b, Gege, 2014a) as a validation source (Fig. 4.10). Echo sounding and S2A derived water depths
are highly correlated (r = 0.95, residual standard deviation = 0.12 m) up to 2.5 m (echo sounding). Neverthe-
less, the RMSE (0.56 m) and offset from the 1:1 line (Fig. 4.10a) indicate that WASI-2D underestimated water
depths. In water depths ranging between 0 and 4 m (measured Secchi disk depth), RMSE was 0.95 m which
was higher than RMSE values obtained by Gege 2014a (mean (0-4 m) = 0.29 m) using airborne hyperspectral
data. In water depths deeper than 2.5 m, WASI-2D modelled water depths at around 1.8 m (Fig. 4.10a). For
these pixels, WASI-2D retrieved lower shares of sediment, and consequently higher macrophyte coverages,
which is also indicated by a greenish colour in Fig. 4.10a; WASI-2D therefore considered a dark bottom type
(low reflectance values due to high macrophytes coverage) accompanied by lower water depths instead of a
bottom covered by sediment (high reflectance) and high water depths. Thus, WASI-2D achieved a low residuum
between S2A and modelled spectrum, correct spectral unmixing, however, failed; at water depths deeper than
2.5 m, the spectral signatures of both bottom types were too similar for a correct differentation. At the points
which scattered around the 1:1 line above 4 m, WASI-2D correctly fitted pure macrophyte coverage (dark green
colour) and consequently retrieved correct water depths. To check these presumptions, we repeated modelling
in shallow water and fixed the bottom type as sediment (fA[Sediment] = 1). Indeed, WASI-2D retrieved higher
water depths, though still underestimating absolute values, with a high correlation up to 4 m (r = 0.96, residual
standard deviation = 0.15 m) which was slightly below Secchi disk depth measured on 13 August (4.2 m ±
0.3 m). The MIP retrieved RBOArs (0+, λ) spectra in shallow water were higher (except B) compared to in situ
measured spectra. Assuming the same bottom type, higher reflectance means lower water depth which may
partly explain the systematic underestimation of around 0.6 m. Furthermore, sedimentation processes may
have altered bottom conditions slightly within the time difference being four years between echo sounding and
image acquisition. Using sediment as fixed bottom type, WASI-2D overestimated or reached maximum value
for water depths above 4 m (Fig. 4.10b). The previous setting indicated pure macrophyte coverage at these
echo sounding points. Modelling with fixed sediment coverage, consequently, caused miscalculations.
Small scale variance, however, may not be captured even with using the 10 m data set. Furthermore, echo
sounding data also may include measurement uncertainties, especially at ledges. S2A geolocation uncertainty,
which was 12.36 m for processing baseline 02.01 (European Space Agency, 2016), may also result in misalign-
ments between echo sounding and satellite data.
Overall, the water depths retrieval performed better with fixed bottom coverage. We therefore conclude that
S2A spectral information was insufficient to accurately separate mixed coverages of macrophytes and sediment
in water depths deeper than 2.5 m. This conclusion certainly is restricted to the specific lake conditions during
image acquisition date, atmospheric correction algorithm (MIP) and bio-optical model applied (WASI-2D). The
atmospheric correction algorithm is crucial, in particular for the application of bio-optical models which need
high accuracies of both shape and intensity of RBOArs (0+, λ) spectra. MIP retrieved the best RBOArs (0+, λ) spec-
tra compared to the available in situ spectra; however, they also showed deviations. Furthermore, MIP lacks a
sun glint correction for S2A data. For this reason, we included sun glint assessment in the bio-optical modelling
process. Improvements towards sun glint correction during atmospheric correction procedures may therefore
also improve bio-optical analyses of lakes.
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Figure 4.10: Scatterplots comparing echo sounding data (acquisition June 2012) and S2A (WASI-2D) derived water depths
(10 m) while unmixing two bottom types; the colour gradient highlights bottom type (a). Scatterplot (b) results
from modelling water depths with fixed sediment coverage (fA[Sediment] = 1.0).

4.4 Conclusions

This study used a physically based processing chain to test the suitability of S2A for retrieving lake ecology indi-
cators, i.e., SPM, aCDOM(440), water depths and bottom substrates. To this end, we conducted a measurement
campaign at Lake Starnberg (Germany) concurrently to a S2A overpass. Analysing the results of three different
atmospheric correction algorithms (Sen2Cor (Müller-Wilm, 2016), ACOLITE (Vanhellemont and Ruddick, 2016)
and MIP (Heege et al., 2014)) revealed different spectra for each algorithm. By comparing RBOArs (0+, λ) spec-
tra with in situ measured reflectance, MIP performed best and therefore was used for further processing. We
then applied the bio-optical modelling software WASI-2D (Gege, 2014b). S2A band positions and calibration
as well as low NE∆RrsE of the scene (mean: 0.00014 sr-1 for the 10 m data set) allowed retrieval of SPM
and aCDOM(440), even at low concentrations. Absorption by CHL, however, was too low for assessment along
with the other constituents. Modelled aCDOM(440) was lower than in situ values (in situ: 0.42-0.44 m-1, S2A:
0.1-0.74 m-1, mean: 0.14 ± 0.02 m-1). Resulting SPM concentrations (in situ: 0.4-1.9 g·m-3, S2A: 1.1-5.1 g·m-3,
mean: 1.8 ± 0.2 g·m-3) were within the range of analysed water samples. A comparison with backscattering
coefficients of SPM (in situ: 0.015-0.021 m-1, S2A: 0.018-0.077 m-1) approved even better performance. Spatial
resampling of the S2A data to 20 m or 60 m showed negligibly different results. In optically shallow water, pa-
rameters of interest were bottom substrate and water depths. We obtained reasonable patterns of macrophytes
and sandy sediment in most parts of the lake. Modelled water depths also showed reasonable patterns. Quan-
titative evaluation approved a good correlation, but underestimation occurred between 0 and 2.5 m (RMSE:
0.56 m, r: 0.95). With water deeper than 2.5 m, S2A spectral information was inadequate to differentiate mixed
coverages of macrophytes and sediment. Furthermore, the time difference between echo sounding and image
acquisition and the challenging measurement of representative bottom spectra contributes to inaccurate bottom
coverage and water depth retrieval.
This study points out that S2A has great potential to assist lake ecology in retrieving indicators on a spatially
synoptic scale. The study was conducted under conditions with low water constituent concentrations and low
spatial variability. Studies of lakes with different optical properties and trophic characteristics may further ad-
vance knowledge of S2A’s suitability for lake monitoring. Shape and intensity of spectra strongly depend on the
applied atmospheric correction algorithm; further research and improvements in this field are required.
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Highlights

• We analysed the potential of monitoring chlorophyll-a with multiple satellites.

• in situ and satellite results show similar and different developments.

• in situ and satellite chlorophyll-a lead to different trophic class assessment.

• Uncertainties of in situ data have to be accounted.

• Combined use of multi-sensor and in situ data enhance phytoplankton monitoring.

#

#

#

#

#
#
#

#

Multi-sensor phytoplankton monitoring

Landsat, Sentinel-2

in situ data weather data

MODIS

ch
l-

a
 [

m
g

/m
3
]

0

1 Jul

10

1 Aug 1 Sep 1 Oct
2015

20

30

40

0°

90°

180°

270°

●
●

●●

●

●
●

●
●



66 5.1. Introduction

Changes made to the published version:
To harmonise the style of the entire thesis, chlorophyll-a is abbreviated as CHL instead of Chl-a.

Abstract
Phytoplankton indicated by its photosynthetic pigment chlorophyll-a is an important pointer on lake ecology and
a regularly monitored parameter within the European Water Framework Directive. Along with eutrophication and
global warming cyanobacteria gain increasing importance concerning human health aspects. Optical remote
sensing may support both the monitoring of horizontal distribution of phytoplankton and cyanobacteria at the
lake surface and the reduction of spatial uncertainties associated with limited water sample analyses. Temporal
and spatial resolution of using only one satellite sensor, however, may constrain its information value. To dis-
cuss the advantages of a multi-sensor approach the sensor-independent, physically based model MIP (Modular
Inversion and Processing System) was applied at Lake Kummerow, Germany, and lake surface chlorophyll-a
was derived from 33 images of five different sensors (MODIS-Terra, MODIS-Aqua, Landsat 8, Landsat 7 and
Sentinel-2A). Remotely sensed lake average chlorophyll-a concentration showed a reasonable development
and varied between 2.3 ± 0.4 and 35.8 ± 2.0 mg·m-3 from July to October 2015. Match-ups between in situ
and satellite chlorophyll-a revealed varying performances of Landsat 8 (RMSE: 3.6 and 19.7 mg·m-3), Landsat 7
(RMSE: 6.2mg·m-3), Sentinel-2A (RMSE: 5.1 mg·m-3) and MODIS (RMSE: 12.8 mmg·m-3), whereas an in situ
data uncertainty of 48 % needs to be respected. The temporal development of an index on harmful algal blooms
corresponded well with the cyanobacteria biomass development during summer months. Satellite chlorophyll-a
maps allowed to follows patial patterns of chlorophyll-a distribution during a phytoplankton bloom event. Wind
conditions mainly explained spatial patterns. Integrating satellite chlorophyll-a into trophic state assessment
resulted in different trophic classes. Our study endorsed a combined use of satellite and in situ chlorophyll-a
data to alleviate weaknesses of both approaches and to better characterise and understand phytoplankton de-
velopment in lakes.

Keywords
Phytoplankton, Remote sensing, Validation, Bio-optical modelling, Time series

5.1 Introduction

A variety of interacting stressors, such as eutrophication, climate change, anthropogenic exploitation and pollu-
tion, affect the ecological integrity of lakes (e.g. Adrian et al., 2009; Dudgeon et al., 2006). Detecting indicators
of ecological integrity and their changes therefore is vital for lake management to mitigate stressors and min-
imise negative influences on ecology and ecosystem services. Phytoplankton is a common indicator in lake
ecology and a key biological quality element for assessing the ecological status of lakes within the European
Union’s Water Framework Directive (WFD, Carvalho et al., 2013b; European Commission, 2000; Kelly et al.,
2016; Solheim et al., 2013). Along with climate change and eutrophication, cyanobacteria receive special
awareness (Kosten et al., 2012; Paerl et al., 2016) because they produce toxins which may directly affect hu-
man and animal health; moreover scum forming blooms affect light conditions in water (Carvalho et al., 2013a;
Rastogi et al., 2014; Sukenik et al., 2015). Phytoplankton itself cannot be monitored from space. Phytoplankton
biomass and chlorophyll-a concentration (CHL), however, are highly correlated; therefore CHL often serves as
a proxy for phytoplankton biomass (Birk and Ecke, 2014; Poikane et al., 2015). Whereas CHL is present in
all phytoplankton species, pigments from the phycobilins group, such as phycocyanin and phycoerythrin, are
highly correlated with cyanobacteria biomass. These pigments therefore serve as proxies for a remote sensing
based estimation of cyanobacteria (Srivastava et al., 2013).
Sampling and mapping strategies should generally address the temporal and spatial variation of CHL and
cyanobacteria to minimise uncertainties in ecological status assessment and health issues (Chorus et al., 2000;
Søndergaard et al., 2016). For monitoring massive blooms of cyanobacteria, the World Health Organisation rec-
ommends fortnightly inspections (Chorus et al., 2000). In situ based sampling and laboratory analyses, how-
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ever, are time-consuming and cost intensive (Schaeffer et al., 2013). For this reason, monitoring approaches
are often a trade-off between an ideal sampling strategy, financial possibilities and logistics; within the scope
of WFD, the broad majority of European states decided to collect water samples from the euphotic layer at
the deepest or mid-lake point throughout the year (e.g. one to nine times per year or monthly during summer;
Pasztaleniec, 2016). This strategy, however, may not capture the spatial and temporal variability of phytoplank-
ton. A more frequent, spatial monitoring therefore is required, especially ith regard to short-living cyanobacteria
blooms with their potential negative effects on human health (Bertani et al., 2017; Reyjol et al., 2014).
Remote sensing techniques may assist traditional sampling strategies to increase information on CHL and
cyanobacteria spatial variability and temporal frequency (Dörnhöfer and Oppelt, 2016). Various empirical and
physical algorithms can obtain CHL from remote sensing data by using its specific absorption features between
440 and 560 and at around 670 nm; for retrieving information on cyanobacteria, remote sensing approaches
employ the absorption features of phycocyanin at around 620 nm (Dörnhöfer and Oppelt, 2016; Kutser, 2009;
Matthews, 2011; Odermatt et al., 2012). Retrieving CHL and phycocyanin absorption from satellite data there-
fore requires sensors with high radiometric resolution, and a spectral resolution that can capture the CHL and
phycocyanin specific absorption features (Stumpf et al., 2016). For this reason, studies analysing CHL and
cyanobacteria often use time series of ocean colour sensors with coarse spatial resolutions (300 m x 300 m -
1 km x 1 km), such as MERIS or MODIS. Moreover, they tend to focus on large lakes (> 500 km2; Bresciani
et al., 2011c; Palmer et al., 2015c; Wu et al., 2015; Zhang et al., 2015) rather than on smaller lakes (Bresciani
et al., 2011a; Matthews, 2014).
The monitoring of lakes requires sensors with high radiometric and spectral resolution, especially in the visible
wavelength domain (Oppelt et al., 2015). Nevertheless, Landsat 7 (L7) and Landsat 5 showed sufficiently high
accuracy for observing general trends in organic substances (Kutser, 2012) and mineral particles (Lymburner
et al., 2016). The new generation of land observation satellites, such as Landsat 8 (L8) and Sentinel-2A (S2A),
offer improved spectral and radiometric characteristics for inland water remote sensing (Pahlevan et al., 2014;
Palmer et al., 2015b). Bresciani et al. 2016, Concha & Scott 2016 and Giardino et al. 2014a concluded that L8
was suitable for retrieving CHL at low (∼ 1 mg·m-3) and high (∼ 100 mg·m-3) concentrations. Recent studies
highlighted S2A’s capability for retrieving CHL, organic substances and water colour (Toming et al., 2016a);
Dörnhöfer et al. 2016b successfully derived mineral particles, organic substances and, in shallow water, wa-
ter depths and bottom substrates. L8 and S2A therefore seem promising sensors for inland water monitoring.
The enhanced spatial resolution, however, implies a lower revisit time (5-16 days) compared to the ocean
colour sensors (1-2 times per day). Using only one satellite system, cloud coverage can further reduce image
availability and hamper a regular monitoring. Daily or even multiple data acquisitions per day may improve
observing spatio-temporally highly dynamic processes, such as phytoplankton or cyanobacteria blooms (Hestir
et al., 2015a). A synergistic use of sensors with different spatial resolutions may overcome the limitations of a
single sensor application, which would increase availability and continuity of suitable remote sensing data for
CHL monitoring. This, however, raises the question of inter-comparability of measurements while considering
each sensor’s limitations and capabilities.
To address this, the present study was conducted at Lake Kummerow, Germany, between July and October
2015; it includes a series of remote sensing data (MODIS-Aqua (MODAQ), MODIS-Terra (MODTE), L7, L8 and
S2A) and in situ measurements. The specific objectives of this study were (1) to analyse the mutual inter-
comparability of satellite products and in situ data, (2) to relate the spatial development of a phytoplankton
bloom to meteorological data and (3) to integrate remotely sensed CHL into WFD trophic state assessment.
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5.2 Materials and methods

5.2.1 Study area description

Located in the northern German lowlands, Lake Kummerow (53.808◦ N, 12.856◦ E) formed as a proglacial lake
during last glacial period. With a size of 32.55 km2 and an average depth of 8.1 m (maximum: 23.3 m), the lake is
relatively shallow. Agriculture fields predominate the land use in the catchment (total size: 1,150 km2, Fig. 5.1).
The lake is an important resting area for migrating birds and a place for manifold recreational activities in a
popular tourist area. The wind-exposed location leads to prevailing mixing conditions with a polymictic character.
Table 5.1 summarises measurement values of limnological parameters describing chemical conditions at Lake
Kummerow.

Table 5.1: Limnological parameters measured at Lake Kummerow between 2004 and 2015 (March-October) (data source:
LU-MV, 2015b).

CHL
[mg·m-3]

Secchi disk depth
[m]

Total phosphorous
[mg·m-3]

Total nitrogen [g·m-3] Total organic carbon
[g·m-3]

Arithmetic mean 12.9 1.8 89.8 1.6 10.7
Standard deviation 8.8 0.8 100.4 0.6 1.1
Minimum 1.1 0.6 16.0 0.5 8.7
Maximum 45.4 5.6 1060.0 4.9 14.3

The trophic classification according to the WFD varied between eutrophic 1 and 2; in 2015, the lake was
classified as mesotrophic 2 for the first time which resembles its reference state (LU-MV, 2015b). Phytoplankton
analyses (2004-2015) revealed predominating diatoms (Bacillariophyceae) in spring whereas cyanobacteria
accumulations occurred in summer and autumn, i.e. toxin producing Microcystis spp., (LU-MV, 2016). In 2014
and 2015, cyanobacterial blooms occurred after a few calm days with high air temperatures. These blooms also
entailed public interest (e.g. Plath, 2014, 2015) since they affected popular beaches and piers.

5.2.2 In situ sampling and laboratory analyses

The department of lakes (LU-MV) monitors Lake Kummerow related to WFD assessment within the lake mon-
itoring programme of the federal state Mecklenburg-Western Pomerania (LU-MV, 2015b). Sampling occurs,
independent from any satellite overpasses, once a month between March and September. LU-MV staff collects
mixed water samples from the euphotic layer at two sampling sites, i.e. the deepest point (approx. middle of
lake, Fig. 5.1) and “Gorschendorf“ (southern end of lake, Fig. 5.1). CHL is measured in a laboratory with a
spectrophotometer according to DIN 38412-L16. For the central lake samples, LU-MV also measures phyto-
plankton biomass and species composition.
To provide in situ data concurrently to satellite data acquisition, we conducted several field campaigns on days
of satellite overpasses, and clear weather conditions. We took water samples (3 x 1 L per sampling site) just
below the water surface (approx. 0.2 m) in the northern part of the lake. At days with wind conditions unsuitable
for boat transport, water sampling has been conducted from a pier. At each sampling site, we measured water
temperature just below the water surface with an Ahlborn instrument (FYA641LFL1). A Trimble Juno SB GPS
device (2-5 m positional uncertainty, Trimble, 2012) recorded sampling positions. We transported water samples
in a cooling box to the laboratory. Here, we filtered the samples through glass fibre filters (pore size: 0.7 µm)
resulting in three separate filters for each sampling site. Filters were frozen before we extracted pigments using
99.9 % acetone. CHL was analysed photometrically with a Perkin Elmer Lambda 1050 spectrophotometer in
a laboratory of the Limnological Station Iffeldorf (TU Munich) according to Lichtenthaler and Buschmann 2000.
For each sampling site, we calculated the arithmetic mean and standard deviation of the three samples.
For three sampling dates, we sent water samples (4-5 per sampling day, one per sampling site, Table 5.2) to an
accredited laboratory (Umwelt Control Labor - UCL, Kiel) which determined CHL photometrically according to
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Figure 5.1: Location of Lake Kummerow and land use in its catchment (a, data source: LU-MV, 2002a) and location of off-
shore measurements sites (CAU) depending on the date (b). True-colour-composites emphasize different spatial
scales of used satellite data Sentinel-2A (10 m spatial resolution, c), Landsat 8/7 (30 m, d) and MODAQ/MODTE
(500 m, e). Coordinate system: UTM zone 33N, WGS 84.

DIN 38412-L16. Using these samples, we assessed an error margin of CHL retrieved from in situ collected wa-
ter samples (CAU/TUM). Applying the approach by Claustre et al. 2004, we calculated the relative percentage
differences (RPD) according to Eq. 5.1.

RPD = 100 · CHLi(Sk)− CHLi(Sk)

CHLi,j(Sk)
(5.1)

where CHLi(Sk) is the CHL of laboratory i (i = [CAU/TUM, UCL]) at sampling site Sk and CHLi,j(Sk) is the
arithmetic mean of CHL of both laboratories at sampling site Sk. According to McKee et al. 2014, the 95 %
prediction interval of all RPD values represents the uncertainty measure.
Table 5.2 lists all sampling dates, number of samples and corresponding weather conditions.
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Table 5.2: Summary of sampling dates and prevailing weather conditions. Data from weather station Sukow-Levitzow (Fig.
5.1; Deutscher Wetterdienst, 2016b).

