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ABSTRACT 
 

Anthony Lawrence Robertson 
 

USING BAND RATIO, SEMI-EMPIRICAL, CURVE FITTING, AND PARTIAL 

LEAST SQUARES (PLS) MODELS TO ESTIMATE CYANOBACTERIAL PIGMENT 

CONCENTRATION FROM HYPERSPECTRAL REFLECTANCE 

 
This thesis applies several different remote sensing techniques to data collected 

from 2005 to 2007 on central Indiana reservoirs to determine the best performing 

algorithms in estimating the cyanobacterial pigments chlorophyll a and phycocyanin.  

This thesis is a set of three scientific papers either in press or review at the time this thesis 

is published.  The first paper describes using a curve fitting model as a novel approach to 

estimating cyanobacterial pigments from field spectra.  The second paper compares the 

previous method with additional methods, band ratio and semi-empirical algorithms, 

commonly used in remote sensing.  The third paper describes using a partial least squares 

(PLS) method as a novel approach to estimate cyanobacterial pigments from field 

spectra.  While the three papers had different methodologies and cannot be directly 

compared, the results from all three studies suggest that no type of algorithm greatly 

outperformed another in estimating chlorophyll a on central Indiana reservoirs.  

However, algorithms that account for increased complexity, such as the stepwise 

regression band ratio (also known as 3-band tuning), curve fitting, and PLS, were able to 

predict phycocyanin with greater confidence. 

Lin Li, Ph.D. 
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I:  INTRODUCTION 

In central Indiana, surface drinking waters experience high nutrient input from 

local agriculture.  These nutrient inputs increase the duration and frequency of 

cyanobacterial, also known as blue-green algae, blooms.  Veolia Water Indianapolis, 

Veolia Environment and the Center for Earth and Environmental Science (CEES) at 

Indiana University – Purdue University Indianapolis (IUPUI) formed the Central Indiana 

Water Resources Partnership (CIWRP) to address water quality issues, including these 

problematic cyanobacterial blooms.  Research conducted by CIWRP focuses on three 

area reservoirs: Geist (GR), Eagle Creek (ECR), and Morse (MR).  Studies of these three 

reservoirs include, but are not limited to, nutrient cycling, ongoing reservoir and 

watershed monitoring, and remote sensing of algae/cyanobacteria.  This thesis will 

present the latest developments in the remote sensing studies conducted by CIWRP.   

The initial remote sensing project conducted through CIWRP began in 2005 and 

was funded by CIWRP in conjunction with the Indiana Department of Natural Resources 

(DNR) through a Lake and River Enhancement (LARE) grant.  This project collected 

samples across all three reservoirs: GR, ECR, and MR.  The goal was to build models to 

predict the cyanobacterial pigments chlorophyll a (CHL) and phycocyanin (PC) from all 

three reservoirs with both field (ASD Field Spec) and airborne (AISA-Eagle) spectra.  

Results from the 2005 study are detailed in Li et al. (2006), Li et al. (2009), Randolph 

(2007), Randolph et al. (2008), and Sengpiel (2007). Although the data from ECR was 

unusable due to calibration issues, the initial results were promising for the remote 

detection of cyanobacterial pigments CHL and PC. 

Due to the initial success, CIWRP received funding from Veolia Water 

Indianapolis to continue the remote sensing research project.  For the 2006 field season, 

temporal differences between the three reservoirs were studied.  This temporal variability 
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added complexity to the models, which was shown to limit the transferability of these 

models.  Vallely (2008) analyzed the 2006 data to indentify factors that reduce the 

models’ performance in estimating CHL and PC from each of the reservoirs.  Vallely 

(2008) found that different water constituents influence the performance of the 

algorithms on different reservoirs.  Vallely (2008) concluded that aggregated data sets 

provide variability necessary for improved performance of the models. 

In 2007 a new sensor, Ocean Optics USB 4000, was purchased.  The new sensor 

was set up in a dual-headed system designed to reduce atmospheric noise.  Fewer 

samples were collected in 2007; however, data were collected on a new reservoir, 

Monroe (MNR).  None of the 2007 data had been published prior to this author’s work 

and will be summarized in this thesis with the exception of the data collected from MNR.   

This thesis is a collection of three journal articles regarding the development and 

application of new and existing approaches to estimating cyanobacterial pigments on GR, 

ECR, and MR.  Each chapter represents a stand-alone article; hence, there is some 

repetition in the background information and data analysis.  A summary of the work 

presented in the following articles can be found in chapter five.  While chapters two, 

three, and four are to be published in scientific journals, the final published versions may 

differ from the one found in this thesis.   

 

 

 

 



II: USING A MODIFIED GAUSSIAN MODEL TO PREDICT CYANOBACTERIAL 

PIGMENT ABUNDANCE IN CENTRAL INDIANA RESERVOIRS 

Abstract 

Algal pigments phycocyanin (PC) and chlorophyll a (CHL) have been used to 

remotely detect cyanobacteria.  This study evaluates an alternative empirical modeling 

technique using a modified Gaussian model (MGM) to predict the algal pigments PC and 

CHL in eutrophic reservoirs using field-based spectra.  MGM was applied both spatially, 

using three different reservoirs, and temporally, using data sets from 2005 and 2006.  An 

MGM model based on a 2005 data (PC n = 16; CHL n = 15) from one reservoir in the 

study region (Morse) resulted in a strong correlation coefficient to both pigments of 

interest (PC R2 = 0.93; CHL R2 = 0.82).  These models, when applied to a multi-temporal 

data set created in 2006 on the same reservoir, showed reasonable predictive ability (PC: 

n = 78 R2 = 0.77, RSME = 52.5 μg/L, p < 0.01; CHL: n = 79 R2 = 0.58, RSME = 23.5 

μg/L, p < 0.01).  The MGM models for phycocyanin prediction consistently 

outperformed the traditional spectral indices tested in this paper. These results suggest 

that MGM can be utilized as an alternative to traditional empirical band-ratio algorithms.   

Introduction 

Cyanobacteria in surface water systems pose a health concern for humans, 

livestock, and native wildlife across the globe.  Cyanobacteria tend to form blooms in late 

summer in eutrophic systems during long periods of hot, dry days (Falconer 2005).  

Although the eutrophication of some water sources is caused by natural processes, this 

concern is compounded by nutrient loading from sewage, agricultural and other 

anthropogenic sources (Chorus and Bartram 1999).  Some species of cyanobacteria 
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produce taste-altering chemicals (Chorus and Bartram 1999; Christensen et al. 2006) and 

toxins (Bold and Wynne 1985; Chorus and Bartram 1999) that affect water quality.  Due 

to the degradation of water quality caused by these taste-altering and toxic compounds, 

surface water managers, health officials, and researchers are interested in rapid 

identification of cyanobacteria blooms.   

Early detection methods, using remotely sensed data, have focused on the 

estimation of light-harvesting pigments in cyanobacteria.  As an indicator of total algal 

biomass (including both cyanobacteria and algae), chlorophyll a is widely used for this 

purpose due to strong absorption at 660-666 nm (Jeffrey et al. 1997; Jeffrey and Wright 

2006; Rowan 1989). Despite a strong absorption feature, the spectral range of  428-432 

nm is not  commonly used in remotely sensed data due to overlapping absorptions of 

carotenoids in the 400-500 nm range (Jeffrey et al. 1997; Rowan 1989).  In addition to 

these two bands of major absorption, chlorophyll a also absorbs less strongly around 

382.7 nm, 409-417.6 nm, 530-535.5 nm, 575-580.3 nm and 614-618.2 nm (Jeffrey et al. 

1997). 

Another pigment found in cyanobacteria is the phycobiliprotein phycocyanin 

(Jeffrey and Wright 2006; Rowan 1989).  Cyanobacterial phycocyanin has strong 

absorption in the region of 612-628 nm along with a florescence maximum in the region 

of 632-651 nm (Rowan 1989).  As phycocyanin is not typically found in other algal 

classes except marine red algae (Rhodophycae) (Delwiche 1999), it is used in inland 

remote sensing studies to estimate cyanobacteria abundance (Dekker 1993; Gitelson et al. 

1995; Randolph et al. 2008; Schalles and Yacobi 2000; Simis et al. 2005; Simis et al. 

2007).   
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  For studying cyanobacteria, the most commonly used methods are the empirical 

and semi-empirical approaches that develop spectral indices sensitive to cyanobacterial 

pigments and examine the correlation between the indices to pigment concentration (e.g., 

Gitelson et al. 1986; Mittenzwey et al. 1991; Schalles and Yacobi 2000).  These 

algorithms are effective for open ocean (case I) waters, where turbidity is caused 

primarily by phytoplankton.  When applied to inland and coastal (case II) waters, 

however, empirical models are influenced by sediments and other non-algal water 

constituents not commonly found in case I waters (Schalles and Yacobi 2000).  Previous 

research has suggested that differences in absorption and backscattering properties water 

constituents can limit the transferability of some algorithms across different inland 

aquatic systems (Dekker 1993; Randolph et al. 2008).  For example, analyses conducted 

by Randolph et al. (2008) on the reservoirs examined in the current study concluded that 

band-ratio algorithms had difficulty transferring between two reservoirs located in close 

proximity with similar characteristics and watersheds; however, there are anthropogenic 

disturbances (dredging and groundwater inputs) that may cause spectral band shifts and 

limit transferability. 

In this study we used a modified Gaussian model (MGM) as an alternative 

empirical modeling technique for the estimation of chlorophyll a and phycocyanin 

concentrations in surface water reservoirs.  Since MGM is a curve-fitting approach, it can 

separate overlapping spectral features.  The objective of this research was to examine the 

correlation between MGM parameters (full width half maximum (FWHM), strength, 

area) and algal pigment (chlorophyll a and phycocyanin) concentration.  On the basis of 
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this correlation analysis, MGM transferability was evaluated with datasets collected in 

multiple years for a single reservoir and datasets collected from multiple reservoirs.   

Background 

Since the absorption features of many materials are inherently Gaussian in shape, 

equation 2-1 can be used to describe these absorption spectra (Sunshine et al. 1990).  The 

Gaussian distribution (g) of a random variable or, in the case of reflectance spectra, the 

energy absorbed (x), is expressed in terms of its strength or amplitude (s), center or mean 

(µ), and width or standard deviation (σ).  These sets of Gaussian distributions are overlaid 

onto continua that are linear functions of energy (Sunshine et al. 1990). 

g(x) = s * exp{-(x - µ)2 * (2σ2)-1}      (eq. 2-1) 

This model was able to give an estimate of the location of absorption peaks; 

however, this model is not able to provide an accurate method of identifying and 

quantifying multiple substances within reflectance spectra.  Also it was noted that if 

multiple initial estimates are entered into the equation, then it is possible to have varying 

results (Sunshine et al. 1990).   

In order to improve upon the Gaussian model, Sunshine et al. (1990) reported that 

absorption energy and bond length are related by a power law, thus providing a modified 

equation relating Gaussian curves of absorption spectra to the bond length of the 

molecule absorbing energy.  Sunshine et al. (1990) derived a power function empirically 

that resulted in the modified Gaussian distribution (m) in equation 2-2.  

m(x) = s * exp{-(x-1 - µ-1)2 * (2σ2)-1}  (eq. 2-2) 

The modified Gaussian model (MGM) assumes that each absorption feature of 

interest can be represented by a Gaussian function.  When these curves are combined, 
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they are matched to a spectral signature provided by the researcher (Sunshine 1999; 

Sunshine et al. 1990).  The MGM software presented by Sunshine (1999) is a free 

download from Brown University (http://www.planetary.brown.edu/mgm/) and is based 

on the nonlinear least squares algorithm developed by Kaper et al. (1966).  Users input 

reflectance along with an initial set of parameters including the width, strength, and 

centers of Gaussian curves.  This set of parameters can be visualized using Matlab (The 

MathWorks, Inc.) (Figure 2-1).  Starting with initial parameters, MGM iteratively adjusts  

the parameters to best fit the reflectance spectra, until the improvement in root mean 

square error (RMSE) between the modeled and actual reflectance spectra is less than 

1.0e-6 (Figure 2-1b).   

MGM has been applied to analyzing extraterrestrial mineral composition (Hiroi et 

al. 2000; Mustard et al. 2005; Pieters and McFadden 1994), and more recently in 

analyzing pigments (Combe et al. 2005; Lohrenz et al. 2003).  Combe et al. (2005) 

applied MGM to differentiate a type of algae (microphytobenthos dominated by diatoms) 

from other features using Digital Airborne Imaging Spectrometer (DAIS) data.  The 

initial parameters were set by evaluating the curve  shape of each absorption produced by 

a batch of accessory pigments (435 nm), diadinoxanthin (500 nm), fucoxanthin (550 nm), 

chlorophyll c (623 nm), chlorophyll a (675 nm), cell structure (750 nm, 798 nm, and 886 

nm), and water (980 nm).  The study was successful in differentiating between the 

microphytobenthos of interest and macroalgae.  Lohrenz et al. (2003) used MGM to 

determine spectral absorption of chlorophyll in the 400-700 nm spectral range for 

samples of coastal waters collected on glass fiber filters.  The strength of the Gaussian 

peak was then used to quantify chlorophyll a, chlorophyll b and chlorophyll c.  The study  
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Figure 2 - 1.  MGM fits to a hyperspectral reflectance spectrum:  A) Initial conditions 
programmed into the MGM software  B) Program Output after 257 iterations and an 
RMS of 1.39 x 10-2 and an improvement of < 1.0 x 10-6.   
Where:  
a) RMS residual error between predicted and actual reflectance 
b) predicted Gaussian curves 
c) continuum 
d) predicted reflectance using current Gaussian parameters 
e) actual reflectance 

   

reported a hyperbolic relationship between pigment concentration and Gaussian peak 

strength attributed to pigment packaging with either an increase in internal pigment 

concentration or an increase in algal cell size.  Quantification of the algal pigments was 

conducted using reverse phase High Performance Liquid Chromatography (HPLC), with 

a reported standard error of 8%.  The study reported an influence of accessory pigments, 

specifically carotenoids on the estimation of chlorophyll b and c.  Although both of these 

studies proved that algal pigment concentrations can be estimated by applying MGM to 
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hyperspectral reflectance data, no study, as far the authors are aware, have applied MGM 

to predicting algal pigments from field based spectra. 

Methods 

Study Site 

Three reservoirs located in central Indiana were investigated: Eagle Creek, Geist, 

and Morse.  Figure 2-2 shows the location of each reservoir.  These reservoirs provide 

water for >800,000 residents of the greater Indianapolis area.  All three reservoirs have 

similar characteristics including depth (3.2-4.7 m), surface area (5-7.5 km2), volume (21-

28 million m3) and residence time (55-70 days) (Li et al. 2006; Randolph et al. 2008).  

They are also impaired by high nutrient loads (mean total P = 94-100 µgP-L-1, mean total 

N = 2-4.1 µgP-L-1 ) (Li et al. 2006; Randolph et al. 2008) which promote the growth of 

nuisance algae, including cyanobacteria.  All three reservoirs have reported taste and odor 

issues (Li et al. 2006; Randolph et al. 2008).   

In situ Reflectance Measurement  

 Collection dates, number of samples collected, and spectral signatures are listed in 

Table 2-1.  The sensors used in this study were two ASD Field Spec ultraviolet/visible 

and near-infrared spectroradiometers (Analytical Devices, Inc., Boulder, CO, USA).  

Both spectroradiometers have a spectral resolution of 1 nm. The spectral range of the 

spectroradiometer used on Geist Reservoir 2005 was 350-1050 nm for a total of 701 

bands.  For all other in situ reflectance measurements the ASD spectroradiometer had a 

spectral range of 350-2500 nm for a total of 2151 bands.    
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Figure 2 - 2.  Central Indiana reservoirs:  Map of the three study locations; Eagle 
Creek, Geist, and Morse Reservoirs.  Indianapolis is indicated for reference. 

 
 
Table 2 - 1.  Summary of sample collection:  Sampling sites with the date ranges, 
number of samples, and pigment ranges (μg/L). 
 
Sample 

Location 
Date Range 

Sample 
Number 

Chlorophyll 
a Minimum 

Chlorophyll 
a Maximum 

Phycocyanin 
Minimum 

Phycocyanin 
Maximum 

Eagle Creek July - Sept. 2006 85 6.3 107.5 0.7 234.3 
Sept. 2005 25 34.7 118.9 30.8 185.1 

Geist 
July - Sept. 2006 88 23.1 182.6 2.6 210.2 
Sept. 2005 22 18.0 151.7 2.9 135.1 

Morse 
July - Sept. 2006 91 21.3 128.7 3.3 371.0 

 
Spectra were collected on a boat oriented facing the sun, at least 10 m from shore, 

and in water  depth greater than 2 m to minimized potential effects of bottom reflectance  

on spectra.  The fiber optic cable has an instantaneous-field-of-view (IFOV) of 0.17 rad. 

The cable was mounted on an extendable pole with a nadir viewing angle and held 

approximately 0.5 m above the water surface.  This produces a measured water surface 
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area with a diameter of 0.04 m.  Calibration for upwelling irradiance was completed by 

using a white reference panel.  In order to reduce noise in the spectra, the reflectance 

spectra at each site was averaged over 15 readings.   

