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Abstract

The control of infectious diseases is seriously threatened by the steady increase in the number of
microorganisms that are resistant to antimicrobial agents. Some of the interventions to address the
problem of resistance include the use of drug combinations and improvements in patient
compliance with dosing. The discovery of antimicrobial peptides (AMPs) has given hope to the
problem of drug resistance. Therefore, the aim of this study was to design, synthesize and evaluate
novel AMPs for their bacterial membrane penetration and activity followed by their co-
encapsulation with vancomycin (VCM) and oleic acid (OA) in a liposomal system to enhance their
antimicrobial activity. In this study a QSAR model which can simultaneously estimate
antimicrobial potential (MIC) and bacterial cell penetrating ability (TI) of antimicrobial cell
penetrating peptides (aCPPs) against S. aureus was developed and novel AMPs were designed,
synthesized and employed to decorate vancomycin and oleic acid containing liposomes to achieve
pH responsiveness for enhanced antimicrobial activity. The QSAR study proved the viability of the
therapeutic index of aCPPs in relation to their cell penetrating ability and antimicrobial potential
by building a QSAR model which outlined specific descriptors responsible for their potency. The
synthesized novel AMPs were found to be biosafe, exhibiting cell viability of above 85% in all the
cell lines tested using an MTT assay. The membrane penetration studies using molecular dynamics
and flow cytometry revealed that the AMPs were able to traverse the bacterial membrane. The
formulated liposomal systems were characterized in terms of sizes, polydispersity indices (PDI),
zeta potential (ZP), surface morphology, in vitro antibacterial activity. The liposomes formulated
from the two best bioactive AMPs were formulated to produce AMP2-Lipo-1 and AMP3-Lipo-2.
The size, PDI and ZP at pH 7.4 of the drug loaded liposomes (AMP2-Lipo-1 and AMP3-Lipo-2)
were 102.6£1.81 nm, PDI of 0.157£0.01 and -9.81£1.69 mV and 146.4+1.90 nm, PDI of
0.412+0.05 and -4.274+1.25 mV for AMP2-Lipo-1 and AMP3-Lipo-2 respectively. However, when
the liposomes were placed in pH 6.0 it was observed that both liposomal formulations had an
increase in size and decrease in negative charge. AMP2-Lipo-1 had a size of 387.4+51.11 nm and
PDI of 0.81+£0.03 and a zeta potential of - 2.19+0.57 mV whereas AMP3-Lipo-2 had a size of
229.4+13.8 nm and PDI of 0.74+0.01, with a zeta potential of 0.14+0.31 mV. Measurements were
also made at pH 4.5 where AMP2-Lipo-1 had a size of 192.44+6.9 nm and PDI of 0.49+5.24, with
a zeta potential of 1.50+0.31 mV. AMP3-Lipo-2 reflected similar changes at pH 4.5 where the size
was 218.6+£6.18 nm and PDI of 0.63+0.02, with a zeta potential of 1.80+2.21 mV. The observed
differences (particle swelling and charge switch) at the three different pH is indicative of pH
responsiveness of our formulation and therefore could function considerable well in drug delivery.
In vitro antibacterial activity showed that the liposomal formulations had enhanced activity
compared to bare AMPs against MRSA. In summary, the synthesized novel AMPs showed high
biosafety profiles and enhanced activity compared to bare AMPs and further revealed the potential
for application in clinical trials.

Vil



Acknowledgements

My first and sincere appreciation goes to my family for their support and guidance throughout the
course of my PhD. I would like to express my appreciations towards my friends who encouraged
me to further my studies. I would also like to thank my supervisor Prof. Thirumala Govender for
her support and guidance and my fellow colleagues, Sfiso Makhathini, Calvin Omolo, Dr Lucky
Kumalo, Nawras Abdolemien, Mohammed Abdeen, Daniel Hassan, Pavan Walvaker, as well as
the postdoctoral researcher’s Dr Ruma Maji, Dr Ayman Waydad, Dr Ramesh Ganimani. Finally, I
would like to acknowledge Dr Chundereka Moktar for availing her research facilities towards my
research work, Dr Bongani Nkambule for availing his flow cytometry instrumentation, Dr Nikhil
Agrawal for providing guidance with regards to computational studies and Prof Fernando
Albericio, Prof Beatriz de la Torres and Heba Hazza for assisting with our synthetic work. I would
also like to acknowledge the National Research Foundation (NRF) and talent acceleration
scholarship program (TAES) for their financial assistance towards my research and also a special
thanks to the University of KwaZulu-Natal for giving me the opportunity to carry out my research

work and add to the on-going knowledge development sphere.

VIII



Preface

Declaration 1 — Plagiarism
List of Publications
Research output from the thesis
Conference presentations
Abstract
Acknowledgements

Table of contents

List of abbreviations

List of figures

List of tables

Chapter 1. Introduction
1.1 Introduction

1.2 Background to this study
1.3 Problem statement

1.4 Aims and objectives of this study

1.5 Novelty of the study

1.6 Significance of the study
1.7 Overview of dissertation
1.8 References

Chapter 2. Published Manuscript

2.1. Introduction

2.2. Published manuscript: Conjugates and nano-delivery of antimicrobial peptides

TABLE OF CONTENTS

for enhancing therapeutic activity

Chapter 3. published manuscript

3.1 Introduction

3.2. Published manuscript: Antimicrobial cell penetrating peptides with bacterial cell
specificity: Pharmacophore modelling, Quantitative Structure Activity Relationship

and Molecular Dynamics Simulation

Chapter 4. Submitted manuscript

4.1. Introduction

4.2. Supramolecular Lipidation of Novel Antimicrobial Peptides Enhances
Antimicrobial Activity Against methicillin-resistant Staphylococcus aureus

(MRSA)
Chapter 5. Conclusions
5.1 General conclusions

5.2 Significance of the findings in the study
5.3 Recommendations for future studies

5.4 Conclusion
Appendix A
Appendix B
Appendix C

IX

1-1i
1ii
v
\%
vi
vil
viii
X
X-X1
Xii-Xiil
X1V

1
1-6
6-7
7-8
8-9

9-11
11-13
14-16

17
18-36

37
38-49

50
51-81

82-85
85-86
86-87
87
88
89-91
92-94



AMPs

SLNs
VCM
OA
QSAR
MRSA
PC
DLS
aCPPs
TI
POPC
S. aureus
HPLC
LCMS
HR-TEM
MTT
A
aCPP’s
AMPs
ANN
AntiBP2
APD2
COM
CPPs

F value
H

ICso0
LA
LINCS
LPS
Lys
MD
MIC
NPT
NVT
PLS
PME
PO4

List of Abbreviations

Antimicrobial peptides

Solid lipid nanoparticles

vancomycin

Oleic acid

Quantitative structure activity relationship
Methilicin resistant Staphylococcus aureus
Phospatidyl choline

Dynamic light scattering

Antimicrobial cell penetrating peptides
Therapeutic index
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
Staphylococcus aureus

High performance liquid chromatography
liquid chromatography mass spectrometry
High resolution transmission electron microscopy
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
hydrogen bond acceptor

antimicrobial cell penetrating peptides
antimicrobial peptides

artificial neural network

antibacterial peptide prediction
antimicrobial peptide database

centre of mass

cell penetrating peptides

Fisher test

hydrophobic group

half maximal inhibitory concentration
lipid A

linear constraint solver
lipopolysaccharides

lysine

molecular dynamics

minimum inhibitory concentration
isothermal-isobaric ensemble

canonical ensemble

partial least squares

Particle mesh Ewald

Phosphate group

cross-validation coefficient

aromatic ring

correlation coefficient

Root-mean squared error

Standard deviation

therapeutic index

tryptophan



vdW
TEM
PDI
VCM-HCI
RBCs
MBHA
DIC
SPPS
DMF
DCM
PBS

A 549
HEK-293
HeLa

7P

ABS
RMSE
MHB broth
CFU
MHA
DMEM
MOI

PI

dH20
MDT
E.coli
FIC

IV administration

°C

MIC
min
UV-VIS

van der Waals

Transmission electron microscopy
Polydispersity index

Vancomycin hydrocloride

Red blood cells
paramethylbenzhydrylamine
N,N'-Diisopropylcarbodiimide
Solid phase peptide synthesis
Dimethyl formamide
dicloromethane

Phosphate buffer saline

Adeno carcinomic alveolar basal epithelial cells
Human embryonic kidney
Henrietta Lacks

Zeta potential

Absorbance

Root mean square error

Muller Hinton broth

Colony forming units

Muller Hinton Agar

Dulbecco's Modified Eagle's Medium
Multiplicity of infection
Propidium iodide

Deionized water

Mean dissolution time
Escherichia Coli (bacteria)
fractional inhibitory concentration
Intravenous administration
Degrees Celsius

Minimum inhibitory concentration
Minutes

Ultraviolet-visible spectroscopy

XI



List of Figures

Chapter 1: Introduction Page
Figure 1 Antimicrobial resistance deaths prediction by 2050 1
Figure 2 Structures of early antimicrobial agents 2
Figure 3 Antibiotic targets and resistance mechanisms 3
Chapter 2: Published Manuscript
Figure 1 The various AMPs mechanisms. A represents the Barrel-Stave 2
model (AMPs penetrate the membrane in a perpendicular
fashion). B represents the
carpet Model (sections
of the membrane are coated with AMPs). C represents the
Toroidal-pore model (AMPs are
in a constant interaction with the membrane phospholipid head
groups). AMP
Hydrophobic and hydrophilic parts are represented by the
colour blue and red respectively.
Figure 2 MD simulation depicting the interaction of the amphipathic 4
helical AMP F[Nle]W[Hag]RWWV[Orn]L with an artificial
lipid bilayer.
Figure 3 Pexiganan-chitosan conjugate. 9
Figure 4 LL-37 uptake by HaCaT cells (shown as % of cells engulfing 11
treatment) following
empty liposomes, free LL-37, or liposomal LL-37.
Chapter 3: Published manuscript
Figure Graphical Abstract 3
Figure 1 Workflow for identification of best aCPP for membrane 12
penetration
Figure 2 A) Shows the single amino acid code of the aCPP peptide. B) 13
Shows the predicted 3-D
structure of aCPP and C) Shows the constructed POPC lipid
bilayer, P atoms have been shown in
VdW sphere.
Figure 3 Pharmacophore hypothesis (AAHRR). Purple sphere - A, 17
green sphere - H, and brown ring
-R.
Figure 4 The best common pharmacophore hypotheses for compound 18
25.
Figure 5 The Pharmacophore hypothesis showing distance between the 18
pharmacophoric sites of compound 25.
Figure 6 Alignments of active molecules 19
Figure 7 Alignments of inactive molecules. 19
Figure 8 3-D QSAR model based on compound 25 illustrating a- 19
hydrogen bond donor groups, b -
hydrophobic groups, ¢ - Electron withdrawing groups, d -
other effects and e- combined effects
Figure 9 Two representative images of aCPP-POPC lipid bilayer 20

interaction showing interaction, one at 120 ns

XII




and at 200ns. PO4 atoms of bilayer have been shown in VDW
representation and aCPP peptide has been shown
in cartoon representation.

Figure 10 Time evolution of centre of mass (COM) distance between 20
each residue of peptide with
the Phosphate (PO4) group of upper leaflet.
Figure 11 Time evolution of centre of mass (COM) distance between 20
each residue of peptide with
the Phosphate (PO4) group of lower leaflet.
Figure 12 average distance for the last 20ns for each residue. 21
Chapter 4: Submitted manuscript
Figure Graphical abstract
Figure 1 Database filtering technology with peptide filters 14
Figure 2 Intracellular activity on MRSA infected HEK 293 cells. A 17
(AMP2-Lipo-1) and B (AMP3-Lipo-2)
Figure 3 Shows the AMP-2 and AMP-3 simulation systems at t=0 and 17
t=200ns
Figure 4 Cell counts vs Propidium uptake. Green represents untreated 18
MRSA (live cells); red represents percentage of uptake in the
population after incubation with VCM, AMP-2 and AMP-3.
Figure 5 Percentage uptake at different peptide concentration 19
Figure 6 Cytotoxicity evaluation of AMP-2 and AMP-3 at different 20
concentrations A549, HEK293 and HelL a cells
Figure 7 Determination of haemolysis 21
Figure 8 HRTEM of A (AMP:2-Lipo-1) and B (AMP3-Lipo-2) 23

XIII




List of Tables

Chapter 2: Published Manuscript Page

Table 1 Examples of bacteria resistant to antibiotics 2
Table 2 AMPs under clinical trials and development 3
Table 3 AMP-Antibiotic conjugates synthesized for activity against 6

microorganisms
Table 4 Nano-carriers used for the delivery of AMPs 10
Table 5 List of FDA-Approved Nanomedicines Stratified by Material 12

Category

Chapter 3: Published manuscript
Table 1 aCPPs for training and test set 15
Table 2 Summary of 3D-QSAR results 17
Chapter 4: submitted manuscript

Table 1 Novel Antimicrobial peptides 15
Table 2 Novel Antimicrobial peptide MICs 18
Table 3 MICs of controls and liposomes 20
Table 4 pH responsiveness 24
Table 5 FIC of liposomas at 2 pH’s 24
Table 6 FIC index 26
Table 7 Average distances of residues from POs atoms for the last 50 26

ns
Table 8 DLS determination of size, PDI, Zeta potential 27

XIV




CHAPTER 1
INTRODUCTION

1.1 Introduction

The focus of this chapter is to briefly give a background and overview of drug resistance which
has rendered many therapeutic interventions ineffective. Furthermore, it provides an alternative
route with enhanced therapeutic outputs compared to known antibiotics which has resulted in
the proposed aims and objectives of the study, thus highlighting the novelty and significance
of the study.

1.2 Background to this study

Pathogenic microorganisms have been a global threat for decades resulting in the numerous
diseases that are rising exponentially over the years[1]. These pathogens such as bacteria,
viruses, parasites or fungi, have the potential to spread disease directly or indirectly and from
one person to another[2]. Globally, the rate of infections has increased in both nosocomial and
community settings, therefore creating a major need for newer effective therapeutic
interventions in both developed and developing countries[3][4]. This incremental rise of
infectious diseases has also posed a threat to global trade, population growth and further
escalated the disease burden in developing countries (Figure 1)[5][6]. Besides the cause of
mortality, infectious diseases also contribute greatly as opportunistic infections in immune
compromised people, which further increases mortality rates[7][8]. Based on the broad
overview of the spread of infectious diseases, various novel routes are required to circumvent

the spread of infectious diseases.

North America "

317,000
Latin America Africa ] ' Cceania
392,000 4,150,000 22,000

Figure 1: Antimicrobial resistance deaths prediction by 2050[9]



One of the very first attempts to control infectious diseases was through the introduction of
salvarsan, an anti-syphilis therapeutic agent which was synthesized by Ehrlich in 1910[10].
Two decades after, sulphonamides were introduced into the antibiotic market by Domagk
together with other scientists[11]. These early synthetic compounds had lowe bio-safety and
efficacy levels (Figure 2). In 1928, penicillin was discovered by Alexander Fleming, where he
found that the growth of Staphylococcus aureus was inhibited in a zone surrounding a
contaminated blue mold (a fungus from the Penicillium genus) in culture dishes, which led to
the finding that a microorganism would produce substances that could inhibit the growth of
other microorganisms[12]. Streptomycin (obtained from Streptomyces griseus) was later
discovered in 1944 and thereafter, chloramphenicol, tetracycline, macrolide, and glycopeptides

(e.g., vancomycin) were discovered from soil bacteria[13].
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Figure 2: Structures of early antimicrobial agents

The goal of these antimicrobial agents was to have highly selective toxicity towards pathogens
with minimal and preferably no toxicity in humans[14]. This selectivity was thought to occur

through the inhibition of specific bacterial-intracellular targeting or through



the inhibition of biochemical pathways which are vital to the bacterial survival[15][16][17].
Some of the well-studied targeted pathways by different drugs include inhibition of cell wall
synthesis (B-lactams, Penicillins, cephalosporin, vancomycin, bacitracin, cycloserin),
inhibition of cell membrane function (Polymyxin, amphotericin B, imidazole, Daptomycin),
inhibition of protein synthesis (chloramphenicol, erythromycin, clindamycin), and inhibition
of nucleic acid synthesis (ciprofloxacin, flucytosine, fluoroquinolones, rifamycin)[ 18] (Figure

3).