Sampling
Date

Time (UTC) Source No. of
sites

No. of
samples

No. of sam-
ples to UCL

Match-up (± day of
satellite acquisition)

Wind
speed
[m·s-1]

Wind di-
rection
[◦]

05 June 08:10-11:55 CAU/TUM 5 14 4 - 5.2-6.0 130-140
29 June 9:00-10:30 CAU/TUM 3 9 0 - 2.7-4.6 210-230
02 July 8:00-13:45 CAU/TUM 5 15 5 MODTE (-1) MODTE

(+1)
5.1-6.3 90-100

06 July 10:00-14:00 CAU/TUM 3 (pier) 9 0 MODTE (+1) MODAQ
(+1)

7.5-7.7 270-300

09 July 7:50-8:50 LU-MV 2 2 0 L7 (-2) 8.9-9.6 270
15 July 8:15-11:00 CAU/TUM 5 15 0 - 4.6-5.5 290-300
29 July 13:00 CAU/TUM 1 (pier) 3 0 - 8.8 230
31 July 11:00-11:15 CAU/TUM 2 (pier) 6 0 - 6.5 270
01 Aug 13:35 CAU/TUM 1 3 0 MODTE (0) MODAQ

(0)
1.7-1.9 50-80

03 Aug 9:40-13:25 CAU/TUM 6 16 4 MODAQ (0) 2.4-2.9 90-130
07 Aug 8:30-11:00 CAU/TUM 5 15 0 MODTE (-1) MODAQ

(0) S2A (-1) L8 (0)
1.1-5.3 (in-
creasing)

190-330

13 Aug 9:25-10:15 LU-MV 2 2 0 MODAQ (+1) 4.2-4.6 50-60
23 Aug 8:15-12:00 CAU/TUM 6 18 0 MODTE (-1) L8 (0) 3.9-

7.3(increasing)
90-120

10 Sep 10:25-12:00 LU-MV 2 2 0 - 3.7-4.6 90-100
30 Sep 9:15-11:15 CAU/TUM 3 9 0 MODTE (0) MODAQ (-

1)
0.7-2.2 70-160

5.2.3 Algorithm for retrieving CHL and eoHAB

The study focused on the period between 1st July and 3rd October. We used data from five different sensors,
i.e. MODTE, MODAQ, L7, L8 and S2A, which differ in spatial, radiometric and spectral resolution (Table 5.3).
Retrieval of CHL using sensors with different spectral characteristics requires a sensor independent model. The
methodology of this study bases on an established multi-sensor processing system, i.e. the Modular Inversion
and Processing System (MIP; Heege and Fischer, 2004; Heege et al., 2003, 2014, 2015).

Table 5.3: Central wavelength (bandwidth), radiometric and spatial resolution of satellite sensors used in the study.

MODIS (Terra & Aqua) Landsat 8 Landsat 7 Sentinel-2A
Spatial resolution [m] 250-500 (resampled to 500) 30 30 10-60 (interpolated to 10)
Radiometric resolution [bit] 12 12 8 12
Central wavelength 469 (20) 440 (20) 485 (70) 443 (20)
(bandwidth) [nm] 555 (20) 480 (60) 570 (80) 490 (65)

645 (50) 560 (60) 660 (60) 560 (35)
858.5 (35) 655 (30) 840 (120) 665 (30)
1240 (20) 865 (30) 1650 (200) 705 (15)
1640 (12) 1370 (20) 2220 (260) 740 (15)
2130 (50) 1610 (80) 783 (20)

2200 (180) 842 (115)
865 (20)
945 (20)
1375 (30)
1610 (90)
2190 (180)

5.2.3.1 The MIP model

MIP includes physics-based retrieval algorithms for optically shallow and deep waters, based on calculations
of a radiative transfer solver Finite Element Model (FEM; Bulgarelli et al., 1999; Kiselev et al., 1995). FEM
forward calculations cover the full bi-directional properties of the atmosphere, the air-water interface, and the
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water body itself. Focusing on wavelengths between 350 and 2800 nm, FEM calculations generate a large
database, which relates sensor radiances directly with in-water absorption and backscattering properties in 1
nm steps. The model addresses the entire range of possible geometric conditions between sensor, sun and
target for all dependencies of scattering and absorption in a multi-layer atmosphere-system, the water body,
as well as bidirectional reflection/ transmission at the water surface. Further variables consider sensor altitude
(for airborne sensors), surface altitude, and atmospheric variables such as aerosol optical depth. MIP directly
relates in-water absorption and scattering properties to the sensor radiances; thus, it considers a wide range of
optical properties in natural waters, including e.g. extremely turbid water bodies.
For each sensor, the database is resampled to the sensor-specific spectral response functions. The MIP archi-
tecture then automatically adapts the retrieval modules to the optical conditions of the target area and specific
sensor characteristics using sensor response functions. Hence, the retrieval modules deliver standardised,
inter-comparable results for the sensors used. Precondition, however, is a physically correct and stable radio-
metric calibration of the used sensors. Resulting accuracies therefore strongly depend on the sensor charac-
teristics.
Processing includes land-water-cloud-detection, ozone correction (Richter et al., 2014), adjacency correction
(Kiselev et al., 2015), iterative retrieval of atmospheric properties, and an iterative retrieval of scattering and
absorption properties of water column constituents for each water pixel. The iterative retrieval consists of a
least-square minimisation between modelled and measured sensor radiances resulting in best-fit absorption-
and backscattering spectra of the water body. Absorption and backscattering spectra can then be used to
derive quantitative units of water constituent concentrations using the so-called specific inherent optical prop-
erties. The retrieval process enables the definition of different water types covering a range of varying specific
inherent optical properties. In this study, we tested the capability of using a standard parameterisation to cover
the variety of oligo- to hypertrophic lakes. Here, Heege et al. 2014 defined the wavelength dependency of scat-
tering; the absorption of water constituents is a variable mixture between a Gaussian model by Gege 2000 and
a phytoplankton specific absorption spectrum as defined in Heege and Fischer 2004. The processor provides
various internal quality measures used for automated flagging and the adaptation to the specific inherent optical
properties.

5.2.3.2 CHL concentration and eoHAB index

Using mass-specific conversion factors, MIP relates the inherent optical properties to water quality parameters.
In this study, we focus on two water quality parameters, i.e. CHL and eoHAB (index on cyanobacteria pres-
ence). CHL retrieval relies on the retrieved absorption spectra. The total absorption consists of an inorganic
and organic component. Organic absorption comprises of CHL related absorption and remaining absorbing
components such as dissolved organic materials and tripton. Retrieving CHL concentration from CHL related
absorption follows a relationship in which 1 mg·m-3 CHL equals 0.035 m-1 CHL absorption at 440 nm. This
optimisation process additionally considers the specific scattering properties of phytoplankton.
The second parameter, the eoHAB index, refers to the presence of cyanobacteria. EoHAB is sensitive to the
appearance of cyanobacteria-related pigments, i.e. phycocyanin and phycoerythrin. Both pigments show ab-
sorption features in green wavelengths from 500 nm to approx. 640 nm; phycoerythrin shows its absorption
maximum at 540-570 nm, phycocyanin at 610-620 nm (Colyer et al., 2005). Most satellite sensors support the
identification of this feature with only two bands, i.e. one in the green wavelength region (e.g. L7 and L8 at
530-590 nm) and in the red wavelength region at approx. 640-670 nm. The used standard parameterisation of
phytoplankton absorption in MIP as described above, however, does not account phycocyanin and phycoery-
thrin absorption in the retrieval process. The modelled phytoplankton absorption therefore lacks the absorption
features of these pigments. Nonetheless, if these pigments are present in the water a slight spectral mismatch
between modelled water leaving reflectance (Rmodelled) and satellite derived reflectance (Rsatellite) occurs. The
algorithm then compares the slope of Rmodelled and Rsatellite between the green and red band (δR =Rgreen-Rred).
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Calculation of eoHAB (see also Fig. 5.5) follows Eq. 5.2.

eoHAB = 1 + 100 ·∆(δRsatellite − δRmodelled) (5.2)

EoHAB values typically range between 95 and 110. A higher eoHAB value indicates a higher mismatch
between Rsatellite and Rmodelled. Presence of phycocyanin and phycoerythrin result in lower Rsatellite values
compared to Rmodelled; we experienced that higher eoHAB values (> 100) point towards a higher probability of
cyanobacteria presence.

5.2.4 Analyses of MIP products

Evaluation of MIP products includes three parts: (1) evaluating the temporal development of average CHL and
eoHAB values from in situ samples and MIP products, (2) pixel-match-ups with in situ samples and (3) sensor
inter-comparisons. Spatial and statistical analyses were conducted using ArcGIS version 10.3 (ESRI, 2016), R
version 3.3.1 (R Core Team, 2016) and SNAP version 5.0 (SNAP, 2016).
To evaluate the temporal development of CHL we calculated the arithmetic mean and standard deviation of all
valid pixels in a data set, i.e. pure deep-water pixels (no influence of bottom substrate or neighbouring land)
with a good quality of parameter retrieval. To cover valid pixels from different sensors we had to define valid
pixels differently: in case of MODTE and MODAQ, we considered data with a viewing angle < 45◦. Since data
processing and parameter retrieval become error prone with increasing viewing angles, data sets acquired with
viewing angles > 45◦ provided inconsistent results and therefore have been left off. Moreover, a one-pixel buffer
surrounding land-masked pixels prevented using mixed land-water pixels. To provide a sufficient number of pix-
els for statistical analysis, we only used MODTE and MODAQ data sets with at least ten connected deep-water
pixels for further analysis.
For L 7/8 and S2A data, pixels with a water depth > 3 m (official bathymetric chart; LU-MV, 2002b) showed
no signal from bottom substrate and were therefore included in processing. In case of cloud coverage, we
calculated an additional two-pixel buffer (60 m) as an add-on to the cloud and cloud shadow mask to reduce
the number of pixels influenced by cloud boundary effects. Referring to all sensors, we further excluded pixels
with CHL below 1 mg·m-3 (or total absorption ≤ 0.1 m-1) from the analysis since mesotrophic to eutrophic lakes
normally show CHL > 3 mg·m-3 during summer months (Håkanson and Boulion, 2001; Wetzel, 2001). CHL
below 1 mg·m-3 has never been measured at Lake Kummerow (Table 5.1). We applied a similar processing
to the eoHAB product; afterwards we compared the eoHAB results with the cyanobacteria biomass fraction
measured from in situ samples. In total, we analysed 33 remote sensing products, i.e. 13 MODTE, 11 MODAQ,
four L7, four L8 and one S2A data sets.
To assess the accuracy of MIP retrieved CHL, we conducted pixel to sample match-ups for L7, L8 and S2A CHL
products. We only considered match-ups where in situ sampling and satellite acquisition differed in maximum
48 hours. In each data comparison, we calculated arithmetic mean and standard deviation of CHL from a 5 x 5
pixel area surrounding the pixel which corresponded to the GPS location of the sampling site. To consider GPS
and satellite positional inaccuracies, potential drift of boat and water masses we added the 5 x 5 pixel buffer.
To address MODTE and MODAQ large pixel sizes of 500 x 500 m2, we handled MODIS match-ups differently.
With respect to MODIS pixel size, sampling sites were located too close to the shoreline. Strict masking of
MODIS pixels resulted in a low number of positional matches between sampling sites and pixels. We therefore
compared arithmetic mean and standard deviation of all sampling points to the arithmetic mean and standard
deviation of all valid lake pixels at an acquisition date (including match-ups within 24 hours). Using R package
hydroGOF (Zambrano-Bigiarini, 2014), we calculated Root-Mean-Squared-Error (RMSE), normalised RMSE,
mean average error (MAE) and percentage bias (pbias) for each date and sensor.
To analyse sensor-inter-correlation, we compared CHL products derived from MODTE and MODAQ with those
derived from L7, L8 and S2A, which have been acquired on the same day. To this end, we calculated arithmetic
mean and standard deviation of all L7, L8 or S2A pixels, which fit into a valid MODTE or MODAQ pixel. After-
wards we determined Pearson’s correlation coefficient.
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We chose the first bloom event in summer 2015 to analyse the spatio-temporal patterns of algal blooms. To
interpret the spatial patterns we further included hourly wind data and daily sunshine duration from nearby
weather stations (Deutscher Wetterdienst, DWD, Fig. 5.1).

5.2.5 Trophic status assessment

In Germany, the WFD trophic status assessment follows the LAWA guidelines (Länder-Arbeitsgemeinschaft
Wasser; Riedmüller, 2014). The trophic index (TI) combines season (March to September/October) averages of
CHL (CHLSais), Secchi disk depth (STSais), total phosphorous concentration (TotPSais) and total phosphorous
during spring (TotPSpr) with highest weighting of CHL (Riedmüller, 2014). Averaging and weighting of indices
depends on the lake type. Eq. (5.3-5.7 are valid for polymictic lakes with an average depth > 3 m.

TI =
(CHL-Ind · 10 + STSais-Ind · 7 + TotSpr-Ind · 4)

26
, with (5.3)

CHL-Ind = 0.856 · ln(CHLSais[mg ·m−3]) + 0.560 (5.4)

ST -Ind = −1.304 · ln(STSais[m]) + 3.5932 (5.5)

TotPSais-Ind = 0.9987 · ln(TotPSais[mg ·m−3])− 0.9384 (5.6)

TotPSpr-Ind = 1.2232 · ln(TotPSpr[mg ·m−3])− 1.7408 (5.7)

For 2015, LU-MV provided measurement values for CHLSais, STSais, TotPSais and TotPSpr based on in situ
measurements(LU-MV, 2015b). For calculating ChlaSais, we replaced the July, August and September in situ
CHL by monthly average CHL values retrieved with MIP. To adress the temporal dynamic of CHL, we additionally
assessed the trophic class using the minimum and maximum lake average CHL concentration per month based
on satellite measurements. We then compared the retrieved TI and respective trophic classes based on either
in situ data or integrating satellite CHL. To include the spatial variability of CHL, we conducted an attempt to
retrieve a spatially explicit trophic class assessment. We created a 100 x 100 m2 grid covering the lake to deal
with the different resolutions of the used satellite sensors. We determined monthly average CHL concentrations
and applied Eq. 5.3 for each grid cell, whereas ST-Ind, TotPaisSais-Ind and TotPSpr-Ind remained constant.
TI values between 2.01 and 2.50 were classified as mesotrophic 2, between 2.51 and 3.00 as eutrophic 1
(Riedmüller, 2014).

5.3 Results

5.3.1 Uncertainty of in situ CHL concentrations

Fig. 5.2a shows a scatterplot of in situ CHL from CAU/TUM and UCL laboratory. The best-fit slope of the linear
least square regression was 1.15 indicating that CAU/TUM values tended to be lower than the respective UCL
results. Showing a Pearson’s correlation coefficient of r = 0.85 (p-value < 0.001) the data sets were significantly
correlated. Samples collected during the developing algal bloom deviated most. Fig. 2b depicts the histogram
of RPD values, which revealed a measurement uncertainty of ± 48 % (95 % prediction interval).
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Figure 5.2: Scatterplot of CHL measured at UCL and CAU/TUM laboratory (a). Only one sample per sampling site was
analysed by UCL, whereas CAU/TUM analysed three samples per sampling site (vertical error bars). Histogram
of relative percentage difference (RPD, Eq. 5.1) for CHL (b).

5.3.2 Evaluation with satellite and in situ data match-ups

Fig. 5.3 shows the comparison of in situ CHL and CHL derived from S2A (Fig. 5.3a), L8 (Fig. 5.3b) and L7
(Fig. 5.3c). Two sampling dates (7 and 23 August) matched exactly with L8. For one L7 data set (7 July) a
LU-MV sampling occurred two days after image acquisition. One S2A data set (6 August) is available, acquired
one day before CAU sampling. Four sampling dates matched with MODTE and MODAQ image acquisitions
(Fig. 5.3d, coloured points). Nine further samplings were within a ±1 day difference to MODTE or MODAQ
acquisitions (Fig. 5.3d, grey points).
Table 5.4 summarises evaluation measures for each pair of satellite acquisition/sampling measurements. On
7 July, in situ CHL varied between 2 and 10 mg·m-3 whereas L7 retrieved CHL was distinctly higher (10-
35 mg·m-3). On 7 August, in situ and L8 derived CHL matched well within the uncertainty range of in situ
measurements (± 48 %). Compared to L8, S2A data acquired the day before showed a higher variability in
CHL indicated by the vertical error bars; despite the one-day difference S2A and in situ CHL corresponded well.
On 23 August, L8 revealed a distinctly higher CHL than the corresponding in situ measurements. L7 matched
only one sampling with a two-day difference. Table 5.4 and Fig. 5.3c show that in situ CHL varied between 2
and 10 mg·m-3 whereas L7 retrieved CHL was distinctly higher (10-35 mg·m-3). The lake average CHL derived
with MODTE and MODAQ only partially matched average in situ CHL. As presented in Fig. 5.3d both sensors
provided outliers.

Table 5.4: Statistical evaluation measures between satellite retrieved CHL and in situ CHL acquired within 48 hours.

In situ data time difference RMSE
[mg·m-3]

MAE
[mg·m-3]

nRMSE [%] pbias [%]

L8 versus in situ 07 Aug ± 2 h 3.6 3.0 49.5 -7.5
L8 versus in situ 23 Aug ± 2 h 19.7 19.4 1120.6 363.2
L7 versus in situ 07 July + 48 h 6.2 6.2 110.3 124.3
S2A versus in situ 06 Aug + 1 d 5.1 4.5 69.2 -17.9
MODAQ versus in situ mean ± 24 h 14.9 11.5 68.3 64.6
MODTE versus in situ mean ± 24 h 7.1 5.9 32.6 20.5
MODAQ + MODTE versus in situ
mean

± 24 h 12.8 9.7 58.6 55.1
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Figure 5.3: Comparison of CHL retrieved from in situ measurements and S2A (a), L8 (b), L7 (c), MODTE and MODAQ (d)
acquisitions. Vertical error bars indicate the standard deviation of a 5 x 5 pixel environment (a-c) or of the lake
(d). Horizontal error bars represent standard deviation of in situ measurements at the sampling sites, the grey
shaded area indicates the 48 % uncertainty of in situ measurements.

5.3.3 Correlation in satellite CHL between different sensors

Fig. 5.4 shows a scatterplot between CHL values retrieved from MODTE/MODAQ and the other sensors ac-
quired within ± 2 hours. Vertical error bars indicate variability of CHL of L7/8 or S2A within a MODTE/MODAQ
pixel. For four satellite pairs, which have been acquired within 20 minutes, CHL values are close to the 1:1
line, i.e. L7 with MODTE/MODAQ and S2A with MODTE. S2A had a significant strong positive correlation with
MODTE (Table 5.5) whereas S2A retrieved lower CHL (pbias = -22.5 %) than MODTE. On 31 August, the
L7/MODTE pair matched well while on 7 July, both L7/MODIS pairs correlated insignificantly. The L7/MODTE
pair, however, was closer to the 1:1 line (pbias = -9.3 %).
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Figure 5.4: Comparison of L7, L8 or S2A and MODIS CHL acquired at the same day, error bars indicate standard deviations
of L7, L8 and S2A within the corresponding MODIS pixel.

Table 5.5: Statistical relationship between the CHL values of L7, L8 or S2A and MODAQ or MODTE acquired on the same
day.

Sensor pair Time dif-
ference

n Pearsons’r p-value RMSE
[mg·m-3]

MAE
[mg·m-3]

nRMSE [%] pbias [%]

L7-MODAQ 07 Jul 2 h 42 0.35 0.012 9.0 9.0 478.6 385.1
L7-MODTE 07 Jul 20 min 42 0.38 0.017 1.6 1.2 30.1 -9.3
L7-MODTE 31 Aug 20 min 32 0.64 < 0.001 2.7 2.3 28.1 3.4
L7-MODTE 25 Sep 20 min 27 0.23 0.127 5.1 4.7 63.4 32.2
S2A-MODTE 06 Aug 10 min 37 0.89 < 0.001 5.2 5.0 50.2 -22.5
L8-MODAQ 07 Aug 1 h 15 min 35 -0.33 0.049 19.5 19.4 286.1 -55.6

5.3.4 Multi-sensor time series of CHL and eoHAB

Fig. 5.5a shows the time series of CHL at Lake Kummerow between 1 July and 3 October 2015. For the
entire time span with 33 data acquisitions, satellite retrieved CHL varied between 2.3 and 35.8 mg·m-3. At the
beginning of July, satellite CHL started around 10 mg·m-3. After a data gap due to bad weather conditions,
satellite CHL rapidly increased from 5.0 to 35.8 mg·m-3 in the first half of August. Between mid-August and
the beginning of October, satellite CHL fluctuated around 20 mmg·m-3. CHL from in situ measurements is the
arithmetic mean of all measurements at all sampling sites and the corresponding standard deviations (Fig. 5.5a).
In total 14 in situ data sets are available (3 LU-MV and 11 CAU) with in situ CHL ranging between 1.7 and
23.5 mg·m-3. At the beginning of July, in situ CHL was around 10.0 mg·m-3 similar to satellite average. In the
first week of August, in situ CHL increased from 1.7 to 16.7 mg·m-3; it decreased below 7.0 mg·m-3 in the
second half of August, but increased again towards a maximum value on 30 September (23.5 mg·m-3). In
general, satellite CHL showed higher variation than in situ measurements. Overall, both approaches followed
the trend with lower CHL in July an and higher CHL in late summer/ early autumn; satellite CHL reached its
maximum in mid-August already (35.8 mg·m-3). Significant deviations occurred in August, where in situ and
satellite CHL indicated an algae bloom.
Fig. 5.5b shows the development of lake average eoHAB values for the same period. The Figure also illustrates
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the cyanobacteria percentage of phytoplankton biomass at the LU-MV sampling days. In July, the cyanobacteria
share was less than 4 %. Consistently, eoHAB values were low (< 100). At the beginning of August, eoHAB
values increased to 100.5, slightly varied around this level until mid-September before it reached its maximum
(101.8) at the end of September/beginning of October. The cyanobacteria fraction showed a similar behaviour
with an increase up to 40 % in August and a subsequent high value in September.
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Figure 5.5: Lake average satellite CHL and in situ CHL between 1 July and 3 October 2015. Vertical bars indicate standard
deviation (a). Lake average eoHAB and cyanobacteria fraction of biomass (LU-MV, 2015b) (b), measured water
surface temperature (c) and daily sunshine fraction measured at DWD station Teterow (Deutscher Wetterdienst,
2016b) (d).
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5.3.5 Spatio-temporal development of an algal bloom

Fig. 5.6 shows the spatio-temporal development of CHL between 1 and 7 August. Fig. 5.7 depicts wind
speed and wind direction measured at a nearby weather station over the same period. On 1 August, MODAQ
showed mean CHL of 10.6 mg·m-3 with an increase from the northern part (5 mg·m-3) towards the southern
part of the lake (12 mg·m-3). Two days later, CHL was more homogenously distributed with an average CHL of
12.4 mg·m-3. On 5 August, the distribution seems inverse to 1 August showing low CHL (∼ 3-5 mg·m-3) in the
southern part and higher CHL (15 mg·m-3) in the northern part. The high spatial resolution of S2A captured
distinct spatial patterns of CHL on 6 August, i.e. low concentrations (3-5 mg·m-3) in the north-eastern part and
high concentrations up to 45 mg·m-3 in the western part. Ten minutes later, MODTE acquired similar patterns
but a higher average CHL. Furthermore, MODTE was unable to monitor the veil-like structures with very high
CHL apparent in the S2A data set. The coarse spatial resolution of the former also impeded a detection of
low CHL areas close to the north-eastern shoreline. One day later, L8 depicted a rather homogenous CHL
distribution with a relative maximum of 22 mg·m-3 in the south-eastern part.
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Figure 5.6: Multi-sensor CHL from 1 August to 7 August showing the spatio-temporal behaviour of an algal bloom. Coordinate
system: UTM zone 33N, WGS 84.
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Figure 5.7: Hourly wind speed (a) and direction b) measured at DWD station Sukow-Levitzow from 31 July to 7 August.
Vertical bars indicate satellite image acquisitions.

