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ABSTRACT 
 
Shallow lakes are an important ecological and socio-economic resource.  However, the impact 
of human pressures, both at the lake and catchment scale, has precipitated a decline in the 
ecological status of many shallow lakes, both in the UK, and throughout Europe.  There is now, 
as direct consequence, unprecedented interest in the assessment and monitoring of ecological 
status and trajectory in shallow lakes, not least in response to the European Union Water 
Framework Directive (2000/60/EC). 
 
In this context, the spatially-resolving and panoramic data provided by remote sensing 
platforms may be of immense value in the construction of effective and efficient strategies for 
the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing 
new, spatially-explicit, insights into the function of these ecosystems and how they respond to 
change.  This thesis examined the use of remote sensing data for the assessment of (i) 
phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and 
ecophysiological status in shallow lakes with a view to establishing the credence of such an 
approach and its value in limnological research and monitoring activities. 
 
High resolution in-situ and airborne remote sensing data was collected during a 2-year 
sampling campaign in the shallow lakes of the Norfolk Broads.  It was demonstrated that semi-
empirical algorithms could be formulated and used to provide accurate and robust estimations 
of the concentration of chlorophyll-a, even in these optically-complex waters.  It was further 
shown that it was possible to differentiate and quantify the abundance of cyanobacteria using 
the biomarker pigment C-phycocyanin.  The subsequent calibration of the imagery obtained 
from the airborne reconnaissance missions permitted the construction of diurnal and seasonal 
regional-scale time-series of phytoplankton dynamics in the Norfolk Broads.  This approach was 
able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic 
cyanobacterial bloom.   
 
It was further shown that remote sensing can be used to map the distribution of aquatic plants 
in shallow lakes, importantly including the extent of submerged vegetation, which is central to 
the assessment of ecological status.  This research theme was subsequently extended in an 
exploration of the use of remote sensing for assessing the ecophysiological response of 
wetland plants to nutrient enrichment.  It was shown that remote sensing metrics could be 
constructed for the quantification of plant vigour.  The extrapolation of these techniques enabled 
spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient 
enrichment to be characterised and assisted the formulation of a mechanistic explanation for 
the variation in reedswamp performance in these shallow lakes. 
 
It is therefore argued that the spatially synoptic data provided by remote sensing has much to 
offer the assessment, monitoring and policing of ecological status in shallow lakes and, in 
particular, for facilitating the development of pan-European scale lake surveillance capabilities 
for the Water Framework Directive (2000/60/EC).  It is also suggested that remote sensing can 
make a valuable contribution to furthering ecological understanding and, most significantly, in 
enabling ecosystem processes and functions to be examined at the lake-scale.  
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1 INTRODUCTION 
 

 

1.1 RESEARCH IN CONTEXT 

Science is often concerned with the observation of patterns in nature and, moreover, attempts 

to relate patterns to processes.  Patterns are, essentially, a symptom of the natural spatial and 

temporal heterogeneity that is inherent in all ecosystems (Levin, 1992).  Our understanding of 

how ecosystems function, interact, and respond to change, is dependent on an ability to 

characterise this heterogeneity across meaningful scales, and interpret its ecological 

significance (Underwood et al., 2000; Turner et al., 2003).  Shallow lakes are no exception in 

this context.  Shallow lakes, like many ecosystems, are spatially complex and transient 

environments, which can respond probabilistically or stochastically to perturbations and 

pressures which, themselves, may occur at varying scales.  Our understanding of shallow 

lakes, their processes, and function, will thus be conditioned by our ability to measure and 

monitor patterns of change in these ecosystems and at ecologically pertinent spatial and 

temporal scales.  

 

Scientific interest in shallow lakes has intensified as the ecological and socio-economic value of 

these ecosystems has been slowly recognised.  It is rather ironic, therefore, that this recognition 

has emerged during a period in which lakes and, indeed, other freshwater ecosystems, have 

been subjected to unprecedented pressures from human activity.  The ecological health, or 

status, of many shallow lakes has been severely affected by pressures from processes like 

acidification, abstraction, eutrophication, hydrological modification and pollution or, in some 

cases, even by the invasion of alien species (Scheffer, 1998).  In the future, shallow lakes will 

also have to respond to the pressures exerted by global climate change (Carvalho & Kirika, 

2003).  It is now indisputable that one of the major challenges currently facing society is how to 

adequately protect and conserve our freshwater resources. 

 

The European Union’s Water Framework Directive (2000/66/EC) (EU WFD) was implemented 

on the 22 December 2000 with the aim of establishing a new, integrated, approach to the 
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protection, improvement and sustainable use of Europe’s rivers, lakes, estuaries, coastal and 

groundwaters.  In the context of lakes, the EU WFD stipulates all Member States must achieve 

“good and non-deteriorating ecological status” in these waters by 2015.  The assessment of 

ecological status is to be measured against a lengthy list of (i) hydromorphological, (ii) 

physicochemical and (ii) biological criteria and, additionally, the directive places much emphasis 

on the need for Member States to develop efficient and effective surveillance, operational and 

investigative monitoring strategies to facilitate the assessment and policing of ecological status 

in lakes.  The implementation of the EU WFD, however, will be a serious challenge for the 

relevant regulatory authorities, given the sheer number and geographical distribution of lakes 

covered by the legislation, and the number of separate elements for which monitoring is 

required.  It is evident that, if Member States are to achieve the successful, and long-term, 

implementation of the EU WFD, monitoring strategies must be constructed that (i) can provide 

data that are objective and quantitative, (ii) are robust, repeatable, and cost-effective and, 

critically, (iii) can be implemented at the pan-European scale. 

 

The accepted methodologies for lake survey and monitoring are often highly, or totally, 

dependent on point-sampling approaches.  Point-sampling approaches, whist they readily 

provide accurate data, can seldom adequately describe the heterogeneity inherent in lake 

ecosystems without disproportionate sampling effort or the over-reliance on spatial inferences 

(Rantajarvi et al., 1998).  This deficiency is a substantial obstacle to the elucidation of spatial 

variability in lake process and function.  Moreover, from a monitoring perspective, point-

sampling approaches are not conducive, nor cost-effective, for survey at regional-to-global 

scales.   

 

The spatially-resolving panoramas afforded by remote sensing technologies (spaceborne or 

airborne sensors) have the capability to provide data as a continuum and can afford a much 

needed spatial context for point-based measurements (Rainey et al., 2003; Tyler et al., 2006).  

This is important if the spatial-dependence and spatial-heterogeneity of ecosystem processes 

and function is to be effectively elucidated.  Remote sensing has often proved to be of value for 

qualitative mapping exercises (Kent et al., 1997; Kent & Mast, 2005; McDermid et al., 2005).  
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However, advancements in the spatial, spectral and radiometric capabilities of remote sensing 

instruments have enabled scientists to increasingly begin to extract quantitative bio-physical 

information from spaceborne and airborne data (Aplin, 2005).  This improved capability has 

increased the breadth of application remote sensing has found in ecology and, importantly, has 

often allowed scientists to form new and unparalleled understandings of how ecosystems 

function, interact and respond to change (Kerr & Ostrovsky, 2003; Cohen & Goward, 2004). 

 

It is thus not unexpected that remote sensing has found use in the study of aquatic ecology.  

There are numerous examples of its appliance in the study of river (e.g. Bryant & Gilvear, 1999; 

Mertes, 2002; Gilvear et al., 2007), estuarine (e.g. Paterson et al., 1998; Rainey et al., 2003; 

Yang, 2005), and marine (e.g. Brown & Podesta, 1997; Weeks et al., 2004; Miller et al., 2005) 

environments.  Remote sensing has also found application in the study of lake ecosystems.  

Workers have shown, for instance, that remote sensing can be used to measure various water 

quality parameters (e.g. transparency, seston dry weight, coloured dissolved organic matter) 

and estimate phytoplankton biomass (chlorophyll-a) (Dekker et al., 1991; Lindell et al., 1999; 

Thiemann & Kaufmann, 2000; George & Malthus, 2001; Ammenberg et al., 2002; Tyler et al., 

2006; Giardino et al., 2007).  It has also been demonstrated, albeit in a limited number of 

studies, that remote sensing can be used to map aquatic plant species and communities 

(Malthus & George, 1997; Dekker et al., 2005; Nelson et al., 2006; Pengra et al., 2007).   

 

The spatially-resolving data provided by remote sensing in these contexts has been shown to 

contribute much to the understanding of ecosystem process and function and, importantly, at 

the lake-scale.  However, the use of remote sensing for lake research and monitoring has often 

been restricted by the spatial and spectral capabilities of the available technology.  The vast 

scale of the oceans inherently lends itself to observation from spaceborne instruments.  The 

dedicated ocean colour satellites (e.g. MERIS, MODIS, SeaWiFS), that are specially configured 

for the specific bio-optical properties of aquatic media, thus have coarse spatial resolutions 

(0.3-1.1 km) that are not harmonious with the scale of the vast majority of lakes and other 

inland waters.  The alternative use of data from terrestrial earth-observing satellites, which do 

have spatial resolutions (2-30 m) conducive to the observation of lakes is, in optically-complex 
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lake waters, restricted by the typically limited spectral capabilities (i.e. broad channel 

configurations) of these instruments (Lindell et al., 1999; Tyler et al., 2006). 

 

The latest generation of hyperspectral imaging satellite-mounted sensors (i.e. NASA’s EO-1 

Hyperion) now offer the combination of high spatial and high spectral resolution data.  This new 

class of earth observation (EO) data has, in the long-term, much to offer the study of lakes and 

other inland waters.  The EO-1 Hyperion mission was, however, designed largely for 

validation/demonstration purposes and, as such, the operational lifespan of the mission is 

limited.  In this context, airborne remote sensing, which can provide high spatial and spectral 

resolution data, and offers a flexible time-series surveillance capability, may be highly valuable 

for developing the use of remote sensing technologies for lake research and monitoring 

purposes until the promise of further hyperspectral EO satellites is realised.  Whilst it is clear 

that the spatially-resolving data delivered by remote sensing platforms may have much to offer 

the study of lake ecology.  It is also apparent that remote sensing surveillance may be able to 

make a substantial contribution to the monitoring of lakes for the purposes of the EU WFD, as it 

has the capacity to provide information on elements relevant to the assessment of ecological 

status in lakes (e.g. phytoplankton, aquatic vegetation). The ability of remote sensing platforms 

to capture this information at the regional-scale would be highly pertinent for the construction of 

an operational, pan-European, monitoring strategy. 

 

Remote sensing for lake monitoring is currently not at an operational stage of development.  

There is a need for considerable further research to prove the accuracy and robustness of the 

remote sensing approach.  This is particularly true for small and shallow lakes.  The vast 

majority of studies that have examined the development of remote sensing for lake research 

and monitoring have, perhaps for instrumentational considerations, been conducted in large 

and moderately deep lakes.  It is also clear few attempts have been made to use data derived 

from remote sensing technologies to study the spatial intricacies of shallow lake processes and 

function and, further, to use these insights to inform and refine ecological understanding.  It is 

therefore clear that the examination of remote sensing technologies in shallow lake research 

and monitoring warrants some further detailed consideration.   
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1.2 THESIS AIM AND STRUCTURE 

The aim of this thesis is to examine the application of high spatial and high spectral resolution 

remote sensing for the assessment and monitoring of ecological status in shallow lakes.  

Specific focus will be given to the development, refinement, and application of techniques for 

ecological assessment that have value in the study of lake ecology and, further, have a synergy 

with the monitoring requirements of the EU WFD.  This will include an evaluation of techniques 

for the assessment of (i) phytoplankton (and other water quality parameters) and (ii) aquatic 

vegetation in shallow lakes (Figure 1.1). 

 

 

Figure 1.1  Flow diagram detailing the structure of the thesis and the approach taken to the 
evaluation of remote sensing in shallow lake ecology and its role in the implementation of the 
EU WFD (2000/66/EC). 
 

REMOTE SENSING IN SHALLOW LAKE ECOLOGY 

Phytoplankton (and water quality)  Aquatic Plants 

Chapter 3 
Remote sensing for the estimation of 
chlorophyll-a and other water quality 
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Chapter 4 
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phytoplankton composition 

Chapter 5 
High spatial resolution time-series 

airborne remote sensing of 
phytoplankton 

Chapter 6 
Remote sensing for the mapping of 

aquatic plants 

Chapter 7 
Remote sensing for the assessment of 
physiological status in aquatic plants

Chapter 8
Critical evaluation of the use of remote sensing in shallow lake ecology and its potential 

contribution to the implementation of the WFD 

Chapter 1 and Chapter 2
Introduction and identification of key elements of shallow lake ecosystems and review 

of the use of remote sensing for the assessment and monitoring of shallow lakes 
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1.3 STUDY SITE 

The Norfolk Broads (52º44’17’’N; 1º34’29’’E) are the main study site for the research presented 

in this thesis (Figure 1.2).  The Norfolk Broads are a series of small (< 130 ha) and shallow (< 

2.5 m) mesotrophic and eutrophic shallow lakes, locally referred to as Broads, which were 

formed when 12th and 13th Century peat excavations flooded under rising seas. 

 

 

Figure 1.2  The shallow lakes of the Norfolk Broads in southeast England (map courtesy of the 
Broads Authority). 
 

The Norfolk Broads (or Broadland) are the largest protected wetland in the U.K. whose 

ecological and socio-economic value is recognised in numerous national and international 

conservation designations (e.g. under the Ramsar convention).  The ecological status of the 

Broads has declined in recent decades, largely due to pressures from eutrophication and, as a 

result, in many lakes the characteristically diverse aquatic flora has been replaced by nuisance 

blooms of pelagic phytoplankton.  In this context, the Norfolk Broads would therefore seem to 

present a unique environment in which to explore the use of remote sensing for research and 

monitoring in shallow lakes. 

 



 

 7

2 SHALLOW LAKES AND REMOTE SENSING 
 

 

2.1 INTRODUCTION 

The following chapter reviews in relevant detail the science that underpins the research 

presented in this thesis.  The initial focus of this chapter is to review some of the major 

concepts in the field of shallow lake ecology with a view to identifying the key abiotic processes 

and biotic elements that control the structure and function of shallow lake ecosystems.  In this 

context, the shallow lakes of the Norfolk Broads (UK) are introduced as the dedicated study site 

for later investigations.  The emphasis then shifts to the application of remote sensing for the 

assessment and monitoring of shallow lakes with particular reference to (i) phytoplankton and 

(ii) aquatic plants.  Finally, priority areas for further research are identified from this review and 

these form the foundation for the research presented in this thesis. 

 

2.2 THE ECOLOGY OF SHALLOW LAKES 

2.2.1 Principle Characteristics of Shallow Lakes 

Shallow lakes are an important ecological and socio-economic resource and pristine shallow 

lakes often support high biodiversity.  However, as a result of human activities (physical 

modification, eutrophication, acidification) many shallow lake ecosystems, particularly in 

Europe, have suffered a decline in their ecological status and it can be argued that there is 

currently an unprecedented interest in the ecology of these systems.  Lakes vary dramatically in 

their physical, chemical and biological characteristics and shallow lake ecosystems are no 

exception in this context.  Shallow lakes, globally, encompass a diverse range of environments 

from small artificial lakes (< 1 km2) (e.g. Norfolk Broads, UK; Loosdrecht Lakes, Netherlands) to 

natural and large epicontinental systems (> 1000 km2) (e.g. Lake Chad, Africa; Lake Balaton, 

Hungary; Lake Peipus, Estonia/Russia) and, further, comprise both highly acidic/dystrophic 

systems (e.g. Lake Flosek, Poland) and highly alkaline systems (e.g. Mono Lake, USA; Lake 

Nakuru, African Rift Valley). 
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However, the term ‘shallow lake’ is somewhat ambiguous.  The dissimilarity between shallow 

and deep lakes goes beyond the obvious difference in water depth; rather, this dissimilarity is 

one of a fundamental difference in processes and function (Nixdorf & Deneke, 1997; Havens et 

al., 2001).  Shallow lakes typically share one definitive characteristic that distinguishes them 

from deeper systems: the absence of prolonged thermal water column stratification (Burgis & 

Morris, 1987; Scheffer, 1998; Havens et al., 2001).  The absence of thermal stratification is a 

common attribute of lakes where the mean water depth is c. < 3 m (although certainly not 

exclusively) and this threshold is often used as an arbitrary boundary for the distinction between 

shallow and deep systems (Moss, 1998; Padisak & Reynolds, 2003).  Deeper systems (i.e. > 3 

m), however, may often behave as ‘functionally’ shallow lakes where various factors (e.g. the 

hydrodynamic regime, wind exposure) combine to ensure the system is regularly mixed (Burgis 

& Morris, 1987).  Shallow lakes, as a result of their bathymetry, are also often characterised by 

short residence times and high rates of flushing. 

 

The polymictic nature of shallow lakes influences many other lake-scale processes and 

functions and, in particular, the nutrient cycling regime.  There is a common trend for shallow 

lakes to be typically more fertile, per se, than comparable deeper systems.  This fertility is often 

a result of the efficient recycling of resources and, in particular, a nutrient cycle that, in 

comparison to regularly stratified systems, is governed by internal processes.  Indeed, the 

physical, chemical, and biological regulation of nutrient fluxes between bottom sediments, the 

overlying water column and the atmosphere is a key ecological process in shallow lakes 

(Sondergaard et al., 1992; Blom et al., 1992; Sondergaard et al., 2003).   

 

Shallow lakes also have a disproportionately large euphotic zone which promotes the rate and 

influence of benthic processes (e.g. biofilm development, mineralization of organic matter) 

(Padisak & Reynolds, 2003).  In pristine clear water shallow lakes, the colonisation of the 

bottom sediments by aquatic plants (macrophytes) promotes high benthic productivity.  In such 

lakes, aquatic plants dominate the base of the limnetic food web and are critical to the function 

of many lake-scale processes (Jeppesen et al., 1997; Madsen et al., 2001; Kufel & Kufel, 2002; 

Takamura et al., 2003).  However, in turbid shallow lakes, submerged macrophyte growth may 
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be precluded and, under such circumstances, phytoplankton may replace aquatic plants as the 

dominant primary producers (Sandjensen & Borum, 1991).  The often intense competition for 

resources between submerged aquatic plants and phytoplankton is a defining characteristic of 

shallow lake environments and its impact on ecosystem stability has been the recent focus of 

considerable scientific interest (Sandjensen & Borum, 1991; Scheffer et al., 1993; Blindow et 

al., 1993; Scheffer et al., 2001; Peckham et al., 2006; Van Nes et al., 2007; Scheffer & 

Jeppesen, 2007; Dokulil et al., 2007). 

 

2.2.2 Suspended Sediment Dynamics 

The sediment in suspension in shallow lake environments (suspended particulate matter (SPM) 

or seston) consists of variable proportions of suspended particulate inorganic matter (SPIM) 

and suspended particulate organic matter (SPOM).  SPM can also be divided into living 

(plankton) and non-living (tripton) components.  SPM in lakes is derived from both 

allocththonous (inputs of terrigenous material via river tributaries) and autochthonous 

(resuspension of bottom sediments) sources.  In shallow lakes, bottom sediments are readily 

resuspended by wave action, as such the predominant source of SPM is invariantly 

autochthonous (Bloesch, 1995; Markensten & Pierson, 2003).  High rates of sediment 

resuspension often result in shallow lakes often having significantly higher SPM loads than 

deeper systems (up to several orders of magnitude) (Scheffer, 1998). 

 

There are two predominant mechanisms of sediment resuspension in shallow lakes: (i) 

suspension due to shear waves induced by wind, seiche, or boat wash action (Garrad & Hey, 

1987; Bloesch, 1995; Markensten & Pierson, 2003; Cozar et al., 2005), and (ii) bioturbidation of 

the sediment by foraging benthic fish such as bream (Abramis brama) and carp (Cyprinus 

carpio) (Luettich et al., 1990; Havens, 1991; Breukelaar et al., 1994).  However, sediment 

resuspension may be further affected by factors such as the inherent cohesive nature of the 

sediment (Scheffer, 1998), sediment consolidation by microphytobenthos growth (Delgado et 

al., 1991), and sediment consolidation and flow impedance by macrophyte colonisation 

(Crawford, 1979; Dieter, 1990; Scheffer, 1999; Schallenberg & Burns, 2004). 
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The resuspension of bottom sediments has significant implications for the ecology of shallow 

lakes.  High sediment loads reduce water transparency and may result in the light-limitation of 

benthic photosynthesis (Scheffer, 1998).  Moreover, the resuspension of bottom sediments is 

also central to the cycling of nutrients (particularly phosphorus) in shallow lake ecosystems.  In 

deep, stratified lakes, phosphorus (P) is continuously lost from the epilimnion to the hypolimnion 

as particulate matter sinks through the thermocline and is mineralised in the bottom sediment.  

This pool of P may cycle between benthic sediments and the hypolimnion, but it is essentially 

unavailable to autotrophic organisms in the epilimnion (i.e. phytoplankton) until stratification is 

lost and the lake mixes (Moss, 1998).  In contrast, in shallow lakes, continual disturbance of the 

sediment-water interface resulting from turbulence-induced resuspension processes, or 

bioturbidation, promotes the diffusion of the benthic P pool into the overlying water column, 

where it is immediately available to autotrophic organisms.  Thus, the bottom sediments of 

shallow lakes often act as an autochthonous net source of P (rather than as a sink environment 

as in many deep lakes) particularly during summer months (Spears et al., 2007).  In eutrophic 

shallow lakes, the legacy of nutrient enrichment can result in a substantial accumulation of P in 

bottom sediments; this sediment-related P is typically partitioned between several pools, some 

of which, such as the pH and redox sensitive Fe-P and Mn-P complexes, can be highly labile.  

Thus, in shallow lakes it is not uncommon for the annual internal P load (i.e. that derived 

entirely from recycling) to be substantially larger than the external P load (i.e. that derived from 

the catchment) (Scheffer, 1998).   

 

The importance of suspended sediment dynamics to shallow lake ecology has resulted in 

substantial research being devoted to examining the impact of sediment resuspension on 

nutrient loading (e.g. Sondergaard et al., 1992; Reddy et al., 1996; Fan et al., 2001; 

Sondergaard et al., 2003; Qin et al., 2004).  In addition, the remobilisation of sediment in lake 

systems may also have significant implications for the fate of heavy metals (Linge & Oldham, 

2002; Mason et al., 2003) and organic contaminants (Bogdan et al., 2002) and can have radical 

effects on the ecology of phytoplankton and macrophyte communities (Barko et al., 1991; 

Jensen et al., 1994; Ogilvie & Mitchell, 1998; Nalewajko & Murphy, 1998; Millie et al., 2002).  
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The distribution and flux of sediment through lake systems is largely governed by the 

complexities of hydraulic circulation.  The varied controls on sediment dynamics in shallow lake 

ecosystems mean that often the concentration of suspended sediment, even in well mixed 

systems, can be highly variable both spatially and temporally.  Efforts to characterise the 

dynamism of SPM resuspension and transportation in lakes have conventionally relied upon in-

situ point-based measurements (e.g. water sampling, sediment traps).  However, as Nellis et al. 

(1998) recognise, the often-pronounced spatial variability in the distribution of suspended 

sediment in lakes means that point-scale approaches can seldom provide an adequate spatial 

understanding of suspended sediment dynamics.  Increasingly, in an effort to gain a spatially-

explicit understanding of suspended sediment fluxes in lakes, workers are employing advanced 

2-dimension and 3-dimensional hydrodynamic models (Bailey & Hamilton, 1997; Teeter et al., 

2001; Vanderploeg et al., 2007; Jin et al., 2007) and data derived from remote sensing 

platforms (Nellis et al., 1998; Bergmann et al., 2004; Budd, 2004) 

 

2.2.3 Phytoplankton 

2.2.3.1 What are Phytoplankton? 

The phytoplankton (phyton = plant, planktos = wandering) are an immensely diverse group of 

microscopic algae that form the base of the pelagic food web and, as such, are one of the most 

important biotic elements of shallow lake ecosystems.  The phytoplankton assemblages of 

shallow lakes represent a sizeable component of the biodiversity of these ecosystems and have 

an important functional role in several ecosystem processes, not least, in the regulation of 

biogeochemical cycling.  The vast majority of phytoplankton species are eukaryotic algae.  

However, two divisions of prokaryotic photosynthetic bacteria (the prochlorophyta and 

cyanophyta) are also an important component of the phytoplankton assemblages found in 

freshwaters.  The five most important phytoplankton divisions in freshwaters are the 

bacillariophytes (diatoms), cryptophytes (cryptomonads), chlorophytes (green algae), 

dinophytes (dinoflagellates) and cyanophytes (cyanobacteria) (Schmid et al., 1998). 
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2.2.3.2 Population Dynamics in Shallow Lakes 

Phytoplankton populations are arguably amongst the most dynamic biological assemblages 

encountered in nature and can be conspicuously subject to rapid fluctuations in both size and 

composition.  Changes in phytoplankton populations may occur as a response to the 

intermittent pulsing of resources through the system or, in contrast, may result from the effect of 

large-scale episodic disturbances (e.g. flushing, mixing) (Jacobsen & Simonsen, 1993; 

Reynolds, 2006).  The dynamism of phytoplankton communities is essentially a reflection of the 

capacity of different species, through their specific functional traits, to adapt and exploit 

changing environmental conditions.  It is has been suggested that such environmental 

heterogeneity prevents phytoplankton communities from seldom realising a steady-state 

equilibrium (Padisak, 1993; Reynolds, 2006).   

 

The growth of phytoplankton populations can be rapid.  Laboratory steady-state experiments 

have recorded growth rates > 10 divisions day-1 (Reynolds, 2006).  In natural environments, 

resource limitation (e.g. N, P, Si, light, temperature) inevitably results in slower in-situ growth 

rates but, under favourable conditions, phytoplankton populations can still attain growth rates > 

1 division day-1 (Reynolds, 2006).  In shallow lake ecosystems, particularly eutrophic systems, 

readily accessible resource pools and the efficient recycling of nutrients can foster rapid 

phytoplankton growth and the development of mass populations either as blooms, scums or 

biofilms. 

 

In shallow lakes, changes in population size may also arise as a result of catastrophic losses 

incurred from mass sinking, flushing events and intense top-down predation.  Losses incurred 

from sinking are typically low in well-mixed shallow lakes.  However, during short-lived 

conditions of benign mixing, sinking losses can be exceptionally high in shallow lakes (Scheffer, 

1998).  In addition, short residence times and regular flushing can also result in large-scale 

phytoplankton population losses (Jacobsen & Simonsen, 1993).  Moreover, in macrophyte-

dominated shallow lakes, significant losses may be incurred by the grazing of zooplankton.  

Indeed, top-down grazing pressure can be so intense in shallow lakes that turbid, 
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phytoplankton-dominated, waters can be temporary replaced by clear water conditions 

(Townsend et al., 1994; Jurgens & Stolpe, 1995).   

 

The species composition of phytoplankton communities is often highly diverse and, as a result 

of both allogenic and autogenic factors, communities can often demonstrate pronounced 

successional patterns.  Spring (or vernal) blooms are typically dominated by small r-selected (or 

C-adapted) species which are able to rapidly exploit nutrient pulses.  Diatoms often dominate 

spring blooms as they favour the unstable hydrodynamic conditions and are well-adapted for 

growth in environments that may be light and/or temperature limited.  In contrast, later 

successional stages, particularly towards late-summer, are typically dominated by more slow-

growing and stress-tolerant K-selected (or S-adapted) species that are able to out-compete 

other species for limited resources (nutrients, light) (Agbeti et al., 1997; Talling & Parker, 2002; 

Celik & Ongun, 2006; Reynolds, 2006).   

 

In eutrophic shallow lakes, later successional stages are often dominated by cyanobacteria 

(blue-green algae).  The phenomenon of cyanobacterial dominance in eutrophic shallow lakes 

has received considerable attention and numerous mechanisms explaining cyanobacterial 

dominance have been proposed (see for example Hysenstrand et al., 1998; Dokulil & Teubner, 

2000).  Cyanobacterial dominance in (shallow and deep) lakes has often been linked to factors 

such as elevated water temperatures (Robarts & Zohary, 1987; McQueen & Lean, 1987), low 

TN:TP ratios (Smith, 1983; Presing et al., 2001), nitrate deficiency (Blomqvist et al., 1994), the 

capacity for intracellular nutrient storage (Eckerrot & Pettersson, 1993) and an ability to 

compete through toxicity (Lindholm et al., 1989).  However, in shallow lakes, it has been 

suggested that the often persistent late-summer dominance of cyanobacteria, particularly by 

filamentous species (e.g. Limnothrix spp. Planktothrix spp. (formerly Oscillatoria)), is owed to an 

ability to tolerate the effects of shade in turbid shallow lakes (Scheffer et al., 1997).  In addition, 

some cyanobacteria species (e.g. Microcystis spp., Anabaena spp.) are able to evade light-

starvation in turbid waters through buoyancy-regulated vertical migrations to well-illuminated 

near-surface waters.   
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2.2.3.3 Spatial Distribution in Shallow Lakes 

The planktic nature of algae means their distribution, whilst in suspension, is principally 

determined by the patterns of hydraulic circulation (Reynolds, 2006).  Complexities in the 

pattern of hydraulic circulation can lead to the creation of marked heterogeneity in the 

distribution of phytoplankton in lakes.  This heterogeneity – often described as patchiness – is 

often evident at various scales (micro-, meso- and macro-scale) and may be observed in both 

horizontal and vertical dimensions (George & Edwards, 1976; George & Heaney, 1978; 

Frempong, 1981; George & Jones, 1987). 

 

Heterogeneity in horizontal planes is predominantly governed by two mechanisms: (1) 

transportation in wind- and/or hydrothermal-induced currents (George & Edwards, 1976; 

George & Heaney, 1978) or (2) localised variation in phytoplankton growth and mortality 

(George & Jones, 1987).  Patchiness at the micro-scale (< 1 m) may result from stochastic 

variability (i.e. presence/absence) but, arguably, such small-scale variability has little underlying 

ecological significance.  Meso-scale patchiness (c. 1-100 m) is often the result of variations in 

hydraulic circulation – such as those created by Langmuir rotations (George & Edwards, 1976; 

Evans & Taylor, 1980; Leibovich, 1983; Hedger et al., 2004).  Langmuir rotations promote the 

clustering of positively buoyant phytoplankters in the region of convergence between adjacent 

downwelling Langmuirian cells.  In contrast, negatively buoyant phytoplankters congregate in 

the region of convergence between adjacent upwelling Langmurian cells.  Fluctuations in wind 

speed and direction can add additional complexity by distorting these patterns and 

superimposing new patterns upon existing ones.  However, the transient nature of Langmurian 

and similar features means that these spatial patterns are generally not compounded by 

differences in local population growth before such patterns disintegrate and new patterns form 

(Reynolds, 2006). 

 

The controls upon macro-scale patchiness (> 100 m) are more varied and complex than those 

that govern meso-scale features.  Hydraulic circulation again can often play a pivotal role in the 

creation of large-scale features (Webster, 1990).  Strong prevalent winds often result in the 

downwind accumulation of phytoplankton towards the leeward shores of lakes.  In small and 
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enclosed basins, downwind hydraulic currents are compensated by deeper advective flows.  

Buoyant phytoplankton species (e.g. cyanobacteria) are particularly susceptible to downwind 

accumulation, but resist entrainment into the advective flows returning at depth; whereas, non-

buoyant species become entrained in the deep advective current and are transported in an 

upwind direction.  Macro-scale heterogeneity is also generally more persistent than micro- and 

meso-scales features and, as such, localised population growth can often compound the 

patterns created (George & Jones, 1987).  

 

The mechanisms that create heterogeneity in the vertical plane include vertical migration by 

motile phytoplankton and the break down of mixing (perhaps leading to brief microstratification).  

Vertical migrations by motile phytoplankton (most notably the buoyancy-regulating 

cyanobacteria ecotypes, or flagellate species) enable species to maintain station in horizons of 

favourable insolation or evade nutrient depletion or predation (Salonen et al., 1984; Salonen & 

Rosenberg, 2000).  In particular, benign mixing can promote the accumulation of positively 

buoyant phytoplankters in near-surface epilimnion waters.  Indeed, the near-surface 

accumulation of buoyant cyanobacteria during periods of benign mixing (wind speeds < 4 m s-1) 

can result in the creation of a pronounced vertical biomass gradient (Reynolds & Walsby, 1975; 

Ye et al., 2006). Short-lived periods of benign mixing in shallow lakes may also result in non-

motile phytoplankters sinking through the temporary metalimnion where they are confined to 

bottom waters until mixing resumes. 

 

2.2.4 Aquatic Vegetation 

2.2.4.1 Occurrence in Shallow Lakes 

Shallow lake environments of good ecological status are often characterised by extensive and 

floristically diverse beds of aquatic plants.  In clear shallow waters, where the light climate is 

favourable, aquatic plants can often colonise the entire lake bed.  The aquatic vegetation of 

lakes can be classified on the basis of three distinct growth habits: (i) emergent – plants which 

root in the sediment, but aerial parts protrude above the water surface; (ii) floating – plants 

which may or may not root in the sediment, but have leaves which float on the water surface; 

and (iii) submerged – plants which grow completely below the water surface.  Submerged 
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plants may further categorised into those species which (i) form low-growing canopies (such as 

Chara spp. or Nitella spp.) and, (ii) form near-surface canopies (such as some Potamogeton 

spp. or Myriophyllum spp.) (Scheffer, 1998).   

 

The distribution of macrophytes in shallow lakes typically shows a clear and systematic 

zonation with depth (and/or water transparency).  The shallower waters of the littoral are often 

colonised by emergent species (e.g. Phragmites australis, Typha latifolia, Phalaris 

arundinacea).  These emergent species may grade into beds of floating (e.g. Nuphar lutea, 

Lemma spp.) and, latterly, submerged (e.g. Chara spp, Nitella spp.) species as the water depth 

increases towards the lower region of the littoral (Chambers & Kalff, 1985; Canfield et al., 1985; 

Skubinna et al., 1995; Scheffer, 1998).  The abundance and distribution of submerged plants is 

highly dependent on underwater light climate, with a shift from low-growing species, to near-

surface-canopy-forming species occurring with increased turbidity.  In highly turbid water the 

submerged community may be conspicuously absent.  The distribution of aquatic plants in 

lakes may also be affected by factors such as sediment chemistry and exposure to wave action 

(Vanwijk, 1988).  These various factors ensure that the distribution of aquatic vegetation in 

shallow lakes can be complex and often communities form heterogeneous mosaics and 

ecotone features with both the terrestrial and pelagic interface. 

 

2.2.4.2 Functional Importance of Aquatic Vegetation 

The abundance, distribution and composition of aquatic vegetation communities exerts a 

profound influence upon many processes and functions in shallow lake ecosystems (Phillips et 

al., 1978; Carpenter & Lodge, 1986; Scheffer, 1998).  Carpenter & Lodge (1986) suggest that 

the importance of aquatic plants (particularly submerged species) to the ecology of shallow 

lakes stems from the fact that they occupy a series of key ecological niches.  The extent of 

macrophyte colonisation is thus considered a key indicator of ecological status.  Indeed a 

growing volume of research has shown that aquatic plants are critical to the ecological stability 

of shallow lake ecosystems (Scheffer et al., 1993; Van Nes & Scheffer, 2003; Scheffer & 

Carpenter, 2003; Scheffer & Van Nes, 2007; Scheffer & Jeppesen, 2007). 
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Aquatic plant colonisation can influence the (i) physical, (ii) chemical, and (iii) biological function 

of shallow lake ecosystems.  Modifications to physical processes include the increased 

extinction of light (Titus & Adams, 1979; Pokorny et al., 1984), increased temperature gradients 

with depth (Dale & Gillespie, 1977) and the stabilisation of bottom substrates (Scheffer, 1998).  

The impedance of water flow is another important function of aquatic plants, for it reduces the 

resuspension of bottom sediments and increases the sedimentation of fine particulates, which 

has been shown to substantially reduce internal nutrient loading in shallow lake ecosystems 

(Rooney et al., 2003).   

 

Modifications to chemical processes include the assimilation and release of macro- and 

micronutrients, the immobilisation of waterborne contaminants, and amendments to the 

chemistry of rooting sediments.  Aquatic plants, for example, provide a critical sink environment 

for nutrients and can act as a buffer against excessive phosphorus and nitrogen loadings in 

shallow lakes.  This capability for nutrient sequestration can help suppress the development of 

phytoplankton blooms which, in turn, facilitates the perseverance of favourable water quality 

status (Kufel & Kufel, 2002; Takamura et al., 2003).  Aquatic plants can also provide an 

important sink for heavy metals and other toxic contaminants (Ye et al., 2001) and have a 

marked influence on sediment pH, redox and nutrient release (Carpenter & Lodge, 1986). 

 

The biological function of shallow lakes can be drastically transformed by the presence of 

aquatic plants as they form an important link in many cascading trophic interactions (Jones & 

Sayer, 2003).  In particular, aquatic plants provide critical habitat refuges for many aquatic biota 

– especially zooplankton communities – and thus have an important function in maintaining top-

down control of phytoplankton crops (Stansfield et al., 1995; Stansfield et al., 1997; Lacroix et 

al., 1999; Horppila & Nurminen, 2001; Balayla & Moss, 2003).  Aquatic plant beds are also an 

important habitat for invertebrate, fish and bird populations (Scheffer, 1999). 
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2.2.5 Shallow Lakes and Eutrophication 

2.2.5.1 Phytoplankton, Aquatic Plants and Alternative Stable States  

Shallow lakes of good ecological status are often characterised by a natural state of 

macrophyte-dominance (Scheffer et al., 1993; Scheffer & Jeppesen, 2007).  The dominance of 

aquatic plants is essentially fostered by the persistence of clear water conditions.  The 

sequestration of nutrients by aquatic plants helps create an environment of moderate nutrient 

stress which, in turn, suppresses the growth of phytoplankton, and helps to maintain clear water 

conditions.  This positive feedback fosters macrophyte-dominance and promotes ecosystem 

stability. 

 

However, anthropogenic nutrient enrichment has precipitated a loss of macrophyte-dominance 

in many shallow lakes (Scheffer et al., 1993; Scheffer et al., 2001; Havens et al., 2001; Scheffer 

& Carpenter, 2003; Scheffer & Jeppesen, 2007; Scheffer & Van Nes, 2007; Scheffer & 

Jeppesen, 2007).  The increased provision of nutrients has been shown to stimulate the 

undesirable growth of phytoplankton and epiphytic algae.  The resulting increases in turbidity 

impede the growth of submerged macrophytes; the loss of macrophyte cover only serves to 

further promote phytoplankton growth, which instils instability in the ecosystem and, in due 

course, a switch to phytoplankton-dominance can transpire (Scheffer et al., 1993; Scheffer et 

al., 2001; Havens et al., 2001; Scheffer & Carpenter, 2003; Scheffer & Van Nes, 2007; Scheffer 

& Jeppesen, 2007). 

 

Shallow lakes are thus an example of an ecosystem which can exist in two (or more) alternative 

ecological states: (1) macrophyte dominance or (2) phytoplankton dominance (Scheffer et al., 

1993).  The model of stable state behaviour proposed by Scheffer et al. (1993) suggests that 

alternative stable states can exist over a broad and common range of nutrient conditions, but 

only one state can exist at the extremes of this nutrient gradient (see Figure 2.1).  Conceptual 

models of stable state behaviour indicate that switches between stable states in shallow lakes 

occur at a critical threshold of turbidity.  The position of the critical turbidity threshold often 

varies between ecosystems as a result of their varying capacity to buffer nutrient loadings; this 

can lead to hysteretic behaviour in the response of shallow lake ecosystems to eutrophication.  
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It has also been suggested that, in addition to a critical turbidity threshold, various trigger 

mechanisms may be necessary to precipitate changes in ecosystem state (Stansfield et al., 

1989; Irvine et al., 1993; Jak et al., 1996; Jones & Sayer, 2003). 

 

Stable state theory in shallow lakes has been recently embellished to acknowledge the 

existence of further possible stable states.  Scheffer et al. (1997) and Scheffer (1998) propose a 

model of ecosystem behaviour involving three stable states: (i) a macrophyte dominated state; 

(ii) a state dominated by eukaryotic phytoplankton (green algae); and (iii) a state dominated by 

prokaryotic phytoplankton (blue-green algae).  It is suggested that dominance by shade-tolerant 

cyanobacteria is fostered in highly turbid shallow lakes.  Stable states dominated by 

charophytes, submerged angiosperms, and filamentous green algae have also been theorised 

(Scheffer et al., 2003; Irfanullah & Moss, 2005; Scheffer & Van Nes, 2007). 

 

(a) 

 

(b) 

 

 
Figure 2.1 (a) An example of a ecosystem that can more than one stable state (S1 and S2) over 
a range of conditions (hysteresis), and (b) the theory of alternative stable states applied to 
shallow lakes, states of phytoplankton-dominance and macrophyte-dominance can exist over a 
common nutrient gradient, but switch to phytoplankton-dominance is hypothesised once a 
critical turbidity (phytoplankton density) is reached.  Note at the extremes of the nutrient 
gradient only one state can persist.  The distance between S1 and S2 in (a) reflects the buffering 
capacity of aquatic plants to nutrient enrichment (modified from Scheffer & Carpenter, 2003). 
  

The concept of alternative ecosystem equilibria in shallow lakes underlines the complexity of 

the trophic linkages that exist between the various biotic elements in shallow lakes and offers 

an apt explanation of the dynamic behaviour (erratic or cyclic) of these ecosystems (Van Nes et 

al., 2007).  Indeed, there is now recognition that the response of shallow lake ecosystems to a 
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perturbation gradient (eutrophication) may be seen as a dynamic continuum in which gradual 

species replacements are interrupted at critical points by more dramatic shifts to contrasting 

alternative regimes dominated by different biotic elements (Van Nes et al., 2007; Scheffer & 

Van Nes, 2007).  This concept of dynamic regime shifts now also recognises the importance of 

spatial heterogeneity in controlling ecosystem responses to perturbation (Van Nes & Scheffer, 

2005; Scheffer & Van Nes, 2007). 

 

2.2.5.2 Potentially-Toxic Cyanobacterial Blooms 

The development of mass populations (blooms, scums and biofilms) of cyanobacteria is 

common occurrence in shallow lake ecosystems subject to eutrophication.  Mass populations of 

cyanobacteria are significant problem for the ecological integrity of shallow lakes and, further, 

they can present a serious hazard for both human and animal health.  Cyanobacteria are not 

themselves microbial pathogens, but their toxins (cyanotoxins) constitute one of the most high 

risk categories of waterborne toxins.  Many cyanobacteria genera common to shallow lakes can 

produce numerous potent toxins (e.g. Anabaena, Aphanizomenon, Anabaenopsis, 

Cylindrospermopsis, Microcystis, Nodularia, Planktothrix, Oscillatoria, Raphidiopsis).  These 

species can produce a variable cocktail of cyanotoxins including hepatotoxic (e.g. microcystins) 

and neurotoxic (e.g. anatoxin-a, BMAA) agents.  Cyanotoxins have been linked to incidents of 

fish and bird kills and, in humans, symptoms of exposure include skin irritation, fever, intestinal 

problems and allergic reactions (Chorus et al., 2000; Codd et al., 2005). 

 

There is increasing national and international recognition of the need for improved risk 

management of cyanobacteria and cyanotoxins to protect water resources, water-based 

economies and human health (Codd et al., 2005).  Rapid assays for the presence of 

cyanotoxins in lakes have yet to be developed, thus the current approach to risk management 

is largely based upon the early identification of mass cyanobacterial population growth. 

 

2.2.5.3 Reedswamp Dieback 

Reedswamp is a functionally important component of the littoral environment of shallow lake 

ecosystems.  In recent decades there has been a large-scale decline in the reedswamp habitat 
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of many European lakes and, in particular, that composed of the common reed (Phragmites 

australis (Cav.) Trin. Ex Steudel) (Boar et al., 1989; Van Der Putten, 1997; Fogli et al., 2002). 

 

The decline of Phragmites australis reedswamp in European lakes has been strongly linked to 

eutrophication and the consequent development of phytotoxic compounds in nutrient-enriched 

littoral sediments (Armstrong & Armstrong, 2001).  Cizkova et al. (1996) suggest that, in 

eutrophic lake systems, increased primary productivity can lead to the substantial accumulation 

of organic matter in reedswamp habitats.  The copious flux of organic-C to littoral hydrosoils 

accelerates decompositional processes, increasing the microbial demand for oxygen, and 

ultimately leading to the development of oxygen-stressed anaerobic conditions.  The resulting 

switch to anaerobic microbial metabolism can, in turn, lead to the production of numerous 

phytotoxic metabolites as the end-products of anaerobic decomposition (Santruckova et al., 

2001).  The accumulation of these phytotoxic metabolites (typically organic acids), in 

combination with conditions of oxygen stress, is believed to be a major cause of reed decline in 

European lakes and their associated wetland environments (Boar et al., 1989; Armstrong et al., 

1996; Armstrong et al., 1996; Vanderputten et al., 1997; Cizkova et al., 1999).   

 

2.3 THE NORFOLK BROADS (UK) 

2.3.1 Location, Catchment and Limnology 

The Norfolk Broads (52º44’17’’N; 1º34’29’’E) are a series (c. 63) of small shallow lakes in 

southeast England (East Anglia, U.K.) that formed when 12th and 13th century peat excavations 

were flooded by rising sea levels (Lambert & Smith, 1961).  The Broads range in extent from 

0.1-130 ha (0.001-1.3 km2) and typically have a mean depth < 2.5 m.  The Broads lie in the 

valleys of the rivers Ant, Bure, Thurne, Yare and Waveney; these slow moving rivers and a 

network of artificial canals and dykes provide a hydrological connection between many of the 

lakes and form the most extensive navigable, lock-free, waterway in the U.K. (190 km) (Mason 

& Bryant, 1975; Moss, 2001). 

 

The three largest rivers, the Yare, Waveney and Bure, drain a catchment that totals an area of 

approximately 3,180 km2.  The catchment lies at an altitude that varies from -1 to 101 m above 
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sea level with a geology that is primarily composed of Cretaceous Chalks and Pleistocene 

calcareous sands overlain by glacial tills, sands and gravels (Gilvear & Mcinnes, 1994; Moss, 

2001).  The Pleistocene calcareous sands form the large Norwich Crag aquifer that underlies 

much of Broadland. The main land uses within the catchment are intensive arable agriculture 

(c. 49.6%) and extensive agricultural pasture (c. 32.6%), while just over 10% of the catchment 

is occupied by urban development (Moss, 2001). 

 

The climate of the East Anglia region is more continental than that experienced elsewhere in 

the U.K. with minimum and maximum temperatures of 2.2-6 °C in January rising to 13.3-20 °C 

in August.  The prevailing wind direction is from the north-east and annual precipitation is in the 

magnitude of 600-700 mm.  The chemical composition of the Broadland water courses reflects 

the underlying geology being rich in Ca, Mg and HCO3 (Table 2.1).  The Broadland waters 

maintain a constant pH in the range 7.1-9.1 because of a strong buffering capacity provided by 

the calcareous water chemistry (Moss, 2001).  The lakes are typically well flushed with 

residence times varying from a matter of days in winter to a few weeks in summer (Moss, 

2001).  The Thurne Broads endure a small tidal influence which equates to 40-70 cm in the 

lower river reaches and up to 20 cm in the upper reaches on the spring tide and the percolation 

of saline water into the underlying Crag aquifer means the lakes in Thurne system are more 

brackish in nature than those on the other river systems (Moss, 2001).  

 

Table 2.1 The typical major ionic composition of some Broadland water courses (mg l-1) 
compared to that typical of the English Lake District (Moss, 2001) 
 

 Ca Mg Na K HCO3 Cl 

Yare 143 5.9 37.1 4.3 336 48 

Ant 128 11 46 9.4 238 77 

Thurne 234 306 856 31 165 544 

English Lake 
District 2.2 0.8 3.8 0.4 3.5 7.6 
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2.3.2 Past and Present Ecological Status 

Many natural historians writing from the 19th century to the pre-WWII period made reference to 

the rich and diverse fauna and flora and that characterised many of the Norfolk Broads (Davies, 

1883; Patterson, 1920; Ellis, 1935).  It is significant that these accounts recall a Broadland 

environment noted for the clarity of its waters and the richness of the aquatic plants that 

dominated the lake bed of many Broads.  Palaeolimnological evidence substantiates these 

accounts and has confirmed that the Broads were previously more nutrient poor than at present 

(Moss, 1978; Kerrison et al., 1988). 

 

It became apparent in the 1950s and 1960s that the Broadland environment was very different 

from that described by the 19th century naturalists.  The waters of the Broads had become 

turbid with the growth of phytoplankton and increased concentrations of suspended sediment, 

while the consequent loss of water column transparency had resulted in the loss of submerged 

plants from many of the lakes.  These changes were inevitably linked to the increased nutrient 

loads the Broads had received from domestic, industrial and agricultural sources (or, in the 

case of the Thurne Broads, from guanotrophication).  This largely cultural eutrophication had 

serious deleterious impacts on water quality and the diversity of the aquatic plant, invertebrate, 

fish and wildfowl communities in the Broads (Moss, 2001). 

 

Considerable effort has been invested over recent years in attempting to restore the Broads 

back to a state comparable to that described by the late 19th and early 20th century natural 

historians.  Central to this effort has been the establishment of measures to protect Broadland’s 

remaining biodiversity.  The Norfolk Broads was granted National Park status in 1988 through 

the legislation of the Norfolk and Suffolk Broads Act and the Broads Authority was thus charged 

with the conservation and management of the fledgling National Park.  In addition to National 

Park status, 29 SSSIs (Sites of Special Scientific Interest), 7 NNRs (National Nature Reserves), 

2 Ramsar sites, 2 SPAs (Special Protection Areas) and 2 SACs (Special Areas of 

Conservation) have been established.  Intensive lake restorations schemes (isolation, 

biomanipulation, suction dredging) have been implemented in an attempt to restore good 
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ecological status in the Broads.  However, despite these efforts, many Broads still remain in a 

state of poor ecological health. 

 

2.4 REMOTE SENSING 

2.4.1 Remote Sensing and Shallow Lake Ecology 

Remote sensing – here taken to refer to the method of observing the earth from airborne or 

spaceborne sensors – is one of the most powerful analytical tools available to ecologists; yet it 

remains one of the most underused (Aplin, 2005).  The value of remote sensing, when 

compared to measurements made using conventional point-based techniques, is that it can 

provide spatially explicit appraisals of environmental phenomena, and at a range of spatial and 

temporal scales that are relevant to ecological investigations.  In complex systems, the spatially 

and temporal resolving datasets afforded by remote sensing have been shown to be invaluable 

in delivering information on dynamic ecological processes and functions that would be 

otherwise unobtainable with point-based sampling methods (Winterbottom & Gilvear, 1997; 

Bryant & Gilvear, 1999; Davids & Tyler, 2003; Rainey et al., 2003).  

 

Remote sensing also affords many other benefits.  Spaceborne and airborne instruments, 

where available, can provide an immediate scientific response to episodic environmental 

events.  This has been demonstrated pertinently in the aftermath of catastrophic natural 

disasters such as the Asian Tsunami (Ramakrishnan et al., 2005) and Hurricane Katrina (Duda 

& Abrams, 2005); but it is also evident that remote sensing can provide rapid reconnaissance of 

more local-scale events (e.g. storm events, pollution discharges) that are of relevance to 

function of aquatic and terrestrial ecosystems.  Moreover, the data legacy of past and present 

spaceborne instruments provides an extensive archive of data through which hind-cast analysis 

can be undertaken, offering an effective means of establishing retrospective baselines, and an 

invaluable resource for studies concerned with change detection (Munyati, 2000; Li & 

Narayanan, 2003). 

 

In ecology, remote sensing has often been employed to simply map the distribution of species, 

habitats and biotopes but, increasingly, it is being used for the direct measurement of 



 

 25

biophysical properties (e.g. LAI, NPP) and to integrate such measurements at the ecosystem-, 

landscape- and global-scale.  Remote sensing has found varied application in lake ecology.  It 

has been used to compile lake inventories (Finlayson & Vandervalk, 1995), monitor patterns in 

water resource use (Beeri & Phillips, 2007) and in hazard and risk assessments (Quincey et al., 

2007; McKillop & Clague, 2007).  However, remote sensing has found more common 

application in the quantification of water quality parameters, such as lake surface temperature 

(LST) (George, 1993; Kay et al., 2005), Secchi disc depth (SDD) (Harrington et al., 1992; 

Baban, 1993; Nellis et al., 1998; Zhang et al., 2003), coloured dissolved organic matter (CDOM) 

(Kutser et al., 2005b; Zhang et al., 2007) suspended sediments (tripton) (Lathrop et al., 1991; 

Choubey & Subramanian, 1992; Ghezzi et al., 1998) and chlorophyll-a (George & Malthus, 

2001; Koponen et al., 2002; Ammenberg et al., 2002; Tyler et al., 2006).  Remote sensing has 

also been used to map the distribution of aquatic plants in shallow lakes (Malthus & George, 

1997; Dekker et al., 2005; Yuan & Zhang, 2007) and assess the physiological status of 

emergent macrophytes (Penuelas et al., 1993). 

 

It should be noted, however, that remote sensing data, and the measurements derived there 

from, have been seldom integrated into studies concerned with the nature of processes and 

function in shallow lake ecosystems.  There are some notable exceptions in this context.  

George (2000) used thermal imaging to track the episodic transport of phosphorus-laden water 

from the littoral zone of a thermally-stratified shallow lake (Esthwaite Water, UK).  Hedger et al. 

(2002) combined remote sensing with a fluid-dynamics model to provide an understanding of 

the controls on the distribution of phytoplankton in a shallow lake (Loch Leven, UK).  Peckham 

et al. (2006) developed a lake trophic state index (TSI) from data derived from satellite remote 

sensing to provide evidence for alternative stable state behaviour in shallow lakes in Wisconsin 

(USA).  Budd et al. (2001) used archive remote sensing data to retrospectively investigate the 

impact of the Zebra mussel on water clarity in Lake Huron.  Pengra et al. (2007) used remote 

sensing to map the invasion of Phragmites australis into a shallow lake ecosystem.  Tilley et al. 

(2003) used remote sensing to examine the response of emergent macrophytes to a gradient in 

water column ammonium and Valta-Hulkkonen et al. (2004) used remote sensing, in 

combination with GIS, to assess the responses of shallow lakes to restoration measures.  
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It is clear, from the above examples, that remote sensing technologies can, when used, make a 

significant contribution to the study of lake ecology.  In shallow lakes, it would seem that remote 

sensing surveillance has particular merit for the assessment and monitoring of both 

phytoplankton and aquatic vegetation.  Moreover, the spatially-explicit data derived from remote 

sensing would seem to be capable of providing novel insights into the nature of shallow lake 

processes and function and lake-scale ecosystem responses to perturbation.  In this context, 

remote sensing (and GIS) may represent an effective tool for lake management (Janauer, 1997; 

Baban, 1999; Dimitriou & Zacharias, 2007; Alexandridis et al., 2007) and in the assessment of 

ecological status under the EU WFD (Chen et al., 2004; Gilvear et al., 2004a; Rowan et al., 

2006). 

 

2.4.2 Spectral and Spatial Considerations in Shallow Lakes 

Remote sensing has been used extensively in the study of ecological processes and function in 

terrestrial and marine environments.  Indeed, optical remote sensing has become established 

as the principal tool for monitoring primary productivity in the oceans (ocean colour remote 

sensing).  However, it can be argued that remote sensing, at present, does not fulfil a 

comparable role in study of inland and transitional waters (e.g. lakes, reservoirs, rivers and 

estuaries).   This shortcoming can be explained largely by simple instrumentational limitations 

and, more specifically, by the lack of available satellite data of the apposite spatial, spectral and 

radiometric resolution. 

 

The scale of many terrestrial and marine ecosystems (and processes therein) inherently lends 

themselves to spaceborne observation.  Lake ecosystems and, in particular, shallow lakes are 

often, in comparison, much smaller in scale (although there are obvious exceptions).  For 

example, the largest shallow lake in the UK, Loch Leven, has a surface area of just 13.3 km2.  

Therefore, the scale of the vast majority of lakes is prohibitive to observation from spaceborne 

instruments with spatial resolutions > 30 m.  However, those spaceborne instruments with 

spatial resolutions more harmonious to the scale requirements of inland waters (e.g. Landsat 

TM, ASTER, IKONOS, QuickBird, etc.) have been designed, in the main, for terrestrial 
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applications and, therefore, the spectral resolution and channel configuration (i.e. number and 

positioning of bands) is typically not optimised for applications in lake environments (or other 

inland or transitional waters).  The poor radiometric capabilities (i.e. low signal-to-noise ratio) of 

the terrestrial satellites are a further constraint on their use for the observation of inland waters 

(particularly targets with low backscattering) {Lindell et al, 1999}. 

 

Table 2.2 The spatial and spectral resolutions, revisit period, and typical applications of current 
satellite remote sensing instruments 
 

 Spatial 
Resolution 

Spectral  
Resolution 

Revisit 
Period 

Primary 
Application(s) 

     
ALI 30 m Multispectral 

10 bands 0.4-2.4 µm 
16 days Designed to 

replace the 
Landsat TM 
instrument 

     
ASTER  15 m Multispectral 

3 bands 0.52-0.86 µm 
16 days Vegetation 

mapping and 
thermal 

applications 
     
AVHRR 1.1 km Multispectral 

5 bands 0.58-12.5 µm 
1 day Large scale 

vegetation 
mapping 

     
Hyperion 30 m Hyperspectral 

220 bands 0.4-2.5 µm; 
10 nm bandwidth 

16 days Varied 
applications 

     
IKONOS 4 m Multispectral 

4 bands 0.45-0.88µm 
1-2 days Terrestrial 

mapping 
     
Landsat TM 7 30 m Multispectral 

5 bands 0.5-1.1 µm 
16 days Geological and 

vegetation 
     
MERIS 300 m Multispectral 

15 bands 0.39-1.04 µm 
3 days Oceanography 

     
MODIS 0.25-1.2 km Multispectral 

36 bands 0.4-14.4 µm 
2-4 days Terrestrial, 

oceanography and 
atmospheric 

     
QuickBird 2.5 m Multispectral 

5 bands 0.44-0.9 µm 
1-3.5 days Terrestrial 

mapping 
     
SeaWiFS 1.1 km Multispectral 

8 bands 0.4-0.885 µm 
1 day Ocean colour 

     
SPOT XS 20 m Multispectral 

3 bands 0.5-0.89 µm 
26 days Terrestrial 

mapping 
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The current generation of multispectral satellites, with spectral resolutions more congruent to 

application in lakes (e.g. MODIS, MERIS, SeaWiFS) have been designed primarily for 

observation of oceanscapes and/or landscapes and, as such, the spatial resolution of these 

instruments is often too crude (0.25-1.1 km) to permit the observation of all but the largest 

epicontinental lakes (i.e. lakes on the scale of Baikal, Michigan, Superior and Tanganyika) (Li et 

al., 2004; Heim et al., 2005; Shuchman et al., 2006; Bergamino et al., 2007) (see Table 2.2).   

 
Table 2.3 The spatial and spectral resolutions, swath width and applications of current airborne 
remote sensing instruments 
 

 Max. Spatial 
Resolution 

(Alt. = 1000 m) 

Spectral  
Resolution 

Max. Swath 
Width 

(Alt. = 1000 m) 

Primary 
Application(s) 

     
AISA 
Eagle & 
Hawk 

1 m Hyperspectral (dual) 
488 bands 0.4-0.97 

µm (Eagle) 
254 bands 0.97-2.45 

µm (Hawk) 

0.43 (Hawk) -1 km 
(Eagle) 

Any optical and 
SWIR 

     
AVIRIS < 5 m Hyperspectral 

224 bands 0.4-2.5 
µm 

535 m Any optical to 
MIDIR 

     
ATM 2.5 m Multispectral 

11 bands 0.42-13 
µm 

2000 m Terrestrial and 
thermal 

     
CASI-2 2.0 m Multispectral 

18 bands 0.405-0.95 
µm 

Hyperspectral 
288 0.405-0.95 µm 

1030 m Vegetation and 
water quality 

     
HYDICE < 4 m Hyperspectral 

210 bands 0.4-2.5 
µm 

500 m Any optical to 
MIDIR SWIR 

     
HyMap < 5 m Hyperspectral 

0.45-12 µm; 
bandwidth 0.01-0.02 
nm (VIS-SWIR), 0.1-

0.2 µm (TIR) 

1060 m Any optical to 
MIDIR 

 

The latest generation of hyperspectral satellites that fuse high spatial and high spectral 

capabilities (i.e. Hyperion on NASA’s EO-1 satellite) are more suitable for application in studies 

of lake ecosystems and increasing provision of such data will afford improved opportunities to 

employ remote sensing more extensively in the study of lake ecology.  However, the availability 

of hyperspectral satellite data still remains somewhat limited.  The high tasking demands placed 

upon EO-1 Hyperion and its limited operational lifespan will ultimately restrict data availability 
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until further hyperspectral satellites are introduced.  In this context, multispectral and 

hyperspectral airborne remote sensing instruments (e.g. CASI-2, HyMap, ASIA Eagle & Hawk) 

may be pertinent to observation of lakes (and other inland and transitional waters).  Airborne 

sensors can be deployed at low flight altitudes providing spatially-resolving capabilities less 

than 5 m.  Airborne systems also have the advantage of flexible deployment that can be 

harmonised to temporal frequency of the phenomenon under observation.  However, whilst 

airborne remote sensing may offer an excellent option for those employed in expeditious 

research projects, its high operational costs would seem prohibit its use in longer-term 

monitoring programmes (see Table 2.3).  

 

2.4.3 Remote Sensing of Phytoplankton and Water Quality  

2.4.3.1 Bio-optical Properties and Spectral Signatures of Shallow Lakes 

The application of remote sensing in aquatic environments is dependent upon a comprehensive 

understanding of their bio-optical properties.  This section seeks to review only the essential 

optical properties of inland waters, but further, and more detailed, information can be found in 

texts such as Kirk (1994) and Lindell et al. (Lindell et al., 1999).   

 

The optical characteristics of aquatic environments can be regarded as complex function of 

several optically active components (Malthus & Dekker, 1995; Lindell et al., 1999).  Light 

entering the water column as downwelling irradiance (Ed) is subject to attenuation from 

absorption (a, m-1) and scattering (b, m-1) processes associated with the optically active 

components of the water column.  In oceanic waters (CASE I), the dominant optically active 

constituent is phytoplankton (and associated by-products).  However, in inland (and coastal) 

waters (CASE II), other optically active components in addition to phytoplankton, such as 

CDOM and tripton, may greatly affect the attenuation of the ambient light field.   

 

The optically active components of CASE II waters typically comprise: (i) pure water (w); (ii) 

CDOM (also referred to as aquatic humus, yellow substance or Gelbstoff) (ah); phytoplankton 

(ph); and tripton (t).  The a and bb processes are wavelength-dependent (λ, nm) and subscribe 
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to Beer’s Law which enables total absorption (atotal(λ)) and backscattering (bb,total(λ)) to be 

expressed as a function of each optically active component (Equation 2.1 and Equation 2.2). 

 
)()()()()( λλλλλ ahtphwtotal aaaaa +++=    Equation 2.1 

 
 )()()()()( ,,,,, λλλλλ ahbtbphbwbtotalb bbbbb +++=   Equation 2.2 

 
 

The combined effect of absorption and backscattering are given by the coefficient of beam 

attenuation (c(λ), m-1) (Equation 2.3) which describes the attenuation of light per unit depth.  It 

is evident from Equation 2.3 that the total absorption and backscattering are inherently inversely 

proportional.  Thus, waters with high a(λ), typically have lower bb(λ) and, conversely, waters 

with high bb(λ) typically have lower a(λ) (Bricaud et al., 1983).  These factors, a(λ), bb(λ), and 

c(λ), are collectively referred to as the inherent optical properties (IOPs).   The IOPs are 

independent of the ambient light field in the sense that they do not vary with changes in the 

nature of the incident illumination (i.e. irradiance, solar zenith and azimuth) (Kirk, 1994; Malthus 

& Dekker, 1995; Lindell et al., 1999). 

 
 )()()( λλλ bac +=     Equation 2.3 

 
 
The IOPs can be estimated through laboratory or in-situ measurements (Lindell et al., 1999).  

However, remote sensing instruments cannot make direct measurements of the IOPs.  Instead, 

remote sensing instruments provide measures of the apparent optical properties (AOPs).  The 

AOPs measured by remote sensing instruments include water-leaving-radiance (Lw(0+,λ)) and 

(above-surface) remote-sensing-reflectance (Rrs(0+,λ)).  Rrs(0+,λ) – the most useful AOP for 

remote sensing studies – is calculated from Equation 2.4 which describes the ratio of upwelling 

radiance from the water surface, Lu, to the downwelling irradiance from the sun, Ed (Lindell et 

al., 1999). 
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The relationship between the IOPs and AOPs are described by Equation 2.5; where R(0-,λ) is 

the subsurface remote-sensing-reflectance, at depth 0-, and f is an experimental constant 
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dependent on the light field and volume scattering function (Gordon et al., 1975; Morel & 

Gentili, 1991). 
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R(0-,λ) can be related to Rrs(0+,λ) through the inclusion of an empirical parameter, Q, which 

accounts for the geometrical attenuation of light exiting the water column (Equation 2.6) 

(Dall'Olmo & Gitelson, 2005).  Rrs(0+,λ) is preferred over Lw as it is fully independent of the 

nature of the incident light field and the atmosphere.  The computation of normalised-water-

leaving-radiance (nLw) allows for the fact that Lw is dependent on the angle of solar zenith and 

(when measured from space) the state of the atmosphere (Gordon, 1988).  In the absence of a 

correction to nLw, measurements of Lw must be normalised through empirical means to allow 

comparison. 
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Measurements of Rrs and Lw can be related to the concentration optically active components in 

the water column through (i) empirically derived algorithms, (ii) semi-empirically derived 

algorithms (which employ a priori knowledge of the optical properties of the parameters of 

interest to optimise empirical models), and (iii) inversion of bio-optical models.  Empirical and 

semi-empirical models are easily formulated through statistical analyses (i.e. regression) 

between the AOPs and the measured concentration of optically active components.  Such 

models do not require information on the IOPs (measurements of which are often lacking), but it 

has been alleged that empirically- and semi-empirically-derived algorithms lack robustness 

when extrapolated to independent datasets (Malthus & Dekker, 1995; Lindell et al., 1999).   

 

Numerical bio-optical models can be used to model the AOPs as a function of the IOPs (as 

described above) and thus generate a synthetic dataset from which algorithms can be derived 

semi-empirically or, as is increasingly the case, analytically.  Analytical algorithms can be 

formulated from the inversion of the bio-optical model to permit the IOPs to be estimated from 

AOP measurements.  The concentration of an optically active component (i) can subsequently 
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be estimated from the computed absorption coefficient (ai(λ)) derived from model inversion by 

dividing by the specific absorption coefficient for that component (ai
*(λ), m2 mg-1) (Equation 2.7). 

 
)(/)(]tion[Concentra * λλ iii aa=   Equation 2.7 

 
 

Bio-optical model inversion techniques are advantageous in that, as they are analytical rather 

than empirical, they retain greater transferability when applied to independent datasets.  

However, the formulation and inversion of bio-optical models is reliant on extensive and 

accurate (often prohibitively so) IOP and AOP measurements.  The extrapolation of algorithms 

derived from the inversion of bio-optical models to airborne and spaceborne data is also 

dependent on the availability and efficacy of an atmospheric correction model.  

 

In optically shallow waters, Lw and Rrs are also affected by absorption (abot(λ)) and 

backscattering (bb,bot(λ)) processes associated with the lake bottom (Zaneveld & Boss, 2003; 

Liu et al., 2003; Islam et al., 2004; Cannizzaro & Carder, 2006).  Lake bottom attenuation of Lw 

or Rrs is dependent upon both water depth and transparency; attenuation is greatest in very 

shallow and highly transparent waters.  In such waters, high bottom radiance, can lead to 

substantial over-estimation of optically active component concentrations.  Shallow waters are 

also prone to high and variable concentrations of tripton (largely inorganic clays, slits, and 

sands and organic detritus) which can mask the other optically active components (notably 

chlorophyll-a) thus impeding their estimation (Tyler et al., 2006). 

 

A typical Rrs(0+,λ) signature of a shallow phytoplankton-dominated lake is depicted in Figure 

2.2.  The reflectance minimum located at approximately 440 nm (a) is related to principally to 

chlorophyll-a absorption but, in this region, carotenoid pigments and CDOM also contribute 

significantly to absorption.  The reflectance minimum at approximately 480 nm is caused 

primarily by the presence of carotenoid pigments.  The large peak at c. 575 nm (the “green 

peak”) (b) is caused by significant decreases in pigment absorption allied to increased 

scattering from algal cells and tripton (Dekker et al., 1991; Mittenzwey et al., 1992).  The 
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position of this peak has been suggested to sensitive to phytoplankton composition (Schalles et 

al., 1998; Gitelson et al., 1999).   

 

 

Figure 2.2 An example of a typical Rrs(0+,λ) signature of a shallow phytoplankton-dominated 
lake (Barton Broad, UK). 
 

The reflectance trough at approximately 620 nm (c) is the result of high absorption by the 

cyanobacterial pigment C-phycocyanin.  The subsequent reflectance peak at c. 650 nm (d) has 

been related to both CDOM backscattering (Gitelson, 1992) and the C-phycocyanin 

fluorescence emission maximum (Ahn et al., 1992).  The prominent reflectance trough at c. 

675-680 nm (e) is caused by the chlorophyll-a absorption maximum.  Backscattering at these 

wavelengths is largely attributable to the inorganic component of the tripton (i.e. SPIM).  The 

large reflectance peak at c. 705 nm (f) is caused by intense backscattering from algal cells and 

tripton and the subsequent trough > 750 nm is related to high water absorption. 

 

2.4.3.2 Remote Sensing of Chlorophyll-a 

In limnology and oceanography the concentration of chlorophyll-a is used to estimate 

phytoplankton biomass/biovolume, monitor ecosystem productivity and assess trophic status.  

The concentration of chlorophyll-a in lakes can often be highly spatially variable because of the 

typically patchy distribution of phytoplankton; this high spatial variability is difficult to adequately 

capture when using conventional in-situ point-sampling methods (Kutser, 2004; Svab et al., 
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2005; Tyler et al., 2006).  This failing has impelled scientists to examine other means of 

quantifying the spatial distribution of phytoplankton in lakes and increasingly remote sensing 

platforms and sensors are being employed to quantify chlorophyll-a in lakes. 

 

Platforms and Sensors―The remote-sensing-based quantification of chlorophyll-a in lakes has 

been achieved using data collected from both (i) satellite-mounted instruments, and (ii) 

airborne-mounted instruments.  Satellite systems can offer regional-scale coverage of lake 

systems and, importantly, continuity in data acquisition; in contrast, airborne systems, while 

operationally expensive, afford much greater deployment flexibility and are apt for expeditious 

ecosystem-scale studies.   

 

Several previous studies have shown that lake chlorophyll-a concentrations can be estimated 

from broad bandwidth multispectral satellite data.  Allee & Johnson (1999) used Landsat TM 

imagery to map chlorophyll-a in Bulls Shoals Reservoir (USA) with an overall accuracy of R2 = 

0.80-0.84 and Ostlund et al. (2001) used Landsat TM imagery to retrieve estimates of 

chlorophyll-a in Lake Erkan (Sweden) with an accuracy of R2 = 0.76-0.93.  Baban (1993) 

assessed the trophic status of shallow lakes in the Norfolk Broads using Landsat TM imagery 

returning a coefficient of determination of R2 = 0.73 for the fit against chlorophyll-a.  Duan et al. 

(2007) used Landsat TM to assess the trophic status of Lake Chagan (China).  Tyler et al. 

(2006) used a novel linear spectral mixture modelling algorithm in combination with Landsat TM 

imagery to measure the chlorophyll-a concentration in Lake Balaton (Hungary) (R2 = 0.95). 

 

Notwithstanding the success of these studies, several authors have suggested that, in lakes 

with high and variable concentrations of tripton, the remote-sensing-based estimation of 

chlorophyll-a concentrations is often difficult with broad-band multispectral data (Ekstrand, 

1992; Dekker et al., 1992; Dekker & Peters, 1993; Carrick et al., 1994; Svab et al., 2005).  The 

use of multispectral satellite products with improved spectral resolution (e.g. MERIS, MODIS, 

SeaWIFS) has been shown to increase the efficacy of chlorophyll-a retrieval in optically 

complex lakes.  Budd & Warrington (2004), Heim et al. (Heim et al., 2005) and Pozdnyakov et 

al. (2005) used SeaWiFS data to characterise the chlorophyll-a concentration in Lake Superior 
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(R2 = 0.87), Lake Baikal (R2 = 0.85) and Lake Michigan (R2 = 0.82) respectively.  Giardino et al. 

(2005) used MERIS data to quantitatively map chlorophyll-a distributions in Lake Garda (Italy) 

and Novo et al. (2006) used MODIS imagery to assess seasonal changes in chlorophyll-a 

concentrations in Amazonian floodplain lakes. 

 

The latest generation of hyperspectral satellites have also been shown to hold much potential 

for mapping chlorophyll-a concentrations in lakes.  Kutser (2004) employed EO-1 Hyperion 

imagery to map the distribution of chlorophyll-a in a cyanobacteria bloom in the Gulf of Finland 

(R2 = 0.90-0.95).  Similarly, Yan et al. (2006) and Giardino et al. (2007) both used EO-1 

Hyperion data to map chlorophyll-a concentrations in Lake Taihu (China) and Lake Garda (Italy) 

respectively.   

 

Several studies have demonstrated that airborne remote sensing can also provide an effective 

platform for mapping chlorophyll-a in lakes. George (1997) used Airborne Thematic Mapper 

(ATM) imagery to map the distribution of chlorophyll-a in several tarns and lakes of the English 

Lake District (UK) (R2 = 0.94).  Härmä et al. (2001) used AISA imagery to map chlorophyll-a in 

several Finnish lakes (R2 = 0.90).  Thiemann & Kaufmann (2002) used HyMap and CASI-2 

imagery to monitor chlorophyll-a concentrations in the Mecklenburg Lake District (Germany).  

Further, George & Malthus (2001) exploited CASI-2 imagery to map the distribution of 

chlorophyll a in a series of lakes in North Wales (UK).  CASI-2 imagery has also been used to 

measure chlorophyll-a concentrations by Flink et al. (2001) and Ammenberg et al. (2002); whilst 

AVIRIS airborne imagery products have been utilised by Hamilton et al. (1993), Jaquet et al. 

(1994) and Melack & Gastil (2001). 

 

Methods and Models―The retrieval of chlorophyll-a concentrations from remote sensing data 

has been achieved through various methods.  Many initial algorithms were based upon simple 

empirical analyses between the measured concentration of chlorophyll-a and the value of Lw or 

Rrs in a single spectral band (Baban, 1993; George, 1997).  However, single channel 

chlorophyll-a algorithms often break down in CASE II waters where the coincidental presence of 

other optically active components (such as tripton and/or CDOM) significantly influence Lw or 
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Rrs.  Single band algorithms based on Lw are also sensitive to variation in illumination (Ed) 

intensity and geometry.  Thus, most semi-empirically derived chlorophyll-a retrieval algorithms 

now incorporate spectral band ratios or multiple band combinations; such algorithms have been 

found to be more robust and less sensitive to interference from other optically active 

components.  Band ratios often take the form of Equation 2.8, where β(λ) is band centred at a 

wavelength in which chlorophyll-a related backscatter is high (e.g. in the green and NIR) and 

α(λ) is a band centred at a wavelength in which chlorophyll-a absorbs strongly (e.g. in the blue 

and red). 

 

)(
)(a]-ll[chlorophy
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λβ

∝    Equation 2.8 

 
 

In ocean colour remote sensing, algorithms incorporating green/blue band-ratios have been 

widely employed (e.g. the current SeaWiFS and MODIS operational algorithms) and these 

ratios have also been used for the quantification of chlorophyll-a in lakes with some limited 

success (particularly those more oligotrophic in nature)  (George & Malthus, 2001).  However, 

green/blue band-ratios have not always proved effective when employed for the estimation of 

chlorophyll-a in turbid eutrophic lakes.  More commonly, algorithms have been based upon 

NIR/red band-ratios (Mittenzwey et al., 1991; Dekker, 1993; Han & Rundquist, 1997).  Gitelson 

et al. (1986), for example, demonstrated that algorithms incorporating the [Rrs(700)/Rrs(670)] 

ratio could be used to estimate chlorophyll-a concentrations in lakes.  Multiple band-ratio 

algorithms, such as those proposed by Mittenzwey et al. (Mittenzwey et al., 1991) have also 

shown to be effective for the quantification of chlorophyll-a in lakes (see Table 2.4). Some 

workers have also advocated the use of near-infrared peak algorithms which exploit the 

increase in NIR Lw or Rrs that occurs with increasing chlorophyll-a concentration (Gitelson et al., 

1993). 

 

The use of first and second derivative transformations of reflectance data has also been shown 

by some workers to be an effective method for deriving semi-empirical algorithms for the 

estimation of chlorophyll-a in lakes.  It has been suggested that nth-derivative transformations 

effectively normalise reflectance spectra for differences in the backscattering contribution from 
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tripton and are thus useful for estimating chlorophyll-a concentrations in optically complex 

shallow lakes (Malthus & Dekker, 1995; Rundquist et al., 1996; Han & Rundquist, 1997).   

 

Table 2.4 Examples of foregoing band ratio and band combinations algorithms used to estimate 
the concentration of chlorophyll-a in lakes. 
 

Chlorophyll-a Band Ratio or Combination Reference 
[Lw(560)/Rrs(440)] George & Malthus (2001) 
[Rrs(700)/Rrs(670)] Gitelson et al. (1986) 
[Rrs(706)/Rrs(676)] Dekker (1993) 
[Rrs(705)/Rrs(670)] Mittenzwey et al. (1991) 
[Rrs(705) – Rrs(670)]/[Rrs(550)]  
[Rrs(705) – Rrs(670)]/[Rrs(550) - Rrs(670)]  
[Rrs(705) – Rrs(670)]/[Rrs(550) - Rrs(760)]  
[Rrs(670-750)] Gitelson et al. (1993) 
SUM[Rrs(670-750)]  

 
 

Simulated datasets derived from bio-optical modelling approaches have been often used to 

optimise the configuration of algorithms for the estimation of chlorophyll-a (see for example the 

method of Ammenberg et al., 2002); bio-optical modelling approaches – providing the inherent 

and apparent optical properties can be fully characterised – also enable chlorophyll-a to be 

estimated from the derivation of a fully- or semi-analytical solution of the underwater ambient 

light field through model inversion (Pierson & Strombeck, 2001; Ma et al., 2006; Dall'Olmo & 

Gitelson, 2006; Giardino et al., 2007).  Tyler et al. (2006) present a contrasting methodology for 

the estimation of chlorophyll-a in lakes based upon a multivariate algorithm derived from a 

linear spectral mixing model of Landsat TM data; it is suggested that such an approach has 

value in optically complex shallow waters (e.g. high and heterogeneous tripton) and, in 

particular, if the available data is of an inferior spectral resolution. 

 

Time-Series Remote Sensing―The temporally-resolving datasets afforded by remote sensing 

platforms, both spaceborne and airborne, present a means of monitoring seasonal and annual 

changes in the chlorophyll-a concentration of lakes.  Thiemann & Kaufmann (2002) examined 

both intra- and inter-annual changes in phytoplankton communities in the Mecklenberg Lake 

District (Germany).  Tyler et al. (2006) used a retrospective approach to examine change in 

eutrophication driven phytoplankton blooms in Lake Balaton (Hungary).  Similarly, Ritchie et al. 
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(1994) used Landsat MSS data to examine time-series changes in the chlorophyll-a 

concentration of three lakes over a 12-year period (1976-1988). 

 

However, few studies conducted to date have employed remote sensing to examine diurnal 

patterns in the distribution of phytoplankton chlorophyll-a.  Jernakoff et al. (Jernakoff et al., 

1996) used an airborne Digital Multi-Spectral Video (DMSV) to monitor the dynamic behaviour 

of a phytoplankton bloom in Swan River (Western Australia) and noted that remote sensing 

could enable near-surface migrations by buoyant cyanobacteria to be observed in lakes.  