Antibiotic Targets  Antibiotic Resistance .
Cell Wall Fluoroquinolones
p-lactams ‘_______’— Aminoglycosides
Vancomycin Tetracyclines
p-lactams
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DNA/RNA Synthesis i
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Target Modification
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Cell Membrane

Daptomycin Linezolid B-lactams Aminoglycosides
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Macrolides Macrolides
Aminoglycosides Rifamycins

Figure 3: Antibiotic targets and resistance mechanisms[19]

Even with the plausible prospects of antibiotics such as reduction of morbidity and mortality
rates, numerous limitations have attenuated their function, thus rendering them ineffective
against various bacterial strains[20]. Some of these limitations include bacterial resistance
brought on by improper usage, transposable genetic elements and mutations[21][22]. Others
include enzymatic degradation of antibiotics in the gastro-intestinal tract and biocompatibility

together with short circulation in the bloodstream[23].

Bacteria use different resistance mechanisms to repel and protect themselves from the function

of antibiotics. Firstly, antibiotic modification where the resistant bacteria retains the



same sensitive target, but the antibiotic is prevented from reaching it[24]. Secondly, augmented
efflux via transport pumps is another mechanism of resistance where antibiotics are actively
pumped out of the bacteria[17][25]. Thirdly, alterations in the primary site of action where the
antibiotic penetrates the cell and reaches the target site but is unable to inhibit the activity of
the target because of structural changes in the molecule[26]. The fourth mechanism is carried
out through the application of enzymes, where the bacteria may protect themselves from
antibiotics by the production of an alternative target (an enzyme) that is resistant to inhibition

by the antibiotic while continuing with the production of the original sensitive target[27].

Based on the ineffective application of antibiotics to curb new infection rates due to drug
resistance, there is a clear need for the development of novel therapeutic alternatives to
effectively bypass the antibiotic shortfalls. One of the current therapeutic options researched is
antimicrobial peptides (AMPs). These peptides are composed of different amino acid
arrangement with lengths ranging from 15-50 amino acids residues, have been seen to possess
a broad spectrum of activity against most pathogenic microorganisms[28]. Their antimicrobial
activity is attributed to their net positive charge, hydrophobicity as well as structural
conformation[29][30]. Resistance to these compounds have not been well researched,
suggesting that AMPs have the potential to be developed for therapeutic application. The
development of antimicrobial peptide antibiotics is increasingly gaining much attraction as
their roles in physio-pathological processes are being unravelled[31]. However, due to lack of
delivery at an appropriate dosage, time, specificity of the target cells, they can be rendered
unusable[32]. There are numerous methods for obtaining AMP delivery systems. AMPs could
be immobilized via a linker molecule into a variety of materials or adsorption onto a variety of
surfaces and still retain their ability to bind and kill bacteria[33]. One of the methodologies
currently used is nanoencapsulation. This is achieved through encapsulation or adsorption on
nanocarriers by various methods such as emulsion, polymerization, solvent evaporation,
combination of sonication and layer by layer technology and solvent displacement/solvent
diffusion[34].

Due to the inability of current dosage forms to curb the rise of drug resistance, researchers have
explored various strategies to combat this occurrence. Some strategies involve the use of
molecular modelling for the design of potent and selective AMPs for optimal membrane
targeting. Other reported strategies involve the co-delivery of current drugs such as

vancomycin with fatty acids (e.g. oleic acid) and the encapsulation of bioactive antimicrobial
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peptides in a nano system. Vancomycin is known as a good antimicrobial agent that inhibits
bacterial cell wall synthesis by complexation with peptidoglycan precursors[35]. In a study by
Sande et al. (2012), it was reported that liposomal vancomycin improved MRSA killing in
comparison to bare vancomycin[36]. The application of oleic acid in targeting pathogenic
microorganisms have been also been evaluated. However, its encapsulation in a liposomal
system has been shown to possess minimum bactericidal concentrations (MBC), that is 12
times lower than free oleic acid against MRSA[37][38].

Currently, nanotechnology has been seen to be possess the ability to address the antibiotic
shortfalls due to drug resistance[39]. In the context of drug delivery, various nanobased
structures have been used to delivery drugs to their specific target site. Some of these
nanoparticles include micelles, solid lipid nanoparticles (SLNs), liposomes, dendrimers,
hydrogels which are further discussed in the following chapter[40]. The advantages that these
nanostructures offer include, enhanced drug solubility, sustained and controlled drug release at
infection site, biocompatibility, reduced toxicity[41]. Therefore, in order to address the rise in
drug resistance and limitations associated with conventional dosage forms of antibiotics, novel
nano-antibiotic approaches are warranted. One such approach involves the application of
liposomes which have attracted much attention due to their biocompatibility and
biodegradability, which makes them very attractive for biomedical investigation[42]. They
have been seen to possess the capability to solubilize and encapsulate hydrophilic and
hydrophobic materials by nature, making them ideal nano structures for the delivery of
amphiphilic compounds.

Considering the rise in drug resistance and the slow development of antibacterial drugs, there is a
huge scope in the development of novel therapeutic interventions to curb the rate of infection and
to halt the propagation of pathogenic microorganisms. In this study we have explored firstly the
design and synthesis of novel antimicrobial peptides to specifically target the bacterial membrane.
Secondly, we have explored the non-covalent co-delivery of three antibacterial agents (AMPs, OA,
VCM) in a liposome to target MRSA infections. This non-covalent strategy is referred to as a
supramolecular lipidation which involves two or more larger molecules in a system without the
application of chemical bonding. This strategy offers an enhanced multi-directional approach in
targeting infection sites, where the inner contents can act on the bacterial membrane whilst other
agents are eluted to intracellular targets.

There are several reports on the liposomal encapsulation of AMPs or the co-delivery of drugs
with other antimicrobial agents in nano systems. However no study has reported on the non-

covalent encapsulation of novel AMPs with other agents to target MRSA infections.
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Currently, nano systems such as liposomes have been designed to respond to a change in pH.
This pH responsiveness has the potential to offer plausible therapeutic advantages such as
effectiveness in reaching the target site, where the infection site acidosis triggers a release of
the nano system contents on that target area. Therefore, the design of pH responsive liposomal
delivery systems comprising of novel AMPs and other antimicrobial agents known to target
the bacterial membrane and intracellular contents could prove to be a valuable strategy in
targeting resistant strains.

Therefore, the aim of this study was to design, synthesize and evaluate novel AMPs for their
bacterial membrane penetration and activity followed by their co-encapsulation with VCM and
OA in a liposomal system to enhance their antimicrobial activity. Therefore, chapters 3 and 4
represent our first efforts to develop novel AMPs followed by their non-covalent incorporation
with two other antimicrobial agents (OA and VCM) in a liposome to target MRSA infections.
We envisaged that through this supramolecular nano composite, a system comprising of the
membrane penetrating power of AMPs in conjunction with the known antimicrobial activity
of oleic acid and VCM would produce a plausible system that would effectively halt MRSA

infections and offer a sustained release of the nanoparticle at the target site.

1.3 Problem statement

Drug resistance has significantly threatened the control of infectious diseases. Moreover, it has
rendered many antibiotics ineffective towards specific bacterial strains. This incumbent has led
to a rise in mortality and morbidity rates especially in developing countries. Current dosage
forms have been seen to possess several limitations such as inadequate drug concentration at
infection/target sites, fast degradation and short circulation in the bloodstream, severe side
effects and poor patient compliance. All these factors stated above are indicative of the huge
gap in the development of novel therapeutic compounds to curb the rise of drug resistance.
This also points to the need for molecular modelling approaches to design optimal AMPs with
bacterial membrane specificity. The application of nanotechnology in the development on
nano-based drug delivery systems has proven to possess the ability to significantly address the
antibiotic shortfalls brought on by drug resistance. The design and development of AMPs
which target the bacterial cell membrane due to their cationicity followed by their co-
encapsulation with OA and VCM in a liposomal system is expected to enhance antibacterial
activity and thus contributing toward curbing drug resistance. With this in mind, molecular

modelling approaches, followed by the



development and application of nano-based drug delivery systems are paramount to effectively
understand the mechanism of bacterial pathway inhibition with increased antimicrobial

activity, whilst lowering infections rates globally.

1.4 Aims and objectives of this study

The broad aim of this study was to design antimicrobial peptides that have bacterial membrane
penetrating ability and explore their co-encapsulation with a drug and a non-drug antimicrobial
agents in a delivery system to target MRSA infections. The specific research aims of the novel
antimicrobial peptide and their co-encapsulation to enhance their antimicrobial activity are

further discussed with respective objectives in the following chapters.

Aim 1
The aim of this study was to develop a QSAR model which can simultaneously estimate
antimicrobial potential and bacterial cell penetrating ability of antimicrobial CPPs (aCPPs)

against S. aureus.

In order to achieve this aim, the objectives of the study were to:

1. To divide the 28 aCPPs into training and test set compounds and use PHASE 3.0 suite
to build and determine the most appropriate pharmacophore model (AAHRR.114).

2. Select the AAHRR.114 pharmacophore model to determine a QSAR pharmacophoric
alignment of the training and test set compounds to find the best fit aCPP.

3. Perform molecular dynamics simulation using the best fit compound on a POPC model

membrane to ascertain its membrane penetrating ability.

Aim 2
The aim of this study was to design and synthesize novel AMPs for the decoration of
vancomycin and oleic acid containing liposomes to achieve pH responsiveness for enhanced

antimicrobial activity.

In order to achieve this aim, the objectives of the study were to:
1. Design nine novel AMPs using a data filtering technology, CellPPD in the
antimicrobial database (APD).



Synthesize and characterize the novel AMPs and assess their antimicrobial activity
against MRSA and S. aureus.

Select the AMPs with the best antimicrobial activity and evaluate their membrane
penetrating ability using molecular dynamics and flow cytometry.

Determine their cytotoxicity and haemolysis to confirm their biosafety profiles.
Formulate AMP, VCM and OA loaded pH responsive liposomes and characterize them
in terms of particle size, polydispersity index, ZP, surface morphology, entrapment
efficiency, in vitro antimicrobial activity

Determine the liposomal clearance of intracellular MRSA in HEK 293 cells.

1.5 Novelty of the study

The novelty of the work is presented in two experimental studies.

Aim 1

The novelty of this research as depicted in chapter 3 is discussed herein below;

This study will focus on the development of a QSAR model which can estimate
the antimicrobial potential (MIC) of a set of antimicrobial cell penetrating
peptides (aCPPs) based on their therapeutic index (TI). TI is the ratio of
eukaryotic cell viability to the minimum inhibitory concentration values of a CPP.
Furthermore, molecular dynamics simulation will be performed to confirm the
membrane insertion ability of the the most active aCPP obtained from the QSAR
study with the POPC membrane. The aCPPs form when small sequence
modifications of CPPs as well as AMPs take place. While their mechanism of
action has not been fully explored, it is thought that they primarily target the

bacterial cell membrane.

The novelty of this study is based on the activity of these aCPPs by correlating
its TI to bacterial cell penetrating potential and further confirming its membrane
insertion by molecular dynamics simulation. To date, there has been no QSAR
study conducted to predict the cell penetrating-antimicrobial potential of aCPPs
based on their TI. This study aimed at the development of a QSAR model to
validate the cell penetrating ability of aCPPs based on their TI.

A total 28 aCPPs were divided into training and test set compounds and PHASE
3.0 suite was used to build a pharmacophore. It was found that the most

appropriate pharmacophore model (AAHRR.114) to predict aCPP activity had a



five-point hypothesis that consisted of two hydrogen bond acceptor (A), one
hydrophobic group (H) and two aromatic ring features (R). AAHRR.114 was
selected for QSAR model development and the 3D-QSAR was evaluated by
cross-validation coefficient (Q2), Fisher test (F), correlation coefficient (R?) and
Pearson-R. Standard deviation (SD) and Root-mean squared error (RMSE).

* The results obtained showed that the higher the TI, the higher the PHASE
predicted activity which is consistent with our hypothesis. The findings that will
be achieved are important for future research in peptide design and will allow
researchers to focus more on optimizing the TI of aCPPs for bacterial cell
specificity.

» This study reports for the first time the application of the TI of aCPPs in relation
to their cell penetration ability and antimicrobial potential by building a QSAR
model which will outline the specific descriptors of aCPPs responsible for their

potency.

Aim 2
The novelty of this research as depicted in chapter 4 is discussed herein below;
* Supramolecular lipidation of AMPs using different nano systems have been widely
reported, however no work has reported on the supramolecular strategy employing the
co-encapsulation of AMPs with a drug and a non-drug antimicrobial agent in a

liposomal system for enhanced antimicrobial activity.

* Co-delivery of antibiotics such as vancomycin with agents such as linolenic acid has
improved activity against bacteria such as MRSA and S. aureus. However, there is no
report on the co-delivery of AMPs with antibiotics drugs and other non-drug
antimicrobial agents in a single delivery system to target MRSA.

* This study reports for the first time the application of this supramolecular liposomal

assembly in improving antimicrobial activity of AMPs against MRSA.

1.6 Significance of the study

Infectious diseases continue to be plague humanity globally and therapeutic efforts to curb this
phenomenon have been greatly attenuated. This is due to re-emergance and proliferation of
multidrug-resistant strains which has led to the search for effective therapeutic agents.

Antimicrobial peptides (AMPs) therefore represent a new class of potential drug candidates



and are currently being explored for conjugation to other antibiotics as well as for delivery via

novel advanced nano-delivery systems. The significance of this study is highlighted below:

New pharmaceutical products: It is envisaged that the proposed novel AMPs and the

supramolecular assembly comprising of the AMPs, VCM and OA encapsulated in a liposomal
system as a single entity will be new pharmaceutical products that have not been reported.
These agents can serve as new drug entities for effective therapeutic outputs, contributing to

the production of low-cost drug entities in the pharmaceutical industry.

Improved patient therapy and disease treatment: The supramolecular assembly can improve

patient therapy and disease treatment caused by drug resistant bacterial infections by
augmenting the antimicrobial activity of the encapsulated agents for effective targeting,
allowing for minimal doses to be used for improving patience compliance, improved treatment

outcomes, saving lives of patients.

Addition to the knowledge base of drug discovery:

It is envisaged that the proposed studies can lead to the addition and generation of new

knowledge in drug discovery and delivery. It can include the following:

* Design of optimal novel materials and compounds for lead optimization in drug-

candidate discovery.

» Synthesis of novel entities and their evaluation in vitro and in silico for bacterial

membrane penetration can add to the conception of new knowledge.

*  Co-delivery of these compounds with drug and non-drug agents will also contribute to

new scientific knowledge.

* The extensive evaluation of these novel systems can provide knowledge for application

in clinical trials.

Stimulation of new research:

AMPs possess great potential to change antimicrobial therapy and their non-covalent co-
delivery with other antibacterial agents will allow them to effectively treat diseases associated
with bacterial infections. The proposed research holds great prospects in combating drug

resistance for the following reasons:
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The findings are important for future research in peptide design and will allow
researchers to focus on optimizing the TI of aCPPs for bacterial cell specificity. It will
also facilitate the synthesis of novel aCPPs for the design and development of aCPP
based drug delivery systems. A good TI also implies that the hemolytic index is low. A

low hemolytic index suggests that the designed aCPP can be applied in clinical trials.

The proposed supramolecular liposomal assembly can further stimulate the research
area of drug, non-drug and peptide encapsulation for enhanced membrane penetration
and activity. Furthermore, this research area can be evaluated for enhanced drug

delivery and peptide intracellular targeting for combatting drug resistance.