5.3.6 Integrating remote sensing data into WFD monitoring

Table 5.6 summarises season and spring average values of Secchi disk depth and total phosphorous con-
centration originating from in situ measurements (LU-MV, 2015b); it also lists the CHL values in more detail.
Monthly averages from satellite products were distinctly higher in July and August, resulting in higher ChlaSais
and ChlaSais-Index values. The final trophic index obtained with integrated satellite CHL showed a 0.13 higher
value compared to the LU-MV index. Contrary to the classification according to in situ data (mesotrophic 2),
Lake Kummerow was classified as eutrophic 1 using satellite based CHL data during the observation period.
Using the maximum lake average satellite CHL, the trophic class was eutrophic 1; using the minimum lake
average satellite CHL, the trophic class was mesotrophic 2 equal to the in situ based assessment.

Fig. 5.8a-c emphasise the monthly CHL arithmetic means based on a 100 x 100 m2 grid showing the spatial
variability of the trophic class assessment (Fig. 5.8d). The lake mainly achieved the class eutrophic 1 whereas
parts along the eastern shoreline were classified as mesotrophic 2.

Figure 5.8: Monthly arithmetic mean for July (a), August (b) September (c) and trophic class (d) based on a 100 x 100 m2

grid. Coordinate system: UTM zone 33N, WGS 84.
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Table 5.6: Season and spring average values for trophic index calculation based on in situ measurements from LU-MV
(2015c). Monthly average CHL based on satellite data are marked bold.

StSais
[m]

TotPSais
[mg·m-3]

TotPspr
[mg·m-3]

Monthly
CHL
[mg·m-3]

CHLSais
[mg·m-3]

CHLSais-
Index

Trophic
index

Trophic class

Trophic class
assessment
based on in situ
data

2.5 36 40

March 5.1

7.0 2.2 2.44 mesotrophic 2

May 5.0
June 2.3
July 5.0
August 6.7
September 17.8

Trophic class
assessment
based on mean
satellite
measurement

2.5 36 40

March 5.1

10.4 2.6 2.57 eutrophic 1

May 5.0
June 2.3
July 12.4
August 20.7
September 16.8

Trophic class
assessment
based on
minimum satellite
measurement

2.5 36 40

March 5.1

4.3 1.8 2.28 mesotrophic 2

May 5.0
June 2.3
July 4.5
August 6.6
September 4.3

Trophic class
assessment
based on
maximum satellite
measurement

2.5 36 40

March 5.1

16.4 3.0 2.72 eutrophic 1

May 5.0
June 2.3
July 25.2
August 35.8
September 25.0

5.4 Discussion

5.4.1 Inter-comparability based on match-ups

Comparisons between satellite CHL and in situ measurements collected within a specific time span are a com-
mon way to evaluate satellite derived results. Uncertainties associated with in situ measurements, however,
often are ignored (Dörnhöfer and Oppelt, 2016). Major sources of uncertainty in CHL estimation are the filtration
and the pigment extraction from filter using a solvent (McKee et al., 2014). To consider uncertainties associated
with our in situ measurements we followed the approach by Claustre et al. 2004 to find an uncertainty range
in which satellite CHL is allowed to vary. The calculated ± 48 % uncertainty of photometric measurements
seemed to be comparable to uncertainties of HPLC (high pressure liquid chromatography) measurements pub-
lished by McKee et al. 2014 (± 28 %) or Claustre et al. 2004 (± 20 %). One of the few published round robin
tests conducted in German laboratories reported deviations up to 130 % in determining CHL photometrically
using DIN 38412-L16 (AQS, 2008). A comparison between in situ and satellite CHL should therefore consider
uncertainty ranges of in situ data and not merely focusing on exact matches.
L7 was slightly higher than in situ samples collected two days after image acquisition. Other than the time differ-
ence, this mismatch may be a result of its low radiometric resolution (8 bit). Further uncertainty of L7 products
results from filling data gaps due to SLC-off; the data gaps are filled via interpolating neighbouring pixel, which
may lead to artificial CHL variations independent from real conditions. Nonetheless, the match-up was included
as being the closest and only match between in situ and a L7 data take.
Concerning L8 recent studies found that satellite and in situ CHL matched well at various concentrations
(∼1 mg·m-3, (Giardino et al., 2014a), ∼11 mg·m-3 (Bresciani et al., 2016), up to 100 mg·m-3, (Concha and
Schott, 2016)). In case of S2A, Toming et al. 2016a retrieved promising results for CHL between 4 and
73 mg·m-3, whereas Dörnhöfer et al. 2016b stated CHL of around 1 mg·m-3 too low for a solid retrieval. L8 and
S2A CHL matched well with sampling results from 7 August (10-20 mg·m-3) within the uncertainty range. Our
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comparison with in situ measurements from 7 August emphasises S2A’s and L8’s suitability for CHL monitoring
in mesotrophic-eutrophic lakes. The mismatch on 23 August with L8, however, contradicts this statement. On
that day satellite measurements were in good agreement (20-25 mg·m-3) whereas in situ CHL was on a much
lower level (∼5 mg·m-3). Differences may result from surface scum captured by satellite and missed in the
water samples (section 5.2.4). Otherwise, our sampling strategy just below the water surface may have ex-
cluded phytoplankton located deeper in the euphotic zone, which may have contributed to the satellite signal. A
mixed water sample down to Secchi disk depth or profile measurements may improve the comparison between
satellite and in situ data. Furthermore, vertical migration of cyanobacteria due to buoyancy effect can rapidly
alter their concentration. Buoyancy performs most effective under stable water column conditions (Oliver et al.,
2012). During the sampling on 23 August, wind speeds increased from 3.9 to 7.3 m·s-1 impeding a stable water
column (Table 5.2). At this day, in situ CHL showed little variation between sampling sites and standard devia-
tion was close to zero contrary to all other samplings. Therefore, the mismatch may also be attributed to errors
in laboratory analyses such as improper pigment extraction. For MODAQ and MODTE, we compared lake av-
erage MODTE/MODAQ CHL with average in situ CHL. Only six out of 13 match-ups between MODTE/MODAQ
and in situ sampling fell within the uncertainty range, suggesting a low performance of MODIS CHL retrieval.
Comparing MODTE/MODAQ lake average CHL with in situ average may have introduced an offset, since sam-
pling mostly focused on parts of lakes, i.e. south (LU-MV) and north (CAU/TUM). Overall, MODIS provided
higher CHL values than in situ measurements. Furthermore, MODTE and MODAQ results also differed on days
where both satellites provided valid data sets (e.g. 1 August, Fig. 5.3d or 7 July, Fig. 5.4). Politi et al. 2015 also
reported such deviations and assumed MODTE sensor degradation and changes in atmospheric conditions be-
tween image acquisitions (MODAQ is 3 hours after MODTE) as possible reasons. In the match-ups (Fig. 5.3d),
however, MODTE performed better than MODAQ. The cross-sensor comparison (Fig. 5.4) also shows that
MODTE and L7/S2A pairs acquired within 20 minutes scattered closer to the 1:1 line, suggesting comparable
results between satellites. Therefore, the observed differences between MODTE and MODAQ are probably due
to changing water (e.g. buoyancy effect, sun glint) or atmospheric conditions (e.g. increasing aerosol optical
thickness, water vapour content, wind speed or direction). These conditions may change rapidly; their effects
on CHL retrieval are worth to be further investigated in upcoming multi-sensor constellations such as Sentinel-2
and Sentinel-3.

5.4.2 Inter-comparability based on temporal evolution

Combining different remote sensing systems and in situ measurements allowed generating time series of CHL
and eoHAB values at Lake Kummerow. Comparing temporal development of in situ and satellite CHL may
overcome the constraints associated with a limited number of match-ups. In situ and satellite CHL generally fol-
lowed a similar trend with lower CHL levels at the beginning of July, and higher CHL levels in late summer/early
autumn. We observed some obligations for satellite based monitoring due to bad weather conditions with high
cloud coverages, which reduced the number of available satellite data – particularly in the second half of July.
A perfect match between satellite and in situ CHL development occurred in the first week of August when both
methodological approaches described a forming algal bloom. During this week, sunshine fraction was ≥ 80 %
leading to an increase in water surface temperatures from 17 ◦C to > 20 ◦C reaching a maximum of 24 ◦C on 7
August (Fig. 5.5c, d). For these temperatures, Paerl et al. 2016 reported growth rates of cyanobacteria around
80 % assuming non-nutrient limited conditions. Consequently, satellite and in situ CHL values increased and
indicated the development of an algae bloom. EoHAB values increased accordingly (Fig. 5.5b). In mid-August,
the increased eoHAB values matched well with predominating cyanobacteria indicated in the biomass analy-
sis. Contrary, distinct discrepancies between in situ and satellite CHL occurred. Satellite CHL indicated an
ongoing bloom event with lake average CHL > 30 mg·m-3, whereas LU-MV and CAU/TUM sampling measured
CHL between 5 and 7 mg·m-3. We discussed presumable errors in laboratory analyses for CAU/TUM values
(Section 5.4.1). Discrepancies between satellite and regular monitoring CHL (LU-MV), however, may be a re-
sult of methodological differences. Bertani et al. 2017 also observed such discrepancies during bloom events.
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Cyanobacteria blooms often have patchy surface structures (Kutser et al., 2006). Depending on the sampling
site and patch distribution, in situ CHL may be lower than satellite derived CHL data (Bertani et al., 2017). In
cases, which involve a surface scum-forming bloom, satellites capture mainly the surface scum with high CHL
concentrations. Water samples which were taken from below the surface may not contain surface scum (Bertani
et al., 2017), which may again lead to lower CHL compared to average satellite CHL. Moreover, satellite derived
CHL results from the sum of the absorption features of CHL and its degradation pigment phaeophytin-a (Trees
et al., 2000). Separating CHL and phaeophytin-a is infeasible with the spectral resolution offered by sensors
such as L8; the satellite based CHL therefore represents an indicator on living and degraded phytoplankton
biomass. After the bloom peak in mid-August, phaeophytin-a from decaying algae may have contributed to
the satellite signal; phaeophytin-a, however, was not measured in situ (CAU/TUM) and thus may represent a
potential source of uncertainty.

5.4.3 Spatial development of an algal bloom

Spatial variation of phytoplankton depends on the variation of biological processes such as growth rate, grazing,
regulated buoyancy and vertical migration (Reynolds, 2006; Winder and Sommer, 2012). The main abiotic fac-
tor driving spatial patterns of surface blooms is wind (Wu et al., 2015). Accordingly, wind conditions may explain
the spatial patterns of the surface bloom at the beginning of August. Rainfalls and strong westerly winds at the
end of July, which mixed the surface layer and increased nutrient availability (Winder and Sommer, 2012), prob-
ably initiated the first summer phytoplankton bloom in 2015. Phytoplankton started to grow in the southern part
of the lake (inflows) on 1 August (Fig. 5.6a). Until the next MODAQ data acquisition on 3 August (Fig. 5.6b),
high sunshine fraction strongly increased water surface temperature (Fig. 5.5c, from 17 ◦C to 24 ◦C) which
resulted in a homogenous distribution of slightly higher CHL concentrations. Wind direction of around 250◦

before 5 August pushed phytoplankton towards the northern part of the lake, which was visible as high CHL
area in the respective MODAQ data. The wind speed decreased below 2 m·s1 so cyanobacteria, which favour
calm conditions (Harke et al., 2016), may have upwelled towards the surface. Similarly, the eoHAB indicator
increased (Fig. 5.5b). Predominating easterly/ south-easterly winds with wind speeds up to 7 m·s1 resulted in
an accumulation of higher CHL along the western lake region during S2A data acquisition (Fig. 5.6d). MODTE
captured a similar pattern (Fig. 5.6e); average CHL, however, was higher since the large pixel sizes missed the
low concentrations in the western lake region. 12 hours before L8 data acquisition, wind directions alternated
between 90◦ and 320◦ with varying wind speeds, which may have resulted in the relatively homogenous distri-
bution of CHL (Fig. 5.6f). The spatial resolution of L8 and S2A enabled a detailed view of spatial CHL patterns,
which point-based sampling is unable to provide. These sensors may therefore help reducing uncertainties in
ecological status classification (Søndergaard et al., 2016). Furthermore, public authorities or agencies may use
these data to monitor the spatial development of blooms, to timely detect anomalies at bathing places (Potes
et al., 2011) or to enhance site-specific management (Mercado et al., 2016).

5.4.4 Integration of satellite data into trophic state assessment

Søndergaard et al. (2016) proposed the integration of remote sensing into lake monitoring to reduce uncer-
tainties in ecological status classification originating from spatial variability. We therefore tested the impact
of integrating satellite CHL on the trophic class assessment at Lake Kummerow. According to German WFD
assessment (Riedmüller, 2014) of 2015, Lake Kummerow achieved the status mesotrophic 2 (trophic index =
2.44) which meets its potential natural trophic class (mesotrophic LU-MV, 2015a). Substituting the LU-MV CHL
values (July, August and September) by satellite average CHL resulted in the class eutrophic 1. This was mainly
due to differences in satellite values in July and August, which were significantly higher (2.5-3 times) than in
situ measurements. Particularly in August, LU-MV in situ monitoring (despite observing two sampling sites)
seemed to miss the spatio-temporal variability of CHL as well as the bloom development. Using the monthly
minimum and maximum satellite measurements intended to cover the temporal dynamics of CHL in the trophic
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classification; two different trophic classes were the result. Temporal dynamics of CHL therefore may have an
impact on the trophic classification, in particular when a lake is at the transition between two classes. Fig. 5.6
and the vertical bars in Fig. 5.5a emphasised a spatially variable CHL, which was supported by the gridded
monthly averages of CHL (Fig. 5.8a-c). A spatially distributed trophic classification resulted in a predominantly
eutrophic 1 lake. Using the satellite monthly average without addressing spatial variability yielded the same
class. Nevertheless, neglecting the spatial variability misses eastern parts of the lake, which were classified as
mesotrophic 2. Although the lake is well mixed and relatively uniform in shape, integrating spatial variability of
CHL reveals spatially variable trophy. We assume such patterns to be more pronounced in lakes with higher
shoreline development. In this study, Secchi disk depth and phosphorous concentrations remained spatially
constant. Since nutrients lack optical influence in natural waters, optical remote sensing hardly can provide
spatial information on phosphorous concentrations; approaches for estimating Secchi disk depth (Lee et al.,
2015b) or indicators of transparency (references in Dörnhöfer and Oppelt, 2016) exist. Remote sensing may
introduce temporal irregularities into a currently systematic in situ sampling scheme. Due to the dependence
on cloud-free conditions, satellite data availability can lead to data gaps. Similar to different in situ or laboratory
measurements, different sensors perform with different accuracies. Remote sensing can increase the number
of observations and spatial variability of certain indicators used for trophic state assessment. Its integration into
trophic state assessment would be associated with new challenges, which are worth to be investigated:

• combining temporally regular and irregular data

• fusing spatially variable and constant data

• integrating data from sensors with different accuracies

In our analysis, remote sensing data indicates that existing management strategies based on in situ data are
incapable of reducing nutrient inputs to such an extent that the lake regain its natural trophic class. Bresciani
et al. 2011c also reported misclassifications of lakes when based solely on in situ measurements. Their
conclusions as well as a study of Kiefer et al. 2015 support the results of the present analysis that the spatio-
temporal detail of satellite data is well placed to assist examining appropriate in situ monitoring sites.

5.4.5 Integrated multi-sensor monitoring of lakes

The overarching aim of this study was to evaluate the inter-comparability of CHL derived from different sensors
and in situ measurements to promote a multi-sensor use for lake monitoring. A comparison of satellite and in
situ based time series revealed a reasonable and generally similar development. Some discrepancies, espe-
cially during bloom events, may be due to methodological differences (Bertani et al., 2017). Referring to a limited
in situ data set, S2A and L8 yielded promising results; match-ups with MODIS indicated a varying performance.
Nevertheless, we have to bear in mind that satellite and in situ measurements rely on different methodological
approaches, i.e. the former is based on a measurement of radiation from a large volume of water while the
latter is a result of photometric measurement of a few millilitres of water in a laboratory. Such comparisons are
inevitable; however, we should keep in mind their limited comparability. We therefore recommend using uncer-
tainty ranges rather than aiming exact matches. Outliers of both satellite and in situ data further emphasised
that neither approach should be credited without any doubts. Comparing CHL from S2A/L8/L7 with CHL from
MODIS helped to overcome the general limitation of upscaling in situ measurements to satellite level.
Clouds and unfavourable meteorological conditions which complicate atmospheric correction and the subse-
quent CHL retrieval are the main shortcomings of optical remote sensing (Harvey et al., 2015). Cloud cover
also reduced the number of suitable satellite scenes in our study. The high frequency of MODIS observation,
however, significantly contributed to the large number of satellite observations. Using single MODIS pixel for
analysing Lake Kummerow was ineffective leading to a further limitation, i.e. spatial resolution and subsequent
problems with mixed pixels and adjacency effects. Using average values of 10-40 MODIS pixels, however,
resulted in an unexpected reasonable match within the time series development. This finding also supports re-
sults of Matthews et al. 2010 who used average values of around 20 MERIS pixel when analysing algal blooms
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at Lake Zeeklovei, South-Africa. The time series investigated emphasised a significant increase of temporal
information when integrating multi-sensor data, i.e. sensors with high spatial/low temporal and low spatial/high
temporal resolution. Future studies may therefore also integrate the OLCI instrument on board of Sentinel-3
with a spatial resolution of 300 x 300 m2 (Berger et al., 2012).
There are other studies which discussed benefits of remote sensing due to the increased temporal information
(e.g. Bresciani et al., 2011c; Matthews, 2014; Palmer et al., 2015c). Recently, Bresciani et al. 2016 detected
a strong cyanobacterial bloom in Italian lakes in October and November, which standard monitoring programs
(April to September) were unable to capture. We observed a similar situation at Lake Kummerow; rising eoHAB
values indicated an algae bloom at the beginning of October which official WFD monitoring was missing. The
World Health Organisation guidelines, however, recommend detailed analysis of potentially toxic cyanobacteria
for CHL ≥ 10 mg·m-3 (Chorus et al., 2000), which would have applied to Lake Kummerow (> 20 mg·m-3).
A synergetic use of suitable high spatial resolutions sensors, i.e. S2A and L8, in combination with the high
temporal resolution of MODIS theoretically provides daily coverage, which increases the chance for cloud-free
observations and a consistent monitoring of surface CHL. It may further improve observing, modelling and
understanding ecological processes in lakes and their response to current stressors. Remote sensing cannot
provide information on the toxicity of cyanobacteria (Stumpf et al., 2016) but a remote sensing based moni-
toring may support preventive health care at recreational sites. Additional integration of in situ sampling may
cover cloudy periods as well as the vertical variability of CHL and additionally provides detailed information on
phytoplankton species.