However, the poor spectral capabilities of the DMSV system prevented quantitative analysis of 

bloom behaviour.  The latest generation of high spectral resolution airborne spectral imagers 

have proven effective for the quantification of chlorophyll-a and, in this context, their operational 

flexibility could be highly useful for monitoring the diurnal dynamics of phytoplankton blooms  

 

2.4.3.3 Remote Sensing of Phytoplankton Community Composition 

Numerous studies have demonstrated the potential of airborne and satellite remote sensing for 

retrieving accurate estimates of chlorophyll-a concentrations in inland waters (George, 1997; 

Hoogenboom et al., 1998; Thiemann & Kaufmann, 2000; Ostlund et al., 2001; George & 

Malthus, 2001; Flink et al., 2001; Ammenberg et al., 2002; Tyler et al., 2006).  However, few 

studies have attempted to make the progression from mapping the bulk chlorophyll signal to 

more informative discriminative mapping of phytoplankton taxonomic groups.   

 

Chlorophyll-a is the dominant light harvesting pigment in the majority of phytoplankton and is 

therefore common to all taxonomic groups (except the divinyl chlorophyll-a containing 

prochlorophytes).  Thus, its surrogate use in mapping phytoplankton distributions in inland 

waters through remote sensing results in the acquisition of a bulk species signal that does not 

permit taxonomic differentiation.  However, phytoplankton contain a range of accessory 

pigments (carotenoids, phycobiliproteins) as part of their photosynthetic systems in addition to 

chlorophyll-a, many of which are taxon-specific (Rowan, 1989; Richardson, 1996).  The 

taxonomic-specificity of several carotenoids and the phycobiliproteins means that these 

pigments can be used as qualitative or quantitative biomarkers for the presence and abundance 
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of their respective taxa.  While several other accessory pigments have less taxonomic-

specificity, some nevertheless maintain high concentrations in a limited number of taxa (e.g. 

fucoxanthin) sufficient to enable their effective use as quantitative biomarkers for species 

groups (Rowan, 1989; Jeffrey & Vesk, 1997). 

 

The accessory pigments have relevance to remote sensing studies of phytoplankton in lakes.  

The optical properties of the accessory pigments are varied and some are spectrally 

discernable to optical remote sensing systems.  Foregoing research by a limited number of 

workers has examined the potential of remote sensing for mapping the distribution of 

phytoplankton taxonomic groups in lakes on the basis of accessory pigments.  The majority of 

the studies have focused on mapping cyanobacteria blooms using the biomarker pigment C-

phycocyanin (Dekker, 1993; Schalles & Yacobi, 2000; Vincent et al., 2004; Simis et al., 2005; 

Yang & Pan, 2006; Sridhar & Vincent, 2007; Simis et al., 2007).  C-phycocyanin absorbs 

strongly at c. 620 nm, the effect of which often can be observed as a prominent minimum 

(trough) in Lw or Rrs spectra, and several workers have exploited this spectral feature as a route 

to pigment quantification. 

 

Dekker (1993) developed a baseline algorithm for the estimation of C-phycocyanin in several 

Dutch lakes.  Similarly, Schalles & Yacobi (2000) developed a semi-empirical band ratio for the 

quantification of C-phycocyanin in Carter Lake (USA) (R2 = 0.61).  Simis et al. (2005) used a 

bio-optical model to derive a semi-analytical algorithm for the retrieval of C-phycocyanin 

concentrations in turbid, cyanobacteria dominated, waters yielding R2 = 0.77 for the fit against 

measured C-phycocyanin concentrations.  The algorithm derived by Simis et al. (2005) has 

been subsequently validated in other cyanobacterial-dominated waters, but it has been 

observed that the quantification of C-phycocyanin can be greatly affected by the coincidental 

presence of other optical active pigments (chlorophyll-a, chlorophyll-b), high intra- and inter-

species variability in C-phycocyanin content, and influence of cyanobacterial physiology on the 

specific absorption coefficient of C-phycocyanin (Simis et al., 2007).  Examples of remote 

sensing algorithms used to quantify C-phycocyanin are shown in Table 2.5. 
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Table 2.5 Examples of foregoing algorithms used to estimate the concentration of C-
phycocyanin in lakes 
 

C-phycocyanin Algorithm Reference 
[[0.5[Rrs(600)+Rrs(648)]]-Rrs(624)] Dekker (1993) 
[Rrs(650)/Rrs(625)] Schalles & Yacobi (2000) 
[Rrs(709)/Rrs(620)] Simis et al. (2005)† 

†See Simis et al. (2005) for full explanation of the semi-analytical algorithm 
 
 

The potential to retrieve estimates of the concentration of other biomarker pigments, such as 

fucoxanthin, using remote sensing has received little consideration.  Sathyendranath et al. ( 

2004) derived an algorithm for the optical discrimination of diatoms in marine waters.  Similar 

work has yet to be undertaken in lakes.  However, Richardson (1996), Gitelson et al. (1999) 

and Millie et al. (2002) have demonstrated that diatoms have unique spectral characteristics 

because of, in part, the presence of the fucoxanthin pigment, which intimates that it may offer a 

means to their quantification through remote sensing in lakes. 

 

2.4.3.4 Remote Sensing of SPM (seston) 

The concentration of SPM in shallow lakes is an important metric of ecosystem function as it is 

recognised to have important linkages to nutrient and contaminant cycling and can have a 

substantial influence upon the underwater ambient light climate.  Many workers have used 

remote sensing to map the quantitative distribution of SPM, SPIM and, to a somewhat lesser 

extent, SPOM in inland waters.  The presence of SPM can significantly increase the intensity of 

backscattering processes within the water column, leading to subsequent increases in Lw or Rrs 

that are proportional to the concentration of the material in suspension.   The greatest increase 

in Lw or Rrs has been found to occur at short wavelengths (400-600 nm) when the concentration 

of SPM is low (c. < 20 mg l-1).  However, it has been noted that the wavelength position of 

maximum Lw or Rrs shifts towards longer wavelengths as the concentration of SPM increases 

(c. > 20 mg l-1) (Curran & Novo, 1988; Lindell et al., 1999).  Therefore, the optimal 

wavelength(s) for incorporation into SPM retrieval algorithms is, to an extent, dependent on the 

concentration of SPM in suspension.   
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Several different types of algorithms have been used to retrieve SPM estimates in inland 

waters; the vast majority of the published studies have been based upon empirical or semi-

empirical analysis, but some semi-analytical and analytical algorithms have also been derived 

from bio-optical models (Dekker et al., 2001; Dekker et al., 2002).  Choubrey & Subramanian 

(1992) used a linear algorithm to derive estimates of SPM in a central Indian reservoir using 

IRS LISS-I data.  Lathrop et al. (1991) used an exponential empirical model to derive SPM 

estimates from Landsat TM data (R2 = 0.88) and, in similarity, Ghezzi et al., (1998) used an 

empirical power model to derive SPM estimates in Lake Garda (Italy) (R2 = 0.70). 

 

Few workers have attempted to estimate the inorganic and organic fractions of the (total) SPM 

in lakes.  Ammenberg et al. (2002) used a bio-optical model to estimate the SPIM fraction in 

Lake Malaren (Sweden) and Pierson & Strombeck (2001) used a bio-optical model to derived 

semi-analytical algorithms for the estimation of SPIM and SPOM in Lake Malaren (Sweden).  

However, in the case of Pierson & Strombeck (2001), whilst the concentration of SPIM could be 

accurately estimated from remote sensing data, the estimation of SPOM was more problematic.  

This difficulty was largely due to the optical properties of SPOM (i.e. low backscatter) 

 

2.4.3.5 Remote Sensing of CDOM 

Lakes can provide an important sink environment for carbon and thus the concentration and 

flux dynamics of dissolved organic carbon is an important measure of ecosystem function 

(Kullberg et al., 1993; Blomqvist et al., 2001).  However, the concentration of CDOM in inland 

waters is perhaps the most difficult of water quality parameters to retrieve using remote sensing 

and few published studies have been able to derive accurate estimates {Lindell et al., 1999}.  

CDOM absorbs light intensely between 350 and 550 nm.  However, at these wavelengths, 

absorption by phytoplankton pigments and SPOM, combined with high SPIM scattering, often 

complicates the retrieval of CDOM concentrations from remote sensing data. 

 

Notwithstanding these issues, some limited success has been achieved; Dekker (1993) used a 

bio-optical modelling approach to retrieve estimates of the CDOM concentration in the 

Loosedrect Lakes (The Netherlands).  Furthermore, Kutser et al. (2005b) used a band ratio 
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power algorithm to successfully retrieve CDOM estimates from ALI imagery in several lakes 

across Finland and Sweden (R2 = 0.82).  Brezonik et al. (Brezonik et al., 2005) were able to 

map the concentration of CDOM in several lakes in Minnesota (USA) using Landsat TM data 

(R2 > 0.70).  However, in a later study, Menken & Brezonik (2006) could not derive an effective 

algorithm for the estimation of CDOM in other Minnesotan Lakes.  It has been suggested that 

the estimation of CDOM in lakes is dependent on the existence of a large concentration 

gradient to aid algorithm development (Giardino et al., 2007). 

 

2.4.4 Remote Sensing of Aquatic Vegetation 

2.4.4.1 The Spectral Signature of Vegetation 

The spectral signature of vegetation is a complex interaction of many factors operating at 

various scales from that of individual leaves to the canopy.  The remote sensing of vegetation 

communities is reliant on a clear mechanistic understanding of the spectral response of 

vegetation communities under a variety of conditions.  The spectral signature of individual 

leaves is largely determined by a combination of foliar biochemistry and the internal cell 

structure (Campbell, 2002).  Figure 2.3 shows a typical spectral response from a single leaf 

measured under controlled conditions.  The spectral response between 400-500 nm (a) is 

largely a function of absorption by leaf pigments (chlorophylls, xanthophylls and carotenoids).  

Chlorophyll-a, in particular, absorbs strongly at c. 436 nm.  The local reflectance maximum at c. 

550 nm (b) known as the “green peak” is largely the result of decreased pigment absorption and 

increase in chlorophyll-a related backscattering.   

 

The reflectance minimum located 600-700 nm (c) is caused by high absorption by chlorophyll 

pigments; the pronounced feature located at c. 680 nm reflects the absorption maximum of 

chlorophyll-a.  The rapid increase in reflectance >700 nm (d), referred to as the “red-edge”, and 

the NIR plateaux feature (>750 nm) (e), are a function of negligible pigment absorption allied to 

high backscattering from the interaction of incident light with spongy mesophyll tissue and 

palisade cells (Danson & Plummer, 1995).  The spectral response of leaves beyond the NIR 

region (i.e. 1400-2500 nm) is governed by absorption due to the presence of structural 

compounds such as lignin, tannin and cellulose and absorption by water. 



 

 43

 

 

Figure 2.3 The spectral response of a Phragmites australis leaf measured under laboratory 
darkroom conditions using an artificial source of illumination. 
 

Many of the factors that affect the spectral response of vegetation at the leaf-scale also operate 

at the canopy-scale.  However, the spectral signatures of vegetation at the canopy-scale are 

also influenced by other factors and, in particular, the bio-physical structure of plants.  

Vegetative canopies are composed of many individual leaves that may vary in their size, shape, 

orientation and ground coverage.  Variations in plant morphology can dramatically affect the 

interaction with incident light and therefore canopy architecture can have a profound effect upon 

the spectral response of vegetation.  Spanglet et al. (1998) noted that canopies that have an 

orientation that tends towards the vertical (erectophile) display a much smaller vegetative 

surface than canopies that have a more horizontal orientation (planophile) which results in a 

significantly different spectral response.  Spanglet et al. (1998) also showed that canopies with 

a spherical architecture can demonstrate pronounced variability in spectral reflectance 

signatures due to complex internal scattering processes.  Variability in canopy geometry also 

influences the amount of canopy shadow and the extent to which reflectance from non-

vegetative background surfaces occurs; both these factors have been shown to further 

moderate the spectral response of vegetation (Spanglet et al., 1998). 
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The varied biochemical and biophysical properties of natural vegetation communities can thus 

result in significantly different spectral responses being observed both between, and within, 

communities.  This provides a basis upon which remote sensing can be used to (i) map 

different vegetation communities and (ii) quantitatively assess differences in the biochemical 

and biophysical (e.g. chlorophyll-a, LAI, biomass) properties of vegetation communities. 

 

2.4.4.2 Mapping the Distribution of Aquatic Vegetation 

The abundance, distribution and composition of aquatic vegetation is a key measure of shallow 

lake ecological status.  Field-based aquatic plant surveys are time-consuming.  Moreover, field-

based aquatic plant surveys are ineffective for mapping vegetation over large spatial areas and 

the discontinuous nature of point-based survey data may seldom adequately describe the true 

distribution of aquatic plant communities, particularly where complex mosaics, transitional 

assemblages and ecotones occur (Janauer, 1997; O'Shea, 2005).    

 

The spatially-resolving data afforded by remote sensing would seem to have much to offer with 

respect to the mapping of vegetation communities in shallow lakes (and their peripheral 

wetlands).  In this context, several workers have previously employed various forms of remote 

sensing for the mapping of aquatic vegetation communities.  Aerial photography has been used 

on numerous occasions.   Boorman & Fuller (1981) used historical aerial photography to map 

changes in the extent of reedswamp in the Norfolk Broads.  Similarly, Windham & Lathrop 

(1999) used aerial photography to map the invasion of Phragmites australis in brackish tidal 

marshes in eastern USA.  Aerial photography has also been used to map the distribution of 

submerged aquatic vegetation; for example, Stankelis et al. (2003) retrospectively analysed 

historical aerial photographs to determine the former extent of SAV in the Patuxent estuary 

(USA).  Comparable studies utilising aerial photography to map aquatic vegetation have also 

been conducted by, amongst others, Kelly et al. (2001), Lathrop et al. (2001), Frederiksen et al. 

(2004) and Valta-Hulkkonen et al. (2005). 

 

Multi- and hyperspectral remote sensing has been recently examined by several authors for 

aquatic vegetation mapping.  Malthus & George (1997) used ATM imagery to map the 
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distribution of macrophytes in the Cefni Reservoir (UK) using a simple minimum distance 

classification algorithm.  A classification accuracy of 79% was achieved against conventional 

field-based survey despite the limited radiometric capabilities of the ATM sensor.  Williams et al. 

(2003) used continuum removal analysis of hyperspectral airborne imagery (HyMap) to 

demonstrate that two submerged macrophyte species (Myriophyllum spicatum and Vallisneria 

americana) are sufficiently spectrally dissimilar to enable them to be mapped independently 

using remote sensing imagery.  Nelson et al. (2006) used Landsat TM to conduct a region-scale 

assessment of the aquatic vegetation cover in several shallow lakes in Michigan (USA).  

Similarly, Albright et al. (Albright et al., 2004) used satellite data to map the extent of Eichhornia 

crassipes (Water Hyacinth) invasion in lakes across the African continent.  Stcyr et al. (Stcyr et 

al., 1994) used remote sensing imagery to estimate the seasonal storage of heavy metals in the 

aquatic vegetation of Lake St. Pierre (Quebec).  These and several other published studies 

demonstrate the capability of remote sensing as a tool for mapping the distribution of aquatic 

vegetation in shallow lakes and wetlands (Jakubauskas et al., 2000; Arzandeh & Wang, 2003). 

 

2.4.4.3 Remote Sensing of Vegetation Physiological Status 

It has been shown that remote sensing offers a means of mapping aquatic vegetation in shallow 

lakes.   However, emerging research from studies of terrestrial vegetation now suggests that 

remote sensing can also be used to quantitatively assess the physiological status (i.e. vigour) of 

plant communities.  Remote sensing based studies of vegetation physiological parameters (i.e. 

chlorophyll-a, LAI, biomass) were initially pioneered in agricultural and agri-forestry contexts.  

Nevertheless, increasingly remote sensing approaches to characterising plant physiology have 

now started to find application in the examination of natural vegetation communities (Davids & 

Tyler, 2003). 

 

The physiological status of plants is principally conditioned by the nature of the immediate 

environment (e.g. nutrition, light, exposure to stressors).  Common plant responses to 

differences in the quality of the growth habitat include changes in photosynthetic activity, 

photosynthetic pigmentation, tissue biochemistry and plant morphology (Lichtenthaler, 1996).  It 

has been shown that remote sensing can be used to quantify such phytophysiological 
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parameters in natural vegetation communities through the derivation of various spectral 

vegetation indices.  Examples of such indices include the NDVI (which has been extensively 

use to estimate biomass in various plant communities) (Equation 2.9), more novel 

hyperspectral-based derivative indices such as the chlorophyll red-edge index and continuum 

removed indices (Penuelas et al., 1993; Kokaly & Clark, 1999; Davids & Tyler, 2003). 

 

NIR]  [red
NIR] - [redNDVI

+
=     Equation 2.9 

 
Numerous authors have exemplified that remote sensing can be used to retrieve accurate 

estimates of foliar chlorophyll-a concentrations at both the leaf- and the canopy-scale (Gitelson 

& Merzlyak, 1997; Jago et al., 1999; Gitelson et al., 1999; Datt, 1999; Raychaudhuri, 2004; 

Blackburn, 2007).  Blackburn (1999) used several different spectral vegetation indices to 

quantify the chlorophyll-a concentration in broadleaved plants (max. R2 = 0.88).  Similarly, 

Blackburn & Steele (1999) used narrow band ratio and first-derivative reflectance indices to 

estimate the chlorophyll-a content of matorral vegetation at both the leaf- and canopy-scale. 

 

The use of spectral reflectance indices for the quantification of plant vigour has been developed 

further in more applied contexts.  Smith et al. (2004) used first-derivative indices obtained from 

hyperspectral data to identify stress effects in plants exposed to experimental gas leaks in 

several grass and cropland species.  Similarly, Davids & Tyler (2003) used a variety of 

vegetation indices to examine the radionuclide-induced tree stress in the Chernobyl exclusion 

zone (Ukraine).  In a context more relevant to shallow lakes, Kooistra et al. (2003), Clevers et 

al. (2004) and Kooistra et al. (2004) successfully demonstrated that plant stress resulting from 

heavy metal contamination (Cd, Cu, Ni, Pb, and Zn) in a wetland floodplain environment could 

be identified through spectral reflectance measurements made at the canopy-scale.   

 

However, few workers have used remote sensing to quantify changes in the physiological 

status of aquatic plants.  There are some notable exceptions.  Penuelas et al. (1993) used 

spectral reflectance measurements to estimate the chlorophyll-a content, photosynthetic 

efficiency and biomass in emergent aquatic plants in Searsville Lake (USA).  Yuan & Zhang 
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(2007) used an NDVI transformation of spectral reflectance measurements to quantify the 

biomass of the submerged aquatic plant Vallisneria spiralis. 

 

2.5 SUMMARY AND FUTURE RESEARCH PRIORITIES 

2.5.1 Shallow Lakes as Complex Ecosystems 

Shallow lakes are complex ecosystems.  The dynamic interaction of numerous physical, 

chemical and biological processes serves to ensure that shallow lake ecosystems (or elements 

therein) are often in a state of flux.  This dynamism can be seen both in the abiotic processes 

(e.g. in the interrelated processes of mixing, sediment resuspension, and nutrient cycling) that 

regulate ecosystem function and the biotic elements (e.g. aquatic plants and phytoplankton 

communities) that respond to, and consequently modify, such processes.   

 

Shallow lakes can exist in various states of either, (i) aquatic plant-dominance, or (ii) 

phytoplankton dominance, and the ecological status and trajectory of shallow lakes is largely 

conditioned by competition between these biotic elements.  Aquatic plant dominance in shallow 

lakes is typically equated as being indicative of good ecological status, whilst phytoplankton 

dominance is, conversely, considered to be symptomatic of an ecosystem in poor ecological 

health.  It can be argued therefore that ecological status in shallow lakes could be elucidated, 

albeit at a basic level, from the broad-scale assessment of these two major biotic elements.   

 

The EU WFD (2000/66/EC) now requires the assessment of ecological status in all fresh and 

saline waters, including shallow lake ecotypes, across all EU Member States (Moss et al., 2003; 

Dworak et al., 2005).  The sheer extent and number of waters to be assessed, monitored and 

policed will be the greatest obstacle to the successful implementation of the EU WFD.  In 

addition, methodologies for the assessment of ecological status across respective EU Member 

States need to be objective and harmonious in their approach, independent of expert opinion, 

and free from political interference.  In this context, remote sensing technologies would seem to 

be highly relevant to the objectives of the EU WFD (Chen et al., 2004). 
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2.5.2 Remote Sensing and Shallow Lake Ecology 

It has been shown, albeit from a number of limited studies, that remote sensing can be used to 

assessment various elements of shallow lake ecosystems at regional-to-global scales.  The 

advantage of remote sensing reconnaissance in comparison to in-situ survey and monitoring 

approaches is that it can provide data (i) as a spatial continuum, (ii) at contrasting spatial and 

temporal scales, (iii) where an immediate scientific response is desired, and (iv) for the 

construction of retrospective baselines.   

 

In the context of shallow lakes, whilst there are many important elements that cannot be 

observed through remote sensing, it can nevertheless be used to obtain information concerning 

several important ecosystem components (see Figure 2.4).  In particular, previous work 

suggests that information relevant to the assessment of ecological status in shallow lakes could 

be obtained from remote sensing for both (i) phytoplankton (chlorophyll-a, composition and 

cyanobacterial abundance) and (ii) aquatic plant (distribution, composition and physiological 

status) elements.  This information, when equated against appropriate reference conditions, 

would go some way towards providing an assessment of ecological status (and trajectory) for 

shallow lake ecosystems and, it can also be argued that, it could be achieved at a scale (spatial 

and temporal) that could not be realised cost-effectively through sole reliance on in-situ survey 

and monitoring approaches. 

 

The integration of remote sensing reconnaissance into shallow lake ecology and, ultimately, its 

use in the implementation of the EU WFD, will depend on the development of robust 

methodologies for ecosystem assessment and monitoring.  This can only be achieved through 

the creation of a sizeable evidence base derived from the continued application of remote 

sensing technologies in studies of shallow lake ecosystem process and function.  
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Figure 2.4 A conceptual Venn diagram illustrating key areas in which remote sensing could 
contribute to monitoring of ecological status in shallow lakes. 
 

 

2.5.3 Thesis in Context 

This thesis addresses the use of remote sensing in shallow lake ecology.  Through a series of 

linked proof-of-concept-type studies it aims to make a significant contribution to the growing 

evidence base that supports the expeditious use of remote sensing for the assessment of 

ecological status in shallow lakes.  In particular, this thesis aspires to develop and refine remote 

sensing methodologies for the assessment of (i) phytoplankton and (ii) aquatic plant elements 

in shallow lakes.  Specific objectives for this thesis can be outlined as follows. 
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(i) Phytoplankton 

Objective 1―To examine the use of multispectral and hyperspectral remote sensing data for 

the quantification of chlorophyll-a concentrations and other important water quality parameters 

(e.g. suspended particulate matter and CDOM) in shallow lakes of varying optical properties. 

 

Objective 2―To examine the extent to which taxonomic information can be derived from 

hyperspectral remotely sensed data, with particular reference to the development of techniques 

for the quantification of cyanobacterial abundance in shallow lakes. 

 

Objective 3―To examine the use of high spatial resolution remote sensing reconnaissance to 

map spatial and temporal (diurnal and seasonal) change in the distribution of phytoplankton in 

shallow lakes and to provide a mechanistic insight into the behaviour of phytoplankton blooms 

in shallow lakes. 

 

(ii) Aquatic plants 

Objective 4―To examine the use of high spatial remote sensing reconnaissance to map the 

distribution and composition of aquatic plants in shallow lakes. 

 

Objective 5―To examine the use of hyperspectral remote sensing to assess the physiological 

status of emergent aquatic plants in shallow lakes in relation to pressures induced by 

eutrophication-related processes.  

 

The collation of the results obtained from the aforementioned proof-of-concept-type studies will 

be used to critically evaluate (i) the use of remote sensing survelliance for providing spatially-

explicit insights into shallow lake procesess and function and thus the furthering of ecological 

understanding and (ii) the merit of integrating such technologies for the assessment, monitoring 

and policing of ecological status in shallow lakes to aid the implementation of the EU WFD. 
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3 HYPERSPECTRAL REMOTE SENSING OF WATER 
QUALITY IN SHALLOW LAKES 

 

 

3.1 INTRODUCTION 

The preceding chapter (Chapter 2) discussed the application of remote sensing in shallow lake 

ecology.  It was identified that the optical-complexity of shallow lakes may present an obstacle 

to the accurate estimation of certain water parameters (e.g. chlorophyll-a) from remotely sensed 

data.  This chapter seeks to examine the efficacy of hyperspectral data for the estimation of 

various water quality parameters in shallow lakes (chlorophyll-a, SPM, CDOM) through a 

thorough evaluation of different semi-empirical approaches to algorithm development. 

 

3.2 RATIONALE 

The assessment of water quality is central to lake research and monitoring and is now a 

legislative requirement for EU Member States under the WFD (2000/60/EC).  In this context, 

remote sensing technologies could make a significant contribution to limnological monitoring as 

they have the ability to provide quantitative regional-scale panoramas of water quality 

conditions in lakes.  Many workers have demonstrated that several water quality parameters 

can be estimated using remote sensing data, including the concentrations of chlorophyll-a, SPM 

(seston dry weight), CDOM, and measures of water transparency (i.e. Secchi disc depth or 

nephelometric turbidity) (George, 1997; Hoogenboom et al., 1998; Thiemann & Kaufmann, 

2000; Flink et al., 2001; George & Malthus, 2001; Ostlund et al., 2001; Ammenberg et al., 2002; 

Tyler et al., 2006). 

 

The estimation of SPM has proven achievable in most lakes using simple empirical algorithms 

formulated using single VNIR bands, or more complex analytical solutions derived from bio-

optical modelling simulations (Han & Rundquist, 1997; Dekker et al., 2002).  However, the 

retrieval of chlorophyll-a and CDOM concentrations using data derived from broadband remote 

sensing instruments (e.g. Landsat TM, SPOT) has often proved problematic in lakes, 
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particularly those characterised by high and non-co-varying concentrations of tripton (Lindell et 

al., 1999; Tyler et al., 2006).  This is exemplified by Sváb et al. (2005) who demonstrated that 

the retrieval of chlorophyll-a from simulated Landsat TM data in Lake Balaton (Hungary) was 

prohibited by the presence of high and heterogeneous concentrations of SPIM.  Similar 

observations are echoed in Dekker et al. (1991) Quibell (1991), Goodin et al. (1993) and Han & 

Rundquist (1997).   

 

In very shallow lakes, such as the Norfolk Broads (< 2.5 m), the wind-driven resuspension of 

bottom sediments can promote very high concentrations of tripton in the water column.  In these 

waters, high and heterogeneous tripton loads may be a significant obstacle to the estimation of 

chlorophyll-a.  Furthermore, in shallow waters, the signal from the lake bottom can provide an 

additional source of spectral confusion and may influence the accuracy of remote sensing 

algorithms for the retrieval of water quality parameters (Liu et al., 2003).  

 

There is now considerable effort being directed towards the development and refinement of 

algorithms for chlorophyll-a retrieval in CASE II waters (Thiemann & Kaufmann, 2000; Kallio et 

al., 2001; Flink et al., 2001; Ammenberg et al., 2002; Dall'Olmo et al., 2005; Tyler et al., 2006).  

In this context, high spectral resolution data seems to offer increased flexibility for algorithm 

formulation and has been shown to improve the accuracy of water quality estimation using 

remote sensing (Han & Rundquist, 1997).  Workers have shown that the effect of high and non-

co-varying concentrations of tripton on the retrieval of chlorophyll-a concentrations may be 

circumvented by deriving algorithms incorporating NIR/red narrow band-ratios (as opposed to 

the green/blue band-ratios often used in CASE I algorithms), or through the employment of first- 

or second-derivative transformations of hyperspectral reflectance data (Malthus & Dekker, 

1995; Han & Rundquist, 1997; Han, 2005).  In addition, recent research has also showed that 

statistically more complex ‘soft-classification’ approaches to algorithm development, such as 

linear spectral mixture modelling (LSMM), can yield superior estimates of chlorophyll-a 

concentrations in comparison to more convention semi-empirical band-ratio or band-

combination approaches (Thiemann & Kaufmann, 2000; Tyler et al., 2006; Oyama et al., 2007).   
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The fact that a plethora of different algorithms for the retrieval of chlorophyll-a concentrations in 

CASE II waters have been proposed in the literature suggests that any single formulation may 

not be appropriate for application in all lake types.  This has been noted by Kallio et al. (Kallio et 

al., 2001) who examined the effect of lake type and seasonality on the accuracy of chlorophyll-a 

retrieval in variety of lakes in Southern Finland using airborne AISA data.  Interestingly, it was 

found that the accuracy of the chlorophyll-a estimation diminished when the derived algorithms 

were applied across contrasting lake types.   

 

It is therefore vital that, in order to maximise the effectiveness of remote sensing for lake 

monitoring, efforts are made to identify the optimum algorithm formulation(s) for the estimation 

of water quality parameters in the lakes, or lake types, of interest (Lindell et al., 1999).  There 

has been little consideration given to the optimum formulation of remote-sensing-based 

chlorophyll-a algorithms for application in optically-complex and very shallow lakes.  Thus, it 

would seem pertinent to further examine the efficacy of different approaches to the formulation 

of hyperspectral remote-sensing-based algorithms for the estimation of water quality 

parameters in shallow lakes. 

 

3.3 AIMS AND OBJECTIVES 

The aim of the research presented in this chapter was thus to attempt to identify candidate 

spectral algorithm formulations for the estimation of water quality (chlorophyll-a, SPM, SPIM, 

SPOM, CDOM and SDD) using multi-temporal shipboard hyperspectral remote-sensing-

reflectance measurements acquired from sampling stations in the shallow lakes of the Norfolk 

Broads (UK).  This chapter also intends to explore the effect of variable tripton, CDOM and 

bottom reflectance on the estimation of chlorophyll-a in shallow lakes through theoretical bio-

optical simulations using the Hydrolight v.4.2 model. 
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The objectives for the chapter can be thus summarised as:  

 

a) To identify optimum hyperspectral single-band, band-ratio and band-combination 

algorithms for the estimation of chlorophyll-a, SPM, SPIM, SPOM, CDOM and SDD in the 

shallow lakes of the Norfolk Broads in terms of (i) accuracy and (ii) robustness. 

 

b) To examine the efficacy of novel first-derivative, continuum-removed and multivariate 

hyperspectral algorithms for the estimation of chlorophyll-a in the shallow lakes of the 

Norfolk Broads in terms of (i) accuracy and (ii) robustness. 

 

c) To examine the effect of shallow lake type (i.e. variable optical conditions) on the accuracy 

of chlorophyll-a retrieval through a sensitivity analysis using the Hydrolight v.4.2 bio-optical 

radiative transfer model. 

 

3.4 METHODS 

3.4.1 Shipboard Spectrometry and Water Sampling 

Shipboard spectrometry surveys and contemporaneous water sampling was conducted in the 

Norfolk Broads in southeast England (UK) (52º 44’ 17’’ N; 1º 34’ 29’’ E) during three lake 

cruises on 18 May 2004, 22 June 2005 and 29 August 2005.  The various lakes sampled during 

each campaign are listed in Table 3.1.  The three lake sampling cruises were conducted 

concomitant to airborne remote sensing campaigns by the National Environmental Research 

Council’s Airborne Research and Survey Facility (NERC ARSF) in the Norfolk Broads (data 

presented in Chapter 5). Lake sampling was conducted in a strategic manner in an attempt to 

sample across the maximum possible water quality gradient.  No effort was made to avoid very 

shallow regions, or lakes where submerged aquatic plants may be present.  Where possible, 

however, an effort was made to encompass common sampling stations within each cruise but, 

for logistical reasons, this was not always possible.   
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Table 3.1 The various lakes sampled during the three shipboard spectrometry and lake 
sampling cruises in 2004 and 2005. 
 

Lake Cruise 
18 May 2004 22 June 2005 29 August 2005 

 
Hickling Broad 

Heigham Sound 
Horsey Mere 

 
Hickling Broad 

Heigham Sound 
Horsey Mere 

Martham North Broad 
Ormesby Broad 

 

 
Hickling Broad 

Heigham Sound 
Horsey Mere 

Martham North Broad 
 

 

Measurements of above-surface radiance reflectance, Rrs(λ,0+), were acquired at each 

sampling station using a portable ASD (Analytical Spectral Devices) FieldSpec® HandHeld 

Spectroradiometer (Figure 1).  The specifications of the ASD FieldSpec® instrument are 

detailed in Table 3.2.  Rrs(λ,0+) was calculated according to Equation 3.1 (after Lindell et al., 

1999); where Lu is the upwelling radiance just above the water surface and Ed is the 

downwelling irradiance from the sun.  The ASD FieldSpec® instrument cannot directly measure 

the value of Ed.  This measurement was thus obtained from spectral scans taken from a white 

Spectralon® calibration panel (~100% reflectivity). 

 

( ) ( )
( )+
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E
LR     Equation 3.1 

 
 
The acquisition of Rrs(λ,0+) measurements was restricted to between 10.00-15.00 h GMT to 

minimise the possible influence of solar zenith variations.  The spectrometer was mounted on a 

telescopic pole which enabled the instrument to be positioned away from the proximity of the 

boat.  A constant geometry between the sun and the spectrometer was maintained and the 

instrument was held, at nadir, at a height of 0.5 m above the surface of the water.  The 

shipboard Rrs(λ,0+) measurements were acquired as a mean of 10 instantaneous scans 

automatically averaged by the instruments dedicated software; Rrs(λ,0+) was subsequently 

calculated from the mean of 25 replicate measurements obtained at each station.   Spectralon® 

panel calibration measurements for the estimation of Ed were acquired prior to the acquisition of 

the spectral measurements at each station.  A preliminary visual inspection of the data allowed 
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any measurements believed to be adversely affected by glint (i.e. Fresnel reflectance) from the 

water’s surface to be discarded prior to further analysis.   

 

 

Figure 3.1 Photograph showing an example of the technique used to acquire shipboard 
Rrs(λ,0+) measurements (Esthwaite Water, English Lake District). 
 

 

Surface water samples for the analysis for chlorophyll-a, SPM, SPIM, SPOM and CDOM were 

collected at each sampling station contemporaneous to the acquisition of the spectral 

measurements using a pre-washed wide-necked bottle; in addition, the SDD was measured 

according to standard procedures.  Water samples were, where possible, kept in the dark in a 

cool box until further processing (i.e. filtration) could be undertaken. 
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Table 3.2 Instrument specifications for the ASD FieldSpec® HandHeld spectrometer. 

Spectral range 325-1075 nm 
Spectral resolution  3.5 nm @ 700 nm 
Sampling interval 1.6 nm @ 325-1075 nm 
Typical data collection rate (solar illumination) 0.7 spectra s-1 
Detector 512 element Si photodiode array 325-1075 nm 
Input Fixed 25º field of view.  Optional fibre optics and 

foreoptics. 
Calibration Wavelength, reflectance, radiance, irradiance.  All 

calibrations are NIST traceable. 
Noise Equivalent Radiance UV/VNIR 5.0 x 10-9 W/cm/nm/sr @700 nm 

 

 

3.4.2 Chlorophyll-a, SPM and CDOM Analysis 

The collected water samples were stored in the dark until filtration; this was always performed 

within 2-12 h of sample collection.  Sample aliquots for chlorophyll-a analysis were vacuum 

filtered onto pre-washed 47 mm diameter Whatman GF/C filters (the filtrate was retained for 

CDOM analysis), wrapped in aluminium foil, and immediately quick-frozen in liquid-N for 

transportation back to the laboratories at the School of Biological and Environmental Science 

(University of Stirling) where the samples were stored at -40-80°C upon receipt until further 

analysis could occur.  Filter papers were stored for no longer than 14 d to prevent pigment 

degradation.  Chlorophyll-a was extracted from the GF/C filter papers in 90% (HPLC grade) 

acetone (90% acetone: 10% water v/v) in the dark for 20 h at 4ºC and clarified in a refrigerated 

centrifuge (4ºC) for 10 min at > 5 000 g.  The concentration of chlorophyll-a in the supernatant 

was determined spectrophotometrically on a Cecil 1021 series spectrophotometer using the 

equations of Lorenzen & Jeffrey (1980). 

 

Total SPM (seston dry weight) and the SPIM and SPOM fractions were measured 

gravimetrically according to the method of Strickland and Parsons (1972).  A known volume of 

water was filtered onto a pre-washed and pre-weighed 47 mm diameter Whatman GF/C and 

the total concentration of SPM was determined by re-weighing the filter after drying at 75ºC for 

12 h.  The concentrations of SPIM and SPOM were obtained by subsequently ashing the filter 

at 500ºC for 24 h.  The resulting weight loss on ignition provided the concentration of SPOM.  

The concentration of SPIM was calculated as the difference between the weight of SPM and 

the weight of SPOM. 
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The concentration of CDOM was measured spectrophotometrically on a Cecil 1021 series 

spectrophotometer following filtration of the water samples through a pre-washed 47 mm 

diameter Whatman GF/C filter and secondary filtration through a pre-washed Millipore 0.22 µm 

filter.  The apparent absorption coefficient (χλ) was calculated using Equation 3.2 where Dλ is 

the measured absorbance at a given wavelength λ and r is the curvette length in metres.   

 
  rD /303.2 λλχ =      Equation 3.2 

 
 
The true absorption coefficient (gλ), corrected for scattering, was calculated according to 

Equation 3.3 where χL is the apparent absorption coefficient at a long wavelength (in this 

instance 740 nm) and χλ is the apparent absorption coefficient at a given wavelength (λ) (in this 

instance 440 nm).  Results were expressed as true absorption coefficients g440 (m-1) (after 

Lindell et al., 1999). 

 
)/( χ

λλ χχ L
L

g −=     Equation 3.3 
 

 
 
3.4.3 Processing and Analysis of Rrs(λ,0+) Measurements 

3.4.3.1 Spectral Pre-processing 

The raw hyperspectral data were interpolated to a final spectral resolution of 0.5 nm and 

truncated between 400 and 800 nm to remove noisy data incurred at the extremes of the 

spectrometer’s sampling range.  The resulting data were then smoothed to further reduce the 

influence of noise prior to analysis by passing a 5 nm running mean filter over the entire 

spectrum (after Dall'Olmo et al., 2005). 

 

3.4.3.2 Algorithms for the Estimation of SPM, CDOM and SDD 

Indices for the estimation of SPM fractions, CDOM and SDD were derived in a purely empirical 

fashion.  The datasets were checked for normality in MINTAB v.14 using the Anderson-Darling 

method (95% significance level).  Pearson’s Product-Moment correlation analysis was initially 

used to identify the optimum wavelength(s) for the estimation of SPM fractions, CDOM and 
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SDD and, subsequently, algorithms for the estimation of the various water quality parameters 

were derived using linear and non-linear least-squares regression models.   

 

3.4.3.3 Band-Ratio and Band Combination Indices for Chlorophyll-a 

Candidate band-ratio and band-combination indices for the estimation of the chlorophyll-a 

concentration were identified from the literature (see Table 3.3).  These spectral indices were 

subsequently calculated from the Rrs(λ,0+) datasets obtained during the sampling campaigns in 

the Norfolk Broads.  This included the medium-independent pigment index model proposed in 

Dall’Olmo et al. (2003); where Rλ1, is a spectral region maximally sensitive to the absorption of 

the pigment of interest; Rλ2, is a spectral region minimally sensitive to the absorption of the 

pigment of interest, but for which absorption by other components is approximately equal to that 

at Rλ1; and Rλ3, is a spectral region minimally affected by the absorption of any pigments and 

thus can be used to correct for variability in backscatter between measurements (Equation 3.5). 

 

( ) 3
1

2
1

1ionConcentratPigment λλλ RRR ×−∝
−−

   Equation 3.5 

 

Dall’Olmo et al., (2003) defined Rλ1, Rλ2 and Rλ3 empirically, essentially allowing the algorithm to 

be spectrally-tuned to optimise chlorophyll-a estimation.  The parameterisation of Rλ1, Rλ2 and 

Rλ3 in the index as suggested in Dall’Olmo et al. (2003) was found to be generally appropriate 

and thus no further efforts were made to refine the index empirically. 

 

3.4.3.4 First-Derivative and Continuum-Removed Indices for Chlorophyll-a Estimation 

Novel chlorophyll-a indices based upon the first-derivative transformation of the Rrs(λ,0+) 

spectra (hereafter denoted by dR/dλ) and continuum-removed spectra (hereafter denoted by 

R´(λ))  were also formulated in addition to the more conventional band-ratio and band-

combination approaches.  First- and second-derivative transformations have been shown to be 

effective for suppressing the effect of variable SPM (or, more specifically, tripton) 

backscattering on Rrs(λ,0+) spectra acquired over inland waters, and have thus been shown to 
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improve the accuracy of chlorophyll-a estimation in lakes (Malthus & Dekker, 1995; Han & 

Rundquist, 1997; Han, 2005).  

 

The first-derivative transformation of the Rrs(λ,0+) data was achieved using Equation 3.4; where 

dR/dλi is the first-derivative reflectance at the midpoint, i, between wavelengths j and j+1.  Rλ(j) 

is the reflectance at wavelength j, Rλ(j+1) is the reflectance at wavelength j+1, and ∆λ is the 

wavelength difference between j and j+1.  Candidate dR/dλ indices were identified from the 

literature and subsequently calculated from the Rrs(λ,0+) measurements obtained from the 

Norfolk Broads (Table 3.3). 

 

( ) λλλλ ∆−= + // )()1( jji RRddR    Equation 3.4 

 

The efficacy of continuum removal analysis for estimating the concentration of chlorophyll-a 

was examined, to the best of the author’s knowledge, for the first time in the context of inland 

waters.  Continuum removal can be used to isolate and normalise target absorption features in 

Rrs(λ,0+) spectra in order to permit comparisons from a common baseline.  The continuum is a 

convex hull fitted over the top of the spectral curve, thus connecting local Rrs(λ,0+) maxima.  

Linear continua were fitted between the start (650 nm) and end-point (700 nm) of the main 

chlorophyll-a absorption-related feature in the Rrs(λ,0+) spectra.  The continuum removed 

reflectance R´(λ) was obtained by dividing Rrs(λ,0+) for each wavelength, i, in the absorption 

feature by the Rrs(λ,0+) of the continuum line (convex hull) Rc(λ) at the corresponding 

wavelength (i) (Equation 3.6) (Mutanga et al., 2004). 
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The indices for the retrieval of chlorophyll-a concentrations derived from the R´(λ) spectra 

included (for further details see Mutanga et al., 2004): 

 

a) The value of continuum-removed reflectance (or band-depth (BD)) for the target absorption 

feature (and thus the precise location of chlorophyll-a absorption maxima) calculated by 

dividing subtracting R´(λ) from 1:  

 

BD(λi)  = 1 - R´(λi) 

 

b) The normalised band-depth ratio (BDR) was calculated by dividing the BD(λi) by the band 

centre (Dc) (which equates to the maximum band-depth): 

 

Dc
BD

BDR )(
i)(

iλ
λ =  

 

c) The normalised band depth index (NBDI) was calculated by subtracting the maximum band 

depth (Dc) from the band depth (BD) at wavelength i and dividing by their sum: 

DcBD
DcBD

NBDI
i)(

i)(
)( +

−
=

λ

λ
λi  

 

d) Continuum-removed derivative reflectance (CRDR) was calculated by applying the first-

derivative transformation described in Equation 3.4 to the continuum-removed spectra, R´(λ). 

 

e) The full width at half maximum (FWHM) of the continuum-removed absorption feature was 

calculated according to Figure 3.2. 

 

f) The area of the continuum-removed absorption feature (AREA) was estimated using the 

trapezium rule: 
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Figure 3.2 A graphical illustration of the calculation of the FWHM from f(x), where the distance 
x1 to x2 represents the value of the FWHM for the function f(x). 
 

 

3.4.3.5 Statistical Analyses and Chlorophyll-a Algorithm Development 

The datasets were checked for normality in MINTAB v.14 using the Anderson-Darling method 

(95% significance level).  The spectral datasets from the three sampling cruises were examined 

individually and as an amalgamated multi-temporal dataset.  Pearson’s Product-Moment 

correlation analysis was then performed between the spectral indices (Rrs(λ,0+), dR/dλ and 

R´(λ)) and the measured concentrations of chlorophyll-a.   

 

Where significant associations were observed (at the 95% significance level), linear and non-

linear least-squares regression models were used to derive best-fit algorithms for the retrieval 

of chlorophyll-a concentrations.  In an attempt to ensure some generic value, and to avoid 

possible over-fitting using non-linear regression models, consistency was sought in the nature 

of the best-fit model used.  Thus, linear or exponential regression models were generally 

favoured, as these are used extensively in existing ocean colour algorithms (O'Reilly et al., 

1998).  The temporal robustness of the chlorophyll-a algorithms was assessed by validating 

against the remaining independent multi-temporal datasets. 
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Table 3.3 The previously published chlorophyll-a indices that were examined in this study. 
 

 Index Description Reference 

[Rrs(433)/Rrs(555)] Blue/green ratio for CASE I 
waters O’Reilly et al. (1998) 

[Rrs(490)/Rrs(555)] Blue/green ratio for CASE I 
waters O’Reilly et al. (1998) 

[Rrs(510)/Rrs(555)] Blue/green ratio for CASE I 
waters O’Reilly et al. (1998) 

[Rrs(705)/Rrs(670)] 
NIR/red ratio for CASE II 

waters Han & Rundquist (1997) 

[Rrs(765)/Rrs(670)] NIR/red ratio for CASE II 
waters Dall’Olmo et al. (2005) 

[Rrs(705)/Rrs(664)] NIR/red ratio for CASE II 
waters Ammenberg et al. (2002) 

[Rrs(704)/Rrs(672)] 
NIR/red ratio for CASE II 

waters Ruddick et al. (2001) 
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[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] Medium-independent NIR/red 
difference index Dall’Olmo et al. (2003) 

[dR/dλ620] 
First derivative at 620 nm for 

CASE II waters Malthus & Dekker (1995) 

[dR/dλ638] 
First derivative at 638 nm for 

CASE II waters Malthus & Dekker (1995) 

[dR/dλ661] 
First derivative at 661 nm for 

CASE II waters Malthus & Dekker (1995) 
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[dR/dλ690.5] 
First derivative at 690.5 nm for 

CASE II waters Han & Rundquist (1997) 

 

 

3.4.3.6 Multivariate Chlorophyll-a Retrieval Algorithms 

In addition to the derivation of algorithms formulated using single bands or band-ratios, 

multivariate models – multivariate stepwise regression (MSR) and partial least-squares 

regression (PLS) – were also formulated for the estimation of chlorophyll-a.  MSR and PLS 

models enabled the efficacy of multivariate algorithms (containing greater wavelength 

information) to be compared against more conventional band-ratio approaches to algorithm 

formulation.  It was hypothesised that increased wavelength information may improve the 

predictive power of the algorithms.  Moreover, PLS regression is particularly powerful in 

instances, as here, when the number of predictor variables (i.e. wavelengths) is substantially 

greater than the number of observations (i.e. chlorophyll-a measurements).  In addition, PLS 

regression models, because of the inherent “PCA-type” component transformation, are 

comparable, although not analogous, to the linear spectral mixture models that have proved to 

be effective for deriving water quality information from remote sensing imagery.  Thus, in this 

context, it was considered that PLS regression may provide insights into the potential efficacy of 

spectral unmixing approaches (Thiemann & Kaufmann, 2002; Tyler et al., 2006).  The MSR and 
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PLS models were formulated in MINITAB v.14 using the hyperspectral Rrs(λ,0+) measurements 

from the Norfolk Broads as predictor variables and the contemporaneous chlorophyll-a 

measurements as the single response variable.  

 

3.4.4 Hydrolight Modelling of Shallow Lake Types 

3.4.4.1 Bio-optical Model Development and Custom Parameterisation 

Hydrolight is a one dimensional numerical radiative transfer model (Mobley & Sundman, 2001) 

that can compute radiance distributions and derived quantities for natural CASE I and CASE II 

waters.  Hydrolight uses a time-independent radiative transfer equation (RTE) to obtain the 

radiance distribution within and leaving any plane-parallel water body as a function of 

wavelength (λ), depth (z) and viewing direction (θ, φ).  The upwelling radiance just above the 

water surface (Lu) includes both the water-leaving radiance (Lw) and the radiance reflected from 

the waters surface (Lr).  Hydrolight calculates Lw and Lr separately to isolate Lw.  To enable 

Hydrolight to solve the RTE the IOPs (absorption (a), backscatter (bb) and the scattering phase 

function (bb/b)) for each optical component in the water column, the nature of the wind-blown 

water surface, the bottom boundary conditions and the sky radiance incident of the water 

surface must be specified. 

 

The radiance distribution of different water types can be simulated through the custom 

parameterisation of the Hydrolight model.  Previous workers have used Hydrolight to simulate 

the radiance distribution of a range of aquatic environments including deep ocean waters (e.g. 

“Van Luijn et al., 1999), shallow coastal waters (Brando & Dekker, 2003; Chang et al., 2003), 

lakes (Albert & Mobley, 2003; Bergmann et al., 2004; Belzile et al., 2004) and rivers (Legleiter & 

Roberts, 2005).  In an experiment somewhat similar in concept to that presented here, 

Legileiter & Roberts (Legleiter & Roberts, 2005) were able to accurately simulate the effects of 

different river channel morphologies on remote sensing reflectance using various 

parameterisation scenarios in the Hydrolight model and, in the most part, using the various 

default IOP subroutines provided with the Hydrolight model.   
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In this study, the Hydrolight model was used to simulate Rrs(λ,0+) distributions for different 

(hypothetical) shallow lakes types using variations on the default parameterisation of Hydrolight 

for CASE II waters.  These model simulations were used to perform simple sensitivity analyses 

for the effect of varying concentrations of tripton and CDOM and bottom boundary conditions 

(i.e. benthic substrate) on the remote-sensing-based estimation of chlorophyll-a.  The simulated 

lake types are listed in Table 3.4.   The Hydrolight model was parameterised using default IOP 

measurements provided with the Hydrolight software and/or numerically modelled IOP 

measurements using standard equations.  The parameterisation of the model was based 

approximately on the Norfolk Broads (but included a shallow humic lake type).  However, as no 

specific IOP data were available, the objective was not to accurately simulate the radiance 

distributions of the Norfolk Broads, but merely to explore the effect of optical heterogeneity in 

shallow lake types. 

 

The radiance distributions of the various shallow lake typologies were modelled using a 

standard four component optical model for CASE II waters (abcase2).  The modelled optical 

components comprised: (1) pure water (w), (2) chlorophyllous particles (phytoplankton) (ph), (3) 

CDOM (not co-varying with chlorophyll) (CDOM) and (4) mineral particles (tripton).  The 

contribution of each component to total absorption (atotal) and backscatter (bb,total)  was modelled 

using Equations 3.7 and 3.8. 

 

 atotal(λ)   = aw(λ) + aph(z, λ) + aCDOM(z, λ) + atripton(z, λ)   Equation 3.7 

 

bb,total(λ)  = bb,w(λ) + bb,ph(z, λ) + bb,CDOM(z, λ) + bb,tripton(z, λ)  Equation 3.8 

 

The IOPs (aw and bb/b) for the pure water component were defined using the pure water 

absorption spectrum described by Pope & Fry (1997) and the default pure water phase function 

provided with Hydrolight v.4.2.  
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Table 3.4 The shallow lake typologies simulated using the Hydrolight bio-optical model. 
 

 Lake Type 
Max. 

Depth 
(m) 

Bottom 
Substrate 

Tripton 
Mineralogy 

Chl-a 
(mg m-3) 

CDOM 
(a440 m-1) 

Tripton 
(mg L-1) 

I 
Very shallow clear 
water mesotrophic 

lake 
3 Clean 

Seagrass Brown Soil 2-25 1.5 0.5-5 

II 

Very shallow clear 
water mesotrophic 

lake with 
submerged 
vegetation 

3 Green Algae Brown Soil 2-10 1.5 0.5-5 

III 
Very shallow, 

turbid, eutrophic 
lake 

3 Clean 
Seagrass Brown Soil 10-75 1.5 5-30 

IV Very shallow humic 
lake 3 Clean 

Seagrass Brown Soil 2-10 1-12.5 5 

 

The IOPs for chlorophyllous particles (aph, bb,ph and bb/b) were modelled to be constant with 

depth.  The phytoplankton specific absorption coefficient (aph(λ)) was specified using the 

equation detailed in Morel (1991) and Mobley (1994) based on the original model of Prieur & 

Sathyendranath (1981) (Equation 3.9); where aC is the specific absorption coefficient for 

chlorophyll-a (chlororphyll-a + pheophytin-a) and C is the concentration of chlorophyll-a in mg 

m-3. 

 
65.0

Cph )(06.0)( Caa λλ =     Equation 3.9 

 
The equation of Morel (1991) assumes that chlorophyll-a is the only bio-optically active pigment 

in the water column.  This is an obvious simplification, but in the absence of phytoplankton 

absorption and backscattering profiles, it was a necessary compromise.  This prohibited the 

effect of variable community structure being investigated.   

 

Phytoplankton scattering was modelled using the linear function presented in Gould et al. 

(Gould et al., 1999) which Mobley & Sundman (2001) used to simulate the radiance distribution 

of CASE II waters (Equation 3.10) where b0 = 0.3, λ0 = 550 nm, n = 0.62, m = -0.00112, i = 

1.62517 and X is the chlorophyll-a concentration. 
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The scattering phase function for phytoplankton (bbph) was modelled using a Fornier-Forand 

phase function; bb,ph was specified to be 0.5% of total phytoplankton-derived scattering (bb,ph = 

0.005) as suggested by Sathyendranath et al. (1989) and adopted by Mobley & Sundman 

(2001) and Ammenberg et al. (2002). 

 

CDOM absorption (aCDOM), in similarity to the vertical profile of chlorophyll-a, was modelled to 

be constant with depth for all shallow lake types (Mobley & Sundman, 2001).  CDOM was 

assumed to be non-scattering.  Specific absorption coefficients for CDOM were derived using 

the equation of Bricaud et al. (1981) (Equation 3.11) where λ0 = 440 nm and γ = 0.014. 

 
)]([

0CDOM
0)()( λλγλλ −−= aa     Equation 3.11 

 

 (a) (b) 

 

Figure 3.3 The (a) specific absorption and (b) specific scattering coefficients for the various 
mineral types provided by the Hydrolight model.  In this study the brown earth type was used. 
 

The IOPs for the mineral component (tripton) were again modelled to be constant with depth.  

The specific absorption and scattering coefficients were specified using the default data 

subroutines provided with the Hydrolight v.4.2; the model allows the IOPs of several different 

minerogenic and organic sediment particles with contrasting values of atripton and bb,tripton to be 

specified (see Figure 3.3).  The mineral component for shallow lake types was defined using 

the absorption and backscatter coefficients of the default brown soil spectra provided with 
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Hydrolight; this was assumed to be representative of a tripton component with a high organic 

content, as is often found in fertile shallow lakes (e.g. the Norfolk Broads). 

 

The bottom boundary conditions for the shallow lake types were specified using a finite depth 

(zmax) of 3 m.  However, the optical depth may have, at times, been shallower than the 

geometric lake depth, particularly in simulations of turbid waters.  The irradiance reflectance of 

bottom substrate (Rb) was modelled as a function of wavelength using the default bottom 

reflectance measurements provided with the Hydrolight model.  Two bottom reflectance models 

were used: (1) the default clean seagrass irradiance reflectance spectrum to simulate an 

organic bottom substrate with some benthic microalgae growth (i.e. biofilm) and (2) the default 

green algae irradiance reflectance spectrum to simulate a bottom substrate with submerged 

macroalgae/aquatic plant cover (Figure 3.4).  

 

The Hydrolight model scenarios also accounted for the contributions of Raman scattering and 

chlorophyll-a and CDOM fluorescence to total inelastic scattering (Mobley & Sundman, 2001).  

Bioluminescence was assumed to be negligible and thus excluded from the model.  The air-

water surface boundary conditions were specified for a constant wind speed of 5 ms-1 for all 

simulations.   

 

 

Figure 3.4 The bottom irradiance reflectance (Rb) spectra provided by the Hydrolight model.  
The clean seagrass and green alage spectra were used in this study to parameterise the 
bottom boundary conditions for the Hydrolight simulations. 
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The sky radiance, direct and diffuse irradiance, was modelled using the semi-empirical 

RADTRAN model (run as a subroutine within Hydrolight).  RADTRAN was parameterised to 

compute the sky radiance for all simulations using the Norfolk Broads locale (52º44’17’’N; 

1º34’29’’E) on Julian Day 180 (28 June 2006) at 12.00 h GMT under a clear sky (the 

atmospheric parameters used by RADTRAN are detailed in Table 3.5).  The RADTRAN 

parameterisation was constant regardless of lake type to exclude the effect of the solar zenith 

and atmosphere boundary conditions on the results.  The angular pattern of sky radiance was 

modelled using the semi-empirical sky model of Harrison & Coombes (1988). 

 

Table 3.5 The atmospheric parameters used as inputs into RADTRAN 

Sea-Level Pressure 29.92 inches Hg 

24-hr Average Wind Speed 5 m s-1 

Average Horizontal Visibility 15 km 

Relative Humidity 80% 

Precipitable Content 2.5 cm 

Airmass Type Marine 

 

Hydrolight uses Equations 3.7 and 3.8 to estimate the irradiance reflectance field Eu(λ,0-

)/Ed(λ,0-)) just below the water surface using the equation of Kirk (1994) (Equation 3.12); where 

µ0 is the cosine of the solar zenith under the water surface. 
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Using the calculated irradiance reflectance values Hydrolight then solves the radiative transfer 

function to derive estimates of radiance reflectance (Rrs(λ,0+)) by dividing Eu(λ,0-)/Ed(λ,0-) by 

the so-called Q factor (Equation 3.13) which accounts the transfer and focussing of the 

radiance flux through the water surface (Mobley, 1994).  Kirk (1994) suggests that Q ranges 

between 3.14 and 5 for natural waters. 
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The output of the Hydrolight model was set to provide modelled Rrs(λ,0+) measurements with a 

5 nm resolution between 400 and 800 nm. 

 

3.4.4.2 Analysis of Hydrolight Data  

The simulated Rrs(λ,0+) data from the Hydrolight model was compared graphically by lake type.   

Furthermore the data were used to compute two spectral indices commonly used in remote-

sensing-based algorithms for the estimation of chlorophyll-a: (1) the NIR/red band-ratio 

[Rrs(670)/Rrs(705)] and, (2) the value of first-derivative of Rrs(λ,0+) at 667.5 nm, [dR/dλ667.5].  

These two indices were selected as they have been both demonstrated to be sensitive to 

variations in the chlorophyll-a concentration in lakes in foregoing studies (the dR/dλ index was 

centred on 667.5 nm, rather than 665 nm, as described in the literature, due to the spectral 

resolution of the Hydrolight dataset) (Malthus & Dekker, 1995; Han & Rundquist, 1997; Han, 

2005).  This allowed the efficacy of NIR/red band-ratios and first-derivative indices to be 

compared for the estimation of chlorophyll-a across shallow lake types.  Pearson’s Product-

Moment correlation and least-squares regression analysis was used to assess the effect of 

variable tripton, CDOM and benthic substrate on the estimation of chlorophyll-a using the two 

different approaches to algorithm formulation. 

 

3.5 RESULTS AND DISCUSSION 

3.5.1 Water Quality Measurements 

The water quality conditions at the stations sampled during the three cruises was highly 

variable both within and between the various lakes.  The water quality data for each lake cruise 

are summarised in Table 3.6 and the degree of correlation between the various water quality 

components is detailed in Table 3.7.  In general, the concentration of chlorophyll-a was 

relatively low in the macrophyte-dominated mesotrophic waters of Martham North Broad and 

Ormesby Broad (c. < 5 mg chlorophyll-a m-3) but, not surprisingly, significantly higher in the 

more eutrophic waters of Hickling Broad and Horsey Mere (c. > 25 mg chlorophyll-a m-3).  It is 
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also notable that the Norfolk Broads can carry very high concentrations of SPM (seston) (max. 

= 95.7 mg L-1).  SPM concentrations were also far higher on the larger and more eutrophic 

lakes (Hickling Broad, Heigham Sound, Horsey Mere) – likely to due increased phytoplankton 

biomass and bottom sediment resuspension.  SPM concentrations were much lower in the 

smaller and more mesotrophic, macrophyte-dominated lakes (the Martham Broads, Ormesby 

Broad). 

 

The stations sampled on the 18 May 2004 cruise were all located on eutrophic lakes (Hickling 

Broad, Heigham Sound and Horsey Mere).  Thus it is not unexpected that the highest mean 

chlorophyll-a concentration measured over the three lake sampling cruises was encountered on 

the 18 May 2004 cruise (42.33 mg m-3).  The range in the chlorophyll-a concentration was also 

relatively small (23.80-49.47 mg m-3) on the 18 May 2004 cruise.  The mean concentration of 

SPM was 32.60 mg L-1.  This was largely composed of organic material (mean SPOM = 23.61 

mg L-1); the inorganic component (mean SPIM = 9.03 mg l-1) made a relatively small 

contribution to total SPM.  The correlations between chlorophyll-a and the various SPM 

fractions were atypically low on the 18 May 2004 (Table 3.7).  The seston dry weight is often 

highly correlated with phytoplankton biomass (i.e. chlorophyll-a) in lakes but, in very shallow 

waters such as the Norfolk Broads, this relationship can be severely affected by the 

resuspension of bottom sediments. 

 

The low correlation coefficients observed between chlorophyll-a and SPOM (r = 0.30) on 18 

May 2004 may thus suggest that the organic matter in the water column was largely composed 

of detritus (rather than phytoplankton cells), either from the in-situ decay of plankton, or the 

resuspension of bottom sediments.  The concentration of chlorophyll-a and SPIM were more 

highly correlated (r = 0.72).  This may be due to the nature of the mineralogy of the material 

being resuspended from the lake bed (i.e. fine organics, rather than larger inorganic 

particulates), or perhaps the prevalence of siliceous phytoplankton (i.e. late-spring diatom 

bloom). 
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Table 3.6 Summary of the water quality datasets collected during the three lake cruises in the Norfolk Broads during 2004 and 2005. The 
concentration of CDOM was not determined on the 18 May 2004 or the 29 August 2005. 

 

 Chlorophyll-a (mg m-3) SPM (mg L-1) SPIM (mg L-1) SPOM (mg L-1) 
 

CDOM (g440 m-1) 
 

 
 Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

 
18 May 2004 

 
23.80 49.47 42.33 25.70 40.30 32.60 5.50 13.95 9.03 18.20 29.57 23.61 - - - 

 
22 June 2005 

 
1.40 48.89 14.89 3.11 95.69 39.93 0.58 50.86 14.85 2.33 50.00 25.08 1.15 6.91 3.00 

 
29 August 2005 

 
4.01 24.53 12.14 7.40 62.22 27.09 3.20 24.44 8.97 3.00 43.33 18.11 - - - 

 
Combined 

 
1.40 49.47 23.12 3.11 95.69 33.21 0.58 50.86 10.95 2.33 50.00 22.27 - - - 
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Table 3.7 The correlation coefficients (r) for the association between the measured 
concentrations of chlorophyll-a (chl-a), SPM, SPIM and SPOM for the individual and combined 
cruises. 
 

  chl-a SPM SPIM SPOM 
chl-a - 0.64 0.72 0.30 
SPM 0.64 - 0.66 0.82 
SPIM 0.72 0.66 - 0.12 18 May 2004 

SPOM 0.30 0.82 0.12 - 
chl-a - 0.79 0.67 0.78 
SPM 0.79 - 0.91 0.94 
SPIM 0.67 0.91 - 0.73 22 June 2005 

SPOM 0.78 0.94 0.73 - 
chl-a - 0.91 0.98 0.85 
SPM 0.91 - 0.92 0.99 
SPIM 0.98 0.92 - 0.85 

29 August 
2005 

SPOM 0.85 0.99 0.85 - 
chl-a - 0.48 0.37 0.50 
SPM 0.48 - 0.90 0.94 
SPIM 0.37 0.90 - 0.72 Combined 

SPOM 0.50 0.94 0.72 - 
 

 

The chlorophyll-a concentrations measured on 22 June 2005 exhibited the greatest range 

(1.40-48.89 mg m-3), but had a lower mean concentration (14.89 mg m-3); predominantly, this 

was the result of extending sampling to encompass stations situated on the mesotrophic, clear 

water, Martham North and Ormesby Broads.  The mean concentration of SPM on the 22 June 

2005 was the highest observed during the three lake sampling cruises (39.93 mg L-1) and, 

further, the inorganic fraction of the total SPM load was far greater than that encountered during 

previous or preceding cruises (SPIM = 14.85 mg L-1).  This may suggest the wind-driven 

resuspension of a more minerogenic bottom sediment.  The concentration of SPOM on the 22 

June 2005 was also the highest observed during the three lake sampling cruises (25.08 mg L-1).  

The concentration of chlorophyll-a and SPOM were more highly correlated on this occasion (r = 

0.78).  This correlation was found only to be significant between lakes, chlorophyll-a and SPOM 

did not necessarily co-vary within individual lakes.  This again suggests wind-driven 

resuspension of detritus was contributing significantly to the SPOM load. 

 

Mean chlorophyll-a concentrations were significantly lower during the 29 August 2005 cruise 

(12.14 mg m-3) and the chlorophyll-a concentration range was the smallest encountered (4.01-

24.53 mg m-3).  The low mean concentration of chlorophyll-a was largely due to the occurrence 

of the late-summer minimum on Hickling Broad (the chlorophyll-a maximum on Hickling Broad 



 

74 

74 occurs during winter) on which most sampling stations were located.  In similarity, the 

concentrations of SPM, SPIM and SPOM were also relatively low on the 29 August 2005 cruise 

– which may be indicative of more benign conditions on the lakes (i.e. an absence of wind-

driven resuspension of bottom sediments).  The suggested lack of wind-driven resuspension 

may mean, in this instance, that the seston in the water column may have been largely 

composed of phytoplankton.  This would explain the higher correlation coefficients between 

chlorophyll-a and SPM detailed in Table 3.7. 

 

3.5.2 Rrs(λ,0+) Measurements 

The Rrs(λ,0+) measurements made at the sampling stations located across the Norfolk Broads 

on 18 May 2004, 22 June 2005 and 29 August 2005 are depicted in Figure 3.5.  The spectra 

measured during the three lake cruises show characteristic features typical of CASE II waters.  

These features include: (i) low Rrs(λ,0+) between 400 and 500 nm due to absorption by 

phytoplankton pigments (chlorophylls, carotenes and xanthophylls) and CDOM; (ii) a Rrs(λ,0+) 

maximum at c. 570 nm due to backscattering from phytoplankton cells and SPM (tripton); (iii) a 

local Rrs(λ,0+) minimum at c. 630 nm due to strong absorption by the cyanobacterial pigment C-

phycocyanin; (iv) a further Rrs(λ,0+) minimum at c. 680 nm caused by high chlorophyll-a 

absorption; and (v) a local Rrs(λ,0+) maximum at c. 705 nm due to minimal absorption by 

phytoplankton pigments and intense scattering by phytoplankton cells and SPM (tripton).   

 

The spectra from the eutrophic waters of Hickling Broad, Heigham Sound and Horsey Mere 

also exhibit a pronounced local Rrs(λ,0+) peak at c. 480 nm.  This feature is not apparent in the 

Rrs(λ,0+) spectra of many CASE II shallow lakes previously published in the literature (see for 

example Svab et al., 2005) and, indeed, it is not entirely clear what is the underlying cause(s) of 

this Rrs(λ,0+) peak.  It may be a function of backscattering from algal cells or tripton.  However, 

given the very shallow nature of the Norfolk Broads it may also be, in part, related to the optical 

properties of the bottom substrate(s).   
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The subsequent Rrs(λ,0+) minimum at c. 500 nm most likely is an artefact of absorption by 

carotenoid pigments.  It is also notable that the position of the chlorophyll-a absorption related 

feature at c. 680 nm varies in the Rrs(λ,0+) spectra.  Other authors have commented on this 

behaviour and have suggested that the position of this feature changes in response to the 

concentration of chlorophyll-a, with a shift towards the VNIR region occurring at high 

concentrations of chlorophyll-a (Dekker et al., 1991; Mittenzwey et al., 1992; Han & Rundquist, 

1997). 

 

(a) n = 12 (b) n = 26 

 
(c) n = 10 

 
(d) n = 48 

 
Figure 3.5 The Rrs(λ,0+) measurements made at sampling stations on the (a) 18 May 2004; (b) 
22 June 2005; (c) 29 August 2005; and (d) the combined datasets. 
 

3.5.3 Suspended Particulate Matter (Seston) 

The correlation coefficients observed between the spectral data (400-800 nm) and the 

concentration of SPM, SPIM and SPOM for the four multi-temporal datasets are detailed in 

Figure 3.6.   It is notable that, with the exception of the 18 May 2004 dataset, the concentrations 

of SPM, SPIM and SPOM demonstrated positive correlations with Rrs(λ,0+).  Rrs(λ,0+) is 
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76 generally positively related to the concentration of SPM and SPIM due to the high 

backscattering by these particulates (although negative relationships may occur with SPOM in 

some circumstances) (Lindell et al., 1999).  It is not entirely clear why the correlations observed 

on 18 May 2004 should be negative for all three SPM fractions.  It may be that the negative 

correlations observed were simply spurious (i.e. statistical noise).  However, the stations 

sampled on the 18 May 2004 cruise were all located on eutrophic Broads with highly organic 

bottom sediments.  The low backscattering, but high absorption, properties of this largely 

detrital material may explain the negative correlations observed in this instance.  The spectral 

region that displayed the strongest correlation with SPM in the 18 May 2004 dataset was 

dependent upon the specific fraction targeted.  The strongest correlations with total SPM were 

observed at c. 570 nm; the strongest correlations with the SPIM fraction were observed at c. 

580 nm (although the correlation was not statistically significant); and the strongest correlations 

with SPOM were observed at c. 555 nm. 

 

 (a) 18 May 2004 

 

(b) 22 June 2005 

 
(c) 29 August 2005 

 

(d) Combined 

 
 
Figure 3.6 The correlation coefficients (r) between the Rrs(λ,0+) data and the concentration of 
SPM, SPIM and SPOM for the four datasets.  Dashed constant lines indicate the critical values 
of r (95% confidence level; two-tailed). 
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In contrast, for the 22 June 2005 dataset, strong and positive correlations between Rrs(λ,0+) 

and SPM, SPIM and SPOM were observed to occur uniformly at 705 nm; although high 

correlation coefficients were also observed at all wavelengths > 550 nm.   This probably reflects 

that fact the SPM in the lakes on 22 June 2005 was largely inorganic (i.e. high VNIR 

backscattering).  The correlations derived from the 29 August 2005 dataset were the highest 

observed from the three sampling cruises and the SPM, SPIM and SPOM fractions 

demonstrated excellent correlations (r > 0.80) with Rrs(λ,0+) between 450 and 750 nm.  The 

highest correlations between Rrs(λ,0+) and the SPM and SPIM fractions occurred in the 475 nm 

region; whereas, the highest correlation between Rrs(λ,0+) and SPOM was observed at c. 455 

nm.  These regions relate to the position of the Rrs(λ,0+) peak feature at c 480 nm; this 

suggests this may indeed be related to the backscattering by phytoplankton and/or tripton.  In 

the combined dataset, the observed relationships were again positive, with the best correlations 

between SPM, SPIM and SPOM and Rrs(λ,0+) occurring in the VNIR (705-720 nm) region. 

 

The optimum correlation coefficients, coefficients of determination and least-squares regression 

models for the relationship between Rrs(λ,0+) and the concentration of SPM, SPIM and SPOM 

for the three individual cruises and the combined dataset are shown in Table 3.8.  The poorest 

relationships between the spectral data and the measured concentrations of SPM, SPIM and 

SPOM were derived from the 18 May 2004 dataset.  The concentration of SPM and SPOM 

could be only estimated with an accuracy of R2 = 0.54 and R2 = 0.40 using the respective 

values of Rrs(λ,0+) at 570 nm and 540 nm.  No statistically significant relationships were 

observed with SPIM.   

 

Improved relationships between Rrs(λ,0+) and SPM, SPIM and SPOM were derived from the 22 

June 2005 data with respective R2 values = 0.78, 0.79 and 0.64 observed for the relationship 

with the value of Rrs(λ,0+) at 705 nm.  Other authors have shown in foregoing studies that the 

value of Rrs(λ,0+) at c. 705-710 nm is sensitive to changes in SPM (e.g. Malthus & Dekker, 

1995) and these previous findings would seem to go some way towards substantiating the 

results observed here.   
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Table 3.8 The correlation coefficients, regression coefficients and best-fit models for the optimum empirical relationships between the spectral 
data and the concentration of SPM, SPIM and SPOM. (N/S = not significant at the 95% confidence level). 

 
SPM SPIM SPOM  

λ (nm) r Best-Fit Model R2 λ (nm) r Best-Fit Model R2 λ (nm) r Best-Fit Model R2 

18 May 2004 570 -0.74* -0.0013[Rrs(λ)] + 
0.1089 0.54 580 N/S N/S N/S 555 -0.64* -0.0013Rrs[(λ)] + 

0.0869 0.40 

22 June 2005 705 0.76* 1.9856e85.462[Rrs(λ)] 0.78 705 0.80* 1.5445e80.598[Rrs(λ)] 0.79 705 0.59* 0.4945e91.305[Rrs(λ)] 0.64 

29 August 2005 475 0.99** 6048.9[Rrs(λ)] - 
63.294 0.99 475 0.99** 4444.4[Rrs(λ)] - 

48.295 0.99 455 0.91** 
 

0.5723e169.33[Rrs(λ)] 
 

0.89 

Combined 710 0.75* 
 

3.2252e77.021[Rrs(λ)] 
 

0.72 708 0.78* 
 

2.061e75.49[Rrs(λ)] 

 
0.74 717 0.60* 

 
1.1703e81.953[Rrs(λ)] 

 
0.53 

 *(p < 0.05) **(p < 0.01) 

 



 

 79 

 

The strongest relationships between Rrs(λ,0+) and SPM , SPIM and SPOM were observed 

during the 29 August 2005 cruise.  In this instance, the relationships between SPM and SPIM 

and Rrs(λ,0+) at 475 nm both yielded R2 values = 0.99 using a linear best-fit model and the 

relationship between Rrs(λ,0+) at 455 nm and SPOM produced an R2 value = 0.89 using an 

exponential best-fit model.  Notwithstanding the fact that the highest coefficients of 

determination were observed with wavelengths in the blue and green spectral regions, in the 29 

August 2005 dataset, wavelengths in the VNIR also retuned R2 values > 0.90 for the 

relationship with SPM and SPIM (not shown).  The relationship between Rrs(λ,0+) and SPM, 

SPIM and SPOM in the combined dataset was best modelled using exponential functions and 

reasonable coefficients of determination for the relationships between [Rrs(710)] and SPM (R2 = 

0.72) and, [Rrs(708)] and SPIM (R2 = 0.74), were obtained.  The relationship between the 

spectral data and the concentration of SPOM was more tenuous, yielding an R2 value of 0.53 

for the relationship with [Rrs(717)]. 

 

It is notable that marked differences in the strength and linearity of the relationship between 

Rrs(λ,0+) and the SPM fractions was observed during the three lake sampling cruises.  The 

cause of this inconsistency is not entirely clear.  However, the results seem to imply that the 

relative concentrations of the SPIM and SPOM may influence relationships with Rrs(λ,0+).  

SPIM and SPOM have very divergent optical characteristics and, in shallow lakes, they do not 

necessarily co-vary.  This may greatly influence the Rrs(λ,0+) signal.  The linearity of the 

relationship between Rrs(λ,0+) and SPM would seem to be influenced by the concentration 

gradient used in the formulation of the algorithm, with non-linear algorithms seemingly more 

appropriate when the SPM gradient is large.  Non-linear relationships between Rrs(λ,0+) and 

SPM have been documented in the past and, in particular, when the SPM concentration 

gradient is high (e.g. Lathrop et al., 1991). 

 

The results obtained here would suggest that remote sensing data can be used to estimate 

SPM (seston) loads in shallow lakes.  The seston, or more specifically, the tripton load is 

important to the function of shallow lakes, particularly in relation to nutrient and contaminant 
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cycling and, moreover, the ambient light climate.   The development of remote-sensing-based 

techniques for mapping SPM loads (and potentially fluxes) in shallow lakes is thus a pertinent 

finding.  The estimation of SPM and/or SPIM would seem to be readily achievable, particularly 

where the concentration of inorganic tripton is high (i.e. high backscattering signal).  The 

estimation of SPOM would seem more problematic.  Organic particulates often do not have a 

strong backscattering signal (Lindell et al., 1999).  Thus, the accuracy of SPOM estimation from 

remotely sensed data, as shown here, may be dependent on the degree of co-variance with 

other, more optically-active, components in the water column (e.g. SPIM or chlorophyll-a). 

 

Many previous studies that have sought to retrieve SPM concentrations in lakes from remotely 

sensed data, either empirically or analytically, have not differentiated between the SPIM and 

SPOM fractions, despite their divergent optical properties.  In this context, further consideration 

should be given to the effect of variable SPM mineralogy on Rrs(λ,0+) in shallow lakes.  In this 

context, bio-optical modelling may be highly pertinent (as shown by Ammenberg et al., 2002). 

 

3.5.4 Secchi Disc Depth 

Measurements of the SDD (m) were made concurrent to the acquisition of Rrs(λ,0+) spectra on 

the 29 August 2005.  Table 3.9 details the SDD measurements made at the 10 stations during 

the 29 August 2005 lake sampling cruise.  The results show a clear gradient in water 

transparency between stations located on the eutrophic and turbid waters of Hickling Broad, 

Heigham Sound, and Horsey Mere (SSD = 0.35-0.75 m) (H1-H4) and those located on the 

mesotrophic and clear waters of Martham North Broad (SDD > 1.2 m) (H5-H10). 

 

Table 3.9 SDD (m) measurements made at the various sampling stations on 29 August 2005 
and the associated mean, standard deviation (Std Dev) and standard error (Std Err). 
 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 
SDD (m) 0.75 0.35 0.4 0.35 1.2 1.25 1.2 1.25 1.3 1.25 
 Mean = 0.93 Std Dev. = 0.42 Std Err = 0.13  

 

The correlations between the Rrs(λ,0+) data and the first-derivative transformed Rrs(λ,0+) data 

(dR/dλ) and the measured SDD are depicted in Figure 3.7.  The Rrs(λ,0+) data demonstrated 

strong negative correlative relationships with the SDD between 450 nm to 700 nm with the 
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resulting correlation coefficients ranging from r = -0.85 to -0.96.  The strongest correlation with 

the SDD was observed at 620 nm (r = -0.962).   

 

The dR/dλ data also demonstrated strong negative correlations with the measured SDD in the 

500-570 nm, 580-610 nm, 625-650 nm, 650-675 nm and 700-740 nm regions.  The highest 

correlation coefficient in this instance was observed with the value of dR/dλ at 640 nm (r = -

0.981). 

 

Figure 3.7 The correlation coefficients between the spectral reflectance and spectral derivative 
reflectance data and the measured SDD.  The dashed constant lines indicate the critical values 
of r (±0.576) for n = 10 (95% confidence level). 
 

Table 3.10 The best-fit models for the relationship between R and dR/dλ and the measured 
Secchi Disk Depth (m) on the 29 August. 
 

Index (x) r Best-Fit Model R2 RMSE (m) 
[Rrs(620.5)] -0.962** -44.338(x) + 1.8797 0.925 0.108 

[dR/dλ640] -0.981** -3969.2(x) + 1.0075 0.962 0.077 

*(p < 0.05) **(p < 0.01) 

 

The best-fit models for the optimum wavelengths for both the Rrs(λ,0+) and dR/dλ spectra are 

detailed in Table 3.10.  The relationship between the Rrs(λ,0+) or dR/dλ and SDD were best 

modelled in both cases using a linear least-squares regression model.  The regression models 

yielded a RMSE for estimation of SDD of 0.11 m [Rrs620.5] and 0.08 m [dR/dλ640] respectively.  

