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Abstract 

Constitutive activation of signal transducer and activator of transcription 3 (STAT3) plays 

important roles in oncogenic occurrence and transformation by regulating the expression of 

diverse downstream target genes important for tumor growth, metastasis, angiogenesis and 

immune evasion. Feasibility of targeting the DNA-binding domain (DBD) of STAT3 has been 

proven previously. With the aid of 3D shape- and electrostatic-based drug design, we identified a 

new STAT3 inhibitor, LC28, and its five analogs, based on the pharmacophore of a known 

STAT3 DBD inhibitor. Microscale thermophoresis assay shows that these compounds inhibits 

STAT3 binding to DNA with a Ki value of 0.74~8.87 µM. Furthermore, LC28 and its analogs 

suppress survival of cisplatin-resistant ovarian cancer cells by inhibiting STAT3 signaling and 

inducing apoptosis. Therefore, these compounds may serve as candidate compounds for further 

modification and development as anticancer therapeutics targeting the DBD of human STAT3 

for treatment of cisplatin-resistant ovarian cancer. 

Keywords: signal transducer and activator of transcription 3 (STAT3); DNA binding domain 

(DBD); similarity screening; microscale thermophoresis; cisplatin resistance 

 

Highlights 

• DNA-binging domain of STAT3 may not be ‘undruggable’ as previously thought 

• LC28 and five analogs were identified through the pharmacophore of known STAT3 

inhibitors with 3D shape- and electrostatic-based drug design 

• Microscale thermophoresis assay shows that these compounds inhibits STAT3 binding to 

DNA with a Ki value of 0.74~8.87 µM. 

• LC28 and its analogs suppress survival of cisplatin-resistant ovarian cancer cells by 
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inhibiting STAT3 signaling and inducing apoptosis. 
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1. Introduction 

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor of STAT 

family [1]. In response to various extracellular cytokines and growth factors, STAT3 is activated 

and phosphorylated at tyrosine residue 705 (Tyr705) by cell surface-associated receptor tyrosine 

kinases followed by dimerization, nuclear translocation, binding to specific elements in genomic 

DNA and activation of target gene transcription [2-6]. In normal cells, activation of STAT3 

signaling is transient and strictly controlled. However, aberrant STAT3 signaling induces cell 

proliferation and prevent apoptosis in cancer cells by upregulating its downstream genes such as 

bcl-2, cyclin D1, survivin, twist, MMPs and VEGF [7-18]. Numerous clinical studies have 

shown that up-regulation of phosphorylated STAT3 (pSTAT3) is correlated to poor prognosis in 

patients with ovarian, colorectal, gastric, pancreatic, renal and cervical cancers [19-25]. In a 

study conducted in 341 patients with ovarian cancer, positive expression of p-STAT3 was 

observed in 28% of patients and was identified as an independent worse prognostic factor for 

overall survival [26]. Additionally, constitutively activated STAT3 contributes to insensitivity to 

various therapeutics via aberrant production of cytokines or growth factors in cancer cells [27, 

28]. STAT3 signaling also interplays with a variety of signaling pathways to maintain tumor 

malignancy including Ras/MAPK, mTOR/PI3K/Akt, NF-κB and Wnt pathways [29-31]. As a 

result, aberrant transcription of anti-apoptotic genes such as survivin suppresses programed cell 

death induced by cytotoxic agents [13, 32]. The STAT3 pathway responds early to platinum 

drugs in cisplatin-resistant ovarian cancer cells. Exposure of ovarian cancer cells to interleukin-6 

(IL-6) to activate STAT3 signaling results in the expression of anti-apoptotic proteins [33]. 

Moreover, cisplatin-induced chemokine ligand 5 (CCL5), a secreted protein derived from 

cancer-associated fibroblasts, attenuates the cytotoxic effect of cisplatin chemotherapy in ovarian 
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cancer cells by promoting STAT3 and PI3K/Akt signaling pathways [34]. Higher expression of 

CCL5 is also observed in chemotherapy-resistant patients than in chemosensitive patients [35]. 

Treatment with STAT3 inhibitor enhances the chemosensitivity of cisplatin-resistant ovarian 

cancer cells, indicating that STAT3 serves as an attracting therapeutic target of ovarian cancer 

[36, 37]. 

In fact, a large number of STAT3 inhibitors have reflected a significant research area, 

including but not limited to inhibiting STAT3 activation, disrupting STAT3 dimerization or 

blocking STAT3-DNA binding [38-40]. Targeting upstream kinases for STAT3 activation such 

as JAK inhibitors (AG490, WP1066, TG101209 and AZD1480) may be limited to inhibit 

STAT3 signaling as diverse factors are involved in activation of STAT3 [41-45]. A variety of 

inhibitors targeting STAT3 protein directly have been designed and identified using 

peptidomimetics, structure-based virtual screening, fragment-based drug design or high-

throughput screening. Most of these STAT3 inhibitors mimick binding to the SH2 domain of 

STAT3, which favors receptor recognition for activation and dimerization of STAT3 by 

reciprocal binding to Try705. These inhibitors include but are not limited to small peptides 

(PpYLKTK and pYLPQTV), peptide mimetic (ISS610) and small molecule inhibitors (S3I-

M2001, STA-21, S3I-201 and Stattic) [46-52]. However, STAT3 may involve in oncogenesis 

and transcriptional regulation in the absence of tyrosine phosphorylation. Unphosphorylated 

STAT3 has been shown to sustain cytokine-dependent signaling in complex with NF-κB [53]. 