5.5 Conclusions

In the present study, we combined different sensors (MODTE, MODAQ, L7, L8, S2A) and in situ data to analyse
a time series of CHL and eoHAB (indicator of cyanobacteria presence) at Lake Kummerow, Germany, during
summer 2015. To ensure a comparable and consistent data processing for atmospheric correction and retrieval
of hydro-biological parameters we applied the physically based model MIP using a standard parameterisation
for oligo- to hypertrophic lakes. MIP-CHL products revealed a temporal development, which corresponded
reasonably well with in situ data and weather conditions. Methodological differences between satellite and in
situ measurements may have accounted for discrepancies observed in the CHL time series. Analysis and dis-
cussion of uncertainties for in situ and satellite data is crucial. Providing pixel based uncertainty measures,
may increase confidence of end-users. They often doubt satellite products, while in situ data are considered
as being the absolute truth. For in situ CHL, the present study revealed an uncertainty range of 48 %; for a
valid discussion of results we therefore recommend the use of uncertainty measures for both, in situand remote
sensing data, to overcome the call for a perfect match.
Data derived from high spatial resolution (L7, L8, S2A) offered details on spatial patterns in surface CHL and
phytoplankton blooms, which could be explained by prevailing wind conditions. By using temporally and spa-
tially highly resolved information, end-users such as local authorities may optimise existing monitoring or man-
agement strategies. Comparisons based on limited in situ data showed promising results for L8 and S2A, but
require further quantitative assessments. Satellite data enabled detecting phytoplankton blooms in early August
and at the beginning of October which in situ monitoring was missing. The study also showed that combining
remote sensing and in situ measurements offers great potential for trophic state assessment; integration of
satellite data led to a more reliable trophic classification, which also highlights the importance of adequately
considering the spatio-temporal variability of CHL in monitoring approaches.
Remote sensing may improve the existing monitoring of phytoplankton and cyanobacteria of lakes. Combin-
ing data from different satellite sensors with high spatial/low temporal and low spatial/high temporal resolution
allows a theoretically daily coverage. The former provide spatial detail whereas the latter may fill time gaps
by using lake average values. Satellite and in situ measurements, however, do have limitations and contain
uncertainties in representing the actual conditions of a lake. A combined approach, which integrates traditional
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in situ sampling and multi-sensor satellite products, enhances phytoplankton and cyanobacteria assessment
and therefore may be a step towards a holistic monitoring of lakes.
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Abstract
Monitoring water constituents of lakes using satellites is gaining increasing importance. Image archives of
historic satellites represent valuable data sources to analyse the development of constituent concentrations
over time and to derive trends. This study presents an analysis of the MERIS archive (2003-2011) using a
neural network algorithm (FUB/WeW) to retrieve concentrations of Chlorophyll-a, total suspended matter and
absorption by coloured dissolved organic matter (440 nm) at Lake Kummerow. All three constituents showed
a clear seasonality: chlorophyll-a (0.3 - 45.8 mg·m-3) exhibited a spring bloom and multiple blooms during
summer. Total suspended matter (0.1 - 10.0 g·m-3) and coloured dissolved organic matter (0.01 - 0.94 m-1)
revealed highest values during summer and lower values during autumn/winter. While total suspended matter
(-1.3 g·m-3) and chlorophyll-a (-3.4 mg·m-3) showed a decreasing tendency from 2003-2011, coloured dissolved
organic matter showed no clear trend. Chlorophyll-a retrieved from MERIS was around 20 % higher than in
situ measurements. The other constituents (total suspended matter and coloured dissolved organic matter)
were obtained by qualitative analysis due to the absence of in situ measurements. This analysis provides a first
multi-year time series on these constituents over the whole lake and all seasons. Both, its size and its form,
make Lake Kummerow a suitable lake for remote sensing validation activities. Recent and upcoming satellites,
especially of the Sentinel missions, will provide further valuable information for integrating remote sensing into
lake monitoring.

Keywords
inland waters, seasonality, spatial patterns, trend analysis
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6.1 Introduction

Humans benefit from several ecosystem services offered by lakes including flood regulation, energy produc-
tion, water and food supply, and recreational activities (Artell, 2013; Reynaud and Lanzanova, 2017). Moreover,
lakes provide habitat for various species and are crucial components of nutrient, carbon and hydrological cycles
(Moss 2012). Lake ecosystems, however, are seriously threatened by global change (Millennium Ecosystem
Assessment, 2005); Climate change, intensified agricultural use and wastewater discharge have led to glob-
ally increasing nutrient concentrations and rising trophic levels (Rose et al., 2017; Smith and Schindler, 2009;
Winder and Schindler, 2004). Thus, global change affects lakes directly or indirectly, i.e. via changes in their
catchment (Adrian et al., 2009; Williamson et al., 2009). Changing lake condition and water quality also mirrors
changes in the environmental status of the catchment (Randsalu-Wendrup et al. 2016). To understand and
manage lake water quality, particularly in the context of global change, we need to understand how and why
lakes respond to different drivers across space and time (Rose et al., 2017).

Passive remote sensing systems allow a spatial-temporal monitoring of water quality parameters that are
optically active, i.e. that affect lake water colour through scattering and/or absorption (IOCCG, 2000). Promi-
nent examples are chlorophyll-a (CHL), total suspended matter (TSM) and coloured dissolved organic matter
(CDOM).

CHL is highly correlated with phytoplankton biomass and therefore a common indicator of lake trophic state
(Solheim et al., 2013). In nutrient-rich, temperate lakes CHL typically exhibits a seasonal development with a
spring bloom (high concentration) followed by a clear water phase (low concentration) and one or more blooms
with very high concentrations during summer and autumn (Reynolds, 2006). Information on winter CHL is rarely
available but it is expected to be considerably lower than in summer (Hampton et al., 2017). Remote sensing
takes advantage of the specific absorption features located between 440 nm and 560 nm and at around 670
nm (Matthews 2011) but may also benefit from fluorescence maxima (e.g. fluorescence line height algorithm at
685 nm in Palmer et al., 2015a).

TSM consists of organic (detritus) and inorganic components (mineral particles) which enter the lake via
tributaries (catchment erosion). TSM therefore represents an important carrier of nutrients and contaminants.
In shallow lakes, wind-induced resuspension of bottom sediments and degrading phytoplankton may increase
the TSM content in the water column (Madsen et al., 2001). Most remote sensing algorithms focus on the
backscattering properties of TSM, which decline from 350 to 900 nm. In mineral-rich waters, however, TSM
may also act as absorber that reduces the light penetration depth of the lake (Eder et al., 2016; Giardino et al.,
2010b). High TSM concentration has a masking effect on the absorption features of CHL and CDOM.

CDOM is the optically active component of dissolved organic carbon (DOC). It is often considered as an
indicator for DOC (Brezonik et al., 2015; Toming et al., 2016b) which in turn is an important response variable
of lakes to climate change (Adrian et al., 2009). Statistical relationships between DOC and CDOM can vary
within in a lake in space and time due to the variability of external inputs from the catchment or of lake internal
production from phytoplankton or macrophytes (Hestir et al., 2015b). The spectral behaviour of CDOM exhibits
an exponentially decreasing absorption from 350 to 900 nm. Its highest absorption in the blue wavelengths
interferes strongly with the high absorption of CHL in this wavelength region.

The above-mentioned water constituents and their concentrations are related to processes in the catchment
of a lake. CHL is a regularly monitored parameter within the European Water Framework Directive (Pasztale-
niec, 2016). Less detailed information is available for CDOM and TSM. In this study, we therefore conducted
an analysis of the MERIS archive to investigate the spatial-temporal development of water constituent con-
centrations in Lake Kummerow. To do so, we retrieved the first multi-year time series (2003-2011) on water
constituents (CHL, TSM, CDOM) at Lake Kummerow using a well-established algorithm designed for MERIS
data. Our specific aims were (1) to analyse the temporal development and trends, (2) to figure out seasonal
cycles and (3) to map spatial patterns of water constituents.
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6.2 Study area and in situ data

Lake Kummerow (53.808◦N, 12.856◦ E, size: ∼32.5 km2), Germany, formed as a proglacial lake during the
last glacial period (Pomeranian stadium during Weichsel glacial). The wind-exposed location and the relatively
shallow depth (average 8.1 m) cause a polymictic character. Thermal stratification rarely occurs during warm
and windless summer days. The ‘West Peene‘ in the south and ‘Kleine Peene‘ in the west are the main inflows.
The ‘Peene‘ outflow is located at the northern end of lake (Fig. 1). The low gradient from the lake’s outflow to the
Baltic Sea (0.2-0.5 m) often leads to wind-induced backwater effects; these backwater effects mainly influence
the northern part of the lake. The water residence time is less than 2 years (Wöbbecke et al., 2003). Sediment
core analysis revealed a eutrophic development since several thousand years (Kalbe and Werner, 1974). An-
thropogenic activities in the lake catchment such as deforestation, agricultural use and wastewater discharge
have amplified eutrophication for the last 150 years. Today, agricultural cultivation (51.4 %) predominates the
land use in the catchment (size: ∼1,150 km2) followed by forests (19.1 %) and grasslands (17.1 %). Several
bathing places and other water activities (e.g. sailing, windsurf, canoe, and fishing) make the lake a popular
touristic area. Nevertheless, the shoreline remains an important breeding and resting area for waterfowl.

The lake’s catchment is part of the terrestrial validation site ‘Durable Environmental Multidisciplinary Monitor-
ing Information Network‘ (DEMMIN; Borg et al., 2014). Located east of Lake Kummerow, DEMMIN represents
an agricultural landscape of approximately 30,000 ha in the German North-Easthern Lowlands Observatory
of TERENO (TERrestrial ENvironmental Observatory; Bogena et al., 2012). The lake’s catchment partly cov-
ers and its outflow (river ‘Peene‘) crosses DEMMIN as direct environmental connection. This special location,
therefore, makes Lake Kummerow a connecting and integrative element of this intensively monitored landscape.

Since 1998, the lake monitoring programme of the federal state Mecklenburg-Western Pomerania (LU-MV)
regularly samples (each year 4-6 times from March to October) two measurement sites (Fig. 6.1). Measure-
ments include CHL, water temperature, pH, oxygen concentration/ saturation, Secchi disk depth, total and
dissolved organic carbon, and nutrient concentrations from the surface to the lake bottom (see Dörnhöfer et al.,
2018a). CHL photometric estimation of water samples follows DIN 38412-L16. Sampling also showed that
diatoms (Bacillariophyceae) predominate the spring bloom whereas cyanobacteria, i.e. toxin producing Micro-
cystis spp, prevail during summer blooms (LU-MV, 2016; Wöbbecke et al., 2003).

6.3 Earth observation data and methodology

6.3.1 MERIS data and image processing

MERIS (Medium Resolution Imaging Spectrometer) full swath geo-corrected full resolution datasets from 1 Jan
2003 to 31 Dec 2011 formed the basis for this study. The MERIS sensor operated in push-broom mode providing
fifteen spectral channels between 412 and 900 nm with a spatial resolution of 300 x 300 m2 on the ground (Bezy
et al., 1999). MERIS was on board of the sun synchronous polar orbit earth-observation satellite ENVISAT at
an altitude of 790 km, which terminated its operation on 9 May 2012. The last MERIS image was recorded on
8 April 2012.

MERIS acquired data of Lake Kummerow every one or two days. Cloud coverage, other atmospheric influ-
ences and influence by sun glint reduced the number of acquisitions suitable for data analysis. The processing
of the MERIS data has been performed in four processing steps, which were all implemented in an automated
processing chain. The processing steps comprised pre-processing, atmospheric correction, in-water retrieval
and post-processing. All processing steps were conducted on the Calvalus cluster at Brockmann Consult, which
holds the full MERIS archive and dedicated parallelised processing infrastructure. Pre-processing comprised
improving the geometric correction with AMORGOS (Bicheron et al., 2011), the Coherent Noise Equalisation
for reducing the striping (Bouvet and Ramino, 2010) and a smile correction which corrects small wavelength
variations of each pixel along the image (Bourg et al., 2008; Delwart et al., 2010). Finally, the IdePix tool in
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Figure 6.1: The study area Lake Kummerow and the location of measurement sites of the Ministry for Agriculture and Envi-
ronment Mecklenburg-Western Pomerania. Water depth at measurement site Gorschendorf is 3 m and 22 m at
site Deepest Point.

BEAM identified valid pixels including cloud and cloud shadow detection (Odermatt et al., 2015). The cloud
detection with IdePix combines the output of a neural net with spectral tests. The neural net is trained with
manually selected pixels of clouds, semi-transparent clouds and all kinds of clear surfaces. The cloud shadow
is derived by the sun and viewing geometry and the cloud top height.

Adjacency effects caused by light scattering reflected from surrounding land surfaces towards the sensor
strongly influence remote sensing data of inland waters. They result in higher radiances at the sensor at
near-shore pixels compared to central lake pixels. To correct adjacency effects, we used the ICOL (Improved
Contrast Between Ocean and Land) algorithm (Santer and Zagolski, 2000). MERIS studies which applied ICOL
produced ambivalent results showing an improvement of subsequent analyses (e.g. Beltrán-Abaunza et al.,
2014; Kallio et al., 2015; Philipson et al., 2016) but also generation of artefacts (e.g. Kiselev et al., 2015). In this
case study, FUB/WeW results showed a higher consistency with applying ICOL.

ICOL corrects the measured signal for the adjacency effect and returns TOA (top of atmopshere) re-
flectances as they would have been measured without adjacency effect. Therefore, Rayleigh scattering and
Fresnel reflectance at pixels close to land (distance < 30 km) are corrected and an aerosol model determines
and corrects aerosol concentration for each pixel. The adjacency corrected TOA reflectances formed the so-
called L1c product (Santer and Zagolski, 2000). This procedure was performed for the MERIS bands 1-10 and
12-14, which subsequently were the input for atmospheric correction and water constituent retrieval with the
FUB algorithm.

To assess water constituents, i.e. CHL, TSM and absorption of CDOM at 440 nm, we used the FUB/WeW
(hereafter FUB) processor developed by Freie Universität Berlin (FUB). The FUB algorithm (Schroeder et al.,
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2007a,b) uses MERIS data as an input and comprises four separate artificial neural networks, which are trained
with extensive radiative transfer simulations using the MOMO code (Fell and Fischer, 2001; Fischer and Grassl,
1984).

MOMO assumes a coupled atmosphere-ocean-system with plane parallel, horizontally homogeneous model
layers subdividing the atmosphere and the water body (Schröder, 2005). The US-standard-atmosphere prede-
fines the vertical distribution of the atmosphere into 11 layers. The simulation of the water body is implemented
within three model layers (lowest at 500 m) assuming a rough surface and no reflectance from the bottom
but neglecting foam on the surface. FUB further assumes a homogenous vertical concentration of each water
constituent. Table 6.1 summarises concentration ranges for which the neural networks are trained.

Table 6.1: Concentration ranges of FUB (FUB/WeW MERIS processor developed by Freie Universität Berlin), where CHL =
Chlorophyll-a , TSM = total suspended matter, CDOM = coloured dissolved organic matter.

Parameter Minimum Maximum Unit
CHL 0.050 50 mg·m-3

TSM 0.050 50 mg·m-3

CDOM (440 nm) 0.005 1 m-1

The four neural nets perform the atmospheric correction and the retrieval of each water constituent sepa-
rately. The neural net for the atmospheric correction retrieves the aerosol optical thickness (AOT) and bottom of
atmosphere (BOA) reflectance, while the other three retrieve water constituents directly from TOA reflectance.

Fig. 6.2 illustrates the FUB principle; the input vectors are L1c TOA remote sensing reflectance (RSTOA),
i.e. MERIS-Bands 1-7, 9, 10, 12-14 and geometric parameters x, y, z, sun zenith angle (cos(θO)), surface
air pressure (P) and wind speed (WS). The output vectors are logarithmic concentrations of CHL, TSM and
CDOM, the aerosol optical depth for MERIS bands 2, 5, 7, 13 and water leaving reflectance for MERIS bands
1-8 (Schröder, 2005).

Figure 6.2: Flowchart of the direct algorithm, with the transformation of the geometry parameters x = sin(θO) · cos(∆φ),
y = sin(θO) · sin(∆φ), z = cos(θO) where θO the MERIS zenith angle and ∆φ is the azimuth difference
(adopted from Schröder, 2005). RSTOA=adjacency corrected TOA reflectance, P = surface air pressure, WS =
wind speed.

Finally, the post-processing steps included spatial and temporal aggregation and time series generation
(Sections 6.3.2 and 6.3.3) for the years 2003 to 2011. These steps were applied to all processed MERIS data
and required a careful selection of valid pixels for all subsequent analysis steps. Table 6.2 lists all temporal
and spatial aggregations used for the time series generation. To include only valid data for further analysis, we
applied a valid-pixel-expression excluding pixels with the following flags:

• LAND Flag (=land pixels, also if covered by clouds)

• MIXPIXEL Flag (=mixed pixels of land and water)

• CLOUD Flag (=cloud covered pixels)
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• CLOUDBUFF Flag (= pixel is located in a buffer zone around clouds; here: 2 pixels buffer)

• CLOUDSHADOW Flag (=pixel is influenced by cloud shadows)

• CHL_OUT Flag (= pixel CHL > 50 mg·m-3, i.e. is higher than FUB training range)

• AOT Flag (= pixel has an AOT > 1.0 at 440 nm))

To avoid analysis of pixels with signals of the lake bottom, we additionally excluded optically shallow water
using the 2 m water depth line and a 100 m buffer from this depth line (Fig. 6.1; LU-MV, 2002b).

Table 6.2: Overview of temporal and spatial aggregation applied for the MERIS time series analyses. Long-term means a
temporal aggregation over the entire period 2003-2011; short-term means a temporal aggregation separately for
each year. CHL = Chlorophyll-a, TSM = total suspended matter, CDOM = coloured dissolved organic matter.

Temporal aggregation Spatial aggregation Description Results

CHL ± 1 day

• mean of 3x3 pixel buffer
• standard deviation of 3x3 pixel buffer
• site Gorschendorf
• site Deepest Point
• ≥ 4 valid pixels in buffer

Section 6.3.2 Fig. 6.5

CHL, TSM, CDOM daily
• lake-wide median
• ≥ 50 valid pixels Section 6.3.3 Fig. 6.4a, 6.9a

CHL, TSM, CDOM monthly (short-term)
• lake-wide mean
• lake-wide standard deviation Section 6.3.3

Fig. 6.4a, 6.5, 6.7a,
6.7b, 6.9a

CHL, TSM, CDOM monthly (long-term)
• lake-wide mean
• lake-wide standard deviation Section 6.3.3 Fig. 6.4c, 6.7a, 6.4c

CHL, TSM, CDOM monthly (long-term) • per pixel Section 6.3.3 Fig. 6.6, 6.8

6.3.2 Evaluation

To evaluate the MERIS FUB products, we compared CHL from in situ measurements (LU-MV data) and CHL
retrieved from MERIS products. We extracted the arithmetic mean and standard deviation from a 3 x 3 pixel
buffer (i.e. macro-pixel) around the measurement site. To avoid inclusion of insufficiently masked pixels, we
only considered pixel buffers covering at least four pixels. To reduce uncertainty due to spatially and temporally
rapidly changing constituent concentrations, we only included in situ and MERIS data acquisition which differed
a maximum of ±1 days. We conducted linear regression analyses between in situ measurements and MERIS
retrievals for each measurement site and for the combined data set. Outlier value pairs may strongly affect the
results of regression analysis analyses. To omit such value pairs we first conducted a linear regression based on
a 99 % confidence interval of the whole data set (n=28). Using R, we then calculated the studentized regression
residuals (n=3) and determined three value pairs which were outside a 99 % confidence interval. For developing
regression models such outlying value pairs are standardly excluded to improve fit quality (e.g. Matthews et al.,
2012). We applied this procedure to account for potential uncertainties of in situ measurements and FUB
algorithm in the matchup analysis, which may lead to few value pairs biasing a linear regression analyses. In
order to remain transparent, we calculated the evaluation measures including and excluding value pairs strongly
influencing the regression analyses.

We used the R package hydroGOF (Zambrano-Bigiarini, 2014) to calculate the root-mean-squared-error
(RMSE), the normalised RMSE deviation (nRMSE), the mean average error (MAE) and the percentage bias
(pBias). We further calculated the Pearson’s correlation coefficient (r) and provided the regression equations.

6.3.3 Temporal development and trend analysis

To analyse the temporal development and trend of each water constituent for the entire lake we calculated the
median of all valid water pixels of each MERIS acquisition, with at least 50 valid pixels (see Section 6.3.1, Ta-
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ble 6.2). Furthermore, monthly arithmetic means and standard deviation (short-term) were calculated from all
valid lake pixels for each year. Calculating anomalies based on daily medians aimed to detect single events,
seasons or years with irregular concentrations in the time series. Anomalies were estimated similarly to the
methodology provided by Matthews (2014). Long-term monthly means were retrieved from the entire time
series. The anomaly based on the daily medians (CONSTITUENT’) is defined as the difference between
the daily median concentration (CONSTITUENTMedian_day) and the long-term monthly average concentration
(CONSTITUENTMonthly_Mean_2003-2011).

CONSTITUENT ′ = (CONSTITUENTMedian_day)− (CONSTITUENTMonthly_Mean_2003−2011) (6.1)

Thus, we could reduce the effect of seasonal variability by both, highlighting anomalies and performing a
trend analysis (Matthews, 2014). By calculating a linear regression between anomalies and time, we retrieved
the temporal trend of each constituent. We further calculated the linear trend of yearly arithmetic means.
For CHL, in situ data was available. We therefore calculated anomalies and trends additionally based on the
measurements at the site Deepest Point.

To analyse the seasonal cycles and development within one year, we calculated monthly arithmetic means
of the entire lake for each water constituent and each year. Furthermore, seasonal cycles (2003 -2011) of each
constituent were derived from daily arithmetic mean data of the entire lake. For CHL, we conducted the same
calculations based on the in situ data of site Deepest Point. In case of CDOM, we also included measurements
of dissolved organic carbon (DOC) as provided by LU-MV at the same site.