The best-fit linear regression models for SDD estimation for both Rrs(λ,0+) and dR/dλ are 
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depicted in Figure 3.8.  The least-squares regression models demonstrate a reasonable fit 

against the measured SDD.  It is noticeable that the data are clustered at the extremes of the 

SDD gradient.  However, such an effect is inevitable when, as in this case, sampling is 

conducted across lakes of highly contrasting turbidity.  The scatter observed within the clusters 

is likely to be due, at least in part, to the inherent inaccuracies of the SDD technique as a 

measurement of water transparency. 

 

(a) Rrs(λ,0+) (b) dR/dλ 

 
Figure 3.8 The best-fit linear regression models for the relationship between (a) Rrs(λ,0+) at 
620.5 nm and the SDD and (b) dR/dλ at 640 nm and SDD.  Dashed lines correspond to 95% 
confidence intervals for the best-fit models. 
 

The SDD, despite being prone to inaccuracies, is favoured by limnologists as a simple 

measurement of water transparency.  The results observed here, albeit from a single sampling 

occasion, clearly demonstrate that remote sensing data can be used to provide estimates of the 

SDD in shallow lakes and, in this context, remote sensing could therefore be used to monitor 

changes in the ambient underwater light field of shallow lakes.   

 

3.5.5 Coloured Dissolved Organic Matter 

Measurements of CDOM (g440 m-1) were made during the lake sampling conducted on 22 June 

2005.  No measurements of CDOM are available that coincide with the datasets acquired on 18 

May 2004 or 29 August 2005.  Figure 3.9 shows the correlation coefficients between the 

measured concentration of CDOM (g440 m-1) and the Rrs(λ,0+) and dR/dλ data.  The 

correlations between the measured concentration of CDOM and the spectral data (Rrs(λ,0+) and 
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dR/dλ) were poor.  No significant correlations were observed between the measurements of 

CDOM absorption and Rrs(λ,0+).  The only significant correlations were observed between the 

measurements of CDOM absorption and dR/dλ in the 520-580 nm and > 750 nm region (r ~ ± 

0.50).   

 

The strongest correlation was observed to occur with the value of dR/dλ at 764 nm.  However, 

as CDOM absorption, backscattering and fluorescence is essentially negligible in the VNIR 

region, this correlation lacks a mechanistic explanation and, thus, seems somewhat spurious.  

Indeed, it may be an artefact of covariance between CDOM and another component that is 

optically active in the VNIR.  Kallio et al., (Kallio et al., 2001) also report similar findings. 

 

 

Figure 3.9 The correlation coefficients between the Rrs(λ,0+) and dR/dλ data and the measured 
concentration of CDOM.  The dashed constant lines indicate the critical values of r (±0.444) for 
n = 20 (95% significance level). 
 

In addition to simple empirical analysis using single bands, the CDOM band-ratio index 

[Rrs(565)/Rrs(660)] derived by Kutser et al. (2005a) was also calculated from the Rrs(λ,0+) data 

and correlated against the CDOM measurements.  However, the index proposed by Kutser et 

al. (Kutser et al., 2005b) also did not demonstrate a significant correlation with the 

measurements of CDOM in the Broads (r = 0.352; critical r = ±0.444). 
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The lack of strong significant correlations between the Rrs(λ,0+) data and CDOM in the Broads 

may have been the result of spectral masking effects caused by other optical components (e.g. 

phytoplankton pigments).  In addition, the poor results may also be related to the fact that 

concentration of CDOM was uniformly low in the three Broads sampled on 22 June 2005.  In 

contrast, the band-ratio algorithm derived by Kutser et al., (Kutser et al., 2005b) was formulated 

using CDOM measurements from 18 Finish and Swedish lakes over the range aCDOM = 0.5-12 

m-1 (R2 = 0.84).  Giardino et al., (2007) suggests the estimation of CDOM from remotely sensed 

data is largely dependent on the existence of a pronounced concentration gradient for algorithm 

formulation.  Thus, extending the lake sampling campaigns to include lakes more humic in 

nature would, almost certainly, have improved the derived correlations.  Unfortunately, it was 

not possible to sample such water types in the Upper Thurne system of the Norfolk Broads.  

 

The cycling of dissolved organic matter (DOM) is an important processes in lake ecosystems 

and has significance for both lake biota (e.g. heterotrophic bacteria) and for wider carbon cycle 

dynamics.  The concentrations of DOM and CDOM are usually very well correlated (Tranvik, 

1990) and thus the development of remote-sensing-based techniques for the quantification of 

CDOM in lakes would represent a significant advancement for studies of carbon cycling 

between terrestrial and freshwater ecosystems.  However, the results obtained here (and 

elsewhere (e.g. Giardino et al., 2007) indicate the formulation of algorithms for the estimation of 

CDOM concentrations from remote sensing data can be problematic (particularly in non-

dystrophic lakes).  Nonetheless, the encouraging results achieved by Arenz et al. (1996), Kallio 

et al. (2001), Hirtle & Rencz (2003) and Kutser et al. (2005b) suggest that this is an area where 

valuable further work can be pursued.   

 

3.5.6 Chlorophyll-a 

3.5.6.1 Rrs(λ,0+) and dR/dλ Based Algorithms 

The correlation coefficients between the Rrs(λ,0+) and dR/dλ spectra and the measured 

concentration of chlorophyll-a for the various cruises are depicted in Figure 3.10.  It is again 

noticeable that, in similarity to the correlations observed with SPM, Rrs(λ,0+) was also 

negatively associated with the concentration of chlorophyll-a on 18 May 2004. 
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(a) 18 May 2004 

 

(b) 22 June 2005 

 
(c) 29 August 2005 

 

(d) Combined dataset 

 
 

Figure 3.10 The correlation coefficients between the Rrs(λ,0+) and dR/dλ data and the 
concentration of chlorophyll-a for the four datasets.  The dashed lines indicate the critical values 
of r (95% confidence level). 
 

The existence of negative relations between chlorophyll-a and Rrs(λ,0+) is again difficult to 

explain.  It may be due to the fact the background concentration of SPIM (tripton) was relatively 

invariable on 18 May 2004 (5.50-13.95 mg L-1).  It can be argued that increases in the 

concentration of chlorophyll-a against a constant SPIM background (i.e. constant 

backscattering) would promote increased absorption at specific wavelengths and thus yield 

negative relationships between Rrs(λ,0+).  This effect would not be expected if, as in the case of 

the latter datasets, sampling is conducted across lakes with a more pronounced gradient in 

SPIM (i.e. variable backscattering).  Interestingly, Han (2005) also noted negative relationships 

between Rrs(λ,0+) and the concentration of chlorophyll-a in the coastal waters of Pensacola Bay 
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(USA).  In this context it may be significant that the strongest negative correlations occurred in 

regions of high pigment absorption (Figure 3.10a). 

 

In contrast, Rrs(λ,0+) demonstrated positive correlations with chlorophyll-a in the 22 June 2005, 

29 August 2005 and the combined dataset; the highest correlations occurred in the 690-710 nm 

region (22 June 2005 and combined dataset) and c. 450 nm and > c. 720 nm (29 August 2005 

dataset).  The correlations observed between the dR/dλ spectra and the concentration of 

chlorophyll-a demonstrated both positive and negative coefficients dependent upon the gradient 

(slope) of the dR/dλ spectra at specific wavelengths.  Significant correlations were noted at c. 

630 nm, 660 nm and 690 nm in the four dR/dλ datasets and, in most cases, the correlation 

coefficients were comparable or greater than those achieved with the untransformed Rrs(λ,0+) 

data. 

 

The correlation coefficients, coefficients of determination and best-fit least-squares regression 

models for the relationship between the chlorophyll-a retrieval indices and the measured 

concentration of chlorophyll-a for the 18 May 2004 dataset are detailed in Table 3.11.  The best 

estimates of chlorophyll-a for the dataset derived from the 18 May 2004 cruise were provided 

by the NIR/red band-ratio index [Rrs(705)/Rrs(670)] (R2 = 0.69) and the [(Rrs
-1(675)-Rrs

-

1(720))xRrs(750)] index proposed by Dall’Olmo et al. (2003) (R2 = 0.64) using  exponential least-

squares regression models.   

 

The correlation coefficients, coefficients of determination and best-fit least-squares regression 

models for the relationships between the chlorophyll-a retrieval indices and the measured 

concentration of chlorophyll-a for the 22 June 2005 dataset are detailed in Table 3.12.  The 

highest coefficients of determination observed for the relationship with the chlorophyll-a 

concentration were provided by the value of dR/dλ at 638 nm and 631 nm (R2 = 0.653-0.656); 

the NIR/red and green/blue band-ratio indices did not demonstrate strong relationships with 

chlorophyll-a (max. R2 = 0.460, but typically not significant).   
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Reasonable coefficients of determination (R2 > 0.50) were also obtained for the other NIR/red 

band-ratios and for the value of dR/dλ at 638 nm (R2 = 0.41).  No significant relationships 

between Rrs(λ,0+) and the concentration of chlorophyll-a could be derived using the CASE I-

type green/blue band-ratio indices. 

 

Table 3.11 The results for the chlorophyll-a retrieval indices from the 18 May 2004 dataset (n = 
12) (N/S = not significant at the 95% confidence level). 
 

Index (x) r Best-Fit Least-Squares  
Regression Model R2 

[Rrs(433)/Rrs(555)] 0.119 N/S N/S 

[Rrs(490)/Rrs(555)] 0.432 N/S N/S 

[Rrs(510)/Rrs(555)] 0.315 N/S N/S 

[Rrs(705)/Rrs(670)] 0.726** 67.324x - 39.663 0.528 

[Rrs(765)/Rrs(670)] 0.217 N/S N/S 

[Rrs(705)/Rrs(664)] 0.779** 5.5324e1.8685x 0.690 

[Rrs(704)/Rrs(672)] 0.699* 6.7345e1.4185x 0.562 

[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] 0.732** 58.857e4.0687x 0.642 

[dR/dλ620] -0.438 N/S N/S 

[dR/dλ638] 0.639* -90440x + 59.2 0.408 

[dR/dλ661] -0.480 N/S N/S 

[dR/dλ690.5] 0.448 N/S N/S 
*(p < 0.05) **(p < 0.01) 

 
Table 3.12 The results for the chlorophyll-a retrieval indices from the 22 June 2005 dataset (n = 
26) (N/S = not significant at the 95% confidence level).  
 

Index (x) r Best-Fit Least-Squares  
Regression Model R2 

[Rrs(433)/Rrs(555)] 0.077 N/S N/S 

[Rrs(490)/Rrs(555)] 0.149 N/S N/S 

[Rrs(510)/Rrs(555)] 0.053 N/S N/S 

[Rrs(705)/Rrs(670)] 0.089 N/S N/S 

[Rrs(765)/Rrs(670)] 0.672** 0.9642e5.3646 0.460 

[Rrs(705)/Rrs(664)] 0.065 N/S N/S 

[Rrs(704)/Rrs(672)] 0.094 N/S N/S 

[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] 0.400* N/S N/S 

[dR/dλ620] --0.410* 6.6669e-1245.8x 0.260 

[dR/dλ638] 0.733** 5.9662e5211.6x 0.652 

[dR/dλ661] -0.714** 2.9683e-3690.8x 0.656 

[dR/dλ690.5] 0.722** 3.9182e2665.5x 0.623 
*(p < 0.05) **(p < 0.01) 



 

 88 

The correlation coefficients, coefficients of determination and best-fit least-squares regression 

models for the relationships between the chlorophyll-a retrieval indices and the measured 

concentration of chlorophyll-a for the 29 August 2005 dataset are detailed in Table 3.13.  The 

data derived from the 29 August 2005 cruise produced the strongest relationship between the 

Rrs(λ,0+) and dR/dλ indices and the measured concentration of chlorophyll-a that was obtained 

over the 2-year sampling period.  The best estimate of the chlorophyll-a concentration was 

provided by the medium-independent pigment index [(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] developed by 

Dall’Olmo (2003) (R2 = 0.93) using a linear least-squares regression model (see Figure 3.11).   

 

Table 3.13 The results for the chlorophyll-a retrieval indices from the 29 August 2005 dataset (n 
= 10) (N/S = not significant at the 95% confidence level). 
 

Index (x) r Best-Fit Least-Squares 
Regression Model R2 

[Rrs(433)/Rrs(555)] 0.700* 50.532e-2.8326x 0.600 

[Rrs(490)/Rrs(555)] 0.690* 103.58e-3.612x 0.594 

[Rrs(510)/Rrs(555)] 0.631 N/S N/S 

[Rrs(705)/Rrs(670)] 0.825** 0.0081e5.8669x 0.800 

[Rrs(765)/Rrs(670)] 0.368 N/S N/S 

[Rrs(705)/Rrs(664)] 0.820** 0.0001e9.9387x 0.772 

[Rrs(704)/Rrs(672)] 0.366 N/S N/S 

[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] 0.962** 172.03x + 23.021 0.925 

[[dR/dλ620] -0.415 N/S N/S 

[dR/dλ638] 0.819** 90071x + 8.7686 0.671 

[dR/dλ661] -0.733* 4.8925e-2590.3x 0.646 

[dR/dλ690.5] 0.813** 6.2203e1694.8x 0.716 
*(p < 0.05) **(p < 0.01) 

 

The NIR/red band-ratios, [Rrs(705)/Rrs(670)] and [Rrs(705)/Rrs(664)], and [dR/dλ638], [dR/dλ661], 

and [dR/dλ690.5] also demonstrated good relationships with the measured concentration of 

chlorophyll-a.  Interestingly, reasonable coefficients of determination were also derived for the 

CASE I-type green/blue band-ratios, [Rrs(433)/Rrs(555)] and [Rrs(490)/Rrs(555)], despite their 

alleged unsuitability for chlorophyll-a estimation in CASE II waters.  The excellent relationships 

between the Rrs(λ,0+) indices and the measured concentration of chlorophyll-a in the 29 August 

2005 dataset may be associated with the lower coincidental concentrations of SPM (both SPIM 
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and SPOM) in the water column, particularly given the strong relationships observed with the 

CASE I green/blue band-ratios 

 

 

Figure 3.11 The linear regression relationship between the medium independent pigment index 
proposed by Dall’Olmo et al. (2003) and the measured concentration of chlorophyll-a during the 
29 August 2005 cruise. 
 

The correlation coefficients, coefficients of determination and best-fit least-squares regression 

models for the relationships between the Rrs(λ,0+) and dR/dλ indices and the measured 

concentration of chlorophyll-a for the combined dataset are detailed in Table 3.14.  In contrast 

to the results obtained from the independent datasets, the best estimate of the measured 

concentration of chlorophyll-a in the combined dataset was provided by the [dR/dλ661] index (R2 

= 0.69).  It is notable that no statistically significant relationships were observed between the 

NIR/red band-ratios and the concentration of chlorophyll-a.   

 

These results intimate that NIR/red band-ratios may provide a less robust estimation of 

chlorophyll-a, when applied to multi-season data, than the dR/dλ indices.  The [dR/dλ661] index 

exploits a wavelength that is positioned in close proximity to the chlorophyll-a absorption feature 

at c. 670-680 nm in Rrs(λ,0+) spectra which provides a mechanistic rationalisation for its 

sensitivity to chlorophyll-a variations.  The superior performance of the dR/dλ indices in the 

combined multi-season dataset could be due to the fact that first-derivative transformations of 

Rrs(λ,0+) data are known to be effective at normalising spectra for latent differences in 
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backscattering derived from non-chlorophyllous particles (i.e. variable tripton backscatter) 

(Malthus & Dekker, 1995; Han & Rundquist, 1997).  In contrast, NIR/red band-ratios are 

believed to be more sensitive to variability in backscatter from non-chlorophyllous particles, 

particularly if the absorption and backscatter coefficients for the tripton component(s) (SPIM 

and SPOM) are wavelength-dependent.  Han & Rundquist (1997) demonstrated that, while 

NIR/red band-ratios could be used to retrieve accurate estimates of the chlorophyll-a 

concentration on a single sampling occasion, dR/dλ indices (in this instance, [dR/dλ690.5]) 

provided an improved estimation of the chlorophyll-a concentration from multi-season Rrs(λ,0+) 

data.  Han (2005) also suggests that first-derivative transformations are effective for the 

removal of specular reflectance caused by wave effects.  This may also explain the efficacy of 

the dR/dλ indices for the estimation of chlorophyll-a, as the nadir measurements of Rrs(λ,0+) in 

the Norfolk Broads appeared to somewhat prone to the effects of sun glint on occasion. 

 
Table 3.14 The results for the chlorophyll-a retrieval indices from the combined datasets (n = 
48) (N/S = not significant at the 95% confidence level). 
 

Index (x) r Best-Fit Least-Squares 
Regression Model R2 

[Rrs(433)/Rrs(555)] -0.471** -67.861x + 56.747 0.298 

[Rrs(490)/Rrs(555)] -0.572** -66.461x + 60.039 0.278 

[Rrs(510)/Rrs(555)] -0.532** -60.774x + 62.538 0.193 

[Rrs(705)/Rrs(670)] 0.172 N/S N/S 

[Rrs(765)/Rrs(670)] 0.258 N/S N/S 

[Rrs(705)/Rrs(664)] 0.050 N/S N/S 

[Rrs(704)/Rrs(672)] 0.112 N/S N/S 

[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] 0.238 N/S N/S 

[[dR/dλ620] -0.456** 8.6573e-1224.5x 0.380 

[dR/dλ638] 0.469** 9.0445e4369.6x 0.428 

[dR/dλ661] -0.724** 3.777e-3293.9x 0.689 

[dR/dλ690.5] 0.463** 4.8543e2605.2x 0.639 
*(p < 0.05) **(p < 0.01) 

 

The temporal robustness of the optimum chlorophyll-a retrieval algorithms derived from the 

three independent sampling cruises in the Norfolk Broads (18 May 2004, 22 June 2005, 29 

August 2005) was assessed by validating each algorithm against the remaining, independent, 

datasets.  The performance of the optimum algorithm derived from the amalgamated multi-
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season dataset was also examined for each individual sampling occasion.  The validation 

accuracy (RMSE) of the optimum chlorophyll-a retrieval algorithms is detailed in Table 3.15.   

 

The validation results show that the performance of the chlorophyll-a algorithms varied 

enormously between the multi-season datasets.  The optimum algorithm developed from the 18 

May 2004 dataset produced reasonable estimates of chlorophyll-a when applied to the 22 June 

2005 dataset (RMSE = 10.52 mg chlorophyll-a m-3 (24.85%)).  However, the optimum 18 May 

2004 algorithm did not perform well when validated against the 29 August 2005 dataset.  This 

lack of multi-temporal transferability may be due to fact the optimum 18 May 2004 algorithm 

was formulated from a dataset derived from measurements made at stations located on turbid 

lakes and did not contain measurements from the clear waters of Martham North Broad or 

Ormesby Broad. 

 

Table 3.15 Multi-temporal validation of the optimum chlorophyll-a (Chl-a) retrieval algorithms 
extrapolated to independent datasets (N/S = not significant). Grey text details the performance 
of the algorithm against the original calibration dataset. 
 

 Optimum Least-Squares 
Regression Algorithm 

Validation 
Dataset n R2 RMSE 

(mg m-3) 
RMSE 

(%) 
18 May 2004 12 0.67 7.24 17.01 
22 June 2005 26 N/S 10.52 24.85 18 May 

2004 
Chl-a (mg m-3)  = 

5.5324e1.8685x 
Where, x = [Rrs(705)/Rrs(664)] 29 August 2005 10 0.69 34.85 82.33 

18 May 2004 12 0.26 19.81 133.04 
22 June 2005 26 0.53 10.52 70.65 22 June 

2005 
Chl-a  (mg m-3) = 

2.9683e-3690.8x 

Where, x = [dR/dλ661] 29 August 2005 10 0.50 6.86 46.07 
18 May 2004 12 0.54 35.86 295.39 

22 June 2005 26 0.16 18.91 64.20 29 August 
2005 

Chl-a (mg m-3)  = 172.03x + 
23.021  Where, x = 

[(Rrs
-1(675)-Rrs

-1(720))xRrs(750)] 
29 August 2005 10 0.93 2.02 16.64 

18 May 2004 12 N/S 18.94 81.92 
22 June 2005 26 0.66 10.13 43.81 

29 August 2005 10 0.65 3.18 13.75 Combined* 
Chl-a (mg m-3) = 

3.777e-3293.9x 
Where x = [dR/dλ661] 

Combined 48 0.69 12.41 53.68 
*Algorithm validation not based upon independent data 

 

The optimum algorithm derived from the 22 June 2005 dataset, based upon the [dR/dλ661] 

index, provided reasonable estimates of chlorophyll-a when validated against the 29 August 

2005 dataset (RMSE = 6.86 mg chlorophyll-a m-3 (46.07%)).  The same algorithm, however, 

yielded poorer estimates of the chlorophyll-a concentration when validated against the 18 May 

2004 dataset (RMSE = 19.81 mg chlorophyll-a m-3 (133.04%)).  Similarly, notwithstanding the 
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fact that the optimum algorithm derived from the 29 August 2005 dataset using the medium-

independent index proposed by Dall’Olmo et al. (2003) was the single best algorithm (R2 = 

0.93) derived from the any of the calibration datasets, it did not perform well when validated 

against the 18 May 2004 and 22 June 2005 datasets, yielding RMSEs of 35.86 and 18.91 mg 

chlorophyll-a m-3.  The reasoning behind poor performance this index is not entirely clear, 

particularly as the calibration dataset was drawn from both clear and turbid lakes.  However, the 

concentration of SPM (both SPIM and SPOM) was somewhat lower in the Broads sampled on 

29 August 2005; thus the index may not be appropriate from waters with high concentrations of 

tripton. 

 

The optimum algorithm derived from the combined multi-season dataset using the [dR/dλ661] 

index, not unexpectedly, demonstrate the greatest degree of transferability when applied to the 

18 May 2004, 22 June 2005 and 29 August 2005 datasets; the RMSEs for the estimated 

chlorophyll-a concentration were 18.94, 10.13 and 3.18 mg chlorophyll-a m-3.  This does not 

constitute a full independent validation of the algorithm (having been calibrated and validated 

using some common data points), however, it does serve to emphasise the fact that the 

derivation of chlorophyll-a algorithms should be performed on large and, where possible, multi-

season datasets that encompass measurements derived from lakes covering a range of water 

quality conditions.  This demonstrates, moreover, why many workers advocate the use of bio-

optical models for the development of semi-empirical or analytical algorithms as such an 

approach permits the full water quality conditions for any particular lake(s) to be simulated and, 

thus, the derived algorithm(s) should, in theory, be more robust and retain greater 

transferability. 

 

The concentration of chlorophyll-a is an important measure of the ecological status of lakes.  

The results obtained here clearly demonstrated that Rrs(λ,0+) NIR/red band-ratios and dR/dλ 

indices can be used to quantify the concentration of chlorophyll-a, even in shallow waters 

characterised by high, and often non-co-varying, concentrations of SPM.  The formulation of 

algorithms based upon dR/dλ indices would seem especially apt for the estimation of 

chlorophyll-a in shallow lakes with high SPM (tripton) loads.  Indices based upon the first-
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derivative transformation of Rrs(λ,0+) data also seem to retain greater transferability between 

datasets collected from lakes of contrasting water quality status.  However, based upon the 

results obtained here, it is evident that the algorithms lack the robustness that would be 

required if remote sensing were to be employed to estimate chlorophyll-a concentrations in 

shallow lakes on a routine basis.  The formulation of semi-empirical or analytical algorithms 

from comprehensive bio-optically modelled datasets may provide a means of improving 

algorithm reliability and, in addition, would yield a more mechanistic understanding of algorithm 

behaviour in response to changes in lake water quality.   

 

However, it is also likely that to enable the multi-season estimation of chlorophyll-a in lakes of 

varying water quality status, multiple algorithms may be required.  Similar problems have been 

encountered in ocean colour remote sensing which has promoted the development of season- 

or province-specific chlorophyll-a algorithms or, as in the case of the current operational 

empirical SeaWiFS OC4v4 and the MODIS OC3M chlorophyll-a algorithms, compound 

maximum-band-ratios (MBR) models have been developed.  MBR models can be automatically 

spectrally-optimised to suit the specific optical properties of the ocean province under scrutiny.  

The formulation of similar algorithms may be beneficial for the remotely sensed determination of 

chlorophyll-a in lakes; it would important that the correct algorithm formulation is identified for 

the specific lake, or lake type, of interest.   

 

3.5.6.2 Continuum-Removed Based Algorithms 

Continuum removal has been used extensively for the analysis of hyperspectral remote sensing 

data and, in particular, in contexts concerned with geological exploration or vegetation mapping 

(Sunshine et al., 1990; Kokaly & Clark, 1999; Schmidt & Skidmore, 2003; Kokaly et al., 2003; 

Mutanga et al., 2004; Mutanga et al., 2004; Boyd et al., 2006).  In these contexts, continuum 

removal has proved effective in targeting and standardising absorption-related Rrs(λ,0+) 

features allowing analysis to be performed from a common and normalised baseline.  

Continuum removal was explored in this study as a means of removing spectral interference on 

the estimation of chlorophyll-a from high and variable concentrations of SPM (tripton). 

 



 

 94 

Continuum removal was applied to the Rrs(λ,0+) feature related to the chlorophyll-a absorption 

maximum centred at c. 670 nm.   The derived continuum-removed spectra (R´(λ)) are depicted 

in Figure 3.12.  Linear and non-linear least-squares regression analysis was performed in order 

to examine the relations between R´(λ) indices and the measured concentrations of chlorophyll-a 

in the Norfolk Broads datasets.  Table 3.16 details the coefficients of determination and best-fit 

least-squares regression algorithms for the relationship between the R´(λ) indices and the 

measured concentration of chlorophyll-a. 

 

(a) 18 May 2004 

 

(b) 22 June 2005 

 
(c) 29 August 2005 

 

(d) Combined 

 
 
Figure 3.12 Continuum removed spectra (R´(λ)) of the Rrs(λ,0+) feature related to chlorophyll-a 
absorption for the 18 May 2004, 22 June 2005, 29 August 2005 and combined data. 
 

The relationships between the R´(λ) indices and the measured concentration were, in general, 

poorer than those observed using the Rrs(λ,0+) NIR/red band-ratio and dR/dλ indices.  The 

coefficients of determination derived for the 18 May 2004, 22 June 2005 and combined 

datasets were R2 < 0.60.  The best results were again observed for the dataset acquired on 29 

August 2005 lake sampling cruise; the single best index, [BDR683], yielded R2 = 0.81 for the 
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relationship with the measured concentration of chlorophyll-a using a linear best-fit least-

squares regression algorithm (see Figure 3.13). 

 

Table 3.16 The optimum relationships between the R´(λ) indices and the measured 
concentration of chlorophyll-a for the datasets derived from the individual lake cruises and the 
amalgamated datasets (N/S = not significant at the 95% confidence interval). 
 

 Index (x) n R2 Best-fit Least-Squares 
Regression Model 

18 May 2004 [BD650.5] 12 0.527 37.575e-187.06x 

 [BDR684]  N/S N/S 
 [NDBI650.5]  0.443 377.87x + 400.6 
 [CRDR650]  0.527 37.575e93.53 

 [FWHM]  N/S N/S 
 [AREA]  N/S N/S 

22 June 2005 [BD652.5] 26 0.544 17.991e43.903x 

 [BDR657.5]  N/S N/S 
 [NDBI652.5]  0.573 1015e31.788x 

 [CRDR651]  0.447 17.345e-96.664x 

 [FWHM]  N/S N/S 
 [AREA]  N/S N/S 

29 August 2005 [BD684] 10 0.706 4.3655e-5.253x 

 [BDR683]  0.810 754.81x – 697.62 
 [NDBI687]  0.596 53.415x – 52.269 
 [CRDR677]  0.759 22.352e147.93 

 [FWHM]  N/S N/S 
 [AREA]  0.655 2.3957x – 122.49 

Combined [BD676.5] 48 0.181 45.275x + 7.9354 
 [BDR657.5]  0.269 119.43x + 119.52 
 [NDBI676.5]  0.186 22.925x – 15.085 
 [CRDR667.5]  0.293 817.01x + 8.6773 
 [FWHM]  N/S N/S 
 [AREA]  0.128 1.5605x – 68.3 

 

Notwithstanding the fact that continuum-removed indices have been used to successfully 

related to the bio-physical composition of various vegetation communities (inc. chlorophyll-a), in 

comparison to conventional Rrs(λ,0+) NIR/red band-ratios and dR/dλ indices, the results 

obtained here using the R´(λ) indices were somewhat disappointing for the estimation of the 

chlorophyll-a concentration in shallow lakes.  Nevertheless, clear discrepancies in the size and 

shape of the R´(λ) feature associated with chlorophyll-a absorption can be observed in Figure 

3.13.  These variations in the R´(λ) spectra are without doubt, in part, related to changes in the 

concentration of chlorophyll-a, which suggests that continuum-removal analysis may have 

potential for the estimation of chlorophyll-a in lakes.  The poor performance of the R´(λ) indices 

may have been the result of other optically active components, independent of chlorophyll-a, 

influencing the size and/or shape of the R´(λ) feature related to chlorophyll-a absorption.  In this 
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context, further examination of continuum removal for the estimation of pigment concentrations 

in shallow lakes is warranted.   

 

 

Figure 3.13 The linear least-squares regression relationship between the R´(λ) index [BDR686] 
and the measured concentration of chlorophyll-a on 29 August 2005. 
 

3.5.6.3 Multivariate Chlorophyll-a Retrieval Algorithms 

In addition to the (univariate) Rrs(λ,0+), dR/dλ and R′(λ) based algorithms for the estimation of 

chlorophyll-a, the efficacy of multivariate algorithms (i.e. multiple wavelengths) for the 

estimation of chlorophyll-a in the Norfolk Broads was also examined.  Few previous studies 

have examined multiple-wavelength models for the retrieval of chlorophyll-a from remote 

sensing data, perhaps due to concerns of over-complexity, or the fact that some multivariate 

models (e.g. neural networks, partial least squares regression) are, to an extent, ‘black-boxes’ 

and thus lack the desired mechanistic clarity.  However, if it is possible to establish a valid 

theoretical basis for the inclusion of wavelength variables in model development, either through 

the pre-screening of wavelengths used in algorithm formulation, or through the retrospective 

analysis of the derived model, then multiple wavelength algorithms may prove to have greater 

power for chlorophyll-a estimation, particularly in optically-complex lakes than, for instance, 

more conventional band-ratios algorithms.  Rationalisation for such an approach can, in part, be 

taken from studies employing multivariate soft-classification image analysis procedures (e.g. 

linear spectral mixture models) which utilise information from many wavelengths and have been 
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shown to outperform more conventional band-ratio algorithms for chlorophyll-a estimation in 

CASE II waters (Thiemann & Kaufmann, 2000; Tyler et al., 2006). 

 

Two multivariate techniques, multivariate stepwise regression (MSR) (using forward and 

backward propagation) and partial-least-squares-regression (PLS), were examined using the 

Rrs(λ,0+), dR/dλ, R(λ)-ratios and R´(λ) data and the accuracy of the chlorophyll-a estimation was 

compared to the univariate models.  Cross-validation procedures were used to provide a more 

conservative estimate of the potential predictive power of the multivariate algorithms.  It can be 

a common tendency for multivariate regression models to over-fit observational data (i.e. too 

many free predictors); in respect, the PLS and MSR models were evaluated on the basis the R2 

(predicted) value; the PLS cross-validation procedure, however, should account for possibility of 

over-fitting in model formulation. 

 

The results for the multivariate models are detailed in Table 3.17.  In general, the multivariate 

models (MSR and PLS) demonstrated equal or better relationships with the measured 

concentration of chlorophyll-a than the univariate models employing Rrs(λ,0+) NIR/red band-

ratios, dR/dλ indices and R´(λ) indices.  In particular, the MSR models formulated with the dR/dλ 

data provided better estimates of the chlorophyll-a concentration for the 18 May 2004 and 22 

June 2005 datasets – where the previous univariate models had been somewhat disappointing.  

Excellent relationships were also observed for the 29 August 2005 dataset; although the 

conventional NIR/red band-ratio and dR/dλ indices also performed well here.  Significant PLS 

cross-validation models could not be derived from the 18 May 2004 and 29 August 2005 

datasets due to the limited number of observations. 
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Table 3.17 The accuracy of the chlorophyll-a retrieval models derived using MSR and PLS 
regression for the 18 May 2004, 22 June 2005, 29 August 2005 and combined datasets. 
 

 Spectral 
Variables Model No. Free 

Predictors 
R2 

(adj.) 
R2 

(pred.) 
Selected Wavelengths (nm) 

/Indices for MSR  
Rrs(λ,0+) MSR 1 0.357 0.109 599.5 

 PLS 2 0.469 * N/A 
Rrs(λ,0+) 

band-
ratio(s) 

MSR 1 0.628 0.431 [Rrs(710)/Rrs(490)] 

 PLS 9 0.984 0.250 N/A 
dR/dλ MSR 5 0.996 0.986 409.5, 421, 648, 771, 787 

 PLS 2 0.993 0.014* N/A 
R´(λ) BD MSR 1 0.400 0.207 650.5 

18 May 
2004 

 PLS 5 0.709 * N/A 
Rrs(λ,0+) MSR 4 0.830 0.790 450.5, 518.5, 720, 721.5 

 PLS 3 0.813 0.737 N/A 
Rrs(λ,0+) 

band-
ratio(s) 

MSR 3 0.797 0.748 
[Rrs(443)/Rrs(555)] 
[Rrs(710)/Rrs(490)] 
[Rrs(748)/Rrs(670)] 

 PLS 7 0.864 0.646 N/A 
dR/dλ MSR 5 0.847 0.799 427.5, 492, 729, 753, 776 

 PLS 2 0.733 0.512 N/A 
R´(λ) MSR 5 0.632 0.527 652.5, 655.5, 665.0, 674, 697 

22 June 
2005 

 PLS 5 0.730 0.320 N/A 
Rrs(λ,0+) MSR 5 0.996 0.996 512, 525, 533, 632, 662 

 PLS 5 0.997 * N/A 
Rrs(λ,0+) 

band-
ratio(s) 

MSR 1 0.916 0.858 [(Rrs(670)-1-Rrs(720)-1) 
xRrs(750)] 

 PLS 5 0.990 * N/A 

dR/dλ MSR 5 1.000 1.000 412.5, 427.5, 429.5, 782.5, 
785 

 PLS 5 0.999 * N/A 
R´(λ) BD MSR 2 0.900 0.734 675.5, 684 

29 August 
2005 

 PLS 5 0.967 * N/A 
Rrs(λ,0+) MSR 2 0.566 0.520 444, 696.5 

 PLS 6 0.742 0.607 N/A 
Rrs(λ,0+) 

band-
ratio(s) 

MSR 3 0.617 0.580 
[Rrs(490)/Rrs(555)]  
[Rrs(705)/Rrs(670)]  
[Rrs(765)/Rrs(670)] 

 PLS 3 0.592 0.483 N/A 
dR/dλ MSR 4 0.728 0.684 598.5, 776, 778.5, 797.5 

 PLS 2 0.631 0.531 N/A 

R´(λ) BD MSR 7 0.637 0.526 652, 657.5, 664.5, 666.5, 
668.5, 677, 679.5, 680 

Combined 

 PLS 3 0.431 0.254 N/A 
*denotes too few observations for meaningful cross-validation analysis 

 

The MSR models formulated with dR/dλ data also demonstrated improved relations with the 

concentration of chlorophyll-a in the combined multi-season dataset.  In this respect, it could be 

argued that the improved results obtained using the multivariate models, suggests that the 

incorporation of information from multiple wavelengths (particularly first-derivative data) into 

algorithms can provide a more effective estimation of the chlorophyll-a concentration and, in 

particular, if the data is drawn from multi-season measurements from lakes of varying water 



 

 99 

quality.  The relationship between the PLS-modelled and measured concentration of 

chlorophyll-a for the combined datasets are depicted in Figure 3.14.   

 

It is notable that the multivariate models formulated using the Rrs(λ,0+) and Rrs(λ,0+) band-

ratios consistently selected wavelength variables centred in the blue and green regions (i.e. c. 

400-600 nm).  These wavelengths are rarely incorporated into algorithms for the estimation of 

chlorophyll-a in CASE II waters.  However, the results obtained here suggest the spectral 

information at these wavelengths may be relevant to the estimation of chlorophyll-a in shallow 

lakes.  Chlorophyll-a absorbs strongly in the blue region – which might explain the consistent 

selection of these wavelengths in the multivariate algorithms.  However, it is difficult to derive a 

full mechanistic explanation for this observation based solely on the data presented here.  In 

this context, bio-optical modelling of the shallow lakes of the Norfolk Broads, or similar shallow 

lake ecosystems, may provide a more appropriate base from which to explore the use of 

multivariate algorithms and assess their underlying mechanistic validity. 

 

(a) PLS modelled chlorophyll-a 

 

(b) PLS cross-validated chlorophyll-a 

 
Figure 3.14 Scatter plots for the (a) PLS model (R2) and (b) the cross validated PLS model (R2 
(pred.)) for chlorophyll-a estimation derived from the combined multi-season dataset. 
 

3.5.7 Hydrolight Bio-Optical Model Simulations 

The results obtained from the various lake sampling cruises in the Norfolk Broads seems to 

suggest that the estimation of chlorophyll-a using remote-sensing-based algorithms formulated 

with Rrs(λ,0+) band-ratios, dR/dλ indices and R´(λ) indices may be affected to varying degrees 
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by the non-phytoplankton-related bio-optical properties of shallow lakes (e.g. tripton, CDOM, 

bottom substrate conditions).  This implies that use of any single algorithm formulation may thus 

not be appropriate for the estimation of the chlorophyll-a concentration in all lake types and 

under all water quality conditions.  The effect of non-chlorophyllous bio-optical component 

variability on the estimation of chlorophyll-a in shallow lakes was investigated expeditiously 

using simple sensitivity analyses performed using the Hydrolight radiative transfer model.  The 

simulated Rrs(λ,0+) signals for each shallow lake type are depicted in Figure 3.15.   

 

(a) Shallow Lake I (b) Shallow Lake II 

(c) Shallow Lake III (d) Shallow Lake IV 

 
Figure 3.15 The Rrs(λ,0+) spectra for the four shallow lake types simulated using the Hydrolight 
v.4.2 bio-optical model. (a) Shallow Lake 1: chlorophyll-a 2-15 mg m-3, CDOM 1.5 (a440 m-1), 
tripton 0.5-5 mg L-1, no submerged plants; (b) Shallow Lake 2: chlorophyll-a 2-10 mg m-3, 
CDOM 1.5 (a440 m-1), tripton 0.5-5 mg L-1, submerged plants;  (c) Shallow Lake 3: chlorophyll-a 
10-75 mg m-3, CDOM 1.5 (a440 m-1), tripton 5-30 mg L-1, no submerged plants; (d) Shallow Lake 
4: chlorophyll-a 2-10 mg m-3, CDOM 1-12.5 (a440 m-1), tripton 5 mg L-1, humic/no submerged 
plants. Axes standardised for comparability. 
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It can be seen that the variable bio-optical conditions simulated for each shallow lake type had 

a significant influence on the Rrs(λ,0+) signature.  The simulated clear water lake, with no 

submerged aquatic vegetation (Shallow Lake I), exhibited the weakest Rrs(λ,0+) signal.  This 

was no doubt a function of strong absorption by water (and, although to a lesser extent, 

chlorophyll-a) allied to the lower concentrations of tripton (0.5 mg L-1) used in the simulation (i.e. 

low backscattering).  It should also be noted that the Rrs(λ,0+) signature of Shallow Lake I is not 

that dissimilar from the spectral profiles measured in Martham North and Ormesby Broad.  The 

Rrs(λ,0+) signature of Shallow Lake II (clear water lake, but with submerged aquatic plant 

growth) was broadly similar to that of Shallow Lake I, but the Rrs(λ,0+)-maxima at c. 570, 650 

and 690 nm can be seen to increase in prominence.  The chlorophyll-a concentration for the 

Shallow Lake II scenario was lower (2-10 mg m-3) than that used with the non-vegetation 

Shallow Lake I (2-25 mg m-3) and the tripton component was kept constant.  The increased 

prominence of the Rrs(λ,0+)-maxima at c. 570, 650 and 690 nm was probably associated with 

the chlorophyll-a signal from the simulated submerged vegetation.  Thus, not entirely 

unexpectedly, the model scenario would suggest that benthic vegetation can have a 

pronounced effect on the Rrs(λ,0+) signature of the shallow lakes.  This raises some interesting 

questions with regards to the potential efficacy of remote sensing for the estimation of water 

quality parameters in clear, macrophyte-dominated, lakes where the bottom radiance signal is 

strong. 

 

The Rrs(λ,0+) signature for the turbid, phytoplankton-dominated, shallow lake type (Shallow 

Lake III) was, again not unexpectedly, markedly different from those of the other lakes.  The 

high Rrs(λ,0+) signal observed from the Shallow Lake III is a function of the high concentrations 

of chlorophyll-a (10-75 mg m-3) and tripton (5-30 mg L-1) used in the simulation.  The bottom 

boundary conditions probably had little effect on the Rrs(λ,0+) signal in this instance, as the 

optical depth is likely to have been much shallower that the actual geometric lake depth for 

many of the Hydrolight simulations for this lake type.  The effect of high chlorophyll-a 

concentrations on the Rrs(λ,0+) signal can be seen in the increased prominence of the 

chlorophyll-a absorption-related Rrs(λ,0+)-minimum at c. 670 nm, and the chlorophyll-a 

scattering–related green and NIR peaks at c. 580 nm and c. 705 nm respectively.  It is notable 
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that increased concentrations of tripton resulted in the the chlorophyll-a absorption-related 

feature at c. 670 nm increasing further in prominence.  This observation suggests that 

algorithms formulated using baseline (e.g. Dekker, 1993) or continuum-removed approaches to 

chlorophyll-a estimation may not be appropriate in waters with high and non-co-varying tripton.   

 

The Rrs(λ,0+) signature of Shallow Lake III is again not too dissimilar from the profiles measure 

in the turbid, phytoplankton-dominated, waters of Hickling Broad, Heigham Sound and Horsey 

Mere.  The most notable differences occur between the modelled and measured spectral in the 

< 550 nm region; this is largely due to the fact the Hydrolight model assumed that chlorophyll-a 

was the only bio-optically active pigment in the water column and, therefore, there is an 

absence of carotenoid-related spectral features in this region. 

 

The Shallow Lake IV simulation was used to model the Rrs(λ,0+) signal that might be typical of a 

humic or dystrophic shallow lake (a440 1-12.5 m-1).  It is again notable that the Rrs(λ,0+) 

signature of this lake scenario is significantly dissimilar from the modelled signatures of the 

other three lake types.  The most marked effect of CDOM was the decreasing Rrs(λ,0+) signal 

and the “flattening” of the signature at high CDOM concentrations (e.g. a440 > 5 m-1).  In 

particular, it is apparent that the chlorophyll-a absorption-related Rrs(λ,0+)-minimum at c. 670 is 

readily masked when the CDOM concentration is high.  This would seem to suggest that the 

remote-sensing-based estimation of chlorophyll-a in humic and dystrophic shallow lakes may 

be problematic. 

 

The influence of lake type and, therefore, (non-chlorophyll-related) variability in the bio-optical 

conditions of shallow lakes, on the relationship between the NIR/red band-ratio 

[Rrs(705)/Rrs(670)], and the first-derivative index [dR/dλ667.5], and the parameterised 

concentration of chlorophyll-a is depicted in Figure 3.16(a-h).   
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(a) Shallow Lake I – [Rrs(705)/Rrs(670)] 

 

(b) Shallow Lake I – [dR/dλ667.5] 

 
(c) Shallow Lake II – [Rrs(705)/Rrs(670)] 

 

(d) Shallow Lake II – [dR/dλ667.5] 

 
(e) Shallow Lake III – [Rrs(705)/Rrs(670)] 

 

(f) Shallow Lake III – [dR/dλ667.5] 

 
(g) Shallow Lake IV – [Rrs(705)/Rrs(670)] 

 

(h) Shallow Lake IV – [dR/dλ667.5] 

 
 
Figure 3.16 The effect of shallow lake type on the relationship between chlorophyll-a and the 
NIR/red band-ratio [Rrs(705)/Rrs(670)] and the first-derivative index [dR/dλ667.5]. Linear least-
square regression models were used for all lake type scenarios. 
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It is even more evident from Figure 3.16 that variability in the non-chlorophyllous bio-optical 

conditions, within and between different shallow lake types, can have a profound effect on the 

relationship between Rrs(λ,0+)-derived indices and the chlorophyll-a concentration.  This effect 

is evaluated in quantitative terms (coefficients of determination (R2)) in Table 3.18.  The 

estimation of chlorophyll-a (using a standard linear least-squares regression approach) was 

severely affected by the specific bio-optical condition simulated in each shallow lake type.  The 

estimation of chlorophyll-a in Shallow Lake I was achievable (to a good degree of accuracy – R2 

> 0.86) using algorithms formulated with both the [Rrs(705)/Rrs(670)] and the [dR/dλ667.5] indices.  

In this instance, the [Rrs(705)/Rrs(670)] index was marginally more sensitive to changes in the 

parameterised chlorophyll-a concentration than the [dR/dλ667.5] index. 

 

The simulation of vegetated bottom boundary conditions (Shallow Lake II), however, severely 

reduced the efficacy of the [Rrs(705)/Rrs(670)] index for the estimation of chlorophyll-a (R2 = 

0.16).  In contrast, the first-derivative index was seemingly not influenced by the presence of 

benthic vegetation and provided a good fit against the parameterised chlorophyll-a 

concentration (R2 = 0.95).  This would suggest that algorithms formulated using first-derivative 

indices may be more appropriate than those based upon NIR/red band-ratios for the estimation 

of chlorophyll-a in clear water shallow lakes where the bottom substrate (particularly if 

vegetated) may greatly influence the Rrs(λ,0+) signal. 

 
Table 3.18 The coefficients of determination (R2) for the linear least-squares regression 
relationship between the chlorophyll-a concentrations and the [Rrs(705)/Rrs(670)] and 
[dR/dλ667.5] spectral indices for each shallow lake type simulated using Hydrolight v.4.2. 
 
  R2 
 n [Rrs(705)/Rrs(670)] [dR/dλ667.5] 

Shallow Lake I 140 0.897 0.863 
Shallow Lake II 90 0.158 0.952 
Shallow Lake III 75 0.904 0.909 
Shallow Lake IV 40 0.200 0.067 

All Lake Simulations 345 0.347 0.772 
 

The two contrasting spectral indices both demonstrated a good relationship with the 

parameterised concentration of chlorophyll-a for the Shallow Lake III simulations.  The high 

coefficients of determination observed (R2 = 0.90-0.91) arguably reflect that fact that a large 
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gradient in chlorophyll-a (10-75 mg m-3) was used in the Shallow Lake III scenario.  However, in 

this scenario high, and non-co-varying, concentrations of tripton were also modelled using 

Hydrolight.  The good relationships observed between the spectral indices and the 

parameterised chlorophyll-a concentration would seem to suggest that both index formulations 

are effective at reducing the attenuating influence of tripton on the remotely sensed retrieval of 

chlorophyll-a.   

 

The scatter plots do, however, reveal that the [dR/dλ667.5] index was more effective for 

parameterised chlorophyll-a concentrations < 25 mg m-3; whereas, the [Rrs(705)/Rrs(670)] index 

was more effective for chlorophyll-a concentrations > 25 mg m-3.  This suggests that first-

derivative indices may be more suitable for enhancing the latent chlorophyll-a signal in waters 

with high and variable tripton.  This confirms the previous observations made by Dekker & 

Malthus (1995), Han & Rundquist (1997) and Han (2005) and, importantly, also provides some 

substantiation for the results obtained here for the Norfolk Broads. 

 

The estimation of the chlorophyll-a concentration in the humic lake scenario (Shallow Lake IV) 

proved problematic.  Neither index formulation returned a strong coefficient of determination for 

the relationship with parameterised chlorophyll-a concentration (R2 = 0.07-0.20).  Spectral 

attenuation by high CDOM absorption would therefore seem to be a barrier to the estimation of 

chlorophyll-a in heavily coloured waters.  However, it was noted that Rrs(λ,0+) and dR/dλ 

demonstrated significant relationships with chlorophyll-a at wavelengths closer towards 800 nm 

(where CDOM absorption is absent) (not shown here); reflectance of first-derivative reflectance 

in the VNIR might therefore be more provide a route to the estimation of chlorophyll-a in more 

humic waters. 

 

It is again noteworthy that the first-derivative index was more highly correlated with the 

parameterised concentration of chlorophyll-a for all combined shallow lake types (R2 = 0.77), 

than the NIR/red band ratio index (R2 = 0.35).  This is an important finding, as it suggests that 

first-derivative indices may be more suitable for the estimation of chlorophyll-a across shallow, 

or indeed, any lakes where there is a pronounced inter-lake variation in the bio-optical 
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properties.  This observation may also explain the improved performance of the first-derivative 

indices in the Norfolk Broads, particularly in respect to the multi-lake and/or multi-temporal 

datasets.  This also emphasises the value of hyperspectral data (which permits the formulation 

of derivative indices) for the estimation of chlorophyll-a in lakes. 

 

The results of the Hydrolight modelling, and indeed those from the lake sampling cruises in the 

Norfolk Broads, have demonstrated that the accuracy to which remote-sensing-based 

approaches can be used to estimate the concentration of chlorophyll-a in lakes is largely 

dependent upon the non-phytoplankton-related, and phytoplankton-related, bio-optical 

properties of the water and the bottom boundary conditions.  It has been shown that the 

capacity of different spectral index and algorithm formulations for the estimation of chlorophyll-a 

is also largely dependent on lake (or water) type.  It would appear that some index formulations, 

such as derivative approaches, may retain greater transferability over a wider range of bio-

optical conditions.  However, even these indices are not appropriate in all circumstances.  The 

SALMON project (SAtellite remote sensing for Lake MONitoring) also found that the 

performance of different chlorophyll-a algoirhtms varied considerably between different lakes 

types (Lindell et al., 1999). 

 

It is therefore clear that to further the use of remote sensing for inland water quality monitoring a 

far greater understanding of the efficacy of different algorithm formulations under varying water 

quality situations needs to be sought.  This would allow the optimum algorithm formulation to be 

selected for each lake/water type (see Figure 3.17).  Another approach, may be to 

simultaneously use multiple algorithms to calculate a mean predicted concentration of 

chlorophyll-a, this mean predicted value could then be used to further refine algorithm selection 

through the calculation of a second weighted-average chlorophyll-a concentration based upon a 

knowledge of the performance of different algorithm formulations at varying concentrations of 

chlorophyll-a.  The maximum-band-ratio approach used in CASE 1 ocean colour algorithms 

should also be examined in the context of inland waters. 
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Figure 3.17 A theoretical illustration of the possible effect of lake type on the accuracy of 
chlorophyll-a retrieval from remote sensing data and the potential efficacy of deriving algorithms 
(α, β, χ) spectrally tuned to specific lake types (as a function of trophic status for example). 
 

3.6 CONCLUSIONS 

The efficacy of various remote sensing indices for the retrieval of water quality parameters 

(SPM (seston), SDD, CDOM and chlorophyll-a) in shallow lakes was investigated using 

shipboard hyperspectral Rrs(λ,0+) data gathered from expeditious multi-temporal cruises 

conducted in the shallow lakes of the Norfolk Broads.  The estimation of SPM fractions from the 

Rrs(λ,0+) proved viable using algorithms empirically formulated with Rrs(λ,0+) indices.  However, 

the accuracy of these algorithms varied significantly between the multi-temporal datasets (R2 = 

0.40-0.99).  This variability was suggested to be a function of the mineralogy of the SPM in 

suspension, its concentration and the degree of co-variance between the various inorganic and 

organic components.   

 

The retrieval of the SDD from the Rrs(λ,0+) data proved more straightforward (albeit the results 

were derived from a single sampling occasion) (max. R2 = 0.98).   However, the retrieval of 

CDOM was more problematic.  No significant relationships could be derived between the 

Rrs(λ,0+) data and the measured concentrations of CDOM.  It was reasoned that the low 

concentrations of dissolved organic carbon, allied to spectral masking effects incurred from 

other optically active pigments, were responsible for the absence of a relationship with CDOM 
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in this instance.  It is suggested that further work should focus on the derivation of algorithms 

for the estimation of CDOM. 

 

Numerous different approaches to the formulation of algorithms for the estimation of the 

chlorophyll-a concentration were trialled in the Norfolk Broads.  These included conventional 

green/blue and NIR/red band-ratios and more innovative first-derivative, continuum-removed 

and multiple-wavelength formulations.  In similarity to the relationships observed with SPM, the 

performance of the different algorithm formulations varied considerably.  This variability was 

largely attributed to the high and variable concentrations of SPM (or more specifically tripton) 

that occur in the shallow waters of the Norfolk Broads (largely due to resuspension processes).  

The influence of the bottom boundary conditions may also have affected the remotely sensed 

estimation of chlorophyll-a.  Importantly, the effect of variable tripton and bottom boundary 

conditions on the accuracy of chlorophyll-a retrieval was again confirmed theoretically using 

bio-optical modelling. 

 

The NIR/red band-ratios and, in particular, the first-derivative indices, often provide the most 

accurate and robust estimation of chlorophyll-a.  The multiple-wavelength algorithms were seen 

to increase the accuracy of chlorophyll-a estimation, but these algorithms suffer from a lack of 

mechanistic clarity.  Significantly, the first-derivative indices seemed to retain greater 

transferability, across water types or, indeed, when applied to multi-temporal data.  This finding 

was later substantiated using a novel bio-optical modelling approach. 

 

The results obtained from the shipboard hyperspectral Rrs(λ,0+) data and the Hydrolight bio-

optical modelling emphasise the fact that caution that must be taken to ensure that algorithms 

formulate for the estimation of water quality parameters, particularly chlorophyll-a, are 

appropriate for the water quality conditions in the lake(s) of interest.  The performance of 

remote-sensing-based algorithms for the estimation of chlorophyll-a would seem to be 

particularly sensitive to variations in the bio-optical conditions.  On this basis, it is suggested 

that further work should be concentrated on refining algorithms for specific lake types.  An 

improved understanding of the performance of different algorithm formulations in specific water 
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types will be fundamental to the construction of an effective remote-sensing-based strategy for 

lake monitoring and, in particular, for implementation at a pan-European scale (i.e. in the 

context of the EU WFD). 
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4 REMOTE SENSING OF PHYTOPLANKTON COMPOSITION 
IN SHALLOW LAKES 

 

4.1 INTRODUCTION 

The previous chapter (Chapter 3) demonstrated how the remote-sensing-based estimation of 

chlorophyll-a concentrations could be used to monitor the dynamics of phytoplankton 

communities in shallow lakes.  However, increasing evidence is emerging that remote sensing 

may also be capable of providing information on the taxonomic composition of phytoplankton 

communities.  This chapter uses data from experimental mesocosm experiments and in-situ 

measurements from the Norfolk Broads in order to further investigate the remote-sensing-based 

assessment of phytoplankton community composition in shallow lakes.  Work extracted from 

this chapter has been accepted for publication in Remote Sensing of Environment (Hunter, 

P.D., Tyler, A.N., Presing, M., Kovacs, A.W., Preston, T. (in press.) Spectral discrimination of 

phytoplankton colour groups: the effect of suspended particulate matter and sensor spectral 

resolution, Remote Sensing of Environment). 

 

4.2 RATIONALE 

Numerous workers have shown that satellite and airborne remote sensing data products can be 

used to quantitatively map the distribution of phytoplankton in inland waters using the 

concentration of chlorophyll-a as a surrogate measure of biomass or biovolume (George, 1997; 

George & Malthus, 2001; Ammenberg et al., 2002; Pozdnyakov et al., 2005).  However, as 

chlorophyll-a is a pigment common to almost all species of phytoplankton, such an approach is 

incapable of providing information on the species composition of the target environment.  The 

development of remote sensing techniques for the discriminative mapping of phytoplankton 

taxonomic groups has long been an objective for both limnological and oceanographical remote 

sensing (Dekker, 1993; Richardson, 1996; Vincent et al., 2004).  Foregoing research has 

suggested that certain groups of phytoplankton may be spectrally discernable as a result of 

inherent differences in their cell size and structure and/or their photosynthetic pigment 

complexes (Ahn et al., 1992; Richardson, 1996; Aguirre-Gomez et al., 2001a; Aguirre-Gomez et 
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al., 2001b) with the most prominent spectral dissimilarities occurring at the broad class (i.e. 

bacillariophyte, chlorophyte, cyanophyte) or colour group level (i.e. brown, green, blue-green, 

red) (Richardson, 1996).  Moreover, in a few limited instances, it has been shown that the 

concentration of specific biomarker pigments (i.e. the cyanobacterial pigment C-phycocyanin) 

can be retrieved using remote sensing data (Dekker, 1993; Simis et al., 2005; Kutser et al., 

2006).  However, there is a clear need to extend this research to, (i) further understand the 

extent to which variations in cell morphology and photopigment composition mediate the 

spectral signature of phytoplankton taxa and thus of lakes and other inland waters, (ii) for a 

greater variety of taxonomic groups and, in particular, those of ecological significance in 

freshwaters and, (iii) to examine the extent to which other (non-photopigment-related) optically 

active components (e.g. tripton and CDOM) may influence the remotely sensed resolution and 

detection-limits of phytoplankton taxa in natural waters. 

 

The eventual realisation of a remote-sensing-based technique for phytoplankton taxonomic 

group mapping would provide the end-user community (e.g. aquatic scientists, regulatory 

authorities and conservation agencies) with an invaluable tool for expeditious research and 

monitoring of intra- or inter-annual phytoplankton community succession and, in particular, in 

relation to studies concerned with harmful algal bloom (HAB) monitoring (Codd et al., 2005).  

Progress has made in this context in the marine environment where near-real-time remote 

sensing imagery products are being used to monitor the development and dispersal of HABs 

(Ramos et al., 2005; Miller et al., 2006) but few comparable studies in inland waters have been 

undertaken. 

 

4.3 AIMS AND OBJECTIVES 

The aim of the research presented in this chapter was to assess the spectral dissimilarities of 

several common freshwater phytoplankton taxa and evaluate the extent to which qualitative or 

quantitative information concerning the floristic composition of natural phytoplankton 

populations in shallow lakes could be retrieved from remote sensing data.  This generic aim 

was examined through an experimental proof-of-concept mesocosm investigation combined 

with in-situ shipboard spectrometry of natural phytoplankton communities in the shallow lakes of 
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the Norfolk Broads (UK).  This explorative approach was adopted with a view to establishing a 

theoretical basis for mapping phytoplankton taxa using high spatial and spectral resolution 

remote sensing imagery products. 

 

The specific research objectives can be outlined as follows: 

 

a) To characterise the spectral signatures of various phytoplankton species and broader 

colour group associations. 

 

b) To assess the potential of remote sensing for the qualitative discrimination between broad 

colour groups in simulated communities composed of single (bloom-like) and mixed species 

using simple qualitative techniques. 

 

c) To examine the potential to retrieve quantitative estimates of biomarker pigment 

concentrations for taxonomic groups independent of chlorophyll-a. 

 

d) To examine the effect of sensor spectral resolution and the co-incidental presence of SPIM, 

SPOM and CDOM on the dissimilarity of colour groups. 

 

e) To examine the potential retrieval of specific biomarker pigment concentrations in the 

natural inland waters of the Norfolk Broads (UK). 

 

4.4 METHODS 

4.4.1 Phytoplankton Cultures 

The pseudo phytoplankton communities simulated in the laboratory mesocosm experiments 

were created using artificially cultured species.  The colour group species selected for use in 

the mesocosm experiments included diatoms (brown algae), chlorophytes (green algae) and 

cyanophytes (blue-green algae).  These species were specifically selected due to their 

prevalence (and ecological significance) in mesotrophic and eutrophic shallow lakes.  The 

phytoplankton cultures were grown at the Balaton Limnological Research Institute (BLRI) of the 
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Hungarian Academy of Sciences situated on the shore of Lake Balaton in Tihany, Hungary.  

The species of phytoplankton cultivated included the green chlorophytes Scenedesmus 

armatus (ACT 9710) and Selenastrum capricornutum (ACT 97100) and the blue-green 

cyanophytes Cylindrospermopsis raciborskii (ACT 9502) and Synechococcus sp. (ACT 9802).  

Limited volumes of a red (C-phycoerythrin rich) cyanobacterium (Synechococcus sp. (ACT 

9807) were also cultured for comparative purposes (although it is recognised that red algae are 

not a common component of freshwater phytoplankton assemblages).   

 

It proved problematic to grow a sufficient crop of diatoms in the mass culture system; thus a 

compound diatom culture was created from scrapings of epilithic diatoms from the shores of 

Lake Balaton. The scraped epilithic diatoms were clarified by filtration through a 25 µm mesh 

using pre-filtered water from Lake Balaton.  Microscopic cell counts confirmed that diatoms 

represented > 95% of the species biomass of these scrapings.  The dominant epilithic diatom 

species were Cymbella spp., Gomphonema spp., Fragilaria spp., and Diatoma vulgare.  The 

pigment signatures and spectral characteristics of these epilithic species were assumed to be 

representative of planktonic diatoms.   Mass cultivation of the various phytoplankton species 

was performed in 16 L glass cylinders operated as part of a semi-continuous system; 

approximately 70% of the culture volume was refreshed every 5-8 days.  The chlorophyte and 

Synechococcus strains were cultured in BG11 medium (Rippka et al., 1979).  

Cylindrospermopsis raciborskii was also cultured in BG11 medium but with no addition of 

NaNO3.  Illumination was provided by cool white fluorescent tubes (Tungsram F33; 40 W) with 

an approximate irradiance of 70-500 µmol m-2 s-1 (depending on the species under cultivation).  

The irradiance was measured by US-SQS/L Spherical Micro Quantum Sensor (Walz) in the 

centre of culturing tubes.  A constant temperature of 24±1 °C was maintained and the cultures 

were aerated with sterile air to aid aggregation and increase the supply of CO2.  The 

chlorophyte and cyanophyte cultures were grown on a continuous light cycle.  It is 

acknowledged that the phytoplankton were cultivated under optimum conditions.  However, it 

was assumed for the purposes of this research that the pigment composition of the cultivated 

species was not radically different from that which would be typically observed in natural waters 

with favourable nutrition (e.g. light, nutrients).  To limit the effect of photoacclimation on the 
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pigment composition of the phytoplankton species, the time which elapsed between the 

introduction of the cultured species into the tank mesocosm and the acquisition of spectral 

reflectance measurements was minimised as far as was practical. 

 

 

Figure 4.1 The epilithic diatoms used to create a mock culture for the mesocosm experiments 
growing on the shore of Lake Balaton. 
 

 

Figure 4.2 The semi-continuous mass cultivation system used to grow the phytoplankton 
species for use in the mesocosm experiments. 
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4.4.2 Mesocosm Experiments 

4.4.2.1 Spectral Reflectance Measurements 

The phytoplankton cultures were used to simulate various pseudo phytoplankton communities 

in a controlled tank mesocosm environment as a series of individual treatments consisting of 

different combinations of single and multiple species at varying concentrations (after Gitelson et 

al., 1999; Svab et al., 2005).  The tank mesocosm (max Ø = 0.4 m; z = 0.4 m) was composed of 

black plastic and had been sprayed prior to the experiments with matt black paint to ensure that 

reflectance (R(λ)) from the tank itself was < 1% (400-1000 nm).  A constant water volume of 10 L 

was maintained during all the mesocosm experiments.  Spectral reflectance measurements 

(R(λ)) from the various treatments were obtained under controlled laboratory darkroom 

conditions using a portable ASD (Analytical Spectral Devices) FieldSpec® HandHeld 

Spectroradiometer.  The specifications of the ASD FieldSpec® instrument are detailed in Table 

3.2.  Two 300 W Kaiser® video lamps provided an artificial source of illumination and a 3.5º 

FOV (field of view) limiter was attached to the sensor to exclude non-target reflectance.  The 

spectrometer was tripod mounted at a constant height of 0.5 m above the water level within the 

tank (see Figure 4.3 and Figure 4.4). 

 

 

Figure 4.3 Schematic diagram showing the configuration of the laboratory mesocosm and the 
arrangement of the ASD FieldSpec instrument in relation to the two illumination sources. 
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The instrument was calibrated to reflectance using a white Spectralon® reference panel (≈ 

100% reflectivity).  Given illumination was artificially provided, it was considered inappropriate 

to adopt the terminology of remote-sensing-reflectance (Rrs(0+,λ)) and, instead, the 

measurements are simply referred to here as reflectance (R(λ)).  To exclude ambient noise, the 

spectral measurements were acquired against a background consisting of black cloth (R(λ) < 5% 

(400-1000 nm)) that was laid beneath the tank and over adjacent surfaces.  Reference panel 

calibrations and dark-current measurements were performed after every sequence of 10 R(λ) 

measurements.  The spectrometer was configured to acquire measurements as a mean of 25 

successive scans which were automatically averaged by the dedicated ASD FieldSpec software 

and 10 sets of replicate scans were acquired from each individual mesocosm treatment. 

 

 

Figure 4.4 The tank mesocosm configuration detailing the tripod mounted ASD FieldSpec® HH 
spectrometer and the two 300 W video lamps. 
 

Two contrasting sediments where used to provide background concentrations of SPM (tripton) 

for specific mesocosm treatments: (1) a largely inorganic (dolerite limestone) sediment (organic 

matter < 5%) obtained from the bed of Lake Balaton (Hungary) (Herodek, 1988) and (2) a more 

organic dominated sediment (organic matter > 30-65%) obtained from the bed of Hickling Broad 

(UK).  It was intended that the Lake Balaton sediment would replicate the effects of a largely 



 

 117 

inorganic SPM component (i.e. high backscatter, low absorption) on the spectral response of 

the pseudo-communities, while the Hickling Broad sediment would replicate the effects of a 

largely organic SPM component (i.e. low backscatter, high absorption) on the spectral response 

of the pseudo-communities.  Background concentrations of CDOM were achieved by 

introducing the phytoplankton cultures into humic water obtained from the western basin of 

Lake Balaton where inputs of water rich in dissolved organic carbon (DOC) (humic and fluvic 

acids) are received from the River Zala (after Svab et al., 2005).   

 

It was intended that the concentrations of optically active components used in the mesocsom 

experiments would be similar to those encountered in natural shallow lakes.  However, 

preliminary measurements indicated that it was necessary to use higher concentrations than 

those commonly encountered to improve the signal-to-noise ratio. 

 

4.4.2.2 The Phytoplankton Community Treatments 

The phytoplankton pseudo-communities replicated in the mesocosm treatments included 

communities comprised of single and mixed species with variable background concentrations of 

SPIM, SPOM and CDOM.  Spectral measurements were acquired from the six species at a 

range of concentrations (treatments 1-6).  The concentration of a single green (Selenastrum 

capricornutum), blue-green (Cylindrospermopsis raciborskii) and brown (diatom) species was 

then increased incrementally against various backgrounds of high SPOM (Hickling Broad 

sediment), high SPIM (Lake Balaton sediment) and CDOM (humic water) (treatments 7-16).  

However, it was not possible to increase the concentrations of the diatom or the red 

Synechococcus sp. phytoplankton against a background of humic water due to a shortage of 

culture material.  The single species treatments are outlined in Table 4.1. 

 

The mixed pseudo-communities treatments were designed to replicate various successional 

stages between (1) an initial diatom-dominated community and a succeeding chlorophyte-

dominated community and (2) an initial chlorophyte-dominated community and a succeeding 

cyanophyte-dominated community.  These various communities were achieved by creating an 

initial monospecific pseudo-community composed of a single phytoplankton species and then 
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progressively diluting the composition of this initial pseudo-community with increasing 

concentrations of a second phytoplankton species (treatments 33-47).  It was ensured that the 

total chlorophyll-a concentration of the each pseudo-community was maintained at 

approximately 200 mg chlorophyll-a m-3.  Subsequently, SPOM and SPIM concentrations were 

increased incrementally in two mixed pseudo-communities (c. 1:1 diatom/chlorophyte and 1:1 

chlorophyte/cyanophyte v/v) to assess the potential spectral masking effects of SPOM and 

SPIM (treatments 48-51).  The various mixed species pseudo-community treatments are 

outlined in Table 4.2. 

 

Table 4.1 The single species pseudo-communities replicated in the mesocosm experiment (B = 
blue-green species; R = red species). 
 

Treatment 
No. 

Phytoplankton 
Species 

Chl-a Range 
(mg m-3) 

SPOM Range† 
(mg L-1) 

SPIM Range‡ 
(mg L-1) 

CDOM 
Background 

(Y/N) 
1 Diatom 0-200 0 0 N 
2 Selenastrum 0-200 0 0 N 
3 Scendesmus 0-200 0 0 N 
4 Cylindrospermopsis 0-200 0 0 N 
5 Synechococcus (B) 0-200 0 0 N 
6 Synechococcus (R) 0-200 0 0 N 
7 Diatom 0-200 300 0 N 
8 Selenastrum 0-200 300 0 N 

10 Cylindrospermopsis 0-200 300 0 N 
12 Synechococcus (R) 0-200 300 0 N 
13 Diatom 0-200 0 300 N 
14 Selenastrum 0-200 0 300 N 
16 Cylindrospermopsis 0-200 0 300 N 
18 Synechococcus (R) 0-200 0 300 N 
19 Diatom 200 0-300 0 N 
20 Selenastrum 200 0-300 0 N 
21 Cylindrospermopsis 200 0-300 0 N 
22 Synechococcus (R) 200 0-300 0 N 
23 Diatom 200 0 0-300 N 
24 Selenastrum 200 0 0-300 N 
25 Cylindrospermopsis 200 0 0-300 N 
26 Synechococcus (R) 200 0 0-300 N 
27 Cylindrospermopsis 0-200 0 0 Y 
28 Synechococcus (B) 0-200 0 0 Y 
29 Selenastrum 200 0-300 0 Y 
30 Cylindrospermopsis 200 0-300 0 Y 
31 Selenastrum 200 0 0-300 Y 
32 Cylindrospermopsis 200 0 0-300 Y 

†Hickling Broad sediment 
‡Lake Balaton sediment 
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Table 4.2 The various mixed phytoplankton pseudo-communities used in the mesocosm 
experiments (brown = diatom; green = chlorophyte; blue-green = cyanophyte). 
 

Treatment No. Species Composition (%) SPM Background (mg L-1) 

 Brown Green Blue-Green SPOM SPIM 
33 100 0 0 0 100 
34 80 20 0 0 100 
35 60 40 0 0 100 
36 55 45 0 0 100 
37 45 55 0 0 100 
38 40 60 0 0 100 
39 20 80 0 0 100 
40 0 100 0 0 100 
41 0 80 20 0 100 
42 0 60 40 0 100 
43 0 55 45 0 100 
44 0 45 55 0 100 
45 0 40 60 0 100 
46 0 20 80 0 100 
47 0 0 100 0 100 
48 50 50 0 0-300 100 
49 50 50 0 0 100-400 
50 0 50 50 0-300 100 
51 0 50 50 0 100-400 

 

 

4.4.3 Shipboard Spectrometry 

Shipboard reflectance spectrometry was conducted at a number of stations located on several 

of the Norfolk Broads in southeast England (UK) (52º 44’ 17” N 1º 34’ 29” E) during two lake 

cruises conducted on 22 June 2005 and 31 August 2005.  The two cruises were conducted 

synchronous with NERC ARSF campaigns during which CASI-2 imagery of the Norfolk Broads 

was acquired (see Chapter 5).  The individual Broads sampled during each cruise are listed in 

Table 3.1.  Remote-sensing-reflectance (radiance reflectance) measurements (Rrs(0+,λ)) were 

acquired from each station in accordance with the methods described in Section 3.3.1 and a 

surface water sample for subsequent chemo-taxonomic pigment analysis was collected using a 

pre-washed wide necked bottle.   

 

4.4.4 Analysis of Water Samples 

4.4.4.1 RP-HPLC Photopigment Signatures 

The water samples removed from the mesocosm experiments were filtered onto 25 mm 

diameter Whatman GF/F filter papers, wrapped in aluminium foil, and immediately frozen at -
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75ºC prior to transportation on dry ice to the reverse-phase high performance liquid 

chromatography (RP-HPLC) laboratory (SBES, University of Stirling) where chemotaxonomic 

pigment analysis was performed.  The water samples collected from the lake sampling cruises 

in the Norfolk Broads were filtered onto 47 mm diameter GF/C filter papers, wrapped in 

aluminium foil, and immediately quick-frozen in liquid-N prior to transportation back to the RP-

HPLC laboratory (SBES, University of Stirling). 

 

The configuration of the RP-HPLC system included a Dionex quaternary gradient pump 

connected to a SpherisorbTM OSD2 reverse-phase C-18 column (25 cm x 4.6 mm, 5 µm 

particles, 90-100 000 plates m-1) and a Lab Alliance UV6000LP photo diode array detector 

(PDA).  An oven was used to maintain the SpherisorbTM OSD2 reverse-phase C-18 column at 

30°C during analysis.  Pigments for RP-HPLC analysis were extracted from filter papers in 

100% methanol for 20 h in the dark at 4ºC following sonication in an ice slurry for 1 min in 15 s 

bursts) (Mantoura & Llewellyn, 1983).  Methanol extracts were clarified by centrifugation (10 

000 g for 10 min) and an ion-pairing agent (1 M ammonium acetate v/v) was added to the 

extract to improve peak resolution.  250 µl of the extract was manually injected into the RP-

HPLC system for analysis (the injection value was interfaced with a 100 µl Dionex stainless 

steel LC sample loop).   

 

The chromatic conditions for pigment separation followed the protocol of Wright et al.  (1991) 

which employs three mobile-phase solvents in a linear gradient programme (Table 4.3): Solvent 

A, 80:20 methanol: 0.5 M ammonium acetate (v/v); Solvent B, 90:10 acetronitrile: water (v/v); 

and Solvent C, 100% ethyl acetate.  A constant flow rate of 1 ml min-1 was used.  Pigment 

peaks were quantified using absorbance (mAU) at 436 nm.  The pigment peaks were identified 

through comparisons to standard reference pigments obtained from the Water Quality Institute 

(VKI), Hørsholm, Denmark and via comparisons to published pigment PDA absorption spectra, 

elution sequences and retention times (RTs).  The solvents used were HPLC grade and distilled 

water was purified using a Millipore Milli-Q system.  Ammonium acetate was A.R. grade. 
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Table 4.3 The RP-HPLC solvent system used in the (a) start-up, (b) analytical and (c) shut-
down protocols employed in the analysis of phytoplankton pigment signatures in samples from 
the mesocosm experiments and from the Norfolk Broads (after Wright et al., 1991). 
 

Time (min) 
Flow rate 

(ml min-1) 

Solvent A 

(%) 

Solvent B 

(%) 

Solvent C 

(%) 
Conditions 

(a) Start-up protocol 

0 1.0 0 0 100 Start-up 

3 1.0 0 0 100 Washing 

6 1.0 0 0 100 Linear gradient 

16 1.0 0 100 0 Linear gradient 

17 1.0 100 0 0 Ready for analysis 

(b) Analytical gradient protocol 

0 1.0 100 0 0 Injection 

4 1.0 0 100 0 Linear gradient 

18 1.0 0 20 80 Linear gradient 

21 1.0 0 100 0 Linear gradient 

24 1.0 100 0 0 Linear gradient 

29 1.0 100 0 0 Equilibrium 

(c) Shut-down protocol 

0 1.0 100 0 0 Analysis complete 

3 1.0 0 100 0 Linear gradient 

6 1.0 0 0 100 Linear gradient 

16 1.0 0 0 100 Washing 

17 1.0 0 0 100 Shut down 

 

 

4.4.4.2 Chlorophyll-a, C-phycocyanin and DOC 

The concentration of chlorophyll-a in the water samples removed from the mesocosm 

experiments was determined by spectrophotometry in the BLRI laboratory.  Pigments were 

extracted from the frozen filter papers using 100% hot methanol (spectrophotometric grade) 
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and clarified by centrifugation (10 000 g for 10 min).  Chlorophyll-a was quantified using the 

equations of Iwamura et al. (1970).  Chlorophyll-a in the samples from the Norfolk Broads was 

determined according to the method of Lorenzen & Jeffrey (1980) as detailed in Section 3.3.2.  

C-phycocyanin in the samples from the mesocosm experiments and the Norfolk Broads was 

extracted from frozen filter papers using an adaptation of the freeze-thaw method described in 

Sarada et al. (1999).  Filter papers were immersed in 50mM sodium phosphate buffer (pH 6.8) 

and subjected to 8 consecutive freeze-thaw cycles.  Following the completion of the freeze-

thaw cycles, the efficiency of the extraction was improved by subjecting the samples to 1 min 

probe sonication in an ice slurry (15 s bursts).  C-phycocyanin in the extracts was quantified 

using the equations of Bennett & Bogorad (1973) (Equation 4.1).   

 

34.5
)(474.0

)( 6526151 AA
mlmgnPhycocyaniC

−
=− −   Equation 4.1 

 

The concentration of dissolved organic carbon (DOC) in the mesocosm samples was 

determined in the BLRI laboratories via thermal catalysis at 950ºC in an Elementar High TOC 

instrument (Elementar Analysensysteme GmbH, Germany); the instrument was equipped with a 

platinum cartridge and used synthetic air as a carrier gas (Svab et al., 2005). 

 

4.4.5 Spectral Data Analysis 

4.4.5.1 Mesocosm Reflectance Measurements 

The raw hyperspectral data were interpolated to a spectral resolution of 0.5 nm and truncated 

between 400-1000 nm to exclude noisy data at the extremes of the ASD FieldSpec® 

instrument’s sampling range.  The resulting data were smoothed by passing a 5 nm running 

mean filter over the entire spectrum (after Dall'Olmo et al., 2005).  The spectral dissimilarity of 

the various phytoplankton species and the pseudo-communities was explored qualitatively 

through comparison of their hyperspectral R(λ) signatures using principal components analysis 

(PCA) and multivariate discriminant analysis (MDA).   
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PCA is often used to reduce the dimensionality of large multivariate datasets through the 

derivation of a limited number of new component variables that seek to encapsulate the 

maximum amount of variance from the original dataset as possible.  In this study, PCA was 

used to reduce the dimensionality of the large hyper- and multi-spectral datasets to enable the 

spectral dissimilarities of the individual species and pseudo-communities to be assessed in a 

visually-interpretive fashion through projection in 2-dimensional PCA-component feature space 

(after Svab et al., 2005).  The selected PCA-components strictly adhered to Kasier criterion 

(eigenvalues ≥ 1) and typically explained (cumulatively) ≥ 95% of the original dataset variance.  

MDA (also referred to as Canonical discriminant analysis) can be used to classify observation 

data into discrete categorical groups with common attributes using numerous predictor 

variables.  In this study, MDA was used to classify the R(λ) spectra obtained from the mesocosm 

experiments based upon their dominant species composition.  In essence, the MDA was used 

to examine the potential efficacy of a remote-sensing-based classification scheme for the 

determination of dominant taxa within single bloom-like and mixed phytoplankton communities. 