Lab Analysis of Water Samples 

Water samples were collected from surface water with 1 L amber HDPE bottles 

and stored on ice prior to filtration, and analyzed for pigment concentration. Steps for 

pigment analysis were completed under subdued light conditions.  Water samples were 

filtered in duplicate within 24 hours of the sample collection for later extraction of 

pigments.  Samples for the extraction of chlorophyll a were prepared on 0.47 µm acetate 

filters, and those for the extraction of phycocyanin on 0.47 µm glass fiber filters (GFF). 

The samples were stored at -20°C for no longer than 6 months before analysis.   

Chlorophyll a was extracted following the extraction method described in 

Environmental Protection Agency (EPA) 445 (Arar and Collins 1997).  The 

concentration of chlorophyll a was corrected for pheophytin and measured 

fluormetrically using a TD-700 Fluorometer (Turner Designs, Inc.) fitted with a Daylight 

White Lamp and Chlorophyll Optical Kit (340-500 nm excitation filter and emission 

filter > 665 nm).  For chlorophyll a analysis the fluorometer was calibrated using 

chlorophyll a from a spinach standard (Sigma-Aldrich 10865).   

Phycocyanin was extracted based on a method described in Sarada (1999) and 

presented in Randolph et al. (2008).  GFFs were suspended in 15 mL of 50 mM 

phosphate buffer (pH = 6.8).  Samples were broken up using a stainless steel spatula and 

rinsed with 5 mL of 50 mM phosphate buffer.  The samples were then homogenized 

using Teflon coated pestle.  Pestles were rinsed with 5 mL of 50 mM phosphate buffer.  
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Samples were centrifuged at 4°C, 15,000 x g for 25 minutes using a Beckman J2-21M 

centrifuge.  The samples were then stored overnight at 4°C before being homogenized 

again using the Teflon coated pestle and rinsed with 5 mL of 50 mM phosphate buffer 

with a total volume of 30 mL.  The samples were centrifuged again prior to the collection 

of the supernatant.  The supernatant was measured fluormetrically for phycocyanin using 

a TD-700 Fluorometer (Turner Designs, Inc.) fitted with a Cool White Mercury Vapor 

Lamp and a Phycocyanin Optical Kit (630 nm excitation and 660 nm emission filters).  

For phycocyanin analysis the fluorometer was calibrated using C-phycocyanin from 

Spirulina sp. (Sigma-Aldrich P6161).   

If the percent error calculated between a pair of replicates in pigment analysis was 

larger than 20%, the sample was not used in data analysis.   

Estimation of Pigment Abundance with MGM 

MATLAB (The MathWorks, Inc.) programs for MGM were modified from 

Sunshine et al. (1999) in order to process multiple files simultaneously.  Initial 

parameters inputted into MGM (Table 2-2) were set based on previous algal pigment 

studies (Jeffrey et al. 1997; Rowan 1989).  To minimize influence of the carotenoids, two 

spectral features were analyzed; phycocyanin (~628 nm) and chlorophyll (~672 nm).  

Several MGM parameters (FWHM, strength, area) were analyzed for their correlation to 

the algal pigment (chlorophyll a and phycocyanin) concentration.   

Table 2 - 2.  Initial Parameters used for MGM Modeling:  Continuum intercept: 5.00 
x 10-2, slope: -1.00 x 10-6. 
 

Parameter Center of 
Absorption (nm) 

Full-Width Half 
Maximum (FWHM) 

Absorption 
Strength 

Phycocyanin 628 60 -0.4 
Chlorophyll a 672 40 -0.7 
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Only the spectra where the gap between the continuum and fitted reflectance is 

visibly minimal are included in model construction and validation.  MGM was used to fit 

two absorption features between 560 - 710 nm, which are caused by phycocyanin (~628 

nm) and chlorophyll a (~670 nm).  MGM was then used to deconvolve reflectance 

spectra into individual Gaussian curves.  MGM iterations stopped when the root mean 

square error (RMSE) values or improvement between two iterations was less than 1.0 x 

10-6.   

Results 

Building Calibration Models with the Morse 2005 Dataset 

A series of calibration models were created using the 15 samples collected from 

Morse Reservoir in 2005 by correlating MGM output parameters (Figure 2-3) to pigment 

concentration.  A summary of the models can be found in Table 2-3.  The correlation 

coefficients of all the models were greater than 0.72 with the exception of the model 

based on the MGM output parameter for FWHM in predicting chlorophyll a.   
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Figure 2 - 3.  Building models using the Morse 2005 data set and MGM output:  
Correlation between pigments of interest, phycocyanin (PC), chlorophyll a (CHL), and 
MGM output a) FWHM b) Strength c) Area. 
 

a) 

y = 0.0658x + 48.834

R2 = 0.8568

y = 0.0427x + 27.167

R2 = 0.5095

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

0 20 40 60 80 100 120 140 160

[Pigment] (μg/L)

W
id

th
PC (628 nm) Width

Chl (672 nm) Width

PC Width

Chl Width

 

b) 

y = -0.0021x - 0.2574

R2 = 0.9301

y = -0.0042x - 0.3524

R2 = 0.8215

-1.20E+00

-1.00E+00

-8.00E-01

-6.00E-01

-4.00E-01

-2.00E-01

0.00E+00

0 20 40 60 80 100 120 140 160

[Pigment] (μg/L)

S
tr

e
n

g
th

PC (628 nm)
Strength

Chl (672 nm)
Strength

PC Strength

Chl Strength

 

 14



c) 

y = -0.1483x - 12.864

R2 = 0.9196

y = -0.1666x - 9.1884

R2 = 0.7878

-4.00E+01

-3.50E+01

-3.00E+01

-2.50E+01

-2.00E+01

-1.50E+01

-1.00E+01

-5.00E+00

0.00E+00

0 20 40 60 80 100 120 140 160

[Pigment] (μg/L)

L
o

g
(A

re
a

)

PC (628 nm) Area

Chl (672 nm) Area

PC Area

Chl Area

 
 
Table 2 - 3.  Models built from MGM output and spectral indices:  Where x = 
spectral parameter, and y = predicted pigment concentration. 
 

Data Set  Pigment 
Sample 
Size (n) 

Spectral Parameter R2 Model 

MGM PC FWHM 0.8568 Y = 15.20x-742.16 
MGM PC Strength 0.9301 Y = -238.10 -83.90 

MGM PC Area 0.9196 y = -125x - 1608 
Phycocyanin 16 

Simis et al. 2005 Band Ratio 0.8703 y = 125x - 84.29 
MGM Chl FWHM 0.5095 Y = 23.42 - 636.23 
MGM Chl Strength 0.8215 y = -476.19 - 122.57 

MGM Chl Area 0.7878 y = -6.00 - 55.15 

Morse 2005  

Chlorophyll a 15 

Mittenzwey et al. 1991 0.7283 y = 188.68 - 5.04 
MGM PC Strength 0.6343 Y = -454.55 - 95.27 

Phycocyanin 127 
Simis et al. 2005 Band Ratio 0.7207 y = -714.29 - 184.93 

MGM Chl Strength 0.5348 y = -250 - 80.18 

Eagle Creek 
& Morse 

2006 Chlorophyll a 127 
Mittenzwey et al. 1991 0.6893 y = 181.82 + 2.55 

 
Pigment Estimation with Morse 2005 Models 

Once the models were created, they were applied to additional data sets to test 

both temporal and spatial transferability.  The data is summarized in Table 2-4. Optimal 

models will have a slope and coefficient of determination (R2) near one, and a low RMSE 
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Table 2 - 4.  Morse 2005 MGM models predicting additional datasets:  Intercept was 
forced through zero, therefore ideal models will have a 1) slope near one 2) correlation 
coefficient (R2) near one and 3) low RMSE. 
 

Data Set  Pigment 
Sample 
Size Model Slope R2 

RMSE 
(μg/L) p 

MGM PC FWHM 1.5820 0.5511 81.39 < 0.01 

MGM PC Strength 1.1088 0.6788 26.84 < 0.01 

MGM PC Area 1.2399 0.6733 39.32 < 0.01 
Phycocyanin 27 

Simis et al. 2005 Band Ratio 0.8401 0.1736 27.81 > 0.1 

MGM Chl FWHM 0.9222 < 0.05 35.30 > 0.1 

MGM Chl Strength 1.1206 < 0.05 29.07 > 0.1 

MGM Chl Area 1.0557 < 0.05 28.05 > 0.1 

Geist 2005 

Chlorophyll  a 26 

Mittenzwey et al. 1991 1.0539 < 0.05 22.87 > 0.1 

MGM PC FWHM 0.3760 0.4051 87.82 < 0.01 

MGM PC Strength 0.6459 0.5809 53.15 < 0.01 

MGM PC Area 0.5902 0.6610 56.29 < 0.01 
Phycocyanin 52 

Simis et al. 2005 Band Ratio 0.5022 0.6416 59.74 < 0.01 

MGM Chl FWHM 0.6101 0.0769 40.86 > 0.1 

MGM Chl Strength 0.9200 0.4429 23.55 < 0.01 

MGM Chl Area 0.8573 0.5065 19.26 < 0.01 

Eagle Creek 
2006 

Chlorophyll  a 51 

Mittenzwey et al. 1991 0.9630 0.5926 20.97 < 0.01 

MGM PC FWHM 1.0231 0.0946 69.51 > 0.1 

MGM PC Strength 0.2503 0.0795 56.48 > 0.1 

MGM PC Area 0.3754 0.0933 72.02 > 0.1 
Phycocyanin 88 

Simis et al. 2005 Band Ratio 0.5072 < 0.05 53.40 > 0.1 

MGM Chl FWHM 0.7181 0.2778 35.70 > 0.1 

MGM Chl Strength 0.3026 < 0.05 76.01 > 0.1 

MGM Chl Area 0.3754 < 0.05 57.69 > 0.1 

Geist 2006 

Chlorophyll  a 88 

Mittenzwey et al. 1991 0.6116 0.2260 32.59 < 0.05 

MGM PC FWHM 0.6979 0.6487 71.79 < 0.01 

MGM PC Strength 0.6991 0.7654 52.45 < 0.01 

MGM PC Area 0.7293 0.8196 47.99 < 0.01 
Phycocyanin 78 

Simis et al. 2005 Band Ratio 0.5003 0.3850 71.43 < 0.01 

MGM Chl FWHM 0.6930 0.2986 40.18 < 0.01 

MGM Chl Strength 0.8137 0.5840 23.47 < 0.01 

MGM Chl Area 0.7854 0.5949 22.80 < 0.01 

Morse 2006 

Chlorophyll  a 79 

Mittenzwey et al. 1991 0.8859 0.7410 16.31 < 0.01 

MGM PC FWHM 0.5865 0.5597 78.36 < 0.01 

MGM PC Strength 0.6807 0.7207 52.72 < 0.01 

MGM PC Area 0.6812 0.7738 51.35 < 0.01 
Phycocyanin 127 

Simis et al. 2005 Band Ratio 0.5010 0.4743 66.89 < 0.01 

MGM Chl FWHM 0.6696 0.2309 40.44 < 0.02 

MGM Chl Strength 0.8438 0.5251 23.50 < 0.01 

MGM Chl Area 0.8058 0.5648 21.53 < 0.01 

Eagle Creek 
and Morse 

2006 

Chlorophyll  a 127 

Mittenzwey et al. 1991 0.9078 0.6775 18.33 < 0.01 
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When the models based on the Morse 2005 data set were applied to the Geist 

2005 data set, all the chlorophyll a models performed poorly (R2 < 0.05).  The models 

predicting phycocyanin performed better, based on the coefficient of determination (0.55 

< R2 < 0.68).   

 When these models were applied temporally to the Morse 2006 data set all 

models under predicted pigments (0.70 < slope < 0.89) but had reasonable coefficients of 

determination (0.65 < R2 < 0.82) for phycocyanin prediction.  However, the models based 

on MGM output parameters had weaker coefficients of determination (0.30 < R2 < 0.59) 

for predicting chlorophyll a. 

 When applied both spatially and temporally to the 2006 Eagle Creek data set, only 

one model based on the MGM output for chlorophyll FWHM was not statistically 

significant.  The models based on the 2005 Morse data which were statistically 

significant when validated on the 2006 Eagle Creek data set under predict chlorophyll a 

(0.86 < slope < 0.92) and had poor coefficients of determination (0.44 < R2 < 51).  

Alternatively, the phycocyanin models had higher coefficients of determination when 

compared to their respective model equivalent (0.41 < R2 < 0.66).   

 When applied to the Geist 2006 data set, only one model was statistically 

significant. While the model built from FWHM for predicting chlorophyll a was 

statistically significant (p < 0.05), the model performed poorly using coefficients of 

determination (R2 = 0.28).   

 Since the goal was to build a model that can be extended spatially and temporally, 

the models developed with the Morse 2005 data set were applied to a combined Eagle 

Creek and Morse 2006 data set.  Again, all models under predicted pigments (0.59 < 
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slope < 0.84).  Similarly to applying the models to the Morse 2006 data set exclusively, 

the models had reasonable coefficients of determination (0.59 < R2 < 0.68) for estimating 

phycocyanin. Additionally, the coefficients of determination (0.23 < R2 < 0.56) for 

predicting chlorophyll a were lower.  

 Building Models with the Eagle Creek and Morse 2006 Dataset 

Since the Morse 2005 data set was relatively small (n = 16), and the range of 

pigments was narrow (Chl: 18.0-151.7; PC: 2.9-135.1 μg/L), models based on a much 

larger data set using data from both Eagle Creek and Morse 2006 data were created 

(Table 2-3).  The correlations of the pigments of interest to MGM strength (Figure 2-4) 

were determined.  This set of models reduced extrapolation for phycocyanin estimation 

since there was a greater range of phycocyanin concentrations in the larger calibration 

data set (0.7-371.0 μg/L).  Models based on the MGM output parameters FWHM and 

area were excluded in this analysis because FWHM does not perform as well as strength 

in this study.  Since the models based on MGM area are a function of FWHM, they were 

also excluded. Geist was excluded from this model because of inherent differences to the 

other two reservoirs (discussed below). 

Pigment Estimation with Eagle Creek and Morse 2006 Models 

The results of applying the models built from the Eagle Creek and Morse 2006 

data set are summarized in Table 2-5.  When this model was applied spatially over the 

temporally variable Geist 2006 data set, no model was statistically significant. However, 

when applied to the Morse 2005 data set, these models performed with higher 

coefficients of determination (0.81 < R2 < 0.93) than when the Morse 2005 models were 

applied to the Eagle Creek and Morse 2006 data set.  The model for estimating 
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chlorophyll a calibrated with the Eagle Creek and Morse 2006 data set predicted 

pigments with a near linear correlation (slope = 1.13) when validated to the Morse 2005 

data set.  However, models for phycocyanin estimation over predicted (slope = 1.49) 

when applied to the same data set. 

Figure 2 - 4.  Building models using the Eagle Creek and Morse 2006 data set and 
MGM output:  Correlation between pigments of interest, phycocyanin (PC), chlorophyll 
a (CHL), and MGM output Strength. 
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Table 2 - 5.  Eagle Creek and Morse 2006 models predicting additional datasets:  
Intercept was forced through zero, therefore ideal models will have a 1) slope near one 2) 
correlation coefficient (R2) near one and 3) low RMSE. 
 

Data Set  Pigment 
Sample 
Size Model Slope R2 

RMSE 
(μg/L) p 

MGM Strength 1.7543 0.5953 88.34 < 0.01 
Phycocyanin 27 

Simis et al. 2005 1.7891 0.5059 97.69 < 0.01 

MGM Strength 1.315 < 0.05 37.22 > 0.1 
Geist 2005 

Chlorophyll a 26 
Mittenzwey et al. 1991 1.117 < 0.05 25.53 > 0.1 

MGM Strength 1.4936 0.9301 41.35 < 0.01 
Phycocyanin 16 

Simis et al. 2005 2.0824 0.7793 101.92 < 0.01 

MGM Strength 1.1343 0.8136 21.59 < 0.01 
Morse 2005 

Chlorophyll a 15 
Mittenzwey et al. 1991 1.0561 0.7211 23.29 < 0.01 

MGM Strength 0.3660 0.0802 83.33 > 0.1 
Phycocyanin 88 

Simis et al. 2005 0.8307 < 0.05 42.57 > 0.1 

MGM Strength 0.4171 < 0.05 56.10 > 0.1 
Geist 2006 

Chlorophyll a 88 
Mittenzwey et al. 1991 0.6892 0.1045 28.03 > 0.1 
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 When the Eagle Creek and Morse 2006 models were applied to the Geist 2005 

data set, the chlorophyll a model was not statistically significant.  The phycocyanin 

model over predicted, but had reasonable coefficient of determination (R2 = 0.60).  

Oversaturation of the sensor to the sensitivity of phycocyanin concentration may have 

contributed this observation.  When all phycocyanin concentrations above 100 μg/L are 

removed, as summarized in Table 2-6, the coefficients of determination were high (R2 = 

0.90), although the pigments were greatly over predicted (slope = 2.29).  Removing all 

points greater than 100 μg/L in the Geist 2006 data set did not yield statistically 

significant coefficients of determination. 