Thus, targeting SH2 domain and inhibiting STAT3 phosphorylation and dimerization may be 

insufficient to suppress aberrant STAT3 signaling. In addition, the STAT3 SH2 domain is a 

highly conserved region with a high sequence similarity to other proteins such as phospholipase 
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C-γ, Src, phosphatidylinositol 3-kinase and other STATs [54, 55]. Such structural similarity is 

also challenging to develop specific STAT3 inhibitors. 

The physical interaction between STAT3 and the promote region of its downstream genes is 

essential for the transcriptional activity of STAT3, and DNA-binding domain (DBD) of STAT3 

is thus a potential drug target. A phase 0 clinical trial conducted for STAT3 decoy 

oligodeoxynucleotides that blocks DNA binding of STAT3 has demonstrated the feasibility of 

targeting the DBD of STAT3 in humans [56]. Despite DBDs have been considered “undruggable” 

because active DNA-binding sites are too shallow or too similar to permit tight and specific 

binding of small molecules to DBD, Zhang et al identified a small molecule inhibitor, inS3-54, 

that binds directly to the DBD of STAT3, using an improved in-silico approach [57]. Molecular 

simulation analysis showed that the compound binds to the residues Met331, Val343, Met420, 

Ile467 and Met470 in the DBD of STAT3 via hydrophobic interaction with the aid of Lys340 

and Asn466 to stabilize the carboxyl group of inS3-54 by favorable electrostatic interaction [57]. 

Further structure and activity-guided hit optimization study let to identification of a series of 

inS3-54 analogs including inS3-54A18 (A18) with enhanced specificity and pharmacological 

properties [58]. 

Ligand-based virtual screening is a viable computational technique that is widely used in 

early-stage drug discovery [59, 60]. It requires only a little amount of bioactive molecule 

structures to produce structurally novel compounds through skeletal transition. With the aid of 

this approach, we identified LC28 and five analogs through the pharmacophore of A18 with 3D 

shape- and electrostatic-based drug design. These compounds suppressed survival of cisplatin-

resistant ovarian cancer cells by interrupting STAT3-DNA interaction and by inhibiting the 

expression of STAT3 downstream target genes. Collectively, we conclude that STAT3 inhibitors 
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targeting its DBD may be developed as alternative therapeutics treating drug-resistant ovarian 

cancers. 

 

2. Results 

2.1 Ligand-based virtual screening of small-molecule compounds targeting the DBD of STAT3 

To identify STAT3 inhibitors with improved potency and specificity, the ligand-based 

pharmacophore models of STAT3 inhibitors were generated by using LigandScout 3.12 in 

combination with 3D shape- and electrostatic-based drug design approach followed by searching 

the Specs chemical library (Fig.1). The pharmacophore models were created with the existing 

STAT3 inhibitors including inS3-54, A18, A26 and A69 (Fig.2A). All compounds share similar 

backbone, 5-phenyl-1H-pyrrol-2(3H)-ketone. Based on previous structure-activity relationship 

analysis, the compounds with R1 group being hydrogen bond donor appear to be active for 

STAT3 inhibition, such as p-hydroxyphenyl or p-carboxyphenyl, while hydrophobic centroids 

such as p-nitrophenyl or p-chlorophenyl as the R2 group are favorable [57]. Hence, in the three 

pharmacophore models we constructed, the hydrogen bond donor at position R1 and the 

hydrophobic group at position R2 were considered the common pharmacophore characters 

among the Pharma 1, Pharma 2 and Pharma 3 (Fig.2B-C). Meanwhile, the hydrophobic 

interaction between the 5-benzene ring and the hydrogen bond acceptor of the 2-carbonyl group 

was reflected in the Pharma 1, Pharma 2 and Pharma 3, respectively. To identify novel skeletal 

structure, no pharmacophore character was given for the backbone structure. 

Searching the Specs chemical library with Pharma 1, Pharma 2 and Pharma 3 resulted in 

218,497, 39,114 and 25,169 molecules, respectively. The next 3D shape- and electrostatic-based 

similarity search used an optimized conformation of A18 as ROCS query to search new 
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compound database using the ROCS 3.1.2. As a result, the top 5,000 compounds were retained 

based on ‘TanimotoShape’ score (a shape similarity parameter) in each structure. EON 2.1.0 was 

then employed to calculate the Electrostatic Tanimoto of the retained compounds according to 

the original query, and the top 500 compounds were retained based on the ‘ET_pb’ score (an 

electrostatic similarity parameter) in each structure. Eventually, 1,500 compounds were recruited, 

clustered and visually examined, and 5, 18 and 21 compounds were selected from the retained 

compounds of Pharma 1, Pharma 2 and Pharma 3, respectively (Supplemental Tab.S2). Four of 

these 44 compounds have duplicated structures and were eliminated from further testing. 