To figure out long-term monthly spatial differences, we calculated arithmetic means per pixel for each month
based on the entire time series (2003-2011).

6.4 Results and discussion

6.4.1 Evaluation

Only 6 out of 50 sampling dates matched with the MERIS acquisition. Including value pairs with ± 1 day
difference resulted in 25 observations at two sampling sites (Fig. 6.3). In situ measured CHL and MERIS CHL
showed a significant linear correlation (Table 6.3). For concentrations > 10 mg·m-3 MERIS CHL tended to be
higher than in situ measured CHL concentrations; for concentrations below 10 mg·m-3 MERIS CHL was lower
than in situ values. Evaluation measures and regression coefficients, however, indicated a better match at site
Gorschendorf (Table 6.3). Pearson’s r (Table 6.3) indicated a higher correlation between in situ samples and
MERIS CHL taken on the same day, but they have a higher pBias than the regression based on the entire data
set. Compared to statistical requirements, the number of included value-pairs is, however, too low to make a
definite statement.

Table 6.3: Linear regression coefficients and evaluation measures calculated between MERIS and in situ Chlorophyll-a. n =
number of value pairs, pBias = percentage bias, MAE = mean average error, RMSE = root mean squared error,
nRMSE = normalised RMSE. The first line contains evaluation measures including outlier value pairs, all other
lines excluded outlier value pairs (n=3) in the calculations.

Match-up aggregation n regression Pearson’s
r

p-value pBias
[%]

MAE
[mg·m-3]

RMSE
[mg·m-3]

nRMSE
[mg·m-3]

Total (incl. outlier
value pairs)

28 0.0054 18.1 8.31 11.31 28.1

Total 25 y=-0.08+1.2·x 0.78 <0.0001 20.3 6.55 8.58 26.6
Gorschendorf 9 y=-0.40+1.25·x 0.92 0.0003 21.9 4.69 6.01 19.1
Deepest Point 16 y=0.55+1.16·x 0.69 0.0016 19.5 7.61 9.73 36.6
Same day 10 y=4.79+1.10·x 0.85 0.0009 51.3 6.23 7.19 32.8
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Figure 6.3: Scatterplot between MERIS Chlorophyll-a (CHL) and in situ measured CHL at sampling sites Gorschendorf and
Deepest Point. Outliers (n = 3) excluded from the regression analysis are highlighted in light grey. Vertical bars
indicate standard deviation within a MERIS macro-pixel (3 x 3 pixel buffer).

Comparisons between in situ collected water samples and satellite derived concentrations are a common
way to assess the accuracy of remotely sensed water products (Dörnhöfer and Oppelt, 2016; Odermatt et al.,
2012). The present evaluation of FUB CHL retrieval at Lake Kummerow achieved similar accuracies and ten-
dencies as other studies using FUB: Philipson et al. (2016) obtained a Pearson’s r of 0.85 for CHL at the CDOM-
rich Lake Vänern, whereas MERIS CHL tended to be higher than in situ data. At the eutrophic-hypertrophic
Lake Balaton, Palmer et al. (2015b) observed similar high correlations (Pearsons’r = 0.81), whereas MERIS
CHL was on average 45.4 % (nRMSE) higher than in situ CHL (RMSE: 3.83 mg·m-3). Recalibration equations
obtained from matchups often serve as local adaptation to increase the correspondence of in situ and satel-
lite data (e.g. Philipson et al., 2016). These approaches imply that in situ data are the absolute truth. Some
studies, however, discovered uncertainties of in situ CHL ranging between 28 % (McKee et al., 2014) and 48 %
(Dörnhöfer et al., 2018a); AQS reported even higher deviations of 130 % in a round robin test (AQS, 2008).
We also have to consider that in situ-satellite comparisons suffer a distinct scale gap; comparing CHL from a
water sample (few litres) and CHL retrieved from an area of 0.81 km2 (3 x 3 pixel buffer) is problematic and may
be misleading. Aside from the scale gap, existing differences may be due to erroneous in situ and/or satellite
retrieval. Dörnhöfer and Oppelt (2016) therefore recommended using uncertainty ranges rather than expecting
exact matches.

6.4.2 Seasonal cycles, trends and spatial patterns of CHL

During the period 2003-2011, MERIS CHL averaged for the entire lake varied between 0.3 (29 May 2005) and
45.8 mg·m-3 (3 September 2007). In situ CHL ranged between 2.0 (7 June 2010) and 69.6 mg·m-3 (5 August
2003). Site Gorschendorf (mean = 15.7 ±12.8 mg·m-3) exhibited a slightly higher average and higher variability
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of CHL than the site Deepest Point (mean = 14.1 ±8.1 mg·m-3). In situ measurements represent monthly
CHL averages; we therefore calculated monthly MERIS CHL averages (green line in Fig. 6.4a) for a visual
comparison. The standard deviation indicates the temporal variability within a month. In most cases, in situ
CHL remained within the range of MERIS CHL monthly standard deviation.

The short- and long-term monthly means of MERIS CHL followed a seasonal pattern, which seems rea-
sonable for a eutrophic, polymictic lake. The time series revealed a regularly occurring spring bloom in April
with CHL around 10.7 ±6.9 mg·m-3 (Fig. 6.4a, c, Fig. 6.5). Increasing light availability, water temperature and
nutrient availability induce these diatom-dominated spring blooms (LU-MV, 2015a; Reynolds, 2006; Wöbbecke
et al., 2003). After nutrient depletion, the clear water phase develops; decaying cells sink and the growing
zooplankton population reduces phytoplankton through grazing (Winder and Schindler 2004). According to our
MERIS time series, the clear water phase regularly occurred in May/June with CHL around 5-6 mg·m-3. Dur-
ing the following summer months, CHL increased again to concentrations of up to 45 mg·m-3. On average,
September showed highest concentrations (Fig. 6.4c, Fig. 6.5). CHL strongly decreased again in November
and remained around 5-6 mg·m-3 during the following winter months.

In situ CHL showed a similar seasonal development, i.e. a spring bloom in April, followed by a clear water
phase in May/June, whereas in situ concentrations were generally higher than MERIS CHL. In late summer,
however, in situ and MERIS CHL patterns differed. In situ CHL achieved its maximum in August, whereas
MERIS CHL peaked in September (Fig. 6.4c, Fig. 6.5). Dörnhöfer et al. (2018a) found similar deviations when
comparing CHL received from various satellite systems and in situ measurements. Methodological differences
may account for the deviation: at Lake Kummerow, cyanobacteria predominate phytoplankton composition in
late summer (LU-MV, 2016; Wöbbecke et al., 2003) which form patchy surface scums (Bertani et al., 2017).
MERIS may have captured the signal from these patterns. In contrast, the in situ sampling may have missed
the scum due to sampling below the water surface or spatial variability of surface scum (Bertani et al., 2017).
Furthermore, degrading algal pigments of summer blooms (e.g. phaeophytin-a) may contribute to the signal
acquired by MERIS and further lead to higher CHL concentration compared to in situ data.

Fig. 6.5 shows the monthly CHL averages (columns) for each year (rows) and highlights the information
gain when integrating remote sensing in water quality monitoring. During 2003 and 2011, in situ measure-
ments were available about 5 times per year, resulting in 48 monthly average values. The MERIS time series,
however, provided twice as much values (112). Higher temporal coverage as provided by remote sensing data
analyses may support lake monitoring and reduce uncertainties related to the temporally highly dynamic CHL.
At Lake Kummerow, MERIS data indicated a variation of up to 35 mg·m-3 within a month (difference between
monthly minimum and maximum arithmetic means of CHL). The monthly coefficient of variation (standard devi-
ation/arithmetic mean) varied between 0.45 (September) and 1.1 (June, January). While in situ measurements
were unavailable during winter months, MERIS provided CHL, which varied between 2.1 and 12 mg·m-3. There-
fore, this time series revealed unprecedented information on winter CHL in Lake Kummerow. For instance,
Hampton et al. (2017) detected previously unexpected phytoplankton biomass in 101 lakes analysed during
winter. They reported concentrations of mean CHL in winter being at average were 43.2 % that of CHL con-
centrations in summer (i.e. around 5.87 ±0.88 mg·m-3; Hampton et al., 2017). Accordingly, MERIS winter CHL
concentrations at Lake Kummerow appear to be realistic.

The MERIS CHL time series showed several anomalies, which may have been the result of daily varying
concentrations. The summers 2005 and 2007 exhibited a longer period of positive anomalies, i.e. higher CHL
than average (Fig. 6.4b, Fig. 6.5). For both years, precipitation at a weather station in the catchment was above
average in May (96 instead of 56 mm; Deutscher Wetterdienst, 2016b). Erosive precipitation at maize fields
may have led to an increased nutrient availability in the lake (e.g. Vogel et al., 2016). In contrast, MERIS and
in situ CHL showed irregularly low concentrations in summer 2009 (Fig. 6.4b, Fig. 6.5), whereas precipitation
was average in spring. The same pattern applied to low summer CHL in 2010 and 2011, which also coincided
with ’normal’ precipitation patterns.

CHL monitoring and trend analyses may be a measure for a successful lake/catchment management, e.g.
whether nutrient input has been reduced successfully. In situ measurements from the site Deepest Point re-
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Figure 6.4: Daily median and monthly mean Chlorophyll-a (CHL) concentrations of the total lake (a). Daily CHL anomalies,
yearly mean concentrations and linear trend lines based on MERIS, black circles indicate in situ CHL anomalies
at site Deepest Point and in situ anomaly trend line (black line) (b). Seasonal cycle of CHL derived from the
long-term monthly mean of the years 2003-2011 from MERIS and in situ data; vertical bars indicate monthly
standard deviation (c).
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(a)
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Figure 6.5: Monthly means of total lake Chlorophyll-a (CHL) concentrations based on MERIS (a) and in situ measurements
at the site Deepest Point (b); data gaps are highlighted in grey.

vealed a weak negative trend of CHL during the period 2003-2011 (Table 6.4). MERIS data indicated a slightly
lower CHL decrease than in situ values. Both, MERIS and in situ CHL, confirmed decreasing CHL concentra-
tions and indicated a slight improvement of water quality.

Table 6.4: Linear trend and change of MERIS Chlorophyll-a (CHL; lake-wide) and in situ CHL (site Deepest Point) between
2003 and 2011.

MERIS daily anomalie MERIS yearly mean In situ anomaly
Trend CHL=-0.0010·date+15.3 CHL = -0.0015 ·date+32.2 CHL=-0.0011·date+15.4
Change -3.4 mg·m-3 -4.8 mg·m-3 -3.7 mg·m-3

In situ CHL indicated a spatial variability between the measurement sites. This spatial variability between
sites became pronounced during summer, while spring values at both measurement sites resembled each
other (Fig. 6.4a). MERIS monthly average maps (Fig. 6.6) showed similar patterns. In March/April (during
spring blooms), CHL concentrations showed a homogenous distribution, which was most likely a result of a
wind induced mixing of the water column and water surface. The clear water phase occurring in May/June
also exhibited homogenously distributed CHL (around 5 mg·m-3) at the lake surface. In July, CHL concentration
increased. During August, higher CHL concentrations predominated in the western part of the lake; Dörnhöfer
et al. (2018a) observed similar patterns for prevailing north-easterly winds in a detailed analysis of satellite
data at Lake Kummerow in August 2015. In September, CHL was highest but distinct spatial patterns were not
apparent; in October, the lake showed slightly lower, homogenously distributed concentrations. From November
to February, CHL generally remained below 9 mg·m-3.
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Figure 6.6: Spatial distribution of long-term monthly mean Chlorophyll-a (CHL) concentrations calculated from the entire
MERIS time series (2003-2011). Mean is the lake wide arithmetic mean of the raster values in the map and
sigma is the respective standard deviation, i.e. indicates the spatial variation.
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6.4.3 Seasonal cycles, trends and spatial patterns of TSM

During the period 2003-2011, lake mean MERIS TSM varied between 0.1 g·m-3 on 25 May 2007 and 10.0 g·m-3

on 10 August 2003. LU-MV based in situ measurements of TSM or related parameters such as turbidity were
not available. This time series therefore presents novel information on TSM concentrations and its temporal de-
velopment. TSM concentrations showed a seasonal variability: during winter and spring, TSM remained below
1 g·m-3 on average. Between June and September, TSM increased up to 3 g·m-3 and decreased from October
to November (Fig. 6.7a). In summer 2015, Fritz et al. (2017a) conducted in situ measurements which revealed
TSM concentrations between 1 g·m-3 (June) and 4 g·m-3 (August). In reference to these measurements, the
retrieved MERIS summer values were reasonable. Overall, the seasonal development was comparable in each
year between 2003 and 2011. Only single years exhibited either very high values (August, September 2003 and
2005) or distinctly low values (throughout the year 2009; Fig. 6.7), which corresponded to the CHL anomalies
mentioned earlier.

TSM consists of organic and inorganic particles. Unpublished measurements from summer 2016 revealed
that organic particles predominated TSM in the northern part of Lake Kummerow. Organic components of TSM
are phytoplankton and detritus (Matthews, 2011). Thus, the increasing TSM concentrations during summer
and very high concentrations in summer 2005 may have resulted from accompanying high CHL concentrations.
Similar to CHL, a trend analysis of TSM showed slightly decreasing concentrations between 2003 and 2011
(Table 6.5).

The monthly average maps showed spatially homogenous but low TSM concentrations from March to June
(Fig. 6.8). In July, spatial variability increased. From August to October, TSM showed similar patterns as CHL
indicating its predominating organic origin. Distinct patterns occurred in January and February when large parts
of the lake exhibited low concentrations (< 0.9 g·m-3) whereas concentrations at the southern end exceeded
3 g·m-3. This pattern may be due to riverine inflow of the West Peene, which transports TSM (soil eroded in the
catchment) into the southern part of the lake. When looking at precipitation patterns during the period 2003-
2011, July showed highest precipitation rates (mean monthly sum: 81 mm, Deutscher Wetterdienst, 2016b).
In January and February, however, average precipitation was around 50 mm (Deutscher Wetterdienst, 2016b),
which may also have resulted in higher catchment erosion due to less protective vegetation cover during winter.

Table 6.5: Linear trend and change of MERIS total suspended matter (TSM; lake) between 2003 and 2011.

MERIS daily anomalie MERIS yearly mean
Trend TSM = -0.0004·date+5.65 TSM = -0.0005·date+7.78
Change -1.31 g·m-3 -1.5 g·m-3
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Figure 6.7: Seasonal cycle of total suspended matter (TSM) as long-term monthly average of the years 2003-2011; vertical
bars indicate monthly standard deviation (a). Monthly means of TSM concentrations in the lake; data gaps are
highlighted in grey (b).

6.4.4 Temporal development, seasonal cycles and spatial patterns of CDOM

During the period 2003-2011, lake mean MERIS CDOM varied between 0.01 (5 January 2009) and 0.94 m-1 (17
July 2006; Fig. 6.9a). Overall, CDOM showed a regularly appearing curve with minimum values during winter
and maximum values during summer. Contrary to TSM and CHL, the time series showed no significant trend
for CDOM (Fig. 6.9b) and lacked any spatial patterns (not shown here). The lake monitoring programme (LU-
MV, 2015a) lacks measurements of CDOM but included DOC as a parameter. Between 2005 and 2010, DOC
formed 90-95 % of lake TOC (Fig. 6.9c). Several studies found a strong correlation between DOC and CDOM
(e.g. Brezonik et al., 2015; Toming et al., 2016b), although seasonal and local variations have to be considered
(Hestir et al., 2015b). At Lake Kummerow, in situ DOC and MERIS CDOM showed a similar seasonal behaviour
during spring/early summer (Fig. 6.9c). DOC (9.7 - 10.3 g·m-3) and CDOM (0.4 - 0.6 m-1) increased from March
to June. CDOM achieved its maximum in July (0.79 m-1), DOC in August (10.7 g·m-3). In late summer, CDOM
started to decrease, whereas DOC varied from month to month. DOC, and therefore CDOM, originates from
lake internal sources, i.e. macrophytes and phytoplankton (autochthonous production), or from soil organic
matter and plants from the catchment (allochthonous production; Brezonik et al., 2015). Autochthonous DOC
mainly consists of non-humic substances which have lower absorption properties, i.e. a lower influence on
CDOM; allochthonous DOC mainly is composed of highly absorbing humic substances and has a high influence
on CDOM (Thurman, 1985; Toming et al., 2016b). Peat bogs and swamps (allochthonous source) bordering the
lake may therefore explain the relatively high CDOM values (e.g. Brezonik et al., 2015). Increased phytoplankton
biomass in summer (as indicated by increased CHL, Section 6.4.2) may contribute to varying in situ DOC but
may have a minor effect on MERIS CDOM (Fig. 6.9c).

Measurements conducted by Kiel University (CAU Kiel) in the summer of 2015 revealed CDOM around
1.3 m-1 (Fritz et al., 2017a). Assuming comparable CDOM conditions (no trend in Fig. 6.9b) FUB algorithm
estimated lower CDOM (Fig. 6.9c) than recent in situ summer measurements. With in situ CDOM above
1.0 m-1, Lake Kummerow exceeded the training range of FUB (Schroeder et al., 2007b, Section 6.3.1) which
may have led to retrieval errors. Philipson et al. (2016) also documented CDOM values higher than the FUB
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Figure 6.8: Spatial distribution of long-term monthly mean total suspended matter (TSM) concentrations calculated from the
MERIS time series 2003-2011. Mean is the lake wide arithmetic mean of the raster values in the map and sigma
is the respective standard deviation, i.e. indicates the spatial variation.
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training range but observed a strong correlation with in situ data.
Apart from the accuracy of CDOM absolute values, a strong decline of CDOM appeared regularly during

autumn/winter (Fig. 6.9a). Due to the lack of in situ measurements, however, we are unable to verify the de-
creasing autumn/winter CDOM observed by MERIS. Nevertheless, several other studies observed strong sea-
sonal variations of CDOM, e.g. at US lakes (Brezonik et al., 2015, ; 30-50 % variation), Lake Võrtsjärv (Toming
et al., 2016b, ; ∼6-12 m-1) or Lake Balaton (Aulló-Maestro et al., 2017, ; ∼3.7-9.0 m-1). Zhang et al. (2013b)
reported that variations of CDOM sources, photobleaching and degradation might cause seasonal changes in
CDOM. Aging and degrading DOC may also be a reasonable explanation for decreasing CDOM absorption at
Lake Kummerow during winter months. Otherwise, the apparent seasonal behaviour may originate from poten-
tial retrieval artefacts. Due to its absorbing behaviour, very low reflectance signals aggravate CDOM-retrieval
with remote sensing in CDOM-rich waters (Kutser et al., 2016). During the low light period (October to March)
with low sun elevation angles, the water signal collected by the MERIS sensor was even lower. Thus, the re-
trieval may be even more complicated and subjected to algorithm artefacts. Sensitivity analyses of FUB/WeW
indicated CDOM overestimation for concentrations < 0.1 and slight underestimation for concentrations > 0.1 m-1

under low sun elevation angles (Schröder, 2005). The behaviour of FUB under real conditions with low sun
elevation conditions is still unknown due to a lack of in situ data from autumn and winter. In addition, published
studies focused on the months April to October only. In situ measurements during winter are crucial in order to
verify the seasonal behaviour or to detect algorithm artefacts.
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Figure 6.9: Daily median and monthly mean coloured dissolved organic matter (CDOM) absorption of the entire lake (a).
Daily CDOM absorption, yearly mean and linear trend lines based on MERIS (b). Seasonal cycle of CDOM
(2003-2011) and dissolved organic carbon (DOC; 2005-2010) as long-term monthly average values; vertical bars
indicate monthly standard deviation (c).



106 6.4. Results and discussion

6.4.5 Uncertainties and requirements for improved monitoring

Recent and future satellite systems suitable for inland water remote sensing (e.g. Sentinel-2, Sentinel-3, Land-
sat 8; HySpiri, EnMAP) boosted the development of sensor specific and generic algorithms for water constituent
retrieval (Dörnhöfer and Oppelt, 2016). Testing algorithm performance, investigating weaknesses and improv-
ing existing applications such as shown in this study require validation data that cover both different spatial
scales and lake characteristics (Nechad et al., 2015). However, permanent measurement sites such as in Lake
Vänern, Sweden (e.g. Philipson et al., 2016) are rare. In Germany, in situ data of official lake monitoring pro-
grammes such as of LU-MV (LU-MV, 2015a) often serve as validation source for remote sensing studies. They
provide valuable information, notably for historic satellite data analyses. These programmes, however, are de-
signed to fulfil the reporting obligations of the European Water Framework Directive; they therefore cannot cover
a sufficient basis for validating recent remote sensing missions and cannot achieve associated requirements.

Depending on the spatial-temporal variability of water constituents, validating satellite based algorithms for
inland waters requires in situ measurements temporally proximate to image acquisition (best-case ±2 hours,
e.g. Dörnhöfer et al., 2016b; Giardino et al., 2014a; Philipson et al., 2016). Measured parameters should
preferably include all optically active constituents and water leaving reflectance. In addition to water constituent
validation, these measurements would enable the ability to optimise atmospheric correction procedures over
optically complex inland waters (Palmer et al., 2015b). Individually organised measurement campaigns aim to
bridge these gaps but have their limitations, which emphasise the need for a network of permanent measure-
ment sites.