Table 2 - 6. Performance of phycocyanin models based on the Eagle Creek and 
Morse 2006 dataset when points greater than 100 μg/L are removed:  Intercept was 
forced through zero, therefore ideal models will  have a  1) slope near one  2) correlation 
coefficient (R2) near one and  3) low RMSE. 
 

Model Slope R2 
RMSE 
(μg/L) P 

MGM Strength 2.2857 0.9037 87.96 < 0.01 
Simis et al. 2005 2.3353 0.7382 97.69 < 0.01 

 

Estimation of Pigment Abundance with Band Ratios 

While this study demonstrates that MGM can be used in estimating pigments 

from field spectra, in order to determine if MGM performs at least as well as traditional 

methods the exact same data sets were also tested with two traditional band ratios.  Both 

ratios presented here were chosen over other ratios due to consistent performance on all 

three central Indiana reservoirs.  Equation 2-3 was developed by Mittenzwey et al. (1991) 

and used to estimate chlorophyll a.  Equation 2-4 adapted from Simis et al. (2005) was 

used to estimate phycocyanin.  

[R(705) − R(670)] * [R(550)−1]    (eq. 2-3) 
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[R(709)] * [R(620)-1]     (eq. 2-4) 

Calibration models using the spectral indices were also built (Figure 2-5 & 2-6; Table 2-

3).  Results are summarized in Table 2-4, 2-5, & 2-6.   

Discussion  

Performance of MGM 

 Overall, the MGM models were able to estimate both phycocyanin and 

chlorophyll a.  The MGM based models yielded higher coefficients of determination (R2) 

in predicting phycocyanin over chlorophyll a.  Using coefficients of determination and 

slope as an indicator of performance, MGM based models consistently outperformed the 

spectral index for predicting phycocyanin.  There was no consistent difference between 

MGM based models and the spectral index for chlorophyll a. 

 One reason MGM models do not outperform the spectral index for predicting 

chlorophyll a may be related to how MGM fits spectral curves.  Although this study only 

examined the concentration of chlorophyll a, there are additional forms of chlorophyll 

that were not quantified.  MGM output is likely correlated to all forms of chlorophyll 

since it has the capability to adjust its center, FWHM, and strength.  Due to this 

additional variability, the accuracy of the models in predicting chlorophyll a could be 

reduced.  Although the absorption of phycocyanin and chlorophyll overlap, (Jeffrey et 

al.1997; Rowan 1989) as shown in Figure 2-7, its accuracy was minimally affected due to 

MGM’s ability in unmixing spectra.   
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Figure 2 - 5. Building models using the Morse 2005 data set and spectral indices:  
Correlation between pigments of interest, phycocyanin (PC), chlorophyll a (CHL), and 
spectral indices 
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Figure 2 - 6. Building models using the Eagle Creek and Morse 2006 data set and 
spectral indices:  Correlation between pigments of interest, phycocyanin (PC),  
chlorophyll a (CHL), and spectral indices 
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Figure 2 - 7. Absorption of extracted pigments:  Absorption measured on a Shimadzu 
spectrophotometer.  Chlorophyll a (32.1 μg/L) was extracted in 90% buffered acetone 
and phycocyanin (188.3 μg/L) was extracted in 50 mM phosphate buffer.   
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 The models based on MGM strength output consistently had higher coefficients 

of determination and slopes closer to one than the output FWHM.  Neither the models 

based on MGM strength nor the models built on MGM area consistently outperformed 

the other.  There are two reasons why MGM area occasionally outperformed MGM 

strength.  First, while MGM strength is typically correlated to increases in pigment 

concentration, this correlation may be reduced at increased pigment concentrations due to 

spectral saturation.  At these higher pigment concentrations MGM strength would 

increase only slightly compared to increases in FWHM.  Alternatively, MGM area is a 

function of both MGM FWHM and MGM strength, the occasional outperformance of 

MGM area could be due to correlation with the MGM strength output.  Either models 

using MGM strength or MGM area are recommended for further study. 

 The models based on the Eagle Creek and Morse 2006 data set outperformed the 

models built with the Morse 2005 data set.  For phycocyanin estimation, this was likely 
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due to extrapolation of the models created with the Morse 2005 data set.  The range of 

pigments found in the Eagle Creek and Morse 2006 data set was greater than most of the 

other data sets, the exception being higher chlorophyll a concentrations.  This suggests 

that the calibration data set should include a larger number of samples in order to better 

represent the natural variation in the reservoirs and minimize extrapolation of the model.   

Limitations using MGM 

 From this study we found that there are two major limitations with using MGM 

based models.  First, MGM models are currently more time consuming to implement 

when compared to traditional spectral indices.  While this may limit MGM based models, 

this issue can be overcome with more efficient programming and faster computers.   

 Second, there are some concerns with the transferability of these models based on 

Eagle Creek and Morse data sets to Geist data sets.  While all three reservoirs are 

drinking water reservoirs, Geist has additional anthropogenic disturbances.  A local 

aggregate mining company routinely dredges Geist for silt and sand particles and an 

estimated ten-million gallons of water is pumped back into the reservoir (Constantino 

1999).  Because of the increased suspended sediment from dredging operations it is 

possible that this is causing saturation of the pigment signal at lower concentrations, 

meaning that as pigment concentration increases, reflectance spectra remains minimally 

changed.  Additionally, the water input back into the reservoir may be causing a localized 

dilution effect which locally disrupts the correlation of pigment to reflectance.  This not 

only causes problems for developing a MGM output-based model on Geist Reservoir, but 

also for developing a spectra index-based model. 
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Conclusions 

Summary of MGM modeling   

This paper shows that MGM is applicable to field based spectra.  In general, 

MGM based models predicted phycocyanin more accurately than chlorophyll a.  

Phycocyanin is more commonly used as an indicator of cyanobacterial species.  Since 

water managers are more interested in identifying cyanobacteria from all other algal 

species, MGM based models may be a better tool over spectral indices.  There are still 

some limitations on how MGM based models can be applied across spatially distinct data 

sets.  However, since this is an issue with both spectral indices and MGM based models, 

additional approaches should be considered. 

Future Work 

 To address transferability, additional models, such as stepwise regression, bio-

optical and semi-empirical models, should be tested on these data sets.  MGM should also 

be compared to a larger series of spectral indices, since different spectral indices may 

work better in removing influences from confounding factors (such as sediments).  Also 

these models should be tested for transferability across sensors, such as additional field-

based, aerial, and satellite sensors.  If there is interest in improving chlorophyll 

estimation, all forms of chlorophyll should be quantified. 
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III: COMPARISON BETWEEN EMPIRICAL, SEMI-EMPIRICAL, AND CURVE 

FITTING MODELS IN PREDICTING CYANOBACTERIAL PIGMENTS 

Abstract 

This study presents a comparative analysis of several algorithms for the 

estimation of cyanobacterial pigments chlorophyll a (CHL) and phycocyanin (PC).  This 

study seeks to provide a consistent basis for determining the best performing models in 

predicting both CHL and PC concentrations on three eutrophic central Indiana reservoirs 

from data collected in 2005-2007.  Simple band ratio algorithms, band tuning methods, 

semi-empirical algorithms, and the modified Gaussian model (MGM) parameters were 

used to estimate CHL and PC from multiple source spectral datasets of three eutrophic 

central Indiana reservoirs: Eagle Creek, Geist and Morse.  The spectral datasets were 

collected over a three year period (2005-2007) using two field-based (ASD Field Spec, 

Ocean Optics USB4000) and the sensor Airborne Imaging Spectrometer for Application 

(AISA-Eagle).  Spectral parameters resulting from these mapping algorithms were 

examined for their correlation to the CHL and PC concentrations.  The results 

demonstrate no major performance difference between most of the CHL estimating 

algorithms and a simple band ratio approach should be favored to use in most cases.  

However, for PC estimation, complex models such as 3-band tuning model and the MGM 

model consistently outperformed band ratio and semi-empirical algorithms tested in this 

study.  While the MGM model performed equivalently well as the band tuning method 

when applied to the field measured spectral data, the latter is favorable when applied to 

the AISA imaging spectra.  This recommendation is based on the observation that the 
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MGM models did not perform well for estimating PC when applied to the AISA-Eagle 

spectra due to the coarser spectral resolution than the field measured spectra. 

Introduction 

Surface water managers are interested in identifying cyanobacterial blooms since 

their occurrence in surface drinking water supplies and recreational waters pose a public 

health threat (Chorus and Bartram 1999; Christensen et al. 2006) and toxins (Bold and 

Wynne 1985; Chorus and Bartram 1999).  While cyanobacteria naturally develop in late 

summer due to long periods of hot, dry days (Falconer 2005), anthropogenic 

eutrophication of surface waters has increased the frequency and duration of 

cyanobacterial blooms (Chorus and Bartram 1999).  This has led to increased closures to 

surface waters for recreational access and increased costs for removing and neutralizing 

taste/odor and toxic compounds produced by cyanobacteria.  To minimize the effects of 

cyanobacterial blooms water managers are interested in a rapid identification system to 

monitor these blooms.  Remote sensing provides an effective approach to this monitoring.   

Cyanobacterial pigments, chlorophyll a and phycocyanin, have been used to 

evaluate inland water quality and identify cyanobacterial blooms.  (Dekker 1993; 

Gitelson et al. 1995; Li et al. in press; Randolph et al. 2008; Richardson 1996; Schalles 

2006; Schalles and Yacobi 2000; Simis et al. 2005; Simis et al. 2007).  Commonly 

scientists use chlorophyll a to estimate total algal biomass and phycocyanin is used as an 

indicator of cyanobacteria biomass.  Remote sensing is capable of monitoring chlorophyll 

a and phycocyanin by utilizing a strong absorption of chlorophyll a at 660-666 nm that is 

not influenced by accessory pigments (Jeffrey et al. 1997; Jeffrey and Wright 2006; 

Rowan 1989) and the strong absorption of phycocyanin  in the region of 612-628 nm 
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(Rowan 1989).  Among numerous remote sensing algorithms for estimating chlorophyll a 

and phycocyanin concentrations, empirical methods using spectral ratios, semi-empirical 

using the absorption coefficient of the pigments and curve-fitting using the Gaussian 

function are commonly used and reported in literature.   

Simple Band Ratio 

Simple band ratios are one of the most common empirical methods used in 

remotely mapping algal pigments (Dekker 1993; Gitelson et al. 1995; Randolph et al. 

2008; Schalles 2006; Schalles and Yacobi 2000; Simis et al. 2005; Simis et al. 2007).  

Simple band ratios are created by dividing a band that is sensitive to changes in pigment 

concentration (band 1) by a spectral band that is insensitive to changes in pigment 

concentration (band 2) (equation 3-1).   

Simple band ratio = Rband1/Rband2.  (eq. 3-1) 

 The main reason why band ratios are favored is their ease of use.  However, as 

pointed out by both Strombeck and Pierson (2001) and Simis et al. (2005) these ratios are 

based on several assumptions.  Ratios commonly use reflectance near 705-709 nm since 

this wavelength range is more sensitive to changes in pigment concentrations and it is 

assumed that the increase in scattering caused by cell walls represents an increase in the 

algal population (Simis et al. 2005; Strombeck and Pierson 2001).  Also assumptions are 

made that the absorption of other water constituents such as color dissolved organic 

matter (CDOM) and non-algal suspended matter (tripton) does not contribute 

significantly to reflectance (Simis et al. 2005; Strombeck and Pierson 2001).  However, 

studies have shown that varying concentrations of tripton, CDOM, and algae can cause 
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band shifts and interfere with the performance of band ratio algorithms (Han 1997; Han 

and Rundquist 1994; Strombeck and Pierson 2001; Vallely 2008).   

Maximum Peak/Troughs 

Gitelson et al. (2008) discussed many band ratio algorithms for estimating 

cyanobacterial pigments are ratios of near infrared (NIR) and red reflectance and stated 

that the success of these algorithms depend on the selection of the NIR wavelength.  In an 

attempt to address the effects of band shifts, simple band ratios created to detect 

chlorophyll a have been modified to identify peaks within a specific wavelength range, 

specifically the NIR peak near 700 nm (Gitelson 1992; Schalles et al. 1998; Yacobi et al. 

1995), while the wavelength corresponding to chlorophyll a absorption (670 nm) was 

fixed resulting in equation 3-2 which is correlated to chlorophyll a concentrations 

(Gitelson 1992; Yacobi et al. 1995).  The reflectance trough for chlorophyll a does not 

have to remain fixed and can also be adjusted (Randolph 2007, Vallely 2008). 

Rmax(680-720)/R670  (eq. 3-2) 

In addition to band shifts caused by chlorophyll a in the 700 nm range, research 

conducted by the authors suggests that phycocyanin concentration can also cause band 

shifts in the reflectance trough near 620 nm (Figure 3-1).  Band ratio algorithms can 

easily be adjusted to account for these spectral band shifts by locating the maximum peak 

and trough values in ranges of interest such as the reflectance troughs for phycocyanin 

(~620 nm), and reflectance peak near 700 nm corresponding to cell scattering (Randolph 

2007; Vallely 2008).   
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Figure 3 - 1.  Phycocyanin concentration compared to central wavelength of 
reflectance trough near 628 nm:  n = 78 
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Band Tuning 

One weakness with the approach that utilizes maximum peak and trough 

reflectance values is the possibility of saturation of the reflectance signal at the 

wavelengths at relatively low pigment concentrations, resulting in a constant reflectance 

with increasing pigment concentrations as reported with chlorophyll a (Dekker 1993; 

Yacobi et al. 1995).  To address this issue and the concern with the sensitivity of simple 

band ratios to the wavelength selection in the NIR region, Dall’Olmo et al. (2003) 

applied step-wise regression to select the wavelengths of highest correlation to 

chlorophyll a with reasonable accuracy in preliminary results (RMSE < 13 μg/L) and the 

stepwise regression or band tuning model was validated in Dall’Olmo and Gitelson 

(2005) and Gitelson et al. (2008).  Gitelson et al. (2005) proposed a similar three-band 
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tuning model with slightly different starting and stepwise regression conditions.  Both 

methods use the spectra index described by equation 3-3 after determining the three 

wavelengths with the highest correlation. 

(1/R λ1– 1/R λ2)*R λ3 (Dall’Olmo et al. 2003, Gitelson et al. 2005) (eq. 3-3) 

 Gitelson et al. (2008) explains that R λ1 should be maximally sensitive to the 

absorption of the pigment of interest.  However, R λ1 is affected by the influence of the 

absorption properties of tripton, color dissolved organic matter (CDOM), and water, and 

the scattering properties of particulate matter (Gitelson 2008).  Thus, R λ2 should be a 

wavelength which has minimum sensitivity to the pigment of interest and contain similar 

absorption values of tripton and CDOM found in R λ1 (Gitelson 2008).  R λ3 should be in 

a region that is sensitive to the backscattering primarily caused by tripton (Gitelson 

2008). 

Semi-Empirical Models 

In another attempt to address the weakness of band ratios, researchers developed 

semi-empirical models which are based on band ratios; however, the models also include 

inherent optical properties such as absorption and backscattering coefficients since these 

properties are neglected in traditional band ratios (Simis et al. 2005; Simis et al. 2007).  

Simis et al. (2005) suggests that the traditional band ratio algorithm for phycocyanin 

estimation would lead to an underestimation of absorption caused by phycocyanin with 

an increase in pigment concentration.  Alternatively, since tripton and CDOM are 

considered negligible, an overestimation of the absorption caused by phycocyanin can 

occur with increasing tripton and CDOM (Simis et al. 2005).  The model proposed by 

Simis et al. (2005) performs well when cyanobacteria are the dominant algal species and 
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the absorption coefficient for phycocyanin is calculated and applied for each sample (R2 

= 0.94); however, when a fixed absorption coefficient is used, overestimation occurred in 

several of the cruises and only one subset performed with reasonable confidence (R2 = 

0.77). Since phycocyanin estimation is also influenced by absorption of chlorophyll that 

results in over estimation of phycocyanin, Simis et al. (2007) applied a semi-empirical 

algorithm that can correct for absorptions caused by chlorophyll a, in addition to CDOM, 

and tripton.  Simis et al. (2007) validated their earlier model for phycocyanin extraction 

by improving extraction methods to reduce overestimation and most of the cruise trips 

were able to predict phycocyanin reasonably well (R2 > 0.7).  By including the inherent 

optical properties of these water constituents into the semi-empirical model these effects 

can be reduced or eliminated.  A simpler equation representing the semi-empirical model 

is displayed in equation 3-4, where the absorption of a pigment of interest at wavelength 

λ is divided by the specific absorption coefficient for that same pigment at the same 

wavelength. 