 

 

Fig.1 Summary for workflow of Ligand-based virtual screening and bioassay. 
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Fig.2 Construction of three pharmacophore models and identification of LC28 and its analogs by ligand-
based virtual screening. (A) Chemical structures of known STAT3 inhibitors developed by Zhang et al. 
and their core structure. (B) Query model used for 3D similarity search. (C) Three pharmacophore models 
we constructed using training set molecules. (D) Chemical structures of LC28 and overlay of LC28 
structure with A18 or Pharma3. (E) Core structures and chemical structures of LC28 and its analogs. 
2.2 Identification of a small-molecule compound targeting the DBD of STAT3 

To determine the activity of these 40 compounds, we designed a two-step biological 

screening assay including cytotoxicity assay and microscale thermophoresis [43] analysis. As 

STAT3 inhibitors are known to inhibit cancer cell proliferation, the first cell viability assay was 

used to shorten the list for MST screening. One of the 40 compounds, LC28 from Pharm 3, 

exhibited inhibitory activity on survival of H1299 cells with an IC50 of 8.1±4.1 µM (Fig.3A-B) 

while the IC50 of the known STAT3 inhibitor A26 accounted for 3.4±0.2 µM [58]. To determine 

the effect of LC28 on the DNA-binding activity of STAT3, we developed a competitive 

experiment using MST technique, which characterizes ligand-binder interaction based on the 

directed movement of molecules along temperature gradients. By using fluorescent Cy5-labeled 

probe and total lysates of H1299 cells transiently transfected with constitute active STAT3c 

expression construct, we determined the specific binding of the Cy5-labeled probe to STAT3 in 
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total lysates of H1299 cells overexpressing STAT3c with a Kd of 85.07 ng/µl compared to total 

lysates of cells without STAT3c construct (Kd: 516.71 ng/µl) (Fig.3C-D). To validate the specific 

binding between Cy5-labeled probe and STAT3, the cell lysate was pretreated with unlabeled 

probe or a known STAT3 inhibitor, inS3-54A26 (A26), followed by incubation with Cy5-labeled 

probe. The Ki values of unlabeled probe and A26 were determined to be 2.82 nM and 2.50 µM, 

indicating the feasibility of this procedure in testing the candidate compounds for competitive 

inhibition of STAT3 binding to Cy5-labeled probe (Fig.3E-F). As shown in Fig.3G, the Ki of 

LC28 was estimated to be 3.92 µM, suggesting that LC28 inhibits the DNA-binding activity of 

STAT3 (Fig.3G). Despite distinct difference in 2D structure, LC28 matched well with A18 in 3D 

structure with similar pharmacophore characteristics (Fig.2D). ShapeTanimoto accounted for 

0.711 and ET_pb was 0.348. Collectively, LC28 represents a novel compound targeting the DBD 

of STAT3.  
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Fig.3 Identification of LC28 targeting the DBD of STAT3. (A) Cytotoxicity assay of 40 compounds 
obtained from ligand-based virtual screening. H1299 cells were exposed to 5 µM of indicated compounds 
for 72 h followed by SRB assay. (B) Cell survival curve of LC28 in H1299 cells. H1299 cells were 
treated with increasing concentrations of LC28 for 72 h followed by SRB assay. Dose-response curves 
were computed by using GraphPad Prism software. (C-G) MST binding curves to Cy5-labeled DNA 
probe, C: cell lysates with STAT3c, D: cell lysates without STAT3c, E: cell lysates pretreated with 
unlabeled probe, F: cell lysates pretreated with a known STAT3 inhibitor, inS3-54A26, G: cell lysates 
pretreated with LC28. (* p < 0.05, ** p < 0.01, *** p < 0.001, by Student’s t-test as compared with 
vehicle control) 
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2.3 Identification of active analogs of LC28 targeting the DBD of STAT3 

To optimize LC28, we searched the Specs chemical library for its analogs using molecular 

fingerprint ECFP_6 in the PipelinePilot 7.5. By designating two core structures, A and B, 31 

analogs were tested for their activity in suppressing cell survival and STAT3 DNA binding 

activity (Fig.2E; Supplemental Tab.S3). With the same biological screening procedure, 31 

analogs were first tested using cytotoxicity assay in H1299 cells. As shown in Fig.4A, LC28-1, -

7, -9, -11, -12, -16, -17, -19, -21, -22, -23, -24, -27, -28 and -29 suppressed survival of H1299 

cells with an inhibition rate of more than 70%. These compounds were then tested in MST assay 

as well, and 5 of which inhibits the binding of STAT3 to Cy5-labeled probe (Fig.4C-G). The Ki 

values of LC28-11, -17, -24, -28 and -29 were 8.87, 1.01, 1.40, 1.18 and 0.74 µM, respectively. 