So far, individual data sets exist at different organisations without a central data management. Standardisa-
tion would facilitate international integration of measurements into shared databases, e.g. MERMAID database
for ocean and coastal waters (Barker et al., 2008) or LIMNADES (Lake Bio-optical Measurements and Matchup
Data for Remote Sensing: http://www.globolakes.ac.uk/limnades.html) for optical measurements of inland wa-
ters. First approaches of inter-comparison studies exist to support remote sensing validation studies with in
situ measurement protocols (GLaSS, 2015; Zibordi et al., 2012). Many project-driven measurements still lack a
standardisation of measurement setups, protocols and instrument (inter-) calibration and therefore are difficult
to compare.

Moreover, these campaigns tend to focus on late spring to early autumn, while they rarely cover the winter
months. To our knowledge, no published study exists which evaluates water constituent retrieval during the
low-light period. Indeed, cloudy weather conditions, and influence of snow and ice at Lake Kummerow reduced
the number of suitable MERIS acquisitions during winter. Nevertheless, the MERIS time series showed distinct
seasonal cycles of CHL, TSM and CDOM. The absence of in situ measurements however impeded the as-
sessment whether FUB is a valid predictor of CHL during the winter period or if increased TSM pattern at that
time can be assessed to be a regular feature or a result from insufficient light condition. In situ observations in
winter will also answer if the seasonality of CDOM concentration at Lake Kummerow or is a natural pattern or an
algorithm artefact. The lack of regular TSM and CDOM measurements in this study only enabled for plausibility
checks of their concentrations and spatial-temporal development.

This situation, together with the potentials of remote sensing for lake monitoring and the fact that lakes such
as Lake Kummerow mirror environmental and climate changes in their catchments emphasise the necessity
of integrated research at the landscape scale. It further underlines the call for permanent measurement sites
for improved quantitative (validated) evaluations of lake water quality. Lake Kummerow, the seven largest lake
of Germany, may be useful for such continuous in situ monitoring as its water cycle is closely linked with the
terrestrial observation site DEMMIN in the TERENO network (Section 6.2).
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6.5 Conclusions

In this study, we used the artificial neural network based and freely available algorithm FUB/WeW to analyse
a MERIS time series (2003-2011) at Lake Kummerow, northern Germany. Water constituents of interest were
CHL, TSM and CDOM. A comparison between MERIS and in situ CHL measured within the lake monitoring
programme of the federal state Mecklenburg Western Pomerania (LU-MV 2015) revealed significant linear cor-
relations. MERIS CHL was on average 20.3 % (pBias) higher than in situ measurements (MAE: 6.55 m·m-3).
Due to the lack of in situ measurements, we evaluated TSM and CDOM on a qualitative basis. TSM was rea-
sonable and within an expected value range. On the contrary, FUB likely underestimated CDOM since actual
lake CDOM was out of the neural networks. Trend analyses of CHL and TSM showed a decreasing tendency
during the analysed period, suggesting a slight improvement of water clarity and quality. CDOM displayed no
clear trend.

Analysis of daily and monthly averages demonstrated that MERIS can monitor expected seasonal variabil-
ities of CHL correctly, i.e. a spring bloom, followed by clear water phase in May/June and varying high CHL
concentrations during summer/early autumn (summer blooms). Moreover, MERIS revealed unprecedented in-
formation on winter CHL (∼ 5-6 mg·m-3). TSM showed highest concentrations (5 g·m-3) during summer; CDOM
also exhibited maximum values during summer (around 0.7 m-1) while winter values remained close to zero.
For a quantitative validation of inland water approaches, however, permanent validation/calibration test sites in
inland waters are imperative.

The results underline the information gain provided by remote sensing for inland water monitoring in terms
of temporally frequent and spatially explicit data. Especially with a view on upcoming satellite systems, remote
sensing-based algorithms offer an enormous potential for an operational monitoring of inland waters. Devel-
opment, validation and improvement of algorithms, however, require permanently equipped measurement sites
in lakes with different optical characteristics. One option that would also promote complex ecosystem-based
research (e.g. at the catchment scale) may be the integration of lake measurement equipment into already
established and well-equipped terrestrial sites for in situ observation and validation of satellite data and their
derivatives.

Acknowledgements: This work was conducted within the project LAKESAT (grant no: 50EE1340) funded
by the Federal Ministry for Economic Affairs and Energy, Germany. We acknowledge the Mecklenburg-Vorpommern
Ministry for Agriculture, Environment and Consumer Protection for data supply from the lake monitoring pro-
gramme. Many thanks are due to ESA for providing MERIS data.
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Chapter 7

Synthesis

7.1 Summary of main achievements

Reviewing the research status of optical remote sensing for lake ecology and outlining future directions

To achieve the first objective, this thesis includes a comprehensive literature review (Chapter 3; Dörnhöfer
and Oppelt, 2016). Previous published reviews (e.g. Chang et al., 2014; Matthews, 2011; Odermatt et al., 2012)
focused on available algorithms for water constituent retrieval with remote sensing data. This updated literature
review particularly emphasised studies which focused beyond algorithm development and contributed to the
combination of passive remote sensing (subsequently referred to as remote sensing) and lake ecology. The
considered lake ecology indicators were TSM, turbidity, CDOM, Secchi disk depth, Kd, phytoplankton (CHL,
cyanobacteria), SAV, water depth, water temperature and ice phenology parameters. To build a link between
remote sensing and lake ecology, the indicators retrieved in the remote sensing studies were summarised with
respect to lake properties (according to Adrian et al., 2009), i.e. transparency, biota, hydrology and temperature.
Special attention has been paid to feasible value ranges, achieved accuracies (Table 7.1) and a short description
of which lake ecological processes or issues have been analysed with the remote sensing results.

Table 7.1: Summary of value ranges and accuracies depending on lake ecology indicators retrieved with remote sensing. k =
Kappa coefficient, MAE = mean average error, RMSE = root mean squared error, R2 = coefficient of determination
(compiled based on Dörnhöfer and Oppelt, 2016).

Indicator Min. value Max. value Min. accuracy Max. accuracy
Transparancy
TSM [g·m-3] 0 2500 R2 = 0.91 R2 = 0.94
CDOM [m-1] 0 20 R2 = 0.62 R2 = 0.78
Kd(λ) [m-1] 0 24 R2 = 0.56 R2 = 0.76
Secchi disk depth [m] 0.13 7.53 R2 = 0.67 RMSE = 0.48 m
Biota
CHL [mg·m-3] 0 500 R2 = 0.83 R2 = 0.98
SAV habitat classes % coverage k = 0.66 k = 0.87
Hydrology
Water depth [m] 0 10.45 R2 = 0.84 R2 = 0.92
Water temperature
Surface Temperature [◦C] -2 35 RMSE = 4.18 R2 ∼ 0.9
Lake ice phenology
ice-on/out [days] - - MAE = 11.9 MAE = 4.2

The majority of reviewed studies retrieved water constituents, i.e. CDOM, TSM (transparency; Table 3.4)
and CHL (biota and transparency; Table 3.4, 3.5), with CHL being the most frequently assessed indicator.
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Retrieval of CHL was mainly related to trophic state monitoring (e.g. Bresciani et al., 2011c; Keith et al., 2012;
Matthews, 2014) and the identification of phytoplankton blooms (Palmer et al., 2015c), in particular potentially
harmful blooms of cyanobacteria (e.g. Gómez et al., 2011; Wu et al., 2015). CDOM was associated with lake
carbon content (e.g. Kutser, 2012; Kutser et al., 2009). Time series of TSM concentrations revealed influences
of anthropogenic activities or event-driven discharge on water transparency (e.g. Binding et al., 2010; Lobo
et al., 2015; Long and Pavelsky, 2013). Published analyses with direct indicators of water transparency (i.e.
Secchi disk depth, the depth at which 90 % of the incoming solar irradiance are still available and Kd(λ)) existed
less often than water constituent analyses (e.g. Majozi et al., 2014; Shi et al., 2014). Most studies which
combined remotely sensed water constituents with lake ecology issues considered time series (Table 3.4, 3.5).
Analyses thus benefited from regularly available data covering one or multiple lakes. These studies, however,
mainly relied on large scale sensors (MODIS, MERIS) and occasionally Landsat. Indicators were often retrieved
along with other indicators to study interactions among water constituents but also catchment processes (e.g.
land use) or meteorological data. Still, most of these studies applied empirical algorithms or ready-to-use
algorithms (mainly for the ocean colour sensor MERIS) which are implemented in software packages such as
BEAM (Fomferra and Brockmann, 2015), a phenomenon also observed by Odermatt et al. (2012). Physically-
based bio-optical algorithms which are easier to transfer to other lakes and sensors already exist and are freely
available. Nevertheless, the developing research groups mainly apply these more sophisticated approaches.
In-depth knowledge to apply these algorithms properly presumably hinders a widespread application.

Owing to the need for a high spatial and spectral resolution, SAV and lake bottom substrate analyses were
mainly based on airborne, hyperspectral images which were acquired during the growing season. Retrieval al-
gorithms included supervised/unsupervised classification techniques and spectral unmixing whereas bio-optical
modelling or depth-invariant indices accounted for the effect of the overlying water column (Table 3.5). Analy-
ses between data acquisitions in different years aimed to detect changes in SAV colonisations and relations to
water quality (e.g. Brooks et al., 2015; Giardino et al., 2007; Heblinski et al., 2011). Differentiations between
bare substrate and SAV covered areas were feasible in extended shallow water areas using satellite data (e.g.
Brooks et al., 2015; Shuchman et al., 2013b). Still, the differentiation between species is challenging even using
hyperspectral imagery (e.g. Giardino et al., 2015; Rößler et al., 2013). Lake bottom analyses often go along
with the retrieval of water depth. Studies retrieving water depth from remote sensing data mainly focused on
model and methodological development (e.g. Gege, 2014a; Giardino et al., 2014a). Hitherto, remotely sensed
water depth is rarely related to lake ecological issues.

Remote sensing data were also implemented to retrieve lake water surface temperature. These analyses
mainly considered time series to derive trends in lake water temperature studies (e.g. Alcântara et al., 2010;
Politi et al., 2012; Schneider and Hook, 2010). Although radar techniques are the main source for retrieving ice
phenology parameters with remote sensing, some studies used large-scale optical sensors to delineate trends
in ice phenology and improve the understanding of drivers influencing ice-on and ice-off (e.g. Kropáček et al.,
2013; Latifovic and Pouliot, 2007).

In summary, the reviewed studies showed that remote sensing may support analyses and monitoring in
lake ecology; several studies already connected remote sensing with lake ecological issues. Globally, remote
sensing still has a small share in published studies on lake water quality (Fig. 3.4; Dörnhöfer and Oppelt, 2016).
A lack of training and knowledge about the possibilities of remote sensing may be a key reason (Schaeffer et al.,
2013). Studies which highlight new insights gathered from remote sensing and address uncertainties at lakes
which are familiar to decision makers and authorities may help to increase the understanding for the potential
of remote sensing (Schaeffer et al., 2013). Such analyses, however, require in situ measurements which often
are associated with logistic challenges and costs. The scarcity of in situ data might be one reason why remote
sensing research is concentrated on lakes within the close vicinity of research groups. In situ measurements
form the basis for algorithm development, evaluation and validation to state accuracy measures for the retrieved
lake ecology indicators. These comparisons normally consider in situ measurements as the reference whereas
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uncertainties of in situ measurements are rarely included. It further remains challenging to upscale the in
situ point measurement to the spatial measurement of a remote sensor. Nevertheless, Tables 7.1 and 3.4-3.8
demonstrate that retrieval was possible with accuracies which, however, varied among indicators, concentration
ranges, sensors and algorithms used.

Apart from a certain scepticism about remote sensing compared to in situ measurements, reviewing the
literature pointed out several unresolved challenges and issues still restraining a widespread combination of
lake ecology and remote sensing (see Chapter 1.1). These issues include the unresolved problem of sensor-
independent atmospheric correction algorithms designed for the specific conditions of lakes, e.g. adjacency
effects, sun and sky glint at the water surface, and aerosol composition. Furthermore, knowledge about the
more advanced bio-optical, inversion approaches should be increased. Nevertheless, ecologists may also ben-
efit from a distribution of easy-to-apply algorithms and ready-to-use products. In addition, collaboration among
disciplines may overcome knowledge gaps in technical or ecological issues. Validation exercises gain increas-
ing importance with the availability of image data from the promising S2, L8 and S3 sensors with improved
radiometric, spectral and, in case of the former, spatial resolution. While investigating the true performance
of new sensors, the value of archived image data should also be explored. Integrating uncertainties of in situ
measurements in validation exercises may raise the awareness of disadvantages associated with using only
established methods. In this vein, clarifying the constraints of remote sensing is inevitable to promote a reason-
able synergetic use of in situ and remote sensing methods. This thesis addressed these issues in Chapters 4
(Dörnhöfer et al., 2016b), 5 (Dörnhöfer et al., 2018a) and 6 (Dörnhöfer et al., 2018b).

Since the online publication of the review paper at the beginning of 2016 (Chapter 3; Dörnhöfer and Oppelt
(2016)), various studies contributed to the progress in the field of inland water remote sensing and its com-
bination with lake ecology (Table 7.2). More than 70 research papers have been published in peer-reviewed
journals. Again, most publications focused on water constituent retrieval addressing lake ecology indicators
of transparency and biota. Table 7.2 provides an overview about the new literature which was categorised in
accordance to the tables in Chapter 3. A summary of the content showed that studies based on large-scale
MODIS and archived MERIS data continued. They focused on time series ≥ 10 years to figure out drivers
of trends and changes in water constituent concentrations (e.g. Breunig et al., 2017; Cao et al., 2017; Hou
et al., 2017; Sayers et al., 2016; Yousef et al., 2017; Zhang et al., 2016c). With the availability of short time
series of L8, studies have been published using L8 to retrieve TSM time series with high spatial detail in lakes
(e.g. Robert et al., 2017; Zhang et al., 2016d; Zheng et al., 2016) and to evaluate L8 specific algorithms for
water constituent retrieval (e.g. Concha and Schott, 2016; Ogashawara et al., 2017a; Rodrigues et al., 2017;
Zheng et al., 2016). Reviewing studies of coastal areas showed L8 time series analyses which supported the
identification of detailed spatial patterns and environmental drivers of river plumes (Braga et al., 2017; Manzo
et al., 2018). Initial studies which retrieved water constituents in lakes from S2 were published (e.g. Chen et al.,
2017; Dörnhöfer et al., 2016b; Ha et al., 2017; Liu et al., 2017; Toming et al., 2016a). Water constituents in
the analysed lakes varied from low to high TSM (0-4200 g·m-3), CDOM (0-16 m-1) and CHL (0-250 mg·m-3)
concentrations (cf. Table 7.1).

Studies mapping SAV in lakes with L8 or S2 were rarely published (e.g. Dörnhöfer et al., 2016b; Yadav et al.,
2017). Nevertheless, S2A and L8 were already applied to map seagrass and SAV in coastal zones (Giardino
et al., 2016; Traganos and Reinartz, 2017). Various new studies investigated thermal trends in lakes with L7 and
L8 data (e.g. Allan et al., 2016; Huang et al., 2017b; Ling et al., 2017). Two further studies analysed large-scale
optical data to figure out trends in ice phenology (Murfitt and Brown, 2017; Weber et al., 2016). Studies about
ice phenology and lake surface temperature already have benefited from combining multi-sensor data (Chapter
3).

New studies published since 2016 have increasingly combined multi-sensor data to monitor water con-
stituents: Coelho et al. (2017) combined L8 and RapidEye data to derive CDOM and CHL in order to assess
trophic states. Olmanson et al. (2016) obtained CDOM and Secchi disk depth from L7 and L8, while Robert
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et al. (2017) figured out environmental drivers of varying TSM concentrations combining L7 and L8 with MODIS.
Dörnhöfer et al. (2018a) (Chapter 5) combined L7, L8, MODIS and S2A to capture phytoplankton development
in a eutrophic lake. Such multi-sensor studies rely on sensor-independent algorithms and require sensor com-
parison analyses. In a multi-sensor time series, Lymburner et al. (2016) figured out that TSM retrievals are
consistent between L5 and L7 as well as between L7 and L8. Dörnhöfer et al. (2018a) (Chapter 5) found
significant correlations of CHL between MODIS and L7 or S2A within a 1 hour image acquisition difference.
Olmanson et al. (2016) retrieved comparable Secchi disk depth values between L7 and L8; CDOM retrievals
were, however, only comparable in waters with low to moderate CDOM levels. Liu et al. (2017) obtained highly
correlated TSM concentrations between MODIS and S2. The results of these first studies testing sensor inter-
comparability are promising for future limnologically orientated investigations that synergetically use different
sensors.
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Table 7.2: Studies published since the beginning of 2016 deducing indicators of lake ecology. When several algorithms have been tested, the table indicates the approach with the highest
accuracy. NN = neural network, LUT = look-up table, k = Kappa coefficient, OA = overall accuracy, MAPE = mean average percentage error, r = correlation coefficient, RMSE = root
mean square error, R2 = determination coefficient. *Airborne, hyperspectral sensor.

Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Transparency
Alcântara et al.
(2016)

empirical L8 CDOM 0.616-1.69 m-1 R2 = 0.7 Barra Bonita hydro- autumn/winter spatial differences
RMSE = 10.65 % electric reservoir

(Brazil)
2014

Alikas and
Kratzer (2017)

empirical MERIS ZSD 0.2-15.0 m R2 = 0.75 Scandinavian lakes
and coastal areas

2010 potential for WFD
monitoringsemi-analytical RMSE = 1.33 m

Bernardo et al.
(2017)

empirical L8 TSM 3.2 - 53 g·m-3 MAPE = 10 % Barra Bonita hydro-
electric reservoir
(Brazil)

13 Oct 2014 influence of different at-
mospheric corrections

Breunig et al.
(2017)

empirical MODIS TSM 0-18 g·m-3·m-3, RMSE = 2.98 g·m-3 Passo Real
reservoir (Brazil)

2002-2014 spatial patterns, driver
analysesCHL 0-21 mg·m-3, RMSE = 2.33 mg·m-3

Cao et al.
(2017)

empirical MODIS TSM 10 - 80 g·m-3 RMSE ∼ 7.7 g·m-3 Lake Hongze
(China)

2002-2015 spatial patterns, driver
analyses

Chen et al.
(2017)

NN S2 CDOM 0-5.02 m-1 R2 = 0.913 Lake Huron
(Canada/USA)

7 Oct 2016 sensor and algorithm
evaluationCHL 0-55.14 mg·m-3 R2 = 0.95

Coelho et al.
(2017)

empirical L8 CDOM 2-12 m-1 r = -0.47 3 small reservoirs
(Brazil)

2014-2016 trophic state
assessmentRapidEye CHL 0-250 mg·m-3 r = 0.84

Concha and
Schott (2016)

LUT optimisation L8 CDOM 0.11-1.2 m-1 R2 = 0.98 Rochester
Embayment (USA)

Sep 2013,
2014, 2015

sensor and algorithm
evaluationCHL 0.1-100 mg·m-3 R2 = 0.84

TSM 1-50 g·m-3 R2 = 0.88
Dörnhöfer et al.
(2018b)

NN FUB-WeW MERIS CDOM 0.01-0.94 m-1 qualitative Lake Kummerow
(Germany)

2003-2011 trend analyses
CHL 0.3-45.8

mg·m-3
R2 = 0.78

TSM 0.1-10.0 g·m-3 qualitative
Dörnhöfer et al.
(2016b)

bio-optical inversion S2A CDOM 0.1-0.74 m-1 relative comparisons Lake Starnberg
(Germany)

13 Aug 2015 sensor and algorithm
evaluationTSM 1.1-5.1 g·m-3

zB 0-4 m r = 0.83
SAV coverage relative comparisons

Hou et al.
(2017)

empirical MODIS TSM 1-300 g·m-3 30-40 % uncertainty lakes in Yangtze
river basin (China)

2000-2014 monitoring trends in wa-
ter quality

Continued on next page
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Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Huang et al.
(2017a)

empirical GOCI DOC 1-13 g·m-3 RMSE = 0.69 g·m-3 Lake Taihu (China) 2014-2015 monitoring hourly DOC
concentrations

Lee et al. (2016) quasi-analytical al-
gorithm

L8 ZSD 0.1-30 m R2 = 0.96 Jiulongjiang river
estuary

4 Aug 2013 sensor and algorithm
evaluation

Liu et al. (2017)
empirical S2 TSM 0-300 g·m-3 R2 = 0.77-0.93 Poyang Lake

(China)
15 Aug 2016,
2 Apr 2017

sensor and algorithm
evaluationMODIS

Lymburner et al.
(2016)

semi-analytical L5/7/8 TSM 0-178 g·m-3 R2 = 0.97 lakes in New South
Wales/Queensland
(Australia)

1987-2014 sensor inter-
comparability, TSM
trend

Lyu et al. (2017) semi-empirical MERIS POC 2-15 mg·m-3 MAPE = 0.1 - 85 % Lake Taihu (China) Aug, Dec 2010 algorihm development
Olmanson et al.
(2016)

empirical L7/8 CDOM 0.5-22.6 m-1 R2 ∼ 0.7 lakes in Minnesota
(USA)

summer 2008,
2013, 2014

sensor-comparison,
algorithm evaluationZSD 0.15-8.8 m R2 ∼ 0.82

Philipson et al.
(2016)

NN, FUB-WeW MERIS CHL 0-49 mg·m-3 r = 0.85 Lake Vänern
(Sweden)