1.7 Overview of thesis

The research work performed is presented in this thesis in the publication format
according to University of Kwa-Zulu Natal, College of Health Sciences guidelines. It
specifies the inclusion of brief introductory chapter, published papers and a final
chapter on the conclusions. A PhD study is expected to generate at least 3 first authored

papers, 2 of which must be experimental.

CHAPTER 1. INTRODUCTION:

This chapter gives a brief contextual to the study and provides details on the status of
infectious diseases, drug resistance and therapeutic interventions that have been
conducted thus far. Furthermore, details on innovative solutions to curb drug resistance
and improve antibiotic therapy are described, resulting in aims and objectives, novelty

and significance of the study pursued.

CHAPTER 2. REVIEW PAPER:

This chapter focuses mainly on the diversity and broad spectrum antimicrobial activity
of AMPs and its conjugates, computational studies depicting AMP-antibiotic conjugate
action and mechanisms of membrane penetration as well as Nano delivery of AMPs.
The novelty of this review is elucidated in the ability of the AMPs to be conjugated to
other compounds and further used in drug delivery and it identifies a considerable gap
in AMP conjugates exploitation as potential therapeutic agents and in drug delivery.

This review paper is a first authored publication (Drug Delivery
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Science and Technology - impact impactor = 2.297) and has vastly contributed to the
literature on peptide science and their utilisation in combating infectious diseases.
Lastly, this review also highlights the direction of future research of peptides,
highlighting their potential for conjugation strategies involving other compounds such
as natural products, nano delivery of AMP-vaccine conjugates for enhanced immunity,
encapsulation of AMP-gene conjugates in nano systems for targeted gene therapy. This
would greatly enhance the applications of AMPs and broaden their scope in finding

therapeutic agents.

CHAPTER 3. EXPERIMENTAL PAPER 1:

This chapter addresses Aim 1, Objectives 1- 3 and is a first authored experimental paper
published in the Journal of Biomolecular Structure and Dynamics, impact factor = 2.15.
This research focussed on the development of a QSAR model which can estimate the
antimicrobial potential (MIC) of a set of aCPPs based on their therapeutic index (TI),
which is the ratio of eukaryotic cell viability to the minimum inhibitory concentration
values of a CPP. Furthermore, molecular dynamics simulation was performed to
confirm the membrane insertion ability of the most active aCPP obtained from the
QSAR study with the POPC membrane. The novelty of this paper is based on the
activity of these aCPPs by correlating its TI to its bacterial cell penetrating potential

and further confirming its membrane insertion by molecular dynamics simulation.

CHAPTER 4. EXPERIMENTAL PAPER 2:

This chapter addresses Aim 2, Objectives 1 — 6 and is a first authored experimental
article that has been completed and submitted to European Journal Pharmaceutics and
Biopharmaceutics (impact factor 4.491) an ISI international journal (manuscript ID:
EJPB 2018 1382). This paper reports on the supramolecular lipidation of novel
antimicrobial peptides for enhanced antimicrobial activity against methicillin-resistant
Staphylococcus aureus (MRSA). This research revealed that the co-delivery of novel
AMPs, VCM and OA in a liposomal system can potentially be used to enhance activity
and penetration of AMPs, as well as offering synergism between the encapsulated

materials thereby improving the treatment of bacterial infections.
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CHAPTER 5. CONCLUSION:

» This chapter describes the overall conclusions from the research findings in the
different research undertaken. It further provides information on recommendations for

future research in peptide science for their utilisation to curb drug resistance.
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CHAPTER 2, Review Paper

2.1. Introduction

This chapter is a first authored review paper titled, conjugates and nano-delivery of
antimicrobial peptides for enhancing therapeutic activity and had been published in the
Journal of Drug Delivery Science and Technology. This review focuses mainly on the
diversity and broad-spectrum antimicrobial activity of AMPs and its conjugates,
computational studies depicting AMP-antibiotic conjugate action and mechanisms of
membrane penetration as well as Nano delivery of AMPs. The novelty of this review is
elucidated in the ability of the AMPs to be conjugated to other compounds and further
used in drug delivery. The review paper includes the design and synthesis of novel
antimicrobial peptides for delivery in nano systems for enhanced antimicrobial activity

which is part of the main objective this study.
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1. Introduction

Infectious diseases are one of the leading cause of mortality glob-
ally, despite modern technological advances of the 21st century on new
drugs and diagnostic equipment used to improve healthcare [1,2]. Over
the past 10 years in particular, re-emerging infectious diseases have
challenged researchers and the public health systems in their efforts to
curb the rise of pathogenicity [3-12]. Bacteria possess numerous drug
target sites, with the number of exploited sites being relatively small
[13]. This gap in the exploitation of bacterial intracellular targets al-
lows for the synthesis and design of newer antimicrobial agents. Anti-
microbial drugs have various modes of action, and depend on factors
such as their structural conformation and affinity to certain target sites
[14]. The most effective antibiotics act as inhibitors of cell wall
synthesis (e.g. penicillins, cephalosporins, bacitracin and vancomycin)
[15], cell membrane function (e.g. polymixin B and colistin) [16],
protein synthesis (e.g. aminoglycosides, macrolides, lincosamides,
streptogramins, chloramphenicol, tetracyclines), nucleic acid synthesis
(e.g. quinolones, metronidazole, and rifampin) and other metabolic
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processes (e.g. sulfonamides and trimethoprim) [17]. Despite the de-
velopment of numerous potent antibiotics, infections continue to be a
challenge to treat, with the bacteria developing strategies to circumvent
their action [18-21].

While antibiotics have revolutionised the therapy of infections,
several disadvantages with current dosage forms have been observed.
These include inadequate concentration at target infection sites, poor
penetration of the antibiotics, side effects and poor adherence [22-24].
These limitations have contributed to antibiotic resistance by micro-
organisms, causing infections on a global scale [25]. The World health
organization (WHO) also identified other causes of drug resistance that
include the inappropriate use of antibiotics, lack of quality medicines,
animal husbandry practices, poor infection control, weak surveillance
systems and a lack of progress in developing new vaccines to combat
drug resistance [26]. The reduction in effectiveness of a drug [27] is
mainly used in the context of pathogenesis, and occurs through a
number of mechanisms, such as: (a) drug modifications by enzymes,
such as -lactamases, (b) target site alterations, (c) metabolic pathways
alterations, and (d) reduced drug accumulation due to efflux pump
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Table 1
Examples of bacteria resistant to antibiotics.

Bacteria Type Drugs resistant to Ref
Methicillin-resistant Gram (+)  Vancomycin, Linezolid, [214]
Staphylococcus aureus cocci Daptomycin, Eicoplanin
(MRSA)
Vancomycin resistant Gram (+)  Erythromycin, Vancomycin [215]
Staphylococcus aureus cocci
(VRSA)
S. pneumoniae Gram (+) Doxycycline, Erythromycin, [216]
diplo- Penicillin G
coccus
E. faecium, VRE Gram (+) Vancomycin, Streptomycin, [217]
cocci Gentamicin, Penicillin,
Ampicillin
E. coli Gram (—) Ciprofloxacin, Levofloxacin [218]
rods
P. aeruginosa Gram (—) Imipenem, Meropenem, non-  [219]
rod antipseudo-monal Penicillins
K.pneumoniae Gram (=)  Colistin, [220]
rods
A. baumanii Gram (—) Imipenem, Meropenem [221]
rod

activity [28,29]. Drug resistance has led to the inadequacy of current
dosage forms and has significantly hindered the efficacy of antibiotics
[30]. This includes resistance to bacteria, such as Methicillin-resistant
Staphylococcus aureus (MRSA) (resistant to beta-lactams), E. faecium
(resistant to streptomycin), K. pneumonia (resistant to 2nd and 3rd
generation cephalosporins) and A. baumanii (Table 1) [31]. The pro-
liferation of multidrug-resistant strains has led to the search for effec-
tive therapeutic agents, and has ignited research into the design and
synthesis of novel antimicrobial molecules [32,33]. The development of
alternative therapeutic agents remains one of the major challenges to
circumventing the problem of drug resistance [34]. Antimicrobial
peptides (AMPs) represent a new class of potential drug candidate and
are proteins of smaller molecular weight (2-8-kDa) that are broad
spectrum in their activity against pathogenic bacteria, viruses and fungi
[35,36]. They are also known as host defence proteins (HDPs), and are
part of the innate immune system found in all classes of life [37]. The
discovery of AMPs dates back to 1939, with gramicidins being dis-
covered first and isolated from B. brevis [38]. Gramicidins have been
used to treat infected wounds on the skin of guinea-pigs [39], which led
to their consideration for clinical use, after which they were commer-
cially synthesized as antibiotics. The number of AMPs discovered and/
or synthesized to date is above 5000 [40].

AMPs are either natural based obtained from prokaryotes and eu-
karyotes [41], or synthetic based. They are divided into four structural
groups' viz. (a) -sheet; (b) a-helical; (c) loop and (d) extended peptides
with broad spectrum activity [42], with a-helix and B-sheets specifi-
cally being more common [43]. As AMPs are constructed by coupling
amino acids, it is easy to modify their structure [44], which is an ad-
vantage in designing various combinations. This ability also allows for
the possibility to change the AMP targets and improve their stability
against the degradative effects of proteases [45]. AMP activity occurs
mainly by disrupting the integrity of the membrane protein, inhibiting
DNA and RNA synthesis, or disrupting intracellular targets [46]. AMP
action is dependent on their cationic charge, which allows them to be
attracted to the anionic membrane of its targets and leads to the de-
struction of the cell membrane [47,48]. Fig. 1 shows the different
mechanisms AMPs used to traverse the bacterial membrane [49]. The
AMPs membrane penetrating ability is a major advantage over con-
ventional antibiotics, which may find it difficult to cross bacterial cell
membrane and make their way into intracellular targets [50]. Several
review papers have highlighted the applicability of AMPs as anti-
bacterial agents for enhancing activity against various organisms, such
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Cell membrane

AMPs in aqueous solution
2, e

% AN A

\/2/«\-\/2/\,\

Yeina;u of AMPs to the membrane
and forming a-helix structures

Fig. 1. The various AMPs mechanisms. A represents the Barrel-Stave model (AMPs pe-
netrate the membrane in a perpendicular fashion). B represents the carpet Model (sections
of the membrane are coated with AMPs). C represents the Toroidal-pore model (AMPs are
in a constant interaction with the membrane phospholipid head groups). AMP
Hydrophobic and hydrophilic parts are represented by the colour blue and red respec-
tively. Permission granted [69]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

as LL-37, melittin and magainin-II, which are active against P. aerugi-
nosa, L. monocytogens, and MRSA respectively [51-53]. A number of
AMPs, such as pexiganan acetate, Omiganan, IMX924, Arenicin, Se-
maglutide and Dulaglutide, were found to be active against Gram po-
sitive and negative bacteria, and are now in clinical trials (Table 2).
Their intended use was for diabetic ulcers, catheter infection prevention
and Type 2 diabetes mellitus [54,55]. Despite their beneficial potent
antibiotic activity, their inherent drawbacks, including poor physico-
chemical stability, a short circulating plasma half-life and a high hae-
molytic effect [56] have the potential to render AMPs un-usable
[57-59]. Various strategies are therefore being used to overcome these
limitations. To potentiate their activity, AMPs are also being increas-
ingly explored for conjugation to several classes of materials. The
conjugation strategy of AMPs to other compounds amplifies their po-
tential to overcome the current drug resistance crisis [60] as it offers in
combination multiple benefits as opposed to the AMP alone. These AMP
conjugates can lead to multiple mechanisms of action against bacteria,
facilitate self-assembly of AMPs into nanostructures for delivery,
achieve intracellular targeting and prolong circulation life [61-64].
Administration of AMPs or its conjugates will eventually require its
incorporation into a dosage form for patient administration. The use of
current conventional dosage forms will limit the potential of AMPs as
they lead to inadequate delivery to the infection site, may not offer
protection against degradation by proteases and other degradative en-
zymes [23,65]. Although it has been noted that the mechanisms of
bacterial resistance to AMPs are still not well understood, and their
occurrence very unlikely, physico-chemical modifications in the bac-
terial cell membrane seems to be the first step to developing resistance
[66]. Once the bacteria changes the AMP target to make it less sus-
ceptible to the action of AMPs, fluidity and bacterial cell permeability
decrease due to alterations in the architecture of the outer and inner
membranes. Bacterial membrane surface modifications, which can lead
to reduced levels of specific membrane proteins and ions, as well as
changes in the membrane lipid composition, can promote resistance,
which alters the activity of the AMP at its site of action [67,68]. To
circumvent this occurrence, the encapsulation or association of these
AMPs into nanosized carriers as delivery systems is being explored to
achieve targeted delivery to the infection site and reduce resistance
[69]. This would provide an added advantage since these nano carriers
provide adequate delivery with selective targeting to the infection site
as well protection from enzymatic degradation. Also the nano carriers
will provide high stability, high carrier capacity, feasibility of in-
corporation of both hydrophilic and hydrophobic substances, and
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Table 2
AMPs under clinical trials and development.
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Product Description Indication Phase Company (location)
Magainin peptide/ 22-amino-acid linear antimicrobial Diabetic foot ulcers 3 Dipexium Pharma (White Plains,
pexiganan acetate peptide, isolated from the skin of the New York)/Macro Chem/Genaera

African clawed frog (Xenopus laevis)

Omiganan Synthetic cationic peptide derived from Rosacea 2 BioWest Therapeutics/Maruho
Indolicidin (Vancouver)

OP-145 Synthetic 24-mer peptide derived from Chronic bacterial middle-ear 2 OctoPlus (Leiden, The Netherlands)
LL-37 for binding to lipopolysaccharides infection
or lipoteichoic acid

Novexatin Cyclic cationic peptide, 1093 daltons Fungal infections of the toenail 1/2 NovaBiotics (Aberdeen, UK)

Lytixar (LTX-109) Synthetic, membrane-degrading peptide Nasally colonized MRSA 1/2 Lytix Biopharma (Oslo)

NVB302 Class B lantibiotic C. difficile 1 Novacta (Welwyn Garden City, UK)

MU1140 Lantibiotic Gram-positive bacteria (MRSA, Preclinical Oragenics (Tampa, Florida)

C. difficile)

Arenicin 21 amino acids; rich in arginine and Multiresistant Gram-positive Preclinical Adenium Biotech Copenhagen
hydrophobic amino acids bacteria

Avidocin and purocin Modified R-type bacteriocins from Narrow spectrum antibiotic for Preclinical AvidBiotics (S. San Francisco,
Pseudomonas aeruginosa human health and food safety California)

IMX924 Synthetic 5-amino-acid peptide innate Gram- negative and positive Preclinical Iminex (Coquitlam, British Columbia,

defense regulator

bacteria (improves survival and

Canada)

reduces tissue damage)

Adapted from Fox et al., 2013 [222].

feasibility of variable routes of administration and allows controlled
drug release from the matrix [70]. Several types of nanoparticles, which
are described in this review, such as liposomes, micelles, nanofibers,
metallic nanoparticles (silver and gold nanoparticles) and hydrogel
nanoparticles, also possess various mechanisms to bypass resistance.
Once the AMP is incorporated into these nano systems, it would pro-
mote the formation of reactive oxygen species, improve the delivery of
the bioactive AMPs by functioning as circulating micro-reservoirs for
sustained release at the infection site, and provide resistance to corro-
sion and oxidation in the case of metallic nano particles [71]. These
nano-based drug delivery systems have distinguished themselves as the
best approach to mitigate the development of drug resistance by de-
creased uptake and increased efflux of drug from the microbial cell,
biofilm formation and intracellular bacteria. Finally, nanoparticles can
target antimicrobial agents to the infection site, which leads to higher
drug doses accumulating at the infected site while keeping the total
dose of drug administered low. The strategy of having a high local dose
at the infection site promotes bacterial killing before resistance could
develop, while the lower total dose decreases the possibility that bac-
teria outside of the nanoparticle site of action will develop drug re-
sistance [72].

Molecular modelling of AMPs is being increasingly reported to un-
derstand their mechanisms of action and how they traverse the bac-
terial cell membrane [73-75]. Studies to identify structural and phy-
sicochemical descriptors for AMP activity are also being undertaken. An
understanding of such studies is critical to facilitate the design and
optimisation of future new conjugates and delivery systems of AMPs.