 

In order to perform the PCA and MDA analyses, and to gauge the effect of variable sensor 

spectral resolution on the spectral dissimilarities of the pseudo-communities (after Dekker et al., 

1992; Svab et al., 2005), it was necessary to reduce the dimensionality of the original 0.5 nm 

resolution hyperspectral dataset.  Thus the original hyperspectral dataset (hereafter deemed 

HYPER-1) was devolved to four coarser resolution datasets: (1) with a spectral resolution of 5 

nm (400-1000 nm) (hereafter deemed HYPER-2); (2) with a spectral resolution of 10 nm (400-

1000 nm) (hereafter deemed HYPER-3); (3) with a spectral resolution of 15 nm (400-1000 nm) 

(hereafter deemed HYPER-4); and (5) with a spectral resolution of 20 nm (400-1000 nm) 

(hereafter deemed HYPER-5).  The original hyperspectral dataset was also used to simulate 

the spectral response of the SeaWiFS, Landsat TM7, IKONOS and ASTER satellites.  First-

derivative analysis was applied to the HYPER-2, HYPER-3, HYPER-4, HYPER-5, SeaWiFS, 

Landsat, IKONOS and ASTER datasets in an effort to enhance latent information in the spectra 

and accentuate any dissimilarities that may be due to the presence of R(λ) features related to 

accessory pigment absorption (derivative datasets are hereafter denoted by the subscript suffix 

dR/dλ – e.g. HYPER-2dR/dλ) (Malthus & Dekker, 1995; Aguirre-Gomez et al., 2001b).  The first-
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derivative transformation was achieved following the method described in Section 3.4.3.  The 

first-derivative transformed datasets were subsequently subjected to the same PCA and MDA 

analyses used with the untransformed R(λ) data.  

 

In order to examine the potential retrieval of biomarker pigment concentrations for brown 

(fucoxanthin) and blue-green (C-phycocyanin) taxa from hyperspectral remote sensing data, 

indices were derived from the HYPER-1 datasets using the method described in Dall’Olmo et 

al. (Dall'Olmo et al., 2003) (see Section 3.3.3).  In addition, simple single-band first-derivative 

indices were developed empirically from the HYPER-1dR/dλ dataset.  Data was check for 

normality in Mintab v.14 using the Anderson-Darling method (95% confidence level).  

Correlation and least-squares regression analysis was then used to examine the relationship 

between R(λ) and dR/dλ within the various simulated multispectral and hyperspectral datasets 

and the measured concentrations of selected biomarker pigments in the mesocosm pseudo-

communities.   

 

4.4.5.2 Norfolk Broads Rrs(0+,λ) Data 

The raw Rrs(0+,λ) data were interpolated, truncated and smoothed prior to analysis according to 

the methods described in Section 4.3.5.  Indices and algorithms for the retrieval of biomarker 

pigment concentrations were developed using band-ratio, normalised-difference band-ratio and 

single-band first-derivative templates.  These indices were derived empirically using correlation 

analysis to spectrally tune and thus optimise index formulation.  Indices were also derived using 

the methods described in Dall’Olmo (2003) (see Section 3.3.3) and following continuum-

removal analysis (R´(λ)) of the original Rrs(0+,λ) data (after Kokaly & Clark, 1999; Schmidt & 

Skidmore, 2003; Mutanga et al., 2004).  Data was checked for normality in Minitab v.14 using 

the Anderson-Darling method (95% confidence level).  Linear and non-linear least-squares 

regression analysis was then used to examine the relationship between the Rrs(0+,λ), dR/dλ 

and R´(λ) spectral indices derived from the various simulated hyper- and multi-spectral datasets 

and the measured concentrations of biomarker pigments in the water samples obtained from 

the shallow lakes of the Norfolk Broads. 
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4.5 RESULTS AND DISCUSSION 

4.5.1 Pigment Signatures of Phytoplankton Colour Groups 

The RP-HPLC pigment signatures chromatograms of the various phytoplankton colour group 

taxa are depicted in the in Figure 4.5.  The chromatograms illustrate the marked variation that 

occurs in the photopigment composition of freshwater phytoplankton colour groups.  The 

photosynthetic pigment composition of the brown diatom species was comprised of chlorophyll-

a and chlorophyll-c1+2 (chlorophyll c1 and c2 co-eluted and could not be resolved in isolation); 

the xanthophylls fucoxanthin and diadinoxanthin; and the β-carotene pigment.  The 

photosynthetic pigment composition of the green chlorophyte species (Scendesmus armatus) 

was comprised of chlorophyll-a and chlorophyll-b; the xanthophylls neoxanthin, violaxanthin and 

lutein (which often co-eluted with chlorophyll-b); and the co-eluting group of α-, β-, and γ-

carotene pigments.   

 

The photosynthetic pigment composition of the blue-green cyanophyte (Cylindrospermopsis 

raciborskii) was comprised of chlorophyll-a; the xanthophyll echinenone; and the β-carotene 

pigment.  The photosynthetic pigment composition of the red cyanophyte (Synechococcus sp.) 

was comprised of chlorophyll-a; the xanthophyll zeaxanthin; and the β-carotene pigment.  The 

diverse pigment signatures of the four colour groups are consistent with the pigment signatures 

described by several previous workers including Rowan (1989), Wright et al. (1991), Jeffrey & 

Vesk (1997) and Barlow et al. (1997) (see Table 4.4). 

 

The blue-green cyanophytes species (Cylindrospermopsis raciborski and Synechococcus sp.) 

were also found to contain significant concentrations of the phycobiliprotein C-phycocyanin, 

while the red cyanophyte (Synechococcus sp.) was found to contain significant concentrations 

of the phycobiliprotein C-phycoerythrin.  These observations concur with the findings of 

Siegelman & Kycia (1978) who also noted significant concentrations of phycobiliprotein 

pigments in various species of cyanobacteria.  Example PDA absorbance spectra for 

chlorophyll-a, chlorophyll-b, chlorophyll-c1+2, fucoxanthin, lutein and zeaxanthin are detailed in 

Figure 4.6.   
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(b) Green (chlorophyte) – Scenedesmus armatus (ACT 9710) 
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(c) Blue-green (cyanophyte) – Cylindrospermopsis raciborskii (ACT 9502) 
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(d) Red (cyanophyte) – Synechococcus (ACT 9807) 
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Figure 4.5 Example chromatograms (Retention Time [min] vs. Absoprtion @ 436 nm [mAU]) 
detailing the complete photosynthetic chlorophyll-and carotenoid pigment signatures of the four 
colour group representatives (a-d). 
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Table 4.4 The class distribution of various phytoplankton photosynthetic pigments in several 
important freshwater taxa (adapted from Jeffrey & Vesk, 1997). Species not examined in the 
mesocosm experiments are also detailed for the purpose of comparison but are shown in grey 
text. 
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Chlorophylls a ● ● ● ● ● 
 b  ●    
 c1 ●     
 c2 ●  ●  ● 

Carotenes β,ε  ● ●   

 β, β ● ●  ● ● 

Xanthophylls Alloxanthin   ●   
 Diadinoxanthin ●    ● 
 Diatoxanthin ●    ● 

 Dinoxanthin     ● 
 Fucoxanthin ●     

 Lutein  ●    

 Neoxanthin  ● ●   

 Peridinin     ● 
 Violaxanthin  ●    
 Zeaxanthin  ●  ●  

Phycobiliproteins Allophycocyanins    ●  

 Phycocyanins   ● ●  

 Phycoerythrins   ● ●  

● = major pigment (>10%) ● = minor pigment (1-10%) ● = trace pigment (<1%) of total chlorophylls and 
carotenoids 
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(a) Chlorophyll-a 

 

(b) Chlorophyll-b 

 
(c) Chlorophyll-c1+2 

 

(d) Fucoxanthin 

 
(e) Lutein 

 

(f) Zeaxanthin 

 
 
Figure 4.6 Example PDA absorbance spectra of six major chlorophyll-and xanthophyll 
pigments identified in the various phytoplankton species used in the mesocosm experiments. 
 

4.5.2 Single Species Pseudo-Communities 

4.5.2.1 HYPER-1 Spectral Signatures at “Bloom-like” Concentrations 

The hyperspectral (HYPER-1) signatures of the six phytoplankton species examined in the 

mesocosm experiments at high and near-equivocal chlorophyll-a concentrations are shown in 

Figure 4.7.  It is evident that the phytoplankton colour groups examined demonstrate significant 

differences in their respective spectral characteristics in terms of both (i) the magnitude of R(λ) 

across optical and VNIR wavelengths and, (ii) the composite shape of the spectral signature 
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and the wavelength-position and magnitude of localised R(λ) peaks and troughs.  The spectra of 

all six species exhibit low R(λ) in the blue region (<500 nm) due to strong absorption by 

chlorophyll-a and carotenoid pigments.  It is notable that there is no distinct R(λ)-minimum in the 

brown diatom spectra in the c. 450-470 nm region where fucoxanthin absorption is maximal 

(fucoxanthin is a major photosynthetic pigment used as a chemotaxonomic biomarker for 

bacillariophyte species (amongst others)).  The absence of this feature is likely to be the result 

of the masking effects of the other chlorophyll and carotenoid pigments which also have 

prominent absorption maxima in this region. 

 

Figure 4.7 The HYPER-1 signatures of the six species of phytoplankton examined in the 
mesocosm experiments at broadly equilavent concentrations of chlorophyll-a.  Chlorophyll-a 
concentrations: Cylindrospermopsis = 301 mg m-3; Synechococcus (blue-green) = 211 mg m-3; 
Synechococcus (red) = 222 mg m-3; Scendesmus = 232 mg m-3; Selenastrum = 212 mg m-3; 
diatom = 462 mg m-3. 
 

The six species demonstrate increased R(λ) in the green region of the spectrum forming a local 

R(λ)-maximum at c. 530-570 nm (the “green peak”).  It is noticeable that the position of this local 

R(λ)-maximum in the brown diatom spectra is significantly red-shifted relative to the positions of 

the equivalent maxima in the spectra of the chlorophyte and cyanophyte species.  Previous 

workers have suggested changes in the position of the green peak may be related to changes 

in the floristic composition of phytoplankton communities (Schalles et al., 1998; Gitelson et al., 

1999). 
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The red cyanophyte spectrum has a unique local R(λ)-minimum located at c. 570 nm that is not 

evident in the spectra of any of the other species; the position of this feature would suggest that 

it is related to absorption by C-phycoerythrin.  Unique local R(λ)-minima can also be identified in 

the spectra of the two blue-green cyanophyte species located at c. 630 nm; these features are 

without doubt associated with the absorption maximum of C-phycocyanin.  The in-vivo 

absorption maximum of C-phycocyanin occurs at 620 nm; the shift in the position of the 

resulting C-phycocyanin-related feature in the R(λ) spectra is caused by the overlap with 

chlorophyll-a absorption.  The diatom spectrum also exhibits a unique R(λ)-minimum at c. 640 

nm; this may be related to the high concentrations of chlorophyll-c1+2 found in bacillariophytes – 

a similar feature was observed in the spectra of benthic diatoms by Meleder et al. (2003). 

 

The HYPER-1 spectra of all species exhibit local R(λ)-maxima in the red region at c. 630-660 nm 

immediately prior to the R(λ)-minimum related to chlorophyll-a absorption (c. 670-690 nm).  The 

chlorophyll-a R(λ)-minimum is common to the HYPER-1 spectra of all six phytoplankton species 

– although the exact position of the chlorophyll-a absorption feature varies – which may be a 

function of differences in the concentration of the pigment between the various species (Dekker 

et al., 1991; Dekker, 1993; Han & Rundquist, 1997).  The six phytoplankton species exhibit 

increased R(λ) at the red-edge and into the VNIR region (c. > 700 nm) (the VNIR plateaux).  R(λ) 

decreases after c. 815 nm in the spectra due to intense absorption by water. 

 

The marked variations in the magnitude of R(λ) between the various species can be attributed to 

disparities in the backscattering properties of the phytoplankton cells which is, at least in part, a 

function of cell morphology (Ahn et al., 1992; Sathyendranath et al., 2005).  The variations 

observable in the composite shape of the R(λ) signatures would seem to be a function of 

absorption by species-specific accessory pigments (e.g. C-phycocyanin and C-phycoerythrin).  

It is notable that the R(λ) spectra of species from mutual colour groups (i.e. the two blue-green 

cyanophytes and the two green chlorophytes) are near identical in terms of the composite 

shape of the spectrum but exhibit significant differences in the magnitude of R(λ). 
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Figure 4.8 The HYPER-1dR/dλ signatures of the six species of phytoplankton examined in the 
mesocosm experiments at broadly equivalent concentrations of chlorophyll-a.  Chlorophyll-a 
concentrations: Cylindrospermopsis = 301 mg m-3; Synechococcus (blue-green) = 211 mg m-3; 
Synechococcus (red) = 222 mg m-3; Scendesmus = 232 mg m-3; Selenastrum = 212 mg m-3; 
diatom = 462 mg m-3. 
 

The first-derivative spectra (dR/dλ) of the six phytoplankton species are depicted in Figure 4.8.  

The dR/dλ spectra of the six phytoplankton species further emphasise the main spectral regions 

in which the greatest dissimilarity occurs.  Peaks and troughs in the dR/dλ spectra represent 

prominent inflection points: peaks relate to negative gradients in the R(λ) spectrum (e.g. prior to 

absorption-related R(λ) features) and troughs relate to positive gradients in the R(λ) spectrum 

(e.g. due to increased backscattering).  It is notable that, in the dR/dλ spectra of both the 

cyanophyte and diatom species, peaks and troughs can be identified that are absent in the 

chlorophyte dR/dλ spectra.  The dR/dλ spectra suggests that significant spectral dissimilarities 

between the species occur in the 500-600 nm region, particularly at the colour group level, as 

both the diatom and cyanophyte spectra have prominent dR/dλ features in this region that are 

not evident in the chlorophyte dR/dλ spectrum.  In the case of the cyanophyte spectrum these 

dR/dλ features indicate the approximate position of the absorption maxima of C-phycocyanin 

and C-phycoerythrin.  It is also significant that in the dR/dλ spectra the phytoplankton species 

from the mutual colour groups (i.e. the two blue-green cyanophyte species and the two green 

chlorophyte species) have near identical dR/dλ signatures.  Thus, in this instance, the first-

derivative analysis would seem to be have been effective in normalising differences in R(λ) 
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between species from common colour groups.  The first-derivative signatures show improved 

resolution of pigment-induced changes in the spectral response of the various phytoplankton 

species; as such, first-derivative, or even nth-derivative, analysis may be a pertinent technique 

for enhancing and extracting taxonomic information from remote sensing data. 

 

4.5.2.2 HYPER-1 Spectral Signatures at Varying Concentrations of Chlorophyll-a 

The spectral response of each colour group (brown, green, blue-green and red) at incrementing 

concentrations of chlorophyll-a (c. 0-200 mg m-3) is depicted in Figure 4.9.  In this instance, a 

single species was examined from each colour group (Scendesmus armatus – green and 

Cylindrospermopsis raciborskii – blue-green).  It is notable that increases in the concentration of 

the colour group species had variable effects upon the resulting R(λ) signatures.  Increases in 

the concentration of the (brown) diatom species resulted in proportional increases in R(λ) across 

the entire VIS and VNIR spectrum.  It is notable that the increase in R(λ) in the diatom spectra 

was, with the exception of wavelengths in the vicinity of the chlorophyll-a absorption maximum, 

almost wavelength-independent and, in particular, in the region between 400 and 800 nm.  In 

contrast, increases in the concentration of the (green) chlorophyte did not result in significant 

increases in R(λ); rather, incremental increases in the concentration of the chlorophyte seemed 

to precipitate decreases in R(λ) in the blue and green regions (probably due to increased 

carotenoid and chlorophyll absorption) and also in the red region (in proximity to the chlorophyll-

a absorption maximum).   

 

In the blue-green cyanophyte spectra, R(λ) increased in proportion with the concentration of 

chlorophyll-a, but it is evident, that as the concentration of blue-green cyanophyte was 

increased, the R(λ)-minima associated with C-phycocyanin and chlorophyll-a absorption 

increased in prominence.  Similar effects can be observed in the spectra of the red cyanophyte, 

but in this instance R(λ) decreased with increasing algal concentration < 600 nm and, in 

particular, in the proximity of the C-phycoerythrin absorption feature, but increased with higher 

algal concentrations > 600 nm (but with increased prominence of the chlorophyll-a related R(λ)-

minimum). 
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(a) Brown (diatom) (b) Green (chlorophyte) 

(c) Blue-Green (cyanophyte) 

 

(d) Red (cyanophyte) 

 
Figure 4.9 The HYPER-1 R(λ) signatures of the various colour groups at incrementing 
concentrations (c. 0, 25, 50, 75, 100, 125, 150, 200 mg chlorophyll-a m-3). 
 

The PCA transformation of the various colour groups at incremental concentrations of 

chlorophyll-a (c. 0-200 mg m-3) is depicted in Figure 4.10.  The PCA transformation enables the 

spectral dissimilarities of the various colour groups to be expressed in a qualitative, but visually-

interpretative, format.  The R(λ) spectra of the brown diatom exhibited the greatest response to 

increasing concentrations of chlorophyll-a from the initial clear-water state.  The blue-green and 

red cyanophytes also demonstrated significant change in their spectral response with 

increasing chlorophyll-a.  In contrast, the green chlorophyte demonstrated the weakest spectral 

response with incremental increases in the concentration of chlorophyll-a.   

 

The extent to which incrementally-increasingly the concentration of chlorophyll-a for each colour 

group specimen moderated the resulting spectral signature would appear to be largely a 

function of the absorption and, more prominently, backscattering efficiency of each colour group 
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species.  Different species of phytoplankton are recognised to have different scattering 

efficiencies (Ahn et al., 1992).  Kirk (1994) noted that the backscattering coefficients of 

freshwater phytoplankton can vary between 0.044 and 0.535 m2 mg chlorophyll-a-1 (550 or 590 

nm).  Kirk (1994) also noted that diatoms and some cyanobacteria species can often exhibit 

higher backscattering due to siliceous cell walls (diatoms) or the presence of refractive 

intracellular gas vacuoles (cyanophytes).  This would explain the significant variations noted 

here and, in particular, in the case of the diatom spectra where R(λ) was up to four times greater 

than that observed from pseudo-communities composed of the other colour group species. 

 

Figure 4.10 PCA transformation of the HYPER-2 dataset illustrating the degree of spectral 
dissimilarity between the four phytoplankton colour groups in response to incremental increases 
in the concentration of chlorophyll-a (0-200 mg m-3) 
 

It is also notable that dissimilarities between the colour group species are more subtle at low 

concentrations of chlorophyll-a but become more prominent as the concentration of chlorophyll-

a increases until very distinct spectral end-members are formed.  This observation suggests 

that the discrimination of different bloom-forming colour group species, not unexpectedly, may 

be more easily achieved at high concentrations of chlorophyll-a.  Kutser et al. (2006) noted that 

↑chlorophyll-a 
↑chlorophyll-a 
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the low concentration of C-phycocyanin in marine waters made the detection of blue-green 

species problematic unless concentrated blooms occurred; this suggests that resolution of 

phytoplankton species composition information from remotely sensed data may be dependent 

on the exceedance of a minimum detection limit (MDL) for specific diagnostic pigments.  Kutser 

(2006) suggests that in CASE II coastal waters the MDL for C-phycocyanin may be in the order 

of 10-30 mg m-3.  The biomarker pigment MDL capabilities of remote sensing instruments would 

have implications for the potential use of such technologies in early-warning systems for HAB 

development and, thus, the results obtained here would seem to be of relevance in this context. 

 

4.5.3 Mixed Species Pseudo-Communities 

The HYPER-1 signatures of the mixed pseudo-communities are shown in Figure 4.11; the 

mixed species R(λ) spectra further illustrate the extent to which changes in the species 

composition of a phytoplankton community can be resolved through changes in spectral 

response and, importantly in this instance, largely independent of the chlorophyll-a 

concentration.  It is notable, for example, that increases in diatom concentration in the 

brown/green pseudo-community precipitated consequent increases in R(λ) despite a near 

constant chlorophyll-a concentration being maintained.  The other notable effects of increased 

diatom abundance include the red-shift of the R(λ)-maximum between 500 and 600 nm and the 

greater prominence of the local R(λ)-maximum located at c. 635 nm.   

 

In CASE II waters and, in particularly shallow lakes, backscattering associated with tripton, or 

the lake bottom, may potentially mask increases in R(λ) arising from floristic changes within the 

phytoplankton community.  Therefore, increased backscattering, and thus R(λ), attributable to 

increasing diatom abundance may not be an effective means of detecting such compositional 

changes in natural waters.  In this context, the observed red-shift of the green-peak feature may 

be more useful within natural phytoplankton communities.  However, the cause(s) of the shift in 

the position of the green peak and, potentially, in relation to changes in the floristic composition 

of the phytoplankton community, has not been examined for natural waters and, as such, it 

would seem pertinent to examine this effect further in future studies. 
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In similarity, increased blue-green cyanophyte abundance also resulted in increases in R(λ) 

being observed from the green/blue-green pseudo-community.  However, the major effect of 

increasing blue-green composition was the progressive deepening of the R(λ)-minimum related 

to C-phycocyanin absorption at c. 630 nm and the emerging prominence of the R(λ)-maximum at 

c. 650 nm subjugating the R(λ)-minima associated with C-phycocyanin and chlorophyll-a 

absorption.  In this context, the proportional response in the depth of the C-phycocyanin 

absorption feature observed with increased blue-green composition would seem to provide an 

obvious means to the identification and quantification of blue-green cyanobacteria in lakes and, 

indeed, other inland waters.  Similar conclusions have been reached by other workers (Dekker, 

1993; Schalles & Yacobi, 2000; Simis et al., 2005; Simis et al., 2007). 

 

(a) 

 

   (b) 

 
Figure 4.11 The HYPER-1 spectral signatures of (a) the transition from a brown (diatom) 
dominated pseudo-community to green (chlorophyte) dominated pseudo-community and (b) the 
transition from a green (chlorophyte) dominated pseudo- community to blue-green (cyanophyte) 
dominated pseudo-community. Total chlorophyll-a = c. 200 mg m-3. 
 

The score plot derived from the PCA transformation of the HYPER-2 signatures of the mixed 

pseudo-communities is shown in Figure 4.12.  The PCA score plot shows the monospecific 

pseudo-communities (i.e. 100 B, 100 G, 100 BG) forming well defined polar end-members in 

PCA-component feature space with the intermediate mixed pseudo-communities distributed in 

a near linear fashion between these polar end-members.  Significantly, the PCA score plot 

illustrates that the spectral dissimilarity between the various pseudo-communities was greatest 

when the floristic assemblage was dominated by a single phytoplankton species (i.e. 80-100% 
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total abundance).  The spectral dissimilarity was not as pronounced when the pseudo-

community contained two near co-dominant species.   

 

 

Figure 4.12 PCA score plots for the HYPER-2 dataset showing the spectral transition from a 
brown (diatom) (B) dominated pseudo-community through a green (chlorophyte) (G) dominated 
pseudo-community to a blue-green (cyanophyte) (BG) dominated pseudo-community.  Symbol 
numbers relate to the approximate percentage abundance (%) of each colour group.  Total 
chlorophyll-a c. 200 mg m-3.  PCA1 explained 88.2% and PCA2 10.5% of the total statistical 
variance of the original HYPER-1 dataset. 
 

The score plot from the PCA transformation of the HYPER-2dR/dλ dataset is shown in Figure 

4.13.  The objective of utilising first-derivative analysis was normalise the variance in R(λ) 

between the various mixed pseudo-communities in an attempt to enhance latent spectral 

information associated with the presence of diagnostic biomarker pigments.  Thus, it is 

noteworthy that the pseudo-communities remain spectrally distinct and, in fact, it could be 

argued that the feature space separation of the pseudo-communities was improved following 

the first-derivative transformation.  The first-derivative transformation also improved the linearity 

of the distribution of the intermediate pseudo-communities of mixed composition between the 

pure end-member pseudo-communities. 
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Figure 4.13 PCA score plot for the first two extracted components from the HYPER-2dR/dλ 
dataset for the transition from a brown (diatom) (B) dominated pseudo-community through a 
green (chlorophyte) (G) dominated pseudo-community to a blue-green (cyanophyte) (BG) 
dominated pseudo-community.  Symbol numbers relate to the approximate percentage 
abundance (%) of each colour group.  Total chlorophyll-a c. 200 mg m-3.  PCA1 explained 
68.0% and PCA2 33.1% of the total statistical variance of the original HYPER-1 dataset. 
 

The PCA transformation of the HYPER-2dR/dλ dataset suggests that subtle changes in the shape 

of Rrs(0,λ) measurements from lakes, such as those resulting from the presence of diagnostic 

absorption features, could be potentially related to underlying change in the floristic composition 

of phytoplankton communities.  In shallow lakes, where Rrs(0,λ) is strongly influenced by the 

other optically active components (particularly tripton backscattering), the capability to derive 

taxonomic information from what may be subtle, but diagnostic, changes in the shape of 

Rrs(0,λ) signatures, would be highly advantageous.  In this context, the use of first-derivative 

and, indeed, nth-derivative, analysis should be further explored in future studies concerned with 

the assessment of phytoplankton composition in lakes. 
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4.5.4 The Effect of Other Optically Active Components 

The coincidental presence of other optically active components (e.g. SPIM, SPOM, CDOM) can 

significantly attenuate the Rrs(0,λ) signatures of shallow lakes to the extent that attempts to 

retrieve underlying pigment concentrations from remote sensing data products have often 

proved problematic (Svab et al., 2005; Tyler et al., 2006).  The coincidental presence of other 

optically active components is likely to have a similar detrimental effect on the extraction of 

taxonomic information from remotely sensed data.  In this study, this was examined through the 

controlled addition of SPM and water rich in DOC to the pseudo-communities simulated in the 

mesocosm environment. 

 

(a) (b) 

 
Figure 4.14 The spectral characteristics of (a) SPIM (Lake Balaton) and (b) SPOM (Norfolk 
Broads) type sediments used in the mesocosm experiments at concentrations of 0-300 mg l-1 
and 0-500 mg L-1 respectively (the axes have been standardised to aid comparability). 
 

The effect of coincidental concentrations of SPM was examined using two sediments of 

contrasting mineralogy.  The spectral characteristics of the inorganic (SPIM-like) and organic 

(SPOM-like) sediment types used in the mesocosm experiments are depicted in Figure 4.14 at 

various concentration increments.  It is clear that the two sediment types have very different 

spectral properties.  Increases in the concentration of the predominantly inorganic sediment 

obtained from Lake Balaton resulted in significant increases in R(λ) from the mesocosm water 

column between 400-800 nm.  In complete contrast, the more organic sediment from the 

Norfolk Broads demonstrated almost negligible increases in R(λ) relative to the sediment from 

Lake Balaton.  The observed differences in the spectral characteristics of the two sediment 
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types is likely to be due to the fact the inorganic type sediment from Lake Balaton will invariantly 

have a far greater backscattering efficiency than the more organic sediment from the Norfolk 

Broads which, in contrast, promotes strong absorption of the downwelling ambient light field. 

 

The effect of coincidental concentrations of SPIM and SPOM on the spectral response of the 

brown, green and blue-green colour groups is shown in Figure 4.15.  Similarly, the effect of 

coincidental concentrations of SPIM and SPOM on the spectral response of the mixed pseudo-

communities is shown in Figure 4.16.  It is notable that the two sediment types have very 

different effects upon the R(λ) measured from the various single and mixed pseudo-

communities.  The incremental additions of SPIM into the pseudo-communities resulted in large 

increases in R(λ) across the VIS/VNIR spectrum, but interestingly prompted little change in the 

shape of the spectral signatures.  Moreover, and arguably more significantly, the introduction of 

SPIM into the pseudo-communities can be seen to increase the prominence of the R(λ)-minima 

associated with the absorption maxima of chlorophyll-a and C-phycocyanin.   

 

In the literature, it has often been suggested that high and variable concentrations of SPIM can 

mask pigment-related features in Rrs(0,λ) spectra and, as such, SPIM is considered to be a 

major obstacle to the remote-sensing-based estimation of pigment concentrations in lakes 

(Quibell, 1991; Svab et al., 2005).  Indeed, the results presented here demonstrate that SPIM 

can strongly attenuate the spectral response of lake waters.  However, it is notable that the 

effect of increased SPIM concentration on the R(λ) measured from the mesocosm pseudo-

communities was largely wavelength-independent and, even at very high concentrations of 

SPIM, the R(λ)-minima associated with pigment absorption maxima were preserved.  This 

suggest that, even in lakes with high and variable concentrations of SPIM, it should be possible 

to resolve the diagnostic Rrs(0,λ) features associated with phytoplankton pigments and, further, 

provided the effects of SPIM can be satisfactorily removed, it should remain possible to quantify 

pigment concentrations under such conditions. 
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(a) Brown with increasing SPIM 

 

(b) Brown with increasing SPOM 

 
(c) Green with increasing SPIM 

 

(d) Green with increasing SPOM 

 
(e) Blue-green with increasing SPIM 

 

(f) Blue-green with increasing SPOM 

 
 
Figure 4.15 The effect of SPIM and SPOM concentrations (0-300 mg L-1) on the spectral 
response of the brown, green and blue-green colour group taxa. 
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(a) Brown/Green with increasing SPIM 

 

(b) Brown/Green with increasing SPOM 

 
(c) Green/Blue-green with increasing SPIM 

 

(d) Green/Blue-green with increasing SPOM 

 
 
Figure 4.16 The effect of coincidental concentrations of SPIM and SPOM (0-300 mg L-1) on the 
spectral characteristics of mixed phytoplankton pseudo-communities. 
 

In comparison, the effects of SPOM on the pseudo-communities were somewhat varied.  

Whilst, the SPIM precipitated almost uniform increases in R(λ) across the VIS/VNIR spectrum, 

the introduction of SPOM into the mesocosm resulted in wavelength-dependent decreases in 

R(λ) < 600 nm (i.e. due to increased absorption).  These effects were most evident in the 

pseudo-community treatments composed of diatoms, where the high R(λ) derived from the 

siliceous cell walls of the algae was increasingly attenuated through the introduction of SPOM.  

Conversely, at wavelengths > 700 nm, SPOM appeared to promote small increases in R(λ) 

(probably due to the limited inorganic material in the Norfolk Broad sediment).  More 

significantly, in contrast to the effects observed with SPIM, it is evident that coincidental 

concentrations of SPOM, resulted in radical modifications to the shape of the R(λ) signatures.  

This observation suggests that high and variable concentrations of (non-algal) SPOM may 
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present a significant barrier to the retrieval of taxonomic information from remote sensing data 

and, in particular where spectral features in the VIS < 600 nm are vital to the differentiation of 

taxonomic groups.  In fertile shallow lakes, such as the Norfolk Broads, where there is often 

substantial concentrations of (non-algal) SPOM in the system (often in the form of detritus), the 

results suggest that it may prove difficult to adequately resolve some taxonomically-significant 

Rrs(0,λ) features. 

 

The effect of CDOM on the spectral response of the phytoplankton colour group species (green 

and blue-green species only) was assessed by suspending the cultured species in humic water 

from the Western basin of Lake Balaton (Figure 4.17).  The concentration of DOC in the water 

obtained from the Western basin of Lake Balaton was approximately 12.5 mg L-1.  The effect of 

CDOM on the spectral response of the various phytoplankton species is shown in Figure 4.17.  

It is notable, but not unexpected, that the introduction of CDOM into the pseudo-communities 

resulted in the strong attenuation of R(λ) in the short-wavelength VIS regions of the spectrum.  It 

can be clearly seen that the R(λ) spectra of the phytoplankton species are ‘flatter’ than the 

comparable signatures measured in the absence of CDOM, particularly at wavelengths < 600 

nm where CDOM absorption is most intense (Lindell et al., 1999).  CDOM also caused severe 

attenuation of the green peak feature (c. 550 nm).   

 

CDOM absorption also had a perceivable impact on the R(λ)-minimum related to C-phycocyanin 

absorption and resulted in the feature decreasing in prominence relative to that observed in the 

absence of CDOM.  However, it is notable that the C-phycocyanin related R(λ)-minimum feature 

could still be clearly resolved in the humic water.  The R(λ)-minimum related to chlorophyll-a 

absorption is not affected by the presence of CDOM as it occurs at longer wavelengths (c. 680 

nm) where CDOM absorption is not intense.  Thus, the results suggest that in shallow lakes 

with high concentrations of CDOM (i.e. dystrophic systems), the resolution of taxonomically 

significant features < 600 nm may be problematic. 
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(a) Green with increasing SPIM 

 

(b) Green with increasing SPIM in humic 
water 

 
(c) Green with increasing SPOM 

 

(d) Green with increasing SPOM in humic 
water 

 
(e) Blue-green with increasing SPIM 
 

 

(f) Blue-green with increasing SPIM in humic 
water 

 
(g) Blue-green with increasing SPOM 
 

 

(h) Blue-green with increasing SPOM in 
humic water 

 
 
Figure 4.17 The effect of coincidental CDOM (DOC = 12.5 mg L-1) on the spectral signatures of 
green and blue-green pseudo-communities with varying concentrations of SPIM and SPOM. 
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4.5.5 The Effect of Variable Sensor Spectral Resolution 

The effect of variable sensor resolution on the R(λ) signatures of the four ‘pure’ colour group 

end-member pseudo-communities is depicted in Figure 4.18.  It is evident that sensor spectral 

resolution is pivotal to the extent to which the various colour group taxa can be differentiated.  

Sufficient spectral detail is encapsulated within the hyperspectral datasets (HYPER-2, -3, -4, -5) 

to suggest that the various colour groups are certainly resolvable with data comprised of 

numerous high resolution (c. 5-20 nm) spectral bands.  The various colour group taxa would 

also appear to be spectrally dissimilar in the multispectral SeaWiFS dataset; given that the 

channel configuration of the SeaWiFS sensor is optimised for ocean colour monitoring, this is 

perhaps not unexpected.  It would appear however that the coarser spectral resolutions of the 

Landsat TM, IKONOS and ASTER sensors would be prohibitive to the differentiation of the 

various colour groups given the lack of spectral detail encapsulated in these datasets.   

 

The effect of variable sensor resolution on the hyper- and multi-spectral dR/dλ signatures of the 

four ‘pure’ colour group end-member pseudo-communities is shown in Figure 4.19.  In similarity 

to the effects observed on the R(λ) signatures of the colour group taxa, the dissimilarity of the 

dR/dλ signatures was also highly dependent upon the spectral capabilities of the simulated 

sensors.  The hyperspectral dR/dλ datasets appear to retain sufficient spectral information to 

enable the discrimination of the various colour group taxa.  However, as the spectral resolution 

of the simulated datasets declines, the loss of information would seem to greatly impair the 

degree to which the various colour groups can be discerned using the first-derivative analysis 

approach, to the extent that in the datasets of low spectral resolution (i.e. Landsat TM, IKONOS 

and ASTER) the dR/dλ signatures demonstrate little variation. 

 

The influence of variable sensor spectral resolution on the spectral signatures of the various 

mixed phytoplankton pseudo-communities for the hyper- and multi-spectral R(λ) and dR/dλ 

datasets are shown in Figure 4.20 and Figure 4.21 respectively.  These effects are further 

examined through the comparison of the score plots and eigenvalues derived from PCA 

analysis in Figure 4.22 and Figure 4.23; Table 4.5 contains the corresponding component 
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eigenvalues derived from the PCA analysis.  It is even more evident from Figures 4.22 and 4.23 

that sensor spectral resolution has a significant effect upon the spectral dissimilarity of the 

mixed phytoplankton pseudo-communities.  The hyperspectral datasets demonstrate the 

greatest spectral separation between the various pseudo-communities with the end-member 

pseudo-communities (i.e. 100 B, 100 G, 100 BG) clearly defined.  Moreover, the pseudo-

communities of intermediate composition can be seen to be distributed in a near linear fashion 

between these polar end-members.   

 

However, the spectral distinction between the pseudo-communities progressively declines with 

decreasing spectral resolution to the extent that the various pseudo-communities are no longer 

discernable in the simulated multispectral Landsat TM, IKONOS and ASTER datasets.  At 

these poorer spectral resolutions, the polar distribution of the ‘pure’ end-member pseudo-

communities in component space is lost and the remaining variability would appear to be 

merely an artefact of residual differences in R(λ) across the spectrum.  The clear horseshoe 

effects apparent in the distribution of the pseudo-communities in component space in the R(λ) 

datasets is further evidence of the loss of spectral separation.   

 

In the same manner, the distribution of pseudo-communities in component space in the dR/dλ 

datasets shows excellent separation between the ‘pure’ end-members and with improved 

linearity in the distribution of the intermediate pseudo-communities in the hyperspectral and 

SeaWIFS dR/dλ datasets.  However, once the spectral resolution of the simulated sensors 

declines beyond that of the SeaWiFS satellite, the pseudo-communities are again no longer 

spectrally distinct. 
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(a) HYPER-2 

 

(b) HYPER-3 

 
(c) HYPER-4 

 

(d) HYPER-5 

 
(e) SeaWiFS 

 

(f) Landsat TM 

 
(g) IKONOS 

 

(h) ASTER 

 
 
Figure 4.18 The effect of variable sensor spectral resolution: the R(λ) hyperspectral and 
multispectral signatures of the ‘pure’ colour group end-member pseudo-communities. 
 

 

 



 

 148 

 

(a) HYPER-2dR/dλ 

 

(b) HYPER-3dR/dλ 

 
(c) HYPER-4dR/dλ 

 

(d) HYPER-5dR/dλ 

 
(e) SeaWiFSdR/dλ 

 

(f) Landsat TMdR/dλ 

 
(g) IKONOSdR/dλ 

 

(h) ASTERdR/dλ 

 
 

Figure 4.19 The effect of variable sensor spectral resolution: the dR/dλ hyperspectral and 
multispectral signatures of the ‘pure’ colour group end-member pseudo-communities. 
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(a) HYPER-2 

 

(b) HYPER-3 

 
(c) HYPER-4 

 

(d) HYPER-5 

 
(e) SeaWiFS 

 

(f) Landsat TM 

 
(g) IKONOS 

 

(h) ASTER 

 
 
Figure 4.20 The effect of variable sensor spectral resolution: hyperspectral and multi-spectral 
R(λ) signatures of the mixed pseudo-communities (A – ‘pure’ brown community; B – ‘pure’ blue-
green community; C – ‘pure’ green community). 
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(a) HYPER-2dR/dλ 

 

(b) HYPER-3dR/dλ 

 
(c) HYPER-4dR/dλ 

 

(d) HYPER-5dR/dλ 

 
(e) SeaWiFSdR/dλ 

 

(f) Landsat TMdR/dλ 

 
(g) IKONOSdR/dλ 

 

(h) ASTERdR/dλ 

 
 
Figure 4.21 The effect of variable sensor spectral resolution: hyperspectral and multispectral 
dR/dλ signatures of the mixed pseudo-communities. 
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(a) HYPER-2 

 

(b) HYPER-3 

 
(c) HYPER-4 

 

(d) HYPER-5 

 
(e) SeaWiFS 

 

(f) Landsat TM 

 
(g) IKONOS 

 

(h) ASTER 

 
 
Figure 4.22 PCA score plots for the various simulated hyperspectral and multispectral R(λ) 
datasets derived from the mixed species pseudo-communities.  Open circles and vectors 
indicate spectral trends between end-member pseudo-communities. 
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(a) HYPER-2dR/dλ 

 

(b) HYPER-3dR/dλ 

 
(c) HYPER-4dR/dλ 

 

(d) HYPER-5dR/dλ 

 
(e) SeaWiFSdR/dλ 

 

(f) Landsat TMdR/dλ 

 
(g) IKONOSdR/dλ 

 

(h) ASTERdR/dλ 

 
 
Figure 4.23 PCA score plots for the various simulated hyperspectral and multispectral dR/dλ 
datasets from the mixed species pseudo-communities.  Open circles and vectors indicate 
spectral trends between end-member pseudo-communities. 
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Table 4.5 Eigenvalues of the first two extracted components derived from the PCA of the 
simulated R(λ) and dR/dλ datasets obtained from the mixed species pseudo-communities and 
the proportion and cumulative variance explained (%). 
 
 PCA1 PCA2 

Eigenvalue Proportion Cumulative Eigenvalue Proportion Cumulative 

 R(λ) dR/dλ R(λ) dR/dλ R(λ) dR/dλ R(λ) dR/dλ R(λ) dR/dλ R(λ) dR/dλ 

HYPER-2 105.9 41.6 0.88 0.35 0.88 0.35 12.6 38.7 0.11 0.33 0.99 0.68 

HYPER-3 53.0 24.3 0.88 0.41 0.88 0.41 6.3 19.8 0.11 0.34 0.99 0.75 

HYPER-4 35.4 18.5 0.88 0.47 0.88 0.47 4.2 12.2 0.11 0.31 0.99 0.79 

HYPER-5 26.5 14.0 0.89 0.48 0.89 0.48 3.2 9.5 0.11 0.33 0.99 0.81 

SeaWiFS 7.9 3.7 0.98 0.53 0.98 0.53 0.99 2.5 0.01 0.35 0.99 0.88 

Landsat 4.0 1.9 0.99 0.63 0.99 0.63 0.01 1.0 0.00 0.35 0.99 0.97 

IKONOS 4.0 1.6 0.99 0.52 0.99 0.52 0.01 1.3 0.00 0.44 0.99 0.96 

ASTER 3.0 1.1 0.99 0.54 0.99 0.54 0.01 0.91 0.00 0.46 0.99 1.00 

 

It is evident that the spectral differentiation of the various single and mixed pseudo-communities 

is highly dependent upon the spectral resolution of the dataset.  These experimental findings 

support the work of Kutser et al. (2006) who evidenced that the detection of C-phycocyanin in 

cyanobacterial blooms was not possible with broadband multispectral satellites because the 

bandset configuration does not permit the resolution of the diagnostic R(λ)-minimum at c. 620-

630 nm that is associated with C-phycocyanin.  The results obtained here would seem to 

suggest that, in terms of the necessary sensor specifications, the minimum spectral resolution 

required to permit any form of taxonomic differentiation would be comparable to that of the 

SeaWiFS ocean colour satellite.  Moreover, it is apparent that the ability to resolve the various 

colour group species is improved with the utilisation of hyperspectral data.  In this context, of 

the current operational satellite systems, the NASA Hyperion instrument on the EO-1 satellite 

would seem the most appropriate spaceborne platform from which to pursue this research.  

Alternatively, the new generation of hyperspectral airborne instruments (e.g. AISA Eagle, 

HyMap) may also hold potential for the remote sensing of phytoplankton composition in shallow 

lakes. 

 

4.5.6 MDA-based Classification of Algal Bloom Composition 

MDA was used to classify the R(λ) and dR/dλ spectra on the basis of dominant phytoplankton 

composition.  The rationale for this approach is that, in the event that quantitative measures of 

phytoplankton composition cannot be derived from remotely sensed data, it may be possible to 
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pursue more qualitative, but still informative, methods of assessing phytoplankton community 

structure in lakes.  Similar schemes are currently being pioneered using spectral library 

classification schemes for the early-detection of HAB in marine and coastal waters (Miller et al., 

2006). 

 

Linear MDA, with and without cross-validation analysis, was performed on the multispectral R(λ) 

(SeaWiFS, Landsat TM, IKONOS and ASTER) and mutli- and hyperspectral dR/dλ datasets 

(HYPER-3dR/dλ, HYPER-4dR/dλ, HYPER-5dR/dλ SeaWiFSdR/dλ, Landsat TMdR/dλ, IKONOSdR/dλ and 

ASTERdR/dλ) and the resulting classification accuracies for each sensor were compared 

(covariance matrices were assumed to be equal).  MDA could not be performed on the HYPER-

2, HYPER-3, HYPER-4, HYPER-5 and HYPER-2dR/dλ datasets because the datasets were too 

highly correlated following the the subtraction of group means to be included in the MDA model.  

Cross-validation was used to provide a conservative estimate of the classification accuracy and 

account for optimistic-apparent-errors incurred when the data to be classified are also used to 

train the classification model.  Six discrete output classes, based upon the dominant species 

composition of the pseudo-community, were designated arbitrarily prior to analysis and are 

detailed in Table 4.6.   

 

Table 4.6 The output classes designated for the MDA analysis based upon dominant species 
composition 
 

Output Class Class Description 
B Brown taxa dominant 
G Green taxa dominant 

BG Blue-green taxa dominant 
R Red taxa dominant 

B-G Brown and green taxa co-dominant 
G-BG Green and blue-green taxa co-dominant 

 

Non-cross-validated and cross-validated classification accuracies for the R(λ) and dR/dλ 

datasets used in the MDA analysis are shown in Figure 4.24.  It is notable that the classification 

accuracies achieved show significant variations between the respective datasets.  The highest 

classification accuracies were achieved with the hyperspectral dR/dλ datasets (proportion of 

correct classifications (cross-validated) > 0.9).  Notably, the highest classification accuracy was 
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achieved with the highest spectral resolution first-derivative dataset, HYPER-3dR/dλ, for which 

the proportion of correct classifications = 1.00 and 0.92 (no cross validation and cross-

validation respectively).   

 

 

Figure 4.24 Algal bloom species composition MDA classification accuracies for the R(λ) and 
dR/dλ datasets (dR/dλ datasets are denoted by DR) with and without cross-validation. 
 

It is notable that the classification accuracies, for both the R(λ) and dR/dλ datasets, decreased 

with corresponding decreases in the spectral resolution of the sensor to the extent that the 

proportion of correct classifications for the ASTERdR/dλ dataset were as low as 0.33 and 0.28 

(no cross-validation and cross-validation respectively).  This observation again stresses the 

importance of utilising high spectral resolution imagery products when attempting to 

discriminate between phytoplankton communities of varied species composition.  Comments to 

the same effect have been made by previous authors and it would now seem clear that the 

increased provision of hyperspectral data products will be key to the advancement of 

techniques to detect phytoplankton community structure using remote sensing data (Kutser et 

al., 2006). 

 

Classification matrices for selected datasets (SeaWiFS and ASTER) are shown in Table 4.7.  

Closer examination of the classification matrices derived from the MDA analyses reveals some 
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clear trends in model performance.  The model misclassifications and, in particular, in the case 

of the multispectral R(λ) and dR/dλ datasets, were often associated with pseudo-communities 

dominated by green chlorophytes.  The higher misclassification rate observed for the 

chlorophyte-dominated pseudo-communities was probably due to the fact that the chlorophyte 

spectral signature lacks diagnostic R(λ)-minima associated with biomarker pigment absorption 

features.  This contrasts to the classification results for the pseudo-communities dominated by 

red cyanophytes, which have a prominent R(λ)-minimum related to C-phycoerythrin, where no 

misclassifications were observed.   

 

Table 4.7 Example MDA with cross-validation classification matrices for the SeaWiFS and 
ASTER datasets. 
 

SeaWiFS  Actual Colour Group 
  B G BG R B-G G-BG Total 

B 6 2 0 0 0 0  
G 2 14 10 0 1 0  

BG 4 10 19 0 1 4  
R 0 0 0 8 0 1  

B-G 0 8 1 0 12 0  

Designated 
Colour 
Group 

G-BG 0 0 0 0 0 9  
n  12 34 30 8 14 14 112 

n correct  6 14 19 8 9 9 78 
Proportion  0.500 0.412 0.633 1.000 0.643 0.643 0.696 

ASTER   
  B G BG R B-G G-BG Total 

B 7 8 9 0 0 0  
G 0 0 4 0 0 2  

BG 1 6 5 0 0 4  
R 1 6 9 8 0 0  

B-G 3 11 3 0 12 1  

Designated 
Colour 
Group 

G-BG 0 3 0 0 2 7  
n  12 34 30 8 14 14 112 

n correct  7 0 5 8 12 7 39 
Proportion  0.583 0.000 0.167 1.000 0.857 0.500 0.348 

 

The MDA classification accuracies were also good for those pseudo-communities dominated, or 

co-dominated, by blue-green cyanophyte species.  This is an important observation as it 

suggests that an image classification approach could be used to identify the development of 

cyanobacterial HABs in lakes.  The development of such a tool would be pertinent for the rapid 

and expeditious assessment of HAB development in lakes and other inland waters.  The work 

of Miller et al. (2006), whereby a classification model has been developed for algal blooms in 

coastal waters, indicates that such an approach can enable the rapid diagnosis of algal bloom 

composition and thus enable the prompt dissemination of information to those charged with the 
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management of coastal resources and the mitigation of risks associated with HABs.  The 

development of similar approaches for lakes would now seem timely and, with the improved 

provision of near-real-time hyperspectral data products, increasingly achievable. 

 

4.5.7 Estimating Biomarker Pigment Concentrations 

The potential of remote sensing for retrieving concentration estimates of the biomarker 

pigments fucoxanthin and C-phycocyanin was examined using the data derived from the 

mesocosm experiments.  The HYPER-1 and HYPER-1dR.dλ mixed species pseudo-community 

datasets were amalgamated into four further datasets: (1) mixed species with no SPM, (2) 

mixed species with SPIM, (3) mixed species with SPOM, and (4) mixed species with SPIM and 

SPOM.  R(λ)-based indices for the estimation of chlorophyll-a, fucoxathin and C-phycocyanin 

were derived following the methodology outlined in Dall’Olmo et al. (2003) (see Equation 4.2) 

from the dataset with no SPM background.  In order to assess the effect of other bio-optically 

active components on pigment estimation the derived indices were subsequently validated 

against the datasets with varying SPM background concentrations. 

 
Pigment Content ∝  [(Rλ1

-1 - Rλ2
-1) x Rλ3]   Equation 4.2 

 
Initially, for all pigment indices, the values of Rλ2 and Rλ3 were adopted from the chlorophyll-a 

index proposed by Dall’Olmo et al. (2003) (Rλ2 = 710; Rλ3 = 750); the optimum value of Rλ1 for 

each index was then derived empirically.  The values of Rλ2 and Rλ3 were then further refined, 

again in an empirical manner.  The initial values of Rλ2 and Rλ3 were retained for the fucoxanthin 

index.  The optimum value of Rλ2 for the C-phycocyanin index was found to be closer to 660 nm 

(i.e. centred on the peak trailing the C-phycocyanin absorption feature). 

 

The optimum values of Rλ1 for the chlorophyll-a and C-phycocyanin indices were found to be 

670 nm and 630 nm respectively; these wavelengths reflect the position of the R(λ)-minima 

associated with the chlorophyll-a and C-phycocyanin absorption maxima and, as such, the 

selection of these wavelengths intimates towards the existence of an underlying mechanistic 

basis for the derived indices despite their largely empirical formulation.  Indeed, the chlorophyll-

a index derived in this instance was identical to the one formulated by Dall’Olmo et al. (2003) 
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using data from CASE II waters which would seem to suggest that the mesocosm experiments 

were providing a relatively accurate replication of the spectral characteristics of natural shallow 

lake waters.   

 

In the instance of fucoxanthin, because no distinct R(λ)–minima related to pigment absorption 

could be identified, Rλ1 was instead centred on the green peak R(λ)-maximum (575 nm) that was 

previously noted to respond to variations in diatom abundance; centring Rλ1 in the region of the 

in vivo fucoxanthin absorption maximum (450-470 nm) did not result in the derivation of an 

effective index for pigment quantification. 

 

The dR/dλ indices were also derived using a semi-empirical approach.  In similarity to the R(λ)  

indices, the dR/dλ indices exploited wavelengths closely associated with the in-vivo pigment-

specific absorption maxima of chlorophyll-a (670 nm) and C-phycocyanin (645 nm) and, for the 

dR/dλ fucoxanthin index, the green peak R(λ)-maximum (565 nm).  dR/dλ indices have been 

shown to be effective in reducing the attenuating effects of (non-algal) SPM on the retrieval of 

pigment concentrations from remotely sensed data (Malthus & Dekker, 1995; Han & Rundquist, 

1997; Han, 2005).   

 

In this instance, dR/dλ indices were examined as a means of minimising the effect of SPIM and 

SPOM on the estimation of pigment concentrations.  The chlorophyll-a dR/dλ index used here is 

similar to those described by Malthus & Dekker (1995) which again suggests the mesocosm 

experiments were emulating the optical characteristics of natural shallow lakes. 
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Table 4.8 Correlation coefficients (r) for the relationships between the spectral reflectance and derivative reflectance indices and pigment concentrations 
in the mesocosm pseudo-communities (chlorophyll-a = Chl-a; fucoxanthin = Fuco; C-phycocyanin = C-PC; N/S = not significant). 
 

   SPM Background 

   NONE SPIM SPOM SPIM and SPOM 

 Target 
Pigment 

Optimum Index Chl-a Fuco C-PC Chl-a Fuco C-PC Chl-a Fuco C-PC Chl-a Fuco C-PC 

R(λ) Chl-a [(R675
-1 – R720

-1) x R750] 0.93   0.71   0.85   0.68   

 Fuco [(R575
-1 – R720

-1) x R750]  0.96   0.87   0.42   0.58  

 C-PC [(R630
-1 – R660

-1) x R750]   0.89   N/S   N/S   N/S 

dR/dλ Chl-a [dR/dλ670] 0.95   0.58   0.70   0.50   

 Fuco [dR/dλ565]  0.95   0.92   0.88   0.67  

 C-PC [dR/dλ645]   0.97   N/S   N/S   N/S 
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The correlation coefficients for the association between the derived spectral indices and the 

measured pigment concentrations for the various datasets are detailed in Table 4.8.  The R(λ) 

and dR/dλ indices demonstrated strong correlations with the measured pigment concentrations 

in the dataset derived from treatments with no SPIM or SPOM.  The correlation coefficients for 

the R(λ) and dR/dλ indices derived for chlorophyll-a and fucoxanthin were very similar (r = 0.93-

0.96).  However, in the case of C-phycocyanin, a marginally stronger correlation was observed 

for the dR/dλ index (r = 0.97) than the R(λ)-based index (r = 0.89).  The least-squares regression 

relationships between the dR/dλ indices and the measured pigment concentrations are shown 

in Figure 4.25. 

 

(a) 

 
 
(b) 

 

 
(c) 

 
 
Figure 4.25 The regression relationships between the optimum first-derivative indices and the 
measured concentrations of the (a) chlorophyll a, (b) fucoxanthin and (c) C-phycocyanin. 
 

The effect of SPM on the relationship between the derived spectral indices and the measured 

pigment concentrations was examined by validating the indices against the measurements 

obtained from mesocosm experiments involving variable concentrations of SPIM and SPOM.  



 

 161

The results demonstrate that the co-incidental presence of SPM, in the form of SPIM or SPOM, 

can have significant effects upon the relationships between both R(λ) and dR/dλ indices and 

measured pigment concentrations.  The most marked effect was observed for the correlations 

between the R(λ) and dR/dλ indices and the concentration of C-phycocyanin; no significant 

relationships were observed with either index for measurements made from treatments with 

background concentrations of SPM.  SPOM also had a marked negative effect on the 

correlation between the R(λ)-based index and fucoxanthin; this is perhaps understandable given 

that SPOM absorption is high at the wavelengths used in the fucoxanthin index.  In contrast, the 

fucoxanthin dR/dλ index still demonstrated a reasonable correlation with the measured 

fucoxanthin concentration with a coincidental background of either SPIM or SPOM.  However, 

when both SPIM and SPOM were present, none of the indices (R(λ) or dR/dλ) demonstrated 

significant correlations with the measured concentrations of chlorophyll-a, fucoxanthin or C-

phycocyanin. 

 

The effect of the SPM on correlations between the spectral and pigment data was probably 

accentuated in the mesocosm experiments given the magnitude of the SPM concentration 

gradient used (0-300 mg L-1).  Nevertheless, these results provide further evidence that high 

and variable concentrations of SPM can significantly affect the potential retrieval of pigment 

concentrations using remote sensing data in CASE II waters (Svab et al., 2005; Tyler et al., 

2006).  In those treatments where a single sediment type was present, the R(λ) and dR/dλ 

indices did demonstrate reasonable correlations with the measured pigment concentrations 

sufficient to suggest that the remote-sensing-based detection of phytoplankton community 

structure would not be preclude in such waters.  However, on the evidence of the mesocosm 

experiments, the attenuating effects of (non-algal) SPM would seem to greatest in waters with 

variable concentrations of both SPIM and SPOM; this was likely due to strong, wavelength-

independent, absorption and backscattering effects.  This may preclude the detection of 

community composition in some shallow lakes and other inland waters.  It is acknowledged that 

the empirically-based indices derived from the mesocosm experiments may not be appropriate 

for the retrieval of accessory pigment concentrations in natural waters.  However, more 

importantly, these experimental results clearly demonstrate that the remote sensing based 
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determination of phytoplankton community composition, albeit at a broad colour-group level, is 

possible with hyperspectral data products.  In this context, further research in natural lake 

systems is now needed and, indeed, timely with respect to EU WFD requirements. 

 

4.5.8 Norfolk Broads Validation 

4.5.8.1 Rrs(0+,λ) and dR/dλ Algorithms 

The logical progression of the mesocosm experiments was to examine if algorithms for 

biomarker pigment estimation could be developed using data from shallow lakes.  This was 

pursued through two shipboard hyperspectral spectrometry cruises conducted on the 22 June 

2005 and 29 August 2005 in the Norfolk Broads (UK).  Relations between the measured 

concentrations of fucoxanthin (29 August 2005) and C-phycocyanin (22 June 2005; 29 August 

2005) and Rrs(0+,λ) measurements were examined using empirically and semi-empirically 

optimised Rrs(0+,λ) and dR/dλ indices for the estimation of the various pigment concentrations.  

The correlations observed between the measured concentrations of chlorophyll-a, fucoxanthin 

and C-phycocyanin in the various Broads sampled during the two sampling cruises are detailed 

in Tables 4.9 and 4.10.  

 

Table 4.9 Correlation matrix (r) for the association between pigment concentrations in the 
various Broads sampled during the two cruises; <n – no correlation due to limited number of 
observations; * denotes missing data.  Chlorophyll-a = Chl-a, fucoxanthin = Fuco, C-
phycocyanin = C-PC (significant correlations are depicted in bold font; 95% confidence level). 
 

  Hickling, Horsey and 
Heigham Sound Martham Barton 

  Chl-a Fuco C-PC Chl-a Fuco C-PC Chl-a Fuco C-PC 
Chl-a - * 0.206 - * <n - * 0.267 
Fuco * - * * - * * - * 22 June 

2005 C-PC 0.206 * - <n * - 0.267 * - 
Chl-a - 0.908 0.730 - 0.955 0.661 - 0.210 0.421† 

Fuco 0.908 - 0.711 0.955 - 0.688 0.210 - -0.10 29 August 
2005 C-PC 0.730 0.711 - 0.66 0.688 - 0.421† -0.1 - 

†If samples from Barton Turf (cyanobacterial scum) are removed from the analysis r = 0.927  
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Table 4.10 Correlation matrix (r) for the association between pigment concentrations for all 
stations during the two lake sampling cruises.  (Significant correlations are depicted in bold font; 
p ≤ 0.05 at the 95% significance level). 
 
  Chl-a Fuco C-PC 

Chl-a - * 0.077 
Fuco * - * 22 June 2005 

n = 40 C-PC 0.077 * - 
Chl-a - 0.678 0.726 
Fuco 0.678 - 0.572 29 August 2005 

n = 23 C-PC 0.726 0.572 - 
 

The best-fit least-squares regression algorithms for the estimation for fucoxanthin and C-

phycocyanin for each lake sampling cruise are detailed in Table 4.11.  It was again notable that 

the optimum algorithm formulation for the retrieval of biomarker pigment concentrations varied 

between sampling occasions.  The relationship between the optimum retrieval index for C-

phycocyanin, [Rrs(400)/Rrs (637.5)], and the measured concentration of C-phycocyanin on 22 

June 2005 provided encouraging results (R2 = 0.682).  However, this relationship was only valid 

for C-phycocyanin concentrations < 100 mg m-3.  The optimum dR/dλ index, [dR/dλ518], 

demonstrated a weaker relationship with the measured concentration of C-phycocyanin (R2 = 

0.612).  Moreover, it is not clear why the optimum dR/dλ relationship occurred at 518 nm as C-

phycocyanin absorption is low at this wavelength.  The lack of a mechanistic underpinning 

suggests the correlation may have been somewhat spurious and thus the derived index may 

lack robustness when applied to other datasets. 

 

Table 4.11 The optimum empirical and semi-empirical Rrs(0+,λ) and dR/dλ retrieval indices for 
the estimation of the biomarker pigments fucoxanthin (Fuco) and C-phycocyanin (C-PC) (NS = 
not significant at the 95% probability level). 
 

 Pigment Index (x) n R2 Least-Squares Best-fit 
Regression Model 

C-PC [Rrs(400)/Rrs (637.5)] 17* 0.682 -82.375x + 99.613 22 June  
2005  [dR/dλ518]  0.612 135935x + 6.5304 

Fuco [Rrs(710)/Rrs (470)] 11 NS† NS 
 [dR/dλ703.5]  0.903 18583x + 7.29 

C-PC [Rrs(705)/Rrs (638.5)] 11 0.959 185.22x -168.88 
29 August 

2005 
 [dR/dλ650]  0.885 790392x + 43.125 

*Three sampling stations removed where C-PC > 100 mg m-3 
†The removal of the Hickling stations resulted in R2 = 0.938 (n = 7) 
 

The least-squares regression relationships were much improved for the 29 August 2005 

dataset. The [Rrs(705)/Rrs(638.5)] index demonstrated a strong relationship with the measured 
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concentration of C-phycocyanin (R2 = 0.959).  This relationship is depicted in Figure 4.26.  It 

must be noted that the coefficient of determination was biased somewhat by the high C-

phycocyanin concentration encountered at one sampling station (c. 138.76 mg m-3) located on 

Barton Broad where a dense bloom of Microcystis aeruginosa had developed.  Nonetheless, 

even with this extreme value removed, the coefficient of determination derived for the remaining 

data points was still R2 = 0.856.   

 

 

Figure 4.26 The linear regression relationship between [Rrs(705)/Rrs(638.5)] and the measured 
concentration of C-phycocyanin in the Norfolk Broads on 29 August 2005 (dashed lines 
represent 95% confidence intervals for the regression equation).   
 

The fact that the [Rrs(705)/Rrs(638.5)] index exploits the local Rrs(0+,λ) minimum associated with 

the in vivo C-phycocyanin absorption maximum (638.5 nm) suggests that there is an important 

mechanistic justification to the efficacy of this particular index for the estimation of C-

phycocyanin.  Limited cell counts (courtesy of the Environmental Agency) performed adjacent 

to some of the stations sampled in Barton Broad provide some support for the use of C-

phycocyanin as a quantitative biomarker for cyanobacteria in this instance (Table 4.12). 

 

The optimum dR/dλ index, [dR/dλ650], also demonstrated a good relationship with the measured 

concentration of C-phycocyanin (R2 = 0.885) and the fact that the index also exploited changes 

in the dR/dλ spectra adjacent to the C-phycocyanin absorption maximum again implies there is 

a sound mechanistic basis to the construction of this index.  
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Table 4.12 C-phycocyanin concentrations (29 August 2005) and Microcystis aeruginosa cell 
counts (29 August 2005) for geographically equivalent sampling stations on Barton Broad (Cell 
count data courtesy of the Environment Agency). 
 

 Location of sampling stations  
 B1 – Barton Turf B3 – Barton Broad B7 – Gay’s Staithe 

C-phycocyanin  
(mg m-3) 138.76 86.61 46.55 

M. aeruginosa  
(colonies ml-1) 1000 600 130 

 

The robustness of the optimum C-phycocyanin algorithm derived from the 29 August 2005 lake 

sampling cruise was validated against the dataset obtained from the 22 June 2005 lake 

sampling cruise.  The calculated RMSE for the estimation of C-phycocyanin concentrations on 

the 22 June 2005 using the optimum 29 August 2005 algorithm was 35.81 mg m-3 (R2 = 0.001).  

Thus, it would appear that the 29 August 2005 C-phycocyanin algorithm was, to an extent, 

season specific.  Variations in the bio-optical properties of the various lakes sampled during the 

22 June 2005 and 29 August 2005 cruises (e.g. pigment concentrations SPM, benthic 

vegetation) may account for the lack of algorithm transferability in this instance and, in 

particular, the masking effect incurred by other bio-optically-active pigments (chlorophyll-a, 

chlorophyll-b) at low C-phycocyanin concentrations (Simis et al., 2007). 

 
Table 4.13 Biomarker pigment to total chlorophyll-a concentration ratios measured at stations 
across the various Broads during the two sampling cruises. Hickling Broad data also includes 
samples from Heigham Sound and Horsey Mere (C-PC = C-phycocyanin; Fuco = Fucoxanthin). 
 

  Chlorophyll-a 
  Hickling Martham Barton 
  Mean Range Mean Range Mean Range 

22 June 
2005 C-PC 2.49 1.42-3.31 2.39 1.3-3.5 0.55 0.21-1.15 

Fuco 0.16 0.09-0.20 0.87 0.58-1.54 0.26 0.14-0.49 31 August 
2005 C-PC 1.11 0.80-1.36 2.10 1.01-4.2 1.31 0.54-2.05 

 

The estimation of fucoxanthin concentrations using the Rrs(0+,λ) spectral data was more 

problematic and, for the 29 August 2005 cruise, no significant relations were identified using the 

complete dataset.  However, further analysis revealed that if the data from sampling stations 

located on Hickling Broad were removed from the analysis then the [Rrs(710)/Rrs(470)] index 

demonstrated an excellent relationship with the measured concentration of fucoxanthin (R2 
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=0.938) (Figure 4.27).  The rationalisation for removing the Hickling Broad data is based upon 

the fact that the fucoxanthin to chlorophyll-a ratio (fuco:chl-a) was significantly lower on Hickling 

Broad relative to that observed in Heigham Sound, Horsey Mere, Martham North Broad and 

Barton Broad (mean fuco:chl-a measured at Hickling stations = 0.16; mean fuco:chl-a 

measured on remaining stations = 0.44) (Table 4.14).  This may imply that the relative 

concentration of the biomarker pigments to the total chlorophyll-a concentration may affect the 

potential detection and retrieval of pigment concentrations from remotely sensed data.  In 

similarity, Simis et al. (2007) noted that the relative concentrations of chlorophyll-a and 

chlorophyll-b effect the accuracy of estimation of C-phycocyanin. 

 

The fucoxanthin index [Rrs(710)/Rrs(470)] was also strongly correlated with the concentration of 

chlorophyll-a (R2 = 0.903) (although marginally less so than fucoxanthin) which makes it difficult 

to establish whether the index was actually sensitive to the presence of fucoxanthin, or that the 

derived relationship was simply due to high co-variance between chlorophyll-a and fucoxanthin 

during the 29 August 2005 cruise. Given that both pigments have prominent absorption maxima 

in the c. 470 nm region, it is difficult to establish the validity of this index.   

 

 

Figure 4.27 The linear regression relationship between [Rrs(710)/Rrs(470)] and the measured 
concentration of fucoxanthin in the Norfolk Broads (except Hickling Broad stations) on 29 
August 2005 (dashed lines represent 95% confidence intervals for the regression equation). 
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The results obtained here, although somewhat tenuous, indicate that the retrieval of fucoxanthin 

concentrations may be possible from remotely sensed data.  Similar evidence is emerging from 

ocean colour remote sensing.  Hoepffner & Sathyendranath (1992) and Hoepffner & 

Sathyendranath (1993) noted that changes in the fucoxanthin:chlorophyll-a ratio can precipitate 

changes in blue/green Rrs(0+,λ) band-ratios by a factor of 6 in oceanic waters.  Comparable 

observations are also reported in Sathyendranath et al. (2001; 2004; 2005).  However, further 

work will be needed to fully establish if the estimation of fucoxanthin is possible in lakes using 

Rrs(0+,λ) and dR/dλ spectra. 

 

4.5.8.2 Continuum-Removed Algorithms 

The efficacy of algorithms based on indices derived from continuum-removed (R´(λ)) spectra 

were also evaluated for estimating C-phycocyanin and fucoxanthin pigment concentrations.  

The R´(λ) spectra of the Rrs(0+,λ)-minimum associated with C-phycocyanin absorption from the 

spectral datasets acquired during the cruises conducted on 22 June 2005 and 29 August 2005 

are shown in Figure 4.28.  The continua were fitted using start and end points of 580 nm and 

650 nm respectively.  It is evident from Figure 4.26 that the nature of the Rrs(0+,λ)-minimum 

demonstrated marked changes, in terms of its general form and dimensions, in relation to the 

variance in the concentration of C-phycocyanin encountered at the various sampling stations.   

 

(a) 22nd June 2005 (b) 29 August 2005 

 
Figure 4.28 Continuum-removed spectra (R´(λ)) of the C-phycocyanin absorption feature from 
(a) the 22 June 2005 and (b) the 29 August 2005 cruises. 
 



 

 168 

It is apparent that as the concentration of C-phycocyanin increased from the lower 

concentrations encountered in Martham North Broad to the higher concentrations found in 

Hickling Broad and Barton Broad, the depth, width and area of the C-phycocyanin absorption 

feature also increased correspondingly.  R´(λ) indices ([R´(λ, MAX)]; [R´(650)/R´(λ, MAX)]; [R´(λ, FWHM)]; 

[CRDR(λ)]) (see Chapter 3, Section 3.4.3 for more detailed information) designed to exploit the 

changes in the dimensions of the C-phycocyanin absorption feature were derived from the 

spectral datasets and least-squares regression analyses were used to investigate their ability to 

retrieve estimates of C-phycocyanin concentrations. 

 

Table 4.14 The regression relationships between the continuum-removed indices and the 
measured concentration of C-phycocyanin for the cruises conducted on 22 June 2005 and 29 
August 2005 and for the combined datasets.  (Significant relationships are depicted in bold; 
95% confidence level; N/S = not significant). 
 

 Index (x) n R2 Best-fit Least-Squares Regression 
Model 

R´(λ, MAX) 17 0.417 3.0734e1.9447x 

R´(650)/ R´(λ, MAX)  0.400 70.647e-0.024x 

R´(λ, FWHM)  0.507 24.066e-2.0994x 

R´(λ, AREA)  N/S N/S 

22 June 
2005 

CRDR623  0.301 29.24e55.156x 

R´(λ, MAX) 11 0.660 251.69x - 265.97 
R´(650)/ R´(λ, MAX)  0.621 7.1197e-6.0421x 

R´(λ, FWHM)  N/S N/S 
R´(λ, AREA)  0.782 9.6289x - 692.5 

31 August 
2005 

CRDR583.5  0.874 22834x + 9.3096 
 

The optimum least-squares regression relationships between the continuum-removed indices 

and the measured concentration of C-phycocyanin for the 22 June 2005 and 29 August 2005 

cruises are detailed in Table 4.14.  In general, the observed relationships between the R´(λ) 

based indices and the measured concentration of C-phycocyanin were poorer than those 

observed with the Rrs(0+,λ) and dR/dλ based indices and algorithms.  The [R´(λ, FWHM)] exhibited 

the best relationship with the concentration of C-phycocyanin on the 22 June 2005 (R2 = 0.507).  

However, the [R´(λ, FWHM)] did not demonstrate a significant association with concentration of C-

phycocyanin on 29 August 2005; instead, here, the strongest relationship was noted to occur 

with [CRDR(583.5)] (R2 = 0.874).  Notwithstanding the fact the [CRDR(583.5)] index demonstrated 

the single strongest empirical relationship with C-phycocyanin over the two lake sampling 

cruises, it was not significantly correlated with the measured concentration of C-phycocyanin on 

22 June 2005, which again suggests that the derived algorithm may not be temporally robust. 
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The optimum least-squares regression relationships between the [CRDR(583.5)] index and the 

measured concentration of C-phycocyanin derived from the 29 August 2005 data is depicted in 

Figure 4.29.  The least-squares regression model was again influenced by the extreme data 

point from the solitary station located on Barton Broad, but, even with this data point removed, a 

reasonable coefficient of determination was still achieved (R2 = 0.693).  The use of a non-linear 

model improved the coefficient of determination for the regression relationship.  However, a 

non-linear model was considered inappropriate in this instance because of the absence of data 

points for C-phycocyanin concentrations between 40 and 135 mg m-3. 

 

 

Figure 4.29 The linear regression relationship between: (a) CRDR583.5 and the measured 
concentration of C-phycocyanin for the 29 August 2005 cruise (dashed lines represent 95% 
confidence intervals). 
 

The retrieval of fucoxanthin concentrations using R´(λ) based indices was complicated by the 

lack of a diagnostic absorption feature related to the presence of fucoxanthin in the spectra.  

Thus, as the in vivo fucoxanthin absorption maximum occurs in the 445-470 nm region (Rowan, 

1989), the large Rrs(0+,λ)-minimum (c. 400-480 nm) known to be associated with a variety of 

chlorophyll-and xanthophyll pigments had to be adopted for continuum-removal analysis (using 

start and end points for the continua of 400 nm and 480 nm respectively).  The R´(λ) spectra of 

the region of fucoxanthin absorption for the 29 August 2005 dataset are shown in Figure 4.30.  
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Notable variations in the size and the shape of the Rrs(0+,λ)-minimum related (in part) to 

fucoxanthin can be seen in Figure 4.29 between the various sampling stations.  However, 

correlation analyses revealed no significant relationships between the R´(λ) indices and the 

measured fucoxanthin concentration.  Given that the Rrs(0+,λ)-minimum selected for continuum-

removal analysis is also influenced, in addition to fucoxanthin, by chlorophyll and other 

carotenoid pigments, and also CDOM, the lack of significant correlative relationships is perhaps 

not unexpected.  In this context, the use of continuum-removed reflectance as a basis for 

retrieving fucoxanthin concentrations would be better assessed under circumstances when the 

concentrations of fucoxanthin are high and, as a result, the Rrs(0+,λ)-minimum between 400 

and 480 nm is more responsive to fucoxanthin variation (e.g. during blooms of bacillariophytes 

or dinophytes).  This observation also applies to the derivation of both Rrs(0+,λ) and dR/dλ 

indices for fucoxanthin estimation. 

 

 

Figure 4.30 Continuum removed spectra (R´(λ)) in the region of the in vivo fucoxanthin 
absorption maximum on 29 August 2005. 
 

The expeditious results obtained from the lake sampling cruises in the Norfolk Broads provide 

some promising evidence to suggest that the biomarker pigments concentrations may be 

estimated in natural mixed communities using remote sensing data.  In particular, the 

quantification of cyanobacterial biomass using the biomarker pigment C-phycocyanin would 

certainly seem achievable.  The realisation of techniques to quantify cyanobacteria from remote 

sensing data would provide limnologists with an invaluable tool for research and monitoring and 



 

 171

would enabling broad-scale changes in the floristic composition of phytoplankton communities 

to be monitored in lakes. 

 

The capability to discriminate cyanobacteria from other species of phytoplankton would also 

present a means of monitoring the development of potentially-toxic cyanobacterial blooms in 

inland waters which would be a significant advancement for water resource management, 

particularly in respect to public health concerns (Codd et al., 2005), and would seem a timely 

development given the expected increase in blooms of cyanobacteria under future climate 

change scenarios (Elliott et al., 2005; Mooij et al., 2005). 

 

4.6 CONCLUSIONS 

The experimental mesocosm experiments and the explorative in-situ spectrometry cruises in 

the Norfolk Broads have demonstrated that it is possible to obtain information concerning the 

composition of phytoplankton communities from remote sensing data.  The experimental 

mesocosm experiments demonstrated that different phytoplankton taxonomic groups can be 

distinguished based on their respective spectral characteristics.  Spectral dissimalarity would 

seem to be most pronounced at the colour group level, occurring as a function of taxonomic 

variations in cell size and morphology and, importantly, photosynthetic pigment composition.  

Spectral differences were most pronounced at high chlorophyll-a concentrations and in pseudo-

communities dominated by a single colour group species.  First-derivative transformations of 

the hyperspectral data improved the extent to which pseudo-communities of differing species 

composition could be differentiated.   

 

It was shown that sensor spectral resolution has a significant effect upon the degree to which 

the various colour group species could be distinguished.  PCA revealed that dissimilarities were 

most pronounced in the high resolution hyperspectral datasets and the simulated SeaWiFS 

multispectral dataset.  However, in other datasets, with reduced spectral resolution, the 

potential to discriminate between colour group taxa was lost.  Coincidental concentrations of 

SPIM and, in particular, SPOM and CDOM had marked effects upon the spectral signatures of 

the mesocosm pseudo-communities and represent potential obstacles to the retrieval of 
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taxonomic information from remote sensing data.  Nevertheless, in the hyperspectral datasets 

prominent spectral dissimilarities between pseudo-communities could still be observed 

regardless of the presence of SPIM, SPOM or CDOM.   

 

MDA was used to demonstrate that a simple classification approach could be developed to 

diagnose the dominant species composition of rogue algal blooms and thus potentially provide 

a rapid risk assessment for HAB threats.  It was further demonstrated using the datasets 

generated from the mesocosm experiments that simple R(λ) and dR/dλ based indices could be 

constructed to provide quantitative estimates of the concentration of fucoxanthin and C-

phycocyanin, thus enabling the biomass of specific phytoplankton colour groups to be 

estimated.   

 

The extrapolation of the work pioneered within the context of the mesocosm study to the 

shallow lakes of the Norfolk Broads (UK) demonstrated that it was further possible to quantify 

the species-specific biomass of phytoplankton taxa by retrieving estimates of biomarker 

pigment concentrations.  In particular, it was shown that the quantification of C-phycocyanin is 

achievable using remotely sensed data.  This suggests that remote sensing could be used to 

monitor the development of potentially-toxic cyanobacterial blooms in lakes.  In the context of 

shallow lakes (and indeed other inland waters), the ability to quantify cyanobacterial biomass 

using remotely sensed data is of direct relevance to the assessment of ecological status, and 

the potential ability to implement such techniques at local, regional and, indeed, global scales 

would seem to represent a timely development with respect to the implementation of the EU 

WFD. 

 

Notwithstanding the promising results obtained here, substantial further research on the 

retrieval C-phycocyanin and other biomarker pigments, such as fucoxanthin, is urgently 

required.  The semi-empirical approaches adopted here, whilst useful for expeditious 

investigation, suffer from a lack of mechanistic clarity.  The derivation of analytical algorithms 

for the assessment of phytoplankton community composition using bio-optical modelling 

approaches may be valuable in this context (e.g. Simis et al., 2005; Simis et al., 2007).  In 
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addition, the development of long-term remote sensing datasets for lakes, which can be readily 

paired with phytoplankton pigment and cell count data, should be made an immediate priority if 

the use of remote sensing for the assessment of phytoplankton community structure is to be 

progressed. 
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5 TIME SERIES AIRBORNE REMOTE SENSING OF 
PHYTOPLANKTON IN SHALLOW LAKES 

 

5.1 INTRODUCTION 

The two preceding chapters (Chapter 3 and Chapter 4) have shown that remote sensing data 

can be used to estimate the concentration of bio-optically active pigments in shallow lakes 

using high resolution remote-sensing-reflectance measurements acquired from in-situ 

spectrometry measurements.  The following chapter seeks to extrapolate the developed 

methodologies and examine the efficacy of airborne remote sensing reconnaissance of 

phytoplankton blooms in shallow lakes.  Work extracted from this chapter has been submitted 

for publication in Limnology & Oceanography (Hunter, P.D., Tyler, A.N., Gilvear, D.J. & Willby, 

N.J. (submitted). The spatial dynamics of vertical migration by Microcytis aeruginosa in a 

eutrophic shallow lake: A case-study using high spatial resolution time-series airborne remote 

sensing, Limnology and Oceanography). 

 

5.2 RATIONALE 

Optical remote sensing of the oceans was pioneered in the 1970s and 1980s following the 

launch of the Coastal Zone Color Scanner (CZCS) on board NASA’s Nimbus-7 satellite.  The 

CZCS has now been superseded by more advanced platforms such as the NASA’s SeaStar 

SeaWIFS (Sea-viewing Wide Field-of-View Sensor), ESA’s EnviSat MERIS (Medium 

Resolution Imaging Spectrometer), and NASA’s Terra/Aqua MODIS (Moderate Resolution 

Imaging Spectrometer) which, collectively, offer data of an enhanced spectral resolution for 

ocean colour monitoring purposes.  The provision of accurate, near-real-time, ocean colour 

products (e.g. the concentration of chlorophyll-a) from these platforms has led to remote 

sensing becoming established as the principal tool for monitoring primary productivity in the 

oceans and, as such, remote sensing data products make a significant contribution to the study 

of global biogeochemical cycling (e.g. Karl, 2002; Behrenfeld et al., 2005; Dickey et al., 2006). 
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The application of remote sensing for lake monitoring has developed in tandem with ocean 

colour research.  Indeed, remote sensing has proven capable of delivering quantitative 

estimates of several water quality parameters (including the concentrations of chlorophyll-a, 

SPM and CDOM and LSTs) in lake environments (George, 1997; Hoogenboom et al., 1998; 

Thiemann & Kaufmann, 2000; Ostlund et al., 2001; George & Malthus, 2001; Flink et al., 2001; 

Ammenberg et al., 2002; Tyler et al., 2006; Giardino et al., 2007).  The spatially-resolving and 

panoptic surveillance capabilities afforded by satellite remote sensing platforms enable 

regional-scale panoramas of lake water quality to be developed (e.g. Novo et al., 2006).  This 

permits the rapid assessment of both inter- and intra-lake variations.  In contrast, conventional 

point-based lake sampling strategies can seldom satisfactorily describe pronounced spatial 

gradients in the quality of surface waters and, in particular, at the regional-scale. 