2002-2012 algorithm evaluation,
spatial patternsTSM 0.21-24 FNU r = 0.9

CDOM 0.005-0.201 m-1 r = 0.87
Robert et al.
(2017)

empirical L7/8,
MODIS

TSM 106-4178 g·m-3 R2 = 0.79 Agoufou Lake (Mali) 2013-2016 time series, driver anal-
ysis

Rodrigues et al.
(2017)

semi-analytical L8 ZSD 2-4 m MAPE = 8.7-19.8 % reservoirs alsong
Tietê River (Brasil)

2014, 2016 algorithm evaluation
Kd 0.3-0.5 m-1 MAPE = 8.9-18.8 %

Shen et al.
(2017)

empirical S3A Kd 0-12 m-1 R2=0.81 Lake Taihu (China) 2017 sensor and algorithm
evaluation

Toming et al.
(2016a)

empirical S2A CHL 0-70 mg·m-3 R2 = 0.83 11 lakes in Estonia Aug 2015 sensor and algorithm
evaluationCDOM 2-16 g·m-3 R2 = 0.72

DOC 6-21 g·m-3 R2 = 0.92
Yousef et al.
(2017)

empirical (NASA) SeaWiFS Kd 0.091-0.121 R2 = 0.72 Great Lakes
(Canada/USA)

1998-2012 trend analysis of water
clarity, influence of
invasive mussel

MODIS R2 = 0.88

Zhang et al.
(2016d)

semi-analytical L8 TSM 0-20 g·m-3 R2 = 0.85 Xin’anjiang reser-
voir (China)

Dec 2013 - Apr
2015

spatial and seasonal
patterns

Zhang et al.
(2016c)

empirical; Shi et al.
(2015)

MODIS TSM 0-450 g·m-3 Shi et al. (2015) Lake Taihu (China) 2004-2013 driver analysis of river
plume

Zheng et al.
(2016)

empirical L8 Kd 2-16 m-1 MAPE = 23.18 % Dongting Lake
(China)

2013-2016 algorithm evaluation,
pattern and driver
analysis

Continued on next page
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Table 7.2 – Continued from previous page
Authors Techniques Sensor Parameter Range Accuracy Study area Time Process
Biota - Phytoplankton and Cyanobacteria
Beck et al.
(2016)

empirical, semi-
analytical

CASI* CHL 30-80 mg·m-3 R2 = 0.729 Lake Harsha (USA) 27 June 2014 algorithm comparison
and sensor transfer

Bertani et al.
(2017)

product by NOAA-
NCCOS

MERIS,
MODIS

cyano bloom
size

- - Lake Erie
(Canada/USA)

2002-2013 comparision of different
monitoring methods

Bresciani et al.
(2018)

bio-optical inversion S2A, L8 CHL 0-20 mg·m-3 R2=0.82 subalpine lakes
(Italy)

2015-2017 sensor evaluation, WFD
monitoring

Bresciani et al.
(2016)

empirical, bio-
optical inversion,
MERIS MPH

L8,
MERIS,
MIVIS*,
APEX*

cyano, CHL 20-100 mg·m-3 relative comparisons subalpine lakes;
Mantua lakes (Italy)

2003-2015 cyanobacteria bloom
monitoring

Clark et al.
(2017)

empirical MERIS in
prep. for
S3-OLCI

cyanoHAB fre-
quency

104-107

cells·mL-1
R2 = 0.95 lakes in the USA 2003-2015 detection of cyano

HABs in recreational
and drinking water
bodies

Dlamini et al.
(2016)

empirical MODIS CHL 0.1-0.84
mg·m-3

R2 = 0.89 Lake Chivero (Zim-
babwe)

Feb to May
2012

relation to land use

Dörnhöfer et al.
(2018a)

bio-optical inversion MODIS,
L7/8,
S2A

CHL 2.3-35.8
mg·m-3

RMSE = 3.6 - 19.7
mg·m-3

Lake Kummerow
(Germany)

July-Oct 2015 combination of different
sensors and in situ data

Duan et al.
(2017)

empirical MODIS CHL 5-250 mg·m-3 R2 = 0.64 Lake Chaohu
(China)

2000-2014 relationship PC:CHL
analysis, developing
management guidelines

PC R2 = 0.4

Fahnenstiel
et al. (2016)

semi-analytical
(Shuchman et al.,
2013a)

MODIS CHL 0.2-8 mg·m-3 R2=0.83 Upper Great Lakes
(Canada/USA)

2010-2013 modelling primary pro-
duction

Ha et al. (2017) empirical S2A CHL 1-9 mg·m-3 R2=0.68 Lake Be Be (Viet-
nam)

2015-2017 sensor and algorithm
evaluation, seasonal de-
velopment

Ho et al. (2017) empirical L5 bloom area - relative assessement to
MERIS

Lake Erie
(Canada/USA)

1984-2011 generation of a long-
term phytoplankton
bloom recors

Jin et al. (2017) empirical MERIS cyano 0-100 % MAPE = 13.44 % Lake Taihu (China) 12 Aug 2010 mapping cyanobacteria
abundance

Continued on next page
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Li et al. (2018) empirical L8 CHL 0-30 mg·m-3 MAPE = 14.05 % Xin’anjiang reser-

voir (China)
2013-2015 sensor and algorithm

evaluation, driver analy-
sis

Ogashawara
et al. (2017a)

empirical L8 bloom 3 classes:
water, se-
vere/ moderate
bloom

OA = 88.46 % Eagle Creek Reser-
voir (USA), Lake
Erie (Canada/USA),
Lake Tai (China)

summer 2014 development of an easy
to use algorithm

Pitarch et al.
(2017)

Maximum Peak
Height

MERIS cyano, CHL 0-734 mg·m-3 R2 = 0.62 Albufera de valencia
(Spain)

2002-2014 time series, seasonal
cycles

Salem et al.
(2017)

7 MERIS algorithms MERIS CHL 8.1 - 187.4
mg·m-3

R2 = 0.42-0.65 Lake Kasumigaura
(Japan)

2002-2012 time series, algorithm
comparison

Sayers et al.
(2016)

empirical; classifi-
cation tree

MODIS cyano blooms classes OA = 83 % Greta Lakes
(Canadan/USA)

2002-2013 time series, driver anal-
ysis, monitoring

Shuchman et al.
(2017)

products from Color
Producing Agents
Algorithm

several
sensors

water clarity,
SAV, primary
productivity,
harmful algal
bloom

Great Lakes
(Canadan/USA)

1970-2016 effect of invasive mus-
sels on water clarity

Zhang et al.
(2016b)

empirical, sub-pixel
analysis

MODIS cyanoHAB area 50 - >200 km2 - Lake Taihu (China) 2001-2013 time series, driver anal-
ysis of cyanoHAB

Zolfaghari and
Duguay (2016)

empirical MERIS CHL 10-1000
mg·m-3

RMSE= 0.31 Lake Erie
(Canada/USA)

2004-2012 time series and driver
analysis

ZSD 0.01 - 7.9 m RMSE=0.19
Biota - Submerged aquatic vegetation
Fritz et al.
(2017a)

depth-invariant
index

RapidEye SAV coverage k=0.61 Lake Kummerow
(Germany)

June-Aug 2015 seasonal SAV develop-
ment

Grimm et al.
(2016)

depth-invariant
index

Pléiades SAV - - Lake Huron
(Canada/USA)

2013 maps of lake trout sp-
waning sites

Liang et al.
(2017)

classification tree MODIS SAV, emergent,
cyano scums

classes OA = 86 % Lake Taihu (China) 2010-2016 algorithm development

Luo et al. (2017) classification tree HJ-CCD SAV classes,
species dif-
ferentation

k = 0.63 Lake Taihu (China) Feb - Oct 2013 algorithm development
based on SAV phenol-
ogy

Continued on next page
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Luo et al. (2016) classification tree L5, HJ-

CCD
SAV habitat classes,

SAV area
- Lake Taihu (China) 1984-2013 long-term SAV trend

analysis, driver analysis
Yadav et al.
(2017)

classification L8 SAV 20-40% cover-
age

OA = 86.5% Lake Biwa (Japan) Sep/Oct
2013-2016

change detection

biomass 3390 - 4550 t R2 = 0.79
Zhang et al.
(2016a)

classification tree MODIS aquatic vegeta-
tion

classes - Lake Taihu (China) 2003-2014 implications for lake
restoration

Lake Surface Temperature
Allan et al.
(2016)

analytical L7 T 6.1-23.1 ◦C RMSE = 0.48 K Rotura lakes (New
Zealand)

2005-2008 combination of in situ,
remote sensning and 3-
D modelling

Huang et al.
(2017b)

mono-window L8 T 2.33-15.75 ◦C R2 = 0.9578 Arctic thermokarst
lakes ()

July-Aug 2013 inter- and intra-lake pat-
terns and gradients

Li et al. (2017) mono-window L7 T 3-35 ◦C R2 = 0.92 Poyang Lake
(China)

2015 combination iwth limno-
logic model

Ling et al.
(2017)

mono-window L7 T 5-30 ◦C R2 = 0.9268 dams in Qingjiang
River (China)

2000-2014 monitoring thermal pol-
lution by dams

Pareeth et al.
(2017)

homogenisation
approach, split-
window

13 sen-
sors

T -’10 -30 ◦C R2 ∼ 0.98 peri-alpine lakes
(Italy)

1986-2015 trend analysis

Pareeth et al.
(2016)

homogenisation
approach, split-
window

13 sen-
sors

T 7-26 ◦C RMSE = 0.38-1.19 ◦C Lake Garda (Italy) 1986-2015 trend analysis, diurnal
cycles

Zhong et al.
(2016)

homogenised pro-
duct

OISST2,
GLSEA2
LST
products

T 0.5-24 ◦C - Great Lakes
(Canada/USA)

1982-2012 understanding aprubt
warming from 1997-
1998, combination with
modelling

Ice phenology
Murfitt and
Brown (2017)

MODIS product MODIS ice phenology,
T

lakes in On-
tario/Manitoba
(Canada)

2001-2014 trend analysis

Continued on next page
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Weber et al.
(2016)

classification tree AVHRR ice phenology Day of year r = 0.2 - 0.73 Lake Neusiedel
(Austria), Lake
Pepsi, Lake Võrt-
sjärv (Estonia)

1990-2012 tlong-term time series of
freeze-thaw cycles
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Evaluating the suitability of the new Sentinel-2A satellite for mapping lake ecology indicators

Chapter 4 and Chapter 5 addressed the second objective of this thesis. Evaluations were conducted at both
considered lakes. At Lake Starnberg, evaluations comprised TSM, CHL and CDOM as well as water depth and
substrate coverage. At Lake Kummerow, the main main focus was on CHL.

Relatively clear, optically deep water - Lake Starnberg
At Lake Starnberg, colleagues from DLR Oberpfaffenhofen and TU Munich provided in situ data measured

timely to a S2A image acquisition on 13. August 2015. The analysis (Chapter 4; Dörnhöfer et al., 2016b)
included comparisons among three different atmospheric correction algorithms (MIP, ACOLITE, Sen2Cor), from
which the former two were specifically developed for water bodies. The comparison revealed Rrs spectra which
varied in shape and intensity among the three approaches. Such differences were, however, expected and
are anticipated for sensors other than S2A as well. Doxani et al. (2018) and GLaSS (2014) reported similar
variations among different correction algorithms. Examining the atmospherically corrected Rrs spectra at the
measurement sites also highlighted differences to the in situ measured Rrs spectra. These differences probably
resulted from imperfect removal of atmospheric and water surface effects but also from the scale difference
between the point in situ measurements and the spatially extended satellite measurements. These differences
result in large relative errors due to the low signal gathered from the water and are therefore essential in lake
remote sensing. The entirely physically based model MIP turned out to produce spectra closest to in situ
measurements. It therefore formed the input for the subsequent analyses with the bio-optical model WASI-2D
to retrieve water constituents (TSM, CDOM), water depths and lake bottom substrate.

The bio-optical analyses with WASI-2D showed that S2A was capable of capturing and resolving small
variations of TSM concentrations (1.1-5.1 g·m-3, mean: 1.8 ± 0.2 g·m-3) and CDOM absorption (0.1-0.74 m-1,
mean: 0.14 ± 0.02 m-1) at high spatial detail. CDOM obtained from S2A was lower than the CDOM modelled
from in situ measurements (0.42-0.44 m-1). TSM concentration analysed from water samples matched with the
lower boundary of the TSM concentrations retrieved from S2A. CDOM is normally stated as an absorption value
(Brezonik et al., 2015), i.e. in the same physical unit as is retrieved during inverse modelling. Otherwise, TSM
is indirectly derived from the inherent optical properties (IOP) ’backscattering by TSM’ (bb,TSM(λ)) using a mass-
specific conversion factor (cf. section 4.2.3). To assess the suitability of S2A for lake water remote sensing,
the analysis included a comparison of bb,TSM(550 nm) values retrieved from S2A and in situ measurements. A
comparison based on IOPs is independent of the accuracy of the mass-specific conversion and resulted in an
even closer match between in situ and S2A values.

The evaluation of 13 August 2015 indicated that CHL concentrations of ∼ 1 mg·m-3 were too low for a
retrieval with S2A and WASI-2D. Analyses of other images acquired in August 2015 using WASI-2D allowed
retrieval of CHL concentrations on average between 1 and 3.5 mg·m-3 (Fritz et al., prep). Varying conditions in
the atmosphere may have facilitated the removal of atmospheric effects and subsequently the retrieval of water
constituents which again may be influenced by varying conditions within the lake. These results underpin the
conclusion in Chapter 4: using a single image acquisition with a limited set of in situ data represented an initial
evaluation and was valuable in obtaining a first assessment and encouraging the use of S2A for lake analyses.
Further robust validations require assessments over several acquisition dates and lakes with different optical
characteristics. Such assessments in turn necessitate extensive in situ campaigns which are only feasible
through collaborations of multiple groups, ideally through financially sound projects.

Phytoplankton- and CDOM-rich, optically deep water - Lake Kummerow
S2A evaluation for CHL retrieval in eutrophic, phytoplankton-rich waters was considered in Chapter 5 (Dörn-

höfer et al., 2018a). The investigated CHL product originated from a different physically based, bio-optical in-
version model, i.e. MIP, and was analysed during a phytoplankton bloom with cyanobacterial predominance.
The fine spatial resolution of S2A revealed detailed structures of spatial gradients in CHL concentrations (3 -
45 mg·m-3), such as distinct streaks with very high concentrations traversing patches with lower concentrations.
Comparisons with in situ CHL samples (1 day later) showed that S2A retrieved CHL matched within the uncer-



120 7.1. Summary of main achievements

tainty range of in situ data. Another option to assess the suitability of S2A for lake water remote sensing could
be a comparison with another sensor which is already established for water analyses and still in orbit, such as
MODTE/ MODAQ (see references in Table 3.4, 3.5 and 7.2). Correlation analysis between CHL retrieved from
S2A and from timely acquired MODTE data demonstrated a strong linear relationship between both sensors
(r=0.89).

Relatively clear, optically shallow water - Lake Starnberg
S2A’s suitability for mapping lake ecology indicators in optically shallow water was tested in the relatively

clear waters of Lake Starnberg (Chapter 4 Dörnhöfer et al., 2016b). Water depth and substrate coverage
represented the indicators of interest. The spectral resolution of S2A allowed for the differentiation between
two bottom types, i.e. SAV and bare sediment. The high spatial resolution of 10 m enabled the delineation
of the partially narrow shallow water areas at Lake Starnberg which, for instance, would hardly be detectable
with Landsat’s 30 m or even Sentinel-3’s/MERIS 300 m. Thus, small-scale variations and transitions between
areas covered by dense SAV or bare substrate became apparent. A problem in mapping SAV with remote
sensing is the scarce availability of in situ data about substrate coverage as a basis for sensor and algorithm
evaluations (see also Fritz et al., 2017a, prep). If such data are available, different scales of in situ mapping
(e.g. species abundance estimations by divers at points along transects) and absence of large homogenous
patches hamper an adequate comparison to the spatial coverage of a remote sensor. Due to the lack of SAV
and substrate mappings, the S2A results were qualitatively compared with retrievals in previous studies as
conducted by Rößler et al. (2012, 2013). Indeed, S2A found similar structures of dense SAV as Rößler et al.
(2012, 2013) using hyperspectral and RapidEye data from 2011 which indicates a certain coherence with other
sensors; however, different SAV mapping approaches were considered in the studies. A distinct detection
of bare sediment at well known sandy shoreline sections (e.g. Roseninsel and south-eastern shoreline at
Seeshaupt) underpinned meaningful S2A substrate mappings.

To consider the effect of the water depth on Rrs spectra in shallow waters, substrate unmixing using WASI-
2D includes concurrent water depth retrieval. Assessing the accuracy of fitted water depths in comparison to,
for instance, echo sounding data provides a further indication on the quality of analysing shallow water lake
ecology indicators with S2A. Archived echo sounding data from 2012 highly correlated with S2A derived water
depths (r=0.95) but were slightly underestimated (∼ 0.5 m) between 0.5 and 2.5 m. Water depths shallower
than 0.5 m lacked echo sounding data. In water depths deeper than 2.5 m, WASI-2D retrieved erroneous water
depths (underestimation) using S2A. Further analyses which considered a fixed substrate type indicated that
S2A did not provide enough spectral information for WASI-2D to correctly differentiate between mixed SAV and
bare sediment patches in water depths deeper than 2.5 m.

Combination of multi-sensor data for phytoplankton monitoring

Chapter 5 addressed the third objective of this thesis. The idea of combining multiple sensors aims to in-
crease the chance of obtaining cloud-free images of a lake, enabling more continuous time series. Sensors
or sensor constellations with high spatial resolution (tens of metres) such as S2 or L8 have a revisit time be-
tween 5 and 16 days (Drusch et al., 2012; Irons et al., 2012). In cloud-prone regions, such as the study area
Lake Kummerow, clouds often reduce the number of suitable images. Low spatial resolution sensors (hun-
dreds of metres), such as MODIS or S3, acquire data at a daily or even higher temporal rate (Donlon et al.,
2012), increasing the chance for cloud-free images. If a lake’s size provides at least a few pure water pixels
(e.g. 10-15 MERIS pixels in a ∼ 250 ha lake; Matthews et al., 2010) that a sensor records, the retrieved lake
indicator information from low spatial resolution sensors may fill temporal gaps between the high spatial reso-
lution data acquisitions. A multi-sensor approach requires a sensor-independent physical model to guarantee
a comparison based on the same methodology including the atmospheric correction and lake ecology indicator
retrieval.

This thesis examined such a multi-sensor approach in Chapter 5 (Dörnhöfer et al., 2018a) with the case
study of Lake Kummerow and its phytoplankton development during summer 2015. To this end, CHL products
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and an indicator of harmful algal blooms (eoHAB) were obtained from MIP, which conducts both atmospheric
correction and water constituent retrieval ensuring methodologically comparable results among sensors. A
series of sensors served as the basis for parameter retrieval, i.e. MODIS-Aqua and MODIS-Terra as low
spatial with high temporal resolution sensors and L7, L8, S2A as high spatial with low temporal resolution
sensors. Combining suitable and cloud-free data sets resulted in a total of 33 images between 1st July and
3rd October 2015. The time series captured low CHL concentrations below 10 mg·m-3 during early summer
and the development of a phytoplankton bloom at the beginning of August with a lake average CHL maximum
of 35.8 mg·m-3. Subsequently, CHL concentrations slightly varied around a relatively high level (∼ 20 mg·m-3)
until the beginning of October. Combining, for instance, lake-wide average results of a sensor-independent
model within a time series was feasible. Nevertheless, it is a question of whether different sensors provide
coherent results. Examining the time series, lake average CHL concentrations from different sensors followed a
reasonable and consistent temporal development. At the beginning of August, in particular, CHL concentrations
derived from different sensors exhibited a coherent increase.

Few (6 times) match-ups between the high and low spatial resolution sensors on the same day enabled a
quantitative analysis of coherence. Between 250 and 2500 L7/L8 or S2A pixels occurred within a MODTE or
MODAQ pixel. High standard deviations indicated a certain spatial variability within the 500x500 m2 MODTE/
MODAQ pixels. Nevertheless, CHL concentrations from match-ups within a small time slot (∼ 20 min) scat-
tered around the 1:1 line and showed acceptable measures of value differences: MAE varied between 1.2 and
5.0 mg·m-3 with relative errors (nRMSE) between 28 and 63 %. A strong correlation, however, existed only be-
tween S2A and MODTE (r=0.89) and one match-up between L7 and MODTE (r = 0.64). Strong discrepancies
between CHL from different sensors occurred in match-ups with a time slot larger than 1 hour, e.g. L8 and
MODAQ. Here, nRMSE values > 286 % were observed, indicating that lake conditions or atmospheric condi-
tions may have changed within hours and complicated CHL retrieval. A comparison with in situ data from 7
August (uncorrelated match-up between L8 and MODAQ) showed that L8 retrieved CHL was closer to in situ
CHL than MODAQ.