[Pigment] =  [apigment(λ)] / [a*pigment(λ)] (Simis et al.2005) (eq. 3-4) 

Curve Fitting Models 

Another model that can adjust for shifts in spectral bands is the modified 

Gaussian model (MGM) proposed by Sunshine et al. (1990).  Since the absorption 

features of algal pigments are inherently Gaussian in shape, equation 3-5 can be used to 

describe them (Sunshine et al. 1990). The rationale for using a modified Gaussian 

function over the traditional Gaussian function is described in both Sunshine et al. (1990) 

and Robertson et al. (in review).  The Gaussian distribution (m) of energy absorbed is 
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expressed in terms of its strength (s), center (µ), and width (σ) and a continuum is 

superimposed onto these Gaussian functions.  (Sunshine et al. 1990). 

m(x) = s * exp{-(x-1 - µ-1)2 * (2σ2)-1} (Sunshine et al. 1990) (eq. 3-5) 

Curve fitting models, such as MGM, have several advantages over traditional 

band ratios since they can adjust their strength (or height), center, and width according to 

the spectra being analyzed.  These Gaussian parameters can be correlated to pigment 

concentration to develop relationships for estimating pigment concentration.  The MGM 

recently has been used to analyze algal pigments (Combe et al. 2005; Lohrenz et al. 

2003; Robertson et al. in review).  Combe et al. (2005) applied MGM to differentiate a 

microphytobenthos from other features using pigment data from Digital Airborne 

Imaging Spectrometer (DAIS) imagery.  The study was successful in differentiating 

between the microphytobenthos of interest and macroalgae.  Lohrenz et al. (2003) used 

MGM to quantify chlorophyll a, chlorophyll b and chlorophyll c collected on glass fiber 

filters.  The study reported an influence of accessory pigments, specifically carotenoids 

on the estimation of chlorophyll b and c.  Robertson et al. (in review) applied MGM to 

field measured and airborne hyperspectral spectra to estimate both phycocyanin and 

chlorophyll a concentration.   

Although many of these models perform well on datasets collected in  specific 

studies, this study seeks to compare simple band ratio, band ratios set to maximum 

peaks/troughs, empirical band tuning, semi-empirical, and curve-fitting models.  Since 

these algorithms are dataset-dependant, this study will provide a consistent basis for 

determining the best performing models in predicting both chlorophyll a and 
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phycocyanin concentrations on three eutrophic central Indiana reservoirs from data 

collected in 2005-2007.   

Methods 

Study Site 

Three reservoirs located in central Indiana were investigated: Eagle Creek, Geist, 

and Morse.  Figure 3-2 shows the location of each reservoir.  Eagle Creek, Geist, and 

Morse Reservoirs provide water for > 800,000 residents of the greater Indianapolis area.  

All three reservoirs have similar characteristics including depth (3.2-4.7 m), surface area 

(5-7.5 km2), volume (21-28 million m3), watershed area (420-590 km2) and residence 

time (55-70 days) (Li et al. 2006).  They are also impaired by high nutrient loads (mean 

total P = 94-100 µgP-L-1, mean total N = 2-4.1 µgP-L-1) (Li et al. 2006) which promote 

the growth of nuisance algae, including cyanobacteria.  All three reservoirs have reported 

taste and odor issues (IDEM 2006; Li et al. 2006).   

Figure 3 - 2.  Central Indiana reservoirs:  Map of the three study locations; Eagle 
Creek, Geist, and Morse Reservoirs.  Indianapolis is indicated for reference. 
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In situ Reflectance and Water Samples  

Sensor used, collection dates, number of samples for water samples and spectra 

signatures, and the pigment ranges for these samples are listed in Table 3-1.  For the 2005 

field season all samples were concurrently taken on the same day for both Geist and 

Morse Reservoirs.  For the 2006 season, samples were collected throughout the field 

season and no two reservoirs were sampled concurrently.  For the 2007 field season 

samples were collected on each reservoir only once and were not taken with any other 

reservoirs concurrently.  Water samples for pigment analysis were collected from surface 

water with 1 L amber HDPE bottles and stored on ice prior to filtration.  The boat-based 

sensors used in this study include two ASD Field Spec ultraviolet/visible and near-

infrared spectroradiometers (Analytical Devices, Inc., Boulder, CO, USA).  Both 

spectroradiometers have a spectral resolution of 1 nm. The spectral range of the 

spectroradiometer used on Geist Reservoir in 2005 was 350-1050 nm for a total of 701 

bands.  A second ASD spectroradiometer was used for all other in situ reflectance 

measurements collected in 2005 and 2006 with a spectral range of 350-2500 nm for a 

total of 2151 bands.   

The fiber optic cable for the ASD spectroradiometers has an instantaneous-field-

of-view (IFOV) of 0.17 rad.  The cable was mounted on an extendable pole with a nadir 

viewing angle and held approximately 0.5 m above the water surface.  This produces a 

measured water surface area with a diameter of 0.08 m.  Calibration for upwelling 

irradiance for the ASD spectroradiometers was completed by using a white reference 

panel.  In order to reduce noise in the spectra, the reflectance spectrum at each site was 

averaged over 15 readings.   

 37



Table 3 - 1.  Summary of sample collection:  Includes the year samples were taken, 
reservoir, number of samples and sensor used.   
 

Year/Sensor 
2005 ASD 
FieldSpec 

2005 AISA Eagle 
2006 ASD 
FieldSpec 

2007 OO 
USB4000 

Reservoir 

Chl-a PC Chl-a PC Chl-a PC Chl-a PC 
Sample 
Number 

(n) 
    53 54 22 22 

Minimum 
(µg/L) 

    6.3 0.7 16.9 30.9 Eagle Creek 

Maximum 
(µg/L) 

    107.5 234.3 255.0 114.1 

Sample 
Number 

(n) 
26 27 26 27 88 88 16 16 

Minimum 
(µg/L) 

34.7 25.2 34.7 25.2 23.1 2.6 14.5 0.9 Geist 

Maximum 
(µg/L) 

118.9 185.1 118.9 185.1 182.6 210.2 193.2 149.0 

Sample 
Number 

(n) 
15 16 26 27 79 78 14 15 

Minimum 
(µg/L) 

18.0 2.9 18.0 2.0 21.3 3.3 26.9 41.2 Morse 

Maximum 
(µg/L) 

151.7 135.1 168.6 135.1 128.7 371.0 203.8 136.3 

 

An additional boat based sensor includes a pair of Ocean Optics (OO) USB4000 

visible and near infrared (VIS/NIR) spectroradiometers (Ocean Optics, Inc., Dunedin, 

FL, USA) in a dual head system.  One USB4000 spectroradiometer was set with a cosine 

corrector to determine down-welling radiance, thus reducing atmospheric effects.  The 

second USB 4000 spectroradiometer was used to measure up-welling radiance from the 

target of interest.  The USB 4000 spectroradiometer has a spectral resolution of 

approximately 0.2 nm and a spectra range of 351-1047 nm for a total of 3645 bands. 

The fiber optic cable for the Ocean Optics USB4000 spectroradiometers has an 

instantaneous field of view (IFOV) of 0.14 rad.  The cable was mounted on an extendable 

pole with a nadir viewing angle and held approximately 0.5 m above the water surface.  
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This produces a measured water surface area with a diameter of 0.07 m.  Calibration for 

upwelling irradiance for the USB4000 spectroradiometers was completed by using a 20% 

Spectrolon reflectance panel.  In order to reduce noise in the spectra, the reflectance 

spectrum at each site was averaged over 8 readings. 

An airborne imaging spectrometer for applications sensor (AISA), model “AISA-

Eagle” (Spectral Imaging Ltd., Oulu, Finland), was used to acquire airborne 

hyperspectral imagery of Geist and Morse reservoirs in 2005.  This sensor was flown by 

the Center for Advanced Land Management Information Technologies (CALMIT) at the 

University of Nebraska-Lincoln and fitted onboard a Piper-Saratoga airplane. The AISA-

Eagle was set to collect the images with 62 bands in the spectral region of approximately 

392-982 nm with a spectral range of 7- 9 nm.  The IFOV of the AISA sensor across the 

track is 1 mrad, resulting in 1 m wide pixels and 1000 m wide swath from an altitude of 

1000 m.  The entirety of Geist and Morse Reservoirs were covered with four and five 

swaths respectively.  Each set of swaths were geo-referenced using 2003 aerial 

photograph of Marion and Hamilton counties as the base map and the mosaicked image 

of each reservoir was created using ENVI 4.2 (ITT VIS) mosaicking tool as described in 

Sengpiel (2007).  Atmospheric effects were removed by using an empirical line 

calibration method where the ASD field spectra were used as reference (Sengpiel, 2007).  

For this study reflectance spectra for water sample stations were extracted from the image 

on the basis of their GPS coordinates. 

Lab Analysis 

Steps for pigment analysis were completed under subdued light conditions.  Water 

samples were filtered in duplicate within 24 hours of the sample collection for later 
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extraction of pigments.  Samples for the extraction of chlorophyll a were prepared on 

0.47 µm acetate filters, and those for the extraction of phycocyanin on 0.47 µm glass 

fiber filters (GFF). The samples were stored at -20°C for no longer than 6 months before 

analysis. 

Chlorophyll a was extracted following the extraction method described in 

Environmental Protection Agency (EPA) 445 (Arar and Collins 1997).  The 

concentration of chlorophyll a was corrected for pheophytin and measured 

fluorometrically using a TD-700 Fluorometer (Turner Designs, Inc.) fitted with a 

Daylight White Lamp and Chlorophyll Optical Kit (340-500 nm excitation filter and 

emission filter > 665 nm).  For chlorophyll a analysis the fluorometer was calibrated 

using chlorophyll a from a spinach standard (Sigma-Aldrich 10865).   

Phycocyanin was extracted based on method 4 described in Sarada (1999) and 

Randolph et al. (2008).  GFFs were suspended in 15 mL of 50 mM phosphate buffer (pH 

= 6.8).  Samples were broken up using a stainless steel spatula and rinsed with 5 mL of 

50 mM phosphate buffer.  The samples were then homogenized using Teflon coated 

pestle.  Pestles were rinsed with 5 mL of 50 mM phosphate buffer.  Samples were 

centrifuged at 4°C, 15,000 x g for 25 minutes using a Beckman J2-21M centrifuge.  The 

samples were then stored overnight at 4°C before being homogenized again using the 

Teflon coated pestle and rinsed with 5 mL of 50 mM phosphate buffer with a total 

volume of 30 mL.  The samples were centrifuged again prior to the collection of the 

supernatant.  The supernatant was measured fluorometrically for phycocyanin using a 

TD-700 Fluorometer (Turner Designs, Inc.) fitted with a Cool White Mercury Vapor 

Lamp and a Phycocyanin Optical Kit (630 nm excitation and 660 nm emission filters).  

 40



For phycocyanin analysis the fluorometer was calibrated using C-phycocyanin from 

Spirulina sp. (Sigma-Aldrich P6161).   

If the percent error calculated between replicates in pigment analysis was larger 

than 20%, the sample was not used in data analysis.   

Application of Spectral Indices and Parameters to Mapping Pigments 

Band ratios: In this study the spectral indices shown in equations 3-6, 3-7, 3-8, 3-9 and 3-

10 were used for estimating chlorophyll a and phycocyanin: 

Chlorophyll a:  R700 / R670 (Gitelson et al. 1986)  (eq. 3-6) 

Chlorophyll a:  (R705 – R670)/ R670  (Mittenzwey et al. 1991)  (eq. 3-7) 

Phycocyanin:  R709 / R620  (modified from Simis et al. 2005) (eq. 3-8) 

Chlorophyll a:  Rmax(680-720)/Rmin(650-690)  (modified from Gitelson et al. 1986) (eq. 3-9) 

Phycocyanin:  Rmax(680-720)/Rmin(600-640)  (modified from Simis et al. 2005)  (eq. 3-10) 

Band tuning: For this study band tuning models presented by Dall’Olmo et al. 

(2003) and Gitelson et al. (2005) were evaluated and the corresponding stepwise 

regression methods were applied for determining optimal three wavelength locations and 

creating the spectral parameter shown in equation 3-3 with the highest correlation to the 

pigment of interest.  Given R λ1, R λ2, and R λ3 representing three optimal wavelength 

locations, the stepwise regression procedure introduced by Dall'Olmo et al. (2003) and 

Gitelson et al. (2005) finds three optimized wavelength locations in specified spectral 

regions; Rλ1(Chlorophyll) = 660-690 nm, Rλ1(Phycocyanin) = 610-640, Rλ2 = 690-730 nm, and Rλ3 

= 740-800 nm.  The Dall’Olmo method estimates R λ1 (R estλ1) and then solves for a final 

R λ1 value after determining R λ2 and R λ3.  The two different stepwise regression 

procedures are described below: 
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Dall’Olmo et al. (2003) 

a)  Solve for Rest.λ1:  1/Rest.λ1 – 1/R720 

b)  Solve for Rλ2:  1/R est.λ1– 1/R λ2 

c)  Solve for Rλ3:  (1/R est.λ1– 1/R λ2) * R λ3 

d)  Solve for Rλ1:  (1/R λ1– 1/R λ2) * R λ3 

Gitelson et al. (2005) 

Solve for Rλ2:  (1/R 675– 1/R λ2) * R 800 

Solve for Rλ3:  (1/R 675– 1/R λ2) * R λ3 

Solve for Rλ1:  (1/R λ1– 1/R λ2) * R λ3 

The final selected wavelengths are presented in Table 3-2. 

Table 3 - 2.  Wavelengths used in band tuning methods:  Final wavelengths are 
determined by stepwise regression methods described in Dall'Olmo et al. 2003 and 
Gitelson et al. 2005 for each calibration data set.   
 

Dall'Olmo et al.2003 Gitelson et al.2005 
Calibration Dataset Wavelengths 

Chl-a PC Chl-a PC 

R1 686 636 688 615 

R2 721 699 697 691 
Morse 2005 ASD 

Field Spec 
R3 771 760 797 760 

R1 676 628 661 628 

R2 713 703 709 693 
Eagle Creek and 
Morse 2006 ASD 

Field Spec R3 761 760 790 760 

R1 676 629 676 629 

R2 723 704 723 965 Random 

R3 761 751 761 770 

 
Semi-empirical models: The semi-empirical models shown in equations 3-11 and 3-12 

were tested.  All absorption and backscattering coefficients used in this study for testing 

semi-empirical models were adopted from Simis et al. (2005). 

Chlorophyll a:  [achl(665)] / [a*chl(665)] (Simis et al. 2005) (eq. 3-11) 

Phycocyanin:  [apc(620)] / [a*pc(620)] (Simis et al. 2005) (eq. 3-12) 
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Spectral Curve Fitting with MGM: MATLAB (The MathWorks, Inc.) programs for 

MGM were modified from Sunshine et al. (1999) in order to process multiple files 

simultaneously.  Initial parameters inputted into MGM (Table 3-3) were set based on 

previous algal pigment studies (Jeffrey et al. 1997; Robertson et al. in review; Rowan 

1989).  These include MGM parameters for only describing the absorptions of 

phycocyanin (628 nm) and chlorophyll (672 nm).  MGM iterations stopped when the root 

mean square error (RMSE) values or improvement between two iterations was less than 

1.0 x 10-6.  The resultant MGM parameters, FWHM (Full-Width Half Maximum), 

strength, area were analyzed for their correlation to the algal pigment (chlorophyll a and 

phycocyanin) concentration.   

Table 3 - 3.  Initial parameters used for MGM modeling: Continuum intercept: 5.00 x 
10-2, slope: -1.00 x 10-6. 
 

Parameter 
Center of 

Absorption (nm) 
Full-Width Half 

Maximum (FWHM) 
Absorption 

Strength 

Phycocyanin 628 60 -0.4 
Chlorophyll a 672 40 -0.7 

 
Calibration and Validation Data Sets 

 Three data sets were used in model calibration. The first calibration data set was 

the Morse 2005 ASD Field Spec data set.  Calibration models derived from this data set 

was validated with the 2005 Morse AISA-Eagle data set and 2007 Morse OO USB4000 

data set.  This calibration data set was selected to determine instrument transferability 

issues with the models when applied to the Morse 2005 AISA-Eagle data set without 

temporal or spatial variability so MGM output parameters with the highest correlation 

could be progressed.  Validation with the Morse 2007 OO USB4000 data set was to test 

the instrument transferability of the models to another sensor to support the conclusions 
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of the best performing MGM output parameters.  Models built from the Morse 2005 ASD 

Field Spec data set were not tested on additional data sets due to concerns that 

extrapolating the models may result in large errors for estimating phycocyanin (see Table 

3-1 for pigment ranges).   

 The second calibration data set is the Eagle Creek and Morse 2006 ASD Field 

Spec data set.  This data set was chosen because of its high spatial and temporal 

variability within the summer season (June-September).  Models built from this data set 

will be validated with the Geist and Morse 2005 ASD Field Spec and AISA-Eagle data 

sets and the Eagle Creek, Morse, and Geist 2007 data sets.   

The final calibration data set is a collection of the Eagle Creek and Morse data 

from all three sensors (ASD Field Spec, AISA-Eagle, and OO USB4000) in 2005, 2006, 

and 2007.  This data set was selected because of the high spatial and temporal variability.  

Geist was excluded in this data set due to limitations of applying the models from the two 

previous calibration data sets to Geist Reservoir (see results).  The Eagle Creek and 

Morse 2005-2007 data set will then be divided into a calibration (CHL n = 151, PC n = 

154) and validation (CHL n = 51, PC n = 51) data set using a random sequence generator 

from http://www.random.org. 