Compared to the known STAT3 inhibitor inS3-54A26 (Ki: 2.50 µM) and the parental compound 

LC-28 (Ki: 3.92 µM), LC28-17, -24, -28 and -29 appeared more effective to inhibit STAT3 DNA 

binding activity. Further cytotoxicity assay demonstrated their IC50 in H1299 cells were 3.3~5.8 

µM, suggesting their potential as novel anti-cancer drugs (Fig.4B). All of 5 active compounds 

belong to the core structure B, which is more refined to develop LC28 analogs.  
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Fig.4 Identification of active LC28 analogs targeting the DBD of STAT3. (A) Cytotoxicity assay of 31 
LC28 analogs obtained from ligand-based virtual screening. H1299 cells were exposed to 5 µM of 
indicated compounds for 72 h followed by SRB assay. (B) Cell survival curve of five LC28 analogs in 
H1299 cells. H1299 cells were treated with increasing concentrations of LC28 for 72 h followed by SRB 
assay.  Dose-response curves were computed by using GraphPad Prism software. (C-G) MST binding 
curves to Cy5-labeled DNA probe, C: cell lysates pretreated with LC28-11, D: cell lysates pretreated with 
LC28-17, E: cell lysates pretreated with LC28-24, F: cell lysates pretreated with LC28-28, G: cell lysates 
pretreated with LC28-29. (* p < 0.05, ** p < 0.01, *** p < 0.001, by Student’s t-test as compared with 
vehicle control)  
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2.4 LC28 and its active analogs suppress survival of cisplatin-resistant ovarian cancer cells 

It has been known that persistent STAT3 signaling is associated with cisplatin resistance in 

epithelial ovarian cancer [37, 61]. To investigate the potential use of LC28 and its active analogs 

for treating cisplatin resistant ovarian cancer, we examined the effectiveness of these compounds 

on survival of SKOV3 and its cisplatin-resistant counterpart SKOV3/DDP cells. The five 

analogs showed comparable inhibitory activity with LC28 in SKOV3 cells while their IC50 

appear to be lower than LC28 in SKOV3/DDP cells (Fig.5; Tab.1). These data suggest the use of 

novel STAT3 inhibitor to treat cisplatin resistance. 

 

 

Fig.5 LC28 and its analogs inhibits survival of cisplatin-sensitive and -resistant ovarian cancer cells. (A) 
SKOV3 and (B) SKOV3/DDP cells were exposed to increasing concentrations of LC28 or its analogues 
for 72 h followed by SRB assay. Dose-response curves were computed by using GraphPad Prism 
software. 
 

Tab.1 IC50 of LC28 and its analogs (µM) 
Cell line H1299 SKOV3 SKOV3/DDP 
Histology Non-small cell lung cancer Ovarian cancer Cisplatin-resistant ovarian cancer 

LC28 8.1 ± 4.1 3.7 ± 0.7 14.7 ± 2.4 
LC28-11 3.8 ± 0.5 3.8 ± 1.0   7.2 ± 1.7 
LC28-17 5.3 ± 0.1 5.6 ± 0.7   9.4 ± 6.2 
LC28-24 4.1 ± 0.6 4.5 ± 1.3   9.8 ± 3.9 
LC28-28 4.3 ± 1.1 3.5 ± 1.3   7.4 ± 0.1 
LC28-29 3.3 ± 1.7 3.6 ± 1.2   7.0 ± 2.2 
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2.5 LC28 and its active analogs inhibits expression of STAT3 downstream target genes 

It has been shown that constitutive STAT3 signaling promotes chemoresistance via up-

regulation of anti-apoptotic factors such as survivin [13, 32]. To validate the effect of LC28 and 

its active analogs on STAT3 signaling in cells and elucidate the mechanism whereby the 

compounds inhibit survival of cisplatin-resistant SKOV3/DDP cells, we determine the 

expression of factors involving in STAT3 pathway by Western blotting and qPCR analyses. 

Although the expression of cyclin D1 and survivin are both decreased in dose- and time-

dependent manners when SKOV3/DDP cells were exposed to LC28, the phosphorylation of 

STAT3 at Tyr705 was reduced with little effect on total STAT3 level (Fig.6A and Fig.S1A-B). 

The qPCR analysis of mRNAs also confirmed this observation (Fig.6B). Furthermore, the active 

LC28 analogs all down-regulated the expression of cyclin D1 without any effect on pSTAT3 and 

STAT3 (Fig.6C-D and Fig.S1C). Interestingly, the phosphorylation of STAT3 at Tyr705 was 

also decreased after LC28 treatment with little effect on total STAT3 level (Fig.6A). To further 

tested whether LC28 affects cytokine-induced STAT3 activation, serum-starved SKOV3/DDP 

cells were treated with control vehicle or 15 µM LC28 and then subjected to IL-6 stimulation 

and Western blotting analysis of pSTAT3 (Tyr705). As shown in Fig.6E and Fig.S1D, LC28 

decreased the pSTAT3 level, suggesting that LC28 pretreatment impaired IL-6-induced STAT3 