 

However, while dedicated systems for the remote sensing of ocean colour have been in 

operation for decades, the remote sensing of inland waters has, in comparison, somewhat 

lagged behind that of ocean colour monitoring and, at present, no operational remote sensing 

systems have been developed for the routine monitoring of lakes and other inland waters.  The 

reasons behind this relative lack of progress are primarily twofold: (i) the optical properties of 

inland waters (predominantly CASE II type waters) are more complex than those encountered 

in oceanic waters which often results in decreased retrieval accuracies and, (ii) there has been 

an absence of an apposite satellite platform (until the launch of Hyperion on NASA’s EOS-1 

satellite) that has both the spatial and spectral resolution required for lake monitoring purposes.  

However, the EU WFD (2000/60/EC) has heightened the need for effective, regional-scale, 

inland water quality monitoring strategies.  In the context of the EU WFD, an operational 

remote-sensing-based system for the assessment of water quality in lakes, operating at the 

European level, would be hugely advantageous.  However, at present, an operational system 

remains someway from realisation.  Significant further research will be required to prove the 

accuracy and robustness of the remote sensing approach to lake monitoring before an effective 

European-wide remote-sensing-based strategy could be implemented. 
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Very shallow lakes (i.e. < 3 m mean depth) represent a particularly challenging environment for 

application of remote sensing in lake monitoring and, in particular, for the estimation of 

phytoplankton-related pigment parameters (e.g. chlorophyll-a).  Previous studies have achieved 

varying degrees of success (Liu et al., 2003).  Numerous authors have noted that the estimation 

of chlorophyll-a concentrations in CASE II inland waters is complicated by the variable 

presence of other optically active components and, in particular, high and non-co-varying SPM 

(tripton) and CDOM (Dekker et al., 1991; Lindell et al., 1999; Svab et al., 2005; Tyler et al., 

2006).  Shallow lakes often experience very high tripton loadings due to resuspension 

processes.  The resulting spectral attenuation from high tripton loads may thus present a 

significant barrier to the accurate estimation of pigment concentrations in shallow lakes (Liu et 

al., 2003).  Moreover, in shallow lakes, the bottom substrate itself can make a significant 

contribution to the upwelling radiance signal, such, that it can cause gross inaccuracies in the 

estimation of pigment concentrations in overlying pelagic waters. 

 

The often problematic nature of obtaining accurate estimations of phytoplankton pigment 

concentrations in CASE II inland waters has necessitated the development of several different 

approaches to the derivation of remote-sensing-based algorithms for the estimation of pigment 

concentrations.  Many workers have employed NIR/red band-ratios in algorithms formulated 

either semi-empirically or analytically (i.e. through bio-optical modelling).  Recent research 

indicates that algorithms derived from complex solutions to spectral mixing models can provide 

improved accuracies for the estimation of chlorophyll-a concentrations in lakes (Thiemann & 

Kaufmann, 2002; Tyler et al., 2006; Oyama et al., 2007). 

 

The majority of foregoing studies, either because of technological constraints, or otherwise, 

have often focussed on large and often moderately, or very, deep lakes (e.g. Lake Baikal, Lake 

Balaton, Lake Carter, Lake Erie, Lake Garda, Lake Mälaren, Lake Mono, Lake Okeechobee, 

Lake Superior, etc.) (Schalles et al., 1998; Yang et al., 2000; Strombeck & Pierson, 2001; 

Melack & Gastil, 2001; Brivio et al., 2001; Ammenberg et al., 2002; Vincent et al., 2004; Budd & 

Warrington, 2004; Auer & Bub, 2004; Heim et al., 2005; Tyler et al., 2006; Sridhar & Vincent, 

2007; Giardino et al., 2007).  However, the majority of waterbodies covered by the EU WFD are 
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actually relatively small and often much shallower in nature.  There is thus an urgent need for 

further evaluation of remote-sensing-based approaches for the estimation of phytoplankton 

pigments in shallow, and highly optically-complex, lakes.  Moreover, there is also a need to 

validate the capacity of remote sensing for time-series monitoring of phytoplankton populations 

(as would be required under an operational monitoring strategy). 

 

5.3 AIMS AND OBJECTIVES 

The aim of the research presented in this chapter was (i) to derive and validate different 

approaches to the formulation of algorithms for the estimation of phytoplankton pigments 

(chlorophyll-a and C-phycocyanin) in shallow lakes using high spatial-spectral airborne remote 

sensing and, (ii) in a more applied context, to use the airborne remote sensing to examine the 

diurnal and seasonal dynamics of phytoplankton populations in shallow lakes. 

 

The specific objectives for this chapter can be defined as: 

 

a) To evaluate the efficacy of airborne remote sensing for the estimation of chlorophyll-a and 

C-phycocyanin concentrations in shallow lakes through multi-temporal validation in the 

Upper Thurne and Barton Broads, Norfolk, UK. 

 

b) To compare the efficacy of algorithms for pigment estimation formulated using NIR/red 

band-ratio to that of algorithms formulated using more complex spectral mixing, angle 

mapping and continuum-removed models. 

 

c) To use high resolution time-series imagery to examine the diurnal dynamism of 

cyanobacteria in shallows lakes and potentially provide new insights into the spatial ecology 

of potentially-toxic algal blooms. 
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5.4 METHODS 

5.4.1 Study Site  

The Norfolk Broads (UK) (52º 44’ 17’’ N 1 º 34’ 29’’ E) are a series of small (0.1-130 ha) shallow 

lakes (mean depth < 2.5 m) and marginal wetlands of national and international importance (for 

further discussion, see Chapter 2).  The shallow lakes of the Norfolk Broads were chosen for 

this research as they provided an ideal environment in which to showcase the use of airborne 

remote sensing for shallow lake monitoring purposes. 

 

5.4.2 Remote Sensing Data Capture 

Image data for this project was acquired by the National Environmental Research Council’s 

Airborne Research and Survey Facility (NERC ARSF).  The NERC ARSF crew flew several 

data acquisition campaigns over the Upper Thurne and Barton Broads during 2004 and 2005.  

The NERC ARSF aircraft – a Dornier 228-101 twin turbo-prop, non-pressurised, shoulder-wing 

monoplane – carried two multispectral sensors as part of its payload: (1) the Airborne Thematic 

Mapper (ATM) instrument and (2) the Compact Airborne Spectrographic Imager (CASI-2), plus 

an additional Rolleiflex 6008 single-lens reflex (SLR) auto-focus (AF) digital aerial camera (see 

Figure 5.1).   

 

The CASI-2 instrument is a two-dimensional CCD array-based pushbroom imaging 

spectrograph capable of operating in two modes: (1) spectral (or enhanced spectral) mode 

providing the full hyperspectral data cube (288 channels) for a maximum of 39 look-directions 

spread across a swath of 4, 8, 12 or 16 spatial pixels (enhanced spectral mode provides 101 

adjacent spatial pixels) and (2) spatial mode providing a 512 pixel swath for a maximum of 18 

programmable channels.  The technical specifications of the CASI-2 instrument are detailed in 

Table 5.1.  The programmable spectral channels of the CASI-2 instrument, when operated in 

spatial mode, facilitate instrument configurations to be adjusted to suit the specific application.  
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Figure 5.1 The NERC ARSF’s Dornier 228-101 aircraft carrying the ATM and CASI-2 sensors. 
 

 

Table 5.1 The technical specifications of the Compact Airborne Spectrographic Imager. 
 
Instrument Parameter Description 
IFOV – Across Track 54.4º 
IFOV – Along Track 0.1151º 
Aperture f/2.8-f/11 (automated iris control) 
Spectral Range 405-950 nm 
Spatial Samples 512 spatial pixels 
Spectral Samples 288 at 1.8 nm intervals (2.2 nm FWHM @ 650 

nm) 
Dynamic Range 12-bits (4096 levels) 
Recording 1 removable 9 GByte hard disk  
  
Operating Modes 

 
Spatial Mode 512 pixels across swath, up to 18 spectra 

channels (fully programmable) 
Spectral Mode Full spectrum (288 channels) for up to 39 look 

directions spread across swath (4, 8, 12 or 16 
pixel spacing between look directions) 

Enhanced Spectral Mode Full spectrum (288 channels) in a block of 101 
adjacent spatial pixels 

Full Frame 512 pixels across swath x 288 spectral pixels 
(~1-2 sec. intergration time limits use to 
laboratory calibration or ground based field 
use) 

Additional Features  
  
Downwelling incident light sensor (ILS) 
Lumogen coating for enhancement of blue response below 450 nm 
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The CASI-2 instrument was operated using the default simulated SeaWiFS bandset 

configuration designed to optimise the CASI-2 sensor for the observation of CASE I and CASE 

II waters (see Table 5.2).  The data acquired by the ATM instrument is not considered further 

here.   

 

The NERC ARSF campaigns were scheduled to provide data epochs covering seasonal 

variation in the water quality conditions of the Norfolk Broads.  In addition, each NERC ARSF 

campaign was further sub-composed of three individual data acquisition sorties which were 

staggered throughout the day to provide high-resolution time-series surveillance of 

phytoplankton populations in the Broads.  The NERC ARSF scheduled four data acquisition 

campaigns for 2004 and a further eight campaigns for 2005.  However, as a result of poor 

weather in 2004 and the high demands for NERC ARSF flying time, the full flight schedule 

could not be completed; the completed NERC ARSF campaigns are detailed in Table 5.3. 

 

Table 5.2 The CASI-2 default SeaWiFS channel/bandset configuration. 
 

Channel Centre/Width 
(nm) 

Start 
(nm) 

End 
(nm) 

Equivalent 
SeaWiFS Channel Purpose 

1 412/20 402.81 422.15 1 CDOM + Chl 
2 443/20 432.72 453.87 2 Chl + CDOM 

3 490/20 480.37 499.84 3 Chl + CDOM + 
Access. 

4 510/20 501.61 519.33 4 Access. 
5 555/20 545.97 565.53 5 Access + Chl 
6 620/20 610.10 629.76  MERIS + Access. 
7 670/20 660.19 679.92 6 Chl + SPM + ChlF 
8 682.5/5 681.72 685.31  ChlF 
9 710/10 705.07 715.86  ChlF 

10 752/15 744.76 759.10 7a SPM + Aeros. 
11 762/5 760.90 764.51  Oxygen Abs. 
12 775/20 766.31 784.37 7b SPM + Aeros. 
13 820/10 815.13 824.18  Water Vapour Abs. 
14 865/40 845.94 884.08 8 SPM Aeros. 

CDOM – coloured dissolved organic matter; Chl – chlorophyll; Access. – accessory pigments; MERIS – 
MERIS compatible band; SPM – suspended particular matter; ChlF – chlorophyll fluorescence; Aeros. – 
aerosols. 
 

To provide full, high-spatial resolution, coverage of the target lakes, several adjacent CASI-2 

[SeaWiFS] flightlines had to be flown over the Upper Thurne and Barton Broads (with c. 30-

50% overlap); these individual flights lines were subsequently appended together to form a 



 

 181

multi-scene mosaic encompassing the entire system of lakes.  The resulting flight plans are 

detailed in Figure 5.2 and Figure 5.3.  The flight plan used during 2004 was amended for the 

2005 campaigns to provide greater overlap between individual flightlines and to incorporate an 

auxiliary perpendicular CASI-2 flightline – flown with the instrument configured in ‘spectral’ 

mode – which was used as a ‘tie-line’ to assist with the image-to-image normalisation 

procedures employed during processing. 

 

Table 5.3 The ATM and CASI-2 imagery acquired during the NERC ARSF campaigns in the 
Norfolk Broads during 2004 and 2005. 
 

 Imagery Collected Sorties* 
(GMT) 

Data Quality/ 
Cloud Cover 

Ground Truth 
Data 

18 May 2004 ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Poor/High Yes 

02 September 
2004 

ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Poor/Moderate No 

28 February 
2005 

ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Good/Low No 

21 April 2005 ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Good/Low Yes 

22 June 2005 ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Good/Low Yes 

29 August 2005 ATM and CASI-2 
[SeaWiFS] 

10.00 
13.00 
16.00 

Good/Low Yes 

*The timing of the time-series sorties varied depending on aircraft availability, atmospheric conditions and 
ground-truth sampling coordination (± 1 h). 
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Figure 5.2 The NERC ARSF flight plan for the 2004 campaigns over the Upper Thurne and Barton Broads, Norfolk, UK. The three flightlines (A-B:E-F) 
formed a single data sortie; three time-series sorties  (c. 10.00, 13.00 and 16.00 GMT) were flown during each campaign. 
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Figure 5.3 The NERC ARSF flight plan for the 2005 campaigns over the Upper Thurne and Barton Broads, Norfolk, UK. The five flightlines (A-B:I-J) and 
lone ‘tie-line’ (1-2) formed a single data sortie; three time-series sorties (c. 10.00, 13.00 and 16.00 GMT) were flown during each campaign. 
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5.4.3 Lake Sampling Cruises and Pigment Analysis 

Water quality sampling was conducted contemporaneous to the NERC ARSF data acquisition 

campaigns to provide ground truth data for the calibration and validation of the remote sensing 

algorithms (with the exception of the 02 September 2004 and 28 February 2005 NERC ARSF 

campaigns).  Lake sampling teams were deployed for the duration of the NERC ARSF flights 

(i.e. stations were sampled during all three data capture sorties).  Sampling was conducted in a 

systematic manner with stations, when feasible, located on all major Broads of the River Thune 

and River Ant.  This enabled samples to be collected across a known gradient in water quality. 

 

Surface water samples for chlorophyll-a and C-phycocyanin analysis were collected from 

sampling stations using a pre-washed wide-necked bottle.  The water samples were stored (on 

ice when possible) in the dark until filtration could occur.  Filtration was always performed within 

2-12 h of sample collection.  Sample aliquots for chlorophyll-a and C-phycocyanin analysis 

were vacuum filtered onto pre-washed 47 mm diameter Whatman GF/C filters.  The filter 

papers and filtrand were wrapped in aluminium foil and immediately quick-frozen in liquid N (- 

196°C) for transportation back to the laboratories at the School of Biological and Environmental 

Science (University of Stirling).  Upon receipt at the University of Stirling, samples were stored 

at -40°C or -80°C upon receipt until analysis.   

 

Filter papers were stored for no longer than 14 d to prevent pigment degradation.  Filter papers 

for chlorophyll-and C-phycocyanin analysis can be stored at ≤ -40°C for a period up to 3 months 

without the significant pigment degradation occurring (Mantoura et al., 1997; Sarada et al., 

2003).  The concentration of chlorophyll-a and C-phycocyanin were determined according to 

the methods of Lorenzen & Jeffrey (1980) and Sarada et al. (1999) respectively (see Section 

3.3.2 and 4.3.4).  The concentrations of accessory carotenoid pigments (e.g fucoxanthin) were 

determined by RP-HPLC (see Section 4.3.1).  The concentration of SPM, SPIM and SPOM 

were determined gravimetrically (see Section 3.3.2). 
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5.4.4 CASI-2 [SeaWiFS] Image Pre-processing 

5.4.4.1 Image Geo-Correction and Geospatial Registration 

The CASI-2 [SeaWiFS] imagery was delivered by the NERC ARSF data processing team as a 

level 1b product (see Table 5.4 for explanation).  The level 1b imagery was geo-corrected for 

the effects of aircraft position, altitude and ground surface separation (roll, pitch and yaw 

effects) using the dedicated AZGCORR software program supplied by NERC ARSF.  The 

AZGCORR program uses the image and post-processed navigation data to produce a map-

projection-referenced rectilinear output image computed from aircraft spheroid height, digital 

elevation data and geodic-spheroid separation estimates (Azimuth Systems, 2005) (level 2 

product).  Atmospheric correction was not applied at this point.  The geo-correction of these 

level 2 image products was then refined via further geospatial registration to known ground-

control-points (GCPs) identified from an Ordnance Survey© 1:25 000 map (Outdoor Leisure No. 

40) using the RSI ENVI v4.3 software package (level 3b product). 

 

Table 5.4 Descriptions of the various image product processing levels in standard use by the 
NERC ARSF. 
 

 Description 
Level 0 Raw uncalibrated format at the original resolution of the sensor 
Level 1a Level 0 data reformatted to image files with appended information 
Level 1b Level 1a data to which radiometric calibration algorithms have been applied, to 

produce radiance or irradiance, and to which location and navigational 
information has been appended. 

Level 2 Geophysical or environmental parameters derived from Level 1a or 1b data, 
may include atmospheric correction. 

Level 3a Level 1b or 2 data mapped to a geographic co-ordinate system using on-board 
attitude and positional information only. 

Level 3b Level 1b or 2 data mapped to a geographic co-ordinate system using on-board 
attitude and positional information with additional ground control points. 

Level 4 Multi-temporal/multi-sensor grid data products. 
 

 

5.4.4.2 Atmospheric Correction and Image-to-Image Normalisation and Mosaicing 

The attenuating effects of the atmosphere (Raman scattering, aerosol absorption and 

refraction) can often contribute > 90% of the radiance or reflectance measured by satellite 

sensors over CASE I and CASE II waters (Hadjimitsis et al., 2004).  Atmospheric attenuation 

has less impact on airborne imagery, but the removal of atmospheric noise is still necessary if 
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derived algorithms are to retain any transferability.  This project initially trialled an atmospheric 

correction model developed by the RSDAS (Remote Sensing Data Analysis Service) team at 

the Plymouth Marine Laboratory (PML) designed for the correction of CASI-2 data over CASE I 

waters.  However, as the RSDAS model was developed for use over CASE I waters, it 

produced erroneous results when applied to the CASI-2 imagery of the Norfolk Broads. 

 

Thus, an alternative approach to the atmospheric correction of the imagery had to be sought.  

Several models have been used for the atmospheric correction of airborne imagery products.  

Ammenberg et al. (2002), for example, used the 6S radiative transfer code (RTC) to 

atmospherically correct CASI-2 imagery; while Melack & Gastil (2001) used the MODTRAN 

model to atmospherically correct AVIRIS imagery.  However, such models are primarily 

designed for the correction of satellite imagery products and also require extensive atmospheric 

measurements for parameterisation.  The dedicated commercially available models for the 

atmospheric correction of airborne imagery (e.g. ATCOR-4 and RSI ENVI FLAASH) were 

unfortunately not available for this use in this project.   

 

Interestingly, Hadjimitsis et al. (2004), found that simple, image-based, dark-pixel subtraction 

methods (also referred to as the histogram minimum method) can often offer the most accurate 

and practical approach to atmospheric correction over CASE II waters.  The dark-pixel method 

uses the minimum radiance value measured in each spectral band as an approximate measure 

of atmospheric scattering; its subtraction from remaining image pixels thus provides a simple 

image-based correction for atmospheric effects.  Given that no synchronous atmospheric 

measurements were readily available, and the intention was not to attempt to extrapolate the 

derived algorithms for pigment estimation to waters outwith the Norfolk Broads, the image-

based dark-pixel subtraction method was considered the most practical solution to atmospheric 

correction in this instance. 

 

There are a few issues concerning the use of the dark-pixel method for the correction of remote 

sensing imagery over CASE II waters that need to be acknowledged: (i) the dark-pixel method 

only corrects for atmospheric scattering and cannot correct for atmospheric absorption and, (ii) 
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the dark-pixel subtraction method yields image products calibrated to water-leaving-radiance 

(Lw) (not normalised-water-leaving-radiance (nLw) or remote-sensing-reflectance (Rrs)).  The 

dark pixel method thus does not completely remove the effects of variable illumination, solar 

zenith and viewing geometries between individual scenes.  It should also be acknowledged that 

remote sensing imagery acquired over CASE II waters may not often have a suitably “dark 

pixel”, this was resolved in this instance by extending the NERC ARSF flightlines to include 

comparatively “darker” pixels in the waters off the Norfolk coast.  Justification of the 

methodology used can be taken from the fact that many previous workers have also derived 

water quality retrieval algorithms from remote sensing imagery without full atmospheric 

correction to nLw or Rrs products in instances where the formulated algorithms were not 

intended to be extrapolated to other waters (e.g. George, 1997; George & Malthus, 2001; 

Vincent et al., 2004; Tyler et al., 2006; Koponen et al., 2007). 

 

Figure 5.4 An example of the cross-track algorithms applied to the CASI-2 SeaWiFS imagery to 
correct for differences in the atmospheric path length across the image swath (solid lines – 
original band radiance; dash lines – 2nd order polynomial correction). 
 

The CASI-2 imagery was atmospherically corrected to Lw using the dark-pixel correction model 

(dark subtract function) in ENVI v.4.3 (a detailed description of the dark pixel methodology is 

provided in Vincent et al. (2004)).  The dark-pixels used for atmospheric correction were 

typically located, as intended, in the coastal waters off the Norfolk coast.  The dark-pixel 
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correction was supplemented with an additional cross-track illumination correction to correct for 

changes in the atmospheric path length across the image swath; the cross-track illumination 

correction was performed using the dedicated multiplicative cross-track illumination correction 

function in ENVI v.4.3 (see Figure 5.4). 

 

In addition to the dark-pixel atmospheric correction, an image-to-image normalisation procedure 

was also employed to correct for residual inter-scene variations in Lw caused variations in 

illumination, solar zenith and viewing geometry.  Common ground-control-pixels were identified 

in each CASI-2 [SeaWiFS] image. The radiance values were extracted from these pixels and 

used to derive linear least-squares regression for the image-to-image normalisation procedure.  

Image-to-image normalisation was applied to each CASI-2 [SeaWiFS] flightline prior to the 

creation of the mosaic image.  The flightline captured first (chronologically) during each NERC 

ARSF sortie was used as the base image and the remaining CASI-2 [SeaWiFS] images were 

subsequently normalised to this reference image.   

 

The separate CASI-2 [SeaWiFS] flightlines were subsequently appended together using the 

image mosaicing function in RSI ENVI v.4.3; colour balancing algorithms were also applied 

during the image mosaicing process to facilitate the image-to-image normalisation procedure.  

Further image-to-image normalisation algorithms were then applied to each image mosaic to 

correct for differences between the CASI-2 [SeaWiFS] datasets from different NERC ARSF 

campaigns.  The 16:00 h GMT 29 August 2005 CASI-2 [SeaWiFS] image was selected as the 

base image for these image-to-image corrections (clearest atmospheric conditions at point of 

image acquisition) and the remaining CASI-2 [SeaWiFS] images were normalised to this 

reference image (see Figure 5.5). 
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(a) Band 6 

 

(b) Band 7 

(c) Band 8 

 

(d) Band 9 

 
Figure 5.5 Examples of the linear least-squares regression algorithms derived for the image-to-
image normalisation of the time-series CASI-2 [SeaWiFS] data from the Nofolk Broads.  The 
graphs above show the corrections applied to the 22 June 2005 CASI-2 [SeaWiFS] image 
(c173_1300) Bands 6-9 (a-d) in order to normalise the image to the 29 August 2005 CASI-2 
[SeaWiFS] (c243_1500) image. 
 

 

5.4.5 CASI-2 [SeaWiFS] Image Analysis 

5.4.5.1 Algorithm Development and Validation: Seasonal Time-Series Data 

Remote sensing algorithms for the retrieval of chlorophyll-a and C-phycocyanin concentrations 

from the CASI-2 [SeaWiFS] seasonal time-series imagery of the Upper Thurne and Barton 

Broads were derived through three methods: (1) NIR/red Lw band-ratios; (2) spectral mixing and 

mapping models and (3) continuum-removal analysis (see below).  In all instances, algorithm 

calibration was performed using the CASI-2 [SeaWiFS] imagery and contemporaneous water 

quality data acquired at 16:00 h GMT on 29 August 2005.  The 29 August 2005 imagery was 

selected for algorithm development because the contemporaneous water quality data 

demonstrated the largest range in phytoplankton pigment concentrations measured over the 2-
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year period of the NERC ARSF campaigns in the Norfolk Broads.  The algorithms were 

developed and validated using water quality measurements collected ± 2 h (maximum) from the 

time of image acquisition.  The optimum algorithm derived through each method (identified on 

the basis of the coefficient of determination and the RMSE) were subsequently validated 

against the remaining CASI-2 [SeaWiFS] datasets acquired on the 28 February 2005, 21 April 

2005 and 22 June 2005 (the CASI-2 imagery acquired on 18 May 2004 and 2 September 2004 

was excluded from the analysis because of data quality issues). 

 

(1) NIR/red Band-Ratios 

Four NIR/red band-ratios were calculated from the CASI-2 [SeaWiFS] data for the estimation of 

chlorophyll-a: (i) [Lw(710)/Lw(670)], (ii) [Lw(710)/Lw(682.5)], (iii) [Lw(752)/Lw(670)] and, (iv) 

[Lw(752)/Lw(682.5)].  These were based upon those previously used by Ostlund et al. (2001) on 

a comparable dataset.  Four NIR/red band-ratios were also derived for the estimation of C-

phycocyanin: (i) [Lw(710)/Lw(620)], (ii) [Lw(710)/Lw(555)], (iii) [Lw(752)/Lw(620)] and, (iv) 

[Lw(752)/Lw(555)].  In this instance, the selection of the CASI-2 [SeaWiFS] bands used in the 

indices was informed by Simis et al. (2005). 

 

(2) Spectral Mixing and Spectral Angle Mapping Models 

Hard-boundary approaches to remote sensing image classification (e.g. Euclidean distance 

classifications) assign feature vectors (pixels) to single and mutually exclusive endmember 

classes based upon their spectral properties.  In this sense, hard-boundary classifications 

assume no overlap occurs in the condition densities (inter-class-boundaries) that define 

endmember classes in feature space.  However, in reality, there is often a high degree of 

spectral confusion between feature vectors caused by sub-pixel variations in class composition.  

Soft-boundary spectral mixing models attempt to resolve sub-pixel variations in composition by 

estimating the primitive class mixing proportions within each feature vector.  Essentially, this 

enables a single feature vector (pixel) to have multiple class membership.  Recent research has 

shown that the sub-pixel class mixing proportions produced by spectral mixing models can be 

recombined using regression models to provide quantitative estimates of sub-pixel class 

abundances.   In the context of water quality remote sensing, spectral mixing models can thus 
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be used to differentiate the spectral contributions of various optically-active components.  The 

derived sub-pixel mixing proportions for each optical component can be subsequently 

recombined through regression models to provide quantitative estimates of specific optical 

components (e.g. chlorophyll-a) (Thiemann & Kaufmann, 2002; Tyler et al., 2006; Oyama et al., 

2007). 

 

In an extension of the methods described in Tyler et al. (2006), algorithms for the estimation of 

chlorophyll-a and C-phycocyanin were derived using three contrasting spectral mixing and 

mapping models: (i) mixture-tuned matched-filtering (MTMF), (ii) linear spectral mixture 

modelling (LSMM), and (iii) spectral angle mapping (SAM).  Spectral mixing and mapping 

models use endmember spectra to define the mixing margins for model solutions (in the case of 

MTMF and LSMM) or as reference for geometric similarity analysis (in the case of SAM).  The 

endmember spectra used to parameterise the MTMF and LSMM models were extracted from 

the CASI-2 [SeaWiFS] Lw data and, in addition from the CASI-2 [SeaWiFS] Lw data following a 

minimum-noise-fraction (MNF) transformation (see below) (Rainey et al., 2003; Tyler et al., 

2006).  The endmember spectra for the parameterisation of the SAM model were extracted 

from the CASI-2 [SeaWiFS] Lw data only. 

 

Minimum Noise Fraction Transformation—The MNF transformation provides an estimate of the 

inherent dimensionality of remote sensing data through the segregation and equalisation of 

spectral noise (Galat & Verdin, 1988; Tyler et al., 2006).  MNF transformations can substantially 

improve the noise-to-signal ratio of image data, thus improving image quality whilst reducing 

computational requirements. The MNF transformation is essentially an improved PCA-type 

transformation, consisting of two successive cascading PCA transformations. MNF 

transformations of the CASI-2 [SeaWiFS] Lw imagery produced MNF eigenimages composed of 

13 MNF bands of decreasing spectral information.  Coherent MNF bands were identified from 

eigenvalue scree plots; the MNF eigenimage was then subset to remove superfluous MNF 

bands prior to endmember extraction. 
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Spectral Endmember Extraction—The extraction of endmember reference spectra is critical to 

efficacy of spectral mixing models.  Endmember spectra for use in the spectral mixing models 

were extracted through two contrasting approaches: (1) manual extraction using a priori 

knowledge of potential endmember pixels; and (2) automated endmember extraction using the 

pixel purity index (PPI) or sequential maximum angle convex cone (SMACC) functions in ENVI 

v.4.3.  The selected endmembers for inclusion in the spectral mixing models comprised (1) c-

phycocyanin; (2) chlorophyll-a; (3) tripton; (4) bottom substrate; and (5) aquatic vegetation.  

These endmembers were chosen as it was assumed that these components have the greatest 

influence on the bio-optical properties (and thus Lw) of the waters in the Upper Thurne and 

Barton Broads (endmember spectra for CDOM could not be resolved).  Examples of extracted 

endmember spectra are shown in Figure 5.6. 

 

 

Figure 5.6 The extracted endmember spectra used for the parameterisation of the spectral 
mixing and SAM models 
 

The manual extraction of endmember spectra from CASI-2 [SeaWiFS] Lw images (i.e. non-MNF 

transformed) was facilitated by information from the contemporaneous water quality data to 

enable image pixels to be identified which were considered to be “spectrally pure” 

representatives of the various endmember components.  Briefly, sampling stations were 

identified where high concentrations of chlorophyll-a, C-phycocyanin or tripton (SPM) had been 

measured; the corresponding image pixels (5 x 5 kernal) were identified and the CASI-2 
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[SeaWiFS] Lw spectra from these pixels were extracted and used as endmember 

parameterisation.  Endmember spectra for the bottom substrate were obtained from regions of 

clear water (biomanipulation enclosures in Barton Broad); while endmember spectra for aquatic 

vegetation were derived from the dense Chara spp. lawns in Martham Broad.   

 

The manual extraction of endmember spectra from MNF-transformed CASI-2 [SeaWiFS] 

images was achieved through the identification of endmember pixel clusters from 2-D 

projections of the image data.  Extreme pixel clusters were identified in 2-D feature space and 

evaluated against the various endmember classes using the Dancing Pixels™ function in RSI 

ENVI v.4.3.  Pixel clusters found to relate to the desire endmember components were extracted 

for subsequent model parameterisation (Figure 5.7). 

 

(a) 
 

 

(b) 
 

 
 
Figure 5.7 2-D scatter plots of coherent MNF-transformed bands from the 16.00 h GMT 29 
August 2005 CASI-2 [SeaWiFS] image showing the extreme pixel clusters used for the 
identification and extraction of endmember component spectra for parameterisation of the 
spectral mixing models: (a) MNF band 1 vs. MNF band 2 and (b) MNF band 1 vs. MNF band 3. 
 

In contrast to manual extraction procedures, the PPI extraction of endmember spectra used 

repeated projections of n-dimensional scatter plots on a random unit vector to identify extreme 

pixels; the spectra from those pixels frequently flagged as extreme were then extracted and 

used for endmember parameterisation.  Similarly, the SMACC endmember extraction method 

used a convex cone model (residual minimisation) to identify an extreme pixel (first 

endmember); a constrained oblique projection is then applied to the existing cone to derive the 
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next endmember pixel.  Further endmembers are derived in an iterative manner until a 

previously discovered pixel is located.  The PPI and SMACC endmember extraction methods 

were applied to both the Lw and the MNF-transformed images.  Image pixels relating to the 

endmember spectra automatically extracted using PPI and SMACC were identified and 

compared to the ground truth water quality datasets to enable coherent endmembers to be 

selected for parameterisation of the spectral mixing models. 

 

Mixture-Tuned Matched Filtering Models—MTMF finds the relative abundances (mixing 

proportions) of user-defined endmember components using a partial spectral unmixing analysis.  

The technique maximises the response of the known endmember and suppresses the response 

of the composite unknown background in an attempt to match image pixel spectra to 

endmember reference spectra (Williams & Hunt, 2002; Williams & Hunt, 2004).  The output 

from the MTMF model is a multi-layer greyscale image depicting the relative degree of similarity 

between the pixel spectrum and the endmember reference spectrum; these values represent 

sub-pixel endmember abundances and are scaled between 0.0 and 1.0 (where 1.0 is absolute 

similarity).  The inclusion of the infeasibility image in the MTMF computation assists in reducing 

the number of false-positives (incorrect spectrum matches).  MTMF models were examined 

here because it is suggested that they offer an improved mixing solution in situations where 

endmember spectra are incomplete or poorly defined.  MTMF models were parameterised with 

the CASI-2 [SeaWiFS] Lw and MNF-transformed endmember spectra and the model solution 

was obtained.  The sub-pixel abundance values for each endmember derived from the MTMF 

model solutions were then extracted from the CASI-2 [SeaWiFS] image at the location of each 

lake sampling station.  The sub-pixel abundances were subsequently collated for use in the 

formulation of remote-sensing-based algorithms for pigment estimation. 

 

Linear Spectral Mixing Models—LSMMs determine the relative abundance of user-specified 

endmember components on a pixel by pixel basis based upon the assumption that the radiance 

(or reflectance) measured at each image pixel can be modelled as a linear combination of the 

radiance (or reflectance) of each user-specified endmember component (Galat & Verdin, 1988; 

Tyler et al., 2006).  The number of user-specified endmembers in LSMMs must be equal to, or 



 

 195

less than, the spectral dimensionality of the dataset (approximated by the number of coherent 

spectral bands).   

 

In this instance, the LSMM was run using two model constraint options: (1) unconstrained 

modelling (sub-pixel abundances may assume negative values and are not constrained by a 

sum-to-unity function in the linear-mixing algorithm) and (2) partially-constrained variable-weight 

modelling (sub-pixel abundances are forced to adhere to a sum-to-unity constraint in the linear-

mixing algorithm).  The partially-constrained models are more appropriate for MNF-transformed 

data.  High variable weights (5-10) were used for partially-constrained LSMMs to force the 

linear-mixing algorithm to strictly adhere to the sum-to-unity constraint.  The LSMMs were 

parameterised with the CASI-2 [SeaWiFS] Lw and MNF-transformed endmember spectra.  The 

sub-pixel abundance values for each endmember derived from the LSMM model solutions were 

then extracted from the CASI-2 [SeaWiFS] image at the location of each lake sampling station.  

The sub-pixel abundances were subsequently collated for use in the formulation of remote-

sensing-based algorithms for pigment estimation. 

 

Spectral Angle Mapping—SAM is a physically-based classification method that uses an n-

dimensional angle to match image pixels to endmember reference spectra.  The SAM algorithm 

determines the similarity between spectra by calculating the angle when the spectra are 

simultaneously projected in n-dimensional feature space (Kruse et al., 1993).  Acute angles 

indicate close matches between image pixel spectra and endmember reference spectra.  SAM 

is generally designed for use with image data calibrated to reflectance.  However, SAM can 

also be used on radiance datasets if, as here, appropriate efforts are made to normalise the 

spectra.   

 

SAM provides a hard-boundary classification image (where image pixels that match 

endmember reference spectra within a predefined tolerance limit are assigned to a single class) 

and a series of greyscale SAM rule images (which depict the probability of a match between the 

image pixel spectra and the endmember reference spectra).  The SAM rule image probabilities 

are comparable, although not analogous to, the MTMF and LSMM relative abundance values.  
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The SAM models were parameterised with the CASI-2 [SeaWiFS] Lw endmember spectra.  The 

SAM probability values for each endmember derived from the model solutions were then 

extracted from the CASI-2 [SeaWiFS] image at the location of each lake sampling station.  The 

probability values were subsequently collated for use in the formulation of remote-sensing-

based algorithms for pigment estimation. SAM has been previously been use for estimation of 

chlorophyll-a in coastal waters (Kutser, 2004) using a bio-optical model parameterisation 

approach. 

 

(3) Continuum-Removal 

Continuum-removal is a method that can be used to normalise reflectance spectra (or, in this 

instance, radiance spectra) allowing individual absorption features to be compared from a 

common baseline.  The continuum is a convex hull fitted across the spectrum using straight line 

segments to connect local spectral maxima.  The continuum is removed by dividing it into the 

actual spectrum for each image pixel (Equation 5.1): 

 
Scr = (S / C)     Equation 5.1  

 
where Scr is the continuum-removed spectrum, S is the original spectrum and C is the 

continuum curve (for further explanation see Section 3.3.3).  Continuum-removal was applied to 

the CASI-2 [SeaWiFS] Lw imagery and the derived continuum-removed images were used to: (i) 

calculate the continuum removed band-depth and, (ii) used to parameterise spectral feature 

fitting models (see below). 

 

Continuum-Removed Band Depth Analysis—The continuum-removed band-depths (CRBD) 

obtained from the continuum-removal analysis were extracted from the CASI-2 [SeaWiFS] 

image at the location of each lake sampling station. The CRBDs were subsequently collated for 

use in the formulation of remote-sensing-based algorithms for pigment estimation. 

 

Continuum-Removed Spectral Feature Fitting—Spectral Feature Fitting (SFF) is an absorption-

feature-based methodology which compares the fit of continuum-removed image spectra to 

continuum-removed endmember spectra using a least-squares technique (Kokaly et al., 2003).  
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The output derived is a scale image for each user-specified endmember depicting the relative fit 

between the SFF image spectrum and the endmember reference spectrum.  SFF was applied 

to the continuum-removed image transformations of the CASI-2 [SeaWiFS] imagery and the 

resulting scale values were extracted from the CASI-2 [SeaWiFS] image at the location of each 

lake sampling station.  The SFF scale values were subsequently collated for use in the 

formulation of remote-sensing-based algorithms for pigment estimation. 

 

Statistical analysis—Least-squares linear and non-linear regression models for the estimation 

of chlorophyll-a and C-phycocyanin were developed in Minitab v.14.  The NIR/red band-ratio 

values were non-normal (Anderson-Darling test); thus the datasets were Log10-transformed 

prior to further statistical analysis.  Algorithms for pigment retrieval based upon the NIR/red 

band-ratios were formulated using simple linear least-squares regression models.  Algorithms 

for pigment retrieval using the endmember relative abundances (MTMF and LSMM), probability 

values (SAM), CRBD and continuum-removed scale values (SFF) were formulated using 

multivariate best-subsets regression.  In order to preserve a degree of mechanistic clarity, the 

derived chlorophyll-a and C-phycocyanin endmember variables were included as fixed 

predictors in all models where the associated pigment was also the response variable.  CRBD 

and SFF scale values for all endmember variables were allowed to be free predictors.  The 

optimum best-subsets regression models were identified on the basis of the C-p Mallow’s 

statistic, the coefficient of determination (R2 and R2 [adjusted]) and the RMSE. 

 

5.4.5.2 Diurnal Time-Series Surveillance of a Potentially-Toxic Cyanobacterial Bloom 

The NERC ARSF aircraft was deployed on the 29 August 2005 in a specific response to the 

development of a bloom of the potentially-toxic cyanobacterium Microcystis aeruginosa on 

Barton Broad.  Time-series CASI-2 [SeaWiFS] imagery of the bloom was captured at 09:30, 

12:00 and 16.00 h GMT.  The optimum NIR/red band-ratio algorithms for the estimation of 

chlorophyll-a and C-phycocyanin concentrations (derived in Section 5.4.5.1) were then applied 

to the 29 August 2005 CASI-2 [SeaWiFS] time-series dataset to provide calibrated maps of the 

concentration of chlorophyll-a and C-phycocyanin in Barton Broad.  These spatially-resolving 

images allowed diurnal change in the distribution of M. aeruginosa colonies in the lake to be 
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examined.  The calibrated CASI-2 [SeaWiFS] chlorophyll-a and C-phycocyanin images were 

also used to produce images depicting the C-phycocyanin:chlorophyll-a ratio (C-PC:chl-a) using 

a simple band-math approach. 

 

The CASI-2 [SeaWiFS] time-series imagery of the cyanobacteria bloom was supplemented with 

water chemistry data collected on 22 August 2005 by the Environment Agency.  Hourly 

meteorological observations (MIDAS Land Surface Observation Station Data) from the nearest 

weather station (Coltishall ~ 8 km) were provided upon request courtesy of the NERC British 

Atmospheric Data Centre.  The water chemistry and meteorological data were subsequently 

used to aid the interpretation of the development and diurnal spatial dynamics of the M. 

aeruginosa bloom in Barton Broad. 

 

5.5 RESULTS AND DISCUSSION 

5.5.1 Development and Validation of Algorithms 

5.5.1.1 Algorithm Calibration 

Water Quality Trends―The water quality in the Upper Thurne and Barton Broads over the 

course of the 2-year NERC ARSF data acquisition campaign was highly variable, both spatially 

(inter- and intra-lake) and temporally (seasonally).  The water quality data obtained from the 

lake sampling cruises in the Upper Thurne and Barton Broads contemporaneous to the NERC 

ARSF data acquisition campaigns are summarised in Table 5.5.  The highest mean 

concentration of chlororphyll-a measured in the Upper Thurne and Barton Broads over the 2-

year lake sampling period was observed on 28 February 2005 (Environmental Agency data).  

This was largely due to the winter chlorophyll-a maximum on Hickling Broad (chlorophyll-a = 

55.7 (22.1-104.0) mg m-3).  No measurements of C-phycocyanin are available for the 28 

February 2005.   
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Table 5.5 Summary of the water quality data collected during the 2-year lake sampling cruises contemporaneous to the NERC ARSF campaigns. 
 

 
 

Chlorophyll-a  (mg m-3) C-phycocyanin (mg m-3) SPM (mg L-1) SPIM (mg L-1) SPOM (mg L-1) 

 
 Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

 
28 February 

2005† 
 

22.1 104.0 55.7 ― ― ― 7.9 24.7 32.6 ― ― ― ― ― ― 

 
21 April 

2005 
 

17.4 31.8 23.5 0.0‡ 44.9 14.8 4.6 20.2 9.6 1.5 8.2 3.8 3.2 12.0 5.9 

 
22 June 

2005 
 

5.2 30.1 19.8 13.5 44.5 27.9 5.6 74.2 34.1 1.4 34.7 15.6 4.2 39.5 18.6 

 
29 August 

2005 
 

4.0 70.9 38.6 6.6 138.8 59.8 9.6 69.0 45.5 4.4 43.5 23.2 5.2 43.3 22.2 

 

†Indicative measurements provided by the Environment Agency from routine sampling in the Upper and Thurne and Barton Broads conducted on 18 February 2005. 
‡ < Minimum limit of detection 
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The mean concentration of chlorophyll-a was much lower on 21 April 2005 (23.5 (17.4-31.8) mg 

m-3) and, further, the mean concentration of C-phycocyanin was the lowest measured over the 

2-year sampling period (14.8 (0.0-44.9) mg m-3) (i.e. low spring cyanobacterial abundance).  

The mean concentration of chlorophyll-a was lower again on 22 June 2005 (this was partly due 

to the extension of the lake sampling into the clear water Martham North Broad) (19.8 (5.2-30.1) 

mg m-3); however, the mean concentration of C-phycocyanin was higher than that measured on 

21 April 2005 (27.9 (13.5-44.5) mg m-3) (i.e. increasing summer cyanobacterial abundance).  

The mean concentration of chlorophyll-a was significantly higher on 29 August 2005 (calibration 

dataset) (38.6 (4.0-70.9) mg m-3); this was largely due to the M. aeruginosa bloom on Barton 

Broad.  Thus, it was not unexpected that the highest mean concentration of C-phycocyanin 

measured over the 2-year lake sampling period was also observed on 29 August 2005 (59.8 

(6.6-138.8) mg m-3) concurrent to the M. aeruginosa bloom on Barton Broad (the SPM, SPIM 

and SPOM data is provided for informational purposes, but is not considered in this chapter). 

 

Water quality measurements from several sampling stations had to be excluded from the 

algorithm calibration and validation process because they were taken > ±2 h from the time of 

the NERC ARSF data acquisition.  No water quality data could be obtained contemporaneous 

to the 28 February 2005 NERC ARSF campaign; therefore indicative values were provided by 

the Environment Agency from a routine survey of water quality in the Upper Thurne and Barton 

Broads conducted on 18 February 2005. 

 

NIR/red Band-Ratios―CASI-2 [SeaWiFS] Lw-signatures for Hickling and Barton Broad captured 

on 29 August 2005 are shown in Figure 5.8.  Local Lw-minima related to absorption by bio-

optically active pigments can be clearly seen in the Lw profiles.  The Lw feature observable in 

proximity to CASI-2 [SeaWiFS] band 7 (670 nm) is related to absorption by chlorophyll-a and, in 

similarity, the Lw feature observable in proximity to CASI-2 [SeaWiFS] band 6 (620 nm) is 

associated with absorption by C-phycocyanin.  The C-phycocyanin absorption feature is 

particularly prominent in the Lw spectra from Barton Broad due to the dense bloom of the 

potentially-toxic cyanobacterium M. aeruginosa.   
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Figure 5.8 CASI-2 [SeaWiFS] water-leaving-radiance spectra from two lakes: (a) Hickling 
Broad and (b) the cyanobacterial-dominated Barton Broad.  Note the presence of absorption 
features associated with chlorophyll-a at 670 nm in both spectra and the prominence of the C-
phycocyanin related feature at 620 nm in the Barton Broad spectra. 
 

The water-leaving-radiance profiles also show that the Lw signal was typically higher from 

Hickling Broad than that measured on Barton Broad (despite Barton Broad having a higher 

mean concentration of chlorophyll-a).  This was largely due to increased backscattering caused 

by relatively higher concentrations of tripton in Hickling Broad.  The lower values of Lw 

measured over Barton Broad were probably also the result of increased absorption by 

phytoplankton pigments during the bloom of M. aeruginosa.  

 

 The contribution of tripton scattering (and perhaps bottom radiance) to the upwelling water-

leaving-radiance signal prevented strong correlations being observed between the measured 

concentration of chlorophyll-a or C-phycocyanin and Lw in any single CASI-2 [SeaWiFS] band 

(results not shown here).  It was noted that strong relationships between pigment 

concentrations and the CASI-2 [SeaWiFS] could only be obtained following NIR/red band-ratio 

transformation. However, significant variation was observed in the efficacy of the various 

NIR/red band-ratios for the estimation of the chlorophyll-a concentration (Table 5.6).  The 

optimum NIR/red index for the estimation of chlorophyll-a from the 29 August 2005 CASI-2 

[SeaWiFS] data on the basis of the coefficient of determination and the RMSE was the 
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[Lw(710)/Lw(670)] band-ratio (n = 19; F = 309.0; R2 = 0.960; p < 0.001; RMSE = 7.07 mg 

chlorophyll-a m-3; RMSE% = 18.3).  

 
Table 5.6 Coefficients of determination (R2) and RMSE for the NIR/red band-ratio algorithms for 
the estimation of chlorophyll-a using the 29 August 2005 CASI-2 [SeaWiFS] data. 
 

 n F R2 p RMSE  
(mg m-3) 

RMSE  
(%) 

       
[Lw(710)/Lw(682.5)] 19 154.50 0.901 0.000 9.53 24.7 

       
[Lw(710)/Lw(670)]  309.00 0.960 0.000 7.07 18.3 

       
[Lw(752)/Lw(682.5)]  0.00 0.000 0.981 19.74 51.2 

       
[Lw(752)/Lw(670)]  1.27 0.069 0.276 18.24 47.3 

       
 

The relationship between the [Lw(710)/Lw(670)] band-ratio and the measured concentration of 

chlorophyll-a was non-linear prior to Log10-transformation; Log10-transformation of the data 

substantially increased the linearity of the relationship (see Figure 5.9).  The semi-empirical 

algorithm derived for the estimation of chlorophyll-a using the Lw(710)/Lw(670) ratio is shown in 

Equation 5.2. 

Chlorophyll-a (mg m-3) = 21.38·[Lw(710)/Lw(670)]2.44  Equation 5.2 

 

It can be argued that the [Lw(710)/Lw(670)] band-ratio provided the best estimation of the 

concentration of chlorophyll-a because the index targeted the specific CASI-2 [SeaWiFS] band 

in which the in vivo chlorophyll-a absorption maximum occurs (Band 7; 670 nm).  It can 

therefore be assumed that the index would retain maximum sensitivity to variance in the 

concentration of chlorophyll-a.  Strong regression models were also derived between the 

measured chlorophyll-a concentration and the [Lw(710)/Lw(682.5)] ratio.  However, statistically 

valid regression models could not be derived using the NIR/red band-ratios that employed 

Lw(752) as the numerator CASI-2 [SeaWiFS] band. 
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(a) (b) 

 
 
Figure 5.9 Scatter plots showing (a) the untransformed non-linear relationship between CASI-2 
[SeaWiFS] [Lw(710)/Lw(670)] band-ratio and the measured concentration of chlorophyll-a and 
(b) the Log10-transformed linear regression relationship between the CASI-2 [SeaWiFS] 
Lw(710)/Lw(670) ratio and the measured concentration of chlorophyll-a in the Upper Thurne and 
Barton Broads. 
 

Several previous authors have also found that the [Lw(710)/Lw(670)] band-ratio (or 

[Rrs(710)/Rrs(670)]) to be effective for the estimation of chlorophyll-a in CASE II waters (Dekker, 

1993; Han et al., 1994; Rundquist et al., 1996; Han & Rundquist, 1997) including those working 

with CASI-2 data (Ostlund et al., 2001; Ammenberg et al., 2002).  These previous findings 

provide some degree of substantiation for the results presented here.  The optimum NIR/red 

band-ratio for the estimation of C-phycocyanin from the 29 August 2005 CASI-2 [SeaWiFS] 

data on the basis of the coefficient of determination and the RMSE was the [Lw(710)/Lw(620)] 

band-ratio (n = 19; F = 304.6; R2 = 0.947; p < 0.001; RMSE = 11.9 mg chlorophyll-a m-3; 

RMSE% = 19.9) (see Table 5.7). 

 
Table 5.7 Coefficients of determination (R2) and RMSE for the NIR/red band-ratio algorithms for 
the estimation of C-phycocyanin using the 29 August 2005 CASI-2 [SeaWiFS] data. 
 
 n F R2 p RMSE  

(mg m-3) 
RMSE 
 (%) 

       
[Lw(710)/Lw(620)] 19 304.62 0.947 0.000 11.90 19.9 
       
[Lw(710)/Lw(555)]  45.24 0.727 0.000 26.11 46.6 
       
[Lw(752)/Lw(620)]  9.70 0.363 0.006 32.99 55.1 
       
[Lw(752)/Lw(555)]  3.18 0.158 0.092 37.25 62.2 
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The relationship between the [Lw(710)/Lw(620)] band-ratio and the measured concentration of 

C-phycocyanin was non-linear prior to Log10-transformation; Log10-transformation resulted in a 

significantly increased the linearity of the relationship (Figure 5.10).  The resulting semi-

empirical algorithm for the estimation of C-phycocyanin using the Lw(710)/Lw(620) ratio is shown 

in Equation 5.3.   

 

C-phycocyanin (mg m-3) = 19.50·[Lw(710)/Lw(620)]4.12  Equation 5.3 

 

(a) 

 

(b) 

 
 
Figure 5.10 Scatter plots showing (a) the untransformed non-linear relationship between CASI-
2 [SeaWiFS] [Lw(710)/Lw(620)] band-ratio and the measured concentration of C-phycocyanin 
and (b) the Log10-transformed linear regression relationship between the CASI-2 [SeaWiFS] 
[Lw(710)/Lw(620)] ratio and the measured concentration of C-phycocyanin in the Upper Thurne 
and Barton Broads. 
 

High coefficients of determination were also observed between the measured concentration of 

C-phycocyanin and the [Lw(710)/Lw(555)] band-ratio (n =19; F = 45.24; R2 = 0.727; p = 0.000) – 

probably due to high (but not maximal) absorption by C-phycocyanin at 555 nm.  In similarity to 

results derived from the chlorophyll-a NIR/red band-ratios, no statistically valid models could be 

derived with C-phycocyanin using NIR/red ratios employing Lw(752) as the numerator NIR 

CASI-2 [SeaWiFS] band  This may have been due to a low signal-to-noise ratio in CASI-2 

[SeaWiFS] band 10 and strong attenuation by water absorption. 

 

In similarity to the optimum NIR/red band-ratio for the estimation of chlorophyll-a, it can be 

suggested that the [Lw(710)/Lw(620)] band-ratio provided the best estimation of the 



 

 205

concentration of C-phycocyanin because it targets the specific CASI-2 [SeaWiFS] band in 

which the in vivo C-phycocyanin absorption maximum occurs (Band 6; 620 nm).  It can 

therefore be assumed that the index would retain maximum sensitivity to variance in the 

concentration of chlorophyll-a.  However, it must be noted that the measured concentrations 

chlorophyll-a and C-phycocyanin in the Upper Thurne and Barton Broads, as would be 

expected, demonstrated a significant degree of correlation (n = 19; r = 0.82; p = 0.000).  It has 

been shown that, if chlorophyll-a and C-phycocyanin co-vary, strong correlations can be derived 

between image data and the concentration of C-phycocyanin simply because of covariance with 

chlorophyll-a (see for example Vincent et al., 2004).  However, in this instance, the coefficient of 

determination between the [Lw(710)/Lw(620)] band-ratio and the measured concentration of 

chlorophyll-a (n =19; F = 52.99; R2 = 0.757; p = 0.000) was lower than that observed with the 

measured concentration of C-phycocyanin.  This intimates that the [Lw(710)/Lw(620)] band-ratio 

held greater specificity to C-phycocyanin than chlorophyll-a.  Similarly, the optimum band-ratio 

for chlorophyll-a, [Lw(710)/Lw(670)], demonstrated less specificity when correlated against the 

measured concentration of C-phycocyanin (n  = 19; F = 48.19; R2 = 0.739; p = 0.000).  Further 

confidence in the C-phycocyanin specificity of the [Lw(710)/Lw(620)] band-ratio can be inferred 

from the fact that Simis et al. (2005) and Simis et al. (2007) used a similar band-ratio 

formulation for the estimation of C-phycocyanin in turbid cyanobacterial-dominated waters. 

 

Spectral Mixing and SAM Models―The various multivariate regression algorithms derived from 

the MTMF, LSMM and SAM models for the estimation of chlorophyll-a are detailed in Table 5.8.  

In similarity to the results achieved with the NIR/red band-ratios, the multivariate algorithms 

derived from the endmember-based spectral mixing and SAM models also provided good 

estimations of the chlorophyll-a concentration in the Upper Thurne and Barton Broads on 29 

August 2005 (R2 = 0.699-0.815).  The SAM model provided the best estimation of the 

chlorophyll-a (n = 19; F = 21.03; R2 = 0.815; p = 0.000; RMSE = 8.12 mg chlorophyll-a m-3; 

RMSE% = 21.0) when the rule image probabilities for chlorophyll-a, C-phycocyanin, tripton and 

the bottom substrate were recombined in the multivariate regression analysis.  Whereas, of the 

spectral mixing models examined, the unconstrained LSMM, using endmembers derived from 

the MNF-transformed data, marginally demonstrated the strongest relationship with chlorophyll-
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a (n = 19; F = 24.12; R2 = 0.794; p = 0.000; RMSE = 8.57 mg chlorophyll-a m-3; RMSE% = 

22.2) using the recombined relative abundances for chlorophyll-a, C-phycocyanin, and tripton in 

the multivariate regression analysis.  However, neither the LSMM or SAM multivariate 

regression algorithms demonstrated a better relationship with the chlorophyll-a concentration 

than that achieved with the [Lw(710)/Lw(670)] NIR/red band-ratio.  The best-subsets multivariate 

algorithms for the estimation of chlorophyll-a are detailed in Equation 5.4 (SAM model) and 

Equation 5.5 (LSMM model): 

 

 Chlorophyll-a (mg m-3) = 48.2 – 118·IRPchl – 696·IRPC-PC + 1009·IRPtrip – 300·IRPsub   Equation 5.4 

 

Chlorophyll-a (mg m-3) = 23.1 – 2.28·EAchl – 14.9·EAC-PC – 22.2·EAtrip   Equation 5.5 

 

where, IRPchl, IRPC-PC, IRPtrip and IRPsub are the SAM-derived image rule probabilities for 

chlorophyll-a, C-phycocyanin, tripton and bottom substrate respectively; and EAch, EAC-PC and 

EAtrip are the LSMM-derived endmember abundances for chlorophyll-a, C-phycocyanin and 

tripton respectively. 

 

Table 5.8 Comparison of the various multivariate regression models derived from the MF, 
MTMF, LSMM spectral mixing techniques and SAM for the estimation of chlorophyll-a. 
 

 
 

Data 
Endmember

s 
inc. in Model 

n F R2 (adj.) p RMSE 
(mg m-3) 

RMSE 
(%) 

 
MTMF  Lw 1,2,3,5  15.89 0.768 0.000 9.10 23.6 
  MNF 1,2,3,4  11.47 0.699 0.000 10.35 26.8 
LSMM Con. Lw 1,2,3  22.07 0.778 0.000 8.89 23.0 
  MNF 1,3,4,5  15.86 0.768 0.000 9.10 23.6 
 Uncon Lw 1,2,3  22.07 0.778 0.000 8.89 23.0 
 . MNF 1,2,3  24.12 0.794 0.000 8.57 22.2 
SAM  Lw 1,2,3,4  21.03 0.815 0.000 8.12 21.0 

Con. – constrained model; Uncon. – unconstrained model. 
Lw – endmembers extracted from untransformed CASI-2 [SeaWiFS] water-leaving-radiance data. 
MNF – endmembers extracted from MNF-transformed CASI-2 [SeaWiFS] data. 
Model endmembers: 1 – chlorophyll-a; 2 – C-phycocyanin; 3 – tripton; 4 – bottom substrate; 5 – aquatic vegetation. 
 

The comparison between the fitted chlorophyll-a concentrations derived from the optimum SAM 

and LSMM models and the measured concentration of chlorophyll-a in the Norfolk Broads is 

shown in Figure 5.11.  It is evident that both the SAM and LSMM derived algorithms provided a 

good fit against the measured chlorophyll-a values at low concentrations (i.e. stations from 
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Hickling Broad and the Martham Broads), but considerable scatter is observed in both models 

for comparisons against the high concentrations of chlorophyll-a measured during the 

cyanobacterial bloom in Barton Broad.  This may suggest that the endmember components 

used in both the SAM and LSMM models were ill-defined for the specific bio-optical conditions 

encountered on Barton Broad. 

 

(a) 

 

(b) 

 
 
Figure 5.11 Comparison of the (a) the SAM fitted chlorophyll-a concentrations and (b) the 
LSMM unconstrained MNF-transformed fitted chlorophyll-a concentrations against the 
measured concentration of chlorophyll-a in the Upper Thurne and Barton Broads on 29 August 
2005. 
 

The various multivariate regression models derived from the MTMF, LSMM and SAM methods 

for the estimation of C-phycocyanin are detailed in Table 5.9.  In similarity to the results 

observed for chlorophyll-a, the multivariate algorithms derived from the endmember-based 

spectral mixing and SAM models demonstrated good relationships with the concentration of C-

phycocyanin concentration (R2 = 0.680-0.801) in the Upper Thurne and Barton Broads on 29 

August 2005.  The SAM model again provided the best estimation of pigment concentration (n 

= 19; F = 21.03; R2 = 0.815; p = 0.000; RMSE = 8.12 mg C-phycocyanin m-3; RMSE% = 21.0) 

but, in contrast to the SAM model for chlorophyll-a, the optimum model used the recombined 

rule image probabilities for C-phycocyanin, tripton, bottom substrate and aquatic vegetation in 

the multivariate regression analysis.  The results obtained from the MTMF and LSMM 

algorithms were very similar.  However in this instance the constrained LSMM derived from the 

non-MNF-transformed data provided a better fit against the measured concentration of C-
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phycocyanin than that obtained with the unconstrained MNF-transformed LSMM model.   

Nonetheless, in similarity to the results observed for chlorophyll-a, the spectral mixing and SAM 

models could not provide a better estimation of the C-phycocyanin concentration than that 

achieved with the [Lw(710)/Lw(620)] NIR/red band-ratio. 

 
Table 5.9 Comparison of the various multivariate regression models derived from the MF, 
MTMF, LSMM spectral mixing techniques and SAM for the estimation of C-phycocyanin. 
 

 
 

Data 
Endmember

s 
inc. in Model 

n F R2 (adj.) p RMSE 
(mg m-3) 

RMSE 
(%) 

 
MF  Lw 1,2,4,5 19 18.47 0.744 0.000 19.30 32.3 
  MNF 1,2,3,4  10.58 0.680 0.000 21.58 36.1 
MTMF  Lw 1,2,4,5  18.47 0.744 0.000 19.30 32.3 
  MNF 1,2,3,4  10.58 0.680 0.000 21.58 36.1 
LSMM Con. Lw 1,2,3,5  14.05 0.744 0.000 19.33 32.3 
  MNF 1,2,3,5  13.81 0.740 0.000 19.46 32.58 
 Uncon Lw 1,2,3,5  14.05 0.744 0.000 19.33 32.3 
 . MNF 1,2,3,4  12.68 0.722 0.000 20.13 33.6 
SAM  Lw 2,3,4,5  19.17 0.801 0.000 17.00 28.4 

Con. – constrained model; Uncon. – unconstrained model. 
Lw – endmembers extracted from untransformed CASI-2 [SeaWiFS] water-leaving-radiance data. 
MNF – endmembers extracted from MNF-transformed CASI-2 [SeaWiFS] data. 
Model endmembers: 1 – chlorophyll-a; 2 – C-phycocyanin; 3 – tripton; 4 – bottom substrate; 5 – aquatic vegetation. 
 

The best-subsets multivariate algorithms for the estimation of C-phycocyanin are detailed in 

Equation 5.6 (SAM model) and Equation 5.7 (LSMM model): 

 
 C-phycocyanin (mg m-3) = 57.8 – 3233·IRPC-PC + 2857·IRPtrip + 1013·IRPsub – 701·IRPveg   Equation 5.6 

 
C-phycocyanin (mg m-3) = 74.5 – 36.1·EAchl – 126·EAC-PC – 112·EAtrip – 52.8·EAveg Equation 5.7 

 
where IRPC-PC, IRPtrip, IRPsub and IRPveg are the SAM-derived image rule probabilities for C-

phycocyanin, tripton, bottom substrate and aquatic vegetation respectively; and EAch, EAC-PC 

and EAtrip are the LSMM-derived endmember abundances for chlorophyll-a, C-phycocyanin and 

tripton respectively.  The comparison between the fitted C-phycocyanin concentrations derived 

from the optimum SAM and LSMM models and the measured concentration of C-phycocyanin 

in the Norfolk Broads is depicted in Figure 5.12. 
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(a) (b) 

 
Figure 5.12 Comparison of the (a) the SAM fitted C-phycocyanin concentrations and (b) the 
LSMM unconstrained MNF-transformed fitted C-phycocyanin concentrations against the 
measured concentration of C-phycocyanin in the Upper Thurne and Barton Broads on 29 
August 2005. 
 

Continuum-Removed Band Depths and Spectra Feature Fitting―The multivariate regression 

algorithms for the estimation of chlorophyll-a derived from the CRBD and SFF models are 

detailed in Table 5.10.  The optimum multivariate regression algorithm was obtained from the 

recombination of the CRBDs for CASI-2 [SeaWiFS] bands 4 (510 nm), 6 (620 nm), 7 (670 nm), 

8 (682.5 nm) and 11 (762 nm) (n = 19; F = 18.43; R2 = 0.828; p = 0.000; RMSE = 7.83 mg 

chlorophyll-a m-3; RMSE% = 20.3).  The continuum-removed absorption-related features 

occurring in CASI-2 [SeaWiFS] bands 6, 7 and 8 are predominantly related to the presence of 

C-phycocyanin and chlorophyll-a.  The continuum-removed absorption feature occurring in 

CASI-2 [SeaWiFS] band 4 may be related to the overlapping absorption spectra of chlorophyll-a 

and carotenoids pigments allied to the presence of dissolved and particulate organics.  The 

inclusion of these continuum-removed bands in the multivariate model for the estimation of 

chlorophyll-a therefore seems to be mechanistically justifiable.  The inclusion of the continuum-

removed absorption feature occurring in CASI-2 [SeaWiFS] band 11 (related to the oxygen 

absorption feature at 762 nm) is more difficult to understand; although the depth of the 

absorption feature in band 11 may be influenced by tripton scattering which may, in part, 

explain its inclusion in the multivariate model.   
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Table 5.10 Comparison of the various multivariate regression models derived from the CRBD 
and SFF analysis for the estimation of chlorophyll-a. 
 

 Bands/Endmembers 
inc. in Model n F R2 (adj.) p RMSE 

(mg m-3) 
RMSE  

(%) 
 
CRBD B4, B6, B7, B8, B11 19 18.33 0.828 0.000 7.83 20.3 
SFF 1,2,4  10.61 0.681 0.000 10.67 27.6 

Model endmembers: 1 – chlorophyll-a; 2 – C-phycocyanin; 3 – tripton; 4 – bottom substrate; 5 – aquatic vegetation. 

 

The SFF model also provided a reasonable estimation of the concentration of chlorophyll-a; this 

was, however, somewhat poorer than that obtained from the CRBD model.  The CRBD model 

provided an improvement on the estimation of chlorophyll-a in comparison to that obtained from 

the spectral mixing and SAM models.  Nonetheless, the optimum CRBD model was again not 

as effective for the estimation of chlorophyll-a as the [Lw(710)/Lw(670)] NIR/red band-ratio.  The 

optimum algorithm for the estimation of chlorophyll-a from the CRBD multivariate regression 

model is detailed in Equation 5.8: 

 
Chlorophyll-a (mg m-3) = 155 + 272·CRBDB4 – 262·CRBDB6 + 247·CRBDB7 – 250·CRBDB8 – 222·CRBDB11  

Equation 5.8 

 
where CRBDB4, CRBDB6, CRBDB7, CRBDB8 and CRBDB11 are the continuum-removed band-

depths for CASI-2 [SeaWiFS] bands 4, 6, 7, 8 and 11 respectively.  The comparison between 

the CRBD model fitted chlorophyll-a concentrations and the measured concentration of 

chlorophyll-a is shown in Figure 5.13.  The CRBD model provided a reasonably good fit against 

the measured concentration of chlorophyll-a; however, it is again evident that scatter occurs in 

the relationship for high concentrations of chlorophyll-a.  

 

The multivariate regression algorithms for the estimation of C-phycocyanin derived from the 

continuum-removed band depth and SFF models are detailed in Table 5.11.  The optimum 

multivariate regression algorithm was obtained from the recombination of the CRBDs for CASI-

2 [SeaWiFS] bands 4 (510 nm), 6 (620 nm) and 11 (762 nm) (n = 19; F= 29.17; R2 = 0.824; p = 

0.000; RMSE = 15.99 mg chlorophyll-a m-3; RMSE% = 26.7). 
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Figure 5.13 Comparison of the CRBD model fitted chlorophyll-a concentrations against the 
measured concentration of chlorophyll-a in the Upper Thurne and Barton Broads on 29 August 
2005. 
 

Table 5.11 Comparison of the various multivariate regression models derived from the CRBD 
and SFF analysis for the estimation of C-phycocyanin. 
 

 Bands/Endmembers 
inc. in Model n F R2 (adj.) p RMSE 

(mg m-3) 
RMSE  

(%) 

CRBD B4, B6, B11 19 29.17 0.824 0.000 15.99 26.7 

SFF 2,3,4,5  15.96 0.769 0.000 18.36 30.7 

Model endmembers: 1 – chlorophyll-a; 2 – C-phycocyanin; 3 – tripton; 4 – bottom substrate; 5 – aquatic vegetation. 

 

In similarity to the CRBD model for chlorophyll-a, inclusion of the continuum-removed 

absorption features occurring in CASI-2 [SeaWiFS] bands 4 (555 nm) and 6 (620 nm) in the 

CRBD model for C-phycocyanin probably reflects the influence of C-phycocyanin absorption at 

these wavelengths.  Again, CASI-2 [SeaWiFS] band 11 was also included in the model, which 

further suggests that its inclusion may provide some degree of correction in the regression 

model for the effects of tripton scattering, although the semi-empirical nature of this approach 

makes it difficult to obtain a complete and mechanistic understanding of algorithm construction. 

 

The SFF model also provided a reasonable estimation of the concentration of C-phycocyanin; 

this was, however, somewhat poorer that that obtained from the CRBD model.  The CRBD 
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model provided an improvement on the estimation of chlorophyll-a in comparison to that 

obtained from the spectral mixing and SAM models.  Nonetheless, the CRBD model was again 

not as effective for the estimation of C-phycocyanin as the [Lw(710)/Lw(620)] NIR/red band-ratio.  

The algorithm for the estimation of chlorophyll-a from the CRBD multivariate regression model 

is detailed in Equation 5.9: 

 

C-phycocyanin (mg m-3) = 113 + 447·CRBDB4 – 461·CRBDB6 – 274·CRBDB11  Equation 5.9 

 

where CRBDB4, CRBDB6, and CRBDB11 are the continuum-removed band depths for CASI-2 

[SeaWiFS] bands 4, 6 and 11 respectively.  The comparison between the CRBD model fitted 

chlorophyll-a concentrations and the measured concentration of chlorophyll-a is shown in 

Figure 5.14. 

 

Figure 5.14 Comparison of the CRBD model fitted C-phycocyanin concentrations against the 
measured concentration of C-phycocyanin in the Upper Thurne and Barton Broads on 29 
August 2005. 
 

5.5.1.2 Algorithm Validation 

NIR/red Band-Ratios―The optimum NIR/red band-ratio algorithm for the estimation of 

chlorophyll-a was applied to the CASI-2 [SeaWiFS] images acquired over the Upper Thurne 

and Barton Broads at 13.00 h GMT on 28 February 2005, 21 April 2005 and 22 June 2005; the 

derived coefficients of determination and RMSE for the validation analysis are detailed in Table 
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5.12.  The validation analysis demonstrated that the CASI-2 [SeaWiFS] [Lw(710)/Lw(670)] band-

ratio algorithm provided an excellent estimation of the chlorophyll-a concentration in the Upper 

Thurne and Barton Broads when compared to the concentration of chlorophyll-a measured at 

stations in the Upper Thurne and Barton Broads on the 28 February 2005, 21 April 2005 and 22 

June 2005.  RMSEs (mg m-3) for the estimation of chlorophyll-a ranged from 3.38 mg m-3 on 21 

April 2005 to 11.08 mg m-3 on 28 February 2005 and, for all CASI-2 [SeaWIFS] validation 

datasets; this equates to a RMSE < ±20% over the range 5.2-104.0 mg chlorophyll-a m-3.  This 

degree of predictive accuracy for NIR/red band-ratio-based chlorophyll-a retrieval algorithms 

compares favourably to the target of < ±35% over the range 0.05-50 mg chlorophyll-a m-3 

adopted for the SeaWiFS ocean colour monitoring programme (Hooker & McClain, 2000). 

 
Table 5.12 Coefficients of determination and RMSEs for the validation of chlorophyll-a 
concentrations derived from the CASI-2 [SeaWiFS] [Lw(710)/Lw(670)] NIR/red band-ratio 
algorithm against the measured concentration of chlorophyll-a in the Upper Thurne and Barton 
Broads on 28 February 2005, 21 April 2005 and 22 June 2005. 
 
 n R2 RMSE (mg m-3) RMSE (%) 
28 February 2005 3 0.997 11.08 19.9 

21 April 2005 7 0.687 3.38 15.7 
22 June 2005 11 0.785 3.53 17.8 

 

The largest validation errors were derived from CASI-2 [SeaWiFS] imagery acquired on 28 

February 2005.  However, given that the measured chlorophyll-a concentrations used to 

validate the algorithm were obtained on 18 February 2005 – 10 d prior to image acquisition – 

some degree of error would have no doubt been incurred from the lack of synchronicity 

between image acquisition and ground-truth sampling.  The comparison between the image-

predicted chlorophyll-a concentrations from the [Lw(710)/Lw(670)] NIR/red band-ratio algorithm 

and the measured concentration of chlorophyll-a in the Upper Thurne and Barton Broads for all 

validation datasets is shown in Figure 5.15. 

 

The minimum detection limit for the remotely sensed estimation of phytoplankton pigment 

concentrations is an important consideration and, in particular, in the context of the potential 

implementation of a remote-sensing-based monitoring strategy for the EU WFD.  It is difficult to 

ascertain the CASI-2 [SeaWiFS] minimum detection limit (MDL) for chlorophyll-a based solely 
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on data obtained here.  However, based upon the results outlined above, a conservative MDL 

estimate for chlorophyll-a in shallow CASE II waters (comparable to those of the Upper Thurne 

and Barton Broads) might be placed at approximately 5 mg chlorophyll-a m-3; this MDL for 

chlorophyll-a would certainly seem conducive to the use of remote sensing for routine lake 

monitoring purposes. 

 

(a) (b) 

 
(c) 

 

(d) 

 
Figure 5.15 Comparison of optimum NIR/red band-ratio [Lw(710)/Lw(670)] algorithm predicted 
chlorophyll-a concentrations derived from the CASI-2 [SeaWiFS] imagery against the measured 
concentration of chlorophyll-a in the Upper Thurne and Barton Broads on (a) 28 February 2005, 
(b) 21 April 2005, (c) 22 June 2005 and (d) during all NERC ARSF campaigns. 
 

The optimum NIR/red band-ratio algorithm for the estimation of C-phycocyanin was validated 

using  the CASI-2 [SeaWiFS] images acquired over the Upper Thurne and Barton Broads at 

13.00 h GMT on 21 April 2005 and 22 June 2005 (no measurements of the C-phycocyanin 

concentration were available to validate the algorithm for the 28 February CASI-2 [SeaWiFS] 
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image).  The derived coefficients of determination and RMSEs for the validation analysis are 

detailed in Table 5.13.   

 
Table 5.13 Coefficients of determination and RMSEs for the validation of C-phycocyanin 
concentrations derived from the CASI-2 [SeaWiFS] Lw(710)/Lw(620) NIR/red band ratio 
algorithm against the measured concentration of C-phycocyanin in the Upper Thurne and 
Barton Broads on 21 April 2005, 22 June 2005 and for all sampling dates combined. 
 
 n R2 RMSE (mg m-3) RMSE (%) 

21 April 2005 7 0.031 6.63 52.7 
22 June 2005 11 0.800 9.03 33.4 

 

The CASI-2 [SeaWiFS] [Lw(710)/Lw(620)] NIR/red band-ratio algorithm generally provided a 

good estimation of the C-phycocyanin concentration in the Upper Thurne and Barton Broads 

when compared to the concentration of C-phycocyanin measured at stations in the Upper 

Thurne and Barton Broads on 21 April 2005 and 22 June 2005.  The RMSEs (mg m-3) for the 

estimation of chlorophyll-a ranged from 6.63 mg m-3 on 21 April 2005 to 9.03 mg m-3 on 22 June 

2005; these errors represent a RMSE(%) of ±33.4-52.7% over the range 8.1-54.9 mg C-

phycocyanin m-3.   

 

The accuracy of the NIR/red band-ratio algorithm for the estimation of C-phycocyanin would 

thus seem to be slightly poorer compared to that achieved for chlorophyll-a.  The incurred 

errors in the estimation of C-phycocyanin are probably due to interference from other bio-

optically active pigments when the concentration of C-phycocyanin is low.  Simis et al. (2007) 

have shown that the accuracy of the remote-sensing-based estimation of C-phycocyanin is 

dependent on the C-phycocyanin:chlorophyll-a and C-phycocyanin:chlorophyll-b ratios.  This 

would seem to explain the high RMSE observed for the estimation of C-phycocyanin on the 22 

April 2005 CASI-2 [SeaWiFS] image (the C-phycocyanin:chlorophyll-a ratio was lowest in April 

2005).  Nonetheless, the results indicate the estimation of C-phycocyanin (and hence 

cyanobacterial biomass) using NIR/red band-ratios algorithms is achievable in optically-

complex shallow lakes. 
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(a) 

 
 
(b) 

 

(c) 

 
 
Figure 5.16 Comparison of optimum NIR/red band-ratio [Lw(710)/Lw(620)] algorithm predicted 
C-phycocyanin concentrations derived from the CASI-2 [SeaWiFS] imagery against the 
measured concentration of C-phycocyanin in the Upper Thurne and Barton Broads on (a) 21 
April 2005 and (b) 22 June 2005 and (c) during all NERC ARSF campaigns. 
 

The greater uncertainty apparent in the estimation of C-phycocyanin from CASI-2 [SeaWiFS] 

data would seem to suggest the MDL for C-phycocyanin is likely to be somewhat higher than 

that for chlorophyll-a.  Again, it is difficult to accurately establish a MDL based solely on the 

data presented here.  However, in Figure 5.16(c) a lower asymptote can be perceived at 

concentrations equivalent to ~ 10 mg C-phycocyanin m-3; thus 10 mg m-3 may represent an 

approximate MDL for C-phycocyanin in the waters of the Upper Thurne and Barton Broads.  

Kutser et al. (2006) suggest a MDL for C-phycocyanin in the Baltic Sea equivalent to a 

chlorophyll-a concentration of ~ 10-30 mg m-3; Metsamaa et al. (2006) also suggest that the 

concentration of chlorophyll-a in the Baltic Sea has to reach 8-10 mg m-3 before the C-

phycocyanin absorption related feature is detectable from remote sensing instruments 
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(assuming a minimum 1000:1 signal-to-noise ratio).  Thus, the 10 mg C-phycocyanin m-3 MDL 

suggested here would seem to be comparable to that proposed in previous studies. 

 

LSMM, SAM and Continuum-Removed Models―The algorithms for the estimation of 

chlorophyll-a and C-phycocyanin derived from the LSMM, SAM and CRBD modelling were 

applied to the CASI-2 [SeaWiFS] images acquired over the Upper Thurne and Barton Broads 

on the 28 February 2005, 21 April 2005 and 22 June 2005 and validated against the measured 

concentrations of chlorophyll-a and C-phycocyanin.  The unconstrained LSMM model 

formulated from the non-MNF-transformed Lw data was used in the validation analysis as (i) 

there were only marginal differences between the performance of the various LSMM models 

and (ii) it was perceived that the endmember spectra used in the MNF-transformed LSMM 

models would not be applicable to other MNF-transformed CASI-2 [SeaWiFS] datasets due to 

the somewhat scene-dependent nature of the MNF-transform. 

 

The endmember spectra derived from the initial 29 August 2005 CASI-2 [SeaWiFS] image were 

used to parameterise LSMM and SAM models for the CASI-2 [SeaWiFS] validation datasets.  