Results 

Calibration Models 

When building the models with individual calibration data sets, spectral 

parameters were correlated to pigment concentrations. Figure 3-3 shows these models 

built with the Eagle Creek and Morse 2006 ASD Field Spec calibration data set.  A 

summary of the model created from each calibration data set is presented in Table 3-4.   
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Figure 3 - 3.  Relationship between algal pigment concentration and spectral 
parameters using the Eagle Creek and Morse 2006 Data ASD Fieldspec Data set:  
Correlations between pigment concentration (μg/L) and spectral parameters from a) band 
ratio/modified band ratio algorithms for phycocyanin estimation, b) band ratio/modified 
band ratio algorithms for chlorophyll a estimation, c)  Dall’Olmo et al. (2003) 3-band 
tuning, d) Gitelson et al. (2005) 3-band tuning, e) Simis et al. (2005) semi-empirical, and 
f) MGM strength. 
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Table 3 - 4.  Building models with the calibration data sets:  Models based on 
correlation between pigments and spectral indices/parameters.  Where x = spectral 
index/parameter and y = pigment concentration. 
 

Data Set  Pigment 
Sample 
Size (n) 

Spectral Parameter R2 Model 

Simis et al. 2005 Band Ratio 0.8703 y = 125.00x - 84.29 

Simis et al. 2005 Modified Band Ratio 0.8766 y = 136.99x - 116.33 

Dall'Olmo et al. 2003 3 Band Tuning 0.8037 y = 714.29x + 103.43 

Gitelson et al. 2005 3 Band Tuning 0.7903 y = 38.91x + 909.09 

Simis et al. 2005 Semi-Empirical 0.8729 y = 43.29x + 0.31 

Robertson et al. MGM PC Width 0.8568 y = 15.20x - 742.16 

Robertson et al. MGM PC Strength 0.9301 y = -238.10x - 83.90 

Phycocyanin 16 

Robertson et al. MGM PC Area 0.9196 y = -125.00x - 1608.00 

Gitelson et al. 1986 Band Ratio 0.7736 y = 108.70x - 126.54 

Mittenzwey et al. 1991 Band Ratio 0.7283 y = 188.68x - 5.04 

Gitelson et al. 1986 Modified Band Ratio 0.7643 y = 89.29x - 99.76 

Dall'Olmo et al. 2003 3 Band Tuning 0.7618 y = 333.33x + 95.23 

Gitelson et al. 2005 3 Band Tuning 0.7795 y = 588.24x + 17 

Simis et al. 2005 Semi-Empirical 0.7048 y = 8.62x - 7.80 

Robertson et al. MGM Chl Width 0.5095 y = 23.42x - 636.23 

Robertson et al. MGM Chl Strength 0.8215 y = -476.19x - 122.57 

Morse 
2005  

Chlorophyll a 15 

Robertson et al. MGM Chl Area 0.7878 y = -6.00x - 55.15 

Simis et al. 2005 Band Ratio 0.6959 y = 357.14x - 311.32 

Simis et al. 2005 Modified Band Ratio 0.7355 y = 370.37x - 377.22 

Dall'Olmo et al. 2003 3 Band Tuning 0.7620 y = 801.28x + 28.02 

Gitelson et al. 2005 3 Band Tuning 0.7934 y = 127.714 + 3.07 

Simis et al. 2005 Semi-Empirical 0.7841 y = 83.33x - 43.71 

Phycocyanin 127 

Robertson et al. MGM PC Strength 0.7207 y = -714.29x - 184.929 

Gitelson et al. 1986 Band Ratio 0.6624 y = 114.94x - 125.95 

Mittenzwey et al. 1991 Band Ratio 0.6893 y = 181.82x + 2.55 

Gitelson et al. 1986 Modified Band Ratio 0.6875 y = 101.01x - 109.38 

Dall'Olmo et al. 2003 3 Band Tuning 0.7799 y = 208.42x + 26.36 

Gitelson et al. 2005 3 Band Tuning 0.7693 y = 275.41x + 28.72 

Simis et al 2005 Semi-Empircal 0.8346 y = 27.93x + 33.53 

Eagle 
Creek & 
Morse 
2006 

Chlorophyll a 127 

Robertson et al. MGM Chl Strength 0.5348 y =250.00x - 80.18 

Simis et al. 2005 Band Ratio 0.6322 y = 285.71x – 237.20 

Simis et al. 2005 Modified Band Ratio 0.6363 y = 294.12x – 282.15 

Dall'Olmo et al. 2003 3 Band Tuning 0.6692 y = 759.30x + 21.83 

Gitelson et al. 2005 3 Band Tuning 0.7483 y = 1129.94x + 21.02 

Simis et al. 2005 Semi-Empirical 0.6249 y = 69.44x – 37.65 

Phycocyanin 154 

Robertson et al. MGM PC Strength 0.6813 y = -714.29x – 191.07 

Gitelson et al. 1986 Band Ratio 0.6334 y = 175.44x – 214.68 

Mittenzwey et al. 1991 Band Ratio 0.7033 y = 131.58x - 156.24 

Gitelson et al. 1986 Modified Band Ratio 0.7210 y = 263.16x – 14.89 

Dall'Olmo et al. 2003 3 Band Tuning 0.7575 y = 258.73x + 61.54 

Gitelson et al. 2005 3 Band Tuning 0.7575 y = 258.73x + 61.54 

Simis et al. 2005 Semi-Empirical 0.1889 y = 27.70 - 92.21 

Eagle 
Creek & 
Morse 
2005, 

2006, 2007 
Random 

Chlorophyll a 151 

Robertson et al. MGM Chl Strength 0.6739 y = 303.03x – 45.36 
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Models calibrated with the Morse 2005 ASD Field Spec data set had reasonable 

coefficients of determination (0.70 < R2 < 0.93) with the exception of the model built 

using MGM width for predicting chlorophyll (R2 = 0.51).  Models based on MGM output 

for FWHM and area were only built using the Morse 2005 ASD Field Spec data set due 

to issues involving transferability to data sets collected with different sensors (see 

discussion for details).  The models calibrated with the Eagle Creek and Morse 2006 

ASD Field spec data set had weaker coefficients of determination (0.53 < R2 < 0.83), 

likely due to increase in sample size.  The models calibrated with the random Eagle 

Creek and Morse 2005-2007 data set had reasonable coefficients of determination (0.62 < 

R2 < 0.76) with the exception of the model built using the Simis et al. (2005) semi-

empirical model (R2 = 0.19).   

Validation of the Calibration Models for Estimating Phycocyanin 

Calibration Models Based on the Morse 2005 ASD Field Spec Data Set 

The validation of the models based on the Morse 2005 ASD Field Spec 

calibration data set is presented in Table 3-5.  These models were applied to data sets 

collected with the AISA-Eagle, and OO USB4000.  Models based on the MGM output 

for FWHM and Area performed with minimal statistical significance on the two data sets 

tested with the models calibrated with the Morse 2005 ASD Field Spec data set.  For 

estimating phycocyanin on the Morse 2005 AISA Eagle data set, the models built using 

the band ratio, modified band ratio and semi-empirical algorithms resulted in the highest 

correlation coefficients  (0.80 < R2 < 0.81).  The only other model that had a reasonable 

correlation coefficient (R2 = 0.63) was that built from the Gitelson et al. (2005) 3-band 

tuning algorithm.  
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Table 3 - 5.  Applying models calibrated with the Morse 2005 ASD Field Spec data 
set:  Models are sorted with descending correlation coefficient (R2).  Intercept was 
forced through zero, therefore ideal models will have a 1) slope near one 2) correlation 
coefficient (R2) near one and 3) low RMSE.  Caution should be taken in interpreting the 
Morse 2007 OO USB4000 validation data set for chlorophyll a estimation due to 
extrapolation of the models. 
 
Data 
Set  

Sensor 
Used 

Pigment Model Slope R2 
RMSE 
(μg/L) 

p 

Simis et al. 2005 Modified Band Ratio 0.9068 0.8147 18.40 < 0.01 

Simis et al. 2005 Semi-Empirical 0.8620 0.8044 20.03 < 0.01 

Simis et al. 2005 Band Ratio 0.8964 0.8022 19.52 < 0.01 

Gitelson et al. 2005 3 Band Tuning 0.6617 0.6326 36.11 < 0.01 

Robertson et al. MGM PC Strength 0.7992 0.4850 25.44 < 0.02 

Dall'Olmo et al. 2003 3 Band Tuning 1.5622 < 0.05 78.90 > 0.1 

Robertson et al. MGM PC Width 0.9506 < 0.05 194.98 > 0.1 

Phycocyanin 

Robertson et al. MGM PC Area -0.9360 < 0.05 112.62 > 0.1 

Mittenzwey et al. 1991 Band Ratio 0.7646 0.8931 20.72 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.7937 0.8306 22.94 < 0.01 

Gitelson et al. 1986 Band Ratio 0.4698 0.7798 38.62 < 0.01 

Simis et al. 2005 Semi-Empirical 1.0398 0.7582 20.99 < 0.01 

Robertson et al. MGM Chl Strength 0.7107 0.6056 30.80 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.2188 0.4292 40.23 < 0.05 

Gitelson et al. 2005 3 Band Tuning 1.2198 0.3399 40.25 < 0.05 

Robertson et al. MGM Chl Width 0.6593 0.1851 76.76 > 0.1 

Morse 
2005  

AISA- 
Eagle 

Chlorophyll a 

Robertson et al. MGM Chl Area -0.6733 < 0.05 95.00 > 0.1 

Simis et al. 2005 Semi-Empirical 1.4079 0.8822 41.15 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.7570 0.7808 17.54 < 0.01 

Simis et al. 2005 Band Ratio 0.6890 0.7757 32.58 < 0.01 

Robertson et al. MGM PC Strength 0.8648 0.6787 17.92 < 0.01 

Simis et al. 2005 Modified Band Ratio 0.4848 0.4975 54.05 < 0.10 

Robertson et al. MGM PC Width 0.4402 0.0929 51.33 > 0.1 

Gitelson et al. 2005 3 Band Tuning -0.1903 < 0.05 10.56 > 0.1 

Phycocyanin 

Robertson et al. MGM PC Area 7.5062 < 0.05 591.74 > 0.1 

Mittenzwey et al. 1991 Band Ratio 0.7680 0.9435 24.69 < 0.01 

Gitelson et al. 1986 Band Ratio 0.6994 0.9413 30.95 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.7119 0.9288 30.47 < 0.01 

Gitelson et al. 2005 3 Band Tuning 1.1190 0.8917 17.94 < 0.01 

Robertson et al. MGM Chl Strength 0.8688 0.8684 19.39 < 0.01 

Simis et al. 2005 Semi-Empirical 0.9985 0.8624 18.29 < 0.01 

Robertson et al. MGM Chl Width 0.7542 0.5436 30.88 < 0.05 

Dall'Olmo et al. 2003 3 Band Tuning 0.1846 0.4861 82.03 > 0.1 

Morse 
2007 

Ocean 
Optics 
USB 
4000 

Chlorophyll a 

Robertson et al. MGM Chl Area 6.2266 0.2251 542.08 > 0.1 

 



Care must be taken in interpreting the results for estimating phycocyanin with the 

models built from Morse 2005 ASD field Spec data set and validated with the Morse 

2007 OO USB4000 due to extrapolation.  The two models, semi-empirical and 

Dall’Olmo et al. (2003) 3-band tuning, with the highest correlation coefficient (0.78 < R2 

< 0.88) also over predicted (1.41 < slope < 1.76).  The other two models with reasonable 

correlation coefficients (0.68 < R2 < 0.78), based on the band ratio and curve fitting using 

strength algorithms, under predicted (0.69 < slope < 0.86).   

Calibration Models Based on the Eagle Creek and Morse 2006 ASD Field Spec Data Set 

The validation of the models based on the Eagle Creek and Morse 2006 ASD 

Field Spec calibration data set is presented in Table 3-6.  The validation on the Geist 

2005 ASD Field Spec data set indicates that five models had reasonable correlation 

coefficients (0.51 < R2 < 0.68).  Only the model using the Dall’Olmo et al. (2003) 3-band 

tuning algorithm performed with weak correlation (R2 = 0.46).  However, all models over 

estimated phycocyanin (1.39 < slope < 1.79), and the models with the highest slope 

resulted in higher errors (52.19 < RMSE < 97.69).  When applied to the Geist 2005 AISA 

Eagle data set, none of the models had reasonable correlation coefficients (R2 < 0.05).  

When applied to the Geist 2007 OO USB4000 data set, four models based on the band 

tuning, band ratio and semi-empirical algorithms, had strong correlation coefficients 

(0.77 < R2 < 0.82).  However, all four models grossly over predict phycocyanin (2.01 < 

slope < 3.14). 
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Table 3 - 6.  Applying models calibrated with the Eagle Creek and Morse 2006 ASD 
Field Spec data set:  Models are sorted with descending correlation coefficient (R2).  
Intercept was forced through zero, therefore ideal models will have a 1) slope near one 2) 
correlation coefficient (R2) near one and 3) low RMSE. 
 
Data 
Set  

Sensor 
Used Pigment Model Slope R2 

RMSE 
(μg/L) p 

Gitelson et al. 2005 3 Band Tuning 1.3900 0.6755 52.19 < 0.01 
Robertson et al. MGM PC Strength 1.7543 0.5953 88.34 < 0.01 
Simis et al. 2005 Semi-Empirical 1.4070 0.5835 58.14 < 0.01 

Simis et al. 2005 Modified Band Ratio 1.7160 0.5065 89.87 < 0.01 
Simis et al. 2005 Band Ratio 1.7891 0.5059 97.69 < 0.01 

Phycocyanin 

Dall'Olmo et al. 2003 3 Band Tuning 1.6339 0.4637 78.54 < 0.02 
Dall'Olmo et al. 2003 3 Band Tuning 1.1844 0.4464 27.17 < 0.05 

Simis et al. 2005 Semi-Empirical 1.1832 0.2571 18.38 > 0.1 
Gitelson et al. 1986 Band Ratio 1.2623 < 0.05 32.93 > 0.1 

Gitelson et al. 1986 Modified Band Ratio 1.2465 < 0.05 31.81 > 0.1 
Mittenzwey et al. 1991 Band Ratio 1.1170 < 0.05 25.53 > 0.1 
Gitelson et al. 2005 3 Band Tuning 1.1811 < 0.05 28.34 > 0.1 

Geist 
2005  

ASD 
Field 
Spec 

Chlorophyll a 

Robertson et al. MGM Chl Strength 1.3150 < 0.05 32.22 > 0.1 
Robertson et al. MGM PC Strength 1.4936 0.9301 41.35 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.9111 0.8372 58.65 < 0.01 
Gitelson et al. 2005 3 Band Tuning 1.4961 0.8040 54.41 < 0.01 

Simis et al. 2005 Modified Band Ratio 1.9637 0.7944 90.71 < 0.01 
Simis et al. 2005 Semi-Empirical 1.4329 0.7931 50.99 < 0.01 

Phycocyanin 

Simis et al. 2005 Band Ratio 2.0824 0.7793 101.92 < 0.01 
Robertson et al. MGM Chl Strength 1.1343 0.8136 21.59 < 0.01 

Gitelson et al. 1986 Band Ratio 1.1482 0.7664 24.92 < 0.01 
Gitelson et al. 1986 Modified Band Ratio 1.1712 0.7631 27.38 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.0793 0.7386 18.87 < 0.01 
Mittenzwey et al. 1991 Band Ratio 1.0561 0.7211 23.29 < 0.01 
Gitelson et al. 2005 3 Band Tuning 1.1646 0.7010 31.17 < 0.01 

Morse 
2005  

ASD 
Field 
Spec 

Chlorophyll a 

Simis et al. 2005 Semi-Empirical 1.1921 0.5857 53.88 < 0.05 
Simis et al. 2005 Band Ratio 1.4649 < 0.05 72.19 > 0.1 

Simis et al. 2005 Modified Band Ratio 1.5220 < 0.05 74.72 > 0.1 
Dall'Olmo et al. 2003 3 Band Tuning 1.3567 < 0.05 92.50 > 0.1 
Gitelson et al. 2005 3 Band Tuning 1.3690 < 0.05 82.33 > 0.1 
Simis et al. 2005 Semi-Empirical 1.0029 < 0.05 37.62 > 0.1 

Phycocyanin 

Robertson et al. MGM PC Strength 1.4120 < 0.05 58.23 > 0.1 
Simis et al. 2005 Semi-Empirical 0.9179 0.0505 105.33 > 0.1 
Gitelson et al. 1986 Band Ratio 0.7554 < 0.05 26.18 > 0.1 

Gitelson et al. 1986 Modified Band Ratio 1.1878 < 0.05 32.31 > 0.1 
Mittenzwey et al. 1991 Band Ratio 1.0236 < 0.05 25.12 > 0.1 

Dall'Olmo et al. 2003 3 Band Tuning 1.0876 < 0.05 41.31 > 0.1 
Gitelson et al. 2005 3 Band Tuning 0.7389 < 0.05 31.02 > 0.1 