This comparison with in situ data emphasised the challenge of considering different accuracies when com-
bining multiple sensors. Since MODIS acquires data daily, the number of match-ups with in situ measurements
acquired within ± 1 day was higher (13 times) compared to L7/L8/S2A (1-2 times). Moreover, the suitability of
several litres water sample for evaluating CHL retrievals with 500 x 500 m2 MODIS pixels can be questioned.
Considering the uncertainty of in situ data, calculated accuracy measures ranged between 3.0 and 19.4 mg·m-3

(MAE) whereas L8 and S2A agreed best at the beginning of August. In contrast, L8 also offered the highest
discrepancy at a different match-up date. Around this date (23 August), CHL from different satellites followed a
similar trend whereas in situ data from two measurement days were distinctly lower. Methodological differences
such as sampling below the surface vs. at the surface covered with scums and the influence of degrading
pigments in satellite signal which were not considered in in situ samples or erroneous analysis of both in situ
and satellite data may explain the discrepancies.

Such comparisons demonstrate the challenges associated with combining multiple sensors and also inte-
grating in situ data. The gathered, detailed time series on the phytoplankton development at the study area
Lake Kummerow, however, shows that the effort in combining multiple sensors and in situ data is worthwile.
In situ data alone were not able to delineate the variable spatio-temporal CHL development. Nevertheless, in
situ data are indispensable since they supply information which remote sensing is unable to provide, such as
water column profiles, information beyond euphotic depth, detailed analyses on e.g. species composition and
information during cloudy periods (e.g. second half of July). Meanwhile, combined satellite data represents
a valuable information source on spatial surface patterns at a theoretically higher temporal resolution. Even
the low spatial resolution of MODIS sensors captured spatial tendencies. The higher spatially resolved data
acquired by Landsat and S2A sensors provided detailed insights into surface structures before and after the
MODIS acquisitions. Thus, combining multiple sensors allowed spatially tracking surface CHL evolution and
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pattern shifts during the development phase of a phytoplankton bloom.

Assessing the value of archived MERIS satellite imagery for monitoring lake ecology indicators

Although new sensors are available with improved spatial, radiometric and spectral resolutions suitable
for lake remote sensing, archived imagery may also represent a valuable data source for retrieving earlier
information and time series on lake ecology indicators. The archive of the ocean colour sensor MERIS (300
x 300 m2 spatial resolution) provides consistent data from March 2002 until April 2012 which are well suited
for lakes with a sufficient spatial extent. Chapter 6 (Dörnhöfer et al., 2018b) of this thesis therefore includes
an analysis of water constituents, i.e. CHL, TSM and CDOM, retrieved from the MERIS archive. The study
was conducted at Lake Kummerow using the well established (e.g. Palmer et al., 2015c; Philipson et al., 2016)
neural network algorithm FUB-WeW. Thus, a 9-year time series (2003-2011) of CHL, TSM and CDOM covering
all seasons could be generated.

Regular monitoring data acquired by LU-MV during the growing season enabled a comparison of MERIS
with in situ CHL. The quantitative assessment indicated correlating MERIS and in situ CHL concentrations (r =
0.78), whereas MERIS CHL concentrations > 10 mg·m-3 were higher than in situ measurements. Calculating
long-term (9 years) monthly lake average concentrations delineated the seasonal behaviour of CHL throughout
the year. According to the MERIS data, a phytoplankton spring bloom regularly occured in April (∼ 11 mg·m-3)
followed by the clear water phase (. 6 mg·m-3) in May/June. Subsequent increasing CHL concentrations
peaked in September (∼ 30 mg·m-3) and decreased until November. During winter months, CHL concentrations
remained ∼ 5 mg·m-3. Knowledge about the spring bloom, clear water phase and high summer concentrations
were already well-known from in situ data with the difference that in situ measurements indicated highest CHL
concentrations in August. However, no information on winter CHL concentrations at Lake Kummerow has been
available so far. Otherwise, the lack of in situ measurements impeded quantitatively verifying the reliability of
the retrieved concentrations during winter months.

The same issue applied for TSM and CDOM. Both parameters have not been measured at the lake; the
MERIS time series therefore revealed the first spatio-temporal information on their concentrations. TSM demon-
strated a similar seasonal behaviour as CHL with highest concentrations occurring during summer months
(∼3 g·m-3) and hardly varying concentrations ∼ 1 g·m-3 during the rest of the year. This behaviour was rea-
sonable since TSM at Lake Kummerow mainly consists of organic particles, i.e. phytoplankton and detritus.
According to the analysed MERIS data, CDOM exhibited a distinct seasonal behaviour with increasing values
from January to April (∼ 0.05 - 0.6 m-1); during the summer they slightly varied between 0.6 and 0.7 m-1 before
they decreased again during autumn. In situ DOC measurements (CDOM may correlate with DOC; e.g. Hestir
et al., 2015b; Toming et al., 2016b) indicated only slightly varying concentrations between March and October
which also lacked any measurements during autumn and winter. An algorithm failure during the low light period,
which aggravates a proper retrieval of light absorbing water constituents such as CDOM, might be plausible but
cannot be finally resolved without any winter/autumn in situ measurements.

Nonetheless, the time series of Lake Kummerow provided a valuable source for calculating trends of water
constituent development. Analysing the MERIS CHL data set revealed a decreasing tendency of -3.4 mg·m-3

between 2003 and 2011. A similar trend was found based on the in situ data (-3.7 mg·m-3) which reinforces
that remote sensing and in situ data may complement each other in reaching a similar conclusion. TSM also
decreased during the period (-1.3 g·m-3) whereas CDOM showed no trend. This information was only available
through analysing the MERIS data archive. Such analyses with well-established algorithms provide valuable
time series information of non-investigated lakes and irregularly or not measured water constituents. Indeed,
comparisons with in situ measurements entail various issues such as temporal mismatch, up-scaling or method-
ological differences (e.g. Dörnhöfer et al., 2018a; Pahlevan et al., 2016; Salama and Su, 2011; Toming et al.,
2016a). Without any in situ data serving for quantitative assessments or at least plausibility checks, such time
series have to be interpreted carefully and cross-checked with literature to check their reliability.
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7.2 Answers to research questions

The key achievements of this thesis summarised in section 7.1 aimed to contribute to answer the two main
research questions underpinning the entire text.

Do new sensors fulfill the promise on their predicted suitability for lake remote sensing?

The conducted evaluations indicated a well performance of S2A and L8 for retrieving lake ecology indicators.
In detail, the noise equivalent Rrs difference of S2A data was high enough to be suited for remote sensing
of deep water in relatively clear lakes. TSM retrievals achieved reliably concentrations ∼ 1.5 g·m-3 whereas
CDOM was slightly lower compared to in situ values. CHL retrievals with concentrations ∼ 1 mg·m-3 performed
unevenly. In the phytoplankton and CDOM-rich waters of Lake Kummerow, S2A turned out to be well-suited
for retrieving CHL concentrations within the uncertainty range of in situ measurements. Compared to L8, the
additional bands of S2 sensors > 700 nm are advantageous for lake remote sensing. Indeed, the CHL results
of L8 were ambivalent with one match-up-date falling within the uncertainty range and one completely out of
the range (a laboratory error cannot be excluded). Nevertheless, other analysed scenes without in situ data
reasonably followed the temporal development of CHL so that it is worth to continue analyses with L8 for lake
remote sensing. In optically shallow waters, S2’s high spatial resolution of up to 10 m was anticipated to support
SAV and water depth mapping. Indeed, S2 allows unprecedented discrimination of lake bottom coverage with
freely available data. With Secchi disk depth of around 4 m, S2A data enabled a reasonable differentiation
between dense SAV, mixed and bare sediment areas up to 2.5 m water depths using a bio-optical modelling
approach at Lake Starnberg. In deeper waters, erroneous water depth retrieval indicated an insufficient spectral
information provided by S2A to reliably differentiate between SAV covered, bare sediment and mixed areas
using the applied approach.

These evaluations, however, open a discussion about the reference to which the suitability of these new
sensors is examined. The literature review in Chapter 3 and section 7.1 pointed out in situ measurements
timely to image acquisitions (± 2 hours up to 1 day) as a major means for evaluating lake ecology indicator val-
ues retrieved in a pixel or pixel environment (macro-pixel) surrounding the coordinate of the measurement site.
These comparisons, however, often focused on exact match-ups or strong correlations but neglect uncertain-
ties associated with in situ sampling, e.g. GPS positional inaccuracies, sample variability, device accuracies,
methodological differences. Evaluation plots often depict error bars as standard deviation of the mean value
of several pixels surrounding the measurement site; in situ data rarely contain an error bar in remote sensing
studies. To overcome forcing exact match-ups, Chapter 3 and 5 suggested the integration of in situ uncertainty
ranges in comparisons between in situ and satellite data. Chapter 4, for instance, therefore included the stan-
dard deviation of repeated radiometric measurements conducted at one measurement site in comparison to
S2A Rrs spectra from different atmospheric correction algorithms. At the case study of water constituents at
Lake Kummerow, in situ measurements conducted in this thesis included three samples taken at each mea-
surement site for each analysed water constituent (cf. Chapter 2). Three samples represented a trade-off
between a minimum of multiple samples at a measurement site to indicate sample variability and a feasible
sample transport and analyses while covering a certain spatial area. Additional samples which were analysed
by an external laboratory and subsequent uncertainty calculations defined an uncertainty range of CHL sam-
ples (±48 %) taken at Lake Kummerow, into which the satellite derived values should preferably fall (cf. Chapter
5).

In summary, the short operating time of S2A and cloud coverage during the main measurement phase of
this thesis limited the evaluation of S2A’s and L8 suitability for lake remote sensing to a few scenes. Analyses
focused on two lakes with highly differing optical characteristics but statements are limited to conditions similar
to these lakes at acquisition dates and based on a small sample size. Stating a real suitability of S2 and L8 for
lake remote sensing certainly is a preliminary evaluation but promising to encourage further research with these
sensors in lakes. Results from other case studies conducted at various lakes on the globe and mainly focusing
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on water constituents support the positive statement of this evaluation. Nevertheless, Pahlevan et al. (2017)
figured out S2A and L8 on-orbit signal to noise ratio in short wavelengths is distinctly lower than recommended
for ocean colour sensors. Resampling S2A data to 20-30 m may reduce image noise and provide L8 comparable
data valuable for lake remote sensing (Pahlevan et al., 2017). Furthermore, S2’s acquisition characteristics lead
to slight mis-registrations between bands which is problematic for proper sun glint detections and corrections
(Harmel et al., 2017; Pahlevan et al., 2017). In this context, one has to bear in mind that L8 and S2 were not
specifically designed for water analyses. Nevertheless, combining this thesis’s results with the results of other
studies reviewed in Chapter 3 and its update (Table 7.2), S2 and L8 seem to hold promise for use in lake remote
sensing.

Can different satellite sensors synergetically be used to contribute to lake monitoring?.

The example of Lake Kummerow which combined retrieved CHL products from different sensors (MODAQ,
MODTE, L7, L8 ad S2A) demonstrated that synergetic use of different sensors is feasible. This synergetic
combination provided a time series which indicated spatial variability within the lake through lake-wide standard
deviations; the temporal dynamics of phytoplankton development became apparent through lake average CHL
concentrations at a higher temporal resolution than obtained by in situ sampling. This example further examined
how such information may be integrated into lake monitoring, e.g. into the programmes within the WFD. To this
end, the lake’s trophic state was first determined based solely on in situ data and secondly with CHL monthly
averages obtained from satellite derived values. Indeed, using synergetic satellite CHL values revealed a higher
trophic state (eutrophic 1) compared to the pure in situ calculation (mesotrophic 2). This difference mainly
originated from higher satellite than in situ average concentrations in late summer months. Integrating satellite
data into trophic state calculations further enabled generating a spatial depiction of the trophic state. This map
showed the majority of the lake as eutrophic 1 and a part close to the eastern shoreline as mesotrophic.

Discussing these results emphasised that satellite data may assist traditional monitoring approaches; a
robust support, however, may not simply combine satellite and in situ measurements in an established index
calculation. Index calculations such as the trophic state classification were specifically developed and tested
for in situ data (e.g. Riedmüller, 2014). Satellite data involve different issues than in situ data which have to
be considered for index calculations based on lake monitoring data. Although synergetically combined satellite
data have a theoretically high temporal resolution, longer periods of cloudy weather lead to temporally irregular
data supply (see Chapter 5). The derived concentration originates from a mixed signal between the surface
and light penetration depth (Gege, 2017) compared to fixed depths of water samples. Nevertheless, satellite
data may reduce uncertainties in trophic state assessments and lake monitoring arising from spatial variabilities
undetected by point based in situ measurements (Kiefer et al., 2015; Søndergaard et al., 2016). Furthermore,
physically sound and transferable remote sensing algorithms which may work similarly and comparably among
different regions are advantageous compared to the recently ’Three hundred ways to assess Europe’s surface
waters’ (Birk et al., 2012). This advantage requires sensor-independent algorithms for both atmospheric cor-
rection and lake ecology indicator retrieval. Cross-sensor comparisons such as those conducted in Chapter 5
and other studies (e.g. Liu et al., 2017; Lymburner et al., 2016; Pahlevan et al., 2017) form the basis to analyse
the comparability of lake ecology indicators from different sensors. Assessing and providing sensor-specific
uncertainty measures which can then be considered in lake monitoring may support a multi-sensor use.

Satellites acquire data beyond the main monitoring phase during the growing season. Thus, multi-sensor
satellite CHL showed increased concentrations at Lake Kummerow likeley explained by a surface bloom occur-
ring after the official measurement period which terminated in the first half of September. Bresciani et al. (2016)
reported similar observations where satellite data revealed cyanobacteria blooms which may also be relevant
for human health issues. Indicators on cyanobacteria presence such as eoHAB (Chapter 5) or the Cyano Index
published by Clark et al. (2017) combined with near real-time satellite data may help to identify hot spot areas.
Thus, authorities may react in a timely manner and check potential toxins with in situ water samples. Outside
the official measurement periods, operational but also archived imagery provide information about water con-
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stituents during autumn and winter. Often lacking measurement data and low sun angles for remote sensing
data hamper autumn and winter analyses for lake monitoring.

Analysing archived imagery such as that of MERIS may also create synergies of operating sensors and lake
monitoring. At Lake Kummerow, MERIS data enabled the calculation of trends in water constituent development
and seasonal behaviour. Comparisons between CHL development based on the MERIS analyses (Chapter 6)
and observations from the multi-sensor time series Chapter 5) indicated similar behaviours during summer
months. OLCI as the heritage sensor of MERIS on-board S3 (Berger et al., 2012) ensures continuity of these
data and may help to optimise, for instance, the location of monitoring sites (e.g. MERIS-study by Kiefer et al.,
2015).

In summary, various issues associated with climate change, eutrophication and alien species invasion
threaten lake environments and demand a rethinking of established, traditional monitoring approaches. New
sensor techniques, progress in algorithm development and computational capacities facilitate a multi-sensor
combination to support lake monitoring. As Bertani et al. (2017) suggested for cyanobacterial monitoring, a
combination of different approaches including remote sensing, in situ measurements and modelling may tackle
current challenges associated with lake monitoring.
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7.3 Conclusions and future challenges

Using satellite data from sensors with varying spatial, spectral and temporal resolutions, this thesis demon-
strated how water colour analyses can contribute to lake monitoring. The created in situ data bases and con-
ducted analyses aimed to contribute to investigations of the open issues stated in the introduction to progress
lake remote sensing. Uncertainty analyses of in situ water samples for CHL retrieval revealed a ± 48 % mea-
surement uncertainty of samples in this thesis. Coefficients of variation up to 37 % occurred in CHL concen-
trations from multiple samples taken at one measurement site; this observation indicated coincidently varying
water at a measurement site and variabilities through sample analysis. Thus, one conclusion of this thesis is a
strong recommendation to include in situ data uncertainty analyses in remote sensing validations and aim at a
match-up within uncertainty ranges rather than an exact match-up.

In doing so, suitability analyses of S2A and L8 as new sensors produced promising results under relatively
clear and phytoplankton-/CDOM-rich conditions in optically deep waters. S2A further turned out to be a valuable
data source for shallow water analyses if the water column is relatively clear and substrate types are spectrally,
clearly distinguishable. Nevertheless, the limited number of in situ data and match-ups between satellite and
in situ measurements resulted in a preliminary evaluation of these sensors. Further robust validations are
required which cover even more water types. For such analyses, a variety of retrieval algorithms exists ranging
from empirical, semi-analytical, neural networks and bio-optical inversion approaches.

This thesis focused on two physically-based, bio-optical inversion approaches (WASI-2D, MIP) and a neural
network algorithm (FUB-WeW) which all offered different advantages and disadvantages. FUB-WeW is freely
available and combines atmospheric correction and water constituent retrieval; it is, however, restricted to the
water constituent concentrations for which the neural network was trained and sensor-specific, i.e. MERIS
and further developed for S3. MIP combines a coupled atmospheric correction and water constituent, water
depth or substrate retrieval and is applicable to any suited sensor. Since only the products are distributed by
EOMAP GmbH & Co.KG, the model itself remains a black box. WASI-2D is freely available and enables the
derivation of water constituents, water depths and substrates. Its structure allows adaptations to any suited
sensor and lake conditions if the required data is available. The remote sensing input data, however, must be
atmospherically corrected. The performance of physically-based, bio-optical inversion models strongly relies
on the performance of the applied atmospheric correction algorithm. WASI-2D, however, includes an analytical
algorithm for considering water surface effects such as sun and sky glint during parameter retrieval.

The atmospheric correction algorithms evaluated in this thesis were partially designed for water bodies.
Only MIP was sensor-independent and performed best in relation to radiometric in situ measurements under
relatively clear water conditions. Meanwhile developments of atmospheric correction algorithm progressed and
a comparison among recently available approaches for L8 and S2 was published (Doxani et al., 2018). A
sensor-independent and water body specific algorithm, however, is still lacking for lake remote sensing.

Combining this thesis’s results with the reviewed literature could answer the two research questions posi-
tively: S2 and L8 provided promising results for lake remote sensing. In combination with archived imagery, a
synergetic use of multiple recently operating and suitable sensors is expected to strongly support lake moni-
toring. Lake remote sensing and its combination with in situ measurements has made a lot progress over the
last few years. Reviewing the published literature and the results of this thesis also emphasised still unresolved
challenges and a variety of topics arose which are worth being investigated in the near future to continue the
(rapid) progress in lake remote sensing:

• The essential basis for lake remote sensing is an accurate correction of atmospheric and water surface
effects. Meanwhile, a variety of approaches also specifically designed for water bodies is available. None
of them are both sensor-independent and open-source. Still, the available algorithms face challenges
in correcting adjacency effects, sun and sky glint in addition to the ’normal’ atmosphere at once while
having only a limited number of multispectral bands in case of e.g. S2 and L8. The specific acquisition
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modes of these sensors, however, hamper sun glint corrections (e.g. Harmel et al., 2017; Pahlevan
et al., 2017). The development of a sensor-independent and open-source approach which considers
the specific requirements of water surfaces may significantly contribute to the progress in lake remote
sensing research and its combination with lake ecology. In this vein, assessing the influence of different
atmospheric correction algorithms on the retrieval of lake ecology indicators should be a next step.

• The newly available sensors provided promising results regarding their use for lake remote sensing.
Nonetheless, none of them are specifically designed to map lakes. Lake remote sensing may benefit from
these sensors by means of a synergetic combination. With the launch of S3, the integration of S3 into this
synergetic multi-sensor use for lakes should be evaluated. As already started, cross-sensor evaluations
should be continued in order to increase knowledge about the comparability of retrieval algorithm products
from different sensors. Such combinations require sensor-independent models for atmospheric correction
and lake ecology indicator retrieval to ensure comparable data processing. Developing algorithm specific,
pixel-based uncertainty measures, such as quality flags, may help to exclude uncertain pixels.

• In situ data are and remain the major source for evaluating sensors and algorithms in lake remote sensing.
Robust evaluations or validations require large data bases with match-ups of lakes having varying optical
characteristics. Collaborations among different groups from remote sensing and lake ecology disciplines
may strengthen such evaluations by using capacities effectively and increasing knowledge and data from
various lake types. Developing national or international data repositories may facilitate data access and
usage. Advancing a common comprehension on (standardised) measurement protocols and metadata
management therefore is crucial. Lack of financing often hampers in situ or laboratory inter-calibration
of measurement devices and round robin tests of laboratories to increase knowledge about uncertainties
originating from different measurement devices/ analysis procedures. A first attempt would be to increase
sample sizes and measurements at each measurement site to obtain a degree of certainty and variability
of in situ measurements. Further uncertainty analyses may improve remote sensing evaluations.

• Remote sensing depicts the spatial variability and patterns of lake ecology indicators at or near the wa-
ter surface. A next step would be to use this spatially explicit and temporally highly available data in a
combination with lake modelling and in situ data. Such a combination may extrapolate the spatial infor-
mation vertically into the depth and temporally during cloudy or low light periods. Within this modelling
context, remote sensing products may serve as input, comparison and/ or evaluation data for modelling
such as for primary production modelling conducted by Kauer et al. (2015). The complexity of the differ-
ent approaches requires the collaboration of different disciplines, e.g. remote sensing, lake ecology and
modelling researchers.

The future about monitoring, understanding and managing lakes is about a synergetic combination of differ-
ent approaches: in situ measurements with remotely sensed indicators from various suitable sensors together
with lake modelling. Each of the approaches has its specific advantages and constraints. Some open research
issues were elaborated which may be addressed in the near future to progress lake remote sensing. The data
base created at Lake Kummerow and expanded at Lake Starnberg during this thesis is not yet fully exploited
and offers potential for future analyses considering these issues. The contrasting characters and sizes of the
two lakes make them suitable for advancing lake remote sensing and modelling making it worthwhile to continue
measurements there.
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