The models were run and the resulting model solutions (LSMM endmember relative 

abundances and SAM image-rule probabilities) were recombined into the pre-derived 29 

August 2005 algorithms for chlorophyll-a and C-phycocyanin.  However, this validation analysis 

resulted in large residual errors between the model-estimated and measured pigment 

concentrations.  Thus, it was apparent that the algorithms derived from the 29 August 2005 

CASI-2 [SeaWIFS] imagery were essentially scene-dependent and could not be effectively 

extrapolated to the remaining multi-temporal CASI-2 [SeaWiFS] datasets.  Semi-empirically 

derived water-leaving-radiance based algorithms often suffer from lack of transferability as they 

are generally only valid for application under the precise atmospheric conditions, and solar and 

viewing geometries, prevalent at the time of algorithm calibration.  However, here, an effective 

image-to-image normalisation procedure was employed to enable the extrapolation of 

algorithms for pigment estimation between different CASI-2 [SeaWiFS] images of the Upper 

Thurne and Barton Broads.   
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The lack of algorithm transferability encountered here probably reflects, therefore, the scene-

dependent nature of the LSMM, SAM and CRBD model solutions.  Moreover, because of the 

significant variation in the water quality conditions between the various CASI-2 [SeaWiFS] 

images, the endmember spectra derived from the 29 August 2005 CASI-2 [SeaWiFS] image 

may not have been representative of the actual endmember components in the 28 February 

2005, 21 April 2005 and 22 June 2005 CASI-2 [SeaWiFS] images.  Indeed, 2-D projections of 

image pixels in component space demonstrated that endmember pixels in the CASI-2 

[SeaWiFS] imagery from the 28 February 2005, 21 April 2005 and 22 June 2005 were different 

to those originally extracted in the 29 August 2005 CASI-2 [SeaWiFS] datasets.  Most notable, 

was the absence of pronounced endmembers for C-phycocyanin (i.e. low cyanobacterial 

abundance) and aquatic vegetation (early growing season) in the 28 February 2005 and 21 

April CASI-2 [SeaWiFS] images.  It was also not possible to identify a pronounced C-

phycocyanin endmember in the 22 June 2005 CASI-2 [SeaWiFS] image (lower C-

phycocyanin:chlorophyll-a)  

 

The definition of endmembers used to parameterise spectral mixing and angle mapping models 

can have a significant effect upon the model solutions and, as shown here, variability in the 

endmembers present within an image would seem to invalidate algorithms formulated using 

model solutions from other images.  Similarly, in the case of the CRBD algorithms for pigment 

estimation the Lw-minima, associated with pigment absorption, were not consistent with the 

original CASI-2 [SeaWiFS] calibration dataset (i.e. the C-phycocyanin absorption feature was 

not present in images captured on 28 February 2005 and 21 April 2005).  The CRBD algorithms 

derived from the 29 August 2005 CASI-2 [SeaWiFS] image were also therefore not appropriate 

for extrapolation to other CASI-2 [SeaWiFS] datasets. 

 

The limited transferability of the LSMM, SAM and CRDB algorithms for pigment estimation 

required that either (1) new endmember spectra were extracted for each CASI-2 [SeaWiFS] 

image and used to derive new algorithms for pigment estimation, or (2) the original endmember 

spectra were preserved but new, image-specific, algorithms were derived for pigment 

estimation.  The extraction of new image-specific endmembers would have precluded the 
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estimation of C-phycocyanin in the 21 April 2005 and 22 June 2005 CASI-2 [SeaWiFS] imagery 

(as no C-phycocyanin endmember could be adequately defined); thus the original endmember 

spectra were retained and used for LSMM and SAM model parameterisation, but new image-

specific algorithms for pigment estimation were derived using the multivariate best-subsets 

regression for each CASI-2 [SeaWiFS] image. 

 

The accuracy of the original (i.e. not recalibrated) LSMM, SAM and CRBD algorithms is 

compared to that of the corresponding image-specific algorithms for both chlorophyll-a and C-

phycocyanin in Table 5.14.  The results obtained from the derivation of image-specific LSMM, 

SAM and CRBD algorithms for the estimation of chlorophyll-a and C-phycocyanin demonstrate 

that, in the case of chlorophyll-a, the LSMM, SAM and CRBD models provide a better, although 

image-specific estimation, than was achieved with the NIR/red band-ratio algorithms.  

Coefficients of determination for the estimation of chlorophyll-a derived from the image-specific 

LSMM, SAM and CRBD models varied between R2 = 0.808-0.930 for the CASI-2 [SeaWiFS] 21 

April 2005 and 22 June 2005 datasets (RMSE 0.72-2.66 mg chlorophyll-a m-3; RMSE% = 3.4-

13.4). 

 

In contrast to the results obtained for chlorophyll-a, the recalibration of the LSMM and SAM 

algorithms could not provide a statistically significant model for the estimation of C-phycocyanin 

and, further, an image-specific CRBD algorithm for the estimation of C-phycocyanin could only 

be derived for the 22 June 2005 CASI-2 [SeaWiFS] dataset.  In the case of the LSMM and SAM 

model, this was probably largely due to the absence a C-phycocyanin endmember in the CASI-

2 [SeaWiFS] images captured on 21 April 2005 and 22 June 2005.  Similarly, in the case of the 

CRBD algorithm, the lack of a statistically valid model was likely due to the absence of a 

prominent C-phycocyanin absorption-related feature in the continuum-removed spectra of the 

21 April 2005 CASI-2 [SeaWiFS] image. 
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Table 5.14 Comparison of the algorithms derived from the 29 August 2005 CASI-2 [SeaWiFS] image and the image-specific algorithms for the estimation 
of chlorophyll-a and C-phycocyanin concentrations. 
 
 CASI-2 dataset Model Algorithm Bands/Endmembers 

inc. in Model n F R2 (adj.) p RMSE 
(mg m-3) RMSE (%) 

           
Chlorophyll-a February LSMM 29 August 2005  3  0.388  48.82 87.6 
   Image-specific†        
  SAM 29 August 2005    0.019  52.13 93.5 
   Image-specific†        
  CRBD 29 August 2005    0.100  49.38 88.62 
   Image-specific†        
           
 April LSMM 29 August 2005  9  0.635‡  24.73 93.7 
   Image-specific 1, 3, 4, 5  24.00 0.920 0.005 0.72 3.4 
  SAM 29 August 2005    0.004  14.51 67.5 
   Image-specific 1, 2, 3  32.75 0.923 0.001 0.79 3.69 
  CRBD 29 August 2005    0.652‡  50.91 237.0 
   Image-specific B4, B6, B8  25.79 0.903 0.002 0.89 4.1 
           
 June LSMM 29 August 2005  11  0.466‡  17.25 84.11 
   Image-specific 1, 2, 3, 5  34.25 0.930 0.000 1.49 7.5 
  SAM 29 August 2005    0.024  44.85 226.5 
   Image-specific 1, 3, 4  17.02 0.828 0.001 2.51 12.7 
  CRBD 29 August 2005    0.003  23.59 119.1 
   Image-specific B4, B6, B8  15.07 0.808 0.002 2.66 13.4 
           
C-phycocyanin April LSMM 29 August 2005  6  0.000  85.73 681.8 
   Image-specific  
  SAM 29 August 2005    0.327‡  49.50 393.7 
   Image-specific#  
  CRBD 29 August 2005    0.030  20.39 162.2 
   Image-specific#  
           
 June LSMM 29 August 2005  11  0.321‡  331.9 1228.0 
   Image-specific#  
  SAM 29 August 2005    0.125  233.1 1177.0 
   Image-specific#  
  CRBD 29 August 2005    0.074  127.1 470.5 
   Image-specific B5, B6, B7, B8, B10  6.32 0.727 0.032 6.29 23.3 
†Too few ground truth measurements for image-specific algorithm to be derived. 
‡Regression relationship was negative. 
#Statistically significant image-specific algorithm could not be derived. 
Model endmembers: 1 – chlorophyll-a; 2 – C-phycocyanin; 3 – tripton; 4 – bottom substrate; 5 – aquatic vegetation. 
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The obvious limitation with the use of LSMM, SAM and CRBD algorithms for pigment estimation 

is that, under most circumstances, the algorithms cannot be extrapolated to other image 

datasets without recalibration using the new model solutions.  These findings contrast to those 

presented in Tyler et al. (2006) who were able to hindcast an algorithm for the estimation of 

chlorophyll-a in Lake Balaton (Hungary) derived from LSMM of a Landsat TM 7 acquired in 

2000 scene to another Landsat TM 7 scene acquired in 1994.  This improved transferability 

may have been due to the fact that the limited spectral capabilities of the Landsat TM 7 platform 

only enabled the use of 4 simple endmembers (no endmembers for C-phycocyanin, bottom 

reflectance, or aquatic vegetation were defined).  In addition, in both Landsat TM 7 scenes 

analysed by Tyler et al. (2006) there was a large algal bloom on Lake Balaton and, as a result, 

there was arguably less variation in water quality condition between individual scenes as 

encountered in the Norfolk Broads. 

 

Implications for the Remote Sensing of Shallow Lakes—The results presented here indicate 

that remote sensing can provide accurate estimations of phytoplankton pigment concentrations 

in very shallow and optically complex lakes.   It would appear that the NIR/red band-ratios are 

most appropriate for pigment estimation in shallow lakes where the derived algorithms are to be 

extrapolated beyond the dataset used for calibration.  The NIR/red band-ratio algorithms were 

shown capable of estimating pigment concentrations with an accuracy and, importantly, 

robustness, which would suggest that remote sensing platforms could be used for the routine 

monitoring of water quality in shallow lakes.  Unfortunately, it would not be possible to 

extrapolate the algorithms formulated here to other shallow waters because they were derived 

semi-empirically using water-leaving-radiance data.  In this context, the derivation of analytical 

(or semi-analytical) algorithms from bio-optical modelling studies using remote-sensing-

reflectance (Rrs) (as opposed to water-leaving-radiance) measurements would provide more 

robust algorithms for extrapolation across time and space.  This should be considered in future 

studies. 

 

In instances where the optical complexity of specific lakes hinders the retrieval of accurate 

pigment concentrations through NIR/red band-ratio algorithms, the use of LSMM, SAM and 
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CRBB models would seem to offer a route forward providing that the derived algorithms are not 

to be extrapolated across multi-temporal images or transferred to other water bodies.  The 

limited transferability of the algorithms derived from the spectral mixing, spectral angle mapping 

and continuum removed models would preclude their use for the routine monitoring of water 

quality in lakes, but they may be of value for expeditious, one-off, investigations.  The 

robustness of the algorithms may be improved if the endmembers were derived using bio-

optical modelling approaches and this should perhaps be considered further.  In addition, the 

increasing availability of hyperspectral remote sensing data offers an opportunity to examine 

the use of spectral nth-derivative indices for the estimation of pigment concentrations in shallow 

lakes.  nth-Derivative based indices may provide a more robust alternative to the use of NIR/red 

band-ratios for pigment estimation in shallow lakes (see Chapter 3) – but as yet no 

consideration has been given to their use with hyperspectral satellite data. 

 

5.5.2 Calibrated CASI-2 [SeaWiFS] Imagery 

The optimum NIR/red band-ratios for the estimation of chlorophyll-a and C-phycocyanin were 

used to calibrate the CASI-2 [SeaWiFS] imagery to produce spatially-resolving maps depicting 

seasonal change in the water quality of the Upper Thurne and Barton Broads during 2005 

(Figure 5.17 and Figure 5.18).  The Upper Thurne (and Barton Broad) is a hydrologically 

complex system and nutrient enrichment processes have affected the water quality status of 

several of the shallow fluvial lakes.  There is thus a typically pronounced gradient (spatially and 

temporally) in water quality across the Upper Thurne and Barton Broads.   

 

This pronounced water quality gradient can be see in Figure 5.17.  The chlorophyll-a 

concentration was lowest (with the notable exception of Hickling Broad) in the CASI-2 

[SeaWiFS] captured on 28 February 2005 – concentrations were typically < 25 mg m-3 

throughout the system.  The high concentrations of chlorophyll-a in Hickling Broad on 28 

February 2005 (~ 100 mg m-3) reflect the occurrence of the winter chlorophyll-a maximum.  This 

atypical winter chlorophyll-a maximum in Hickling Broad is believed to be to its brackish nature 

and the fact that the hydrodyanmics of the lake system prevent flushing occurring during winter 

months (Moss, 2001).  The chlorophyll-a concentration in Hickling Broad can be seen to have 
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decreased on 21 April 2005 to < 25 mg m-3, this brief clear-water-phase is the result, at least in 

part, of intense grazing by zooplankton.  The concentration of chlorophyll-a can be seen to have 

increased following the clear-water-phase to > 30 mg m-3 in the June 2005 CASI-2 [SeaWiFS] 

image. 

 

In contrast to Hickling Broad, concentrations of chlorophyll-a in Barton Broad increased 

throughout the year, with the peak occurring on 29 August 2005 as a result of a bloom of M. 

aeruginosa.  It is also notable that the cyanobacterial bloom caused high spatial variability in the 

concentration of chlorophyll-a within Barton Broad; this visibly patchy distribution is 

characteristic of cyanobacterial blooms composed of buoyancy-regulating species (Kutser, 

2004; Reynolds, 2006).  The 22 June 2005 and 29 August 2005 CASI-2 [SeaWiFS] images also 

show extremely high concentrations of chlorophyll-a (> 1000 mg m-3) in the small pond adjacent 

to Horsey Mere.  This hypertrophic pond is subject to high phosphorus loading due to inputs of 

guano derived from large populations of wading birds and wildfowl (guanotrophication); 

measurements of the chlorophyll-a concentration in this pond on 23 June 2005 indicated that 

the chlorophyll-a concentration was in excess of 1500 mg m-3 – which importantly substantiates 

the extremely high estimated chlorophyll-a concentration derived from the CASI-2 [SeaWiFS] 

imagery.  High concentrations of chlorophyll-a are also evident in the Martham Broads in the 22 

June 2005 and 29 August 2005 CASI-2 [SeaWiFS] imagery.  However, the Martham Broads 

are clear water lakes, with summer chlorophyll-a concentrations typically < 15 mg m-3, thus the 

high concentrations of chlorophyll-a evident in the CASI-2 [SeaWiFS] images are almost 

certainly associated with the submerged aquatic plant cover in these lakes (predominantly 

Chara spp.).  In this context, it is apparent that the use of NIR/red band-ratios for the estimation 

of chlorophyll-a are likely to produce serious errors in the estimation of chlorophyll-a in lakes 

with substantial submerged aquatic plant cover.  Interestingly, examination of the CASI-2 

[SeaWiFS] imagery calibrated using the algorithms formulated using LSMM demonstrated that 

this approach was more successful at separating the benthic and pelagic chlorophyll-a signal; 

LSMM may therefore provide improved estimation of the pelagic chlorophyll-a concentration in 

macrophyte-dominated shallow lakes. 
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Figure 5.17 Calibrated CASI-2 [SeaWiFS] images showing spatial and temporal variability in chlorophyll-a concentrations in the Upper 
Thurne and Barton Broads during 2005 
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Figure 5.18 Calibrated CASI-2 [SeaWiFS] images showing spatial and temporal variability in C-phycocyanin concentrations in the 
Upper Thurne and Barton Broads during 2005 
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Spatial and temporal variation can also be seen in the calibrated CASI-2 [SeaWiFS] images 

depicting the concentration of C-phycocyanin in the Upper Thurne and Barton Broads.  C-

phycocyanin concentrations in Hickling Broad were highest on 28 February 2005 concurrent to 

the chlorophyll-a maximum.  However, at this time, the C-phycocyanin concentration was low 

relative to the concentration of chlorophyll-a, which suggests that cyanobacteria were not 

dominant component of the Hickling Broad winter phytoplankton assemblage.  It is possible that 

the C-phycocyanin NIR/red band-ratio algorithm may overestimate the C-phycocyanin 

concentration in the presence of high concentrations of chlorophyll-a because of overlap that 

occurs in the absorption spectra of the two pigments (Simis et al., 2007).  However, 

unfortunately, no measurements of the C-phycocyanin concentration are available to validate 

the estimated concentrations of C-phycocyanin on 28 February 2005.   

 

The concentration of C-phycocyanin was low in Barton Broad until the occurrence of a bloom of 

cyanobacteria in the late-summer of 2005; the effects of this bloom can be clearly seen in the 

calibrated CASI-2 [SeaWiFS] imagery on 29 August 2005.  In comparison, C-phycocyanin 

concentrations in Hickling Broad were substantially lower on 29 August 2005, but high 

concentrations of C-phycocyanin are evident towards the southern shore in Heigham Sound 

(near the outlet into the River Thurne).  These high concentrations of C-phycocyanin may have 

resulted from the entrainment and transportation of buoyant cyanobacteria in the flow of water 

that travels southwards through Hickling Broad and out into the River Thurne.  High 

concentrations of C-phycocyanin (> 2000 mg m-3) are also evident in the hypertrophic pond 

south of Horsey Mere in the 22 June 2005 and 29 August 2005 CASI-2 [SeaWiFS] imagery; the 

measured concentration of C-phycocyanin in this pond on 23 June 2005 was in excess of ~ 

2200 mg m-3 – which again importantly substantiates the extremely high estimated C-

phycocyanin concentration derived from the CASI-2 [SeaWiFS] imagery 

 

The calibrated CASI-2 [SeaWiFS] images of chlorophyll-a and C-phycocyanin show the 

potential value of using remote sensing to retrieve spatially resolving estimates of chlorophyll-a 

and C-phycocyanin in shallow lakes.  The spatial and spatio-temporal variance in chlorophyll-a 
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and C-phycocyanin captured in the CASI-2 [SeaWiFS] seasonal time-series imagery could not 

have been revealed using conventional lake sampling approaches.   

 

The results presented here also emphasise that the remote-sensing-based approach to the 

monitoring of pigment concentrations in lakes is robust (providing suitable algorithms are 

formulated for the waters of interest).  In this context, it would seem that remote sensing 

surveillance capabilities could significantly enhance current lake monitoring strategies 

particularly, as shown here, at the regional-scale.  These findings suggest that remote-sensing-

based lake monitoring strategies may have direct relevance to the EU WFD (2000/60/EC). 

 

5.5.3 Diurnal Time-Series Surveillance of a Microcystis aeruginosa Bloom 

5.5.3.1 Environmental Drivers of Bloom Development and Vertical Migration Patterns 

Blooms of cyanobacteria have been a common occurrence in Barton Broad since the lake 

became eutrophic in the mid-20th Century.  These blooms, historically, have often been 

dominated by the filamentous oscillatorians Planktothrix agardhii and Limnothrix redekei 

(functional group S1 (c.f. Reynolds et al., 2002), largely because these species are well-

adapted to existence in turbid but well-mixed lakes.  Blooms of heterocystous dinitrogen-fixing 

nostocaleans (Anabaena spp. and Aphanizonmenon flos-aquae (functional group H1)) have 

also occurred intermittently – most likely in response to periods of acute nitrogen limitation.  The 

occurrence of cyanobacteria blooms in the lake has declined following the implementation of a 

lake restoration scheme (Phillips et al., 2005).  However, in July and August 2005, a previously 

unprecedented bloom of the potentially-toxic cyanobacterium Microcystis aeruginosa (functional 

group LM) occurred in Barton Broad. 

 

M. aeruginosa is a stress-tolerant cyanobacterial ecotype well-adapted for existence in 

environments subject to periodic resource depletion.  However, M. aeruginosa is not tolerant of 

light starved conditions.  In turbid waters, M. aeruginosa can alleviate light starvation through 

(passive) buoyancy-regulation, which enables colonies to migrate and maintain a favourable 

station in well illuminated near-surface waters.  Buoyancy-regulation in M. aeruginosa is 

facilitated by the adjustment of gas-vesicle buoyancy using cell ballast provided by the 
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photosynthetic production or metabolic utilisation of carbohydrates (Oliver & Walsby, 1984; 

Kromkamp et al., 1988).  This mechanism can enable M. aeruginosa to undertake rapid vertical 

migrations; floatation velocities in natural populations can reach 2.6-10.8 m h-1 (Reynolds et al., 

1987; Humphries & Lyne, 1988; Visser, 1995).   

 

Hunter et al. (submitted) have suggested that the M. aeruginosa bloom in Barton Broad during 

July and August 2005 was, in part, driven by the autogenic depletion of bioavailable nutrient 

(nitrate and soluble-reactive-phosphorus) pools.  The poor light climate in Barton Broad prior to 

the development of the bloom (SDD < 0.75 m) would, however, seem to be unfavourable for the 

development and, moreover, persistence of a M. aeruginosa bloom.  This would suggest that, in 

order for M. aeruginosa to become dominant under such conditions, colonies must have been 

able to migrate and maintain station in more favourable near-surface waters. 

 

5.5.3.2 Spatial Patterns in Diurnal Migration by M. aeruginosa 

The diurnal time-series airborne CASI-2 [SeaWiFS] reconnaissance of Barton Broad on 29 

August 2005 was used to examine changes in the spatial structuring of the M. aeruginosa 

bloom.  The presupposition that M. aeruginosa colonies were undertaking passive migrations to 

illuminated near-surface waters is supported in the calibrated time-series CASI-2 [SeaWiFS] 

images of C-phycocyanin (see Figures 5.19-5.21).  The images reveal dramatic changes in the 

near-surface concentrations of C-phycocyanin in Barton Broad occurred between 09.30 h GMT 

and 16.00 h GMT.  These observations are also supported in the calibrated CASI-2 [SeaWiFS] 

images of chlorophyll-a and the derived C-phycocyanin:chlorophyll-a ratio images (Figure 5.22).  

The near-surface accumulations of M. aeruginosa colonies evident in the 09.30 h GMT images 

are consistent with previous observations and models that suggest buoyant colonies perform 

such nocturnal migrations and amass in near-surface waters during the night (Reynolds & 

Rogers, 1976; Takamura & Yasuno, 1984; Visser et al., 1996).  The 09.30 h GMT CASI-2 

[SeaWiFS] image may therefore depict the remnants of nocturnal near-surface accumulations.  

In-situ depth profiles of the C-phycocyanin concentrations measured in the lake provide an 

image-independent verification that near-surface accumulations of M. aeruginosa colonies were 

initially present at 09.30 h GMT (Figure 5.23). 
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It is notable then that these near-surface accumulations appear to have dispersed in the 12.00 

h GMT CASI-2 [SeaWiFS] C-phycocyanin image.  This is again coherent with previous 

observations which suggest that the high insolation incurred by colonies stationed in near-

surface waters drives the photosynthetic production of high molecular-weight polymers (e.g. 

glycogen) thus increasing colony density sufficient to induce sinking to deeper horizons.  

However, several workers have also observed that the formation of near-surface accumulations 

of cyanobacteria is dependent on the degree of wind-induced mixing. 

 

George and Edwards (1976) suggest that wind speeds in excess of ~ 4 m s-1 are sufficient to 

induce turbulent mixing in shallow lakes and suppress diurnal near-surface migrations by 

buoyant cyanobacteria.  Weather station records for the 29 August 2005 indicate the wind 

speeds between 00:00 h and 06:00 h GMT were ~ 4 m s-1; the wind speed then increased to > 

6 m s-1 by 09:30 h GMT.  Therefore, the dispersion of the early-morning near-surface scums 

was probably facilitated appreciably by the onset of wind-induced mixing.   

 

This observation is consistent with the findings of Cao et al. (2006) who noted that near-surface 

aggregations of M. aeruginosa in Lake Taihu (P.R. China) were only observed during periods 

when the wind speed was < 4 m s-1.  The 16:00 h GMT CASI-2 C-phycocyanin images again 

show patent evidence of near-surface accumulations of M. aeruginosa colonies; in this 

instance, the image-derived near-surface C-phycocyanin concentrations were even higher than 

those observed at 09:30 h GMT.   
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Figure 5.19 The spatial distribution of M. aeruginosa in Barton Broad at 09:30 h (main) and 12:00 h and 16:00 h (inset) GMT on 29 August 2005. 
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Figure 5.20 The spatial distribution of M. aeruginosa in Barton Broad at 12:00 h (main) and 09:30 h and 16:00 h (inset) GMT on 29 August 2005. 
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Figure 5.21 The spatial distribution of M. aeruginosa in Barton Broad at 16:00 h (main) and 09:30 h and 12:00 h (inset) GMT on 29 August 2005. 
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Figure 5.22 Changes in the spatial distribution of chlorophyll-a (top; A-C) and the C-phycocyanin:chlorophyll-a ratio (bottom; D-F) in Barton Broad 
between 09:30 h and 16:00 h GMT on 29 August 2005. 
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Figure 5.23 Depth-profiles of the concentration of C-phycocyanin at three stations (A-C) in 
Barton Broad on 29 August 2005.  Near-surface accumulations of M. aeruginosa can be clearly 
observed in the depth profile obtained from station A and, although to a lesser extent, Station B. 
 

It appears that the M. aeruginosa colonies recovered sufficient buoyancy from the morning to 

migrate and maintain station in near-surface waters; it can be suggested that these migrations, 

at least in-part, may have been facilitated by the depletion of intracellular photosynthate 

reserves whilst the colonies were temporarily immersed in deeper horizons earlier in the day.  

However, it must also be noted that the mean wind speed at 16:00 h GMT had fallen to > 4 m s-

1, which suggests an absence of turbulent mixing.  The increased stability in the water column 

would have been important to enable the vertical migration of colonies.  Indeed, it is difficult to 

differentiate whether the near-surface accumulations (observed at 09:30 h GMT and 16:00 h 

GMT) were predominantly the result of passive buoyancy-regulation (due to the 

production/utilisation of carbohydrate) or the response of continuously buoyant colonies to 

changes in water column turbulence.  If conditions permit, M. aeruginosa can remain positively-

buoyant for several days (Reynolds, 1973; Humphries & Lyne, 1988); this is advantageous as it 

enables colonies in shallow waters to rapidly recover an optimum station following episodic 

disturbance events (e.g. wind/storm induced mixing) (Reynolds, 2006).   

 

Thus, it is possible given the shallow environment and the rate at which colonies appear to 

have returned to near-surface waters in the late-afternoon, that the vast majority of M. 



 

 235

aeruginosa colonies were continuously buoyant with near-surface accumulations forming during 

periods without significant wind-induced mixing (i.e. prior to 09:30 h GMT and 16:00 h GMT).  

The near-surface accumulations of M. aeruginosa visible in the western arm of the lake 

throughout the day provide some evidence to support the view that colonies remained 

positively-buoyant.  The model scenarios of Visser et al. (1997) show that rapid diel migrations 

between deep and near-surface waters driven entirely by changes in cell ballast can occur 

when large colonial M. aeruginosa aggregations are formed (> 400 µm); the diurnal patterns of 

migration predicted by the model scenarios of Visser et al. (1997) show good agreement with 

those observed in Barton Broad.  It can therefore be suggested that the pronounced changes 

observed in the diurnal distribution of M. aeruginosa were the result of passive-modifications to 

the buoyancy of colonial aggregations allied to the changes in the extent of wind-induced 

mixing across the lake.   

 

The importance of the wind speed and direction in determining the spatial distribution of the M. 

aeruginosa bloom (and eukaryotic phytoplankton) is also emphasised in the CASI-2 [SeaWiFS] 

derived C-phycocyanin:chlorophyll-a ratio images (Figure 5.22) and the chlorophyll-

b:chlorophyll-a and fucoxanthin:chlorophyll-a ratios measured at the in-situ sampling stations 

(Figure 5.24).  The spatial patterns in the relative abundance of cyanobacteria show good 

agreement with the prevalent wind direction; accumulations of M. aeruginosa colonies can be 

observed towards the lee shore of Barton Broad at both 09:30 h GMT and 12:00 h GMT.  The 

images indicate that the re-distribution and downwind accumulation of colonies from the 

northern to the northern and eastern shores between 09:30 h GMT and 12:00 h GMT in 

response to the prevalent wind was rapid even for a small lake.  Furthermore, the prevalence of 

SSW winds prior to the 09:30 h GMT image appears to have prompted the accretion of non-

buoyant eukaryotic phytoplankters towards the southern windward shore; the higher 

chlorophyll-b:chlorophyll-a and fucoxanthin:chlorophyll-a ratios encountered at the southern 

sampling stations can be taken to indicate a higher relative abundance of negatively-buoyant 

bacillariophyte and chlorophyte species.  During periods of advective circulation, negatively-

buoyant phytoplankton tend to aggregate towards the windward shore, as cells become 

entrained within sub-surface return-flows and accumulate in regions where upwelling water 
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occurs (George & Edwards, 1976; Hedger et al., 2004; Reynolds, 2006).  This provides a 

mechanism whereby substantial spatial variation in species composition can occur in the 

phytoplankton communities, even in small and shallow lakes.   

 

 

Figure 5.24 Spatial variations in accessory pigment ratios measured at sampling stations on 
Barton Broad on 29 August 2005 at 09:30 h GMT. 
 

The effect of wind-induced circulation patterns on the vertical and horizontal distribution of 

phytoplankton has been well documented (e.g. George & Edwards, 1976; Webster, 1990; Ye et 

al., 2006).  It would seem that this process was important in structuring the spatial distribution of 

phytoplankton in Barton Broad.  The CASI-2 [SeaWiFS] images also illustrate the extent to 

which the formation of near-surface accumulations of buoyant M. aeruginosa colonies is 

spatially variable within lakes; in this context, time-series airborne remote sensing can clearly 

provide insights that would not be achievable through conventional in-situ measurements.   
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The absence of turbulent mixing is essential for the development of M. aeruginosa blooms 

(Reynolds & Walsby, 1975), but in wind-exposed and very shallow lakes such as Barton Broad, 

it is unusual for there to be a prolonged absence of wind-induced mixing.  However, the near-

shore morphometry of Barton Broad creates several areas where wind-induced (or fluvial) 

mixing is less pronounced; the time-series CASI-2 [SeaWiFS] imagery reveals that the 

formation of near-surface accumulations in Barton Broad was most marked in these regions of 

poorly-mixed or near-stagnant water.  Near-surface accumulations were persistent throughout 

the day in lateral arm of Barton Broad that extends westward towards Neatishead; in this region 

it would appear that the extent of turbulent mixing is not sufficient to entrain buoyant colonies.  

Moreover, it is significant that the most pronounced near-surface accumulations observed in the 

16:00 h GMT CASI-2 [SeaWiFS] C-phycocyanin images occurred in proximity to the mid-lake 

sailing platform and in the waters adjacent to Barton Turf.  It can be argued that the presence of 

the mid-lake sailing platform serves to suppress turbulent mixing in the immediately adjacent 

waters – this resulting stability would then seem to foster dense near-surface accumulations of 

buoyant M. aeruginosa colonies.  The structure may also provide some protection from 

turbulent mixing caused by the input from the River Ant.  Pronounced near-surface 

accumulations of M. aeruginosa also formed in the near-stagnant waters that extend 

southwards from the harbour at Barton Turf.   

 

It can be suggested that the existence of these non-turbulent areas may have been crucial in 

fostering the development of the M. aeruginosa bloom in Barton Broad.  It is notable that 

surface scums of M. aeruginosa were observed in the waters near Neatishead prior to the 

development of the bloom in the open waters.  This may indicate that it was in these regions of 

poorly mixed or near-stagnant water where the initial growth of M. aeruginosa colonies 

occurred; the absence of turbulent mixing in these areas would have enabled M. aeruginosa 

colonies to migrate and maintain a favourable station in near-surface waters irrespective of 

turbulent conditions in the open water.  Zohary & Breen (1989) showed that the formation of 

cyanobacterial hyperscums in a hypertrophic lake was strongly reliant on shore-mophormetry.  

Thus, it can be further argued that near-shore morphometry is also important in the creation of 
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refuges where conditions are favourable to cyanobacterial growth and persistence.  The 

importance of spatial heterogeneity in lake habitat for phytoplankton assemblages has been 

also been previously documented (Padisak, 1993). 

 

5.6 CONCLUSIONS 

Time-series airborne CASI-2 [SeaWiFS] imagery was used to examine the potential of remote 

sensing for the estimation of pigment concentrations in shallow lakes and to subsequently 

examine spatiotemporal variability in the phytoplankton dynamics of the Upper Thurne and 

Barton Broads.  CASI-2 [SeaWIFS] algorithms formulated using NIR/red band-ratios were 

shown to be capable of providing accurate (RMSE < ±20-35%) multi-season estimations of the 

chlorophyll-a and C-phycocyanin concentration in these shallow lakes.  The validation of the 

derived algorithms demonstrated a robustness in the approach that would seem to suggest 

remote sensing could be used on a routine basis for lake monitoring purposes. 

 

Algorithms formulated using spectral mixing, spectral angle mapping and continuum-removal 

models were also able to provide accurate estimations of the concentration of chlorophyll-a and 

C-phycocyanin concentrations.  However, such algorithms would seem to be somewhat scene-

dependent and the consequent lack of multi-temporal transferability would ultimately preclude 

their use for routine monitoring purposes .   

 

High resolution time-series airborne remote sensing was also used to examine the spatial 

dynamics of a cyanobacterial bloom in Barton Broad.  Diurnal time-series CASI-2 [SeaWiFS] 

images acquired over Barton Broad at 09:30 h, 12:00 h and 16:00 h GMT on 29 August 2005 

demonstrated that buoyant M. aeruginosa colonies were passively evading the light-starved 

conditions encountered in the turbid waters through the formation of near-surface 

accumulations.  The formation of these near-surface accumulations by buoyant colonies was 

dependent on the wind speed; wind speeds > ~ 4 m s-1 appeared to be sufficient to induce 

turbulent mixing and thus cause the dispersal of near-surface aggregations and entrain colonies 

within convective currents.  However, in areas where complexities of the near-shore 

morphometry created regions of more stagnant water, persistent near-surface accumulations 
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were observed.  It is suggested that these regions of near-stagnant water may have been 

important for fostering the initial development and, moreover, persistence of the M. aeruginosa 

bloom.  In this context, time-series airborne remote sensing was able to provide spatial insights 

into the distribution and dynamism of the M. aeruginosa bloom that would not have been 

possible through conventional in-situ sampling methods and, as such, the further use of remote 

sensing technologies in studies concerned with the ecology of phytoplankton in shallow lakes 

should be encouraged. 

  

The spatial and temporal variability observed in the water quality status of the lakes within the 

Upper Thurne and Barton Broad region serves to emphasise the benefits that an operational 

remote sensing system for the routine lake monitoring would offer.  In this instance, largely due 

to the scale of the lakes examined, airborne remote sensing data was used.  The expense of 

airborne remote sensing surveillance would prohibit its use for routine lake monitoring 

purposes.  However, there is no reason to presume that the results achieved could not be 

repeated using data derived from high spatial and spectral resolution satellite imagery.  The 

results suggest that the realisation of an operational remote-sensing-based strategy for water 

quality monitoring in lakes would be of immense value in the context of the EU WFD 

(2000/60/EC).   
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6 AIRBORNE MAPPING OF AQUATIC VEGETATION IN 
SHALLOW LAKES 

 

6.1 INTRODUCTION 

The preceding chapters have examined the use of remote sensing for the assessment and 

monitoring of water quality and phytoplankton in shallow lakes.  However, in addition to the 

quality of surface water, the ecological status of shallow lakes is often inherently linked to the 

nature and extent of aquatic plant colonisation.  The research presented in this chapter 

therefore seeks to examine the capacity of remote sensing for use in the broad-scale survey of 

aquatic vegetation in shallow lakes  

 

6.2 RATIONALE 

The abundance, distribution and composition of aquatic vegetation communities is inextricably 

linked to the ecological status of shallow lakes.  In shallow lakes, aquatic plants fulfil important 

functions in the regulation of hydraulic circulation, sediment consolidation (Scheffer, 1998; 

Rooney et al., 2003), the provision of a sink environment for nutrients and other waterborne 

pollutants (Zhou et al., 2000; Kufel & Kufel, 2002), and the creation of habitat niches and 

refuges (e.g. Stansfield et al., 1997), such that it has been shown that aquatic plants are critical 

to the wider stability of shallow lake ecosystems (Scheffer et al., 1993; Scheffer et al., 2001; 

Van Nes & Scheffer, 2003; Scheffer & Carpenter, 2003; Scheffer & Carpenter, 2003).  

However, in many nutrient enriched shallow lakes, increased turbidity from the excessive 

growth of phytoplankton has precipitated large scale losses of submerged aquatic flora.  This 

decline has, in many instances, resulted in catastrophic ecosystem shifts and has often led to 

the development of an unfavourable state of phytoplankton dominance.  The reestablishment of 

submerged aquatic vegetation (SAV) is therefore considered to be a key objective in the 

restoration of shallow lakes subject to eutrophication. 

 

The evident linkages between the abundance and diversity of aquatic flora and the ecological 

status of shallow lake systems means that there is now considerable interest in the 
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development of effective and efficient approaches to the survey of aquatic plants in lakes.  The 

conventional field-based approach to the survey of aquatic vegetation in lakes can often be 

somewhat laborious, boat access can be an issue in remote areas, extensive surveys are often 

disproportionately expensive (in terms of both time and finance), and often the observer error 

can be high (e.g. for cover estimates, species identification).  Lakes (and their associated 

wetland areas) can be difficult to traverse and obtaining sufficient access for survey purposes, 

particularly in regards to submerged communities, may often be difficult.  Moreover, the 

spatially-discontinuous data derived from conventional field-based survey techniques can 

seldom adequately describe the heterogeneous distribution of aquatic plants and, in particular, 

ecologically important, but spatially complex mosaics, ecoclines and ecotones (Janauer, 1997; 

Legleiter, 2003; Gilvear et al., 2004b).  

 

The implementation of the EU WFD (2000/60/EC) has placed increased emphasis on the need 

for regional-scale monitoring of lake ecosystems, including the abundance and distribution of 

aquatic plants.  In some instances, aerial photography has proved to be useful for the large-

scale mapping of aquatic vegetation in lakes (Windham & Lathrop, 1999).  However, the 

interpretation of aerial photography remains somewhat subjective and the limited spectral 

information contained within aerial photographs prohibits the extraction of floristic or bio-

physical information.  In this context, satellite and/or airborne remote sensing could provide a 

more effective tool for the survey of aquatic vegetation in lakes. 

 

Remote sensing has been used widely to map terrestrial vegetation communities and, indeed, 

some success has also been achieved in surveying the vegetation of wetlands (Schmidt & 

Skidmore, 2003; Rosso et al., 2005; Artigas & Yang, 2005; Shanmugam et al., 2006; Wright & 

Gallant, 2007).  The remote-sensing-based mapping of aquatic vegetation communities in lakes 

has received less consideration; however, there are some notable exceptions.  Malthus & 

George (1997), for example, used ATM imagery to map the distribution of aquatic plant species 

and growth-habit associations in the Cefni Reservoir (UK).  Similarly, Williams et al. (2003) 

used hyperspectral airborne data (HyMap) to map the distribution of Myriophyllum spicatum and 

Vallisneria americana in the Potomac River (USA) and, further, Pengra et al (2007) used 
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hyperspectral satellite data (Hyperion) to map the distribution of the non-native common reed, 

Phragmites australis, in the coastal region of Green Bay (USA).   

 

In addition to largely qualitative mapping exercises, further authors have also shown that it is 

possible to derive quantitative estimates of macrophyte cover from remote sensing data.  

Jakubauskas et al. (2000) showed that in-situ spectrometry data could be used to quantify 

Nuphar polysepalum cover in Swan Lake in Wyoming, USA and, similarly, Yuan & Zhang 

(2007) have also recently demonstrated that it was possible to retrieve quantitative estimates of 

Vallisneria spiralis biomass using high-resolution spectrometry data of experimental plots in a 

shallow lake in China.  The success of these preceding studies intimates that remote sensing 

could be used on a routine basis to map aquatic vegetation in lakes.  This would have 

enormous benefits for those concerned with the implementation of the EU WFD.  However, 

substantial further research will be required before the effectiveness and efficiency of the 

remote sensing approach to the survey of aquatic vegetation in lakes is conclusively proven. 

 

6.3 AIMS AND OBJECTIVES 

The aim of the research presented here was to investigate the spectral characteristics of 

aquatic plants, particularly at the broad growth-habit level (i.e. emergent, floating, submerged), 

using high spectral resolution in-situ spectrometry and to evaluate the efficacy of airborne 

remote sensing for the mapping of aquatic plant growth-habits, and broad species 

assemblages, in shallow lakes. 

 

The specific objectives for this chapter can be defined as: 

 

a) To explore the spectral characteristics of macrophyte species common to shallow lakes in 

the UK at the growth-habit level (emergent, floating-leaved and submerged specimens). 

 

b) To evaluate the discriminative capability of remote sensing reconnaissance for mapping 

macrophyte growth-habit assemblages in shallow lakes. 
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c) To examine, in more detail, the use of remote sensing reconnaissance for mapping the 

distribution of SAV associations in turbid and clear water shallow lakes. 

 

6.4 METHODS 

6.4.1 Study Site 

The Norfolk Broads (UK) (52º 44’ 17’’ N 1 º 34’ 29’’ E) are a series of small (< 130 ha) and 

shallow lakes (< 2.5 m deep) with numerous conservation designations due, in part, to their 

botanically diverse aquatic plant communities.  The vegetation of the Norfolk Broads is a 

complex mosaic of submerged benthic vegetation, fringing littoral reedswamp communities, 

fenland and carr woodland.  The aquatic plant communities common to the Norfolk Broads 

include submerged Chara spp and Najas marina lawns, beds of floating and emergent species 

such as Nuphar spp., Potamogeton spp., Myriophyllum spicatum and Hippuris vulgaris, while 

the littoral is dominated by tall-emergents such as Phragmites australis, Typha latifolia and 

Carex spp..  The national and international importance of the aquatic vegetation found in the 

Broads is borne out in the fact that it includes include several species found nowhere else in the 

U.K., such as the Intermediate Stonewort (Chara intermedia) and the Holly-leaved Naiad (Najas 

marina); in addition >95% of the native UK population of the Starry Stonewort (Nitellopsis 

obtusa) and >80% of the UK population of the Water Soldier (Stratiotes aloides) can be found in 

the waters of Broadland (for more detailed information consult Kennison et al. (1998)). 

 

The abundance and diversity of aquatic plants in the Norfolk Broads has been dramatically 

impacted by pressures from eutrophication.  In particular, the deteriorating water quality status 

of the Broads has resulted in the extensive loss of SAV in these shallow lakes.  The 

reestablishment and stability of the SAV cover is considered a key restoration target if the 

Norfolk Broads are to be returned to good ecological status as defined by the EU WFD (Broads 

Authority, 2004). 

 

6.4.2 Aquatic Vegetation Surveys 

Two independent vegetation surveys were conducted in the Upper Thurne region of the Norfolk 

Broads during 2005: (i) a boat-based, broad-scale, survey of aquatic plants was conducted 
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between 21-24 June 2005 and 30-31 August 2005 and, (ii) a more detailed floristic survey of 

the SAV in the Martham Broads was conducted by the Broads Authority using grapnel transects 

during 01-07 August 2005. 

 

The initial broad-scale survey of the aquatic vegetation focused on recording the distribution of 

aquatic plant growth-habit assemblages in the Upper Thurne (after Malthus & George, 1997).  

The position and extent of macrophyte beds were identified from a boat-based survey and 

recorded using a Global Positioning System (GPS).  Only beds large enough to be detectable 

from remote sensing imagery (i.e. > 5 m) were recorded.  It was not considered necessary to 

collect detailed floristic information; instead, the dominant species (by cover) present in each 

bed were recorded (to genus or species level) and this information was used to pre-classify 

each surveyed bed into one of four growth-habit categories.  The four different growth-habit 

assemblages comprised:  

 

1) Emergent – rooted aquatic vegetation with substantial aerial biomass above the water 

surface (e.g. Phragmites australis, Typha latifola).  

2) Partially-emergent – rooted or floating plants with some emergent foliage, or a substantial 

biomass allocation occurring at, or near, the water surface (e.g. Hippuris vulgaris, some 

Potamogeton spp., Myriophyllum spicatum). 

3) Floating – plants with broad floating planophile leaves (e.g. Nuphar spp.) or plants that 

form dense floating mats (e.g. Lemna spp.). 

4) Submerged – plants with their entire biomass located beneath the water surface often 

forming dense benthic lawns (e.g. Chara spp., Najas marina, Nitellopsis obtusa). 

 

The inclusion of the “partially-emergent” class was considered a necessary deviation from 

convention to reflect the marked difference in morphology between tall-emergents, such as 

Phragmites australis, and other species, such as Hippuris vulgaris, which have comparatively 

little aerial growth.  It was perceived that these phytomorphological differences would have 

important implications for remote sensing mapping purposes.  Following the boat-based survey 
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of the aquatic plants, spectral reflectance measurements were acquired from each bed as 

detailed in Section 6.4.3. 

 

The detailed floristic survey of SAV in the Martham Broads was conducted by the Norfolk 

Broads Authority and followed the methods described in Kennison et al. (1998).  Samples of 

SAV were collected using a doubled-headed grapnel which was trawled behind a boat.  The 

sampling was conducted along pre-defined and permanent transects.  The abundance of each 

species harvested using the grapnel was estimated every 20-60 m along the transects.  

Macrophyte abundance was estimated on a five-point scale: 1, present but < 5% cover; 2, > 5-

25% cover; 3, > 25-50% cover; 4, 50-75%; 5, 75-100% cover.  The cover of floating species 

(e.g. Lemna minor, Nuphar lutea and Nymphaea alba) not sampled by the grapnel transects 

was estimated separately. 

 

6.4.3 In-situ Spectrometry 

6.4.3.1 Spectral Reflectance Measurements 

In-situ spectral measurements were acquired from beds of 4 different aquatic plant species 

encountered during the initial broad-scale aquatic vegetation survey in the Upper Thurne.  The 

species examined included the tall-emergent Phragmites australis (Common Reed), the 

partially-emergent plant Hippuris vulgaris (Mare’s-Tail), the floating plant Nuphar lutea (Yellow 

Water-Lily) and the submerged plant Chara baltica (Baltic stonewort) (see Figure 6.1).   

 

These four species were selected as they were considered to be representative of the four 

different growth-habits (emergent, partially-emergent, floating-leaved, and submerged) 

considered here.  In addition, these species commonly formed large (> 5 m2) and relatively 

monospecific beds in the Upper Thurne, such that they could, in theory, be distinguished using 

high spatial resolution remote sensing imagery.  The survey of the Upper Thurne revealed a 

greater diversity of aquatic plant species than detailed above.  However, often the cover of 

many species (e.g. Potamogeton spp.) was too small to allow the beds to be mapped 

effectively. 
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(b) Nuphar lutea 
 

 
 
(c) Hippuris vulgaris 
 

 

(a) Chara spp. 
 

 

 
(d) Phragmites australis 
 

 
Figure 6.1 The four aquatic plant species examined using in-situ spectrometry: (a) Chara spp. 
(photo: Jane Harris); (b) Nuphar lutea (photo: USDA); (c) Hippuris vulgaris; and (d) Phragmites 
australis. 
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Spectral reflectance (R(λ)) measurements of the aquatic plant beds were acquired using a 

portable ASD (Analytical Spectral Devices) FieldSpec® HandHeld Spectroradiometer (the 

specifications of the ASD FieldSpec® instrument are detailed in Table 3.2).  The instrument was 

calibrated to reflectance using a white Spectralon® reference panel (~ 100% reflectivity).  The 

spectrometer was mounted on a telescopic pole which enabled the instrument to be positioned 

away from any potential effects incurred from the proximity of the boat.  The telescopic pole 

also enabled measurements to be acquired at nadir over the taller plant canopies.  A consistent 

solar geometry was maintained and the instrument was held, at nadir, at a constant height of 

0.5 m above the plant canopy (emergent and floating-leaved plants) or the water’s surface 

(submerged plants).  The spectral reflectance of each macrophyte stand was measured as the 

instantaneous mean of 25 replicate scans; each replicate scan was itself derived from the mean 

of a further 15 instantaneous scans internally averaged by the instrument’s dedicated software.   

The acquisition of spectral reflectance measurements was restricted to between the hours of 

10.00 and 14.00 h GMT to minimise the effect of variable solar zenith.   

 

Spectral reflectance measurements were also obtained from non-vegetation areas of clear  

(chlorophyll-a < 10 mg m-3; SPM < 10 mg l-1) and turbid (chlorophyll-a > 20 mg m-3; SPM > 25 

mg l-1) water.  These measurements were primarily made for comparative purposes. 

 

6.4.3.2 Data Processing and Analysis 

The raw hyperspectral reflectance data were interpolated to a spectral resolution of 0.5 nm and 

truncated between 400 and 800 nm to remove spectral noise at the extremes of the 

instrument’s sampling range.  The resultant data were then smoothed to further reduce the 

influence of noise prior to analysis by passing a 5 nm running mean filter over the entire 

spectrum (after Dall'Olmo et al., 2005).  The spectral dissimilarities of the various macrophyte 

species was then explored using Principle Components Analysis (PCA) and Multivariate 

Discriminant Analysis (MDA) (cross-validated) (for further details see Section 4.4.5).  In order to 

perform the PCA and MDA analyses, the original 0.5 nm hyperspectral dataset had to be 

devolved to from a new dataset, with a spectral resolution of 5 nm, to prevent the predictor 

variables from being too highly correlated.   
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6.4.4 Airborne Remote Sensing 

6.4.4.1 NERC ARSF Data Capture Campaigns 

CASI-2 airborne remote sensing imagery of aquatic vegetation in the Upper Thurne region of 

the Norfolk Broads was captured by the NERC ARSF at approximately 13:00 h GMT on 22 

June 2005 and 29 August 2005.  Details of the NERC ARSF data capture campaigns in the 

Upper Thurne are provided in Section 5.3.2.  The CASI-2 instrument was operated using the 

default [Vegetation] bandset configuration designed to optimise the CASI-2 instrument for the 

vegetation-based applications (see Table 6.1).   

 

Table 6.1 The default CASI-2 [Vegetation] bandset configuration used for aquatic vegetation 
mapping in the Norfolk Broads. 
 

Channel Centre/Width 
(nm) 

Band Width 
(from centre) 

Purpose 

1 449.96 10.41 Blue veg. response 
2 490.13 11.41 Veg. response 
3 552.23 5.82 Green veg. max 
4 608.12 6.80 Acces. absorp 
5 651.9 6.82 Acces. absorp 
6 671.93 3.96 Veg. absorp. max (1) 
7 700.59 5.88 Red-edge (1) 
8 711.11 4.93 Red-edge (2) 
9 739.83 6.85 Red-edge (3) 
10 750.37 3.97 Red-edge (4) 
11 762.83 3.02 Oxygen absorp. 
12 780.09 6.85 Veg. reflec. Max 
13 819.42 5.90 Water absorp. 
14 865.48 5.90 NIR plateaux 
15 942.16 5.89 NIR plateaux 

 

 

6.4.4.2 Image Pre-processing and Classification 

The capability of remote sensing as a tool for aquatic vegetation mapping in shallow lakes was 

examined through the application of various classification models to the CASI-2 [Vegetation] 

imagery.  Prior to classification, the CASI-2 [Vegetation] data was geo-corrected, geo-registered 

atmospherically corrected (to absolute radiance [w sr-1 m-2]) according to the methods outlined 

in Section 5.3.4.  Image classification was performed using RSI ENVI v.4.3.   
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The classification procedures examined included the hard-boundary Euclidean Minimum 

Distance (EMD) and Gaussian Maximum Likelihood (MLC) models and, in addition, the soft-

boundary support vector machine (SVM) model.  The EMD and MLC classification models were 

chosen because they have been used widely for the classification of vegetation communities in 

a range of environments (e.g. Louchard et al., 2003; Shanmugam et al., 2006).  The state-of-

the-art SVM classification model was chosen as recent research has shown it to be superior to 

conventional hard-boundary classification algorithms, particularly when the inter-class-mixing-

boundaries are complex (Brown et al., 1999; Melgani & Bruzzone, 2004; Pal & Mather, 2004). 

 

Minimum distance classification―EMD classification uses the mean vectors of user-specified 

endmember training pixels (classes) and calculates the Euclidean distance from each unknown 

pixel to the mean vector for each class.  Pixels are classified to the nearest class in Euclidean 

space unless a distance threshold is user-specified (in which case pixels that do not meet this 

threshold remain unclassified) (Richards, 1999; ENVI, 2003).  The Euclidean distance between 

two points was calculated according to Equation 6.1: 
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where, p and q define the mean vectors for two points in Euclidean space. 

 

Maximum likelihood classification―Gaussian MLC assumes that the statistics for each 

endmember class are normally distributed and the model calculates the probability that an 

unknown pixel belongs to a particular class.  Pixels are assigned to the class with the highest 

probability (unless a probability threshold is specified, in which case pixels that do not meet this 

threshold remain unclassified).  ENVI v.4.3 implements the maximum likelihood classification 

using Equation 6.2: 
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where i is the endmember class, x is the n-dimension (i.e. number of bands), p(ωi) is the 

probability that class (ωi) occurs in the image, |∑i| is the determinant of the covariance matrix of 

the data class (ωi) and ∑i
-1 is its inverse and mi is the mean vector. 

 

Support vector machines―SVM are kernel-based learning classifiers based upon statistical 

learning theory (Cortes & Vapnik, 1995; Liu et al., 2006).  The SVM training algorithm attempts 

to find the optimal separation (or hyperplane) between classes by minimising the upper bound 

of the generalising error (Duan et al., 2006; Su et al., 2007b).  The training pixels closest to the 

hyperplane form the support vectors in the model and are the elements critical to the 

effectiveness of the classification.  Unlike the EMD and MLC models, SVM can be used as a 

non-linear classfier through the incorporation of a non-linear kernel in the training algorithm.  As 

detailed in Su et al. (2007b), for two example vectors, (xi, yi), i,…l where xi ∈ NR and ∈iy [-1, 

+1], the SVM seeks the solution to the optimisation problem described in Equation 6.3: 
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subject to 0,1))(( ≥−≥+⋅ iii

T
i bxwy ξξφ .  Where, iξ  are positive slack variables and C>0 

is a preset penalty parameter that allows definition of a certain degree of misclassification in the 

definition of the hyperplane (which is important where classes are not mutually exclusive in 

feature space) (ENVI, 2003); ix is a training vector mapped into higher dimensional space 

(possibly infinite) by the function φ ; bxw i
T +⋅ )(φ is the optimised hyperplane.  The kernel 

function is described by )()(),( j
T

iji xxxxk φφ= .  The classification of aquatic vegetation in 

the Upper Thurne was achieved using a radial basis function as the kernel in the SVM 

classification algorithm.  The radial basis function was selected over linear, polynomial and 

sigmoid kernels as it enables non-linear class separation, is computationally efficient and has 

been used to good effect elsewhere (Su et al., 2007a).  The radial basis function is described in 

Equation 6.4: 
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0),exp(),(
2

>−⋅−= γγ jiji xxxxk    Equation 6.4 

 
 
where γ is the gamma term in the kernel function.  The SVM classifier was preferred over other 

soft-boundary classifiers, such as artificial neural networks (ANN) and linear spectral mixture 

models (LSMM), because SVM, unlike ANNs, have been shown to perform well when the 

training dataset is small and, in comparison to LSMM, they provide a more accurate 

classification (also sub-pixel if desired) when the mixing regions between classes are complex 

and ill-defined.   

 

The classification models were applied at two different levels of (aquatic vegetation) community 

organisation: (i) growth-habit associations and, (ii) SAV associations.  The growth-habit 

classification used the aquatic plant survey data obtained from the boat-based survey; whereas, 

the SAV classification used the detailed floristic data obtained from the grapnel transect survey.  

The broad growth-habit classification was performed on the CASI-2 [Vegetation] imagery from 

22 June 2005 as this image was acquired concurrent to the boat-based aquatic plant survey.  

The SAV classification was performed on the CASI-2 [Vegetation] imagery from 29 August 

2005, because this image was acquired concurrent to the grapnel survey of SAV in the 

Martham Broads. 

 

The growth-habit classification sought to classify macrophyte beds into the 4 categories 

recorded in the field: (1) emergent species (example species: Phragmites australis, Typha 

latifolia), (2) partially-emergent species (example species: Hippuris vulgaris); (3) floating 

species; and (4) submerged species (example species: Chara spp., Nitellopsis obtusa, Najas 

marina).  The classification models were parameterised with endmember radiance spectra for 

each growth-habit class.  Endmember radiance spectra for use as training data were manually 

extracted from the CASI-2 [Vegetation] imagery using the ground-truth macrophyte survey data 

to inform and identify aquatic pixels relating to the various endmember growth-habit classes.  

The size of the training datasets varied between the individual growth-habit classes, but in 

general, the training datasets consisted of a minimum of 150 pixels extracted from at least 5 
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discrete aquatic plant beds for each growth-habit assemblage.  The exception was the floating 

macrophyte class, where only 25 pixels were used in the training dataset.  This was largely due 

to problems in resolving the floating plant beds, particularly where they occurred in association 

with tall-emergent plants.  The classification models were also parameterised with endmember 

spectra for an open water (i.e. no aquatic vegetation) class.  This again was primarily for 

comparative purposes and, in this instance, no distinction between clear and more turbid water 

was made.   

 

The classification models were then run using the extracted training datasets and extrapolated 

across the CASI-2 [Vegetation] imagery of the entire Upper Thurne system (Hickling Broad, 

Heigham Sound, Horsey Mere and the Martham Broads) acquired on 22 June 2005.  To 

determine the accuracy of the classification, a large validation dataset, independent of the 

training datasets, was extracted from the CASI-2 [Vegetation] imagery based again on the 

ground-truth survey data and, in this instance, also supplemented by the interpretation of high 

resolution digital aerial photographs (captured by the Rollei medium format digital camera 

carried as part of the payload on the NERC ARSF aircraft).  The validation dataset was 

composed of a minimum of 500 pixels per class (with the exception of the floating macrophyte 

class where only 150 pixels could used for validation).  The classification accuracy was 

interpreted via the derived confusion matrices, the percentage of pixels correctly classified and 

the Kappa coefficient (κ).   

 

The SAV community level classification sought to categorise the submerged aquatic plant beds 

according to their dominant species composition.  The classification was applied at the 

dominant species level because it was perceived that more a detailed floristic classification 

would be infeasible.  This was largely because the species composition of the SAV 

communities varied at a scale finer than the resolution of the CASI-2 [Vegetation] imagery (i.e. 

< 2.5 m) and, further, because it was assumed that the most dominant species would, in effect, 

control the spectral response.  Moreover, it can be argued that more fine-scale floristic 

information is probably of less relevance for the assessment of ecosystem function.  The poor 

water clarity in Hickling Broad, Heigham Sound and Horsey Mere, was perceived to be 
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prohibitive to classifying SAV in these lakes and thus the classification was only applied to SAV 

in the Martham Broads. 

 

Training data for the classification models was obtained from the SAV surveys conducted by 

the Norfolk Broads Authority.  The SAV transect data provided by the Broads Authority was 

collected as part of their routine annual macrophyte survey in the Norfolk Broads, as a 

consequence, the data was not collected specifically for the training and validation of the 

remote sensing classification models.  The grapnel transect data was therefore interpreted 

cautiously with assistance from digital aerial photographs to inform the identification of SAV 

beds for which the dominant species composition could be satisfactorily identified.  As a result, 

the SAV data was used to identify four SAV “species assemblages” to be used to train the 

classification models.  The SAV classes defined were: 

 

1) Chara hispida – Major species (> 50% cover): Chara hispida, Chara baltica; Minor 

species (< 25% cover) Nitellopsis obtusa, Najas marina, Potamogeton pusillus, 

Potamogeton pectinatus, Chara intermedia, Lemna trisulca, filamentous algae. 

2) Chara aspera – Major species (> 50% cover): Chara aspera; Minor species (< 25% 

cover) Chara intermedia, Chara hispida, Najas marina, Potamogeton pectinatus. 

3) Nitellopsis obtusa – Major species (> 50% cover): Nitellopsis obtusa, Najas marina; 

Minor species (< 25% cover) Chara spp. Potamogeton spp. 

4) Hippuris vulgaris – Major species (> 50% cover): Hippuris vulgaris; Minor species (< 

25% cover) Myriophyllum spicatum, Callitriche spp. 

 

The “partially-emergent” Hippuris vulgaris is a prominent member of the flora of the Martham 

Broads; therefore, for the purposes of this classification, it was decide to include this species as 

a separate SAV class.  Moreover, two further classes, (i) clear water and, (ii) lake bed, were 

also defined in an effort to ensure the classification algorithms could account for the unique 

spectral characteristics of these components (i.e. to avoid unnecessary and spurious 

misclassifications). 
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The position of the SAV transects were identified in the CASI-2 [Vegetation] imagery and 

endmember radiance spectra for use as training data in the classification models were manually 

extracted from the aquatic plant beds of known species composition.  The size of the training 

dataset varied between 50-500 pixels depending on the class concerned.  The SAV transect 

data and digital aerial photographs were also used to create an independent ground-truth 

dataset for the validation of the classification output; the validation dataset consisted of between 

200-1250 pixels depending on the class concerned.  The position of the SAV grapnel transects 

in the Martham Broads is detailed in Figure 6.2.  The classification accuracy was interpreted via 

the derived confusion matrices, the percentage of pixels correctly classified and the Kappa 

coefficient (κ).   

 

 

Figure 6.2 The grapnel transects used to assess the abundance and distribution of SAV in the 
Martham Broads, Norfolk, UK. Transect were surveyed Martham North Broad: a1→a4, b1→b2, 
c1→c4, d1→d2, e1→e3; Martham South Broad: a1→a5, b1→b4, c1→c2, d1→d4, e1→e3. 
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6.5 RESULTS AND DISCUSSION 

6.5.1 Spectral Signatures of Aquatic Plants 

The spectral reflectance signatures of the aquatic plant species (representatives of the four 

growth-habit classes) obtained from the in-situ spectrometry are depicted individually in Figure 

6.3 and, further, the mean spectral signatures of these species are shown collectively in Figure 

6.4.  The spectral signatures of clear (chlorophyll-a < 10 mg m-3; SPM < 5 mg l-1; SDD > 1.5 m) 

and turbid (chlorophyll-a > 20 mg m-3; SPM > 20 mg l-1; SDD < 0.5 m) water are also shown for 

comparison. 

 

It is evident that the R(λ) signatures of the four macrophyte species are, although to varying 

extents, relatively dissimilar, both in the magnitude of R(λ) and the composite shape of the 

spectrum.  Some broad similarities can, however, be observed between the species.  These 

characteristics include a broad R(λ)-minimum at c. 400-500 nm, largely due to the effect of 

absorption by plant pigments (chlorophylls and carotenoids) and, to a variable extent, by the 

surrounding water column.  The aquatic plant species also demonstrate a common R(λ)-maxima 

at c. 550 nm (the ‘green peak’) (although the exact position and prominence of this feature can 

be seen to vary between the different species); the pronounced nature of the green peak 

feature is a function of the intense backscattering of green light from chlorophyllous plant 

tissues (and the fact that it is straddled by two prominent R(λ)-minima related to pigment 

absorption).  This green peak is, however, also apparent in the spectra of both clear and, in 

particular, turbid water as a result of intense backscattering from planktonic algae. 

 

The macrophyte species also demonstrate a broad R(λ)-minimum between the green peak and 

the VNIR shoulder (550-700 nm).  This feature is largely the result of absorption by chlorophyll 

pigments (chlorophyll-a, chlorophyll-b) (allied to increasing water absorption).  The R(λ) 

signatures also exhibit increased reflectance > 700 nm; this is due to the backscattering of 

VNIR light from plant tissues (largely due to the palisade cells within spongy mesophyll tissue) 

(Campbell, 2002).  This VNIR shoulder is, however, notably absent in the R(λ) signature of the 

submerged aquatic plant (Chara baltica); instead, here, there is only a narrow R(λ)-peak.  The 
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absence of this feature is almost certainly due to intense absorption by the overlying water 

column. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e)  

 

(f) 

 
 
Figure 6.3 The R(λ) signatures of the four macrophyte species (a) Nuphar lutea, (b) Hippuris 
vulgaris, (c) Chara baltica and (d) Phragmites australis compared to the reflectance signatures 
of (e) clear water (chlorophyll-a < 10 mg m-3; SPM < 5 mg l-1; SDD > 1.5 m) and (f) turbid water 
(chlorophyll-a > 20 mg m-3; SPM > 20 mg l-1; SDD < 0.5 m). 
 

The spectral signatures of Phragmites australis and Nuphar lutea were arguably the most 

distinct, both from the other aquatic plant species, and the spectra of open water.  These 

species both demonstrated significantly higher R(λ) (400-800 nm) in comparison to the other 
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macrophyte species examined (e.g. 30-60% in the VNIR).  The high R(λ) observed from the 

Phragmites australis stands was no doubt related to the fact that this tall monocotyledon 

typically forms dense, closed, canopies with substantial aerial biomass.  In similarity, the high 

R(λ) measured from the beds of Nuphar lutea was probably a function of its large planophile 

floating-leaves, which present a large reflective surface, and obscure the surrounding water 

column.  The spectral reflectance signatures of Phragmites australis and Nuphar lutea 

measured here are comparable to the Phragmites australis and Polygonum amphibium (a 

floating-leaved species) reflectance signatures depicted in Malthus & George (Malthus & 

George, 1997), which suggests a consistency in spectral response, both from identical plants in 

different lake systems, and from different plant species with common growth-habit 

characteristics. 

 

Figure 6.4 The mean R(λ) signatures of the four macrophyte species: Nuphar lutea, Hippuris 
vulgaris, Chara baltica and Phragmites australis compared to the reflectance signatures of clear 
water (chlorophyll-a < 10 mg m-3; SPM < 5 mg l-1; SDD > 1.5 m) and turbid water (chlorophyll-a 
> 20 mg m-3; SPM > 20 mg l-1; SDD < 0.5 m). 
 

In comparison to Phragmites australis and Nuphar lutea, the spectral response measured over 

the Hippuris vulgaris and the Chara baltica beds was significantly weaker.  This discrepancy 

was most apparent at VNIR wavelengths (> 700 nm).  Indeed, the spectral responses of both of 

these species were broadly similar to that observed over open water.  This is likely due to the 

fact that both species proportion the vast majority or, in the case of Chara baltica, all of their 

biomass beneath the water surface.  The strong absorption of light by the water column would 
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therefore seem to greatly influence the spectral response of these aquatic plants.  This may 

intimate that these species (and their respective growth-habit associations) may not be 

spectrally differentiable from areas of open, particularly turbid, water.  The strong attenuation of 

VNIR light by the water column did, however, seemed to produce a characteristic and 

pronounced peak at c. 700 nm in the Chara baltica reflectance signature (Figure 6.3), which 

may be useful for delineating the extent of SAV in lakes.  The Chara baltica R(λ) signature 

observed here is similar to that shown in Yuan & Zhang (2007) for the submerged plant 

Vallisneria spiralis which, again, suggests a consistency in the spectral response of aquatic 

plant species at the growth-habit level. 

 

 

Figure 6.5 PCA score plot of the spectra reflectance signatures of the various macrophyte 
species examined relative to the signatures of clear and turbid water. PCA1: eigenvalue = 
59.921, proportion variance explained = 0.740, cumulative variance explained = 0.740; PCA2: 
eigenvalue = 11.73; proportion variance explained = 0.145, cumulative variance explained = 
0.885. 
 

The spectral characteristics of the four macrophyte species (relative to clear and turbid water) 

were further explored using PCA and MDA analyses.  The PCA score plot for the R(λ) 

signatures of the macrophyte species is depicted in Figure 6.5 using the first two extracted PCA 

components.  Examination of the eigenvalue scree plot suggested that the first two PCA 

components contained that vast majority of the systematic variance present in the original 

untransformed dataset (~ 90%).  The spectral reflectance measurements of the various aquatic 

plant species can be seen to demonstrate a reasonable degree of clustering in factorial space.  
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It is notable, however, that some degree of overlap occurs between some clusters.  The PCA 

component scores for Phragmites australis R(λ) signatures were, as previously suggested, very 

distinct from the signatures of the other macrophyte species.  However, interestingly, it can be 

seen that the variation within the Phragmites australis spectral response was almost as great as 

the variation observed between the spectral responses of the remaining aquatic plant species.  

This suggests that variable canopy architecture and, possibly, even the physiological status of 

the Phragmites australis plants, had a pronounced influence on the spectral response of this 

species. 

 

The PCA score plot also shows that the R(λ) signature of Nuphar lutea was distinct from the 

other macrophyte species and, in particular, from the submerged and partially-emergent 

species.  The clusters relating to the spectral signatures of the submerged Chara baltica and 

partially-emergent Hippuris vulgaris were, not unexpectedly, grouped closest together in PCA 

component space.  It can be further seen that the PCA clusters for these species also 

demonstrate some overlap in PCA component space with the spectra of both clear and highly 

turbid water.  Interestingly, a near-linear gradient can be perceived from the clear water PCA 

cluster, through the clusters associated with Hippuris vulgaris and Chara baltica, to the cluster 

created by the turbid water spectra.  This gradient probably relates to the strength of the 

chlorophyll-a signal measured from these various classes.  The spectral overlap in the 

signatures of the submerged Hippuris vulgaris and partially-emergent species Chara baltica 

(and indeed with that of open water) would seem to suggest that the discriminant mapping of 

these growth-habit associations using remote-sensing-based approaches may be problematic.  

The mixing boundaries between these classes, particularly for the submerged and partially-

emergent species would, based on the PCA score plot, appear to be non-linear in nature.  This 

observation may have implications for the performance of different remote-sensing-based 

classification algorithms. 

 

First-derivative analysis was also explored in an effort to improve the spectral separation of the 

aquatic plant species (not shown).  However, the first-derivative transformation drastically 

reduced the degree of spectral dissimilarity between the various macrophyte species.  First-
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derivative transformations effectively normalise R(λ) spectra for inherent differences in albedo.  

This suggests, importantly, in this instance, that variations in the magnitude of R(λ) observed 

between aquatic plants species are important for facilitating their discrimination using remote-

sensing-based approaches. 

 

The confusion matrix derived from the cross-validated MDA classification analysis of the 

spectral reflectance signatures of the four aquatic plant species (and the clear and turbid water 

spectra) are detailed in Table 6.2.  It was surprising, given the degree of confusion between the 

spectral signatures of the aquatic plant species identified in the PCA score plot, that the MDA 

model achieved an exceptionally high classification accuracy (overall proportion correct = 

0.959; proportion plant species correct (excluding open water spectra) = 1.000).  Indeed, no 

misclassifications were observed for any of the macrophyte spectra.  This would seem to 

indicate that the aquatic plant species, or perhaps more appropriately, the growth-habit classes 

they represent, are sufficiently spectrally differentiable to permit the discriminative mapping of 

aquatic vegetation in lakes.  As these species exhibit pronounced morphological differences, 

such a level of classification accuracy should be expected, particularly if remote sensing is to be 

used in an operational manner for the survey of aquatic plants.   

 

Table 6.2 The confusion matrix derived from the cross-validated MDA classification of the 
spectral signatures of the four aquatic plant species. 
 

  Plant Species 
  P.  aus N.  lut H. vul C. bal Turbid Clear Total 

P.  aus 15 0 0 0 0 0  
N.  lut 0 6 0 0 0 0  
H. vul 0 0 14 0 0 0  
C. bal 0 0 0 15 0 0  
Turbid 0 0 0 0 13 1  

Classified 
Plant 

Species 

Clear 0 0 0 0 2 8  
N  15 6 14 15 15 9 74 

n correct  15 6 14 15 13 8 71 
Proportion  1.00 1.00 1.00 1.00 0.867 0.889 0.959 
P. aus = Phragmites australis; N. lut = Nuphar lutea; H. vul = Hippuris vulgaris; C. bal = Chara baltica. 

 



 

 261

6.5.2 Supervised Classification of Aquatic Vegetation 

6.5.2.1 Macrophyte Growth-Habit Associations in the Upper Thurne 

The remote-sensing-based mapping of aquatic plant growth-habit associations was further 

explored by applying contrasting classification models to the airborne CASI-2 [Vegetation] 

imagery of the Upper Thurne Broads.  The classification accuracies for the macrophyte growth-

habit assemblages in the Upper Thurne system of the Norfolk Broads are compared in Table 

6.3.  It is notable that there were large discrepancies in the performance of some of the 

classification algorithms.  More specifically, the EMD classifier performed poorly, providing an 

overall classification accuracy of just 41.7% and κ = 0.09.  Further examination of the confusion 

matrix derived from the EMD classification (not shown) revealed that the algorithm frequently 

confused the water class with the submerged and, in particular, the partially-emergent 

macrophyte classes.  The existence of spectral overlap between these classes was also 

identified from the PCA transformation of the in-situ R(λ) spectra; it would therefore seem that 

these growth-habit species demonstrate significant inter-class mixing.  The poor performance of 

the EMD classifier probably reflects the fact that the Euclidean-distance between the mean 

centroids does not attain optimal inter-class separation in this instance. 

 
Table 6.3 The classification accuracy and κ coefficients derived from the EMD, MLC and SVM 
classifications of the macrophyte growth-habit assemblages in the Upper Thurne system. 
 
 Min. class 

accuracy 
Max. class 
accuracy 

Overall class 
accuracy 

κ coefficient 

EMD 9.12 57.30 41.68 0.09 
MLC 22.74 99.83 97.15 0.73 
SVM 22.54 99.91 97.40 0.75 

 

In comparison, the MLC and SVM algorithms provided a highly accurate level of overall 

classification (97.2% and 97.4% and κ = 0.73 and 0.75 respectively).  It should be noted that 

the overall classification accuracies attain here are distorted, to an extent, by the fact that both 

the MLC and SVM algorithms were highly effective at classifying open water pixels (for which 

large training and validation datasets were defined).  Whilst, the delineation of the extent of 

open water is not of primary concern here, the extent of open water is, in itself, a useful metric 

of change in shallow lake ecosystems and, therefore, this finding should not be overlooked.   
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Table 6.4 Confusion matrix for the SVM classification of macrophyte growth-habit assemblages in the Upper Thurne system of the Norfolk Broads  

 

CASI-2 Classification Field Survey Classification           

  
Emergent Partially-

emergent Floating Submerged Water User's 
Accuracy     

Emergent 89.71 0.04 0.00 0.06 0.04 89.71   

Partially-emergent 3.91 22.54 32.58 0.15 0.05 22.54   

Floating 5.97 0.04 52.27 0.06 0.00 52.27   

Submerged 0.00 18.37 0.76 90.04 0.00 90.04   

Water 0.41 59.01 14.39 9.69 99.91 97.98   

Unclassified 0.00 0.00 0.00 0.00 0.00    

Producer's Accuracy 89.71 22.54 52.27 90.04 99.91    

Class Commission 15.99 11.74 34.29 17.42 0.02 Kappa coefficient = 0.75 

Class Omission 10.29 77.46 47.73 9.96 0.09 Overall accuracy = 97.40
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Table 6.5 Confusion matrix for the SVM classification of macrophyte growth-habit assemblages in the Upper Thurne system of the Norfolk Broads using a 
0.95 probability threshold in the classification algorithm. 
 

CASI-2 Classification Field Survey Classification           

  
Emergent Partially-

emergent Floating Submerged Water User's 
Accuracy     

Emergent 81.07 0.00 0.00 0.02 0.03 86.21   

Partially-emergent 1.44 15.84 12.12 0.08 0.01 95.67   

Floating 1.44 0.00 18.18 0.02 0.00 75.00   

Submerged 0.00 0.72 0.00 81.54 0.00 99.10   

Water 0.41 32.74 10.61 2.45 99.47 98.94   

Unclassified 15.64 50.70 59.09 15.89 0.49    

Producer's Accuracy 81.07 15.84 18.18 81.54 99.74    

Class Commission 13.79 4.33 25.00 0.90 1.05 Kappa coefficient = 0.70 

Class Omission 18.93 84.16 81.82 18.46 0.53 Overall accuracy = 96.54
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The SVM classification algorithm provided a marginally better classification than the MLC 

algorithm; the confusion matrices derived from the SVM classification are shown in Table 6.5 

and Table 6.5.  The classification matrix shown in Table 6.4 was achieved without the use of a 

probability threshold for the SVM algorithm; the classification matrix shown in Table 6.4 was 

achieved using a 0.95 probability threshold for the SVM algorithm.  The inclusion of the 0.95 

probability threshold in the SVM algorithm provides a more conservative classification – this is 

important in situations (as incurred here) when the image to be classified contains ground-truth 

classes not defined in the algorithm training process (i.e. marshland, alder carr).  The 

corresponding classified CASI-2 [Vegetation] images are depicted in Figure 6.6 and Figure 6.7.   

 

It is notable that, despite the high overall classification accuracy, the classification accuracies 

derived for specific classes varied from 22.5% (partially-emergent macrophytes) to 99.9% 

(water).  The lowest classification accuracies (for both SVM models) were associated with the 

partially-emergent and floating growth-habit classes.  In the case of the partially-emergent 

class, 59.0% of the ground-truth validation pixels were incorrectly classified as water; the PCA 

ordination analysis of the in-situ spectrometry data identified that the spectral signatures of 

partially-emergent species such as Hippuris vulgaris are not too dissimilar from those observed 

from turbid, algal dominated, waters and thus these misclassifications are perhaps not to be 

unexpected.  The cover and density of partially-emergent species (mainly Hippuris vulgaris, but 

with Myriophyllum spicatum and Potamogeton spp. also present in some areas) used as 

training data for the SVM classification algorithms varied considerably.  These partially-

emergent beds were, in places, relatively sparse and were, in effect, a mosaic of vegetation and 

small areas of open water.  This may explain the spectral confusion between the partially-

emergent class and the water class; indeed, the low user’s accuracy obtained suggests that the 

training data for the partially-emergent class were poorly defined.  The inclusion of the 0.95 

probability threshold did, however, improve the user’s accuracy for the partially-emergent class. 
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Figure 6.6 Classified CASI-2 [Vegetation] images of macrophyte growth-habit assemblages in the Upper Thurne region of the Norfolk Broads (UK) on 22 
June 2005 using a SVM algorithm. 
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Figure 6.7 Classified CASI-2 [Vegetation] images of macrophyte growth-habit assemblages in the Upper Thurne region of the Norfolk Broads (UK) on 22 
June 2005 using a SVM model with a 0.95 probability threshold included in the classification algorithm. 
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In the case of the floating macrophyte class, 32.6% of the ground-truth pixels were misclassified 

as belonging to the partially-emergent class.  These errors were probably the result of 

confusion between areas of sparser floating macrophyte cover (largely Nuphar lutea) and the 

few very dense beds of partially-emergent species.  It is also notable that the classified CASI-2 

[Vegetation] images show some misclassified areas of floating macrophyte cover in the 

terrestrial areas surrounding Hickling Broad (Figure 6.6).  This area is dominated by fenland 

vegetation, obviously with no floating macrophyte coverage.  The introduction of the 0.95 

probability threshold in the classification algorithm was, however, successful in preventing these 

areas from being misclassified (this is not reflected in the classification accuracies because the 

training and validation datasets were not extracted from the fenland areas).  This demonstrates 

the importance of employing a conservative approach to remote sensing classification, 

particularly, as here, when the ground-truth available is somewhat limited. 

 

In contrast to the partially-emergent and floating classes, classification accuracies for the 

emergent and submerged classes were 89.7% and 90.0% respectively.  The high classification 

accuracy achieved for the emergent growth-habit assemblage reflects the fact that the 

dominant species in this class (Phragmites australis, Typha latifolia) have appreciably different 

spectral signatures from the other macrophyte growth-habits, largely due to their characteristic 

canopy architecture.  The classified CASI-2 [Vegetation] images (22 June 2005) show that the 

vast majority of the reedswamp habitat that surrounds Hickling Broad, Horsey Mere and the 

Martham Broads has been correctly classified into the emergent class (Figure 6.6 and Figure 

6.7).  However, it is evident that some of the small areas of Alder carr that fringe Hickling Broad 

were also classed as emergent aquatic plants.  The introduction of the 0.95 probability 

threshold into the algorithm, again, prevented these areas from being misclassified. 

 

The accurate classification of the Phragmites australis-dominated reedswamp achieved here 

echoes the results described in Arzandeh & Wang (2003), Maheu-Giroux & De Blois (2005) and 

Pengra et al. (2007) who have previously demonstrated that Phragmites australis vegetation 

can be accurately mapped from remotely sensed data.  Reedswamp is a key functional 
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component of many shallow lake ecosystems, thus the ability to monitor the extent of this 

habitat through remote sensing reconnaissance is a pertinent development, particularly for the 

assessment of ecological status in shallow lakes.  Moreover, in some freshwater wetlands, 

Phragmites australis is considered to be an invasive and aggressive alien species and its rapid 

colonisation is a serious concern for the ecological integrity of these systems.  In this context 

remote sensing would seem to be a useful tool for mapping the invasion of Phragmites australis 

and, indeed, other invasive macrophytes in aquatic ecosystems (Maheu-Giroux & De Blois, 

2005; Pengra et al., 2007). 