Geist 
2005  

AISA- 
Eagle 

Chlorophyll a 

Robertson et al. MGM Chl Strength 1.2339 < 0.05 35.84 > 0.1 
Gitelson et al. 2005 3 Band Tuning 1.62 0.8011 54.41 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.6115 0.7626 58.65 < 0.01 
Simis et al. 2005 Modified Band Ratio 1.6771 0.6993 71.3 < 0.01 

Simis et al. 2005 Band Ratio 1.7403 0.6492 82.94 < 0.01 
Simis et al. 2005 Semi-Empirical 1.1391 0.6356 48.64 < 0.01 

Phycocyanin 

Robertson et al. MGM PC Strength 1.2249 0.5129 40.7 < 0.01 
Gitelson et al. 1986 Modified Band Ratio 0.9056 0.9076 14.94 < 0.01 

Mittenzwey et al. 1991 Band Ratio 0.8574 0.8658 18.41 < 0.01 
Dall'Olmo et al. 2003 3 Band Tuning 0.8535 0.8353 18.9 < 0.01 
Robertson et al. MGM Chl Strength 0.9266 0.7988 25.18 < 0.01 

Gitelson et al. 1986 Band Ratio 0.5885 0.7985 30.95 < 0.01 
Gitelson et al. 2005 3 Band Tuning 0.668 0.7282 31.17 < 0.01 

Morse 
2005 

AISA- 
Eagle 

Chlorophyll a 

Simis et al. 2005 Semi-Empirical 0.8021 0.3940 49.66 < 0.05 
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Table 3 -6 (cont.) 
Data 
Set  

Sensor 
Used Pigment Model Slope R2 RMSE (μg/L) p 

Simis et al. 2005 Semi-Empirical 2.6312 0.6982 136.58 < 0.01 
Dall'Olmo et al. 2003 3 Band Tuning 1.6629 0.6318 64.66 < 0.01 
Gitelson et al. 2005 3 Band Tuning 1.0379 0.6106 21.84 < 0.01 

Simis et al. 2005 Band Ratio 1.7244 0.5765 76.07 < 0.01 
Robertson et al. MGM PC Strength 1.1042 0.5398 42.70 < 0.01 

Phycocyanin 

Simis et al. 2005 Modified Band Ratio 1.0625 0.3150 56.98 > 0.1 
Mittenzwey et al. 1991 Band Ratio 0.6808 0.9067 45.36 < 0.01 
Robertson et al. MGM Chl Strength 0.7124 0.9062 41.73 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.6881 0.9059 44.71 < 0.01 
Gitelson et al. 1986 Band Ratio 0.6422 0.9007 50.58 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 0.7275 0.8930 39.71 < 0.01 
Simis et al. 2005 Semi-Empirical 0.2098 0.7538 109.05 < 0.01 

Eagle 
Creek 
2007 

Ocean 
Optics 
USB 
4000 

Chlorophyll a 

Gitelson et al. 2005 3 Band Tuning 0.3759 0.6513 89.73 < 0.01 
Dall'Olmo et al. 2003 3 Band Tuning 2.2549 0.8214 136.44 < 0.01 
Gitelson et al. 2005 3 Band Tuning 2.0057 0.8032 112.95 < 0.01 

Simis et al. 2005 Band Ratio 2.0318 0.7803 114.62 < 0.01 
Simis et al. 2005 Semi-Empirical 3.1426 0.7673 229.97 < 0.01 

Robertson et al. MGM PC Strength 1.6482 0.5199 91.39 < 0.05 

Phycocyanin 

Simis et al. 2005 Modified Band Ratio 0.9310 0.2975 33.43 > 0.1 
Dall'Olmo et al. 2003 3 Band Tuning 0.6713 0.9026 50.51 < 0.01 
Mittenzwey et al. 1991 Band Ratio 0.5421 0.8816 69.62 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.5626 0.7297 68.05 < 0.01 
Gitelson et al. 1986 Band Ratio 0.5059 0.7085 76.28 < 0.01 

Gitelson et al. 2005 3 Band Tuning 0.3677 0.6312 97.71 < 0.01 
Simis et al. 2005 Semi-Empirical 0.1756 0.5732 124.52 < 0.05 

Geist 
2007 

Ocean 
Optics 
USB 
4000 

Chlorophyll a 

Robertson et al. MGM Chl Strength 0.5105 0.3102 79.40 > 0.1 
Simis et al. 2005 Semi-Empirical 2.2301 0.7967 119.17 < 0.01 

Robertson et al. MGM PC Strength 1.2858 0.6857 31.94 < 0.01 
Dall'Olmo et al. 2003 3 Band Tuning 1.3382 0.6723 59.80 < 0.01 
Gitelson et al. 2005 3 Band Tuning 0.7518 0.6047 42.97 < 0.01 

Simis et al. 2005 Band Ratio 1.2169 0.5140 78.68 < 0.01 

Phycocyanin 

Simis et al. 2005 Modified Band Ratio 0.6229 0.2100 105.41 < 0.1 
Dall'Olmo et al. 2003 3 Band Tuning 0.9446 0.9422 13.31 < 0.01 
Mittenzwey et al. 1991 Band Ratio 0.7565 0.9388 25.99 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.8994 0.9381 14.88 < 0.01 
Gitelson et al. 1986 Band Ratio 0.8090 0.9309 21.50 < 0.01 

Robertson et al. MGM Chl Strength 0.9806 0.8170 18.01 < 0.01 
Gitelson et al. 2005 3 Band Tuning 0.4234 0.4785 71.65 < 0.01 

Morse 
2007 

Ocean 
Optics 
USB 
4000 

Chlorophyll a 

Simis et al. 2005 Semi-Empirical 0.2124 0.4296 80.75 < 0.01 
Simis et al. 2005 Semi-Empirical 2.4485 0.7316 129.81 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 1.5180 0.6357 62.81 < 0.01 
Robertson et al. MGM PC Strength 1.1869 0.5882 38.70 < 0.01 
Gitelson et al. 2005 3 Band Tuning 0.9103 0.5800 31.77 < 0.01 

Simis et al. 2005 Band Ratio 1.4933 0.5249 77.14 < 0.01 

Phycocyanin 

Simis et al. 2005 Modified Band Ratio 0.8623 0.2792 80.22 < 0.02 
Mittenzwey et al. 1991 Band Ratio 0.6994 0.9166 38.99 < 0.01 

Gitelson et al. 1986 Band Ratio 0.6832 0.8624 41.76 < 0.01 
Gitelson et al. 1986 Modified Band Ratio 0.7401 0.8515 36.16 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 0.7802 0.8490 32.51 < 0.01 
Robertson et al. MGM Chl Strength 0.7784 0.7632 34.50 < 0.01 

Simis et al. 2005 Semi-Empirical 0.2104 0.6029 99.01 < 0.01 

Eagle 
Creek 
and 

Morse 
2007 

Ocean 
Optics 
USB 
4000 

Chlorophyll a 

Gitelson et al. 2005 3 Band Tuning 0.3874 0.5807 83.48 < 0.01 
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The validation on the Morse 2005 ASD data set indicates that the best performing 

model based on the correlation coefficient was the curve fitting model (R2 = 0.93).  All 

other models had strong correlation coefficients (0.78 < R2 < 0.84).  However, all models 

over predicted phycocyanin (1.43 < slope < 2.08).  The validation on the Morse 2005 

AISA Eagle data set indicates that the best two performing algorithms according to 

correlation coefficients were the band tuning models (0.76 < R2 < 0.80).  While the semi-

empirical and curve fitting models had weaker correlation coefficients (0.51 < R2 < 0.64), 

the slope for these two models (1.14 < slope < 1.22) were much closer to 1 than the 

remaining models (1.61 < slope < 1.74).  The validation on the Morse 2007 OO 

USB4000 data set shows that the semi-empirical model had the strongest correlation 

coefficient (R2 = 0.80); however, it also grossly over predicted phycocyanin (slope = 

2.23).  The curve fitting and band tuning models had similar correlation coefficients (0.60 

< R2 < 0.69) and yielded slopes much closer to one (0.75 < slope < 1.34).  The validation 

on the Eagle Creek 2007 OO USB4000 data set indicates that the best two performing 

models according to their correlation coefficient were based off of the semi-empirical and 

Dall’Olmo et al. (2003) 3-band tuning model (0.63 < R2 < 0.70); however, both over 

estimated phycocyanin (1.66 < slope < 2.63).  The two models with slopes close to one 

(1.04 < slope < 1.10) were the Gitelson et al. (2005) 3-band tuning model and the curve 

fitting model.  Both models performed with weaker correlation coefficients (0.54 < R2 < 

0.61). 

The validation on the Eagle Creek and Morse 2007 OO USB4000 data set 

resulted in a similar trend as the validation with the Eagle Creek 2007 OO USB4000 data 

set. The two best performing models according to the correlation coefficient were based 
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on the semi-empirical and Dall’Olmo (2003) 3-band tuning algorithms (0.64 < R2 < 

0.73), but over estimated phycocyanin (1.52 < slope < 2.45).  Models that predicted with 

slopes closer to one (0.91 < slope < 1.19) and reasonable correlation coefficients (0.58 < 

R2 < 0.59) were based on the Gitelson et al. (2005) 3-band tuning and curve fitting 

algorithms.   

The Calibration Model Based on the Randomly Selected Eagle Creek and Morse 2005, 

2006, and 2007 Data Set 

The validation of the models based on the randomly selected Eagle Creek and 

Morse data set is presented in Table 3-7.  When the models were validated with the 

remaining data points from the random Eagle Creek and Morse 2005-2007 data set, the 

best performing model according to the correlation coefficient was based on the curve 

fitting model (R2 = 0.74).  The two remaining models with reasonable correlation 

coefficients were based on the Gitelson et al. (2005) 3-band tuning and modified band 

ratio algorithms.  Since data points were randomly assigned between calibration and 

validation data sets the slopes from all models were near one (0.89 < slope < 1.01). 

Validation of the Calibration Models for Estimating Chlorophyll a 

Calibration Models Based on the Morse 2005 ASD Field Spec Data Set 

The best performing model demonstrated through the validation on the Morse 

2005 AISA Eagle data set was the Mittenzwey et al. band ratio algorithm resulting in a 

correlation coefficient of 0.89.  Other models that had strong correlation coefficients 

(0.76 < R2 < 0.83) include those based on the Gitelson et al. (1986) band ratio, modified 

band ratio, and semi-empirical algorithms.  The model based on the curve fitting 

algorithm had a reasonable correlation coefficient (R2 = 0.61).  Only the model based on 
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the semi-empirical algorithm had a near linear slope (slope = 1.04).  The model based on 

the Gitelson et al. (1986) band ratio algorithm grossly under predicted (slope = 0.47).  

The remaining models with reasonable correlation coefficients under predicted slightly 

(0.71 < slope < 0.79). 

The validation on the Morse 2007 OO USB4000 data set indicates that based on 

correlation coefficients (0.86 < R2 < 0.94) the band ratio, Gitelson et al. (2005) 3-band 

tuning, and curve fitting using strength algorithms performed best.  However if the slope 

(0.89 < slope < 1.12) and rmse (17.94 < RMSE < 19.39) are considered, the best 

performing models are those using  Gitelson et al  (2005) 3-band tuning, curve fitting 

using strength, and semi-empirical algorithms.   

Table 3 - 7.  Applying models calibrated with the Randomly Selected Data Set:  
Models are sorted with descending correlation coefficient (R2).  Selected points come 
from Eagle Creek and Morse data sets from 2005, 2006, and 2007.  Intercept was forced 
through zero, therefore ideal models will have a 1) slope near one 2) correlation 
coefficient (R2) near one and 3) low RMSE. 
 

Data 
Set  

Sensor 
Used Pigment Model Slope R2 

RMSE 
(μg/L) p 

Robertson et al. MGM PC Strength 1.0133 0.7380 42.92 < 0.01 
Gitelson et al. 2005 3 Band Tuning 0.9080 0.6314 45.00 < 0.01 

Simis et al. 2005 Modified Band Ratio 0.9269 0.5267 49.88 < 0.01 
Simis et al. 2005 Semi-Empirical 0.8890 0.4606 62.36 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 0.8947 0.4586 59.83 < 0.01 

Phycocyanin 

Simis et al. 2005 Band Ratio 0.8969 0.4350 56.58 < 0.01 
Mittenzwey et al. 1991 Band Ratio 1.0354 0.7883 21.39 < 0.01 

Gitelson et al. 1986 Modified Band Ratio 0.9949 0.7703 20.61 < 0.01 
Dall'Olmo et al. 2003 3 Band Tuning 1.0220 0.7146 21.09 < 0.01 
Gitelson et al. 2005 3 Band Tuning 1.0220 0.7146 21.09 < 0.01 

Gitelson et al. 1986 Band Ratio 1.0055 0.6963 24.90 < 0.01 
Robertson et al. MGM Chl Strength 0.9979 0.6862 25.84 < 0.01 

Eagle 
Creek & 
Morse 
2005, 
2006, 
2007 

Validation 

All 
Sensors 

Chlorophyll a 

Simis et al. 2005 Semi-Empirical 1.0641 0.3873 37.83 < 0.01 

 

Calibration Models Based on the Eagle Creek and Morse 2006 ASD Field Spec Data Set 

Models validated with the models calibrated with the Eagle Creek and Morse 

2006 ASD Field Spec data set performed poorly according to the correlation coefficients 

(R2 < 0.50) on all Geist data sets for predicting chlorophyll a with the exception of the 
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OO USB4000 data set.  While model built using the Mittenzwey et al. (1991) band ratio 

algorithm shows a strong correlation (R2 = 0.88), chlorophyll a is grossly under predicted 

(slope = 0.54).  This under prediction occurs for all models when applied to the Geist 

2007 OO USB4000 data set (0.18 < slope < 0.56).   

The semi-empirical algorithm resulted in the weakest correlation coefficient (R2 = 

0.59), when validated on the Morse 2005 ASD Field Spec data set.  All other models had 

strong correlation coefficients (0.70 < R2 < 0.81).  All models had near linear correlations 

(1.06 < slope < 1.19).  Similar results were obtained when models were applied to the 

Morse 2005 AISA Eagle data set.  All models had a strong correlation coefficient (0.73 < 

R2 < 0.87) with the exception of the semi-empirical model (R2 = 0.39).  However, the 

best models, based on both slope and correlation coefficient (0.85< slope < 0.93), were 

the Mittenzwey et al. (1991) band ratio, Dall’Olmo et al. (2003) 3-band tuning, and the 

curve fitting algorithms.  When applied to the Morse 2007 OO USB4000 data set, five 

models based on the Dall’Olmo et al. (2003) 3-band turning, band ratios, modified band 

ratio, and curve fitting algorithms had strong correlation coefficients (0.82 < R2 < 0.94).  

Of these models the band turning and curve fitting algorithms had the closest slopes to 

one (0.94 < slope < 0.98).  These same five models had the highest correlation 

coefficients (0.89 < R2 < 0.91) and closest slopes to one (0.64 < slope < 0.73) when 

applied to the Eagle Creek 2007 OO USB4000 data set.   

Not surprisingly, when validated with the Eagle Creek and Morse 2007 OO 

USB4000 data set, the same models validated with the Morse 2007 OO USB4000 data 

set had the highest correlation coefficients (0.76 < R2 < 0.92) and similar slopes (0.68 < 

slope < 0.78).   
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Calibration Models Based on the Randomly Selected Eagle Creek and Morse 2005, 2006, 

and 2007 Data Set 

When the models were validated with the models calibrated with the random 

Eagle Creek and Morse 2005-2007 data set, the worst performing model according to the 

correlation coefficient was based on the semi-empirical algorithm (R2 = 0.39).  All other 

models performed nearly equally according to correlation coefficient (0.69 < R2 < 0.79), 

slope (0.99 < slope < 1.04) and error (20.61 < RMSE < 25.84).   

Discussion 

Performance of Band Ratio/Modified Band Ratio Algorithms 

 For chlorophyll a prediction all band ratio/modified band ratio algorithms perform 

nearly equally with all calibration and validation data sets.  Only one algorithm, based on 

Gitelson et al. (1986), performed poorly when calibrated with the ASD Field Spec data 

sets and applied to the AISA-Eagle data sets resulting in under estimation of chlorophyll 

a and an increase in RMSE.  In both cases, chlorophyll a was greatly under predicted 

when compared to other band ratios.  This is likely due to calibration of the AISA-Eagle 

data set. 

 The performance of the band ratio/modified band ratio algorithms for predicting 

phycocyanin are not nearly as good as  for predicting chlorophyll a estimation.  There are 

several possibilities why the accuracy of phycocyanin estimation is reduced with band 

ratio/modified band ratio algorithms.  The first possibility is spectral overlapping of 

phycocyanin with chlorophyll a.  An increase in phycocyanin does not necessarily 

correspond to a linear increase in other potentially interfering constituents, therefore 

reducing temporal and spatial transferability.  While we have shown that phycocyanin 
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concentration can shift the reflectance trough near 620 nm (Figure 3-1), it is possible that 

different water constituents (i.e. chlorophyll a) also influence the position of the 

reflectance trough.  Secondly, spectral saturation could occur at higher concentrations, 

reducing correlation between the reflectance at these wavelengths and phycocyanin 

concentration.  Lastly, the wavelength chosen by most algorithms to reduce the influence 

of CDOM (~700 nm) is relatively far from the primary wavelength related to 

phycocyanin absorption (~628 nm), when compared to the primary wavelength used by 

many chlorophyll a algorithms (~670 nm).  Since these equations make the assumption 

that the CDOM absorption value at 620 nm is near the absorption value of CDOM at 700 

nm, differences in the CDOM absorption value between these two wavelengths will 

reduce the accuracy of the models built with these algorithms.  In a similar way, tripton 

also can affect the algorithm.   