phosphorylation.  
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Fig.6 LC28 and its analogs inhibits STAT3 signaling pathway. (A) Effect of LC28 on the protein 
expression of STAT3 signaling pathway in SKOV3/DDP cells after treatment with LC28. SKOV3/DDP 
cells were exposed to DMSO (0.1%), 15 or 30 µM of LC28 for 48 h or 15 µM of LC28 for 0, 12, 24 and 
48 h  followed by lysate preparation and Western blot analyses with antibodies indicated. β-actin was 
used as a loading control. (B) Effect of LC28 on the mRNA expression of STAT3 signaling pathway in 
SKOV3/DDP cells after treatment with LC28. SKOV3/DDP cells were exposed to DMSO (0.1%), 15 or 
30 µM of LC28 for 48 h or 15 µM of LC28 for 0, 12, 24 and 48 h followed by total RNA extraction and 
real-time qPCR analysis. Data show the relative mRNA levels normalized to the internal control, GAPDH. 
(C-D) Effect of LC28 analogs on the protein (C) and mRNA (D) expression of STAT3 signaling pathway 
in SKOV3/DDP cells. SKOV3/DDP cells were exposed to DMSO (0.1%) or 10 µM of LC28-11, -17, -24, 
-28 and -29 for 48 h followed by Western blot or qPCR analyses of STAT3 signaling pathway. (E) 
SKOV3/DDP cells were pretreated with 15 µM LC28 for 48 h followed by IL-6 (100 ng/ml) stimulation 
and subjected to Western blotting analysis of pSTAT3 (Y705), STAT3, survivin and β-actin. 
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Fig.S1 Quantitative data of Western blot bands in Fig.6. Relative protein level was measured by the 
density of Western blot bands and normalized against the β-actin internal control. (A-B) Fig.6A. (C) 
Fig.6C. (D) Fig.6E.   
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2.6 LC28 and its active analogs induce apoptosis of SKOV3/DDP cells 

To determine if apoptosis contributes to the suppression of SKOV3/DDP cell survival 

following treatment with LC28 or its active analogs, flow cytometry assay was performed to 

quantify apoptotic cells. As evident from Fig.7, the percentages of early and late apoptotic cells 

increased to 16% and 22% upon treatment of SKOV3/DDP cells with 15 and 30 µM LC28 for 48 

h, respectively, as compared to untreated cells. The apoptotic cells accounted for 21%, 14%, 

12%, 95% and 88% following exposure to 10 µM LC28 analogs for 48 h. These findings suggest 

that LC28 and its analogs may be effective in inducing apoptosis and suppressing survival of 

cisplatin-resistant ovarian cancer cells. These compounds deserve further investigations for 

development of novel STAT3 inhibitors.  
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Fig.7 LC28 and its analogs induce apoptosis in SKOV3/DDP cells. (A) Following exposure to vehicle 
control, 15 or 30 µM LC28, or 10 µM each of LC28 analogs for 48 h, apoptotic SKOV3/DDP cells were 
stained with Annexin V and PI followed by flow cytometry analysis. Shown is a representative of flow 
cytometry data, including viable cells (left bottom quadrant), early apoptotic cells (right bottom quadrant), 
late apoptotic cells (right upper quadrant) and necrotic cells (left upper quadrant). (B-C) Percentages of 
cells in each quadrant are shown. 
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3. Discussion 

In previous studies, inS3-54 and its analogs were found to target the DNA-binding domain of 

STAT3, leading to suppression of tumor growth, metastasis and STAT3 target gene expression 

[57, 58]. Considering that targeting STAT3 DBD is more effective to eliminate aberrant STAT3 

signaling in cancer cells, we expect to identify novel STAT3 inhibitors for development of 

anticancer therapeutics. This study successfully identified LC28 and its analogs targeting the 

DBD of STAT3. These compounds disrupt the binding of STAT3 to DNA and thus inhibit 

STAT3 downstream gene expression. As a result, down-regulation of cyclin D1 and survivin 

contributes to suppression of cisplatin-resistant SKOV3/DDP cell survival by inducing apoptosis. 

These characteristics make them potential lead compounds for further modification and 

development. 

Interestingly, LC28 inhibits the binding of STAT3 to Cy5-labeled DNA probe whereas 

constitutive and IL-6-induced STAT3 phosphorylation is abrogated by LC28 treatment. Despite 

the potential of off-target effect, we speculate that the binding LC28 to STAT3 DBD may impair 

its phosphorylation through conformational blockage. Nevertheless, how LC28 interacts with 

specific residues in the DBD of STAT3 awaits further investigation. To identify potent STAT3 

inhibitors, we screened 31 analogs of LC28 by developing a new and efficient microscale 

thermophoresis-based approach, which can quantify the ability of a compound to inhibit STAT3 

DNA-binding activity in 10 minutes. Of 31 LC28 analogs, five active compounds share a core 

structure with a bromo-substituent at R3 as shown in Fig.2E. The existence of p-bromophenyl 

(LC28-17) groups at R1 facilitates their activity in inhibiting STAT3 DNA binding with R2 being 

ethyl group whereas LC28-11 containing p-trifluoromethylphenyl at R1 displayed lower DNA-

binding inhibition than the parental compound, LC28, as evidenced by MST assay. When R2 is 
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methyl group, compounds with R1 being m-chlorophenyl (LC28-24), 1,3-dichlorophenyl (LC28-

28) or 1,5-dichlorophenyl (LC28-29) groups favor STAT3 inhibition. However, whether the 

combination of R1 and R2 groups affects the binding affinity to STAT3 remains unclear. More 

structure-activity relationship studies would be helpful to determine the effect of side groups on 

the STAT3 inhibitory activity of compounds. It is noteworthy that LC28 analogs showed 

relatively lower IC50 values than LC28 in cisplatin-resistant SKOV3/DDP cells. Meanwhile, 

LC28-28 and -29 were more effective in inducing apoptosis than the parental compound. Despite 

no one-by-one correspondence between MST assay and cell viability and cell apoptosis assays, it 

remains unclear whether the potent effect is resulted from STAT3 inhibition via different side 

groups of LC28 and its analogs and the potential off-target effects cannot be ruled out. Thus, the 

favorable effect in inducing apoptosis awaits further verification in vivo and more in-depth 

mechanism studies. 