Reviews thus far on AMPs have focussed on their sources, applica-
tions, structural make-up, activity against various classes of bacteria
and design [38,76-80]. To date, there is no review paper focusing on
AMP-conjugates in combination with the nano delivery of AMPs and
molecular modelling approaches as strategies to potentiate the applic-
ability and activity of AMPs. An overview of molecular modelling and
quantitative structure activity relationship (QSAR) investigations of
AMP activity on the bacterial cell membrane specifically is also lacking.
This review paper provides an overview of available computational
studies depicting AMP-membrane penetration, as well as their quanti-
tative structure activity relationships (QSAR) that identify the char-
acteristic descriptors responsible for their cell membrane permeation. It
focuses mainly on the diversity and broad spectrum antimicrobial ac-
tivity of AMPs and their conjugates, as well as on the formulation and
evaluation of AMPs into various nano delivery systems. Future research
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to realise the potential of AMP-conjugates and AMP delivery via nano
drug delivery are also identified. This review paper therefore highlights
the AMPs ability to target various microorganisms, their conjugation to
different antibiotics, polymers and other conjugates, such as phenolic
compounds, DNA and salts, which have the potential to enhance AMP
activity. This review also highlights the molecular modelling ap-
proaches that could structurally elucidate the mechanism of membrane
penetration, and showcases the potential for nano delivery AMPs alone
and in their respective conjugates for enhanced activity.

2. In silico studies of AMPs in membranes

Since the advancement of computational drug designing and ma-
chine learning, In silico simulations have become a complementary
counterpart to experiments to understand the molecular mechanism of
macromolecules and develop novel drug candidates [81]. Molecular
modelling approaches, including molecular dynamics and QSAR, have
become an integral part of modern drug discovery [82]. An under-
standing of bacterial membrane penetration by AMPs is key to its uti-
lisation to circumvent drug resistance [83]. The mechanism of mem-
brane penetration by AMPs is not well understood [84], however, In
silico studies have emerged that utilised complex computational tools to
study receptor-ligand interactions and their binding affinities [85]. In
the literature, molecular studies, such as molecular dynamics (MD) and
quantitative structure-activity relationship (QSAR), have been utilised
to understand the mechanical behavior of biomolecules e.g. AMPg
[86-88]. As this review focuses on AMP-conjugates and AMP nano
delivery, a mechanistic understanding of the actions of AMPs is im-
portant to elucidate their membrane penetration ability. This section
will focus on a brief overview of molecular dynamic (MD) simulations
of AMPs through model membranes. Quantitative structure-activity
relationship (QSAR) is also discussed, which provides a deeper under-
standing of the structural descriptors that could be attributed to
membrane penetration.

2.1. Molecular dynamics (MD) simulations of AMPs in model membranes

Molecular dynamics is an In silico method that provides structural
insights, binding affinities and stabilities of proteins by complex cal-
culations of time dependent behavior of a molecular system [89]. Its
main aim is to provide a simulation that studies the conformational
rearrangements of molecules, the interaction and motion of atoms and
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(a)0ns

(b) 50 ns (c) 100 ns

molecules according to Newtons equation of motion [90]. MD utilises
force fields (e.g. CHARMM) to estimate the forces between interacting
atoms and to calculate the overall energy of system [91]. MD simula-
tions, the integration of Newton's laws of motions generates successive
configurations of the evolving system, providing trajectories that spe-
cify positions and velocities of the particles over time. From these MD
trajectories, a variety of properties can be calculated, including free
energy, kinetics measures, and other macroscopic quantities, which can
be compared with experimental observables [90]. Khandelia et al.
(2008) reviewed the impact of peptides in lipid membranes, and ob-
served that such MD simulations on model membranes are essential for
understanding the structural factors that account for membrane per-
meation, such as peptide amphiphilic character, conformation and
electrostatic effects [92]. MD simulations of AMPs in model membranes
allow for the behavioral and structural insights of how they are inserted
into the lipid bilayers, as well as the outlining factors that influence
lipid-peptide interactions, such as membrane thickness, lipid acyl-chain
order and dynamics, membrane elasticity, lipid-domain and annulus
formation to be described [93,94]. In this review, we focused on the
different MD simulations studies as examples to elucidate the AMP-
membrane interaction, with the hope that this will give an indication of
AMP factors that could attenuate or enhance their membrane pene-
tration potential. Sengupta et al. (2008) conducted a series of simula-
tions with the AMP, Melittin (GIGAVLKVLTTGLPALISWIKRKRQQ) in-
teracting with dipalmitoylphosphatidylcholine (DPPC) bilayers using
the GROMACS software package for MD simulations. The GROMOS
force field 43a2 was used to interpret the peptide-bilayer interactions.
The simulation revealed that two AMPs were inserted into the DPPC
bilayer pore, while the remainder were found to line the mouth of the
pore [95]. The authors indicated that the AMPs lining the mouth of the
pore are expected to give an initial burst effect and then a controlled
release behavior will be followed. We believe that this study not only
explains the interaction of AMPs with the membrane, but can also in-
dicate the AMPs' release behavior from future liposomal formulations
due to the similarity of the components between the liposomes and the
membrane bilayer. In another study, Dittmer et al., (2009) conducted a
study on incorporating AMPs (alamethicin) into membranes employing
liquid-State NMR and MD, with the C monomer from the X-ray crystal
structure of alamethicin being used for the system set up. The MD si-
mulations revealed the fluidity of the membrane environment, where
the AMP was dissolved rather than incorporated [96]. Dan et al. (2011)
reviewed the interaction of the AMP protegrin on lipid bilayer mem-
branes. An interesting observation from this review was that these
AMPs interact with the components of the outer membrane, and have
an increased bilayer disruption with increased AMP concentration [97].

Using another model lipid bilayer membrane of phosphatidylgly-
cerol (POPG) and phosphatidylcholine (POPC), Wang et al. (2012)
conducted a MD simulation of the AMP CM15 at 100 ns. The AMP was
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Fig. 2. MD simulation depicting the interaction of the amphipathic
helical AMP F[Nle]W[Hag]RWWV[Orn]L with an artificial lipid bi-
layer. Permission granted [78].

(d) 150 ns

reported to penetrate the model membranes with no hemolytic activity.
The study concluded that the initial conformation of the peptide played
an important role in inserting the peptide into the model membranes
[70]. From this study, we expect that the hydrophobicity of the AMPs
could determine their distribution between the lipid bilayer of the
membrane and the aqueous core, which is essential in formulating si-
milar structured nanocarriers. In a study conducted by Li et al. (2012),
molecular simulations were conducted to propose how a branched AMP
disrupts a bacterial membrane, with MD simulations being performed
for each model membrane using the CHARMMS36 force field. The con-
centration dependent effects of the branched AMP were studied by
performing simulations with varying peptide-lipid ratios: 1:128, 2:128
and 3:128. These ratios corresponded to different concentrations of the
AMP, and all the simulations were run for 200 ns using the GROMACS
package 4.5. The results indicated that the activity of the branched
AMP (B2088) is concentration dependent, and that at higher con-
centrations (using 3 B2088 molecules with 128 lipid molecules), sig-
nificant membrane perturbation may occur [87]. This study can be
considered significant because it can be used to predict the conjugation
of the AMPs with different ratios of polymers, and to interpret the in-
teraction behavior based on an analysis of the entropic energy values,
which could affirm the continuity or discontinuity of the interaction.
Wang et al. (2016) analyzed the susceptibility of AMPs that in-
corporated unnatural amino acids against microbial infections. The MD
simulation revealed the amphipathic-helix conformation of the de-
signed peptides, as depicted in Fig. 2, which were also seen to unfold
when they traversed the simulated lipid bilayer that mimics the bac-
terial membrane. In vitro susceptibility was conducted against P aeru-
ginosa, S. aureus, and E coli, with one AMP (F[Nle]W[Hag]RWWV[Orn]
L) showing very potent antimicrobial activity, having MIC's of 5.6, 18.9
and 11.2 ug/ml for S. aureus, P. aeruginosa and E. coli respectively [98].
We conclude that the importance of the Wang et al. (2016) study is that
a correlation between amino acid sequences and bacterial phospholi-
pids could be established to create the foundation for further experi-
mental studies using techniques that investigate the interaction be-
tween the AMPs. Balatti et al. (2017) conducted a study on the
differential interaction of amphiphilic AMPs (aurein 1.2 and maculatin)
with POPC lipid structures using coarse-grained MD simulations. The
AMP-lipid simulation was conducted in three initial configurations: (a)
peptides in water in the presence of a pre-equilibrated lipid bilayer; (b)
peptides inside the hydrophobic core of the membrane; and (c) random
configurations that allow self-assembled molecular structures. The re-
sults showed that both AMPs were capable of forming membrane ag-
gregation, however, the aurein 1.2 were seen to form pore-like struc-
tures, whereas the maculatin formed clusters and induced curvature at
low peptide-lipid ratios [99].

The above reports have been useful in demonstrating that the nature
of the AMP dictates how it will interact with the bacterial membrane,
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and whether it will be incorporated or disintegrate as it interacts with
it. These molecular dynamic studies of AMP-membrane interaction al-
lowed for the concise evaluation of the AMPs mechanism of action as
they traverse the lipid bilayer. This is important for guiding future re-
search that incorporates peptide conjugates and their delivery in nano
systems. It should be noted though that a challenging factor is the ex-
perimental validation of computer modelled simulated results, as most
MD studies having not been evaluated experimentally [100]. This
suggests the need to combine both computational and experimental
approaches in AMP design and application. In contrast to the above
research, where the authors focused on a single AMP (Protegrin), this
review focuses on various AMPs interacting with model membranes,
and further postulates that these AMP activities could be enhanced by
conjugation strategies.

The remainder of the above studies focused on molecular modelling
with AMPs on model membranes. The review of the current literature
therefore indicates that there is a considerable gap in molecular dy-
namic simulations of AMP-antibiotic conjugates and their delivery in
nano systems. Research on simulations of AMP-conjugates with model
membranes have potentially great prospects, specifically as some target
intracellular organelles. An MD study of these conjugates as they pe-
netrate the bacterial membrane, as well as when they interact with
intracellular targets, would offer a better understanding of their me-
chanism and how they could be improved. Only one study so far has
reported the modelling on AMP-nanoparticles. This study by Liu, Xu
et al. (2009) showed the self-assembly of cationic peptide nanoparticles
as an efficient antimicrobial agent. Those nanoparticles showed effi-
cient penetration through the blood brain barrier (BBB) in S. aureus-
infected meningitis rabbits for the treatment of brain infections [101].
Molecular dynamic studies on the various nano carrier systems that can
be used for AMP delivery is therefore highly warranted.

2.2. Quantitative structure activity relationship (QSAR)

QSAR is another well-known computational method used for
studying AMPs, and relies on identifying a set of structural or physio-
chemical descriptors to describe their activity [102,103]. This compu-
tational tool provides the added advantage of AMP structure-membrane
activity. While most studies employing QSAR modelling to study pep-
tides use this tool to predict structural descriptors attributed to peptide
activity, haemolysis and cytotoxicity [104], there are no QSAR model
studies that have related the structure of AMPs to their ability to pe-
netrate bacterial membranes. This review provides insights into AMP
structural descriptors in relation to their ability to penetrate bacterial
membranes. Frecer et al. (2006) developed a QSAR model to analyse
the haemolytic effects and antimicrobial activity of cyclic cationic
AMPs obtained from protegrin-1. The study utilised the genetic function
approximation algorithm to relate antibacterial activity to the AMPs net
charge and amphipathicity and the haemolytic activity paralleled with
the lipophilicity of the residues from the nonpolar surface of the [3-
hairpin. However, the results reflected that the protegrins, together
with their analogs containing a single or double disulfide bridge, de-
monstrated greater antimicrobial potency compared to their counter-
parts, with no disulfide bridges [105]. Jianbo Tong et al. (2008) re-
ported on a novel descriptor of amino acids and its use in designing
peptides with the principal component analysis (PCA) method, where
99 molecular indexes of amino acids were examined. For each amino
acid, nine principal component scores were selected and applied as new
vectors of descriptors. Vector of principal component scores (VSW)
were derived from the principal component analysis of the invariant
molecular indices of the amino acids. The observed and calculated ac-
tivities of the AMP sequences were compared, and were found to be
very similar [106].

Wang et al. (2012) built a QSAR model of cationic AMPs, basing it
on the structural properties of amino acids. The amino acid index da-
tabase was used to select 89 indices that depicted three classes of AMPs
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in the model (Surface-tethered cationic peptides, 101 synthetic cationic
polypeptides and novispirin AMPs) in order to calculate the contribu-
tion of the amino acids to the activity of the AMPs. The high perfor-
mance STR-MLR model enabled the prediction of antimicrobial activity
and identified the most suitable amino acids in the sequence to be used
for designing novel AMPs [107]. The importance of amino acid se-
quence was highlighted later in another study by Mariya et al. (2015).
They built a QSAR model, for which the Monte Carlo method was used,
of the activity of AMPs (mastoparan analogs) as a mathematical func-
tion of a sequence of amino acids. The results obtained were reasonably
good, with the pMIC values being better than those of the experimental
pMIC values.

From the above reports, it is clear that the use of QSAR studies is
important to establish the most potent descriptors that will allow for
optimal AMP activity and will subsequently facilitate the design of
optimal AMPs with good antimicrobial activity and less haemolytic
effects [108]. Importantly, we believe that these descriptors identified
could also be crucial in elucidating the most probable candidates that
are important in bacterial cell membrane penetration and nanoparticle
formation. As most AMPs main target is the cell membrane, we contend
that the descriptors outlined in the above studies not only account for
antimicrobial activity but membrane penetration as well. In conjunc-
tion with QSAR modelling, more in-depth computational approaches
are needed to further describe the mechanism of action of these de-
scriptors on the cell membrane components leading to membrane dis-
ruption. Zelezetsky et al. (2006) equates the activity of AMPs to their
structural conformation, where a-helical structuring permits optimal
spatial arrangement of aliphatic side chains for membrane insertion,
and their hydrophobicity allows for deeper insertion into the whole
lipid bilayer [109]. We also contend that since the formulation of nano
delivery systems requires certain physicochemical conditions, such as
pH, hydrophobicity, charge, solubility, entrapment and release profiles
[101], QSAR studies could assist in elucidating those descriptors re-
quired for nanoparticle formulation, and how these AMPs would be-
have in those nano systems.

A possible limitation of current QSAR reports on AMPs is that they
have mainly focused on the elucidation of possible physicochemical
descriptors responsible for activity and those that attenuate activity
[103,110]. Studies on membrane destabilization, AMP activity within
the bacterial cell wall and how it disrupts intracellular pathways are
lacking. Future reports on QSAR studies with AMPs can be strengthened
by the inclusion of experimental studies such as DNA based testing for
determining lysis of the microbial cell wall and microscale thermo-
phoresis (MST) for determining the intracellular interactions causing
the disruption of the intracellular pathways to provide a greater in-
depth understanding of how specific descriptors enhance membrane
permeation and intracellular interactions [111].

3. AMP-antibiotic conjugates

One approach to enhance the performance of AMPs is the applica-
tion of conjugation strategies [112]. AMPs can be conjugated to various
classes of materials forming AMP-conjugates, and are designed solely
for the purpose of combining the antimicrobial power of AMPs with the
desired conjugates to effectively kill microorganisms [45,60]. The AMP-
antibiotic conjugates offer better biological activities than AMPs alone,
this being confirmed by studies focused on using them as vectors to
deliver their respective conjugates [113-115].