Performance of Band Tuning Algorithms 

In this paper we found that the Dall’Olmo et al. (2003) stepwise regression 

method consistently worked better than or as well as the Gitelson et al. (2005) method for 

predicting chlorophyll a.  Although the Dall’Olmo et al. (2003) method did not perform 

well when the model was calibrated with the Morse 2005 ASD Field Spec and then 

applied to the Morse 2007 OO USB4000 data set.  This discrepancy is likely due to the 

calibration wavelengths utilized by the Morse 2005 ASD Field Spec models.  Very 

different Rλ2 wavelengths were determined (Dall’Olmo = 721 nm; Gitelson = 697 nm), 

and previous papers have found performance of algorithms to be sensitive to the NIR 

wavelength (Gitelson 1992; Schalles et al. 1998; Yacobi et al. 1995).   
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In contrast, the Gitelson et al. (2005) method worked best for predicting 

phycocyanin.  The only time the Gitelson et al. (2005) 3-band tuning algorithm does not 

work satisfactorily for predicting phycocyanin is when models were calibrated with the 

Morse 2005 ASD data set and applied to the Morse 2007 OO USB4000 data set.  This is 

likely due to either the extrapolation of the models or the relatively short Rλ1 wavelength 

(615 nm) calculated using the step-wise regression proposed by Gitelson et al. (2005) on 

a small calibration data set (n = 16).  Since the Dall’Olmo et al. (2003) method works 

with extrapolation, the short wavelength selected by the Gitelson et al. (2005) method is 

likely to be the main cause of the performance of this model.  All of the other calibration 

data sets resulted in a wavelength of 628 nm or greater (Table 3-2).  The wavelength 

selected using this calibration data set does not best represent the temporal differences in 

Morse Reservoir.  Increasing the sample size and temporal variability, as in the Eagle 

Creek and Morse 2006 ASD Field Spec calibration data set, would likely overcome 

aberrant wavelengths selected with these methods.   

The band tuning method works well for estimating pigments.  One reason this 

method outperforms traditional band ratio methods is that wavelengths used in the 

algorithm can be adjusted for correlation to phycocyanin concentrations with respect to 

conditions in the calibration reservoir(s).  While the maximum peak/trough method does 

adjust the wavelength utilized, the ratio of peaks and troughs do not necessarily correlate 

to phycocyanin concentration as strongly as the spectral parameters derived by band 

tuning.   
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Performance of Semi-Empirical Algorithms 

For estimating chlorophyll a, the Simis et al. (2005) algorithm performed well 

when transferred temporally when calibrated with the Morse 2005 ASD Field Spec and 

validated with the Morse 2007 OO USB4000 data set.  However, this algorithm 

performed poorly when calibrated with the Eagle Creek and Morse 2006 ASD Field 

Spec, and Eagle Creek and Morse Random data sets.  The failure of this algorithm is 

likely due to its inability to transfer across the two reservoirs due to slight differences in 

the inherent optical properties (IOP) (i.e. absorption and backscattering coefficients) for 

estimating chlorophyll a in the two reservoirs.  While most algorithms tested in this paper 

show that Eagle Creek and Morse Reservoirs are similar and can be combined in one data 

set, there is incompatibility between Eagle Creek and Morse reservoirs for estimating 

chlorophyll a using the Simis et al. (2005) semi-empirical approach.   

In contrast, the semi-empirical approach shows more promise for phycocyanin 

prediction across both Eagle Creek and Morse Reservoirs.  While the coefficients of 

determination are high in most of the validation data sets, the models under/over predict 

phycocyanin.  It was stated as a problem in the Simis et al. (2005) paper to use fixed 

absorption coefficients.  The semi-empirical algorithm utilized in this study lacks an 

effective method for removing the influence of suspended sediments which likely vary 

both temporally and spatially.  Incorporating these parameters may increase the 

performance of this algorithm. 

Performance of Curve-Fitting Algorithms  

 According to this study, models built on MGM output parameters for FWHM and 

area do not transfer across instruments.  This is possibly due to the differences in spectral 
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resolution.  FWHM and area, a function of FWHM, is likely more sensitive to spectral 

resolution since the curve fitting algorithm adjusts the width of the Gaussian curve based 

on the spectral curve supplied.  If models are built on data sets with different spectral 

resolutions, the differences in spectral resolution may affect transferability of the models 

based on MGM output parameters FWHM and area.  One way to test this is to average 

spectra to different spectral resolutions and apply the MGM models built from one data 

set to another. 

 Curve fitting models using the MGM output parameters for strength successfully 

predicted both chlorophyll a and phycocyanin.  It is likely that MGM can remove the 

some of the effects caused by minor differences in the inherent optical properties between 

reservoirs during the continuum removal processes. Although models built from MGM 

strength were able to accurately estimate chlorophyll a; these models did not outperform 

band ratio/modified band ratio models.  As stated in Robertson et al. (in review), the 

MGM output parameter for chlorophyll a likely includes absorption features caused by 

chlorophylls b and/or c.  This could reduce the overall performance of predicting 

chlorophyll a.  

In contrast the models built from MGM strength were able to perform as well as 

or better than other models in estimating phycocyanin concentration.  One reason that 

these models outperform other algorithms is the ability of the MGM software to 

minimize the influence of overlapping chlorophyll a and phycocyanin absorptions.    

 One exception to the performance of the MGM models based on the output 

parameter for strength is when the models were applied to the AISA-Eagle data set.  The 

poorer performance with these data sets is likely due to reduced spectral resolution.  With 
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fewer wavelengths, it is possible that the true absorption peak is not represented in all 

spectra, causing flattened peaks and reduced correlation (Figure 3-4).   

Figure 3 - 4.  Differences in MGM curve fitting between ASIA and ASD Field Spec 
data collection:  a) sample #1 b) sample #15 

a)   

b)  
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Issues involving Transferability of Models to Geist Reservoir 

 As stated in Robertson et al. (in review), there was difficulty in transferring 

traditional band ratio and MGM based models to Geist Reservoir, likely caused by 

dredging and mining operations that stir up sediment and provide a direct input of ground 

water into the reservoir.  A local mining company routinely dredges for sands and silts in 

the northeastern basin of the reservoir.  Vallely (2008) found sediments to be one of the 

major confounding factors in influencing algorithms tested in her study.  Additionally, 

the same company has a gravel pit adjacent to the reservoir.  In order to maintain a water 

level to extract the sand and gravel from this pit, water is pumped directly into the 

reservoir.  This direct input of ground water alters the water chemistry constantly, making 

it difficult to correlate ground truth data to aerial/satellite based sensors.  In this study we 

confirmed several additional methods, such as the semi-empirical and band tuning 

methods are also incapable of addressing this issue.  As a result of our study, these 

algorithms work best on reservoirs with minimal anthropogenic impacts and are likely 

only transferable to other reservoirs with similar conditions. 

Conclusion 

 For predicting chlorophyll a, no algorithm greatly outperformed other algorithms.  

Because band ratio and modified band ratio models are easy to use, we recommend using 

these approaches to estimate chlorophyll a of the Central Indiana Reservoirs over other 

methods tested in this study (semi-empirical, 3 band tuning, and MGM).  The result 

indicates that the band tuning method works equally well for estimating chlorophyll a; 

however, this method will require additional time in developing calibration wavelengths.  

In addition, the spectral resolution of the AISA data affected the effectiveness of MGM 
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for estimating chlorophyll a, while the MGM with higher spectral resolution datasets 

yielded chlorophyll estimates at high accuracy.  In contrast the semi-empirical method is 

affected by spatial transferability, not spectral resolution.  The semi-empirical model can 

work temporally on the same reservoir; however, due to differences in inherent optical 

properties (IOP) across reservoirs, these models are less effective.   

 For predicting phycocyanin, only two algorithms performed consistently well 

with different calibration and validation data sets: the models built with the MGM 

phycocyanin strength and the Gitelson et al. (2005) 3-band tuning algorithm.  These 

sophisticated models are an improvement to the traditional band ratios in estimating 

phycocyanin.  They take into account the inherent complex spectral overlapping of 

phycocyanin and other pigments near 620 nm.  MGM can separate spectral overlapping 

by spectral deconvolution.  Band tuning methods select wavelengths that correlate to 

either direct pigment estimation phycocyanin or water constituents that interfere with this 

signal.  The wavelengths correlating to other water constituents can then be used to 

remove the effects of these water constituents on estimating phycocyanin concentration.  

While the semi-empirical model should be able to resolve spectral overlapping, this 

model does not perform well in estimating phycocyanin when calibrated with multiple 

reservoirs.  The reduced effectiveness of this model is related to the same issues when 

estimating chlorophyll a and is likely due to differences in the inherent optical properties 

between the reservoirs tested.   
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IV: USING A PARTIAL LEAST SQUARES (PLS) METHOD FOR ESTIMATING 

CYANOBACTERIAL PIGMENTS IN EUTROPHIC INLAND WATERS 

Abstract 

Midwestern lakes and reservoirs are commonly exposed to anthropogenic 

eutrophication.  Cyanobacteria thrive in these nutrient rich-waters and some species pose 

a threat to humans through the production of toxins and other compounds that degrade 

the water quality.  Managers for drinking water production are interested in the rapid 

identification of cyanobacterial blooms to minimize effects caused by harmful 

cyanobacteria.  There is potential to monitor cyanobacteria through the remote sensing of 

two algal pigments: chlorophyll a (CHL) and phycocyanin (PC).  Several empirical 

methods that develop spectral parameters (e.g., simple band ratio, band-tuning, and band 

absorption) sensitive to these two pigments and map reflectance to the pigment 

concentration have been used in a number of investigations using field-based 

spectroradiometers.  This study tests a multivariate analysis approach partial least squares 

(PLS) regression for the estimation of CHL and PC.  PLS models were trained with 35 

spectra collected from three central Indiana reservoirs during a 2007 field campaign with 

dual-headed Ocean Optics USB4000 field spectroradiometers (355 – 802 nm, nominal 

1.0 nm intervals), and CHL and PC concentrations of  the corresponding water samples 

analyzed at Indiana University-Purdue University at Indianapolis.  Validation of these 

models with 19 remaining spectra show that PLS (CHL R2 = 0.90, slope = 0.91, RMSE = 

20.61 μg/L; PC R2 = 0.65, slope = 1.15, RMSE = 23.04. μg/L) performed equally well to 

the band tuning model based on Gitelson et al. 2005 (CHL: R2 = 0.75, slope = 0.84, 

RMSE = 40.16 μg/L; PC: R2 = 0.59, slope = 1.14, RMSE = 20.24 μg/L).   
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Introduction 

Since cyanobacteria have been known to reduce surface water quality through the 

production of toxins (Bold and Wynne 1985; Chorus and Bartram 1999) and taste-

altering chemicals (Chorus and Bartram 1999; Christensen et al. 2006), surface water 

managers are interested in rapid identification of cyanobacterial blooms.  Current 

approach to estimating cyanobacterial abundance is to estimate cyanobacterial pigments 

chlorophyll a and phycocyanin from in situ reflectance (Dekker 1993; Gitelson et al. 

1995; Randolph 2007; Randolph et al. 2008; Richardson 1996; Schalles 2006; Schalles 

and Yacobi 2000; Sengpiel 2007; Simis et al. 2005; Simis et al. 2007), and relate 

chlorophyll a to total algal biomass, phycocyanin to cyanobacteria abundance.   

Most remote sensing models estimating chlorophyll a use the strong absorption at 

660-666 nm due to the minimum influence of other pigments (Jeffrey et al. 1997; Jeffrey 

and Wright 2006; Rowan 1989). However, chlorophyll a does have additional absorption 

features.  Chlorophyll a strongest absorption feature is in the spectral range of 428-432 

nm; however, this range includes overlapping absorptions of carotenoids in the 400-500 

nm range (Jeffrey et al. 1997; Rowan 1989).  Chlorophyll a absorbs less strongly around 

382.7 nm, 409-417.6 nm, 530-535.5 nm, 575-580.3 nm and 614-618.2 nm (Jeffrey et al. 

1997).  Cyanobacterial phycocyanin has strong absorption in the region of 612-628 nm 

along with a florescence maximum in the region of 632-651 nm (Rowan 1989).  

Cyanobacteria have also been shown to contain the related biliprotein phycoerythrin 

which absorbs 550-572 nm and fluoresces around 570-581 nm (Rowan 1989). 

Traditionally the aquatic remote sensing community uses band ratios to estimate 

cyanobacterial pigments.  Although the band ratio method may work on one reservoir, it 
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is not always transferable spatially due to differences in inherent optical properties (i.e. 

absorption and backscattering coefficients) (Dekker 1993; Randolph et al 2008).  

Dall’Olmo et al. (2003) attempted to address this issue by creating an algorithm that uses 

a step-wise regression method to determine the wavelengths of highest correlation to 

chlorophyll a.  Gitelson et al. (2005) proposed a similar three-band tuning model with a 

slightly different starting strategy for the stepwise regression.  The band tuning approach 

was validated in Dall’Olmo et al. (2003) and Gitelson et al. (2005), Gitelson et al. (2008) 

for estimating chlorophyll a.  In all three studies a strong correlation between total and 

estimated chlorophyll content (R2 > 0.9).  Robertson (2009) proved that this approach is 

also valid for phycocyanin estimation.   

Robertson (2009) recently compared several remote sensing methods for 

estimating chlorophyll a and phycocyanin, including empirical band ratios, band tuning, 

semi-empirical, and curve fitting models.  Robertson (2009) found that empirical band 

ratios were the most effective and time saving method for estimating chlorophyll a from 

three eutrophic reservoirs located in central Indiana.  This study did show that curve 

fitting (Robertson, 2009), 3 band tuning (Dall’Olmo et al., 2003; Gitelson et al., 2005; 

Gitelson et al., 2008) also effective.  Only semi-empirical models (Simis et al. 2005) did 

not perform equally well due to differences in inherent optical properties between 

reservoirs.  The 3 band tuning method was the best performing method for estimating 

phycocyanin from these same reservoirs.  The curve fitting (Robertson, 2009) method 

was also effective in estimating phycocyanin when spectral resolution was high ( ≤ 1 

nm).  Robertson (2009) also confirmed earlier studies that band ratios were less effective 

due to spectral overlapping of absorption features from different pigments near 620 nm.   
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This study seeks to test an alternative approach partial least squares (PLS) 

regression for estimating cyanobacterial pigments chlorophyll a and phycocyanin.  In 

order to determine if PLS is an effective alternative to commonly used methods, this 

study will compare the results from PLS to two other methods: traditional band ratios, 

and a 3 band tuning method.  These two methods were selected for the comparison 

because the band ratio proves an effective method for estimating chlorophyll a and the 

band tuning for phycocyanin.   

Methods 

Study Site 

Three reservoirs located in central Indiana were investigated: Eagle Creek, Geist, 

and Morse.  Figure 4-1 shows the location of each reservoir.  Eagle Creek, Geist, and 

Morse Reservoirs provide water for > 800,000 residents of the greater Indianapolis area.  

All three reservoirs have similar characteristics including depth (3.2-4.7 m), surface area 

(5-7.5 km2), volume (21-28 million m3), watershed area (420-590 km2) and residence 

time (55-70 days) (Li et al. 2006).  They are also impaired by high nutrient loads (mean 

total P = 94-100 µg*L-1, mean total N = 2-4.1 µg*L-1 ) (Li et al. 2006) which promote the 

growth of nuisance algae, including cyanobacteria.  All three reservoirs have reported 

taste and odor issues (IDEM 2006; Li et al. 2006).   

In situ Reflectance Measurement 

Number of samples for water samples and spectra signatures, and the pigment 

ranges for these samples are listed in Table 4-1.  Samples were collected on each 

reservoir only once and were not taken with any other reservoirs concurrently.  Spectra 

were collected facing the sun on a boat away from shore. 
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Figure 4 - 1.  Central Indiana reservoirs:  Map of the three study locations; Eagle 
Creek, Geist, and Morse Reservoirs.  Indianapolis is indicated for reference. 

 
Table 4 - 1.  Summary of sample collection:  Includes the reservoir, number of samples 
(n) and pigment ranges. 
 