Platinum-based chemotherapy including cisplatin or carboplatin represents a standard 

treatment for treatment of ovarian cancer for decades. As one of the most effective broad-

spectrum anticancer drugs, cisplatin forms DNA-platinum adducts after entering cells while 

affecting multiple genes and resulting in dramatic cellular alternations [62]. A considerable 

percentage of primary cancers are at least partially resistant to cisplatin. As a result, cancer 

patients have to be exposed to potential side effects of chemotherapy. Generally, cisplatin 

insensitivity is a consequence of numerous epigenetic and genetic changes including reduction in 

the intracellular platinum accumulation, increased DNA damage repair, inactivation of apoptosis 

and alternation in DNA methylation, microRNA profile and stress-response chaperones [63, 64]. 

It is therefore exceedingly important to identify alternative therapeutics for patients who are 

resistant to chemotherapy. A variety of compounds targeting drug transporter, apoptosis-related 

factors and cell growth-promoting genes can resensitize cisplatin-resistant ovarian cancer cells to 
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cisplatin [65-67]. Interfering with cellular accumulation of cisplatin and platinum-induced cell 

death enables direct pharmacological intervention and offers therapeutic options on a patient-by-

patient basis. Constitutive activation of STAT3 is common in a variety of tumor cell types. This 

aberrant STAT3 signaling implicates STAT3 as not only an oncogene but also an anti-apoptotic 

factor in the resistance to cell-mediated cytotoxicity and chemotherapeutic drug treatment. The 

fact that IC50 of LC28 is higher in SKOV3/DDP cells than in the parental cells suggests that 

STAT3 may contribute to cisplatin resistance. We also found a higher pSTAT3 level in 

SKOV3/DDP cells than in SKOV3 cells (data not shown). Our observation that LC28 and its 

analogs suppress survival of SKOV3/DDP cells by inhibiting STAT3 signaling may promise 

these compounds as potential alternative therapeutics for treatment of cisplatin-resistant cancers. 

In addition, STAT3-targeted therapies prove to be a potential strategy for chemosensitization of 

cancerous cells. For example, cucurbitacin B, a STAT3 signaling inhibitor, enhances cisplatin 

sensitivity in laryngeal squamous cell carcinoma cells [68]. Of course, further research on 

combination treatment of LC28 or its analogs with chemotherapeutic agents might strengthen the 

significance of our study. 

Collectively, LC28 or its analogs may serve as candidates for further development as 

anticancer therapeutics targeting the DBD of human STAT3 for treatment of cisplatin-resistant 

ovarian cancer and DBD of transcription factors may not be ‘undruggable’ as previously thought. 

 

4. Experimental Section 

4.1 Chemicals and reagents 

All candidate compounds were purchased from the Specs chemical library (Zoetermeer, 

Netherlands), dissolved in dimethyl sulfoxide (DMSO) to a concentration of 20 mM and 
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preserved at -20°C. Antibodies against ), cyclin D1 (Cat. No. 2798), JAK2 (Cat. No. 3230), 

pSTAT3 (Cat. No. 9145), STAT3 (Cat. No. 9139), survivin (Cat. No. 2808) and β-actin (Cat. No. 

4970) were obtained from Cell Signaling Technology (Danvers, MA, USA). Antibodies against 

GAPDH (Cat. No. sc-25778) and glycoprotein 130 (gp130; Cat. No. sc-656)  were purchased 

from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). 

 

4.2 Virtual screening 

4.2.1 Preparation of compound library 

The Specs chemical library (http://www.specs.net/) was used for in-silico screening. In brief, 

the database was prepared by using a homemade protocol in Pipeline Pilot v7.5 (PP 7.5, Accelrys, 

San Diego, CA, USA), in which the molecules formed 3D coordinates to remove counter ions, 

minimize and standardize. Then, the prepared database was filtered by a basic standard in 

FILTER to eliminate molecules with unsatisfied properties. The FILTER criteria we used was 

the default BlockBuster filter in OpenEye software (OEChem version 1.9.1; OpenEye Scientific, 

OpenEye Scientific, Santa Fe, NM, USA), which includes a large number of physical property 

limits such as minimum and maximum molecular weight, minimum and maximum number of 

heavy atoms, and minimum solubility (see filter_blockbuster.txt of OpenEye software for 

details). Subsequently, the database was prepared with OMEGA, an efficient tool for 

reproducing bioactive conformations, to generate up to 500 conformations for each molecule. 

