1,546 research outputs found

    Computational drug discovery for the Zika virus

    Get PDF
    Few Zika virus (ZIKV) outbreaks had been reported since its first detection in 1947, until the recent epidemics occurred in South America (2014/2015) and expeditiously became a global public health emergency. This arbovirus reached 0.5-1.3 million cases of ZIKV infection in Brazil in 2015 and rapidly spread in new geographic areas such as the Americas. Despite the mild symptoms of the Zika fever, the major concern is related to the related severe neurological disorders, especially microcephaly in newborns. Advances in ZIKV drug discovery have been made recently and constitute promising approaches to ZIKV treatment. In this review, we summarize current computational drug discovery efforts and their applicability to discovery of anti-ZIKV drugs. Lastly, we present successful examples of the use of computational approaches to ZIKV drug discovery

    Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms.

    Get PDF
    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure-activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein-ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance.JK, MJW, JT, PJB, AB and RCG thank Unilever for funding

    Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor

    Get PDF
    Following major advances in the field of medicinal chemistry, novel drugs can now be designed systematically, instead of relying on old trial and error approaches. Current drug design strategies can be classified as being either ligand- or structure-based depending on the design process. In this paper, by describing the search for an ATP synthase inhibitor, we review two frequently used approaches in ligand-based drug design: The pharmacophore model and the quantitative structure-activity relationship (QSAR) method. Moreover, since ATP synthase ligands are potentially useful drugs in cancer therapy, pharmacophore models were constructed to pave the way for novel inhibitor designs

    Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis

    Get PDF
    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) plays important roles in oncogenic occurrence and transformation by regulating the expression of diverse downstream target genes important for tumor growth, metastasis, angiogenesis and immune evasion. Feasibility of targeting the DNA-binding domain (DBD) of STAT3 has been proven previously. With the aid of 3D shape- and electrostatic-based drug design, we identified a new STAT3 inhibitor, LC28, and its five analogs, based on the pharmacophore of a known STAT3 DBD inhibitor. Microscale thermophoresis assay shows that these compounds inhibits STAT3 binding to DNA with a Ki value of 0.74–8.87 μM. Furthermore, LC28 and its analogs suppress survival of cisplatin-resistant ovarian cancer cells by inhibiting STAT3 signaling and inducing apoptosis. Therefore, these compounds may serve as candidate compounds for further modification and development as anticancer therapeutics targeting the DBD of human STAT3 for treatment of cisplatin-resistant ovarian cancer

    Novel antimicrobial peptides for enhanced antimicrobial activity against methicillin resistant Staphylococcus aureus: design, synthesis and formulation.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in pdf

    In Silico Design, Synthesis and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity

    Get PDF
    Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors

    Tailoring Toll-like Receptor 8 Ligands for Balancing Immune Response and Inflammation