 

It is of note that the submerged growth-habit class could also be mapped accurately using the 

CASI-2 [Vegetation] imagery despite the fact that these species (Chara spp., Najas marina, 

Nitellopsis obtusa) grow at a substantial depth (0.5-1.5 m) beneath the water surface.  The PCA 

ordination analysis of the in-situ Rλ spectra suggested that some confusion may occur between 

the spectral signatures of SAV species and turbid water.  Nonetheless, the SVM algorithm 

seems to have been effective for achieving sufficient class separation in this instance.  It should 

be noted however that the SAV pixels used to define the submerged macrophyte class (and for 

classification validation) were extracted from the dense Chara spp. lawns in the Martham 

Broads.  Some extensive areas of Chara spp. lawn (largely Chara intermedia) also occur in 

Hickling Broad.  These lawns were not used for classification training or validation purposes, 

largely as it was perceived that the turbid water column of Hickling Broad (SDD < 0.4 m) would 

not permit these species to be mapped.  This presumption was vindicated by the SVM 

classification, as the algorithm failed to identify the presence of the submerged Chara spp. 

lawns in Hickling Broad. 

 

It would thus seem that, while SAV can be readily mapped in clear water shallow lakes, such as 

the Martham Broads, poor water transparency may prohibit the detection and mapping of SAV 

in turbid shallow lakes.  The recolonisation of turbid, phytoplankton-dominated, lakes by SAV is 

often a key objective for those concerned with restoring the ecological status of these systems.  

The capability of remote sensing to provide information on the extent of aquatic plant 

colonisation would therefore be hugely beneficial to the assessment of ecological status and 
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trajectory in such lakes.  In this context, further work should be focussed on improving the 

detection capabilities of remote sensing instruments (i.e. signal processing and enhancement) 

for benthic vegetation in turbid lakes.  However, in turbid lakes, where SAV cannot be detected 

using remote sensing, this lack of detectability could, in itself, be interpreted as a consequence 

of reduced SAV canopy height (or biomass) and, therefore, may be a useful indicator of the 

ecological status of the system in question. 

 

6.5.2.2 Submerged Aquatic Vegetation in the Martham Broads 

The confusion matrices derived from the classification of SAV assemblages in the clear water 

Martham Broads using the EMD, MLC and SVM algorithms are detailed in Tables 6.6-6.8.  The 

EMD classification algorithm was again the poorest performing classifier, although the 72.1% 

classification accuracy achieved at the SAV assemblage level, interestingly, represented an 

improvement on the classification accuracy previously achieved at the growth-habit level.  This 

is somewhat surprising as the spectral distinction between classes should, in theory, be greater 

at the growth-habit assemblage level than at the species assemblage.   

 

This presupposition is supported in the classification accuracies achieved through the MLC and 

SVM algorithms which, at 78.0% and 87.1% respectively, were lower than that achieved at the 

growth-habit level.  Nevertheless, the classification accuracies achieved, particularly using the 

SVM algorithm, were still encouraging; for example, a classification accuracy of 80% has often 

been suggested to be the benchmark for the remote-sensing-based mapping of terrestrial 

vegetation communities (May et al., 1997; Liu et al., 2002) and, as such, the classification 

accuracy achieved here with submerged aquatic vegetation would seem to compare favourably.   

 

The confusion matrices derived from the EMD, MLC and SVM classification again reveal that 

the performance of the algorithms varied significantly between classes.  The EMD and MLC 

algorithms did not provide a good classification of the clear water pixels in the image; 

classification accuracies for these classes were just 45.5% and 32.4% respectively.  The EMD 

and MLC algorithms frequently misclassified these clear water pixels as Hippuris vulgaris or 

Nitellopsis obtusa. 
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Table 6.6 Confusion matrix for the EMD classification of SAV in the Martham Broads, Norfolk, UK. 
 

CASI-2 Classification Field Survey Classification             

  
C. 
hispida 

C. 
aspera 

N. 
obtusa 

H. 
vulgaris 

Lake 
bed 

Clear 
water 

User's 
Accuracy     

C. hispida 81.36 0.93 0.00 12.22 0.68 0.00 97.32   

C. aspera 0.00 93.79 2.30 8.33 5.47 0.57 80.97   

N. obtusa 0.00 0.94 74.24 0.00 13.85 35.37 60.79   

H. vulgaris 12.53 1.86 0.00 74.44 1.54 15.76 29.78   

Lake bed 0.31 0.00 8.59 0.00 76.58 0.00 85.66   

Clear water 0.00 0.00 14.63 4.44 0.00 45.46 75.66   

Unclassified 5.80 2.48 0.24 0.57 1.88 2.84       

Producer's Accuracy 81.36 93.79 74.24 74.44 76.58 45.46    

Class Commission 2.68 19.03 39.21 70.22 14.34 24.34 Kappa coefficient = 0.66 

Class Omission 18.64 6.21 25.76 25.56 23.42 54.54 Overall accuracy = 72.17
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Table 6.7 Confusion matrix for the MLC classification of SAV in the Martham Broads, Norfolk, UK. 

 

CASI-2 Classification Field Survey Classification             

  

C. 
hispida

C. 
aspera 

N. 
obtusa 

H. 
vulgaris 

Lake 
bed 

Clear 
water 

User's 
Accuracy     

C. hispida 96.97 3.42 0.12 17.22 4.79 1.25 93.84   

C. aspera 0.00 89.44 0.85 0.00 1.37 0.00 95.05   

N. obtusa 0.15 0.62 86.70 1.67 7.35 10.88 83.08   

H. vulgaris 3.17 6.52 0.48 80.56 0.00 55.44 20.71   

Lake bed 0.00 0.00 2.90 0.00 86.50 0.00 95.47   

Clear water 0.00 0.00 8.95 0.56 0.00 32.43 79.22   

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00       

Producer's Accuracy 96.97 89.44 86.70 80.56 86.50 32.43    

Class Commission 6.16 4.95 16.92 79.29 4.53 20.78 Kappa coefficient = 0.73 

Class Omission 3.33 10.56 13.30 19.44 13.50 67.57 Overall accuracy = 78.06 

 



 

 

272 

 

 

Table 6.8 Confusion matrix for the SVM classification of SAV in the Martham Broads, Norfolk, UK. 

 

CASI-2 Classification Field Survey Classification             

  

C. 
hispida

C. 
aspera 

N. 
obtusa 

H. 
vulgaris 

Lake 
bed 

Clear 
water 

User's 
Accuracy     

C. hispida 99.30 3.42 0.12 31.11 4.27 3.97 90.93   

C. aspera 0.00 96.58 1.09 0.00 3.42 0.11 91.20   

N. obtusa 0.15 0.00 89.12 0.56 11.11 13.61 79.68   

H. vulgaris 0.46 0.00 0.00 65.00 0.00 9.18 57.35   

Lake bed 0.08 0.00 2.18 0.00 81.20 0.79 94.81   

Clear water 0.00 0.00 7.50 3.33 0.00 72.34 90.37   

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00       

Producer's Accuracy 99.30 96.58 89.12 65.00 81.20 72.34    

Class Commission 9.07 8.80 20.32 42.65 5.19 9.63 Kappa coefficient = 0.84 

Class Omission 0.70 3.42 10.88 35.00 18.80 27.66 Overall accuracy = 87.11 
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These misclassifications are again probably the result of the typically sparse canopy of Hippuris 

vulgaris.  Similarly, the cover of Nitellopsis obtusa in the Martham Broads was not as dense as 

that of Chara spp. for example, thus spectral confusion with clear water areas may be 

somewhat expected.  Furthermore, in the Martham Broads, Nitellopsis obtusa frequently 

occurred in association with several other aquatic plants (predominately Najas marina, but also 

Chara spp. and Potamogeton) which would have influence the “purity” of the spectral response 

and may, in part, explain the spectral confusion observed. 

 

The EMD, MLC and, in particular, the SVM algorithm, returned good producer’s accuracies for 

the classification of the Chara hispida, Chara aspera and Nitellopsis obtusa classes.  However, 

the SVM was somewhat poorer at classifying areas of Hippuris vulgaris, achieving a producer’s 

accuracy of just 65.0%, in comparison to the other algorithms (these pixels were typically 

misclassified as Chara hispida).  This misclassification may have been due to the use of 

inappropriate training data.  Indeed, the low user’s accuracies for the Hippuris vulgaris class 

achieved by all three classification algorithms (20.7-57.3%) would seem to suggest that the 

training data for Hippuris vulgaris was, spectrally, ill-defined.  The use of more, and better 

defined, training data would likely increase the producer’s accuracy for this class.  Further, 

while Hippuris vulgaris is a visually prominent species, from an aerial vista it is likely to have 

little influence upon the spectral signature of the water column unless it occurs at high densities. 

 

The SVM provided a higher producer’s accuracy for the Chara hispida and Chara aspera 

classes than was achieved using the EMD or MLC algorithms.  Indeed, the degree of spectral 

differentiability between these two Chara spp. classes was unforeseen.  The classification was 

probably aided, to an extent, by the fact training and validation data for these classes were 

readily defined as these species occurred as large, relatively monospecific, and geographically 

isolated lawns.  The other species of Chara found in the Martham Broads (Chara baltica and 

Chara intermedia) typically grew in association with other SAV species and thus it was 

problematic to develop specific training and validation data for these species.  Nevertheless, the 

classification accuracies achieved allude to the fact that remote sensing technologies may be 
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highly effective and efficient for the mapping of SAV lawns in clear water shallow lakes.  This is 

a highly relevant finding in the context of the foreseen use of remote sensing for monitoring the 

ecological status and stability of shallow lakes. 

 

The CASI-2 [Vegetation] image acquired on 29 August 2005 classified using the SVM algorithm 

is depicted in Figure 6.8.  The classified CASI-2 [Vegetation] shows good agreement to the 

distribution of SAV inferred from the transect survey data and, in particular, the Chara hispida 

and Chara aspera lawns appeared to have been accurate delineated.  The SVM algorithm has 

also accurately classified the deep areas of clear water associated with the River Thurne which 

flows between Martham North Broad and Martham South Broad; the pixels classified as 

Nitellopsis obtusa in the River Thurne (eastern part of channel) are misclassifications, but this 

river channel is heavily vegetated by a broad mix of aquatic plants, so some misclassification of 

the River Thurne channel is not unexpected. 

 

 

Figure 6.8 Classified CASI-2 [Vegetation] image of SAV in the Martham Broads on 29 August 
2005 using a SVM algorithm. 
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The largest misclassification apparent in the CASI-2 [Vegetation] image would seem to occur 

between areas of uncolonised clear water and the Nitellopsis obtusa class.  Significant parts of 

Martham South Broad – particularly towards the northern shoreline adjacent to the River 

Thurne – are predominantly clear water, but the corresponding image pixels have been 

misclassified as beds of Nitellopsis obtusa.  These misclassifications are probably due to the 

fact that the mixing boundaries between these classes were poorly defined.  The sparse cover 

of Nitellopsis obtusa in places made the definition of “spectrally pure” training data often 

problematic.  Further, the stem density of Nitellopsis obtusa is typically low (say compared to 

Chara spp.) and, thus, at least spectrally, it is likely to be often similar in appearance to open 

water.  Some degree of confusion with clear waters areas is therefore not to be unexpected.  

Larger training datasets would have no doubt improved the classification accuracies for these 

somewhat ill-defined, and spectrally similar, classes.  However, it must be stated that the 

grapnel survey data did not ideally lend itself to the construction of good quality training and 

validation datasets.  Often it was difficult to determine the SAV composition on a pixel-by-pixel 

basis.  This emphasises the need to ensure there is a natural synergy between the ground-truth 

data and the data requirements for remote-sensing-based classification procedures.  Sub-aqua 

quadrat-based survey data may have proved more effective for the construction of the ground-

truth training and validation datasets; unfortunately, such data was not available for the 

Martham Broads in this instance. 

 

The remote-sensing-based mapping of aquatic vegetation communities is always likely to be 

most effective in shallow lakes where large monospecific stands, beds, or lawns occur (e.g. 

Phragmites australis).  The spatial resolution of remote sensing imagery products can 

dramatically influence the accuracy of classification procedures.  High-spatial resolution (2.5 m) 

airborne imagery was used in this instance.  However, even this high resolution data is probably 

not sufficient for aquatic vegetation mapping in shallow lakes on the scale of the Martham 

Broads where often the composition of the aquatic flora varied at scales < 2.5 m.  Significant 

improvements in classification may be expected if very high resolution imagery (i.e. ≤ 1 m) were 

to be used.  In larger lake systems, with more extensive and uniform macrophyte coverage, 

coarser spatial resolutions would no doubt prove equally effective.  Sub-pixel variations in 
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floristic composition may be resolved by the use of linear spectral mixing models and, indeed 

SVM classifiers (when used to determine the relative abundancies of endmembers), and this 

may afford an alternative way forward in the absence of high-spatial resolution imagery.  

 

6.6 CONCLUSIONS 

Aquatic vegetation is an important functional component of shallow lakes and is key measure of 

shallow lake ecological status.  Monitoring the extent of macrophyte colonisation through field-

based surveys is problematic, particularly if the abundance and distribution of aquatic 

vegetation is to be assessed at the lake- or, indeed, the regional-scale.  This study examined 

the use of airborne remote sensing (CASI-2) for the classification of aquatic vegetation 

communities in the Upper Thurne system of the Norfolk Broads.  In-situ spectrometry was used 

to explore the spectral reflectance signatures of four aquatic plants species of contrasting 

growth-habit.  The spectral reflectance signatures of these species exhibited some notable 

dissimilarities, particularly for species of the emergent and floating-leaved growth-habit 

association.  These observations were further confirmed using PCA and MDA analyses.  

 

The capability of airborne remote sensing for mapping aquatic vegetation in shallow lakes was 

examined using two CASI-2 vegetation images of the Upper Thurne system.  Ground-truth 

aquatic plant survey data was used to train and validate three contrasting classification models 

for mapping aquatic plant based on (i) growth-habit associations, and (ii) dominant species.  

The use of a state-of-the-art, non-linear, radial-basis-function, support vector machine learning 

algorithm provided a more accurate classification of growth-habit associations (97.4%) and SAV 

species (87.1%) than could be achieved with either a Euclidean Minimum Distance or a 

Gaussian Maximum Likelihood classification algorithm.  Some confusion, however, was 

observed between classes.  In particular, classes that were comprised of aquatic plants species 

that often form sparse canopies or small beds (e.g. Hippuris vulgaris, Nitellopsis obtusa) were 

often misclassified as a result of the spectral confusion incurred from the surrounding water 

column. 
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Remote sensing, nevertheless, would seem to be a potentially effective and efficient tool for the 

survey of aquatic plants in shallow lakes.  It would seem, importantly, that remote sensing is 

readily capable of resolving the distribution of submerged aquatic plant communities in clear 

water lakes.  The abundance and distribution of SAV is a key measure of shallow lake 

ecological status.  The spatially-resolving information afforded by remote sensing 

reconnaissance may therefore prove useful in furthering the understanding of SAV dynamics in 

shallow lakes and the response of these communities to pressures and management.  

Moreover, the potential to acquire such information at the regional-scale suggests that remote 

sensing technologies may be able to make an important contribution to the survey of vegetation 

in lakes as required under the EU WFD.  
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7 REMOTE SENSING OF AQUATIC PLANT 
ECOPHYSIOLOGY IN SHALLOW LAKES 

 

7.1 INTRODUCTION 

The preceding chapter examined the use of remote sensing for the classification and mapping 

of aquatic vegetation in shallow lakes.  The research presented in this chapter seeks to build 

upon the use of remote sensing for the mapping of aquatic vegetation, and therefore species 

turnover, in shallow lakes through the development of novel quantitative techniques for the 

assessment of the physiological status of aquatic plants.  The chapter focuses on the 

exploration of lake-scale spatial variation in the physiological performance of an individual 

dominant, Phragmites australis, in relation to nutrient enrichment. 

 

7.2 RATIONALE 

Shallow lake ecosystems often include an extensive littoral zone dominated by large emergent 

aquatic plant species such as Typha latifolia, Phalaris arundinacea and Phragmites australis.  

Littoral reedswamps are recognised to fulfil important functions in the regulation of hydraulic 

circulation, the suppression of bottom sediment resuspension, biogeochemical cycling and in 

the provision of habitat niches and refuges for other aquatic biota.  Reedswamp vegetation is 

therefore critical to the wider status and stability of shallow lake ecosystems.  However, since 

the 1950s, there has been a large-scale decline in the reedswamp habitat of many European 

lakes and, in particular, that composed of the common reed Phragmites australis (Cav.) Trin. Ex 

Steudel) (Boar et al., 1989; Vanderputten et al., 1997; Fogli et al., 2002).  

 

The decline of Phragmites australis reedswamp in European lakes has been strongly linked to 

nutrient enrichment (Armstrong & Armstrong, 2001).  Cizkova et al. (Cizkova et al., 1996) have 

suggested that, in eutrophic lake systems, increased primary productivity can lead to the 

substantial accumulation of organic matter in reedswamp habitats.  This copious flux of organic-

C to the littoral hydrosoil can accelerate decompositional processes, increasing the microbial 

demand for oxygen, and ultimately leading to the development of oxygen-stressed anaerobic 
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conditions.  The resulting switch to anaerobic microbial metabolism can, in turn, lead to the 

production of numerous phytotoxic metabolites as the end-product of anaerobic decomposition 

(Santruckova et al., 2001).  The accumulation of these phytotoxic metabolites (typically organic 

acids), in combination with conditions of oxygen stress, is believed to be a major cause of reed 

decline in European lakes and their associated wetland environments (Armstrong et al., 1996; 

Armstrong et al., 1996; Vanderputten et al., 1997; Cizkova et al., 1999).   

 

The extent of reedswamp vegetation in the Norfolk Broads has declined substantially over 

recent decades (examination of 18 lakes showed a collective loss > 75% of the reedswamp 

cover between 1880 and 1977) (Boorman & Fuller, 1981).  Substantial initial losses of 

reedswamp vegetation were attributed to intensive grazing from introductions of Coypu 

(Myocastor coypus) (Boorman & Fuller, 1981).  However, reedswamp decline was observed to 

continue after the extermination of Myocastor coypus in the Norfolk Broads.  Boar et al. (1989) 

linked this further decline to increased nitrate loadings, suggesting that this can lead to 

disproportionate shoot-to-rhizome growth, thus rendering the plants, particularly those of the 

floating rhizome growth-habit, susceptible to physical damage from wave action.  In the shallow 

lakes of the Upper Thurne region of the Norfolk Broads, Phragmites australis reedswamp of the 

floating rhizome growth-habit has all but disappeared.  However, in recent years, obvious signs 

of further decline have been observed in the remaining areas of rooting littoral reedswamp.  

This suggests that the decline of reedswamp in the Norfolk Broads may be more complex than 

previous work has suggested and, indeed, it is clear that further consideration of the decline in 

Phragmites australis reedswamp in these lakes is needed. 

 

The early identification of plant physiological responses to stressors in natural communities is 

problematic.  Phytophysiological responses to stress may include change in photosynthetic rate 

and photosynthetic pigment composition (carotenoids and chlorophylls), changes in tissue 

biochemistry (micro- and macro-nutrients, cellulose, lignin and water content) and changes in 

plant morphology (biomass, LAI, stem length and diameter) (Lichtenthaler, 1996).  However, 

such phytophysiological responses are typically difficult to diagnose and, moreover, quantify in 

the field.  Indeed, it is near-impossible to adequately characterise the physiological status of 
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plants across extensive spatial areas using conventional point based sampling.   In lakes, this 

represents a significant obstacle to the effective and efficient diagnosis of aquatic plant 

physiological responses to pressures at the ecosystem-scale.    

 

In this context, the spatially-resolving and synoptic data provided by remote sensing platforms 

may provide a novel means of quantifying variations in the physiological status of aquatic plant 

communities in lakes.  Numerous authors have demonstrated that remote sensing can be used 

to quantify plant stress in precision agriculture and agriforestry contexts (Liu et al., 2004; Ayala-

Silva & Beyl, 2005; Fitzgerald et al., 2006; Shrivastava & Gebelein, 2007; Campbell et al., 

2007), but recent research has also shown that such techniques can be effectively transferred 

for the assessment of plant physiology in natural plant communities (Smith et al., 2005; Artigas 

& Yang, 2006).  Davids & Tyler (2003), for example, employed a variety of spectral-reflectance-

based vegetation indices as means of quantifying radionuclide-contamination-induced tree 

stress in the Chernobyl exclusion zone (Ukraine).  In a context more akin to shallow lake 

ecosystems, plant spectral reflectance characteristics have been used to examine the effects of 

heavy metal deposition on plants growing in floodplain wetlands (Kooistra et al., 2004; Clevers 

et al., 2004) and, significantly, Tilley et al. (2003) demonstrated that the spectral reflectance 

characteristics of two emergent macrophytes (Typha latifolia and Borrichia frutescens) could be 

related to nitrogen loadings in a lake system.   

 

It would therefore seem that remote sensing could provide a potentially novel, yet highly 

valuable, tool for the assessment of the physiological response of aquatic plants to 

environmental changes and pressures in lakes that would be otherwise unachievable through 

conventional field-based survey. 

 

7.3 AIMS AND OBJECTIVES 

The aim of the research presented in this chapter was to explore the use of remote sensing 

technologies for the assessment of aquatic plant physiological responses to nutrient loading in 

shallow lakes.  More specifically, the chapter aims to use in-situ and airborne remote sensing 
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surveys to investigate lake-scale variation in the performance of Phragmites australis 

reedswamp in relation to pressures from nutrient enrichment in Hickling Broad, Norfolk (UK). 

 

The specific objectives for this chapter can be defined as: 

 

a) To characterise the spectral reflectance characteristics of the emergent plant Phragmites 

australis under varying states of stress using expeditious in-situ spectrometry surveys and to 

subsequently identify a number of candidate spectral indices that are sensitive to changes in 

physiological status of this aquatic plant. 

 

b) To extrapolate the candidate vegetation indices derived using in-situ spectrometry to CASI-2 

airborne remote sensing imagery of the Norfolk Broads thus allowing the physiological status 

of Phragmites australis reedswamp to be evaluated at an unprecedented lake-scale. 

 

c) To relate spatial variations in plant physiology, as identified by the reflectance-based spectral 

indices, to the underlying sediment chemistry and, in particular, the degree of nutrient 

enrichment with a view to providing new insights into the decline of reedswamp vegetation in 

the Norfolk Broads. 

 

7.4 METHODS 

7.4.1 Study Sites 

The capability of remote sensing for assessing the physiological status of aquatic plants was 

explored in two shallow lakes.  Initially, method development was performed in Lake Balaton 

(Hungary).  Lake Balaton is Europe’s largest shallow lake (mean depth c. 3 m; area c. 595 

km2).  The littoral of Lake Balaton is dominated by extensive stands of Phragmites australis 

reedswamp.  However, over recent decades, the extent of reedswamp in Lake Balaton has 

declined dramatically in response to pressures incurred from eutrophication and the artificial 

regulation of the water level (Cizkova et al., 1999).  The methods pioneered in Lake Balaton 

were used to assess variations in the physiological status of Phragmites australis plants 

growing in Hickling Broad (UK) (52º44’17’’N; 1º34’29’’E).  Hickling Broad is a small shallow lake 
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(mean depth < 2.5 m; area c. 1.3 km2) which, in similarity to Lake Balaton, is fringed by dense 

Phragmites australis reedswamp.  The extent of Phragmites australis reedswamp in Hickling 

Broad has also declined dramatically over recent decades in response to a variety of pressures, 

including eutrophication.  Further information on the decline of reedswamp in the Norfolk 

Broads can be found in Boorman & Fuller (1981) and Boar et al. (Boar et al., 1989). 

 

7.4.2 Field Sampling 

7.4.2.1 Lake Balaton (Hungary) 

The remote-sensing-based assessment of plant physiological status requires that responses to 

stressors can be identified through resulting variations in the spectral response; changes in the 

pigmentation of plant leaves (i.e. chlorophyll-a) are a common phytophysiological response to 

environmental stimuli, including variations in nutrition (Lichtenthaler, 1996).  This is significant, 

as there is a substantial volume of work to suggest that spectral reflectance based metrics can 

be constructed to quantify variation in the pigment content of plant leaves, at both the leaf- and 

canopy-scale (Penuelas et al., 1994; Gitelson & Merzlyak, 1994; Penuelas et al., 1995; 

Blackburn, 1998; Sims & Gamon, 2002).  This approach was examined here for the 

assessment of physiological status in Phragmites australis reedswamp.   

 

It was, therefore, important to initially examine if spectral reflectance based indices could be 

used to diagnose and, further, quantify changes in the physiological status of Phragmites 

australis plants.  This was explored using measurements obtained from plants growing in Lake 

Balaton (Hungary).  The aim of this work was to seek a calibration between indices derived 

from spectral reflectance measurements and the assayed pigment content of Phragmites 

australis leaves.  The calibration was performed using plants growing in Lake Balaton because, 

here, laboratory facilities were immediately available for the analysis of plant pigments; it was 

not possible to measure the concentration of chlorophyll-a in the apical leaves of plants 

examined later in the Norfolk Broads. 

 

The apical leaves of Phragmites australis plants growing in Lake Balaton were systematically 

harvested from 25 stands in July 2004.  The plants sampled exhibited perceivable variations in 
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performance.  This enabled spectral reflectance measurements to be acquired from leaves in 

various states of physiological stress and, importantly, facilitated the collation of a suitable 

dataset for calibration purposes.  The leaves harvested in the field were stored in the dark, in 

cool boxes, and were transported back to the laboratories of the Balaton Limnological Research 

Institute (BLRI).  The apical leaves, upon arrival at the BLRI, were immediately transferred to a 

darkroom laboratory to enable spectral reflectance measurements to be acquired.  Three 

replicate spectral reflectance measurements were acquired from each leaf using the methods 

described in Section 7.4.1.2.  The exact position on each leaf from which the replicate spectral 

measurements were made was marked; this was subsequently used to inform the 

determination of the chlorophyll-a, enabling the spectral and pigment data to be accurately 

paired to optimise the calibration of the spectral reflectance indices.  The concentration of 

chlorophyll-a was determined, in triplicate, from samples of leaf tissue (0.283 cm2) removed 

from each position marked during the laboratory darkroom spectrometry.  Chlorophyll-a was 

extracted from the leaf material in a tissue homogeniser for 4 h with 80% acetone (v/v) in 

distilled water.  Glass beads were added to aid the maceration of the fibrous plant tissue.  The 

concentration of chlorophyll-a in the extract was subsequently determined 

spectrophotometrically, following clarification by centrifugation (10 min at 5000 g), using the 

equations of Wellburn (1994). 

 

The spectral reflectance data were used to derive a range of indices (see Section 7.4.1.2) 

previously shown to be sensitive to variations in the plant pigmentation.  Pearson’s Product-

Moment correlation and least-squares regression analysis were then used to calibrate the 

spectral reflectance indices to the measured concentration of chlorophyll-a in the leaf tissues.  

 

7.4.2.2 Norfolk Broads (UK) 

In total, 55 stands of Phragmites australis were sampled in Hickling Broad over a 2-year period.  

This sampling was conducted during three intensive field campaigns in August 2004, June 2005 

and August 2005.  The sampling was strictly limited to littoral stands – i.e. plants rooting in the 

lake sediment and subject to permanent inundation – samples were not obtained from the 

surrounding terrestrial fenland reedswamp as it was perceived these plants would not be 
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exposed to the same pressures as those growing in the lake.  The field sampling was 

conducted in a systematic manner to ensure that the resulting dataset described the full spatial 

variation in reedswamp performance across the lake (see Figure 7.1).   

 

The geographical location of each stand was recorded using a handheld GPS.  Initial 

observations on the condition of the plants were recorded and, in particular, any visual evidence 

of recent plant dieback (e.g. stand fragmentation, clumped habit, leaf yellowing) was 

catalogued.  Reed dieback was often readily identifiable from the presence of relict rhizomes 

protruding into the open water.  Prior to destructive sampling, in-situ spectral reflectance 

measurements (R(λ)) of the plant canopy were acquired using a handheld ASD FieldSpec® 

spectroradiometer according to the methods detailed in Section 7.4.2.1.  Immediately following 

the acquisition of the in-situ R(λ) measurements, 25 apical leaves were subsequently harvested 

from the plants and retained for further R(λ) measurements under laboratory darkroom 

conditions.  The culms of the Phragmites australis plants were then harvested above the 

rhizome mass from a 0.5 x 0.5 m quadrat and the material was retained for subsequent 

biometic measurements (data not considered further here).  The depth of the overlying water 

column to the vertical rhizome was also recorded.   

 

Sediment samples for chemical analysis were obtained from the Phragmites australis stands 

using a large diameter lake corer.  The corer was deployed from a boat and used to extract a 

sediment sample from the rhizosphere of the Phragmites australis plants.  The upper 0.10 m of 

the sediment core was carefully removed and retained for further analysis.  To examine for 

differences in the redox conditions between stands of Phragmites australis in Hickling Broad, 

limited measurements of the sediment redox potential (mV) were made in-situ during sampling 

in August 2005.  Where possible, the redox potential was measured, in triplicate, by inserting a 

portable Platinum redox electrode (attached to a millivoltmeter) into the centre of the sediment 

cores removed for chemical analysis.  The redox potential was measured against an Ag/AgCl 

reference electrode.  No correction was applied for differences in pH.  Unfortunately in many 

instances, it proved difficult to extract a sufficiently intact sediment core to allow the redox 

potential to be measured before oxidation occurred.  As a result, measurements of the redox 
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potential were only acquired for a limited number of stands and were, therefore, not used for 

statistical analyses. 

 

 

Figure 7.1 Map detailing the stands of Phragmites australis sampled in Hickling Broad and 
Heigham Sound during August 2004 (sites A01-A20), June 2005 (sites B01-B15) and August 
2005 (sites C01-C20). 
 

7.4.3 In-Situ and Laboratory Spectrometry  

7.4.3.1 In-Situ Field-Based Spectrometry: Canopy-Scale 

Spectral reflectance measurements of the Phragmites australis stands were made in the field 

using a handheld ASD FieldSpec® spectroradiometer.  The technical specifications of the ASD 

FieldSpec instrument are detailed in Section 3.4.1.  The spectrometer was attached to a 

telescopic pole which enabled the instrument to be raised and maintained at constant height of 

1 m above the reedswamp canopy at nadir.  Where possible, a constant geometry was 

maintained between the spectroradiometer and the sun.  The instrument was calibrated to 

reflectance (R(λ)) using a white Spectralon® reference panel.  Reference panel calibrations and 

dark current measurements were performed prior to the acquisition of reflectance spectra at 

each sampling location.  The spectral reflectance measurements were acquired as a mean of 
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25 replicate spectral scans from each stand; each scan itself was calculated from the mean of 

10 instantaneous scans automatically averaged by the ASD FieldSpec’s dedicated software.  

In-situ spectral reflectance measurements were only collected between 10.00 and 15.00 h GMT 

to minimise the effect of solar zenith variation (solar zenith angles ranged between 45-50°) and 

measurements were only made under clear skies.   

 

7.4.3.2 Laboratory Darkroom Spectrometry: Leaf Scale 

In addition to the in-situ (canopy-scale) spectrometry, spectral reflectance measurements were 

acquired in a laboratory darkroom environment from the 25 apical leaves harvested in the field 

from each Phragmites australis stand.  Spectral reflectance (R(λ)) measurements were made 

using a tripod-mounted ASD FieldSpec® spectroradiometer equipped with a 3.5° FOV (field-of-

view) limiter.  The instrument was calibrated to reflectance (R(λ)) using a white Spectralon® 

reference panel.  Two 300 W tripod-mounted halogen video lamps were used to provide the 

source of illumination; reference panel calibrations and dark current measurements were 

performed regularly to account for changes in the intensity of the illumination source.  The 

spectral reflectance measurements were taken against a background composed of black cloth 

(< 5% R(λ) between 400 and 1000 nm) draped over all adjacent surfaces to exclude background 

spectral noise.  Three spectral scans were acquired from each apical leaf; each of these scans 

was, itself, calculated as the mean of 10 instantaneous scans automatically averaged by the 

ASD FieldSpec’s dedicated software.   

 

7.4.3.3 Processing and Analysis of Spectral Data 

The in-situ and laboratory darkroom spectra were interpolated to a final spectral resolution of 

0.5 nm and truncated between 400-1000 nm to remove noise at the extremes of the 

instruments dynamic range.  The spectral data was then smoothed to further reduce the 

influence of noise prior to analysis by passing a 5 nm running mean filter over the entire 

spectrum.  The spectral reflectance measurements were then used to calculate a range of 

vegetation indices previously published in the literature and shown to be sensitive to variations 

in the chlorophyll-a content of plants at either the leaf- or canopy-scale.  The various vegetation 
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indices calculated are detailed in Table 7.1.  It should be noted, however, that only a selection 

of these indices were calculated from the Lake Balaton dataset.   

 

Table 7.1 The various spectral reflectance and spectral derivative reflectance indices calculated 
from the in-situ and laboratory darkroom spectroradiometry (c.f. le Maire et al. (2004)).  
 
Vegetation Index Formula Intended Scale Reference 
[NDVIbroad] (RNIR-Rred)/(RNIR+Rred) Canopy Rouse et al. (1973) 
[NDVIhyper] (R800-R680)/(R800+R680)   
[Green NDVIbroad] (RNIR-Rgreen)/(RNIR+Rgreen) Canopy Gitelson et al. (1996) 
[Green NDVIhyper] (R780-R550)/(R780+R550)   
[SIPI] (R800-R445)/(R800-R680) Leaf Peñuelas et al. (1995) 
[TCHVI] ((Rred-Rgreen)+(RNIR-Rred))/ 

((|Rred-Rgreen|)+(|RNIR-Rred|)) 

Canopy Yefremenko et al. (1998) 

[NPQI] (R415-R435)/(R415-R435) Leaf Barnes et al. (1992) 
[DVI] R800-R680 Canopy Jordan (1969) 
[SRPI] R430-R680 Leaf Peñuelas et al. (1994) 
[NPCI] (R680-R430)/(R680+R430)   
[PSSRb] R800-R635 Leaf Blackburn (1998) 
[PSNDb] (R800-R635)/(R800-R635)   
[Rshoulder] mean R(750-850) Canopy Strachan et al., (2002) 
[PRI] (R531-R570)/(R531+R571) Leaf Gamon et al. (1992) 
[C420] R420/R695 Leaf Carter (1994) 
[NDI] R800-R680 Canopy Jordan (1969) 
[SR] RNIR/Rred Leaf Birth & McVey (1968) 
[SRhyper] R800/R680   
[R800-R550]  Leaf Buschmann & Nagel 

(Buschmann & Nagel, 1993) 
[R800/R550]    
[R695/R760]  Leaf Carter (1994) 
[R605/R760]    
[R710/R760]    
[R695/R670]    
[R550]    
[R675/R700]  Leaf Chappelle et al. (1992) 
[R675/(R700xR650)]    
[R672/(R550xR708)]  Leaf Datt (1998) 
[R672/R550]    
[R860/(R550xR708)]    
[R750/R550]  Leaf Gitelson & Merzlyak (1994) 
[R750/R700]    
[R725/R675]    
[(R850-R710)/(R850-R680)]  Leaf Datt (1999) 
[(R780-R710)/(R780-R680)]  Leaf Maccioni et al. (2001) 
[(R700-R670)]  Leaf McMurtrey et al. (1994) 
[Red Edge] Value of dR at red edge 

inflection point 
Canopy Miller et al. (1990) 

[Red Edgeλ] Wavelength of dR red edge 
inflection point 

  

[Green Edge] Value of dR at green edge 
inflection point 

 Based on Peñuelas et al. 
(1994) 

[Green Edgeλ] Wavelength of dR green edge 
inflection point 

 Index developed in this 
thesis 

 

 

7.4.4 Airborne Remote Sensing 

Airborne remote sensing imagery (CASI-2) of the Phragmites australis reedswamp vegetation 

in the Upper Thurne region of the Norfolk Broads (including Hickling Broad and Heigham 
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Sound) was acquired by the NERC ARSF at 13:00 h GMT on 22 June 2005 and 29 August 

2005.  Further details of the NERC ARSF data acquisition campaigns in the Norfolk Broads are 

provided in Section 5.3.2.  The CASI-2 instrument was operated using the default [Vegetation] 

bandset configuration which is designed to optimise the CASI-2 instrument for vegetation-based 

applications (see Table 6.1).  The CASI-2 [Vegetation] data was geo-corrected, geo-registered 

and atmospherically corrected (to absolute radiance [w sr-1 m-2] (L(λ)) according to the methods 

outlined in Section 5.3.4.   

 

The CASI-2 [Vegetation] imagery was initially processed using a Support Vector Machine 

(SVM) non-linear radial basis function learning algorithm in order to classify the extent of 

Phragmites australis reedswamp in Hickling Broad (see Section 6.4.4).  The stands sampled in 

the field were identified in the image and used to create training data for the SVM algorithm.  

The conservative specification of a 0.95 probability threshold in SVM algorithm ensured that 

non-reedswamp areas were excluded from the classification.  The subsequent image analysis 

procedures were only applied to the areas classified as reedswamp.   

 

The results obtained from the laboratory darkroom and in-situ field-based spectrometry were 

used to inform the selection of candidate spectral indices (i.e. those shown to be optimally 

sensitive to variations in the physiological status of Phragmites australis) for application to the 

CASI-2 [Vegetation] imagery.  The candidate spectral indices chosen also had to be 

harmonious to the [Vegetation] bandset configuration of the CASI-2 instrument.  The CASI-2 

[Vegetation] imagery was subsequently transformed using the formulations of the selected 

indices.  The locations of the Phragmites australis stands sampled in the field were identified in 

the transformed CASI-2 [Vegetation] imagery and the spectral index information was extracted 

and used in the statistical analysis. 
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7.4.5 Sediment Chemistry  

7.4.5.1 Organic Matter Content 

The organic matter content (%) of the sediment samples obtained from the Phragmites australis 

stands in the Norfolk Broads was determined on an air-dried 3 g sediment sub-sample by the 

loss-on-ignition incurred following combustion at 500°C for 24 h in a muffle furnace.   

 

7.4.5.2 Nitrogen and Phosphorus 

The total-acid-extractable concentration of N and P in the sediment samples was determined 

following extraction using an adaptation of the sulphuric acid-hydrogen peroxide digestion 

procedure of Allen (1989).  The sediment samples were prepared for digestion by air-drying for 

7 d, grinding for 5 min in a steel Gy-ro mill and sieving < 2 mm.  Subsequently, 200 mg of the < 

2 mm sediment fraction was weighed into glass digestion tubes and 4.4 ml of the sulphuric 

acid-hydrogen peroxide reagent was added.  The samples were kept on ice for 24 h to control 

foaming.  The samples were then digested at 330°C in an aluminium heating block for 2.5 h.   

 

The digested extract was clarified by filtration through a Whatman GF No. 540 filter paper (pre-

washed with 0.5 M HNO3).  The concentration of total-extractable-N (TN) in the digest extracts 

was determined colourimetrically as ammonium (NH4
+) against analytical standards using the 

Phenolhypochlorite method of Solórzan (1969).   

 

The concentration of total-extractable-P (TP) in the digest extracts was determined 

colourimetrically as orthophosphate (PO4
-) against analytical standards using the ammonium 

molybdate reduction method of Murphy & Riley (1962).   

 

7.4.5.3 Total-Extractable Metals. 

The total-aqua-regia-extractable concentrations of several metallic macronutrients (K, Ca, Na, 

Fe) in the sediment samples was determined following extraction using the Aqua Regia 

digestion method (e.g. Sastre et al., 2002).  The sediment samples were prepared for digestion 

by air-drying for 7 d, grinding for 5 min in a steel Gy-ro mill and sieving < 2 mm.  Subsequently, 

3 g of the < 2 mm sediment fraction was weighed into glass digestion tubes; 3.5 ml HNO2 (65%) 
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and 10 ml HCl (30%) was added to the samples and they were kept on ice for 24 h to control 

foaming.   

 

The samples were then digested at 140°C in an aluminium heating block for 2 h.  The extract 

was clarified by filtration through a Whatman GF No. 540 filter paper (pre-washed with 0.5 M 

HNO3).  The total-extractable concentrations of Ca, Fe, K, Na, and Mg were determined against 

analytical standards using flame of acetylene atomic absorption spectrometry (AAS).  

 

7.4.6 Statistical Analysis 

The relationships between the indices formulated from the darkroom laboratory spectral 

reflectance measurements performed on the Lake Balaton apical leaves and the measured 

concentration of foliar chlorophyll-a was explored using correlation and regression analysis.  

Datasets were checked for normality in Minitab v.14 using the Anderson-Darling method (95% 

confidence level).  Pearson’s Product-Moment and Spearman Rank correlation analysis was, 

where appropriate, then used to assess the relationship between the spectral indices and the 

measured concentration of chlorophyll-a in the plant leaves.  Where statistically significant 

correlations were observed, least-squares regression analysis was used to calibrate the 

spectral indices to the foliar chlorophyll-a concentration. 

 

The spectral index that demonstrated the optimum relationship with the measured 

concentration of chlorophyll-a in the leaves of Phragmites australis from Lake Balaton was 

subsequently calculated, along with all the remaining indices detailed in Table 7.1, from the 

laboratory darkroom spectral reflectance measurements made from Phragmites australis leaves 

obtained from Hickling Broad.  The algorithm for the optimum index was then used to calibrate 

the Hickling Broad darkroom spectrometry measurements, thus providing predicted values for 

the chlorophyll-a concentration; the estimated chlorophyll-a concentrations predicted by the 

optimum regression model were then used to assess the sensitivity of the remaining spectral 

indices (i.e. those not calculated from the Lake Balaton apical leaf spectra) to apical leaf 

chlorophyll-a. 
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These statistical analyses were used to confirm the sensitivity of the various spectral indices to 

changes in the physiological status of Phragmites australis plants.  Once this sensitivity had 

been established, the full suite of spectral indices obtained from the in-situ and darkroom 

spectrometry, and the CASI-2 [SeaWiFS] imagery, were correlated against the sediment 

chemistry data.  Where significant associations were found (at the 95% confidence level), least-

squares regression analysis was used to derive quantitative relationships between the spectral 

response of the plants (i.e. physiological status) and sediment nutrient status.   

 

The data were also partitioned into two further subsets, (i) samples from “non-dieback” stands 

and, (ii) samples from “dieback” stands (i.e. recent visible evidence of dieback), based upon the 

observations made during lake sampling.  The non-parametric Mann Whitney test was 

subsequently used, in this case because of the limited number of observations for the “dieback” 

class (n = 11), to test for statistically significant differences in sediment chemistry and plant 

performance between healthy and dieback sites (at the 95 % confidence level).  The resulting 

data were used to develop an understanding of the potential mechanism(s) of Phragmites 

australis dieback in the Norfolk Broads. 

 

7.5 RESULTS AND DISCUSSION 

7.5.1 Relations between Reflectance Spectra and Leaf Pigmentation 

The spectral characteristics of Phragmites australis apical leaves in varying physiological states 

are depicted in Figure 7.2 (for clarity only a selection of the spectral reflectance measurements 

are shown).  The spectral signature of Phragmites australis (at the leaf-scale) is typical of that 

often observed from vegetation.  The spectra obtained from healthy Phragmites australis leaves 

demonstrate low spectral reflectance in the blue region (400-520 nm) due to strong absorption 

by chlorophyll and carotenoid pigments (xanthophylls and carotenes).  The apical leaf spectra 

also exhibit a characteristic local reflectance maximum in the green region (“green peak”) (c. 

530-610 nm) due to decreased pigment absorption and the dissipation of light from the 

xanthophyll cycle.  Spectral reflectance then decreases in the region immediately following the 

green peak, largely due to increasing absorption by chlorophyll pigments (chlorophyll-a and 

chlorophyll-b), culminating in a pronounced reflectance minimum at c. 680 nm caused by the 
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absorption maximum of chlorophyll-a.  Spectral reflectance can then be observed to increase 

rapidly in the VNIR forming the characteristic red edge shoulder (c. 680-730 nm) and VNIR 

plateaux (> 730 nm) features. 

 

It is notable that the spectral response from the apical leaves showed marked changes due, at 

least in part, to the variations in the measured concentration of chlorophyll-a.  The most notable 

systematic change observed (for apical leaves with chlorophyll-a concentrations > 20 µg cm-2) 

in response to increased plant vigour (i.e. higher concentrations of chlorophyll-a) was 

decreased spectral reflectance in the vicinity of the “green peak”.  This decrease in spectral 

reflectance probably reflects the effect of increased pigment absorption.   

 

In comparison, the spectral response from heavily stressed leaves, i.e. those with chlorophyll-a 

concentrations < 20 µg cm-2, demonstrated a significant increase in reflectance across the 

entire spectrum.  This is likely to reflect the effect of decreased pigment absorption.  Indeed, 

similar spectral responses to stress were observed by Davids & Tyler (2003) in the spectra of 

Silver Birch leaves exposed to radionuclide contamination.  It is further evident that, for the 

heavily stressed leaves (chlorophyll-a concentrations < 20 µg cm-2), the shape of the spectral 

signature also changes markedly and, in particular, the “green peak” and the reflectance 

minimum located at c. 690 nm (associated with chlorophyll-a absorption) are visibly less 

pronounced than in the equivalent features in the spectra of more healthy leaves (chlorophyll-a 

concentrations > 20 µg cm-2). 

 

Variation in apical leaf vigour also precipitated systematic change in the spectral response in 

the vicinity of the red edge (the transition from low to high spectral reflectance in the c. 690-720 

nm region); it is notable that the position of the red edge shifts in the reflectance spectra to 

progressively longer wavelengths with increasing chlorophyll-a concentration.  The pronounced 

variation in VNIR spectral reflectance appears to be unrelated to change in the concentration of 

chlorophyll-a.  Spectral reflectance in the VNIR is not strongly influenced by leaf pigmentation; 

rather, it is dominated by backscattering processes associated with the cellular structure of the 

leaf tissue.  It may be that the observed variation in the VNIR, particular in the spectra acquired 
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from stressed leaves, reflects the breakdown in the integrity of the palisade cells contained with 

the spongy mesophyll tissue in response to stress.. 

 

 

Figure 7.2 The effect of changes in the concentration of chlorophyll-a (3.48-57.23 µg cm-2) on 
the spectral reflectance characteristics of Phragmites australis apical leaves obtained from Lake 
Balaton, Hungary. 
 

The least-squares regression relationship between the measured concentration of chlorophyll-a 

in the Phragmites australis leaves obtained from Lake Balaton, and the spectral indices 

([TCHVI], [Green NDVIhyper], [R750/R550] and the [Red Edgeλ]) obtained from the darkroom 

spectrometry measurements is depicted in Figure 7.3.  The spectral indices derived from the 

reflectance measurements typically demonstrated strong relationships with the measured 

concentration of chlorophyll-a in the apical leaves of the Phragmites australis plants from Lake 

Balaton.  The [Red Edgeλ] demonstrated the strongest relationship with the measured 

concentration of chlorophyll-a, returning a coefficient of determination of R2 = 0.95.  Strong 

regression relationships were also derived with the band-ratio [R750/R550] and the [Green 

NDVIhyper] (R2 = 0.91 and 0.83 respectively).  In the case of the [TCHVI], the regression model 

was only valid for chlorophyll-a concentrations > 20 µg cm-2; the lack of a valid fit for 

concentrations < 20 µg cm-2 suggests that the formulation of the [TCHVI] was not suitable for 

quantifying pigment concentrations in highly stressed leaves.  Increased scatter in the 

regression relationship between [Green NDVIhyper] and [R750/R550] and the measured 
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concentration of chlorophyll-a was also observed for measurements from leaves with 

chlorophyll-a concentrations < 20 µg cm-2.   

 

These results suggest that the chlorophyll [Red Edgeλ] provides a highly sensitive index of plant 

physiological status as a function of variation in pigment content.  This observation is 

substantiated in several foregoing studies which have also found that the [Red Edgeλ] is a 

sensitive predictor of chlorophyll-a (and, importantly, is also relatively insensitive to non-

pigment-related effects) (Blackburn, 2002; Le Maire et al., 2004; Smith et al., 2005). 

 

(a) 

 

(b) 

(c) (d) 

 
 
Figure 7.3 The relationship between (a) [TCHVI], (b) [Green NDVIhyper], (c) [R750/R550] and (d) 
[Red Edgeλ] derived from laboratory darkroom spectrometry and the measured concentration of 
chlorophyll-a in the apical leaves of Phragmites australis in Lake Balaton, Hungary. 
 

The regression model derived to equate the [Red Edgeλ] index to the measured concentration 

of chlorophyll-a was subsequently used to calibrate the [Red Edgeλ] measurements made from 
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the Phragmites australis apical leaves obtained from Hickling Broad (N.B. this was necessary 

because chlorophyll-a was not measured in the apical leaves collected from Hickling Broad).  

This provided predicted values for the chlorophyll-a concentration for the Hickling Broad apical 

leaves; these values were then used to assess the sensitivity of the remaining spectral indices 

to apical leaf chlorophyll-a (i.e. those indices not calculated from the Lake Balaton spectral 

reflectance measurements).  The derived correlation coefficients between the entire suite of 

spectral indices and the [Red Edgeλ]-predicted apical leaf chlorophyll-a concentration is shown 

in Table 7.2.  

 

Table 7.2 Correlation coefficients (r) for the relationship between the estimated concentration of 
chlorophyll-a (µg cm-2) (Chl-a) in the apical leaves of Phragmites australis from Hickling Broad 
(predicted from the Lake Balaton [Red Edgeλ] algorithm) and the remaining spectral indices 
derived from the laboratory darkroom spectrometry (n = 55). Statistically significant correlations 
at the 95% confidence level are highlighted. 
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The vast majority of the 44 spectral reflectance indices derived from the Hickling Broad 

laboratory darkroom spectrometry showed statistically significant correlations with the [Red 

Edgeλ]-predicted chlorophyll-a concentration; only 12 of the derived indices were not 

significantly correlated at the 95% confidence level.  The correlation coefficients ranged 

between r = -0.897 to 0.940 with the strongest correlations occurring with the narrow band 

normalised difference indices [(R850-R710)/(R850-R680)] and [(R780-R710)/(R780-R680)]; the 

formulation of each index dictated whether the observed relationship with the Red Edgeλ-

predicted chlorophyll-a concentration was positive or negative.  In general, the narrow band-

ratios (e.g. [(R850-R710)/(R850-R680)]) appeared to be better predictors of variation in apical leaf 

pigment content than the broad band-ratios (e.g. [NDVIbroad]).   

 

These strong correlations provide clear evidence that many of the spectral reflectance indices 

examined retain sensitivity to changes in the physiological status of Phragmites australis 

leaves.  These indices were therefore assumed to be a quantitative metric of plant physiological 

status and were subsequently used explore the relation between the performance of 

Phragmites australis plants in Hickling Broad and sediment nutrient enrichment.  Those indices 

that did not demonstrate a significant correlation were, however, not discarded from further 

analysis as it was perceived that they might be sensitivite to changes in physiological status 

that are not necessarily manifest in the pigmentation of the plant leaves (e.g. canopy 

architecture). 

 

7.5.2 Sediment Chemistry  

The mineral nutrient content of the sediment samples obtained from stands of Phragmites 

australis in Hickling Broad is detailed in Table 7.3.  The mineralogy of the bottom sediments of 

Hickling Broad varied markedly between deposits of calcareous marl and dark-coloured 

amorphous muds.  The marl sediment is characteristic of the Norfolk Broads, being derived 

from the precipitation of calcium ions from the strongly alkaline groundwater (the precipitation of 

calcium ions is these lakes is facilitated by Chara spp. vegetation) (Moss, 2001).  Marl-

dominated clays and slits were the predominant sediment underlying stands of Phragmites 

australis sampled along the north eastern shore of Hickling Broad.  This sediment was typically 
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low in organic matter (<10%) (compared to the deposits of fine mud) and relatively cohesive.  In 

contrast, the stands of Phragmites australis sampled along the south western shore of Hickling 

Broad, and those in Heigham Sound, were often rooting in deep deposits of the dark-coloured 

and unconsolidated mud.  This mud typically had very high organic matter content (c. 20-65%).  

Moss (2001) dates the earliest appearance of this organic rich mud in sediment profiles 

obtained from the Norfolk Broads to c. 1840 and suggests its formation is strongly linked with 

the progressive eutrophication of the Broads.  The accumulation of deep mud in Hickling Broad 

was also noted by Boorman & Fuller (1981) during their survey of the reedswamp in the late 

1970s to early 1980s. 

 

Table 7.3 The mean (± 2 standard errors) and range of sediment nutrient and metal 
concentrations, organic matter content, and water depth, measured in Hickling Broad (values in 
mg kg-1 dry weight sediment, unless otherwise stated). 
 

     
n TN TP K Fe 

     
54 982.6 (±163.4) 384.8 (±67.4) 3828 (±680) 55280 (±13000) 
     
 (184.0-2403.0) (43.8-948.6) (873-9700) (8940-208600) 

     
Ca Na Mg Organic Matter (%) Water Depth (m) 

     
29825 (±6392) 3844 (±756) 2358 (±522) 22.35 (±5.06) 0.61 (±0.10) 

     
(458-81231) (828-22627) (19.2-3095.3) (0.8-65.5) (0-1.40) 

     
 

The organic nature of the mud found within Hickling Broad would suggest that that it is mainly 

derived from the accretion of detritus within the Phragmites australis stands.  This detritus may, 

in part, be derived from the decay of the Phragmites australis plants themselves.  However, the 

formation of this mud is likely to have been substantially facilitated by the decay of algal blooms 

that have been a persistent occurrence in the lake since it became eutrophic.  The growth and 

decay of epiphytic filamentous algae (often associated with the basal stems of plants) may be a 

further source of organic matter supplying Phragmites australis stands.  Spatial variability in the 

organic matter content of the sediment sampled in Hickling Broad is shown in Figure 7.4. 

 

The pronounced spatial variation observed in the occurrence of the organic mud (and, also, the 

depth of the deposit) would seem to indicate that organic matter is subject to pronounced 
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remobilisation and redistribution within the lake system.  The continual resuspension of bottom 

sediments is a characteristic feature of shallow lakes, especially those, like Hickling Broad, that 

are relatively wind-exposed.  In these shallow waters, sediment focusing processes can create 

substantial spatial heterogeneity in the deposition of the suspended sediment within the lake 

system (Scheffer, 1998).  Sediment focusing processes often led to the progressive accretion of 

material in areas of deep and/or stagnant water.  It is notable that deposits of organic mud were 

largely absent from stands located along the north eastern shore line of Hickling Broad.  It 

would seem that suspended organic material is readily resuspended in these regions and 

moved through the system in a south easterly direction.  This would account for the substantial 

accretions of organic matter observed in Heigham Sound; this region of the lake also receives a 

flux of sediment from the inlet of Meadow Dyke that supplies water from Horsey Mere to the 

north east.  The pronounced accretion of mud would also seem to occur in the more sheltered 

and stagnant waters along the south eastern shoreline.  These stagnant waters are created by 

the complex near-shore morphometry of the lake. 

 

 

Figure 7.4 Spatial variability in the organic matter content (%) of the bottom sediment of 
Hickling Broad underlying the stands of Phragmites australis sampled during 2004 and 2005. 
 

The influence of near-shore morphometry on sediment focussing processes is well documented 

(e.g. Blais & Kalff, 1995) and in Hickling Broad shore morphometry would seem to be a key 
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factor in regulating the sedimentation of particulate organic matter.  Moreover, in these calm 

water zones, the sedimentation of organic matter is likely to be further enhanced by impedance 

of flow caused by the presence of reedswamp vegetation.  Thus, the Phragmites australis 

stands in these regions may essentially function as foci for organic matter accretion.   

 

The accretion of organic matter would also seem to influence the nutrient content of the 

sediment in the Phragmites australis stands.  TP concentrations ranged between 43.8 and 

948.6 mg kg-1 (mean = 348.8 mg kg-1) and were typically higher in stands rooting in the organic 

mud.  The mean TP concentration measured here is somewhat lower than the 2.92 mg g-1 

(2920 mg kg-1) and 1.38 mg g-1 (1380 mg kg-1) TP previously measured by the Environment 

Agency in 1999 and 2000 respectively (Environment Agency, unpublished data) (although 

these TP concentrations are substantially higher that those measured in several other Broads 

by Pitt et al. (1997)).  This difference may suggest a net loss of TP from the system since 1999 

– perhaps due to decreased loading and subsequent equilibrium release and flushing loss.  The 

differences may also reflect the fact that TP concentration of the lake sediment in this study was 

measured during mid-to-late summer when the sediment TP is often at its lowest in shallow 

lakes (Spears et al., 2006) (the Environment Agency TP measurements were performed in 

December and September respectively).  The sediment TP concentration is recognised to be 

highly dependent on the extent of plant colonisation; Rooney et al. (2003), for example, showed 

that plant colonisation can result in a ~70% loss of TP from littoral lake sediments compared to 

uncolonised profundal sediments.  This also may account for the observed variation. 

 

The organic matter content of the sediment was significantly positively correlated with the 

concentration of TP (r = 0.405; p = 0.004), Fe (r = 0.392; p = 0.005), Na (r = 0.782; p = 0.000) 

and Mg (r = 0.673; p = 0.000) (n = 54) which suggests, not unsurprisingly, that stands with 

higher organic matter content were more nutrient enriched than the stands rooting in the more 

inorganic marl-dominated sediments.  TN in the sediment was not significantly correlated with 

organic matter content (r = 0.239; p = 0.098) (n = 54), but as N is highly labile in lake sediments 

and is not readily chelated by metal ions, the absence of a correlation here is not unexpected.  

Spatial variability in the concentration of TP, TN and K in Hickling Broad is shown in Figure 7.5. 
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Figure 7.5 Spatial variability in the concentrations of TN, TP and K measured in the sediment of 
Hickling Broad underlying the stands of Phragmites australis sampled during 2004 and 2005. 
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The measured concentration of TP in the sediment of Hickling Broad was highest in a sheltered 

bay adjacent to Deep-Go Dyke that connects Hickling Broad in the north to Heigham Sound in 

the south.  High TP concentrations were also measured throughout Heigham Sound (TP > 500 

mg kg-1).  The lowest concentrations of TP were measured in the marl sediments along the 

north western shore (typically < 100 mg kg-).  Concentrations of TN were also somewhat 

spatially variable in the sediment, with high concentrations measured in samples obtained from 

the north eastern shore in the vicinity of Catfield dyke and near to the Meadow Dyke.  These 

latter high concentrations probably reflect inputs of nitrate rich water received through the 

Meadow Dyke (via Horsey Mere) from the Waxham New Cut which drains agricultural land.  

The TN concentrations in the sediment did not however demonstrate the pronounced north-

south gradient observed in TP.  The high concentrations of K observed in the sediments of 

Heigham Sound probably reflects the effect of saltwater percolation into this region, either from 

localised upwelling of saline ground water or, probably more likely, the input of brackish water 

from Horsey Mere (which itself receives saline water from Waxham New Cut Dyke) via Meadow 

Dyke. 

 

The discernible dark colouration of the mud in Hickling Broad suggests that this organic-rich 

sediment was highly anoxic.  Sediment hypoxia is common in highly organic lake sediments 

because the supply of detritus fosters intense microbial decomposition which, in turn, increases 

the biological oxygen demand, leading to a pronounced oxygen deficit.  The dark colouration is 

derived from the reduction of sulphate (SO4
2-) in the sediment and its subsequent reaction with 

reduced iron (Fe(II)) to produce a black precipitate of ferrous sulphide (FeS).  The limited 

measurements of the sediment redox potential made during lake sampling in August 2005 

verified that the organic mud was typically more anoxic (-61 to -168 mV) compared to the more 

marl dominated sediment (-29 to -79 mV).  Similarly, Crook et al. (Crook et al., 1983) found that 

redox potential of sediments in Hickling Broad varied considerably from relatively oxic 

conditions (+40 mV), to conditions of severe sediment hypoxia to (-250 mV). 
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7.5.3 Plant Physiological Status and Sediment Nutrition 

The correlations between the spectral reflectance indices derived from the laboratory darkroom 

and in-situ field-based spectrometry (here assumed to be variously indicative of the 

physiological status of Phragmites australis plants) and the measured sediment chemistry 

parameters are detailed in Tables 7.4-7.10 for the respective sampling occasions.  Many of the 

spectral indices derived from both the laboratory darkroom (and to a lesser extent, the in-situ 

field-based spectrometry) exhibited strong and significant correlations with the measures of 

sediment chemistry.  The spectral indices derived from the laboratory darkroom spectrometry 

frequently demonstrated significant correlations with sediment TP, Na, Mg and organic matter.  

Significant correlations were also observed between several of the spectral indices and the 

measured concentration of Fe and TN; while only a few of the spectral indices demonstrated 

significant correlations with the concentration of Ca and water depth.  The spectral indices 

derived from the in-situ field-based spectrometry, in contrast, consistently demonstrated 

significant correlations with the concentration of Ca; it is suggested that this may reflect the fact 

that sediment mineralogy had a direct effect on spectral reflectance measured in the field.  The 

in-situ field-based spectral indices also consistently demonstrated significant correlations with 

organic matter and, in addition, some limited correlations with TP, Na and Mg were also 

observed.  Water depth was also significantly correlated with several of the spectral indices 

from the in-situ field-based spectrometry when the three independent datasets were combined. 

 

The strongest and greatest numbers of significant correlations were observed with the spectral 

data acquired from the measurements made during August 2004 and August 2005, with fewer 

and less strongly significant correlations being observed from the June 2005 dataset.  This 

would seem to suggest the strongest association between plant physiological status and 

sediment chemistry occurs towards the end of the growing season prior to the onset of 

senescence. Correlations were also strongest when the datasets derived from the various 

sampling occasions were examined individually, rather than combined; this would also seem to 

suggest that the relationship between the physiological status of the plants and sediment 

chemistry is temporally dependent. 
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Table 7.4 Correlation coefficients (r) between the derived spectral reflectance indices from the laboratory darkroom spectrometry and the sediment 
chemistry parameters from stands of Phragmites australis sampled in Hickling Broad during August 2004.  
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TN  0.123 0.100 0.039 0.011 -0.257 -0.171 -0.056 -0.028 0.013 0.346 -0.358 0.064 0.131 -0.014 0.256 0.161 0.068 0.049 -0.013 -0.013 0.044 -0.004 
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TN  -0.037 -0.359 -0.174 -0.005 -0.158 -0.100 0.046 0.078 -0.038 -0.122 -0.010 0.108 0.110 0.059 0.143 -0.065 -0.026 -0.062 0.275 0.147 0.011 0.045 
TP  0.537 -0.171 -0.212 -0.645 -0.382 -0.536 0.527 0.653 0.629 0.416 0.606 0.486 0.343 -0.571 0.453 -0.510 -0.413 -0.473 0.375 -0.211 -0.195 0.169 
K  0.333 -0.203 -0.235 -0.259 -0.304 -0.129 0.220 0.449 0.337 0.116 0.384 0.295 0.244 -0.274 0.302 -0.173 -0.355 -0.340 0.399 0.107 -0.216 0.086 
Fe 0.410 -0.172 -0.285 -0.411 -0.384 -0.304 0.341 0.485 0.333 0.161 0.404 0.390 0.361 -0.346 0.395 -0.300 -0.113 -0.234 0.423 -0.084 0.023 0.176 
Ca 0.120 -0.519 -0.107 -0.296 -0.235 -0.494 0.451 0.271 0.377 0.273 0.222 0.331 0.105 -0.222 0.321 -0.474 -0.462 -0.505 0.370 0.030 -0.236 0.171 
Na 0.292 -0.131 -0.053 -0.466 -0.165 -0.401 0.379 0.342 0.412 0.348 0.315 0.275 0.124 -0.376 0.234 -0.390 -0.311 -0.368 0.134 -0.171 -0.138 0.141 
Mg 0.408 -0.174 -0.159 -0.545 -0.323 -0.436 0.478 0.522 0.544 0.371 0.467 0.422 0.238 -0.453 0.391 -0.460 -0.448 -0.413 0.373 -0.183 -0.285 0.057 
Org. Matter 0.176 -0.179 0.071 -0.469 -0.094 -0.475 0.402 0.204 0.340 0.355 0.191 0.257 0.021 -0.306 0.199 -0.456 -0.191 -0.228 0.142 -0.446 -0.091 0.069 
Water Depth 0.139 -0.342 -0.154 -0.241 -0.300 -0.349 0.322 0.299 0.195 0.098 0.207 0.294 0.213 -0.085 0.324 -0.351 -0.105 -0.190 0.382 -0.010 -0.006 0.115 
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Table 7.5 Correlation coefficients (r) between the derived spectral reflectance indices from the laboratory darkroom spectrometry and the sediment 
chemistry parameters from stands of Phragmites australis sampled in Hickling Broad during June 2005. 
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TN  0.170 -0.100 -0.168 -0.214 -0.305 -0.378 0.298 -0.114 -0.032 0.132 -0.043 0.283 0.363 -0.116 0.305 -0.395 0.349 0.306 0.322 -0.480 0.209 -0.108 
TP  0.444 -0.335 -0.602 -0.115 -0.592 -0.345 0.195 0.073 -0.017 -0.056 0.197 0.507 0.676 -0.313 0.496 -0.236 0.191 -0.012 0.347 -0.197 0.306 0.254 
K  0.253 -0.292 -0.421 0.046 -0.265 0.012 -0.044 0.136 -0.103 -0.251 0.131 0.168 0.399 -0.136 0.146 0.104 0.102 0.058 -0.033 0.220 0.094 0.036 
Fe 0.435 -0.327 -0.655 0.059 -0.488 -0.049 -0.044 0.215 -0.022 -0.237 0.294 0.374 0.591 -0.279 0.344 0.107 -0.009 -0.194 0.127 0.030 0.193 0.337 
Ca -0.114 -0.236 -0.082 -0.030 -0.114 -0.371 0.166 -0.173 -0.098 -0.053 -0.143 0.125 0.124 0.068 0.119 -0.324 0.107 0.141 0.162 -0.037 0.013 -0.115 
Na 0.480 -0.090 -0.454 -0.270 -0.630 -0.369 0.330 0.336 0.305 0.205 0.445 0.617 0.567 -0.431 0.624 -0.342 -0.281 -0.414 0.534 0.067 0.011 0.367 
Mg 0.432 -0.229 -0.413 -0.321 -0.546 -0.387 0.368 0.397 0.311 0.200 0.442 0.551 0.499 -0.434 0.543 -0.327 -0.343 -0.410 0.450 0.241 -0.090 0.289 
Org. Matter 0.340 0.134 -0.007 -0.587 -0.416 -0.549 0.620 0.378 0.515 0.607 0.429 0.535 0.258 -0.435 0.564 -0.649 -0.499 -0.426 0.659 0.184 -0.312 0.134 
Water Depth -0.303 0.476 0.371 0.277 0.352 0.398 -0.304 -0.316 -0.235 -0.099 -0.315 -0.330 -0.472 0.301 -0.293 0.233 0.091 0.010 -0.093 0.404 0.129 0.088 
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Table 7.6 Correlation coefficients (r) between the derived spectral reflectance indices from the laboratory darkroom spectrometry and the sediment 
chemistry parameters from stands of Phragmites australis sampled in Hickling Broad during August 2005. 
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TN  0.362 0.272 0.352 0.317 -0.502 -0.270 0.306 -0.543 0.426 0.644 -0.639 0.366 0.399 0.367 0.656 0.461 0.330 0.256 -0.323 0.284 -0.055 0.515 
TP  0.483 0.370 0.521 0.508 -0.475 0.176 0.481 -0.084 0.017 0.214 -0.220 0.484 0.517 -0.115 0.388 0.529 0.442 0.327 -0.510 0.491 0.029 0.365 
K  0.422 0.476 0.337 0.319 -0.240 0.442 0.233 0.138 0.052 0.037 -0.044 0.348 0.375 -0.112 0.103 0.333 0.384 0.432 -0.319 0.308 0.320 0.202 
Fe 0.659 0.639 0.581 0.552 -0.449 0.312 0.454 -0.060 0.002 0.473 -0.480 0.617 0.645 -0.223 0.466 0.631 0.625 0.611 -0.549 0.540 0.334 0.330 
Ca -0.084 -0.257 0.093 0.115 -0.120 -0.449 0.206 -0.283 0.250 0.122 -0.116 0.003 0.011 0.359 0.278 0.089 -0.092 -0.262 -0.124 0.101 -0.427 0.337 
Na 0.603 0.473 0.658 0.650 -0.377 0.186 0.606 -0.206 -0.032 0.380 -0.395 0.621 0.643 -0.205 0.538 0.669 0.565 0.426 -0.645 0.655 0.061 0.422 
Mg 0.644 0.489 0.692 0.678 -0.521 0.217 0.631 -0.234 0.114 0.317 -0.334 0.669 0.687 -0.051 0.543 0.700 0.608 0.437 -0.674 0.684 0.062 0.543 
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Table 7.7 Correlation coefficients (r) between the derived spectral reflectance indices from the laboratory darkroom spectrometry and the sediment 
chemistry parameters from stands of Phragmites australis sampled in Hickling Broad for combined datasets. 
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Table 7.8 Correlation coefficients (r) between the derived spectral reflectance indices from the field based spectrometry and the sediment chemistry 
parameters from stands of Phragmites australis sampled in Hickling Broad for August 2004. 
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Table 7.9 Correlation coefficients (r) between the derived spectral reflectance indices from the field based spectrometry and the sediment chemistry 
parameters from stands of Phragmites australis sampled in Hickling Broad for June 2005. 
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Mg 0.074 0.039 -0.227 0.074 -0.390 -0.253 0.223 0.389 0.228 -0.014 0.496 0.591 0.253 -0.130 0.589 -0.230 -0.043 -0.231 0.649 0.213 -0.034 0.100 
Org, Matter 0.047 0.103 -0.192 0.074 -0.418 -0.371 0.340 0.669 0.483 0.027 0.759 0.690 0.256 -0.148 0.696 -0.336 -0.209 -0.477 0.627 0.180 -0.193 -0.044 
Water Depth -0.359 -0.314 0.028 0.266 0.118 -0.093 -0.039 0.159 -0.049 -0.220 -0.145 -0.298 -0.153 0.409 -0.262 -0.110 -0.234 0.045 -0.253 0.306 -0.258 -0.325 
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Table 7.10 Correlation coefficients (r) between the derived spectral reflectance indices from the field based spectrometry and the sediment chemistry 
parameters from stands of Phragmites australis sampled in Hickling Broad for combined datasets. 
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The strongest correlation derived from the August 2004 laboratory darkroom spectrometry was 

observed between the narrow band reflectance ratio [R675/(R700xR650)] and the concentration of 

TP in the sediment (r = 0.676; p = 0.002).  The strongest correlation derived from the June 2005 

laboratory darkroom spectrometry was also observed with the concentration of TP in the 

sediment but, in this instance, the optimum spectral index was [R750/R700] (r = 0.653; p = 0.006).  

The strongest correlation derived from the August 2005 laboratory darkroom spectrometry was 

observed between the [EGFN] index and the concentration of Mg in the sediment (r = 0.748; p 

= 0.000).  In addition, several spectral indices (including the [Red Edgeλ]) demonstrated 

significant correlations (r > 0.700; P < 0.05) with the concentration of Na and organic matter 

content (see Figure 7.6).  The strongest correlation derived from the combined datasets from 

August 2004, June 2005 and August 2005 was observed between [(R850/R710)/(R850/R680)] and 

the concentrations of Mg in the sediment (r = 0.551; p = 0.001). 

 

 

Figure 7.6 Non-linear exponential regression between sediment organic matter content and the 
physiological status of Phragmites australis as indicted by the [Red Edgeλ] spectral index 
derived from laboratory darkroom spectrometry of apical leaves harvested from stands in 
Hickling Broad during August 2005. 
 

The strongest correlation derived from the August 2004 in-situ field-based spectrometry was 

observed between [TCHVI] and the organic matter content of the sediment (r = -0.610; p = 

0.020).  However, further inspection indicated that this atypical negative correlation between 

plant vigour and sediment organic matter was due to the effect of a single outlying data point.  
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The strongest correlation derived from the June 2005 in-situ field-based spectrometry was, 

again, also observed to occur between [R860/(R550xR708)] and the organic matter content of the 

sediment (r = 0.759; p = 0.001), but in this instance the correlation between the organic matter 

content of the sediment and plant vigour was positive (which also suggests the negative 

correlation observed from the August 2004 data was somewhat spurious).  The relationship 

between [R860/(R550xR708)] and sediment organic matter is depicted in Figure 7.7.  The strongest 

correlation derived from the combined in-situ field-based spectrometry datasets was observed 

between the [EGFN] index and water depth (r = -0.516; p = 0.008).  

 

 

Figure 7.7 The linear regression relationship between sediment organic matter and the vigour 
of Phragmites australis as indicted by the [R860/(R550xR708)] spectral index derived from in-situ 
field-based spectrometry in Hickling Broad during June 2005. 
 

The generally weaker correlations observed with the spectral indices derived from the in-situ 

field-based spectrometry were probably due to the fact that, at the stand scale, the spectral 

signature of Phragmites australis (and indeed most vegetation types) is greatly influenced by 

variation in plant morphology and, in particular, the architecture of the canopy (i.e. biomass, 

leaf-area-index, leaf orientation) and, thus, less so by leaf pigmentation.  The relatively fine-

scale spectra reflectance measurements attained in the field (i.e. instantaneous FOV = 0.45 m) 

may, therefore, be highly susceptible to random variations in the canopy structure that are 

essentially unrelated to the physiological status of the plants. 
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The correlation observed here between the various spectral indices (i.e. indicative of plant 

physiological status) and sediment chemistry implies that the stands of Phragmites australis 

growing on sediments enriched with organic matter were more vigorous than those growing on 

the more inorganic substrates.  The higher concentrations of mineral nutrients (e.g. TP, Mg, Na, 

Fe) associated with those stands of Phragmites australis enriched with organic matter would 

seem to explain the notable differences in plant performance.  Interestingly, no negative 

correlations were observed between plant physiological status and sediment nutrient 

enrichment (the only exceptions being the spurious correlations between some of the various 

spectral indices derived from the in-situ field-based spectrometry and sediment organic matter 

and water depth).   

 

These explorative results would seem to suggest that remote sensing can be used to assess 

the physiological condition of aquatic plants at both the leaf- and canopy-scale.  The Lake 

Balaton experiment demonstrated that relatively simple spectral-reflectance-based metrics can 

be derived to estimate the pigment content of Phragmites australis leaves.  This provides, 

therefore, a clear route to the use of remote sensing for assessing the physiological status of 

emergent plants.  The ability to quantify the physiological status of these plants subsequently 

allows process-based relationships between the phytophysiological response and ambient 

environmental conditions to be explored, as shown here through the derivation of significant 

correlations between plant physiological status and sediment nutrition.  Similar work has also 

related plant physiological responses, quantified using remote sensing, to pressures such as 

heavy metal contamination (Kooistra et al., 2004; Clevers et al., 2004). 

 

7.5.4 Airborne CASI-2 [Vegetation] Imagery 

The radiance based [L710/L760] index was derived from the CASI-2 [Vegetation] imagery of the 

Upper Thurne system; this index was analogous to the spectral reflectance index [R710/R760] 

proposed by Carter (1994) and used above in the analysis of the in-situ and laboratory 

darkroom spectrometry (the [R710/R760] index could not be formulated from the CASI-2 

[Vegetation] data as the image data was calibrated to radiance).  This specific index was 

selected because it had previously demonstrated good relationships with both the chlorophyll-a 
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content of the Phragmites australis apical leaves (r = 0.891; p = 0.000) and several sediment 

chemistry parameters (e.g. organic matter, TP) and, further, the index was readily formulated 

using the [Vegetation] bandset configuration of the CASI-2 imagery.  The multispectral CASI-2 

[Vegetation] imagery (14 bands) is not ideally suited for the calculation of derivative spectral 

reflectance indices (e.g. [Red Edgeλ]) (such indices can only be adequately formulated from 

hyperspectral imagery products) and thus such indices were not considered for use with the 

CASI-2 [Vegetation] imagery.   

 

The SVM algorithm used to classify the CASI-2 [Vegetation] imagery and delineate the extent of 

Phragmites australis reedswamp across Hickling Broad (and the wider Upper Thurne) yielded 

overall classification accuracies for the 22 June 2005 and 29 August 2005 CASI-2 [Vegetation] 

imagery of 79.3% and 81.1% respectively; the use of the 0.95 probability threshold in the 

classification algorithm effectively resulted in producer’s accuracies of > 95% for the 

Phragmites australis reedswamp areas (the remaining pixels were unclassified).  The 

Phragmites australis stands sampled concomitant to the CASI-2 [Vegetation] imagery were 

identified in the geo-registered CASI-2 [Vegetation] imagery and the corresponding values of 

[L710/L760] were extracted and correlated against the sediment chemistry measurements.  The 

derived correlations are detailed in Table 7.11.   

 

Table 7.11 Correlation coefficients (r) between the CASI-2 [Vegetation] derived [L710/L760] index 
and the various sediment mineral nutrients, organic matter (OM) and water depth (WD). 
Significant correlations at the 95% confidence level are highlighted. 
 
  TN TP K Fe Ca Na Mg OM WD 
           

Jun 05† -0.544 -0.705 -0.431 -0.586 -0.056 -0.544 -0.558 -0.665 0.301 
          
Aug 05‡ 0.163 -0.657 -0.542 -0.313 -0.050 -0.453 -0.548 -0.155 -0.035 
          

[L710/L760] 

Combined -0.180 -0.488 -0.352 -0.351 -0.072 -0.422 -0.502 -0.388 -0.025 
           
†n = 15; ‡n = 20;  

 

It is notable that the correlations between the CASI-2 [Vegetation] derived [L710/L760] index and 

the various sediment chemistry parameters are similar to those previously observed with the 

laboratory darkroom and in-situ field-based spectrometry data.  Statistically significant 
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correlations were derived from the 22 June 2005 CASI-2 [Vegetation] image with the 

concentration of TN, TP, Fe Na and Mg and the organic matter content of the sediment. 

 

Similar correlations were observed between [L710/L760] index extracted from the CASI-2 

[Vegetation] image acquired on 29 August 2005 and sediment nutrient content.  Statistically 

significant correlations were derived with the concentration of TP, K, Na, and Mg.  However, 

rather unexpectedly, no significant correlation was observed between the CASI-2 [L710/L760] 

index derived from the 29 August 2005 and the sediment organic matter content.  The lack of a 

correlation in this instance is more likely a facet of the dataset, rather than a mechanistic 

change in the relationship between the physiological status of the Phragmites australis plants 

and sediment organic matter, particularly as significant correlations between plant vigour and 

sediment organic matter were derived with both the laboratory darkroom and in-situ field-based 

spectrometry.   

 

The correlation analysis performed on the amalgamated dataset again revealed further 

significant correlations between the CASI-2 [L710/L760] index and the concentration of TP, Na, 

Mg and the organic matter content of the sediment.  The regression relationships between the 

CASI-2 [L710/L760] index and the sediment organic matter content and TP concentration are 

depicted in Figure 7.8; for the purposes of clarity, the counter-intuitive CASI-2 [L710/L760] index 

has been inverted (i.e. [L760/l710]) to yield positive relationships between index value and plant 

vigour. 

 

The correlations obtained from the CASI-2 [L710/L760] index again suggests, as observed with 

the laboratory darkroom and in-situ field spectrometry, that the physiological status of the 

Phragmites australis in Hickling Broad was positively related to the organic and nutrient 

enrichment of the sediment (note that the [R710/R760] index was shown to be negatively related 

to increased plant vigour (i.e. chlorophyll-a) – see Table 7.2 for confirmation).   
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(a) 

 

(b) 

 
 
Figure 7.8 The regression relationships derived between the inverted [L710/L760] index derived 
from the (a) 22 June 2005 CASI-2 [Vegetation] imagery and (b) 29 August 2005 CASI-2 
[Vegetation] and the TP concentration in the sediment of Phragmites australis stands. 
 