Reservoir 
Eagle Creek Geist Morse 

Pigment  Sample 
Number 

(n) 

Min. 
(µg/L) 

Max. 
(µg/L) 

Sample 
Number 

(n) 

Min. 
(µg/L) 

Max. 
(µg/L) 

Sample 
Number 

(n) 

Min. 
(µg/L) 

Max. 
(µg/L) 

Chl 22 16.9 255 16 14.45 193.18 14 26.9 203.8 
PC 22 30.9 114.1 16 0.91 148.95 15 41.2 136.3 

 
Water samples for pigment analysis were collected from surface water with 1 L 

amber HDPE bottles and stored on ice prior to filtration.  The boat-based sensor used in 

this study includes a pair of Ocean Optics (OO) USB4000 visible and near infrared 

(V/NIR) spectroradiometers (Ocean Optics, Inc., Dunedin, FL, USA) in a dual head 

system.  One USB 4000 spectroradiometer was set with a cosine corrector to determine 

down-welling radiance, thus reducing atmospheric effects.  The second USB 4000 
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spectroradiometer was used to measure up-welling radiance from the target of interest.  

The USB 4000 spectroradiometer has a spectral resolution of approximately 0.2 nm and a 

spectra range of 351-1047 nm for a total of 3645 bands 

The fiber optic cable for the USB 4000 spectroradiometers has an IFOV of 0.14 

rad.  The cable was mounted on an extendable pole with a nadir viewing angle and held 

approximately 0.5 m above the water surface.  This produces a measured water surface 

area with a diameter of 0.07 m.  Calibration for upwelling irradiance for the USB 4000 

spectroradiometers was completed by using a 20% Spectrolon reflectance panel.  In order 

to reduce noise in the spectra, the reflectance spectrum at each site was averaged over 8 

readings.  These spectra were averaged to 56 spectral bands ranging from 355 nm - 802 

nm with an average spectral resolution of 7.8 nm.   

Lab Analysis of Water Samples 

Steps for pigment analysis were completed under subdued light conditions.  Water 

samples were filtered in duplicate within 24 hours of the sample collection for later 

extraction of pigments.  Samples for the extraction of chlorophyll a were prepared on 

0.47 µm acetate filters, and those for the extraction of phycocyanin on 0.47 µm glass 

fiber filters (GFF). The samples were stored at -20°C for no longer than 6 months before 

analysis. 

Chlorophyll a was extracted following the extraction method described in 

Environmental Protection Agency (EPA) 445 (Arar and Collins 1997).  The 

concentration of chlorophyll a was corrected for pheophytin and measured 

fluormetrically using a TD-700 Fluorometer (Turner Designs, Inc.) fitted with a Daylight 

White Lamp and Chlorophyll Optical Kit (340-500 nm excitation filter and emission 
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filter > 665 nm).  For chlorophyll a analysis the fluorometer was calibrated using 

chlorophyll a from a spinach standard (Sigma-Aldrich 10865).   

Phycocyanin was extracted based on the method described in Sarada (1999) and 

Randolph et al. (2008).  Phycocyanin  was measured fluormetrically using a TD-700 

Fluorometer (Turner Designs, Inc.) fitted with a Cool White Mercury Vapor Lamp and a 

Phycocyanin Optical Kit (630 nm excitation and 660 nm emission filters).  For 

phycocyanin analysis the fluorometer was calibrated using C-phycocyanin from Spirulina 

sp. (Sigma-Aldrich P6161).   

If the percent error calculated between replicates in pigment analysis was larger 

than 20%, the sample was not used in data analysis.   

Estimation of Pigment Abundance with PLS 

 Partial least squares (PLS) regression is a full spectrum multivariate statistical 

analysis tool developed by Wold (1966).  In the 1980’s, PLS gained popularity in the 

field of chemistry for spectral analysis (Geladi and Kowalski 1986; Haaland and Thomas 

1988).  The underlying assumption of a PLS model is that the reflectance spectra are 

driven by components or factors that are linear combinations of observed explanatory 

variables.  PLS is designed to find as few eigenvectors of the explanatory variables as 

possible.  These eigenvectors should produce score values that summarize the variance of 

the explanatory variables and are highly correlated with the response variables.  PLS 

determines a few eigenvectors of the explanatory variables such that the corresponding 

scores not only explain the variance of the explanatory variables but also have high 

correlation to the response variables.  A simplified PLS model (Figure 4-2) consists of 

two outer relations resulting from the eigenstructure decomposition of both the matrix  

 76



Figure 4 - 2.  A diagram shows two outer relations and one inner relation of a PLS 
model 
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containing explanatory variables (i.e., spectral bands) and the matrix containing response 

variables (i.e., pigments or water content),  and an inner relation that links the resultant 

score matrices from these two eigenstructure decompositions (Geladi and Kowalski, 

1986).  The goal of PLS modeling is to minimize the norm of F while maximizing the 

covariance between X and Y by the inner relation.  This inner relation is a multiple linear 

regression between the score matrices U and T in which B is an n×n regression 

coefficient matrix determined via least square minimization.  Haaland and Thomas 

(1988) provided a detailed description of PLS and Geladi and Kowalski (1986) published 

a tutorial for using PLS.  Application of PLS has been utilized in a wide variety of remote 

sensing applications including but not limited to mapping/estimating soil components 
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(Chang and Laird 2002; Kooistra et al. 2001), lunar mineral composition (Li 2006, 2008), 

and plant/crop characteristics (Borregaard et al. 2000; Cho et al. 2007; Hansen and 

Schjoerring 2003; Nguyen and Lee 2006).   

In this study we combined the data from all three reservoirs and randomly divided 

the data set into a calibration (n = 35) and validation (n = 19) data set.  In the case of 

processing spectral data using PLS, the PLS_Toolbox ver. 3.5 (Eigenvector Research, 

Inc.) for MATLAB (The MathWorks, Inc.) was utilized.  Reflectance spectra were 

converted to absorbance and preprocessed using mean center.  To select the optimal 

number of PLS factors, this study used the ‘leave one out’ method as described in 

Haaland and Thomas (1988).   

Estimation of Pigment Abundance with Band Ratios and Band Tuning Methods 

 Robertson (2009) found that band ratio algorithms represented by equations 4-1 

and 4-2 performed better than other three other band ratio algorithms in a comparative 

study.  

Chlorophyll a:  (R705 – R670)/ R670  (Mittenzwey et al. 1991)  (eq. 4-1) 

Phycocyanin:  R709 / R620  (modified from Simis et al. 2005) (eq. 4-2) 

Wavelengths utilized in the two 3-band tuning methods were calculated using a step-wise 

regression program written in MATLAB that follows the methods outlined in Dall’Olmo 

et al. (2003), Gitelson et al. (2005), and Robertson (2009), a summary of final 

wavelengths is located in Table 4-2.  These wavelengths were then used to calibrate the 

model found in equation 4-3 for estimating pigment concentrations 

(1/R λ1– 1/R λ2) * R λ3  (eq. 4-3) 
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Table 4 - 2.  Wavelengths determined using band tuning methods:  Final wavelengths 
as determined by stepwise regression methods described in Dall'Olmo et al. 2003 and 
Gitelson et al. 2005.  Wavelength ranges are restrained as follows: Rλ1(Chlorophyll) = 660-
690 nm, Rλ1(Phycocyanin) = 610-640, Rλ2 = 690-730 nm, and Rλ3 = 740-800 nm. 
 

Dall'Olmo et al.2003 Gitelson et al.2005 

Wavelengths Chl PC Chl PC 

R1 664.1 632.4 695.5 632.4 
R2 718.7 703.2 734 703.2 

R3 764.4 764.4 764.4 764.4 
 
Results and Discussion 

Calibration of the models 

A summary of the calibration models for the band ratio and band tuning 

algorithms are in Table 4-3.  All calibration models have similar correlation coefficients 

(0.78 < R2 < 0.87).  For the two PLS models, examining the weight loading vectors can 

provide insight to how PLS is working and determine which regions are more sensitive to 

pigment concentration.  Figure 4-3 displays the first three weight loading vectors.  For 

chlorophyll a estimation the first weight explain 87.19% of the total variation with only 

one additional weight explaining greater than 5% of the variation (9.90%).  For 

phycocyanin estimation the first weight explained 99.84% of the total variation.  No other 

weight explained greater than 5% of the variation.   

Table 4 - 3.  Building models with the calibration data set:  (n = 35) Models based on 
correlation between pigments and spectral indices/parameters.  Where x = spectral index 
and y = pigment concentration. 

 
Pigment Spectral Parameter R2 Model 

Simis et al. 2005 Band Ratio 0.8703 y = 158.73x - 106.60 

Dall'Olmo et al. 2003 3 Band Tuning 0.8037 y = 400.00x + 30.60 Phycocyanin 

Gitelson et al. 2005 3 Band Tuning 0.7903 y = 400.00x + 30.60 

Mittenzwey et al. 1991 Band Ratio 0.7283 y = 357.14x - 20.14 

Dall'Olmo et al. 2003 3 Band Tuning 0.7618 y = 344.83x + 70.38 Chlorophyll a 

Gitelson et al. 2005 3 Band Tuning 0.7795 y = 625x + 412.63 
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Figure 4 - 3.  Weights for PLS models:  a) weight 1, b) weight 2, and c) weight 3.  For 
chlorophyll a estimation the weights explain 87.19%, 9.90%, and 1.84% of the variation 
respectively.  For  phycocyanin estimation the weights explained 99.84%, 0.11%, and 
0.04% of the variation respectively. 
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The shapes of the first weight for both chlorophyll a and phycocyanin estimation 

are nearly identical (Figure 4-3a).  Haaland and Thomas (1986) describe the first weight 

as an average absorption spectra.  The regions that most strongly correlate to pigment 

absorption are the regions where carotenoid/chlorophyll (400-500 nm), phycocyanin 

(610-640 nm), chlorophyll (660-680 nm), and water (730-780 nm) absorptions occur.  

Areas in the spectrum that have weaker correlation to pigment absorption include the 

‘green peak’ (~550 nm) and the reflectance peak caused by cell scattering (~700 nm).   

While the remaining two weights for pigment estimation are not as significant as 

the first, they are worth examining.  In weight two (Figure 4-3b), there are still 

similarities between the chlorophyll a and phycocyanin weights; however, there are a few 

regions of deviation.  For both pigments water absorption (730-800 nm) has a negative 

weight.  This negative weight in the water absorption region is likely due to 
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compensation for the strong positive weight in the weight 1 that does not correlated to 

pigment estimation.  Greater weight is attributed to estimating chlorophyll a in the 400-

500 nm range with smaller peaks in weights at higher wavelengths.  While the 400-500 

nm region has strong chlorophyll absorptions, accessory pigments such as the carotenoids 

do influence reflectance spectra in this range.  Without including carotenoid data, we 

cannot determine if the weight is more closely related to chlorophyll estimation or these 

accessory pigments.  In contrast, the weight for phycocyanin estimation shows the 

highest values at the region of phycocyanin absorption (610-640 nm) and chlorophyll 

absorption.  This consistence can be attributed to co-linearity of the pigments.  This co-

linearity originates from the cyanobacterial dominance in the waters investigated in this 

study where an increase in cyanobacterial abundance correlates to increases in both 

chlorophyll a and phycocyanin.  In waters not dominated by cyanobacteria, it is likely the 

co-linearity between both pigments will not be as strong and the weights would likely 

change.  The minor peak in weights near 580 nm is likely due to absorption and 

fluorescence of phycoerythrin that normally masked in the reflectance spectra but also 

increases with increased algal abundance. 

The third weight explains very little of the PLS model; however, upon examining 

the shape of the third weight (Figure 4-3c), there are only minor differences between both 

chlorophyll a and phycocyanin estimation.  The only region with a strong positive weight 

in both pigment estimations is between 550-700 nm.  This region again is related to 

absorptions dominated by phycocyanin and chlorophyll absorption.  In weight 3, the 

phycocyanin peak (610-640 nm) dominates both weights in the positive direction.  While 

a near linear slope from 400 nm to 500 nm dominates in the negative direction.  This 
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negative weight in this region is likely due to the correction of the positive weight for 

carotenoids in the previous two weights.    

Validation of the models 

A summary of the validation of the models can be found in Table 4-4.  When the 

calibration models were applied to the validation data set, all models had high statistical 

significance (p < 0.01).  As shown in Figure 4-4a, one exception was the band ratio based 

on the algorithm presented in Simis et al. (2005) (p < 0.05).  All models predicted with a 

near linear relationship (0.84 < slope < 1.15) (Figure 4-4).  For chlorophyll a estimation, 

the two best performing models were the 3 band tuning method from Dall’Olmo et al. 

2003 and the PLS method and both resulted in nearly identical coefficients of 

determination (R2 = 0.90) and root mean square error (RMSE ≈ 20 μg/L).  .  For 

phycocyanin estimation the PLS method had a slightly higher coefficient of 

determination (R2 = 0.65) and lower error (RMSE = 23.04) as compared to the two 3 

band tuning methods that yielded the coefficient of determination (R2 = 0.59) and error 

(RMSE = 31.2 μg/L). 

Table 4 - 4.  Validation of the models: (n = 19) Intercept was forced through zero, 
therefore ideal models will have a 1) slope near one 2) correlation coefficient (R2) near 
one and 3) low RMSE.   
 

Pigment Model Slope R2 
RMSE 
(ppb) 

p 

Simis et al. 2005 Band Ratio 1.0491 0.5250 27.74 < 0.05 

Dall'Olmo et al. 2003 3 Band Tuning 1.1353 0.5949 31.20 < 0.01 

Gitelson et al. 2005 3 Band Tuning 1.1353 0.5949 31.20 < 0.01 
Phycocyanin 

PLS 1.1518 0.6514 23.04 < 0.01 

Mittenzwey et al. 1991 Band Ratio 1.0318 0.8334 27.22 < 0.01 

Dall'Olmo et al. 2003 3 Band Tuning 0.9926 0.8969 20.24 < 0.01 

Gitelson et al. 2005 3 Band Tuning 0.8359 0.7517 40.16 < 0.01 
Chlorophyll a 

PLS 0.9102 0.8955 20.61 < 0.01 
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Figure 4 - 4.  Estimating pigments with the validation data set:  Correlations between 
actual and estimated pigment concentration (μg/L) from a) band ratio algorithms, b) 
Dall’Olmo et al. (2003) 3-band tuning, c) Gitelson et al. (2005) 3-band tuning, d) Partial 
Least Squares (PLS). 
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Both the band tuning method and PLS for chlorophyll a estimation performed 

equally well in estimating chlorophyll a.  Since chlorophyll a has a region of strong 

absorption with little overlap of accessory pigments, fewer wavelengths are necessary for 

its estimation.  In contrast, the slight improvement in estimating phycocyanin with PLS 
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may occur because of spectral overlapping in the region where phycocyanin absorbs the 

strongest (~620 nm).  Since PLS incorporates wavelengths from the entire spectrum, it 

can better estimate phycocyanin.  While the band tuning method is limited to three bands, 

it performs nearly as well, indicating that this model explains nearly as much of the 

variation in phycocyanin estimation as the PLS model.   

While the three band tuning model works well in this study, Le et al. (2009) has 

shown that an additional band is necessary for modeling on highly turbid lakes.  Since 

PLS is a full spectrum model, additional wavelengths should not be necessary to build a 

model in these conditions.  In contrast, PLS contains redundant and unnecessary 

information because it does incorporate the entire spectrum into the model.  If it is 

determined that a 3 band model works well, it is possible to use a smaller spectral dataset 

to build these models.   

Conclusion 

In this study the 3 band tuning and PLS methods are preferred over traditional 

band ratios for estimating phycocyanin and chlorophyll a.  When comparing between the 

two complex models tested in this study neither the 3 band tuning nor the PLS method 

outperformed the other.  Both methods perform nearly equal in this study for predicting 

cyanobacterial pigments.  Both models are recommended for future development   
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V: CONCLUSION 

The results from studies presented in chapters 2-4 confirm that hyperspectral 

remote sensing of cyanobacterial pigments is feasible in multiple inland water bodies.  

Both chlorophyll a and phycocyanin showed strong correlation between the estimated 

and actual pigment values with several of the algorithms.   

In all three studies, chlorophyll a estimation was similar with all tested 

algorithms.  While complex models may perform slightly better in some cases, the 

benefit of using traditional band ratios is ease and quickness in applying the models to 

new data sets in estimating pigment concentrations.  Therefore, these studies suggest 

using traditional band ratios for predicting chlorophyll a concentrations in eutrophic 

inland waters. 

While minor differences in methods make it difficult to directly compare the 

results from the curve fitting and PLS models, these studies show that phycocyanin is 

better estimated using complex models such as the curve fitting, PLS, and band tuning.  

The curve fitting models are limited by spectral resolution and are best applied in cases 

where very high spectral resolution is available (≈1 nm).  PLS and band tuning methods 

perform equally in similar conditions.  The band ratio algorithm has an advantage over 

PLS in that once the calibration wavelengths are determined; pigment estimations can be 

derived quickly and easily using traditional band ratios.  Either model is recommended 

for estimating phycocyanin. Situational needs should be considered in determining the 

method used by water managers.   

These algorithms performed well when applied to Eagle Creek and Morse 

Reservoirs; however, issues arose when some of these models were applied to Geist 

Reservoir.  No algorithm was able to overcome issues attributed to the anthropogenic 

disturbances in Geist Reservoir that affect water characteristics.  In order to address this 
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issue, current algorithms will have to be improved or a different approach, such as bio-

optical modeling, should be investigated.   
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