 

4.2.2 Ligand-based pharmacophore screening 

Generation of ligand-based pharmacophore. The first step is to generate a ligand-based 

pharmacophore model according to the known STAT3 inhibitors, inS3-54 and its active analogs 
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(A18, A26 and A69). Their 3D structures were generated and minimized using ‘Prepare Ligand’ 

module in Discovery Studio 2.5 (Accelrys) and imported into LigandScout 3.12 (Inte:Ligand, 

Maria Enzersdorf, Austria) for automated generation of pharmacophore models by ‘Create 

Ligand-Based Pharmacophore’ module. To obtain precise pharmacophore models for STAT3 

inhibitors targeting DBD, structure-activity relationship of inS3-54 and its analogs was taken 

into consideration to modify the automated pharmacophore models. Eventually, three 

pharmacophore models (Pharma1, Pharma2 and Pharma3) were generated and used for screening 

of the Specs chemical library by using LigandScout 3.12 with default parameters. All the 

compounds that match the three pharmacophore models were included in a new compound 

dataset for the next step of virtual screening by using ‘ROCS’ and ‘EON’ modules in OpenEye 

software. 

Shape-based virtual screening. For shape-based 3D similarity search, the optimized 

conformation of A18 was used to generate ROCS query by using ROCS 3.1.2 (OpenEye 

Scientific Software). The 3D conformation of A18 was generated and minimized using ‘Prepare 

Ligand’ module in Discovery Studio 2.5 followed by searching the database obtained from 

pharmacophore screening with the query model. The results were ranked by ‘TanimotoShape’ 

score and the top 5,000 compounds were retained for each pharmacophore model. 

Electrostatic-based virtual screening. ROCS output compounds (oeb.gz) were used as input 

for electrostatic-based analysis by using EON 2.1.0 (OpenEye Scientific Software), which 

calculates the Electrostatic Tanimoto between each molecule and the query rather than 

performing overlay or changing the input orientation of the structures. New partial charges for 

the input structures were computed using MMFF94. The output files were then ranked by the 

‘ET_pb’ score, and the top 500 compounds were retained for each pharmacophore model.  
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2D similarity search. The promising hits were subjected to 2D similarity search to find more 

compounds with same or similar scaffold. Molecular fingerprint ECFP_6 in Pipeline Pilot v7.5 

was used to search the Specs chemical library. To explore the structure-activity relationship of 

these compounds, compounds with similar structure skeletons were selected by the Tanimoto 

coefficient (Tc) for activity evaluation. 

 

4.2.3 Water solubility prediction and structure cluster analysis 

The selected compounds were processed for ADMET solubility prediction by using Pipeline 

Pilot v7.5. Briefly, the water solubility was computed at 25°C and designated as 0 (extremely 

low), 1 (very low), 2 [69], 3 (good), 4 (optimal) or 5 (very soluble). The molecules with ADMET 

solubility level at 0 or 1 were ruled out to ensure that the chosen compounds have acceptable 

solubility. Then cluster analysis was performed in Pipeline Pilot v7.5 by ECFP6 to choose the 

compounds for bioassays. 

 

4.3 Cell culture 

Human ovarian cancer cells (SKOV3), cisplatin-resistant human ovarian cancer cells 

(SKOV3/DDP) and human non-small cell lung cancer cells (H1299) were cultured in RPMI 

1640 medium (Macgene, Beijing, China), supplemented with 10% fetal bovine serum (PAN-

Biotech GmbH, Aidenbach, Germany) and 1% penicillin/streptomycin (Macgene) in a 37°C 

humidified atmosphere containing 5% CO2. 

 

4.4 Cell viability assay 
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To shorten the list for microscale thermophoresis screening of STAT3 inhibitors targeting its 

DBD, sulforhodamine B (SRB) assay was first used to determine the cytotoxicity of candidate 

compounds obtained from virtual screening. In brief, 3000 cells/well H1299 cells were seeded in 

a 96-well plate. 24 h later, the cells were exposed to 5 µM of each compound for 72 h as we 

previously described [70, 71]. Then, the culture medium was discarded and the cells were fixed 

and stained in 0.4% (w/v) SRB staining solution followed by incubation at room temperature for 

20 min. Unbound SRB dyes were removed by washing four times with 1% acetic acid. 200 

µL/well of 10 mM unbuffered Tris·base was added to solubilize the bound SRB after air-drying 

overnight at room temperature. Optical density (OD) was determined at 570 nm using Infinite® 

F50 absorbance plate reader (Tecan, Switzerland). Cell viability was determined and calculated 

using the following formula as compared with vehicle control (0.1% DMSO): Survival (%) = 

ODTreatment/ODControl × 100%. 

 

4.5 Microscale thermophoresis [43] assay 

To obtain cell lysates overexpressing constitutively active STAT3, H1299 cells transiently 

transfected with constitutively active STAT3c expression construct. 48 h after transfection, cells 

were harvested and lyzed in hypertonic buffer (20 mM HEPES·KOH, pH 7.9, 420 mM KCl, 1.5 

mM MgCl2, 0.01 mM NaP2O7, 1 mM Na3VO4, 20 mM NaF, 0.2 mM EDTA, 20% glycerol, 1 

mM PMSF, 0.5 mM DTT) as well as centrifuged at 13,000 g for 10 min at 4°C after three freeze-

thaw cycles. The supernatants were collected and the protein concentrations were quantified by 

Bicinchoninic Acid Protein Assay Kit (Dingguo Changsheng Biotechnology, Beijing, China). 