    Get PDF
    Toll-like receptors (TLRs) play a central role in innate immunity by recognising invading pathogens and host-derived danger signals and initiating the inflammatory response. Aberrant TLR response is involved in the pathogenesis of cancers, infections, autoimmune disorders and allergic diseases. Therefore, TLRs represent attractive targets for novel therapeutic agents. The PhD project's main research aim is to discover novel small molecule modulators of Toll-like receptor 8 (TLR8) and understand their mechanisms of action using computational approaches. TLR8 crystal structure is solved, and several modulators are known from previous drug screens. Therefore, TLR8 is a promising target for rational computer-aided development of novel drug candidates. In the initial phase of the project, the main goal was to study relevant structural features in available crystal structures of TLR8. The focus was on the dimerisation interface because of its role in the binding of ligands and subsequent activation of the receptor. Additionally, we studied the conservation of the relevant structural features across the closely related TLRs. The second part shifts the focus to the binding of the small molecules to TLR8. We investigated interactions between the known ligands and TLR8 and used it to develop the most plausible 3D pharmacophore model. Subsequently, we employed the developed 3D pharmacophore model in virtual screening to identify novel modulators of TLR8. We identified a pyrimidine-based compound that inhibits TLR8-mediated signalling in the micromolar concentration range. The potent anti-inflammatory and dose-dependent response has been confirmed in a series of derivatives of this initial virtual hit, which allowed for a detailed elucidation of structure-activity relationships (SAR) and more precise description of the binding mode. Conclusively, we have developed a novel and promising pyrimidine-based TLR8 inhibitors in silico and confirmed their biological activity, selectivity and low cytotoxicity in vitro. Results from the study on TLR8 represent a solid basis for the future design of small molecule TLR modulators as novel therapeutic agents for modulating immune response and inflammation.Toll-like Rezeptoren (TLRs) spielen eine zentrale Rolle in angeborenen Immunsystem, indem sie eindringende Pathogene sowie endogene Gefahrensignale erkennen und Entzündungsreaktionen einleiten. TLRs sind an der Pathogenese von Krebserkrankungen, Infektionen, Autoimmunerkrankungen und allergischen Erkrankungen beteiligt. Aus diesem Grund stellen TLRs attraktive Ziele für neue, niedermolekulare Wirkstoffe dar. Das Hauptziel dieses Promotionsprojekts ist die Entdeckung neuer niedermolekularer Modulatoren des Toll-like-Rezeptors 8 (TLR8) und das Verständnis ihrer Wirkmechanismen mit Hilfe computergestützter Ansätze. Die Kristallstruktur von TLR8 ist verfügbar und mehrere Modulatoren sind aus früheren Wirkstoffscreens bekannt. Daher ist TLR8 ein vielversprechendes Ziel für die rationale computergestützte Entwicklung neuer Wirkstoffkandidaten. Am Beginn des Projekts bestand das Hauptziel darin, relevante strukturelle Merkmale in den verfügbaren Kristallstrukturen von TLR8 zu untersuchen. Der Fokus lag dabei auf dem Dimerisierungsbereich, da dieser eine wichtige Rolle bei der Bindung von Liganden und der anschließenden Aktivierung des Rezeptors spielt. Zusätzlich untersuchten wir die Konservierung der relevanten Strukturmerkmale über die eng verwandten TLRs hinweg. Der zweite Teil verlagert den Fokus auf die Bindung kleiner Moleküle an TLR8. Wir untersuchten die Interaktionen zwischen den bekannten Liganden und TLR8 und entwickelten daraus systemtisch ein 3D-Pharmakophormodell. Anschließend setzten wir das entwickelte 3D-Pharmakophormodell im virtuellen Screening ein, um neuartige Modulatoren des TLR8 zu identifizieren. Wir identifizierten ein Pyrimidin-Analogon, das die TLR8- vermittelte Signalweiterleitung im mikromolaren Konzentrationsbereich hemmt. Die potente entzündungshemmende und dosisabhängige Wirkung wurde in einer kleinen Serie von Analoga bestätigt. Schließlich optimierten wir die identifizierten Pyrimidinverbindungen weiter, was eine detailliertere Struktur-Aktivitäts-Analyse und eine genauere Aufklärung des Bindungsmodus ermöglichte. Zusammenfassend haben wir neuartige und vielversprechende TLR8-Inhibitoren auf Pyrimidinbasis in silico entwickelt und ihre in vitro biologische Aktivität, Selektivität und geringe Zytotoxizität bestätigt. Die Ergebnisse der Studie zu TLR8 helfen uns, die Prozesse zu verstehen, die für ein erfolgreiches Wirkstoffdesign auch bei anderen TLR notwendig sind und stellen eine gute Ausgangsbasis dar, um in Zukunft optimierte, niedermolekulare TLR- Modulatoren zu entwickeln und damit Entzündung und die Immunreaktion effizient zu modulieren

    Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Computer-Aided Molecular Design. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10822-016-9982-4.Prathipati, P., Nagao, C., Ahmad, S. et al. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. J Comput Aided Mol Des 30, 817–828 (2016). https://doi.org/10.1007/s10822-016-9982-

    Lipophilicity in drug design: an overview of lipophilicity descriptors in 3D-QSAR studies

    Get PDF
    The pharmacophore concept is a fundamental cornerstone in drug discovery, playing a critical role in determining the success of in silico techniques, such as virtual screening and 3D-QSAR studies. The reliability of these approaches is influenced by the quality of the physicochemical descriptors used to characterize the chemical entities. In this context, a pivotal role is exerted by lipophilicity, which is a major contribution to host-guest interaction and ligand binding affinity. Several approaches have been undertaken to account for the descriptive and predictive capabilities of lipophilicity in 3D-QSAR modeling. Recent efforts encode the use of quantum mechanical-based descriptors derived from continuum solvation models, which open novel avenues for gaining insight into structure-activity relationships studies
    corecore