Conjugation requires knowledge of both the type of conjugates to be
used and a thorough understanding of the microorganism being tar-
geted to ensure optimum conjugate activity without attenuating the
antibacterial action of the agent intended to be conjugated to the AMP.
Novel synthetic routes and various conjugation approaches using anti-
biotics, polymers, salts, DNA and phenoloic derivatives have been re-
ported thus far and are reviewed here under.
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[113]

MIC for CAP-UBIyg_4; was found to be 3.8 = 0.9 ug/mL for E. coli and 15.0 = 2.6 pg/mL for S. aureus

S. aureus, E. coli,
P. aeruginosa

Chlorampenicol

(CAP)

GRAKRRMQYNRR

UBl9.41

[128]

H-TriAl-Rifampicin did not increase the in vitro activity of Rifamicin. Moderate activity was observed with H-TriA1-

K. pneumoniae
VMC and H-TriAl-Ery.

Rifampicin,
Vancomycin,

WDGSTSDDXGVYS

Tridecaptin (H-

TriAl)

Erythromycin

[223]

The conjugate showed moderate activity against the tested strains.

S. aureus, E. coli,

P. aeruginsa, B.
subtilis

Levofloxacin

ILPWKWPWWPWRR

Indolicidin

[127]
[224]

The MIC of Magainin 2-VMC conjugate was 2 and 4 ug/mL against MRSA and VSE respectively.

enterococci
VSE, VRE,

Moraxella
catarrhalis

Vancomycin

ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK ~ Vancomycin

GIGKFLHSAKKFGKAFVGEIMNS

Magainin 2
Nisin

Derivative 5 of the conjugate was found to have good activity with an MIC value of 0.6 pg/mL against VSE (15A797)

[225]

DOPC/DOPG vesicles were used for leakage assay where conjugation of temporin L to VMC enhanced its activity.

Anoplin-VMC had lower membrane disruption activity.

Vancomycin

GLLKRIKTLL

Anoplin

FVQWFSKFLGRIL
FVVKKKKKVF

temporin L
Peptide-resin

[123]

The MIC of the peptide-resin conjugate was 0.0156 pg/mL in the presence of VMC.

S. aureus

Vancomycin

conjugate

CRAMP

[226]

CRAMP-VMC conjugate did not inhibit bacterial growth better than its separate compounds.

S. aureus,

Vancomycin

KIGEKLKKIGQKIKNFFQKLVPQPEQ
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3.1. AMP-antibiotic conjugates targeting gram positive bacteria

AMP-antibiotic conjugation offers a promising new class of ther-
apeutic agents and great prospects in reviving drugs that were rendered
ineffective by microorganisms' resistance strategies. Table 3 reflects
some of the AMP and their respective conjugates together with their
biological activity towards specific Gram positive and negative bac-
terial strains. AMPs have the ability to traverse the bacterial cell
membrane and disrupt intracellular targets [116], which makes them
ideal for conjugation with antibiotics that have difficulty crossing the
membrane barrier [117]. In this regard, they would have a dual ac-
tivity: i) transporting antibiotics across bacterial membranes, and ii)
providing their own potent antibacterial activity. This dual role has led
researchers to explore conjugation strategies to enhance the activity of
antibiotics, as well as to take advantage of the activity of AMPs on
bacterial membranes.

Levofloxacin, is a broad spectrum drug that belongs to the fluor-
oquinolone antibiotic class [118]. Recently, microorganism's resistant
against levofloxacin have been discovered in bacteria such as E. coli, P.
aeruginosa and S. aureus [119], which has attenuated the activity of this
drug. In an early study, to restore the potency of levofloxacin and ob-
tain synergistic activity, this antibiotic was conjugated to indolicidin
(ILPWKWPWWPWRR), a linear cationic AMP rich in tryptopan (Trp)
and proline (Pro), reported to be active against both Gram positive and
negative bacteria, fungi, and protozoa. The MIC values ranged from
0.03 to 0.1 pg/mL against P. aeruginosa and S. aureus and E. coli. The
conjugate activity was better than the activity of levofloxacin and In-
dolicidin alone indicating the success of the conjugation in restoring the
potency of Levofloxacin. It was hypothesized that the combination of
levofloxacin with indolicidin, a highly hydrophobic peptide, may im-
prove delivery of the antibiotic through the outer membrane of the
bacteria. In addition, the cationic antimicrobial peptide, Indolicidin is
known to further enhance antibiotic delivery by altering the membrane
integrity [47]. In the same study, the authors conjugated Tat
(GRKKRRQRRRPQ) to Levofloxacin via an amide bond or ester linkage,
and evaluated it against a number of strains, including E. coli, P. aeru-
ginosa and S. aureus. The MIC values of the conjugates against the tested
strains ranged between 0.08 and 0.12 ug/mL [120]. The conjugate had
better activity than TAT alone against all the tested strains and the
conjugate also showed better potency compared to Levofloxacin alone
against S. aureus.

Vancomycin is an antibiotic which interrupts cell wall synthesis by
complexation with peptidoglycan precursors and this makes it an ideal
antibiotic for conjugation with AMPs for membrane perturbation [121].
It has also been used as a last resort drug to treat serious infections
caused by penicillin resistant bacteria [122]. Instead of directly con-
jugating the antibiotic to the AMP as in the studies above, Cho et al.
(2007) investigated another strategy which involved firstly the synth-
esis of antibacterial peptide-resin conjugates and then its subsequent
conjugation to vancomycin. The cationic antimicrobial peptide (CAP)-
vancomycin conjugate displayed potent activity against S. aureus and
M. luteus, with MICs of 1.56 ug/mL and 3.12 pg/mL respectively, which
revealed that the activity of vancomycin was amplified by the peptide-
resin conjugate [123]. Another study by Nigam et al. (2015) evaluating
the synthesis of cathelicidin-related antimicrobial peptides (CRAMP)-
vancomycin conjugates using different linkers, the results indicating
that the conjugate with the short and hydrophobic linkers bearing an
aromatic group had better activity compared to those with longer chain
linkers without an aromatic group [124]. Other AMPs that have been
conjugated to vancomycin include Nisin, Anoplin and temporin L
[115]. All these AMPs were seen to have good to moderate anti-
microbial activity against Gram-positive bacteria. Using another anti-
biotic, Schmidt et al. (2014) synthesized a peptide-tobramycin con-
jugate and tested it against S. aureus. The results reflected that the
conjugate (Pentobra) was able to destabilize the bacterial membrane
and inhibit protein synthesis and also had significant bactericidal
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activity towards the Gram positive bacteria [125].

Contrary to the above-mentioned studies where activity was am-
plified, there is indeed the possibility that activity is decreased. This
was shown in a study by Arnusch et al. (2012), where ultra-short
peptide bioconjugates were synthesized and evaluated for antimicrobial
activity. The conjugates had no activity on all Gram positive strains and
were seen to be selective towards fungi [126]. Arnusch et al. (2012)
also synthesized vancomycin-Magainin II peptide derivatives via click
chemistry and tested them against MRSA, vancomycin susceptible en-
terococci (VSE) and vancomycin resistant enterococci (VRE). The MIC
values of the most promising conjugate was found to be 2-16 pug/mL
against MRSA, VSE and VRE respectively [127]. The conjugate had no
higher activity on the microorganisms than vancomycin alone where
the MIC values were 0.4pg/mL, 0.5ug/mL and 128 ug/mL against
MRSA, VSE and VRE respectively. Although it would have been useful,
these authors did not provide possible reasons for this unexpected
finding. We think that factors in the conjugate that could have resulted
in the undesirable effect were the choice of the linker, steric hindrance
mediated by the vancomycin on the AMP, amino acid sequence and/or
electron withdrawing effects in the peptide-linker-vancomycin se-
quence. With the above knowledge concerning AMP-antibiotic con-
jugation, the design of these conjugates requires further studies on their
activity, such as suitable linkers, how they confer such potent activity
with regards to their surface charge and stability to optimise their ac-
tivity. Using another antibiotic, Schmidt et al. (2014) synthesized a
peptide-tobramycin conjugate and tested it against Gram Positive S.
aureus. The results reflected that the conjugate (Pentobra) was able to
destabilize the bacterial membrane and inhibit protein synthesis and
also had significant bactericidal activity towards S. aureus.

3.2. AMP-antibiotic conjugates targeting gram negative bacteria

In addition to Gram positive bacteria, studies have also focused on
targeting Gram negative bacteria. Cochrane et al. (2015) investigated
the synthesis of Tridecaptin — antibiotic conjugates, which have activity
against Gram-negative bacteria. Tricadeptin was conjugated to ri-
fampicin, vancomycin and erythromycin, the latter combination pro-
viding better activity against K. pneumoniae infections, with an MIC
value of 0.4 ug/mL [128]. The conjugation however did not increase
the in vitro activity of rifampicin, the lowest MIC being 25 pg/ml against
E. coli and A. baumannii. The authors explained this occurrence as the
possibility of the peptide and antibiotic not arriving at the target site
together due to possible cleavage by proteolytic enzymes. However,
linking the AMP derivative H-TriA; to vancomycin resulted in a 16-fold
increase in activity against E. coli, and an 8-fold increase against multi-
drug resistant K. pneumoniae and A. baumannii. Targeting E. Coli was the
focus also of a study reported by Chen et al. (2015) who synthesized
and conjugated chloramphenicol (CAP) to the antimicrobial peptide
UBI4q.41, With the in vitro studies revealing an enhanced antibacterial
activity against E. coli. The activity of CAP alone on E. coli was
6.2 = 1.7 umol/L, whereas that of CAP-UBI,g 4; conjugate on E. coli
was 3.8 + 0.9 umol/L. The toxicity of the conjugate on normal cells
decreased significantly compared to CAP and most importantly CAP-
UBly9.4; conjugate exhibited more favourable antibacterial efficacy
than CAP alone. In addition, the toxicity of CAP-UBI,g_4; on ordinary
cells was reduced noticeably in contrast with CAP alone. Schmidt et al.
(2014) also synthesized a peptide-tobramycin conjugate and tested it
against E. coli. The conjugate (Pentobra) was able to destabilize the
bacterial membrane and inhibit protein synthesis and also had sig-
nificant bactericidal activity towards E. coli. These results confirm the
importance of AMP-antibiotic conjugation as a synergistic approach in
targeting pathogenic microorganisms. The difference in the activity of
AMP conjugates against both Gram positive and negative bacteria as
shown in these studies indicate the existence of various possibilities
causing either increased potency or reduced potency of the AMP-anti-
biotic conjugates. These could include surface charge of the AMP-
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antibiotic conjugate, aggregation before the AMP-antibiotic conjugate
enters the cell membrane, site of conjugation as well as the choice of
linker used which will effectively decrease or increase the accessibility
of the antibiotics. The conjugation of AMPs to antibiotics offers a pro-
mising approach in enhancing the therapeutic ability of antibiotics and
their targeted delivery to specific intracellular organelles. This ap-
proach allows AMPs to be used as delivery vectors as well as anti-
microbial agents themselves.

4. Cell culture and in vivo models evaluating AMP efficacy

The concept of AMP cell selectivity creates the necessities for eva-
luation tools to determine the biosafety and efficacy on both in vitro and
in vivo levels. One of the major advantage of the AMPs and AMP con-
jugates over the conventional antibiotics is their selectivity towards the
bacterial cells rather than the host cells. In addition, as the lipid com-
position of the cell surface determines the selectivity of the AMPs and
AMPs conjugates, cell culture studies could consider a good source of
information to understand such selectivity, biosafety and efficacy
[129]. The antimicrobial peptide Magainin II was tested for its cyto-
toxicity on tumour cells MCF-7 and normal cells HSF. The cells were
stained with FITC-Annexin V and propidium iodide and then observed
under fluorescence microscope for their apoptotic or necrotic state,
respectively. Quantitatively, FACS analysis was used to determine the
number of apoptotic and necrotic cells. The cell viability was also
measured using CCK-8 (cell counting kit-8), XTT and MTT [130-132].
The MICs (minimum inhibitory concertation) of cationic helical peptide
was investigated using broth microdilution method in which the AMPs
or AMPs conjugate were dissolved in broth medium with different
range of dilution using 96-well plates and then the absorbance mea-
sured spectrophotometrically. Field emission-scanning electron micro-
scopy and confocal microscopy could also be used to determine the
antibacterial mechanisms by direct monitoring of bacterial membrane
structure as well as pore formation of the bacterial membrane respec-
tively [133]. Bacterial Killing assay to determine MBC (minimum bac-
tericidal concentration) was used by Salomone et al. (2016) when they
tested the bactericidal activity of a novel cell penetrating peptide [134].
An alternative technique to MIC and MBC could be flow cytometry
which is could have been useful in displaying the penetration potential
of these peptides. The effect of Megainin II and Megainin II conjugate
on MCF-7 and HSF cell lines were studied using flow cytometry method
[131]. The effect of chimeric peptide with disruptive membrane prop-
erties when incubated with Hela cell line and the activity of AMPs in
conjugation with silver nanoparticles on E. coli were studied using FACS
(fluorescence activated cell sorting) a synonym for flow cytometry
[132,134,135].

Ron-Doitch et al. (2016) determined the antiviral effect of liposomal
indolicidin on Herps Simplex Virus-infected 3D epidermis model, the
formation of the tissues was validated and stained with hematoxylin
and eosin B stain for further evaluation [135]. Tridecaptin-Antibiotic
conjugates was evaluated on C57BL/6L mice infected with K. pneumo-
niae then survival rate was determined using Kapaln-Meier plot. Al-
though the activity of the peptide-antibiotic conjugates retained in vivo,
variation in the effect depended on the type of AMP-antibiotic con-
jugates (Rifampicin, Erythromycin and Vancomycin) used. Particularly,
Tridecaptin-Erythromycin conjugate exerted better activity than the
antibiotic alone [128]. The UBls94; AMP fragment was attached to
chloramphenicol antibiotic and ICG0O2 (near infra-red dye) for targeting
E. coli and S. aureus in ICR mice. The targeting capability was proved by
detecting the presence of the ICG02 dye at the site of infection using in
vivo imaging system [113].

From all of the above studies, it was observed that the AMPs or
AMP-conjugates had a higher selectivity toward a wide range of mi-
croorganisms with enhanced antibacterial effects. Plausible cytotoxicity
and binding affinity towards the cancer cell lines evaluated were also
observed, suggesting that these AMPs could be considered for cancer
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therapy. In vivo murine toxicity was not observed, indicating their
biocompatibility and potential for further exploration.

5. AMP polymer conjugates

Polymers such as hyperbranched polygycerol (HPG), polyethylene
glycol (PEG), poly- 1-lysine (PLL), Chitosan, and poly Lactic-co-glycolic
acid (PLGA) are generally used extensively in drug delivery, where they
function as drug carriers across bacterial membrane, and when inside
the cell membrane, they disintegrate and release the drug to its specific
target site [136]. These polymers have also been used for AMP delivery,
and function by protecting them from degradation and allowing them
to be released effectively to the target site [63]. The main role of
polymeric carriers in antibiotic or peptide delivery is to deliver the
cargo to the disease site, to function as protector groups of the cargo
being delivered, and to protect the cargo or peptide from degradation
by proteases and efflux channels [59]. The following section describes
conjugation approaches involving AMPs and polymers.

5.1. AMP- hyperbranched polygycerol (HPG) conjugates

HPGs are dendritic macromolecules with random branch-on-branch
topology, which has numerous advantages [137]. Firstly, HPGs are
more hydrophilic than PEG, and secondly, the hyper-branched as-
sembly allows the HPG to efficiently cover the surface more than PEG.
Thirdly, HPGs have a number of hydroxyl groups that allow for the
attachment of several ligands on the HPG [138]. In a study conducted
by Kumar et al. (2015), Aurein 2.2 was conjugated to a hyperbranched
polygycerol (HPG), with the MIC values for the conjugate being de-
termined, and S. aureus and S. epidermidis being used as test strains. The
MICs of the peptide against S. aureus and S. epidermidis were 16 and
32pug/mL respectively, whereas the MICs for the conjugates were
110 pg/mL and 120 pg/mL respectively [139]. The authors postulated
that the possible reasons for the decreased activity could be due to
peptide substitution where a higher peptide density within the con-
jugate would result in a higher antimicrobial activity. Despite the de-
crease in activity, the HPGylated peptides were also non-toxic to human
umbilical vein endothelial cells (HUVECs) and fibroblasts indicating
biocompatibility.