For MST assay, 200 µg of cell lysates were mixed with 0.5 nM of Cy5-labeled double-strand 

DNA probe (5’-AGCTTCATTTCCCGTAAATCCCTA-3’) in binding buffer (50 mM HEPES, 
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pH 7.9, 250 mM KCl, 0.1% tween-20, 0.25 µg/µl BSA, 1.25 mM PMSF). For competitive MST 

assay, cell lysates were pretreated with unlabeled DNA probe, A26 or respective compounds for 

10 min at room temperature before addition of Cy5-labeled probe. MST measurements were 

conducted in standard capillaries on a Monolith NT.115 system (Nano Temper, München, 

Germany), using 100% laser power and 20/40% light-emitting diode power. Data analysis was 

performed using the software provided with the Monolith NT.115. 

 

4.6 Western blotting 

Western blotting analysis was used to determine the protein expression level as previously 

described [70, 71]. In brief, proteins in cell lysates were extracted in TNN buffer (50 mM 

Tris·HCl, pH 7.4, 150 mM NaCl, 20 mM EDTA, 0.5% NP-40, 50 mM NaF, 1 mM Na3VO4, 2 

mM PMSF and 1 mM DTT) and quantified by Bicinchoninic Acid Protein Assay Kit (Dingguo 

Changsheng Biotechnology). Equal amount of proteins in cell lysates were resolved by  sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotted onto polyvinylidene 

difluoride membranes (EMD Millipore, Billerica, MA, USA). After incubation with the primary 

antibody for 2 h at room temperature or overnight at 4°C, the membrane was subsequently 

probed with peroxidase-conjugated secondary antibodies and visualized by using ChemiDoc 

XRS+ imaging system (Bio-Rad, Hercules, CA, USA) with enhanced chemiluminescence 

(Dingguo Changsheng Biotechnology). 

 

4.7 Real-time reverse transcription polymerase chain reaction (PCR) 

Real-time qPCR was used to determine the mRNA expression levels as we previously 

described [70, 71]. Total RNA isolation was performed using E.Z.N.A.TM Total RNA Kit I 
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(Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s instructions followed by 

cDNA synthesis using All-In-One RT MasterMix Kit (Applied Biological Materials, Richmond, 

BC, Canada). The resultant cDNA was subjected to 40 cycles of PCR amplification on 

Stratagene Mx3000 system (Agilent, Santa Clara, CA, USA) using EvaGreen qPCR MaxterMix 

(Applied Biological Materials) under the following cycling condition: 95°C for 10 min and 40 

cycles of 95°C for 15 s and 60°C for 1 min. The primers for the genes of interest were shown as 

follows:; cyclin D1: forward, 5’-CTTCCTCTCCAAAATGCCAG-3’, reverse, 5’-

AGAGATGGAAGGGGGAAAGA-3’; GAPDH: forward, 5’-

AAGGACTCATGACCACAGTCCAT-3’, reverse, 5’-CCATCACGCCACAGTTTCC-3’; gp130: 

forward, 5’-TCTGGGAGTGCTGTTCTGCTT-3’, reverse, 5’-TGTGCCTTGGAGGAGTGTGA-

3’; JAK2: forward, 5’-TTTGGCAACAGACAAATGGA-3’, reverse, 5’-

GCAGGAAGCTGATGCCTATC-3’; STAT3, forward, 5’-GGCCCCTCGTCATCAAGA-3’, 

reverse, 5’-TTTGACCAGCAACCTGACTTTAGT-3’; survivin, forward: 5’-

TGCCTGGCAGCCCTTTC-3’, reverse, 5’-CCTCCAAGAAGGGCCAGTTC-3’. GAPDH was 

used as the internal control. The relative mRNA levels were determined using 2-∆∆Ct method. 

 

4.8 Flow cytometry analysis of apoptosis 

To quantify apoptotic cells, flow cytometry analysis was performed by using Annexin V/ 

propidium iodide (PI) Apoptosis Detection Kit (Dojindo, Shanghai, China) according to the 

manufacturer’s instructions as previously described [70, 71]. Cells Annexin V and PI were 

analyzed by BD AccuriTM C6 Flow Cytometer (BD Biosciences, San Jose, CA, USA). 

 

4.9 Statistical analysis 
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Unless otherwise indicated, Data were expressed as mean ± standard deviation of at least 

three independent experiments. Student’s t test was used to determine the significant difference 

between two groups. A p value of < 0.05 was considered statistically significant. 
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Highlights 

1. DNA-binging domain of STAT3 may not be ‘undruggable’ as previously thought 

2. LC28 and five analogs were identified through the pharmacophore of known 

STAT3 inhibitors with 3D shape- and electrostatic-based drug design 

3. Microscale thermophoresis assay shows that these compounds inhibits STAT3 

binding to DNA with a Ki value of 0.74~8.87 µM. 

4. LC28 and its analogs suppress survival of cisplatin-resistant ovarian cancer cells by 

inhibiting STAT3 signaling and inducing apoptosis. 

 