In addition to the correlations detailed above, the [L710/L760] index derived from the 29 August 

2005 CASI-2 [Vegetation] image was also noted to correlate strongly with the TN:TP (molar) 

ratio (n = 19; r = 0.800; p = 0.000).  However, a similar correlation could not derived between 

[L710/L760] index and the TN:TP (molar) ratio from the June 2005 CASI-2 [Vegetation] image, 

which casts doubt on the robustness of this association.  However, the lack of a significant 

correlation for the 22 June 2005 CASI-2 [Vegetation] image may simply reflect variability in the 

physiological response of the plants across the growing season.  The regression relationship 

between the [L710/L760] index and the TN:TP (molar) ratio for the 29 August 2005 CASI-2 

[Vegetation] image is depicted in Figure 7.9.  In this instance, the TN:TP (molar) ratio was 

negatively related to plant vigour; the derived regression relationship explained over 64% of the 

observed variation in the physiological status (as quantified using the [L710/L760] index) of the 

Phragmites australis plants. 

 

The CASI-2 [Vegetation] imagery [R710/R760] index images depicting spatial variability in the 

vigour of Phragmites australis reedswamp in Hickling Broad (and surrounding lakes and fens) 

on 22 June 2005 and 29 August 2005 are shown in Figure 7.10 and Figure 7.11 respectively.  

The 29 August 2005 CASI-2 [Vegetation] image was also subsequently calibrated using the 

regression relationships described above between the [L710/L760] band-ratio and the measured 
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concentration of TP and the TN:TP (molar) ratio to yield spatially-resolving maps depicting lake-

scale heterogeneity in sediment nutrient enrichment (Figure 7.12 and Figure 7.13).   

 

Figure 7.9 The regression relationship between the [R760/R710] index derived from the 29 
August 2005 CASI-2 [Vegetation] image and the TN:TP (molar) ratio in the sediment of 
Phragmites australis stands. 
 

The derived CASI-2 [Vegetation] images of Phragmites australis vigour show pronounced 

spatial and temporal variance in reed performance.  The CASI-2 [Vegetation] images seem to 

show a general trend of the Phragmites australis reedswamp increasing in vigour through the 

growing season of 2005.  This trend was also evidenced in the laboratory darkroom and in-situ 

field-based spectrometry datasets.   

 

The CASI-2 [Vegetation] image acquired on 22 June 2005 reveals areas of stressed reed in the 

fenlands adjacent to the north eastern part of the lake.  These stressed plants seem to show an 

association with the network of drainage ditches that bisect the fenland areas.  The CASI-2 

[Vegetation] image acquired 29 August 2005 also shows some evidence of stressed plants 

fringing these drainage ditches.  It is also notable that the [L710/L760] CASI-2 [Vegetation] images 

indicate the existence of extensive areas of poorly performing reedswamp adjacent to Horsey 

Mere.  However, the calibrated CASI-2 [Vegetation] images depicting the sediment TP 

concentration and the TN:TP (molar) ratio also exhibit some pronounced systematic features 

that would seem to be somewhat unnatural.  In some instances, specifically in the TN:TP (molar 
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ratio) image, rapid transitions can be seen from areas of high TN:TP to areas of low TN:TP.  

The validity of these derived spatial patterns cannot be established without the need for further 

ground-truthing, which was beyond the remit of the expeditious work undertaken here.  Given 

that the field-based sampling was conducted solely on littoral reedswamp, it would be unwise to 

over-extrapolate the relations derived with sediment nutrition in the lake to the surrounding, 

largely terrestrial, fenland.  However, regardless of the strength of association with sediment 

nutrition, the CASI-2 [Vegetation] [L710/L760] band-ratio images do provide valuable insights into 

spatial variation in the physiological status of the vegetation in these fenland areas.  This 

exemplifies the importance of the remote sensing approach as such information would be highly 

useful for informing future lake research and management activities. 

 

The closer examination of the physiological status of the Phragmites australis plants growing in 

the littoral margins of Hickling Broad reveals a perceivable trend of increasing plant vigour from 

Hickling Broad southwards towards Heigham Sound.  It is notable, this perceived gradient in 

plant vigour draws a parallel with the trends observed in the organic content and nutritional 

status of the sediment (as shown in Figure 7.4 and Figure 7.5).  This gradient, interestingly, is 

also evident in the 29 August 2005 CASI-2 [Vegetation] image calibrated to the sediment TP 

concentration and, in particular, the TN:TP (molar) ratio.  The spatial heterogeneity in the 

chemistry of the sediment in Hickling Broad is almost certainly a function of the hydraulic 

circulation patterns in the lake.  Water enters Hickling Broad through Candle Dyke (north east 

shore of Hickling Broad) and Meadow Dyke (dyke connecting Horsey Mere to Hickling Broad) 

before flowing southwards, and thus transporting particulate material, into Heigham Sound.  

The “bottle neck” effect created by the outflow of water from Heigham Sound into the River 

Thurne slows the flow of water, which may be sufficient to promote the sedimentation of organic 

and nutrient rich particle matter in the southern part of Heigham Sound.  This conjecture is 

supported in the spatial pattern of sediment organic matter content in Figure 7.3.  This flow 

pattern is also likely to lead to the deposition of organic material in the shallow bays and 

backwater areas that are a prominent feature of Hickling Broad’s near-shore morphometry. 
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Figure 7.10 CASI-2 [Vegetation] image of Phragmites australis reedswamp vigour on 22 June 2005 as estimated by the [L710/L760] index. 
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Heigham Sound 
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Figure 7.11 CASI-2 [Vegetation] image of Phragmites australis reedswamp vigour on 29 August 2005 as estimated by the [L710/L760] index. 
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Figure 7.12 CASI-2 [Vegetation] image of sediment TP concentrations in Hickling Broad on 29 August 2005.  The image was derived using the least-
squares regression relationship derived between the vigour of Phragmites australis plants growing in the lake (quantified using the [L710/L760] band-ratio 
index) and the measured concentration of TP in the rooting sediment (R2 = 0.491; p = 0.001). 
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Figure 7.13 CASI-2 [Vegetation] image of sediment TN:TP (molar) ratio in Hickling Broad on 29 August 2005.  The image was derived using the least-
squares regression relationship derived between the vigour of Phragmites australis plants growing in the lake (quantified using the [L710/L760] band-ratio 
index) and the measured TN:TP (molar) ratio of the rooting sediment (R2 = 0.641; p = 0.000). 
 

 

Hickling Broad 
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Martham Broads 

Heigham Sound 
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The CASI-2 [Vegetation] images depicting spatial variability in the physiological status of 

Phragmites australis reedswamp in Hickling Broad demonstrate the potentially immense value 

that remote sensing technologies offer for the assessment of wetland plant ecophysiology.  In 

this instance, remote sensing has been able to afford novel, lake-scale, insights into the 

physiological response of an aquatic plant community to nutrient enrichment.  This could not 

have been achieved through conventional sampling approaches.  It would seem that aquatic 

plant ecophysiology may provide a crucial route through which an improved understanding of 

process and function in shallow lakes may be attained.  Remote sensing has an unrivalled 

ability to put such insights into a spatial context, thereby enabling process and function to be 

examined at an unprecedented whole lake-scale. 

 

7.5.5 Reedswamp Dieback in Hickling Broad 

The extent of fringing littoral reedswamp in Hickling Broad has declined over recent decades 

and now much of what remains is largely terrestrial in influence.  It is apparent that very little, if 

any, recolonisation has occurred in the lake since the initial large-scale losses were 

documented by Boorman & Fuller (1981) and, later, Boar et al. (1989).  However, somewhat 

paradoxically, it was generally observed, throughout the 2-year lake-sampling period, that the 

remaining littoral reedswamp in Hickling Broad appears to be in relatively good condition.   

Nevertheless, some evidence of recent dieback was observed at several, albeit somewhat 

isolated, locations throughout the lake.  These dieback areas were readily identifiable by the 

presence of relict rhizome masses (see Figure 7.14). 

 

The main areas of reed dieback observed in Hickling Broad during 2004 and 2005 are shown in 

Figure 7.15.  In general, the most pronounced areas of reed dieback were found to occur within 

sheltered bays and backwaters.  These dieback areas were typically characterised by shallow 

and stagnant water (perhaps due to locally high sedimentation rates) where the underlying 

sediment was commonly composed of the highly organic mud.   
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Figure 7.14 Photograph showing the presence of relict Phragmites australis rhizomes masses 
in Hickling Broad indicating a recent area of pronounced reedswamp dieback. 
 

Rather surprisingly, notwithstanding evidence of recent regression, the remaining plants in the 

dieback areas typically appeared healthy and often no obvious evidence of declining plant 

performance, such as leaf chlorosis or, stand fragmentation, could be observed.  These 

observations would seem to support the trends observed from the spectrometry and airborne 

CASI-2 imagery, which also showed a general positive association between organic matter 

accretion, nutrient enrichment and plant health. 

 

In order to further explore the potential causes of reed dieback in Hickling Broad, differences in 

sediment chemistry between the dieback and non-dieback stands were assessed using the 

non-parametric Mann-Whitney test.  The same statistical test was also applied to the values of 

two of the best performing spectral indices to examine for statistical differences in plant vigour 

between the dieback and non-dieback sites.  The results of the Mann-Whitney tests are detailed 

in Table 7.12. 
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Figure 7.15 Map showing the main areas of Phragmites australis dieback recorded in Hickling 
Broad during 2004 and 2005. 
 

Table 7.12 Mann-Whitney tests for the difference in sediment chemistry and selected spectral 
reflectance indices for non-dieback and dieback stands of Phragmites australis in Hickling 
Broad (significant p values in bold). Values in mg kg-1 unless otherwise stated. 
 
 Median 
 Non-dieback  

(n = 43) 
Dieback  
(n = 11) 

95% CI 
(Non-Dieback – Dieback) W p 

      
TN 976 1010 (-262, 227) -0.16 0.897
      
TP 312 688 (-245.3, -67.8) 1033.5 0.001
      
K 3048 3253 (-4166.1, 2080.3) 1162.0 0.668
      
Fe 1427 3457 (-6267.1, -841.7) 1062.0 0.010
      
Ca 28930 28342 (-29118, 42028) 1198.0 0.747
      
Na 2615 5685 (-9700, -2270) 1031.0 0.001
      
Mg 975 3033 (-5266.8, -1088.7) 1070.0 0.016
      
Org.Mat. (%) 13.40 36.50 (-30.40, -10.10) 852.0 0.002
      
Wat.Dep. (m) 0.70 0.30 (0.00, 0.57) 1329.5 0.041
      
      
[R710/R760] 0.490 0.465 (0.0018, 0.0474) 2.30 0.036
      
[Red Edgeλ] 711.36 714.13 (-5.17, -0.38) -2.42 0.026
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The results of the Mann-Whitney tests indicate the existence of notable statistical differences in 

the sediment chemistry between those stands of Phragmites australis exhibiting signs of recent 

dieback, and those where no evidence of dieback could be observed.  The analysis shows that 

the dieback stands had a significantly higher organic matter content (non-dieback median = 

13.4%; dieback median 36.5%).  The dieback stands also exhibited significant higher 

concentrations of TP (non-dieback median = 155.8 mg kg-1; dieback median = 344.1 mg kg-1), 

Fe (non-dieback median = 2854.2 mg kg-1; dieback median = 6915.4 mg kg-1), Na (non-dieback 

median = 5230 mg kg-1; dieback median = 11369 mg kg-1), Mg (non-dieback median = 1949.4 

mg kg-1; dieback median = 6065.3 mg kg-1) and were rooting in shallower water than the non-

dieback sites (non-dieback median = 0.70 m; dieback median = 0.30 m).  In addition, the 

application of the Mann Whitney tests to the values of the [R710/R760] and [Red Edgeλ] spectral 

reflectance indices confirmed that the remaining reedswamp vegetation in areas of recent 

dieback was marginally more vigourous than that growing in areas where no evidence of 

dieback could be observed.  This probably reflects the increased nutrient status of the sediment 

in dieback stands. 

 

The accumulation of organic matter may be a significant factor in the explanation of reed 

dieback in Hickling Broad.  It was of note that, whilst evidence for dieback was observed for 

some (but certainly not all) stands rooting in the organic mud, no evidence of dieback was 

found in stands rooting on more inorganic substrates.  Several previous authors have linked the 

dieback Phragmites australis in eutrophic lakes to the accumulation of organic matter in plant 

rhizospheres and the generation of a strong reducing hydrosoil environment (Denhartog et al., 

1989; Armstrong et al., 1996; Armstrong et al., 1996; Cizkova et al., 1996; Van Der Putten, 

1997; Fogli et al., 2002).  Indeed, Cizkova et al (1996) linked the occurrence of a surface layer 

of dark-coloured, heavily reducing, organic mud to the decline of Phragmites australis plants in 

fishponds in the Czech Republic.  The organic mud described by Cizkova et al (1996) would 

seem similar to that observed in the Norfolk Broads, the formation of which is almost certainly 

linked to the growth and decay of phytoplankton blooms as a result of the eutrophication of the 

system.  

 



 

 326 

The progressive accumulation of organic matter in Phragmites australis stands has been shown 

to accelerate the rate of microbial decomposition which, in turn, increases the biological oxygen 

demand in the sediment.  The generation of anoxia in the rhizosphere can influence several 

important plant-sediment interactions including the inhibition of nutrient uptake, respiration and 

photosynthesis (Armstrong et al., 1996).  The switch to anaerobic microbial metabolism 

precipitated by oxygen stress can also lead to the production of a variable cocktail of 

potentially-toxic monocarboxylic organic acids as the end-product of anaerobic decomposition 

(Armstrong et al., 1996; Armstrong & Armstrong, 1999; Armstrong & Armstrong, 2001).  These 

phytotoxic volatile compounds include acetic, butyric, propionic, valeric and caproic acids.  

Cizkova et al (Cizkova et al., 1999) measured total concentrations of monocarboxylic acids as 

high as 1.6 mM in eutrophic fishponds in the Czech Republic, sufficient to incite severe dieback.  

In addition to the production of monocarboxylic organic acids, the highly reducing conditions 

incurred by the decomposition of organic matter can also lead to the production of substantial 

concentrations of sulphide.  Armstrong et al. (1996) associated the decline of Phragmites 

australis reedswamp in Lake Ferto (Hungary) with high concentrations of sulphide in the 

sediment (up to 4 mM).   

 

Armstrong & Armstrong (1999) demonstrated that the toxicity of monocarboxylic organic acids 

is dependent on pH.  The toxicity of the lower-volatile organic acids – such as acetic, propionic, 

n-butyric and n-caproic acid – is greatest when the acids occur in the undissociated lipid-soluble 

form.  Armstrong & Armstrong (1999) show that, at pH 4.5, 63-70% of organic acids molecules 

occur in undissociated form whereas, at pH 6, >90% of organic acid molecules occur in the 

non-toxic ionised form; the exception being propionic acid which was found to have significant 

phytotoxic effects even at pH 6-7.   

 

Cizkova et al (Cizkova et al., 1996) suggest that calcium can have a favourable buffering effect 

in stands with high organic matter accumulations through the chelation and/or neutralisation of 

dissolved organic acids.  The pH of the bottom sediments in the Norfolk Broads is typically 

neutral to slightly alkaline – due to high concentrations of calcium and magnesium.  This would 

suggest the existence of a strong acid neutralisation capacity arguably sufficient to mediate any 
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toxic effects that might be incurred from the accrual of organic acids.  The concentration of Ca 

in the sediment was found to be marginally lower (statistically not significant) in dieback stands 

than in the non-dieback stands, which would perhaps suggest a lower acid buffering capacity in 

dieback stands.  However, given the very high concentrations of Ca in the sediments and 

waters of Hickling Broad, this small difference in the buffering capacity is arguably unlikely to 

have a major effect upon organic acid toxicity in dieback stands.  Significantly, Nye (1986) 

showed that the pH of the rhizosphere of aquatic plants can be substantially lower than that 

often measured in the immediate hydrosoil.  Unfortunately, no measurements of pH were 

obtained here.  However, it is feasible that, even in the neutral/alkaline hydrosoils of Hickling 

Broad, conditions of low pH may develop in the rhizospheres.  Thus, the manufacture of 

undissociated organic acids (sufficient to induce phytotoxic effects) may only occur in the most 

organic, mildly acidic, and oxygen starved, sediments.  This may explain why dieback was such 

a highly localised phenomenon in the Broad despite chronic and system-wide eutrophication. 

 

In addition to the potential effects of organic acid accumulation, the conversion of sulphate to 

various reduced sulphide species in the anoxic sediments of dieback stands may also have a 

significant phytotoxic effect on plants in Hickling Broad.  Armstrong et al. (1996) demonstrated 

that, in Phragmites australis, concentrations of sulphide can reduce adventitious root and lateral 

growth, produce callous blockages and lignification of the vascular system and, in particular, 

inhibit bud and shoot development.  Indeed, in the experiments of Armstrong et al. (1996), 

sulphide was found to have a greater effect on bud and shoot development than phytotoxic 

concentrations of undissociated acetic acid.   

 

The production of sulphide may be a significant factor in the anoxic sediments of Hickling 

Broad.  Dinka et al. (1995) suggested that the high levels of sulphate in brackish waters can 

lead to high concentrations of sulphide being produced, sufficient to have significant deleterious 

impacts on reed growth.  Hickling Broad is brackish due to the percolation of salt water into the 

underlying groundwater aquifer.  The concentration of SO4
2- in Hickling Broad measured during 

lake sampling in 2004 was 295.9±8.6 mg l-1 – this concentration of sulphate equates to 

approximately 10% of that found in seawater.  Sulphate-reducing bacteria require anaerobic 
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conditions and function optimally at pH 5.5-9; thus the alkaline hydrosoils of Hickling Broad may 

promote pronounced microbial reduction of sulphate.  Hydrogen sulphide (H2S) produced in the 

reduction of sulphate is readily soluble above pH 7 so, in Hickling Broad, it is likely to dissociate 

and form S2- and HS-; all three of these sulphide species are highly toxic to plants and it is thus 

possible that they may also be implicated in the dieback of Phragmites australis in Hickling 

Broad.   

 

Crook et al. (1983) found no obvious relationship between the sediment redox potential, 

sulphide concentrations and regression of both floating and littoral-rooting stands of Phragmites 

australis in several of the Norfolk Broads.  However, as the floating reedswamp growth-habit 

does not root in the sediment this is perhaps not unexpected.  Sulphide toxicity in the sediment 

of Hickling Broad may be offset by the high concentrations of Fe in the sediment.  In anoxic 

sediments, the Fe (III) is readily reduced to soluble Fe (II).  Fe (II) can bind with sulphide and 

precipitates as FeS.  FeS is significantly less toxic to plants than the soluble sulphide species.  

Phillips et al. (1999) suggest that Fe (II) is readily precipitated as FeS in the sediments of the 

Norfolk Broads and believe the formation of FeS over FePO4 is one of the factors perpetrating 

the often high release of soluble reactive phosphorus from the bottom sediments of these lakes.  

Interestingly, van der Welle et al. (2006) found that sulphide immobilisation by Fe (II) was most 

effective at moderate Fe (II) concentrations but, significantly, at high Fe (II) concentrations, 

aquatic plants can be prone to Fe toxicity.  Batty & Younger (2003) reported that a threshold 

concentration of 1 mg Fe (II) l-1 was sufficient to inhibit seedling growth in Phragmites australis 

– which may, in the context of Hickling Broad, explain the lack of regeneration.  Thus, Fe (II) 

toxicity in anoxic sediments may also be a further factor associated with localised dieback of 

Phragmites australis in the Hickling Broad, particularly as the lake receives inputs of iron-rich 

ochre from the surrounding fen and marsh lands. 

 

The dieback of Phragmites australis reedswamp in European lakes (including the Norfolk 

Broads) has also been linked to wildfowl grazing pressure.  Prater (1995) suggested that the 

reedswamp decline observed in the Thurne Broads could be attributed to grazing wildfowl 

(including moulting Greylag geese (Anser anser)).  However, as wildfowl generally flock in 
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sheltered bays where organic and anoxic sediments also occur, it is difficult to attribute cause 

and effect to these two competing hypotheses.  It indeed may be the case that grazing by 

wildfowl exacerbates dieback of reed already exposed to phytotoxic stressors.  However, 

interestingly, Van der Wyngaert et al. (2003) demonstrated that long-term grazing by moulting 

Greylag geese (Anser anser) on Phragmites australis in two Dutch marshes had a positive 

impact on plant performance, particularly on shoot emergence and regrowth.  This would 

therefore seem to cast some doubt on the role of avian grazing in perpetuating the decline of 

reedswamp in the Norfolk Broads. 

 

These expeditious results presented here suggest that eutrophication may be a significant, if 

indirect, cause of reed dieback in Hickling Broad.  The localised accretion of organic matter in 

Phragmites australis stands, and the consequential generation of hypoxic conditions and the 

accumulation of organic acids, may be a key factor in the explanation of recent episodes of 

reed dieback.  Sulphide and iron (II) toxicity may also be injurious to the plant health.  However, 

little is known at present about the prevalence of these compounds in the lake (or any other of 

the Broads for that matter) and this is therefore a priority area for further research.  Moreover, it 

would also seem pertinent to evaluate the effect of such phytotoxins on the growth and stability 

of other aquatic plants and, in particular, the submerged macrophyte community, as phytotoxin 

effects may, in part, also explain some of the current instabilities associated with these species 

in the lake.  Vanwijck (1992) and Morris et al (2003), for example, have shown through 

laboratory experiments that organic matter accretion and sediment anoxia is severely 

detrimental to the growth of both Vallisneria americana and Potamogenton pectinatus. 

 

7.5.6 Remote Sensing for Monitoring Reedswamp Dieback 

The research presented here examined the novel and expeditious application of remote 

sensing for the assessment of wetland plant physiological status.  This evaluation was 

conducted in the context of reedswamp dieback in the Norfolk Broads.  It was clearly 

demonstrated that spectral reflectance (or radiance) based metrics could be constructed for the 

quantification of chlorophyll-a in plant leaves as a measure of physiological status.  It would 

also seem possible to extrapolate these indices to the canopy scale, using either in-situ field-
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based spectrometry or airborne CASI-2 imagery, in order to achieve a spatially synoptic 

understanding of plant ecophysiological responses to environmental conditions for example, in 

this instance, to spatial variability in nutrient enrichment and cycling.   

 

The direct and pre-emptive identification of reed stress in relation to eutrophication pressures 

was not possible here, largely due to timing of the lake surveys (i.e. seemingly after dieback 

had occurred).  The typically positive response of plants to the accretion of organic matter and 

nutrients is also likely to complicate the identification of stress in this situation, although the 

recognition of “overly” vigourous plants may provide a useful marker for delineating areas of 

reedswamp potentially at risk of collapse and could be used to inform further ground-based 

investigations.   

 

7.6 CONCLUSIONS 

The novel use of remote sensing for characterising spatial heterogeneity in aquatic plant 

ecophysiology was examined in the context of the response of Phragmites australis reedswamp 

to nutrient enrichment in Hickling Broad (UK).  It was shown that the formulation of indices 

based on spectral reflectance band-ratios in the red and VNIR, or indices based upon the first-

derivative transformation of reflectance data (i.e. [Red Edgeλ]), could be strongly related to the 

concentration of chlorophyll-a in plant leaves as a measure of plant physiological status (max. 

R2 = 0.95).  It was further shown that the extrapolation of these indices to the canopy scale, 

using in-situ and airborne remote sensing, enable the ecophysiological response of Phragmites 

australis plants to be linked to highly localised spatial variations in nutrient enrichment and 

cycling (i.e. sediment focusing).  Variation in reedswamp vigour was typically positively 

correlated with the organic matter content and nutritional status of the lake sediment.  The 

calibration of airborne CASI-2 remote sensing imagery enabled patterns in the ecophysiological 

response of Phragmites australis in Hickling Broad to this nutrient enrichment to be examined at 

an unprecedented lake-scale. 

 

A statistical comparison of the sediment chemistry in reed stands exhibiting symptoms of recent 

dieback, and those where no evidence of dieback could be observed, revealed an association 
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between organic matter and nutrient enrichment and plant regression.  In stagnant waters, the 

accumulation of organic matter in reed belts, may promote microbial activity and hence the 

generation of anoxic conditions in plant rhizospheres.  It is hypothesised that in these hypoxic 

sediments, the accumulation of phytotoxic agents formed as by-products from anaerobic 

microbial decomposition, or the generation of reduced sulphate and iron species, may be the 

underlying cause of recent reed decline and non-regeneration in the lake. 

 

It is clear that the remote sensing of plant ecophysiology is a novel and potential valuable 

approach for assessing the response of shallow lake systems to environmental change.  These 

lake-scale vistas afforded by remote sensing technologies may, as here, be able to provide new 

and important spatial insights into ecosystem processes and, significantly, may be able to 

realise the timely diagnosis of stressors on ecosystem function. 
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8 GENERAL DISCUSSIONS AND CONCLUSIONS 
 

8.1 INTRODUCTION 

This chapter provides a synthesis of the research presented in this thesis.  The rationale for the 

project is initially readdressed and the results obtained from the various proof-of-concept type 

studies presented herein are subsequently evaluated within this overarching conceptual 

framework.  The implications of these results for the use of remote sensing in shallow lake 

ecology is discussed and, in particular, in the context of the European Union Water Framework 

Directive (2000/60/EC).  The chapter, and thesis, then concludes with a more general 

deliberation with regards to the use of remote sensing in the study of lakes and other aquatic 

ecosystems and the identification of priorities for future research and development.  

 

8.2 SHALLOW LAKES AND REMOTE SENSING 

8.2.1 Shallow Lakes and the Monitoring of Ecological Status 

Shallow lakes are an important ecological and socio-economic resource and provide many 

invaluable ecosystem services (Peterson et al., 2003; Maler et al., 2003).  The impact of human 

activities, both at the lake and catchment scale, has precipitated fundamental changes in many 

shallow lake ecosystems, in the UK, Europe, and beyond and, as such, the ecological status of 

many shallow lakes has declined in response to these pressures.  There is now an 

unprecedented interest in measuring and monitoring the ecological status of shallow lakes and, 

indeed, aquatic ecosystems in general, either in response to perturbation, or as a means of 

assessing the success of restoration activities. 

 

Shallow lakes of good ecological status are often characterised by an abundance and diversity 

of aquatic plants, particularly submerged species, which fulfil important roles in sustaining key 

ecosystem processes (e.g. biogeochemical cycling) and functions (e.g. habitat provision).  The 

ecological status of many shallows lakes has, however, been adversely affected by the impacts 

of eutrophication and, in many systems, nutrient enrichment has led to the development of 

nuisance phytoplankton blooms and the competitive exclusion of submerged aquatic plants.  
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The occurrence of potentially-toxic cyanobacterial blooms in shallow lakes is considered to be 

symptomatic of ecosystems suffering from the chronic effects of nutrient enrichment.  The 

ecological status and trajectory of shallow lakes is thus largely conditioned by these dynamic 

shifts in the biotic regime (Scheffer et al., 1993; Scheffer, 1998; Scheffer, 1998; Van Nes et al., 

2007; Scheffer & Jeppesen, 2007). 

 

Shallow lakes are spatially complex and transient systems and the assessment and monitoring 

of ecological status in these environments is likely to be significantly hindered by the 

impracticalities – in terms of both time and resources – of obtaining accurate, but yet extensive, 

datasets in the face of considerable ecosystem heterogeneity.  In this context, it has been 

suggested that remote sensing could make a significant contribution to the assessment, 

monitoring and policing of ecological status in lakes, rivers and transitional waters (Chen et al., 

2004; Gilvear et al., 2004a; Gilvear et al., 2004b; Valta-Hulkkonen et al., 2005; Rowan et al., 

2006; Scanlan et al., 2007; Gilvear et al., 2007).   

 

It has been shown that remote sensing can be used to monitor various (i) physical, (ii) bio-

chemical and (iii) biotic elements in lakes that are of direct relevance to ecological 

investigations and the assessment of ecological status.  However, many of these studies, for 

technological reasons or otherwise, have been conducted in large and/or deep lake systems.  

Little consideration, until now, has been given to the application of remote sensing in small and 

very shallow lakes and, furthermore, seldom has the derived data been used to address 

specific ecological questions.  This thesis sought to further examine the application of remote 

sensing for the assessment of ecological status in shallow lakes through the development and 

application of techniques designed for measuring and monitoring important abiotic (e.g. tripton, 

CDOM, water transparency) and biotic (phytoplankton and aquatic plants) elements. 

 

8.2.2 Abiotic Elements 

The ecological status of shallow lakes, and the integrity of the ecosystem services which they 

provide, is dependent on many processes that operate at a variety of spatial and temporal 

scales.  The capability of remote sensing to deliver information pertaining to some of these key 
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processes will, to a greater or lesser extent, determine its efficacy for the assessment of 

ecological status in shallow lakes and, moreover, will also determine the novelty and value of 

any derived insights into lake-scale processes and function. 

 

The cycling of suspended sediment (tripton) in shallow lakes is a key process that has 

significant linkages to (i) the ambient light climate, (ii) the internal loading of nutrients, and (iii) 

the fate and behaviour of sediment-bound contaminants.  Organic detritus also represents an 

important carbon source for heterotrophic organisms.  The suspended sediment dynamics of 

shallow lakes can therefore have a profound influence on the biology of shallow lakes.  It was 

shown in this thesis (Chapter 3) that remote sensing can be used to quantify the concentration 

of SPM in shallow lakes.  Hyperspectral measurements of remote-sensing-reflectance were 

obtained from the Upper Thurne and Barton Broads (Norfolk, UK) and used to formulate 

empirical indices for the quantification of SPM and, further, to assess the relative contributions 

of inorganic and organic particulate matter to the total SPM load.   

 

The accuracy to which remote sensing could be used to quantify SPM was somewhat 

dependent on the nature and concentration of the material in suspension.  The quantification of 

(total) SPM and SPIM was readily achievable.  Linear and non-linear least-squares regression 

analysis provided coefficients of determination of R2 = 0.54-0.99 for the fit against measured 

concentrations.  The most successful algorithms were generally constructed using the value of 

Rrs(0+,λ) in wavelengths positioned on the VNIR plateaux (i.e. > 700 nm).  The inorganic 

fraction is arguably the most optically-active component of tripton in lakes (high backscattering) 

and it is likely that it is this fraction that is responsible for the strong relationships observed with 

total SPM in the VNIR.  Indeed, the sensitivity of the VNIR plateaux to variations in the SPIM 

load has been noted by previous authors (Curran & Novo, 1988; Pierson & Strombeck, 2001; 

Dekker et al., 2001; Ammenberg et al., 2002). 

 

The quantification of SPOM would appear to be more problematic.  In shallow lakes, where the 

concentration of SPOM and phytoplankton biomass does not necessarily co-vary, i.e. due to the 

pronounced resuspension of detritus, the estimation of SPOM may not always be readily 
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achievable.  Good coefficients of determination were observed between the concentration of 

SPOM and Rrs(0+,λ) (R2 = 0.40-0.89) – but it is likely that the derived relationships were 

significantly dependent on the degree of covariance observed with other bio-optically active 

components.  Indeed, in the absence of a strong correlation with chlorophyll-a or SPIM, the 

ability of remote sensing to estimate the concentration of suspended organic particulate matter 

was poor.  Similar conclusions have been reached by previous authors (Pierson & Strombeck, 

2001) and, as such, it is apparent that further work will be required to improve the estimation of 

SPOM from remotely sensed data.   

 

Lakes are an important carbon store and make a significant contribution to the global cycling of 

carbon (Mulholland & Elwood, 1982; Biddanda & Cotner, 2002; Kortelainen et al., 2004; Cole et 

al., 2007) changes in the pool of dissolved organic carbon in lakes is therefore an important 

indicator of ecosystem function.  This thesis examined that use of remote sensing for the 

quantification of coloured dissolved organic matter in shallow lakes (Chapter 3).  It has been 

demonstrated by previous authors that remote sensing can be used to provide regional-scale 

determinations of coloured dissolved organic matter in lakes (Kutser et al., 2005b; Menken & 

Brezonik, 2006).  However, the estimation of CDOM in the shallow lakes of the Norfolk Broads 

proved problematic and an effective algorithm for estimating the CDOM absorption coefficient 

could not be formulated.  It is suggested that is was due to the low and invariable 

concentrations of dissolved organic matter found in the Norfolk Broads.  Interference from other 

optically-active components (algal pigments) is also likely to have been an additional 

complication.  Remote sensing could contribute much to the regional-scale monitoring of 

dissolved organic carbon in lakes and thus the improved formulation of operational remote 

sensing algorithms for the quantification of CDOM should be made a future research priority.   

 

The measurement of water transparency – in the form of the Secchi disc depth – is a simple 

but, nevertheless, important measure of the ambient light climate in lakes and is still used 

routinely for lake monitoring purposes.  It was shown that the SDD can be readily estimation 

from remotely sensed data (Chapter 3).  Algorithms formulated using the value of Rrs(0+,λ) at 

620.5 nm (R2 = 0.93) and dR/dλ at 640 nm (R2 = 0.96) were found to effective for the estimation 
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of the SDD.  Algorithms employing wavelengths positioned on the VNIR plateaux were also 

noted to be suitable for the estimation of the SDD. 

 

The results outlined above clearly demonstrate that remote sensing has the potential to provide 

information on specific water quality elements that are of relevance to the understanding of 

shallow lake ecology and function.  However, the derivation of such information at the regional 

scale (i.e. pan-European) will require the further develop of operation algorithms for the 

estimation of these parameters using current satellite technologies (e.g. MERIS, MODIS).  The 

formulation of semi- or fully-analytical algorithms from bio-optical model simulations should be 

considered in future work (e.g. Dekker et al., 2002). 

 

8.2.3 Biotic Elements 

8.2.3.1 Phytoplankton 

Phytoplankton are an important component of the biological diversity of shallow lakes and fulfil 

an important role in carbon fixation and other key biogeochemical cycles.  In many shallow 

lakes, particularly those with a legacy of nutrient enrichment, the development of mass 

populations of phytoplankton is a common problem.  Moreover, for various reasons, highly 

eutrophic shallow lakes are often dominated by blooms of potentially-toxic cyanobacteria.  The 

size and composition of the phytoplankton assemblage is therefore a key measure of ecological 

status in shallow lakes.   

 

The use of remote sensing for estimating the concentration of chlorophyll-a in lakes has 

received considerable attention.  However, in shallow, optically-complex, lakes results have 

often been disappointing (Liu et al., 2003; Tyler et al., 2006).  In addition, the retrieval of 

chlorophyll-a concentrations from remotely sensed data can say little in regards to the floristic 

composition of phytoplankton assemblages.   

 

Hyperspectral remote sensing measurements of Rrs(0+,λ) were used to derive algorithms for 

the estimation of chlorophyll-a in the shallow lakes of the Norfolk Broads (Chapter 3).  Various 

semi-empirical approaches to algorithm formulation were examined; these included green/blue 
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and NIR/red band-ratios and more novel indices derived from first-derivative and continuum-

removal analysis.  The multi-temporal robustness of the algorithms was assessed using 

independent validation data.  Algorithms using multivariate subsets and partial least-squares 

regression models were also examined.  The various algorithm formulations had a significant 

influence on the accuracy to which the concentration of chlorophyll-a could be estimated.   

 

The green/blue band-ratios, often used in CASE I algorithms, were generally ineffectual for the 

estimation of chlorophyll-a.  Improved results were observed using algorithms based upon 

NIR/red band-ratios.  The performance of the NIR/red band-ratio algorithms varied considerably 

between the various multi-temporal datasets (R2 = 0.46-0.80).  The variability in the 

performance of the algorithms is difficult to explain, but it would seem possible that changes in 

the optical properties of the lakes (tripton backscattering, bottom reflectance) may have 

influenced algorithm performance.  This observation was confirmed using sensitivity analyses 

based on simulations performed with the Hydrolight v.4.2 bio-optical model.   

 

The algorithms formulated using first-derivative indices also demonstrated good relationships 

with the concentration of chlorophyll-a and, in comparison to the NIR/red band-ratio algorithms, 

would seem to retain greater multi-temporal transferability.  The increased robustness of 

algorithms derived using first-derivative indices would seem to be due to a reduced sensitivity to 

changes in other non-co-varying bio-optically components (e.g. tripton).  This observation was 

again substantiated using Hydrolight v.4.2.  The algorithms formulated using indices derived 

from continuum-removal analysis also demonstrated reasonable relationships with the 

concentration of chlorophyll-a, but were typically not as effective as the NIR/red band-ratio or 

first-derivative algorithms.  Multivariate regression models, utilising greater wavelength 

information, were shown to improve the accuracy of chlorophyll-a estimation from remotely 

sensed data.  However, the empirical nature of these multivariate regression models means 

that the derived algorithms lack mechanistic clarity and, on this basis, may be unsuitable for 

more routine use. 
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The expeditious results derived from the shipboard-spectrometry surveys in the Norfolk Broads 

demonstrate that the determination of the chlorophyll-a concentration from remotely sensed 

data is possible in optically-complex shallow lakes.  However, as chlorophyll-a is common to the 

vast majority of phytoplankton species, it cannot be used to derive information regarding the 

floristic composition of the phytoplankton community.  The development of techniques for the 

detection and diagnosis of phytoplankton community composition has long been an objective 

for both limnological and, indeed, oceanographical remote sensing.  The potential of remote 

sensing for the detection of phytoplankton community structure was examined through the use 

of novel mesocosm experiments and subsequent validation using data from the shallow lakes 

of the Norfolk Broads (Chapter 4).   

 

The mesocosm experiments were used to simulate variable communities composed of four 

representative colour group taxa: brown (diatom spp.), green (Scendesmus armatus, 

Selenastrum capricornatum), blue-green (Cylindrospermopsis raciborskii, Synechococcus spp.) 

and red (Synechococcus spp.).  Spectral reflectance measurements were acquired and PCA 

and MDA analyses were used to explore the spectral dissimilarities of the various pseudo-

communities.  It was shown that the respective colour group species differed significantly in 

terms of their spectral characteristics.  These dissimilarities were attributed largely to variability 

in their absorption (a function of photopigment composition) and backscattering (a function of 

cell morphology) efficiencies.  In particular, it was observed that cyanobacteria could be 

distinguished from other algal species, largely because of the diagnostic biomarker pigment C-

phycocyanin.  These dissimilarities were preserved in pseudo-communities composed of mixed 

species and it was shown that remote sensing could be potentially used to monitor succession 

between states of diatom, green and blue-green dominance in lakes.  To the best of the 

author’s knowledge, this is the first time that this capability has been demonstrated 

experimentally, or otherwise, in the context of lakes or coastal waters.  The MDA analysis 

further evidenced that a simple ordination-based classification scheme could be developed to 

diagnose the dominant composition of algal blooms in lakes. 
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In addition to these qualitative approaches, algorithms were derived from the experimental 

mesocosm data using least-squares regression analysis for the quantification of specific 

biomarker pigments (fucoxanthin and C-phycocyanin).  The concentration of these biomarker 

pigments was shown, albeit experimentally, to be quantifiable using remote-sensing-based 

algorithms formulated using simple band-ratio and first-derivative approaches (R2 = 0.89-0.97).  

However, the robustness of the derived algorithms was shown to be greatly affected by the 

coincidental presence of other bio-optically active components (SPM and CDOM).  These 

effects were particularly pronounced if variable concentrations of both SPIM and SPOM were 

introduced into the mesocosm experiments.  These results reiterate some of the observations 

drawn from Chapter 3.   

 

The capability to retrieve estimates of biomarker pigments from remotely sensed data was 

validated using shipboard measurements of Rrs(0+,λ) in the Norfolk Broads.  The formulation of 

an algorithm employing the [Rrs(710)/Rrs(638.5)] band-ratio was shown to be effective for the 

quantification of C-phycocyanin (R2 = 0.96).  The quantification of fucoxanthin was more 

problematic.  However, an algorithm formulated using the [Rrs(710)/Rrs(470)] band-ratio was 

found to be sensitive to variations in fucoxanthin in waters where fucoxanthin:chlorophyll-a > 

0.2 (R2 = 0.94).  However, due to the overlap in the absorption spectra of fucoxanthin and 

chlorophyll-a, the index was also highly correlated with the concentration of chlorophyll-a (R2 = 

0.90), and thus the sensitivity of this particular index to fucoxanthin should be interpreted with 

caution.  These results substantiate that the detection of phytoplankton community composition 

from remotely sensed data, albeit at a broad level, can be achieved (Hunter et al., 2007). 

 

The detection and, indeed, quantification of cyanobacterial abundance in lakes would seem to 

be immediately achievable and substantial research is now being directed towards this goal 

(Simis et al., 2005; Yang & Pan, 2006; Sridhar & Vincent, 2007; Simis et al., 2007).  The 

realisation of remote-sensing-based techniques for the detection of cyanobacterial blooms 

would represent a significant advancement for the assessment of ecological status and, further, 

the monitoring of cyanoHABs in lake and other inland waters.  The spectral resolution of other 

taxonomic groups (e.g. diatoms, chlorophytes, red-tide species), through biomarker pigment 
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approaches, or otherwise, should be given further consideration in future studies.  There is 

emerging evidence from ocean-colour research that phytoplankton functional types (e.g. 

microplankton, nanoflagellates) have characteristic bio-optical traits (photosynthetic quantum 

efficiencies, pigment ratios) that may be of use to the remotely-sensed detection of 

phytoplankton community structure (Fishwick et al., 2006; Aiken et al., 2007).   Similar 

approaches should be pursued for the phytoplankton assemblages of lakes.  The acquirement 

of long-term remote sensing datasets, paired with detailed floristic information (cell counts, 

pigments), would be of immense value to such work.  In this context, opportunities for remote 

sensing campaigns to “piggy-back” existing long-term lake monitoring programmes should be 

explored. 

 

The development of algorithms for the quantification of chlorophyll-a and other bio-optically 

active accessory pigments was pioneered in Chapter 3 and Chapter 4 using high spectral 

resolution in-situ measurements of Rrs(0+,λ).  The derived techniques were then examined in a 

more applied context using airborne remote sensing (CASI-2 [SeaWiFS]) imagery to explore 

spatial and temporal variations in the phytoplankton community of the Upper Thurne and Barton 

Broads (Chapter 5).  Various contrasting approaches to the analysis of the multispectral CASI-

2 [SeaWiFS] imagery were explored, including the derivation of algorithms employing band-

ratio and continuum-removed indices and, further, novel approaches based upon complex 

solutions to linear spectral mixing models.   

 

The algorithms formulated using water-leaving-radiance NIR/red CASI-2 [SeaWiFS] band-ratio 

approaches were shown to be effective for the quantification of both chlorophyll-a and C-

phycocyanin.  The optimum algorithm for the quantification of chlorophyll-a was derived from a 

CASI-2 [SeaWiFS] acquired on 29 August 2005 using the [Lw(710)/Lw(670)] band-ratio.  This 

algorithm yielded a coefficient of determination of R2 = 0.96 for the fit against the measured 

concentration of chlorophyll-a.  The RMSE obtained for the validation of the derived algorithm 

on further CASI-2 [SeaWiFS] imagery acquired on 28 February 2005, 21 April 2005 and 22 

June 2005 were 11.08, 3.38 and 3.53 mg chlorophyll-a m-3 respectively.  This multi-season 
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validation indicates that the performance of the chlorophyll-a NIR/red band-ratio algorithm was 

robust despite inherent variability in water quality.   

 

The optimum algorithm derived for the quantification of C-phycocyanin was derived from a 

CASI-2 [SeaWiFS] image acquired on 29 August 2005 using the [Lw(710)/Lw(620)] band-ratio.  

This algorithm yielded a coefficient of determination of R2 = 0.95 for the fit against the 

measured concentration of C-phycocyanin.  The RMSEs obtained for the validation of the 

derived algorithm on further CASI-2 [SeaWiFS] imagery acquired on 21 April 2005 and 22 June 

2005 were 6.63 and 9.03 mg C-phycocyanin m-3 respectively.  This indicates that the algorithm 

was again robust.  However, the errors observed for the validation of the C-phycocyanin 

algorithm were slightly higher than those for observed for chlorophyll-a.  Other workers have 

suggested that the estimation of C-phycocyanin from remotely sensed data may be affected by 

the C-phycocyanin:chlorophyll-a or C-phycocyanin:chlorophyll-b ratio and variability in the C-

phycocyanin specific-absorption coefficient (Simis et al., 2005; Simis et al., 2007).  Changes in 

the relative contribution of cyanobacteria to total phytoplankton biomass, and physiological 

status, may have been responsible for the moderate variations observed in algorithm 

performance.  In this context, further work is required to determine the limit of detection for C-

phycocyanin in lakes.  Moreover, the robustness of the concentration of C-phycocyanin as a 

quantitative biomarker for cyanobacteria is still somewhat unknown.  This should be addressed 

in future studies, particularly in relation to variability in the ambient light climate and/or 

nutritional (particularly N) status. 

 

Interestingly, these results somewhat contradict those observed using the algorithms derived 

from the in-situ Rrs(0+,λ) measurements, which were far less robust than the algorithms derived 

from the CASI-2 [SeaWiFS] data (Chapter 3).  This may suggest the existence of scale effects.  

However, it should also be acknowledged that the algorithms were not derived from common 

datasets and any direct comparisons made between algorithms may be misleading. 

 

The algorithms derived from spectral mixing, angle mapping and continuum-removal models 

(MTMF, LSMM, SAM) also demonstrated good relationships with the concentration of 
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chlorophyll-a and C-phycocyanin (R2 = 0.68-0.83).  Indeed, the spectral mixing and angle 

mapping models derived from the 21 April 2005 and 22 June 2005 CASI-2 [SeaWiFS] imagery 

outperformed the NIR/red band-ratio algorithms for the estimation of chlorophyll-a.  However, it 

was noted that the model solutions used to parameterise the algorithms were essentially scene-

dependent; this required the algorithms to be re-formulated for each independent dataset.  This 

lack of robustness would seem to preclude the routine use of such algorithms.  The resilience of 

the algorithms may have been improved with the use of a larger dataset for calibration 

purposes or, indeed, if the spectral mixing models had been populated using data derived from 

a suitable bio-optical model.  This could be considered further in future studies. 

 

The optimum NIR/red band-ratios algorithms for the estimation of chlorophyll-a and C-

phycocyanin were applied to the seasonal time-series CASI-2 [SeaWiFS] imagery of the Upper 

Thurne and Barton Broads (Chapter 5).  The calibrated images pertinently demonstrate the 

pronounced spatial variability that can occur in phytoplankton communities and, in this, 

instance, even within a series of small and well-mixed shallow lakes (Figure 5.17 and Figure 

5.18).  The calibrated CASI-2 [SeaWiFS] image of chlorophyll-a in the Upper Thurne Broads on 

28 February 2005, for instance, shows marked inter-lake variability in phytoplankton biomass.  

It is particularly striking that the annual chlorophyll-a maximum can be seen occurring on 

Hickling Broad contemporaneous to the annual chlorophyll-a minimum on Horsey Mere; this is 

despite the fact the two lakes form part of the same hydrological system and are located less 

than 5 km apart.   

 

The calibrated CASI-2 [SeaWiFS] chlorophyll-a and C-phycocyanin images captured on 29 

August 2005, in contrast, show pronounced intra-lake variability in phytoplankton biomass.  This 

variability was particularly apparent in Barton Broad due to the development of a bloom of the 

potentially-toxic cyanobacterium Microcystis aeruginosa.  The characterisation of such spatial 

variability in phytoplankton biomass could not have been achieved using conventional lake-

sampling approaches.  The seasonal CASI-2 [SeaWiFS] images aptly demonstrate the merits 

of remote sensing as a tool for lake monitoring particularly, as is shown here, at the regional-

scale. 
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Airborne remote sensing reconnaissance was subsequently used in a more applied context to 

explore the spatial ecology of the potentially-toxic and bloom-forming cyanobacterium 

Microcystis aeruginosa.  High temporal resolution CASI-2 [SeaWiFS] imagery was captured 

and used to examine diurnal changes in the distribution of a Microcystis aeruginosa bloom on 

Barton Broad on 29 August 2005.  Diurnal time-series CASI-2 [SeaWiFS] images acquired over 

Barton Broad at 09:30 h, 12:00 h and 16:00 h GMT on 29 August 2005 demonstrated that 

buoyant Microcystis aeruginosa colonies were passively evading the light-starved conditions 

encountered in the turbid waters through the formation of near-surface accumulations.  The 

formation of these near-surface accumulations as evidence by the CASI-2 [SeaWiFS] imagery 

was shown to correlate with the wind speed; wind speeds > 4 m s-1 appeared to be sufficient to 

induce turbulent mixing and thus cause the dispersal of near-surface aggregations and entrain 

colonies in deeper waters.  Moreover, the CASI-2 [SeaWiFS] imagery revealed that the 

formation of these near-surface aggregations was highly spatially variable across the lake.  

Indeed, in areas where the complexities of the near-shore morphometry created regions of 

more stagnant water, persistent near-surface accumulations were observed.  It is suggested 

that these regions of near-stagnant water may have been important for the development and 

persistence of the Microcystis aeruginosa bloom.  In this context, time-series remote sensing 

was able to provide new and novel insights into the spatial dynamics of cyanobacteria in 

shallow lakes that would have been otherwise unobtainable. 

 

The capability of remote sensing as a tool for monitoring phytoplankton communities in shallow 

lakes was aptly demonstrated in the Norfolk Broads.   It was shown that the concentration of 

chlorophyll-a and other, taxonomically-significant, pigments may be quantified using empirical 

or semi-empirical remote sensing algorithms.  The extrapolation of these techniques to airborne 

CASI-2 imagery products yielded high resolution, spatially and temporally resolving, regional-

scale panoramas of phytoplankton dynamics in the Upper Thurne and Barton Broads.  Airborne 

surveillance is a pertinent tool for expeditious research and, as demonstrated in the context of 

potentially-toxic cyanobacterial blooms, in the provision of a rapid-reactionary monitoring 

response.  However, the high operational costs of airborne surveillance would prohibit its use in 
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the routine monitoring of lakes.  The further development of satellite-based algorithms for the 

estimation of chlorophyll-a (and other pigments) in lakes should be a priority for future studies.  

In this context, work is on-going to develop and refine operational chlorophyll-a algorithms for 

current satellite sensors such as ESA’s MERIS and NASA’s MODIS for applications in CASE II 

waters (Gons et al., 2002; Pozdnyakov et al., 2005; Giardino et al., 2005; Doerffer & Schiller, 

2007; Krawczyk et al., 2007; Shutler et al., 2007).  Nonetheless, to maximise the potential of 

remote sensing for the monitoring of phytoplankton in lakes, satellite instruments with spectral 

capabilities equivalent to MERIS and SeaWiFS, but with greatly improved spatial resolving 

capabilities (i.e. < 30 m) will be needed to effect full operational remote-sensing-based 

monitoring of phytoplankton in lakes. 

 

8.2.3.2 Aquatic Vegetation 

The abundance and composition of aquatic vegetation is a major control on the ecological 

status of shallow lake ecosystems.  Submerged, floating and emergent aquatic plants fulfil 

many important ecological functions in shallow lakes and, in particular, in the provision of a sink 

environment for excess nutrients, the immobilisation of aquatic-borne contaminants and in the 

creation of important habitat niches and refuges for other lake biota.  In many shallow lakes, 

eutrophication has resulted in the loss of aquatic plant cover, particularly of submerged species.  

The reestablishment of submerged aquatic plants is considered to be a key objective for lake 

restoration strategies.  The abundance and distribution of aquatic vegetation is therefore a key 

measure of the ecological status of shallow lakes. 

 

The development of remote-sensing-based methodologies for the mapping of aquatic plants in 

shallow lakes would represent a significant development for the regional-scale assessment of 

shallow lake ecological status.  However, to date, remote sensing has found only limited 

application in this context.  The efficacy of remote sensing for mapping aquatic vegetation in 

shallow lakes was therefore explored further in this thesis.  Hyperspectral in-situ reflectance 

measurements and airborne remote sensing data were used to examine the spectral 

characteristics of aquatic plant growth-habits and species in the Upper Thurne region of the 
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Norfolk Broads and determine the utility of remote sensing data for use in aquatic plant audits 

(Chapter 6). 

 

The hyperspectral reflectance signatures of four freshwater macrophyte species (Chara baltica, 

Nuphar lutea, Hippuris vulgaris and Phragmites australis) with constrasting growth-habit 

characteristics were examined using in-situ spectrometry.  These reflectance signatures were 

also compared to those of non-vegetated clear and turbid water.  The reflectance signatures of 

the various macrophyte species were found to demonstrate some notable dissimilarities. These 

were most apparent in the “green-peak” (500-600 nm), red-edge (680-720 nm) and VNIR 

plateaux (> 720 nm) regions.  This was further explored using PCA ordination analysis.  The 

score-plots derived from the PCA analyses provided further evidence that the aquatic plants 

species examined were spectrally differentiable.  The reflectance signatures of the emergent 

species Phragmites australis and the floating species Nuphar Lutea were notably different from 

those of the other macrophytes species and the spectra obtained from non-vegetated clear and 

turbid water.  The spectral signatures of the partially-emergent species Hippuris vulgaris and 

the submerged Chara baltica species were also readily distinguished from those of the other 

macrophyte species.  However, a degree of overlap could be perceived between the spectral 

signatures of the submerged and partially-emergent plants and the spectra obtained from areas 

of clear or turbid water where aquatic plants were absent.   

 

The distribution of aquatic plant growth-habit associations and species was subsequently 

mapped in the shallow lakes of the Upper Thurne using airborne CASI-2 [Vegetation] data.  

Three contrasting classification models were compared.  These included algorithms derived 

using Euclidean Minimum Distance (EMD), Maximum Likeihood (MLC) and Support Vector 

Machine (SVM) methodologies.  The algorithms were initially used to classify the aquatic 

vegetation in the Upper Thurne system into four growth-habit categories: (i) emergent, (ii) 

partially-emergent, (iii) floating and (iv) submerged.  The classifications accuracies for the EMD 

algorithm were poor (overall accuracy < 45%; κ = 0.09).  Examination of the derived confusion 

matrix demonstrated indicated that the EMD algorithm frequently misclassified partially-

emergent species (Hippuris vulgaris, Potamogeton spp.) and areas of turbid water without any 



 

 346 

aquatic plant coverage.  However, excellent classification accuracies were achieved with both 

the MLC and SVM algorithms (overall accuracy > 97%; κ > 0.73).  These results clearly 

demonstrate that remote sensing could be used to map the distribution of aquatic plant growth-

habits in shallow lakes.  The high accuracies observed were no doubt fostered by the broad 

nature of the classification scheme.  Nonetheless, changes in the distribution and cover of the 

various aquatic plant growth-habits would be of relevance as an indicator of ecological status in 

shallow lakes.   

 

The CASI-2 [Vegetation] imagery was also used map the dominant species composition of 

aquatic plants beds in the clear water Martham Broads.  The three contrasting classification 

models were again applied.  The classification accuracy achieved with the EMD algorithm was 

again the poorest observed (72.2%; κ = 0.66).  Higher classification accuracies were achieved 

with the MLC (78.0%; κ = 0.73) and, in particular, the SVM (87.1%; 0.84) algorithms.  The 

classification accuracies achieved were probably slightly biased by the size of the training and 

validation sets used, particularly as these were more easily defined for Chara spp. beds, than 

for Hippuris vulgaris or Nitellopsis obtusa.  However, it is notable that submerged Chara spp. 

beds could be easily delineated in the CASI-2 [Vegetation] imagery and, further, that the two 

dominant species encountered were spectrally distinguishable.  This suggests that, in clear and 

shallow waters, it may be possible to diagnose the dominant species composition of submerged 

aquatic plants beds.  Similar observations were made by Malthus & George (1997) and 

Williams et al., (2003).  Variations in water depth and transparency are likely to be an important 

constraint on the detection of submerged aquatic plants in shallow lakes.  This was evident in 

the examination of the CASI-2 [Vegetation] imagery of Hickling Broad where the detection of 

submerged Chara spp. beds was problematic in waters where the SDD was < 0.5 m. 

 

The results achieved in the Norfolk Broads, albeit based on a limited number of aquatic plant 

species, suggests that remote sensing surveillance has much to offer for the survey of aquatic 

vegetation in lakes.  However, significant further work will be required in this context before 

remote sensing can be used routinely for aquatic plant surveys in lakes.  The development of a 

comprehensive spectral library for aquatic plants would be hugely beneficial for remote sensing 



 

 347

survey purposes; there is currently a dearth of information on the spectral characteristics of 

aquatic plant species.  In addition, the effect of variations in water depth and transparency on 

the detection of submerged aquatic plants also needs to be more accurately established. 

 

The potential capability of remote sensing as a tool for regional-scale survey of aquatic 

vegetation in lakes was developed further in Chapter 7 through the novel use of laboratory 

darkroom and in-situ spectrometry data and airborne CASI-2 [Vegetation] imagery for the 

physiological assessment of emergent aquatic vegetation in shallow lakes.  Phragmites 

australis reedswamp is an important functional component of shallow lake ecosystems.  

However, over recent decades, there has been a large-scale decline in the reedswamp habitat 

in many European shallow lakes.  In many instances this decline has been linked to nutrient 

enrichment (Armstrong & Armstrong, 2001).   In the Norfolk Broads, for example, the extent of 

reedswamp is known to have declined by > 75% between 1880 and 1977 (Boorman & Fuller, 

1981).  In this thesis, remote sensing technologies were employed to examine spatial variations 

in the performance of Phragmites australis and, subsequently, to attempt to relate observed 

variations in plant performance to underlying environmental factors.   

 

Spectral reflectance measurements were acquired under darkroom conditions from Phragmites 

australis leaves harvested in Lake Balaton and used to examine the spectral response of plants 

to stress-related variations in leaf pigmentation.  It was shown that changes in the pigmentation 

of the Phragmites australis leaves caused marked variations in the measured spectral 

response.  A suite of spectral reflectance indices were subsequently calculated from the 

spectral reflectance measurements made in Lake Balaton and their sensitivity to variations in 

the chlorophyll-a content of the Phragmites australis leaves was examined using least-squares 

regression analysis.  Many of the spectral indices examined demonstrated excellent 

relationships with the concentration of chlorophyll-a in the leaves.  In particular, the chlorophyll 

red edge index, [Red-Edgeλ], exhibited a strong relationship with foliar chlorophyll-a (R2 = 0.95).  

These results demonstrate that the assessment of physiological status in aquatic plants, albeit it 

at the leaf-scale, is achievable using hyperspectral remote sensing imaging. 
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The chlorophyll-a algorithm derived from the Lake Balaton dataset was used to subsequently 

calibrate Red-Edgeλ index values obtained from darkroom spectral reflectance measurements 

made from Phragmites australis leaves harvested from plants in Hickling Broad.  The calibrated 

dataset was also used to assess the sensitivity of a further series of spectral indices not 

previously calculated from the Lake Balaton dataset.  The same spectra indices were also 

calculated from the canopy-scale spectral reflectance measurements made in Hickling Broad.  

The complete flotilla of spectral indices was correlated against various sediment chemistry 

parameters (e.g. TP, TN, K, organic matter) to explore the relationships between plant 

physiology (as evidence by the plant vigour related indices) and nutrient availability.   

 

The correlation and least-squares regression analysis revealed a strong – but positive – 

association between sediment nutrient enrichment and plant vigour.  The Red-Edgeλ index 

derived from the laboratory darkroom measurements was, for example, found to be strongly 

related to sediment organic matter accumulation in the stands (R2 = 0.68).  Similar relationships 

were also observed for TP, Mg and Na.  Statistical relationships between the spectral indices 

and sediment chemistry were more tenuous at the canopy-scale (likely due to canopy 

architecture effects), but some promising correlations were still observed.  The 

[R(860)/R(550)xR(708)] index, for example, demonstrated a good relationship with sediment 

organic matter content (R2 = 0.58).  These explorative relationships demonstrate the value of 

remote sensing as a potential tool for assessing the physiological response of aquatic plants to 

variations in lake habitat quality.   

 

The extrapolation of the derived techniques to airborne CASI-2 [Vegetation] imagery of littoral 

reedswamp in the shallow lakes of the Upper Thurne was used to assess variations in the 

performance of Phragmites australis plants at the lake-scale.  Correlation and least-squares 

regression analysis again revealed strong associations between plant vigour and sediment 

nutrient enrichment.  The CASI-2 [Vegetation] band-ratio index [Lw(710)Lw(760)] calculated from 

images acquired on 22 June 2005 and 29 August 2005 was correlated to sediment TP (R2 = 

0.49-0.53).  In addition, the [Lw(710)Lw(760)] index derived from the 29 August 2005 CASI-2 

[Vegetation] image was found to be strongly associated with the N:P (molar) ratio (R2 = 0.64).  
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The subsequent calibration of the CASI-2 [Vegetation] imagery allowed the derivation of 

spatially-resolving maps depicting the physiological response of Phragmites australis plants to 

variation in sediment nutrition across the complete Upper Thurne system.   

 

The remote-sensing-based characterisation of Phragmites australis physiological status in 

Hickling Broad revealed a positive association between plant performance and nutrient 

enrichment.  However, somewhat paradoxically, the examination of sediment chemistry in 

healthy and dieback stands of Phragmites australis using 2-sample T-tests and Mann Whitney 

tests intimated towards a link between reed dieback and sediment nutrient enrichment.  It was 

found that the sediment in dieback stands had higher concentrations of TP, Fe, Na, Mg and 

organic matter than the sediment of non-dieback stands.  However, the remaining plants 

fringing recent dieback sites were shown to be typically more vigourous than those growing in 

the non-dieback areas.   

 

It is suggested that the accretion of organic matter with the in dieback stands (derived from the 

decay of littoral plants and/or the decay of pelagic algal blooms) may be associated with reed 

dieback in the Norfolk Broads.  Several previous authors have suggested that the copious flux 

of organic matter to lake sediments can accelerate decompositional processes, increasing the 

microbial demand for oxygen, and ultimately leading to the development of anoxic conditions 

(Cizkova et al., 1996).  The switch to anaerobic microbial metabolism in turn can lead to the 

production of numerous phytotoxic metabolites (e.g. organic acids).  The accumulation 

phytotoxic organic acids is though to be a major cause of reed decline in European lakes 

(Armstrong et al., 1996; Armstrong et al., 1996; Vanderputten et al., 1997; Cizkova et al., 1999) 

and it would seem that a similar process may be affecting the performance of Phargmites 

australis in Hickling Broad.  The production of S2- and Fe (II) species in the reducing sediments 

may also be deleterious to plant growth.  The prevalence of such phytotoxins in the Norfolk 

Broads is currently unknown and, as such, further work should be focussed on gaining an 

improved understanding of the production of these compounds in the sediments of these lakes 

and their effect on aquatic plant growth. 
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The results clearly demonstrate the merit of utilising remote sensing for assessing spatial 

variations in the physiological status of aquatic plant communities.  The rapid surveys 

conducted using laboratory darkroom and in-situ spectrometry and airborne CASI-2 

reconnaissance were able to provide novel spatial insights into the response of aquatic plant 

communities to eutrophication in shallow lakes.  The synoptic “whole-lake” view obtained using 

airborne surveillance would have been unachievable using conventional methods.   Work in 

floodplain wetlands has shown that the quantification of plant physiological status can also be 

used to examine heavy metal deposition in aquatic ecosystems (Kooistra et al., 2004; Clevers 

et al., 2004).  It is apparent that similar approaches, using remote sensing to examine patterns 

in aquatic plant performance, could be employed to explore the fate and behaviour of other 

waterborne contaminants, such as trace metals or biocides, in lake ecosystems.  This would be 

of value, not only for improving the current understanding of lake-scale responses to pollution 

events, but in the more general assessment of ecological status in lakes and other inland and 

transitional waters. 

 

8.2.4 Remote Sensing and the Water Framework Directive (2000/60/EC) 

8.2.4.1 The Assessment of Ecological Status in Lakes 

The European Union Water Framework Directive (2000/66/EC) was implemented on 22 

December 2000 with the aim of establishing a new, integrated, approach to the protection, 

improvement and sustainable use of Europe’s rivers, lakes, estuaries, coastal- and 

groundwaters.  The EU WFD requires Member States to achieve “good and non-deteriorating 

ecological status” in all rivers, lakes, estuaries, coastal- and groundwaters by 2015.  In the 

context of lakes, the EU WFD requires the assessment of “ecological status” in all bodies of 

standing-water > 0.5 km2.  The assessment of ecological status is to be based an evaluation of 

(i) hydromorphological, (ii) physicochemical and, (iii) biological criteria against pre-determined 

reference conditions for specific-lake types.  This approach allows site-specific reference 

conditions to be established for each lake and thus the definition of restoration targets (where 

applicable).  Member States are also required to identify and link pressures to the ecological 

status of lakes.  The assessment of ecological status will also include an appraisal of the 
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prevalence of specific priority substances (e.g. benzene, lead, mercury, tributyltin) that are 

considered to be hazardous to ecosystem (and human) health. 

 

The definition of what, in practice, constitutes good ecological status in lakes, the construction 

of a workable typology, and the definition of suitable lake-specific reference conditions has, and 

continues to be, a major undertaking for the regulatory authorities concerned with the 

implementation of the WFD (Sondergaard et al., 2005).  However, once this framework is 

established, the continuous assessment, monitoring and policing of ecological status in lakes 

will be a massive challenge for regulatory authorities when the shear number and geographical 

distribution of lakes covered by the WFD legislation is taken into consideration.  The timescales 

for surveillance/operational monitoring vary between 1 month and 6 years depending on the 

specific quality element to be assessed.  This frequency of monitoring will be difficult, if not 

impossible, to achieve at a pan-European scale using current resources.  It is therefore evident 

that the integration of remote sensing data, where appropriate, with more convention in-situ 

survey techniques may be crucial to the successful, and cost-effective, implementation of the 

WFD in Europe (Chen et al., 2004; Gilvear et al., 2004a; Gilvear et al., 2007; Chen et al., 2007) 

 

8.2.4.2 Hydromorphological Elements 

The hydromorphological elements of lakes to be assessed under the WFD include (i) the 

quanity and dynamics of water flow, (ii) residence time, (iii) connection to groundwater, (iv) lake 

depth variation, (v) quantity, structure and substrate of the lake bed and, (vi) structure of the 

lake shore.  

 

The assessment of lake hydromorphology from remote sensing data has received little 

consideration in the literature, although comparable work has been conducted for river and 

estuarine environments (Gilvear et al., 2004a; Gilvear et al., 2007).  Remote sensing has been 

shown to be a useful source of supplementary information for the conduction of the Lake 

Habitat Classification (Rowan et al., 2006) and it is evident that a similar approach would be of 

value to the assessment of lake hydromorphology under the WFD.   
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Hydromorphological elements such as lakeshore structure (e.g. morphometry, composition) and 

the degree of anthropogenic modification (e.g. dams, piers, jetties, urban or industrial 

development) could be readily identified from remotely sensed data.  It could also provide, in 

some circumstances, information pertaining to the quantity and dynamics of water flow and 

connectivity to groundwaters (see for example Tcherepanov et al., 2005; Bohme et al., 2006).  

In shallow waters, information could also be obtained regarding the quantity, structure and 

substrate of the bed.  In this context, remote sensing has already been used to assess benthic 

habitat features in rivers and coastal waters (Kutser et al., 2006; Gilvear et al., 2007).   

 

The detection of hydromorphological features using remote sensing data could be aided by the 

exploration of pattern recognition and feature extraction algorithms, to facilitate more 

conventional spectral-based classifiers (Hare et al., 2001; Dillabaugh et al., 2002; Gloaguen et 

al., 2007).  The further evaluation of such approaches would be merited in this context. 

 

8.2.4.3 Physicochemical Elements 

The physicochemical elements to be assessed under the water framework directive include (i) 

transparency, (ii) thermal conditions, (iii) oxygenation, (iv) salinity, (v) acidification status and, 

(vi) nutrient conditions.  Of these various elements, the assessment of water transparency (as 

the SDD) is readily achievable in most, if not all, water types from remote sensing data.  In this 

thesis, for example, it was shown that the SDD can be estimated to an accuracy of ±0.08-0.11 

m (R2 = 0.93-0.96) in clear water and turbid shallow lakes.  The assessment of the thermal 

conditions in lakes could be obtained using thermal imaging which has been used in the past to 

assess lake surface temperatures (± 1°C) (although remote sensing cannot provide vertically-

resolving temperature profiles) (Budd, 2004; Kay et al., 2005).  The acidification status of lakes 

would be more difficult to assess using remote sensing methodologies; although, the estimation 

of the CDOM absorption coefficient may be a useful proxy for assessing acidification from 

inputs of dissolved organic carbon (Brezonik et al., 2005; Kutser et al., 2005b). 
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8.2.4.4 Biological Elements 

The biological elements used for the assessment of ecological status in lakes under the WFD 

directive include (i) the composition, abundance and biomass of phytoplankton, (ii) the 

composition and abundance of other aquatic flora, (iii) the composition and abundance of 

benthic invertebrate fauna and (iv) the composition and age structure of fish.  This is an obvious 

area where remote sensing can contribute to the WFD.  The biomass of the phytoplankton 

community in lakes can be quantified using remote sensing through the estimation of the 

chlorophyll-a concentration.  This has been demonstrated on several occasions, for a variety of 

lakes types, and using a multitude of remote sensing instruments (Malthus & George, 1997; 

Ammenberg et al., 2002; Tyler et al., 2006; Giardino et al., 2007).  In this thesis, it was shown 

that, even in highly optically-complex shallow lakes, it was still possible to accurately quantify 

the concentration of chlorophyll-a (R2 = 0.96).  The expected development of operational 

algorithms for CASE II waters for platforms such as MERIS and MODIS will soon enable the 

routine monitoring of chlorophyll-a in the larger lakes covered by the EU WFD (10-100> km2) at 

the pan-European scale. 

 

The assessment of phytoplankton composition and abundance is more problematic.  The 

taxonomic resolution achievable using conventional cell count methodologies, or even 

chemotaxonomic approaches, will never be achievable using remote sensing.  Nevertheless, 

remote sensing could potentially be used to assess broad change in the dominant species 

composition of phytoplankton communities.  The development of algorithms for the detection 

and quantify of cyanobacteria is being increasingly realised for lake waters (Sridhar & Vincent, 

2007; Simis et al., 2007).  Indeed, it was shown in this thesis that the biomarker pigment C-

phycocyanin could be estimated to a maximum accuracy of R2 = 0.95.  This is a highly pertinent 

development in the context of the WFD as the absolute and relative abundance of 

cyanobacteria is considered to be a good indictor of ecological status.  It was also 

demonstrated in this thesis that broad changes in colour group composition (brown, green, 

blue-green) may be tracked from remote sensing platforms.  The possible development of 

algorithms for the assessment of phytoplankton colour groups or, even, functional-types would 

be of direct value to the WFD (Fishwick et al., 2006; Aiken et al., 2007). 
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Information regarding the composition, abundance and biomass of aquatic plants could also be 

retrieved using remote sensing.  The distribution of aquatic plant communities can be readily 

mapped using remote sensing platforms and, increasingly, information can be acquired on the 

dominant species composition (Malthus & George, 1997; Williams et al., 2003; Pengra et al., 

2007).  In this thesis it was shown that aquatic plant growth-habit types can be mapped from 

remotely sensed data and, in shallow clear water lakes, information relating to the composition 

of submerged communities can also be obtained.  The estimation of submerged plant biomass 

has also been achieved using remote sensing (Yuan & Zhang, 2007).  Similar approaches 

could also be developed for the assessment of microphytobenthos; promising results have 

already been attained from comparable work in river and estuarine ecosystems (Rainey et al., 

2003; Meleder et al., 2003; Murphy et al., 2005).   

 

It has also been shown in this thesis, and elsewhere, that remote sensing can be used to 

assess the physiological status of aquatic plants (Penuelas et al., 1993; Tilley et al., 2003).  

Whilst there is no explicit requirement for such assessment in the EU WFD, such an approach 

could, nevertheless, be used to examine underlying changes in nutrient enrichment or, 

alternatively, contaminant discharges (e.g. priority substances).  This type of proxy information 

would be highly relevant to the assessment of ecosystem pressures and impacts under the EU 

WFD 

 

8.2.4.5 Future Development and Integration 

The information provided by remote sensing platforms, as evidenced above, could make a 

substantial contribution to the appraisal of specific hydromorphological, physicochemical and 

biological elements for the assessment of ecological status in lakes as part of the EU WFD.  

However, remote sensing is no panacea for the regulatory authorities charged with the 

implementation of the WFD.  There are many hydromorphological (depth, residence time), 

physicochemical (nutrients, oxygenation, salinity) and biological (benthic invertebrates, fish) 

elements that cannot be assessed using remote sensing.  It is possible, in some circumstances, 

that reliable proxies could be constructed for these elements based upon empirical or 
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deterministic relationships using other, readily quantifiable, remote sensing metrics (e.g. 

transparency, chlorophyll-a, aquatic plant cover).  However, proxy-based approaches are 

unlikely to be reliable and thus, on this basis, it is unlikely that remote sensing could operate as 

a stand-alone tool for the purposes of the EU WFD. 

 

It is therefore clear that, in order to effectively implement the EU WFD, careful and considered 

integration of remote sensing surveillance alongside existing in-situ survey methodologies will 

be necessary.  This will require improved collaboration between freshwater ecologists, remote 

sensing specialists and policy makers to ensure the data derived from remote sensing platforms 

is suitable for task and commands the necessary synergy with the data collated using in-situ 

surveys.  Moreover, there are various levels at which remote sensing could be integrated into 

the EU WFD.  It could be used, for example, to provide continuous near-real-time thematic 

information for every River Basin District, or, alternatively, it could be used in a more ad-hoc 

manner, to essentially “fill in the gaps” in in-situ datasets where data are missing because field-

based surveys are impractical or disproportionately expensive to implement. 

 

The construction of comprehensive remote sensing datasets for River Basin Districts should, 

however, be given serious considered as this would, importantly, ensure data continuity and 

would enact the establishment of long-term datasets for the purposes of change detection.  

Furthermore, as the EU WFD also requires the assessment of pressures, which may be difficult 

to identify and adequately characterise at the lake-scale, such datasets may be vital in deriving 

linkages between the ecological status of lakes and pressures at the catchment-scale.   Remote 

sensing methodologies are also sympathetic to the issues associated with collation of data for 

transboundary systems and, in addition, could be readily harmonised or standardised across 

Member States. 

 

There are some issues concerning the use of remote sensing for EU WFD purposes that will 

need to be further resolved.  To effect the full integration of remote sensing into EU WFD 

monitoring strategies, operational algorithms will be required for all relevant 

hydromorphological, physicochemical and biological elements.  This will require a considerable 
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amount of further research before such algorithms can be introduced into the existing 

processing chains for current satellites missions (e.g. MERIS, MODIS).  Furthermore, as the 

observation of small to medium sized lakes (i.e. 0.5-10 km2) is not possible from current 

satellite platforms, further technological advances will be necessary, although, in the short-term, 

the utility of data from existing high-spatial resolution terrestrial satellites (e.g. ALI, ASTER, 

IKONOS, Quickbird) should be further examined.  The continuous data stream provided by 

satellite remote sensing platforms can be severely compromised by persistent cloud cover.  To 

maintain a viable surveillance network, it may therefore be necessary to supplement remote-

sensing-based monitoring programmes with data derived from sensors (optical, fluorescence, 

sonar) mounted on geostationary buoys, ships-of-opportunity or on remotely-operated-vehicles.   

 

The ultimate objective of the WFD is to establish a new, integrated approach to the protection, 

improvement and sustainable use of Europe’s rivers lakes, estuaries, coasts and groundwaters.  

This will require new and groundbreaking approaches to the assessment and monitoring of 

aquatic ecosystems.   In this context, it is clear that remote sensing can provide a vital source of 

data for the assessment, monitoring and policing of ecological status at a pan-European scale.   

 

8.2.5 Remote Sensing in Lake Ecology 

It is has been argued that remote sensing technologies have much to offer the monitoring of 

ecological status in lakes.  It is important to acknowledge, however, that the potential 

application of remote sensing technologies in lake ecology goes far beyond a simple monitoring 

capacity.  Lakes are complex ecosystems and their responses to perturbations and pressures, 

be they natural, or anthropogenic, is rarely uniform at the lake-scale.  Characterising 

heterogeneity at the “lakescape” level, or beyond, is problematic and typically requires some 

form of spatial inference to enable point-based measurements to be scaled to the wider 

ecosystem.  Remote sensing offers a solution in this context.  The spatially-resolving data 

afforded by remote sensing platforms allows point-based measurements to be evaluated within 

a geospatial framework.  This readily enables bio-physical measurements to be extrapolated to 

the ecosystem scale and the elucidation of spatial variability in ecosystem responses to change 

(Turner et al., 2003; Kerr & Ostrovsky, 2003).   
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In this thesis, this capability was demonstrated in two contexts, (i) the time-series remote 

sensing surveillance of spatial variability in vertical migration by Microcystis aeruginosa 

(Chapter 5) and, (ii) the characterisation of spatial variability in the physiological response of 

Phragmites australis reedswamp to eutrophication pressures (Chapter 7).  In both instances, 

the use of remote sensing reconnaissance enabled the evaluation of ecosystem process and 

function at the lake-scale.  This resolution could not have been achieved using point-based 

methodologies. 

 

This illustrates what can be gained from the integration of remote sensing technologies into 

studies of lake ecology.  Remote sensing has the ability to link pattern to process.  In forming 

an improved understanding of how complex ecosystems function, and respond to pressures 

and perturbations, this is an increasingly important capability.  It has long been recognised that 

spatial heterogeneity has ecological significance (Roff, 1974; Holt, 1984; Padisak, 1993; Pickett 

& Cadenasso, 1995).  Remote sensing and associated geospatial disciplines, such as GIS and 

geostatistics, now afford a means by which spatial heterogeneity can be measured and 

understood in the context of ecosystem process and function.  The increased application of 

remote sensing in the study of shallow lakes thus has the potential to yield new and meaningful 

insights into the ecology of these systems. 

 

8.3 CONCLUSIONS 

Shallow lakes are an important ecological and socio-economic resource.  There is now an 

unprecedented interest in the ecological status and trajectory of shallow lakes and, indeed, all 

surface waters, in the face of the mounting pressures being exerted on these ecosystems and 

the services they provide.  The European Union’s Water Framework Directive (2000/60/EC) has 

placed increased emphasis on the development of new and cost-effective strategies for the 

assessment and surveillance of the ecological status of surface waters.   In this context, it has 

been suggested that the spatially-resolving, regional-scale, panoramic data provided by remote 

sensing platforms may be pertinent for effecting the operational monitoring of lakes at the pan-

European scale.   
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This thesis examined the use of remote sensing reconnaissance for the assessment and 

monitoring of ecological status in small and shallow lakes.  In particular, emphasis was placed 

on the development of remote sensing approaches for assessing change in (i) phytoplankton 

assemblages and (ii) aquatic plant communities, as these biotic elements are key determinants 

of ecological status in lakes.  The accurate estimation of chlorophyll-a concentrations, as a 

measure of total phytoplankton biomass, was shown to be readily achievable using remotely 

sensed data.  It was further shown that, in addition to chlorophyll-a, the abundance of 

cyanobacteria could also be quantified through the estimation of the biomarker pigment C-

phycocyanin.  This represents some advancement for the remote sensing of lake phytoplankton 

assemblages.  Novel mesocosm experiments also indicate that further broad-scale taxonomic 

differentiation may be possible for other algal groups.   

 

The thesis also evidenced that remote sensing can be used to map the distribution of aquatic 

plants in shallow lakes, on the basis of growth-habit types, or broad species associations.  

Significantly, it was demonstrated that, in clear water lakes, remote sensing can be used to map 

the cover of submerged plants.  The demonstration of this capability is vital if remote sensing is 

to be effectively used for the assessment of ecological status in shallow lakes.  Furthermore, it 

was also established that the physiological status of emergent aquatic plants can be quantified 

using remote-sensing-based approaches.  This enabled the response of aquatic plants to 

nutrient enrichment be assessed at a previously unparalleled lake-scale. 

 

Remote sensing therefore has much to offer the assessment, monitoring and policing of 

ecological status in shallow lakes.  This thesis has made a substantial contribution to furthering 

its application in this context.  The relevance of remote sensing technologies to the European 

Union’s Water Framework Directive has been clearly demonstrated and it has been also shown 

that remote sensing can also make an important contribution to furthering the understanding of 

lake-scale processes and function.   
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