5.2. AMP- polyethylene glycol (PEG) conjugates

PEG is a non-toxic, non-immunogenic and FDA approved polymer
used to enhance the biocompatibility of many compounds [140]. PE-
Gylation of peptide drugs has been shown to enhance biocompatibility
of the peptide in question [139,141,142]. Conjugation of AMPs with
PEG have been undertaken with the aim of prevention of recognition
and degradation by proteolytic enzymes and increases the size of the
AMP, thus reducing the renal filtration and altering bio-distribution
[143]. Guiotto et al. (2003) Pegylated the AMP nisin, and determined
their MIC values for a number of bacterial strains. The results showed
the nisin-PEG conjugate to be less effective than the original AMP
alone, with MIC values of the conjugate ranging from 250 uM for S
aureus and > 500 uM for P aeruginosa [144]. In a study by Morris et al.
(2012), the AMP CaLL was Pegylated, forming a PEG-CaLL conjugate,
with the in vitro activity revealing that the CaLL was more active that
the conjugate [145]. Benincasa et al. (2015) also studied the PEGyla-
tion of the peptide Bac7 and tested the conjugate against S. typhi-
murium, with the MIC values of the BacE-PEG ranging between 4 and
8 uM when assayed in MH broth. The MIC values were also determined
in the presence of human serum and plasma, and were 1puM and
0.25uM in plasma for the BacE-PEG conjugate in the presence of
human serum [146]. The above studies which all showed a decreased
activity of the Pegylated AMP as compared to AMP alone, indicate that
even with prospects of PEG protecting the AMPs from degradative en-
zymes and increasing their biocompatibility, there is also a possibility
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of activity being compromised. As PEG coats both the hydrophobic and
hydrophilic parts of the AMP, this could result in the AMP not being
freely available for interaction with the bacterial membrane, thus de-
creasing its cell penetrative activity. PEG also has a high molecular
weight, which confers steric hindrance [147], which could be the
reason for the attenuated activity of the AMPs. This phenomenon is well
described by Lee et al. (2014), who conducted a molecular simulation
of PEGylated peptides. It was seen that the PEG chains wrap around the
AMPs and weaken their binding interactions with the lipid bilayers.
From the reviewed PEGylated AMPs, it was observed that decreased
activity was higher in fB-sheets than in a-helical AMPs, indicating a
structural influence on PEGylation [148]. The AMPs reported so far for
Pegylation were all hydrophilic. Pegylation could be advantageous for
highly hydrophobic AMPs as PEG is thought to play a crucial role in
increasing their solubility and reducing their antigenicity [55], and as
such, can play a crucial role in enhancing the AMP activity.

5.3. AMP-chitosan conjugates

Chitosan is a non-toxic cationic polysaccharide natural polymer
with a wide range of biomedical applications [149]. It is also easily
absorbable at low pH, and has antacid and antiulcer activities that
prevent and weaken drug irritation in the gastrointestinal tract
[149,150]. These properties make it an ideal candidate for controlled
drug release formulations that would provide an added advantage in
AMP-chitosan conjugate formulations. Batista et al. (2009) reported on
the novel synthesis of chitosan-pexiganan conjugate through the Sulfo-
EMCS Cross-Linker for treating infected skin lesions Fig. 3 [151]. In this
study, only the successful conjugation was reported, and no anti-
bacterial studies were performed. But based on the known activities of
both chitosan and the antimicrobial peptide pexiganan, the authors
indicated that this conjugate is very likely to undergo clinical trials for
topical uses [152,153]. Their assertion is supported by the following
two studies on chitosan and pexiganan. Flamm et al. (2015) tested a
non-conjugated pexiganan against a selected number of resistant strains
which included MRSA, S. aureus, E. faecium, E. coli, K. pneumoniae, P.
aeruginosa and A. baumannii. The MIC values from these pathogens
derived from diabetic foot infections ranged between 16 and 32 ug/mL
[154]. In Costa et al. (2014) described the antibacterial activity of
chitosan derivatives on C. albicans and the MIC values as being 1 ug/mL
for high molecular weight (HMW) chitosan and 3 pg/mL for low mo-
lecular weight (LMW) chitosan [155]. Therefore, based on the anti-
bacterial activity of these materials individually against the Gram-po-
sitive microorganisms, a conjugate would be expected to show
enhanced activity towards biofilm disruption. It has been reported that
C. albicans mycofilms actively enhance S. aureus colonization and their
interaction in a biofilm mode promotes staphylococcal infections [156].
To date, that is the only study involving the conjugation of pexiganan to
chitosan or other polymers and additional experimental research in-
volving pexiganan and chitosan conjugates is required. The above
studies involving pexiganan and chitosan activities indicate the po-
tential of this polymer and peptide conjugation strategy to yield good
results that can lead to clinical trials. Sahariah et al. (2015) reported on
the antimicrobial activity of Anoplin-chitosan conjugates, which were
synthesized using Copper-Catalyzed Azide-Alkyne Cycloaddition
(CuAAC) chemistry. The conjugates showed promising activity com-
pared to their parent peptide, with the lowest MIC observed against E.
coli (4pg/ml) [157]. Future research and reviews should explore the
chemical composition of chitosan using computational approaches and
how it can be used to enhance biocompatibility of AMPs, this compo-
nent making it ideal for conjugation studies with AMPs and to enhance
the delivery of AMPs.

Polymers have been used broadly as drug delivery vectors, and in
the formulation of polymeric nanoparticles due to their improved
bioavailability, enhanced encapsulation, controlled drug release and
attenuated toxicity demonstrated [158,159]. Their utilisation, in
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conjunction with AMPs, would also offer an enhanced nanoparticle
system that contains cell penetrating power due to the cationic prop-
erties of AMPs [63]. These types of nano systems would allow AMPs to
have a bi-directional approach of enhancing the cell penetrating ability
of the nanoparticle as well as interacting with the intracellular orga-
nelles.

6. Miscellaneous AMP conjugates

The following section discusses other various AMP conjugates that
have been reported.

6.1. AMP- phenolic conjugates

Phenolic groups are found in most drug molecules and have been
used in pro-drug modifications to overcome pharmacological barriers
that would attenuate drug action [160]. One of the strategies used by
phenols is to cover polar groups, and this allows a molecule to be more
lipophilic thus promoting membrane permeability [161]. This strategy
would be ideal in AMP-phenolic conjugates to effectively deliver the
AMP to its target sites through bacterial membrane penetration. Findlay
et al. (2012) reported on neomycin—phenolic conjugates with broad-
spectrum antibacterial activity. The conjugates had good activity
against neomycin sulfate resistant bacteria with low activity towards
neomycin susceptible strains. Several conjugates had activity towards
MRSA that was also similar to S. aureus, while activity against P. aer-
uginosa was slightly increased (64 pm/mL). Therefore, these conjugates
displayed improved activity towards Gram positive and negative bac-
teria. These conjugates had triclosan and clofoctol linkers, which could
be responsible for their activity [162]. The phenolic group in anti-
bacterial agents can be used in structural modifications to overcome
various properties that could be barriers in the application of the
compounds [160]. With the above promising data, future research
should explore conjugating phenolic groups to already known AMPs to
enhance their bioavailability [163]. There is considerable scope in nano
encapsulation of AMP-phenolic conjugates, with an absence of experi-
mental or review studies to elucidate the activity of AMP-phenols in
nano systems. As phenols show improved bioavailability and stability,

it is thought that their conjugation with AMPs would provide stability
to the formulation and protect them from degradation.

6.2. AMP-DNA conjugates

The strategy of AMP conjugation has been extended to DNA as this
offers the potential of to deliver AMPs to nucleic acids.

Ghosal et al. (2012) conducted research on the conjugation of
Peptide-Peptide Nucleic Acid (PNA) against P. aeruginosa, these being
nucleobase oligomers that are regarded as DNA, with a neutral peptide
backbone that is stable and resistant to hydrolytic cleavage [164].
These conjugates were synthesized by continuous solid phase synthesis
using Boc-chemistry and purified by HPLC. The conjugates had MIC
values ranging from 1 to 20 puM, indicating their potential to be used as
antibacterial agents and their activity was significantly higher than that
of the non-conjugated peptide [165]. Williams et al. (2012) synthesized
peptide-oligonucleotide conjugates via solid phase synthesis and its
formation was confirmed by reverse phase HPLC, and Maldi-Tof. An-
timicrobial activity was not carried out as the authors focussed only on
demonstrating the viability of this conjugation strategy, as this is an
emerging field. It is envisaged that this field of peptide-DNA nano-
technology will be very useful to direct individual peptides to specific
locations on the surface of a DNA nanostructures [166]. Conjugation of
AMPs to these nucleic acids would allow AMPs to be utilised as delivery
vehicle to pass through the membrane to deliver the nucleic acids into
the bacterial nucleus. This would allow the conjugate to inhibit bac-
terial replication, and to possibly attenuate genetic material that bring
about resistance. There is still a considerable gap in research focusing
on the nano delivery of AMPs with peptide nucleic acids and the en-
capsulation of these conjugates would allow effective targeted delivery
and a reduction in the dosing frequency.

6.3. AMP-salt conjugates

The strategy of conjugating AMPs to Imidazolium salt is that these
salts exhibit biological activity when part of ionic liquids and can form
hydrogen bonds with drugs and proteins.

Reinhardt et al. (2014) synthesized Imidazolium salt—peptide
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conjugates and screened them for their biological activity. Recent ob-
servations suggest that imidazolium cations, when part of ionic liquids,
exhibit biological activity. In this study, two AMPs were used: sC18,
which is a short C-terminal fragment of the cationic antimicrobial
peptide cathelicidin (CAP18) that binds lipopolysaccharide (LPS), and
the LL-37 peptide, which also belongs to the group of cathelicidins and
shows activity against a wide spectrum of Gram negative and positive
bacteria. Conjugation of these peptide-salt conjugates occurred by
coupling reactions, and antimicrobial activity was conducted against a
wide range of bacteria where the best MIC value was found to
be0.2-0.5 uM against all tested strains [167]. Imidazolium cations in
their liquid ionic state function as modifying agents, and in conjugation
with AMPs, they can confer their charge for effective membrane pe-
netration. These properties of Imidazolium cations would make them
ideal candidates in the formulation of hydrophobic AMPs. Future stu-
dies should explore using these cations to improve the conductivity of
peptides for effective membrane penetration, and encapsulating AMP-
Imidazolium conjugates for improved delivery.

The conjugation of various classes of materials to AMPs using dif-
ferent conjugation strategies all have the same goal of providing a
plausible vehicle capable of permeating the bacterial cellular mem-
brane, delivering the desired compound or AMP to the intracellular
targets, protecting the AMP from the action of degradative enzymes,
enhancing biocompatibility and overcoming pharmacological barriers.
Conjugations make use of intrinsic chemical routes that require an
understanding of both the AMP and conjugate materials involved in
terms of whether or not they would synergistically produce the desired
biological outcome as well as knowledge of the biological target with its
inherent pathogenicity and intracellular biochemical pathways, which
can dispel foreign substances, leading to resistance.

As a result of the enhanced biological activity of several conjugates
compared to their parent compounds, it is anticipated that their en-
capsulation into nano systems would provide improved antimicrobial
agents that have the ability to permeate the bacterial membrane and
interrupt intracellular targets. The formulation of these conjugates in
nano systems would also allow for a controlled and sustained release to
their specific target sites, reduced toxicity, protection against de-
gradative enzymes, increased bioavailability and high loading capacity,
as seen with their parent AMP [168,169].
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Main findings & applications

7. Nano-carriers employed in the delivery of AMPs

Despite their considerable antimicrobial activity, the application of
AMPs in clinical settings has been limited by their potential toxicity and
vulnerability to chemical degradation by proteases [47]. The en-
capsulation of AMPs, including their conjugates in suitable nano-car-
riers, has the potential to target the infection site of bacteria, overcome
side effects and protect them from enzymatic degradation [170]. En-
capsulating AMPs for effective delivery has been successful in several
nanostructures such as liposomes, micelles, nanofibers, metallic nano-
particles (MNPs) and hydrogel nanoparticles [171,172]. Table 4 sum-
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making them ideal nano structures for the delivery of amphiphilic
compounds [176]. One of the challenges that hinders the activity of the
liposomal formulation includes the premature release of the payload
before the target site is reached [177,178]. In addition, higher lipo-
somal volumes are necessary when the efficiency of the encapsulation is
low for clinical dosage [179]. In separate studies Benech et al. (2002)
and Were et al. (2004) studied the activity of nisin encapsulated in li-
posomes, and found that the encapsulation conferred a higher entrap-
ment efficiency with lower susceptibility to destabilization by nisin.
The formulation also had an enhanced efficacy against L. monocytogenes
compared to the free nisin [180,181]. Using another AMP, Alipour et al.
(2008) and Alipour et al. (2009) encapsulated polymyxin B which is a
cationic AMP with liposomes targeting resistant Gram-negative bac-
terial infections. The MICs of the liposomal polymyxin B against Gram-
negative strains was significantly lower than the free polymyxin B
[182,183]. In the above studies, the activity of the liposomal formula-
tions of polymyxin B was higher that the activity of the un-en-
capsulated. These four studies only reported antimicrobial activity,
encapsulation of AMPs into liposomes and entrapment. No other
characterisation data such as release kinetics, essential for formulation
optimisation was reported. However, in a more recent study by Ron-
Doitch et al. (2016) formulation characterisation was more extensive.
They encapsulated the AMP LL-37 in liposomes, and studied its cellular
uptake, in vitro cytotoxicity and physicochemical properties. The cyto-
toxicity results showed minimal cytotoxicity in HaCaT cells. From the
cellular uptake results (Fig. 4), LL-37 liposomal formulation was taken
up more rapidly than the free AMP in all the time periods. The time-
dependant uptake of the encapsulated LL-37 was observed as being
higher than that of the unbound LL-37 [135]. These studies show the
importance of AMP-liposomal formulations in delivering AMPs and the
effectiveness of liposomes as delivery vehicles.

7.2. Micelles

Since their discovery in 1984, micelles have gained much attention
as nano-based drug delivery systems, especially for poorly water-so-
luble drugs [184]. Owing to their size, ability to solubilize hydrophobic
drugs and achieve target or site-based drug delivery, micelles continue
to show great potential as vectors for drug delivery [185]. Micelles
possess distinctive structural properties that comprise of two or more
hydrophilic and hydrophobic blocks with different solubility ratios in
aqueous environment, which makes them effective for drug delivery
[186]. Liu et al. (2009) studied cationic AMPs which are capable of self-
assembly as potential antimicrobial agents. TEM imaging confirmed the
formation of micelles, and the in vitro results showed that these micelles
had broad spectrum activity with low MIC values [101]. Using another
micelle formation strategy, Williams et al. (2012) performed a study on
sterically stabilized phospholipid micelles of an antimicrobial wound
healing adjunct. The study aimed to examine whether the association of
a cationic decapeptide with sterically stabilized nano-micelles (SSMs),
would improve stability and in vivo antimicrobial effect. In vitro assays
against S. epidermidis reflected reduced activity of the cationic dec-
apeptide in SSM solution, however the in vivo studies in animal model
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Fig. 4. LL-37 uptake by HaCaT cells (shown as % of cells engulfing treatment) following
empty liposomes, free LL-37, or liposomal LL-37. Permission granted [151].
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with decapeptide-nano micelles preparations presented no differences
in microbial load at post-operative time points. We believe that the loss
of activity could be due to electrostatic interactions of the decapeptide
with the anionic surface of SSM [187]. The above studies employed
micelles to improve activity. To explore another application for micelles
Black et al. (2012) reported the self-assembly of peptide amphiphile
micelles with the aim of promoting a protective immune response in
vivo. The formation of the micelles was confirmed by TEM imaging.
These peptide amphiphile micelles were found to offer in vivo protec-
tion from tumours by stimulating T, cells This study confirmed the use
of the peptide amphiphiles in self assembled micelles as a new class of
growing nanoparticles that have the ability to induce an immune re-
sponse [188]. Clearly this study showed that, although these micelles
are effective in the entrapment and delivery of AMPs, the choice of the
micelle system should be chosen very carefully so that the surface
charge of micelles don't interfere with the AMP activity.

7.3. Nanofibers

Nanofibers (fibers with diameters less than 100 nm), which are a
product of polymers treated specifically to form filaments, possess great
prospective to be used for delivering AMPs and/or AMP-conjugates
[189]. These fibers are produced by electro-spinning, which uses elec-
tric force to draw charged threads of polymer solution [190], and are
developed from both natural and synthetic polymers, such as chitin,
chitosan, polyurethane, poly(i-lactic acid) and poly-vinyl alcohol. Na-
nofibers have large surface to volume ratio and surface-modification
possibilities, which make them ideal for AMP-loading and delivery
[191]. Heunis et al. (2010) described a novel approach in AMP de-
livery, where they were incorporated into nanofibers for wound dres-
sings. The AMP plantaricin 423 was encapsulated in nanofibers that
were produced by the electro-spinning of polyethylene oxide (PEO).
The PEO mobilised AMP showed high activity against E. faecium and L.
sakei. Nanofibers are therefore thought to be the ideal matrix for the
immobilization of AMPs, and/or their encapsulation for effective de-
livery to skin infection [191].

7.4. Metallic nanoparticles

Metallic nanoparticles (MNPs), such as those derived from noble
metals, including gold and silver, may serve as potential nano carriers
for AMPs and their conjugates. Owing to their large surface area and
surface charge, most MNPs easily attach to the surface of bacterial
membranes by electrostatic interactions, and thereby interrupt the in-
tegrity of the membrane [149,192]. Noble metals are resistant to oxi-
dation and corrosion, which this makes them ideal for nanoparticle
formation and reduced toxicity, as most nanoparticles accumulate in
the liver, spleen and lymph nodes [193]. Functionalized nanoparticles
can be formed by processes such as coupling or adsorption of specific
molecules (e.g. AMPs onto MNPs surfaces), with the aim of producing a
synergistic approach for the antimicrobial activity of both the NPs and
the selected AMP [194]. Silver nanoparticles (AgNPs) have been ex-
tensively studied and found to possess potent antimicrobial activities,
having been used for decades, especially as antibacterial agent [195].
The mechanism of action has been thought to be directed towards the
bacterial cell wall and membrane perturbation, as well as acting on
intracellular targets [196]. MNPs have a higher positive zeta potential,
promote membrane lysis and penetration when they interact with the
negatively charged bacterial membrane [197]. Liu et al. (2013) used a
cell penetrating peptide (G3R6YGRKKRRQRRR) which was then used
to form silver nanoparticles (AgNPs). The nanoparticles were found to
be active against the Gram-positive B. subtilis and the Gram-negative E.
coli [198]. In contrast to the previous studies where the AMPs were
used to form the silver nanoparticles, Pal et al. (2016) conducted a
study on the activity of an AMP conjugated to a silver nanoparticle
against E. coli and the nano-conjugate was reported to enhance
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Table 5
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List of FDA-Approved Nanomedicines Stratified by Material Category (adapted from D Bobo et al., 2016) [212].

Name Material description Nanoparticle advantage Indication(s) Year(s)
approved
Polymer Nanoparticles — synthetic polymer particles combined with drugs or biologics
Adagen’/pegademase PEGylated adenosine Improve circulation time and Severe combined 1990
bovine (Sigma-Tau deaminase enzyme decreased immunogenicity immunodeficiency
Pharmaceuticals) disease (SCID)
Cimzia®/certolizumab pegol PEGylated antibody fragment Improved circulation time and Crohn's disease 2008
(UCB) (Certolizumab) greater stability in vivo. Rheumatoid arthritis 2009
Psoriatic Arthritis 2013
Ankylosing Spondylitis 2013
Copaxone’/Glatopa (Teva) Random copolymer of Large amino-acid based Multiple Sclerosis (MS) 1996
L-glutamate, r-alanine, polymer with controlled
1-lysine and 1-tyrosine molecular weight and
clearance characteristics
Eligard” (Tolmar) Leuprolide acetate and polymer Controlled delivery of payload Prostate Cancer 2002
(PLGH (poly (pr-Lactide-co- with longer circulation time
glycolide))
Macugen/Pegaptanib PEGylated anti-VEGF aptamer Improved stability of aptamer as Macular degeneration, 2004
(Bausch & Lomb) (vascular endothelial growth a result of PEGylation neovacular age-related
factor) aptamer
Mircera’/Methoxy Chemically synthesized ESA Improved stability of aptamer as Anemia associated with 2007
polyethylene glycol-epoetin (erythropoiesis-stimulating a result of PEGylation chronic kidney disease
beta (Hoffman-La Roche) agent)
Neulasta’/pegfilgrastim PEGylated GCSF protein Improved stability of protein Neutropenia, 2002
(Amgen) through PEGylation Chemotherapy
induced
Pegasys~ (Genentech) PEGylated IFN alpha-2a protein Improved stability of protein Hepatitis B; Hepatitis C 2002
through PEGylation
Peglntron” (Merck) PEGylated IFN alpha-2b protein Improved stability of protein Hepatitis C 2001
through PEGylation
Renagel[sevelamer Poly(allylamine hydrochloride) Increase circulation and Chronic kidney disease 2000
hydrochloride]/ therapeutic delivery
Renagela [sevelamer carbonate] (Sanofi)
Somavert"/pegvisomant PEGylated HGH receptor Improved stability of protein Acromegaly 2003
(Pfizer) antagonist through PEGylation
Oncaspar’/pegaspargase Polymer-protein conjugate Improved stability of protein Acute lymphoblastic 1994
(Enzon Pharmaceuticals) (PEGylated L-asparaginase) through PEGylation leukemia
Krystexxa'/pegloticase Polymer-protein conjugate Improved stability of protein Chronic gout 2010
(Horizon) (PEGylated porcine-like uricase) through PEGylation;
introduction of unique
mammalian protein
Plegridy” (Biogen) Polymer-protein conjugate Improved stability of protein Multple Sclerosis 2014
(PEGylated IFN beta-1a) through PEGylation
ADYNOVATE (Baxalta) Polymer-protein conjugate Improved stability of protein Hemophilia 2015
(PEGylated factor VIII) through PEGylation
Liposome formulations combined with drugs or biologics
DaunoXome® (Galen) Liposomal Daunorubicin Increased delivery to tumour Karposi's Sarcoma 1996
site; lower systemic toxicity
arising from side-effects
DepoCyt© (Sigma-Tau) Liposomal Cytarabine Increased delivery to tumour Lymphomatous 1996
site; lower systemic toxicity meningitis
arising from side-effects
Marqibo” (Onco TCS) Liposomal Vincristine Increased delivery to tumour Acute Lymphoblastic 2012
site; lower systemic toxicity Leukemia
arising from side-effects
Onivyde” (Merrimack) Liposomal Irinotecan Increased delivery to tumour Pancreatic Cancer 2015
site; lower systemic toxicity
arising from side-effects
AmBisome” (Gilead Liposomal Amphotericin B Reduced nephrotoxicity Fungal/protozoal 1997
Sciences) infections
Liposomal Morphine sulfate Extended release Analgesia (post-operative) 2004
Visudyne® (Bausch and Liposomal Verteporfin Increased delivery to site of Macular degeneration, 2000
Lomb) diseased vessels; wet age-related;
photosensitive release myopia; ocular
histoplasmosis
Doxil”/Caelyx™ (Janssen) Liposomal doxorubicin Improved delivery to site of Karposi's Sarcoma; 1995
disease; decrease in systemic Ovarian cancer; 2005
toxicity of free drug. multiple myeloma 2008
Abelcet” (Sigma-tau) Liposomal Amphotericin B lipid Reduced toxicity Fungal infections 1995
complex
Curosurf’/Poractant alpha Liposome-proteins SP-B and Increased delivery for smaller pulmonary surfactant for 1999
(Chiesei farmaceutici) SP-C volume; reduced doxicity Respiratory Distress
Syndrome
Micellar nanoparticles combined with drugs or biologics
Estrasorb™ (Novavax) Micellar Estradiol Controlled delivery of Menopausal therapy 2003
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Table 5 (continued)
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Name Material description Nanoparticle advantage Indication(s) Year(s)
approved
therapeutic

Protein nanoparticles combined with drugs or biologics

Abraxane”/ABI-007 Albumin-bound paclitaxel Improved solubility; improved Breast cancer 2005

(Celgene) nanoparticles delivery to tumour NSCLC 2012

Pancreatic cancer 2013

Ontak” (Eisai Inc) Engineered Protein combining Targeted T-cell specificity; Cutaneous T-Cell 1999

IL-2 and diphtheria toxin lysosomal escape Lymphoma

Nanocrystals

Emend” (Merck) Aprepitant Surface area allows faster Antiemetic 2003
absorption and increases
bioavailability

Tricor” (Lupin Atlantis) Fenofibrate Increases bioavailability simplifies Hyperlipidemia 2004
administration

Rapamune” (Wyeth Sirolimus Increased bioavalibility Immunosuppresent 2000

Pharmaceuticals)

Megace ES” (Par Megestrol acetate Reduced dosing Anti-anorexic 2001

Pharmaceuticals)

Avinza® (Pfizer) Morphine sulfate Increased drug loading and Psychostimulant 2002
bioavailability; extended (2015)
release

Focalin XR® (Novartis) Dexamethyl-phenidate HCl Increased drug loading and Psychostimulant 2005
bioavailability

Ritalin LA” (Novartis) Metyhlphenidate HCI Increased drug loading and Psychostimulant 2002
bioavailability

Zanaflex” (Acorda) Tizanidine HCI Increased drug loading and Muscle relaxant 2002
bioavailability

Vitoss” (Stryker) Calcium phosphate Mimics bone structure allowing Bone substitute 2003
cell adhesion and growth

Ostim” (Heraseus Kulzer) Hydroxyapatite Mimics bone structure allowing Bone substitute 2004
cell adhesion and growth

OsSatura” (IsoTis Hydroxyapatite Mimics bone structure allowing Bone substitute 2003

Orthobiologics) cell adhesion and growth

NanOss” (Rti Surgical) Hydroxyapatite Mimics bone structure allowing Bone substitute 2005
cell adhesion and growth

EquivaBone® (Zimmer Hydroxyapatite Mimics bone structure Bone substitute 2009

Biomet)

Invega® Sustenna” Paliperidone Palmitate Allows slow release of injectable Schizophrenia 2009

(Janssen Pharms) low solubility drug Schizoaffective Disorder 2014

Ryanodex” (Eagle Dantrolene sodium Faster administration at higher Malignant hypothermia 2014

Pharmaceuticals) dses

Inorganic and metallic nanoparticles

Nanotherm” (MagForce) Iron oxide Allows cell uptake and Glioblastoma 2010
introduces
superparamagnetism

Feraheme™/ferumoxytol Ferumoxytol SPION with Magnetite suspension allows for Deficiency anemiairon 2009

(AMAG pharmaceuticals) polyglucose sorbitol prolonged steady release, deficiency in chronic

carboxymethylether decreasing number of doses kidney disease (CKD)

Venofer” (Luitpold Iron sucrose Allows increased dose iron deficiency in chronic 2000

Pharmaceuticals) kidney disease (CKD)

Ferrlecit” (Sanofi Avertis) Sodium ferric gluconate Allows increased dose iron deficiency in chronic 1999

kidney disease (CKD)

INFeD" (Sanofi Avertis) Iron dextran (low MW) Allows increased dose iron deficiency in chronic 1957

kidney disease (CKD)

DexIron/Dexferrum” Iron dextran (high MW) Allows increased dose iron deficiency in chronic 1957

(Sanofi Avertis) kidney disease (CKD)

Feridex"/Endorem” SPION coated with dextran Superparamagnetic character Imaging agent 1996 (2008)

(AMAG pharmaceuticals)
GastroMARK™; umirem”
(AMAG Pharmaceuticals)

SPION coated with silicone

Superparamagnetic character

Imaging agent

2001 (2009)

biological activity [132]. This study showed another approach of con-
jugation which utilises the potency of the AgNP together with the AMP
and this provides new insights of AgNP-AMP interactions and how this
strategy could be used to enhance biological activity. Gold nano-
particles (AuNPs), which are synthesized by the reduction of HAuCl,,
have lower toxicity than other nanoparticles due to their noble char-
acteristics [199]. AuNPs-AMP conjugates also possess several ad-
vantages, such as protecting the AMP from enzymatic degradation, and
do not prevent the AMP from folding into its biologically active con-
formation [200]. In a study by Casciaro et al. (2016), the AMP Esculen-
tin-1a(1-21)NH,, which was derived from a frog skin, was coated with

gold nanoparticles and evaluated against P. aeruginosa. The anti-
bacterial results showed that the AMP coated nanoparticles were more
potent than the free peptide [201]. In contrast to the studies above, Rai
et al. (2016) used a one-step synthesis approach to conjugate the AMP,
cecropin-melittin, to gold nanoparticles. The MIC values were also
found to be higher than the free AMP [90]. Pradeepa et al. (2017)
conducted a study on the application of Nisin gold nanoparticles as a
potent antimicrobial agent against E. faecalis and S. aureus. The syn-
thesized nanoparticles were found to be non-toxic with less hemolycic
activity and lower MIC values that Nisin alone [202].

These strategies of utilising AMPs to reduce silver nitrate to form
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AgNPs, or conjugating AMPs to AgNPs or AuNPs, combines the high
surface charge of these metallic nanoparticles together with the high
positive charge of AMPs, which will form a molecule well capable of
bacterial membrane lysis [203].

7.5. Hydrogel nanoparticles

Hydrogels are 3-dimensional, cross-linked networks of water-so-
luble polymers that can be formulated by various approaches, including
microparticles, slabs, coatings, films and more specifically, nano-
particles [204]. Hydrogels are used in a wide array of applications, such
as in cellular immobilization, tissue engineering and regenerative
medicine [205]. The physiochemical makeup of hydrogels has gener-
ated much interest for their use as drug delivery systems. They have a
highly porous structural makeup, this feature being important, as it
allows drug loading into the matrix of the gel and consequent drug
release [204,206]. Hydrogel nanoparticle in drug delivery offer mostly
pharmacokinetic benefits, as their formulations allow drugs to be
slowly eluted, thus retaining a high concentration of the drug in the
nearby tissues over a prolonged period of time [207]. Hydrogels are
also thought to possess high biocompatible properties due to their high-
water content, and their physiochemical resemblance to the native
extracellular matrix [208]. Various materials have been exploited so far
for the preparation of hydrogels with AMPs to target different organ-
isms. Rajan et al. (2014) designed a study for the controlled release of
the AMP subtilosin from polyethylene glycol-based hydrogels, and
showed that it was able to inhibit the growth of G. vaginalis, with a
reduction of 8 log10 CFU/ml [209]. Hakansson et al. (2014) reported
on the formulation of the AMP PLX150 in hydroxypropyl cellulose gel
(HPC) to target surgical site infections. The PLX150-HPC combination
killed more than 95% of S. aureus, and presented a dose-dependent
activity with a slow release of the AMP from the HPC hydrogel on the
wound site [210]. In a study by Babavalian et al. (2015), the AMP
CM11 was incorporated into alginate sulfate hydrogels to target MRSA.
The MIC and MBC activity of the CM11 peptide were 2-32 mg/L and
16-64 mg/L respectively, and 50% of the CM11 peptide was released
from the hydrogel in the first week [211]. Since hydrogel formulations
allow sustained release of drugs, incorporation of AMPs into these
systems would offer prolonged AMP release at target sites and retain
high AMP concentration in the nearby tissues.

Nanocarriers have shown to increase the biocompatibility of AMPs,
shield them from degradative enzymes as well as allowing enhancing
their release into specific target sites. These nano drug delivery systems
should be exploited further for AMP conjugates, with the aim of im-
proving targeted conjugate delivery into intracellular targets and de-
veloping plausible nanomedicines. Table 5 reveals a list of FDA ap-
proved nano products derived from various materials [212].

8. Conclusions and future perspectives

The continuous evolution of pathogenic bacteria has led to an on-
going search for novel ways to combat antimicrobial drug resistance.
The development of resistance to new antibiotic derivatives, and the
inability of antibiotics to reach infection sites at effective concentration,
pose a major threat to infection control and prevention. However, new
approaches, such as the design and application of AMPs, individually or
as conjugates and their delivery in nano-carriers, offer promising al-
ternatives to main-stream antibiotics.

Molecular dynamics of AMPs with model membranes and QSAR
approaches to identify or understand descriptors in AMPS for activity is
important for the eventual design of novel AMPs including their con-
jugates and nano delivery systems to achieve optimal efficacy and
safety. Molecular dynamic studies have been useful in confirming the
successful penetration of AMPs across different types of cell mem-
branes. It has also identified key interactions of AMPs with membrane
components for penetration. Molecular dynamic studies have has been
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further successfully exploited for understanding the stability of AMPs
with conjugates as well as their stability and encapsulation into nano-
carriers. QSAR approaches on AMPs to date have identified the possible
structural or physicochemical descriptors integral in influencing ac-
tivity against bacteria. However, a considerable gap remains in utilising
molecular modelling approaches to study the AMP interaction with
model membranes. Structure activity relationship of AMPs with respect
to membrane penetration is also lacking. Although limited, the findings
so far can guide scientists to: 1) design new AMPs with optimal activity
2) select specific sites for conjugation to various compounds without
losing their activity and 3) design and select suitable nanocarriers based
on the physicochemical descriptors of the AMPs identified. Whilst un-
derstanding penetration of the AMPs through membranes is important,
the interaction of AMPs as well as AMP-conjugates with intracellular
organelles is also critical because it can elucidate the effectiveness of
the AMP and AMP-conjugate strategy in being delivered across the
membrane for action on intracellular targets to maximise activity. Since
much of the MD and QSAR studies so far have focused on the interac-
tion of AMPs with biological membranes, future studies should there-
fore explore the mechanism of action of the AMPs and their conjugates
with intracellular targets such as the nucleus and mitochondria. Whilst
computational modelling of nano carriers with AMPs are beginning to
emerge, it needs to be extended further to AMP-conjugates in nano-
carriers. Molecular modelling studies should be used to identify for-
mulations that can maximise encapsulation and stability of the nano-
carriers and also mechanistically explain their formation and release
kinetics. MD simulations should be further explored in order to in-
vestigate the binding affinities of AMPs with their conjugates. We be-
lieve that these MD mechanistic studies will also elucidate the extent of
encapsulation with respect to AMP-conjugates in nano systems to fur-
ther tell us the best nano carrier which can be used to deliver these
conjugates.

In this review the potential of AMP as conjugates with antibiotics,
polymers and other classes such as DNA, salts and phenolic based
compounds to potentiate antibacterial activity have been successfully
demonstrated. Of the 4 groups of AMPs i.e. B-sheet, a-helical, loop and
extended peptides the a-helical classes have been the most widely
studies structural groups of AMPs used for conjugation to various
classes of materials. The widely used AMPs used for conjugation are the
indolicidin and they were found to have potency across both gram
positive and negative bacteria. It is suggested that other classes of
materials such as natural compounds from plant extracts and metal
complexes could also be potential conjugate components and should be
explored. With the conjugation strategy only preliminary character-
isation studies such as structural confirmation, in vitro antimicrobial
activity, cytoxicity and haemolytic studies, cellular uptake have been
reported. Further characterisation studies such as in vivo assays and skin
lesion studies is required to confirm the efficacy and safety of these
conjugates. Further, patient administration of the AMP-conjugates will
require its incorporation into a suitable delivery system. Therefore,
extensive physicochemical and in vitro/in vivo characterisation of drug
delivery systems for AMP-conjugates need to be undertaken.
Degradation studies of AMP-conjugates as they enter the bacterial
membrane should also be conducted, as this will allow for structural
manipulation in the design process, and the application of additive
factors directed at degradative enzymes. This would greatly enhance
the applications of AMPs and broaden their scope in finding therapeutic
agents.

Encapsulation of AMPs into five different classes of nano carriers i.e.
liposomes, micelles, nanofibers, metallic nanoparticles and hydrogels so
far have been successfully achieved with enhanced activity and sus-
tained release. The a-helical group of AMPs only have so far been ex-
plored for delivery via nano carriers. However, again these studies are
limited in their characterisation which is essential to ensure safety,
quality and efficacy for regulatory approval. Future studies should
clearly focus on experimental designs to rationally optimise
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formulations. Also, in depth characterisation studies to determine the
solid phase transformation properties, release kinetics, physicochemical
stability, cell uptake mechanisms and in vivo efficacy and toxicity
testing in animal models should be performed. In addition to en-
capsulation of the free AMPs into conventional lipid or polymer nano-
carriers, the strategy of incorporating the AMP as a structural compo-
nent of a lipid or polymer which then self assembles to form a nano-
system can also be a novel alternative.

The interest in AMPs as therapeutic agents has gained much interest
recently, with studies having shown that more than 60 AMPs have
reached the market, with some undergoing clinical trials [213], and
many having distinguished themselves to be the new front runners in
antimicrobial drug development. The current emerging data on AMP-
conjugates and nano-delivery of AMPs further demonstrate their po-
tential to be highly effective and advantageous in treating patients
suffering with bacterial infections of both susceptible and resistant
nature. Collaborations amongst a highly multidisciplinary team of re-
searchers is therefore highly warranted to realise the future commer-
cialisation of AMP-conjugates and AMP nano delivery systems.

Based on the approaches stated in this review, which utilises various
strategies in AMP development, it is envisaged that in the next decade
we can expect a rise in AMP based antibiotics that will have the ability
to circumvent drug resistance. Owing to the emergence of AMP con-
jugation to various compounds, we believe that AMP development will
go beyond the scope of targeting pathogenic bacteria. As natural AMPs
possess immunomodulatory functions, we believe that future studies
will focus on molecular mimicry by AMPs for T-cell activation, as well
as the nano delivery of AMP conjugates to release them to specific
immune cells for enhanced immunity.

Collaborations amongst a highly multidisciplinary team of re-
searchers is therefore highly warranted to realise the future commer-
cialisation of AMP-conjugates and AMP nano delivery systems.
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CHAPTER 3, Experimental Paper
Antimicrobial cell penetrating peptides (aCPPs) with bacterial cell specificity:
Pharmacophore modelling and QSAR

3.1. Introduction

This research article focuses on the cell penetrating ability of antimicrobial cell penetrating
peptides (aCPPs) based on their therapeutic index (TI). This chapter addresses Aim 1,
Objectives 1- 3 and is a first authored experimental paper published in the Journal of
Biomolecular Structure and Dynamics. This research article focuses on the cell penetrating
ability of antimicrobial cell penetrating peptides (aCPPs) based on their therapeutic index (TI).
This chapter further highlights the development of a QSAR model which can estimate the
antimicrobial potential (MIC) of a set of aCPPs based on their TI using PHASE 3.0 suite to
perform the 3D-QSAR studies. Research outputs from the chapter includes; published in an
ISI international journal: Journal of Biomolecular Structure and Dynamics (Impact Factor =
2.15) and the data from this chapter has also been presented in one international conference
and one local conference.

* Antimicrobial cell penetrating peptides with bacterial cell specificity: Pharmacophore
modelling, Quantitative Structure Activity Relationship and Molecular Dynamics
Simulation. Mbuso Faya, Rahul S. Kalhapure, Dinesh Dhumal, Nikhil Agrawal,
Calvin Omolo, Krishnacharya G. Akamanchi & Thirumala Govender. Journal of
Biomolecular Structure and Dynamics.

International conference: Nano Africa, 23-25 April 2018, Durban South Africa,
(senior Author). Poster Presentation (appendix A)

* Antimicrobial cell penetrating peptides with bacterial cell specificity: Pharmacophore
modelling, Quantitative Structure Activity Relationship and Molecular Dynamics
Simulation. Mbuso Faya, Rahul S. Kalhapure, Dinesh Dhumal, Nikhil Agrawal,
Calvin Omolo, Krishnacharya G. Akamanchi & Thirumala Govender. Journal of
Biomolecular Structure and Dynamics.

* Local conference: 38th Annual Conference of the Academy of Pharmaceutical
Sciences, 06-08 July 2017, Johannesburg, South Africa. Oral Presentation.
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Communicated by Ramaswamy H. Sarma

ABSTRACT

Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPs) as probable
vectors for use in drug delivery and as novel antibiotics. It has been reported that the higher the
therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the best of our
knowledge, no in-silico study has been performed to determine bacterial cell specificity of the anti-
microbial cell penetrating peptides (aCPP’s) based on their TI. The aim of this study was to develop a
quantitative structure activity relationship (QSAR) model, which can estimate antimicrobial potential
and cell-penetrating ability of aCPPs against S. aureus, to confirm the relationship between the Tl and
aCPPs and to identify specific descriptors responsible for aCPPs penetrating ability. Molecular dynamics
(MD) simulation was also performed to confirm the membrane insertion of the most active aCPPs
obtained from the QSAR study. The most appropriate pharmacophore was identified to predict the
aCPP’s activity. The statistical results confirmed the validity of the model. The QSAR model was suc-
cessful in identifying the optimal aCPP with high activity prediction and provided insights into the
structural requirements to correlate their Tl to cell penetrating ability. MD simulation of the best aCPP
with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with
the membrane and the C-terminal residues of the aCPP played a key role in membrane penetration.
The strategy of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-tar-
get interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer.
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Abbreviations: A: hydrogen bond acceptor; aCPPs: antimicrobial cell penetrating peptides; AMPs: anti-
microbial peptides; ANN: artificial neural network; AntiBP2: antibacterial peptide prediction; APD2: anti-
microbial peptide database; COM: centre of mass; CPPs: cell penetrating peptides; F value: Fisher test;
H: hydrophobic group; ICsy: half maximal inhibitory concentration; LA: lipid A; LINCS: linear constraint
solver; LPS: lipopolysaccharides; Lys: lysine; MD: molecular dynamics; MIC: minimum inhibitory concen-
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correlation coefficient; RMSE: root-mean squared error; SD: standard deviation; TI: therapeutic index;
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1. Introduction several classes of both prokaryotes and eukaryotes. They have

The resistance to antibiotics by bacteria poses a considerable
threat to global health (Davies & Davies, 2010; Sengupta,
Chattopadhyay, & Grossart, 2013, highlighting the need to
urgently develop novel antibacterial agents. Bacterial resistance
has prompted a search of natural inhibitors, leading to the use
of antimicrobial peptides (AMPs) (Wang, Zeng, Yang, & Qiao,
2016), which form an integral part of innate immunity (Branco,
Viana, Albergaria, & Arneborg, 2015; Bolintineanu, Hazrati, Davis,
Lehrer, & Kaznessis, 2010; Wiesner & Vilcinskas, 2010). AMPs are
small, cationic and amphiphilic molecules that are found in

structures such as linear o-helical peptides, B-sheet globular
arrangements, and peptides with uncommon sequences includ-
ing tryptophan and proline (Carnicelli et al, 2013; Michael
Henderson & Lee, 2013; Vale, Aguiar, & Gomes, 2014; Wang
et al, 2012). They have been seen to be structurally similar to
cationic cell penetrating peptides (CPPs), and while their mech-
anism of action has not been elucidated, it is thought that they
primarily target the bacterial cell membrane (Bhonsle,
Venugopal, Huddler, Magill, & Hicks, 2007; Lee, Hall, & Aguilar,
2016; Schmidt & Wong, 2013). Cationic AMPs can bind to
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lipopolysaccharides (LPS) or lipid A (LA) of Gram-negative bac-
teria. This action leads to membrane permeation through self-
promoted uptake and trans-membrane channel formation via a
“barrel-stave” or toroidal pore mechanism, or through mem-
brane destruction via a carpet-like mechanism (Mishra et al.,
2013; Wang et al., 2012). Several studies have suggested that
the success of AMP activity is mediated by its ability to aggre-
gate on the surface of the membrane of bacteria, or to traverse
the bacterial cell membrane and interrupt intracellular targets
(Carmona-Ribeiro & de Melo Carrasco, 2014; Da Costa, Cova,
Ferreira, & Vitorino, 2015; Guilhelmelli et al, 2013; Lv et al,
2014; Malanovic & Lohner, 2015; Tang, Shi, Zhao, Hao, & Le,
2008). However, membrane penetration/disintegration has been
reported to be the primary mechanism of action of these cat-
ionic AMPs (Huerta-Cantillo & Navarro-Garcia, 2016; Ong,
Wiradharma, & Yang, 2014; Porto, Silva, & Franco, 2012; Tsai
et al.,, 2009).

AMPs function with a great deal of similarity to CPPs
and share important features that include short sequence
lengths (~10-40 residues), net positive charge, and an
arrangement of amino acids with a substantial content of
non-polar residues. All of these are considered to promote
aCPP interaction and insertion with the hydrophobic core
of the bacterial membrane bilayer. Small sequence modifi-
cations of CPPs can alter their biological effect from cell-
penetrating to antimicrobial or vice versa, leading to the
formation of antimicrobial cell penetrating peptides (aCPP),
which are cell penetrating peptides with antimicrobial prop-
erties (Bahnsen, Franzyk, Sandberg-Schaal, & Nielsen, 2013).
These peptides have a dual effect which offers bacterial
membrane penetration together with antimicrobial activity,
as seen with the aCPP penetration (Bahnsen, Franzyk,
Sayers, Jones, & Nielsen, 2015; Henriques, Melo, & Castanho,
2006; Pushpanathan, Gunasekaran, & Rajendhran, 2016;
Splith & Neundorf, 2011). Other examples of aCPPs include
Bac7, which binds to bacterial ribosomal proteins and inhib-
its protein synthesis, and pep-1-K, which has a high mem-
brane perturbing activity (Bobone et al., 2011; Mardirossian
et al., 2014). The aCPPs have been widely reported as anti-
bacterial agents, and as part of conjugates, such as drugs
and polymers, and are utilised for the sole purpose of
enhancing biological activity(Arnusch et al., 2012; Eckhard
et al,, 2014; Maekawa et al.,, 2015; Souto et al., 2013). There
have also been reports of aCPPs being used as delivery sys-
tems to carry cargo across bacterial membranes (Carmona-
Ribeiro & de Melo Carrasco, 2014; Eriksen, Skovsen, & Fojan,
2013; Kingsbury, Boehm, Mehta, Grappel, & Gilvarg, 1984).
This is important, as it allows for the dual approach of cell
penetration and the release of conjugates to their respect-
ive intracellular targets, as well as the biological activity of
the aCPPs themselves. The aCPPs offer promising prospects
to be utilised as alternative agents to known antibiotics.
This is due to their ability to permeate the bacterial cell
membrane and its cationic charge, which allows them not
only to form pores on the bacterial cell membrane but also
to traverse this layer to interfere with intracellular targets
(Delcour, 2009; Schmidt & Wong, 2013). Another feature
that makes them attractive is their ability to carry cargo

across the bacterial cell membrane (Aparoy, Reddy, &
Reddanna, 2012; Burns, McCleerey, & Thévenin, 2016), this
strategy being useful to deliver conjugates, such as drugs
and polymers. Continued research in these areas is required
to identify the optimal aCPPs with high therapeutic indices
(Tls). Tools to facilitate the design of potent and selective
aCPPs, either as antibiotic entities themselves, or as compo-
nents of pharmaceutical materials such as polymers, or as
ligands for drug delivery carriers are essential to optimise
their applications.

Quantitative structure-activity relationships (QSAR) is a
useful tool in the rational design of potent and selective
aCPPs (Mollica et al., 2018). Frequently used predictive tools,
such as AntiBP2 and APD2 databases, are based on sequence
analysis and physicochemical features, whereas other predict-
ive models outline more structural-descriptor insight required
for the designing of novel AMPs by outlining specific
descriptors such as polarity of amino acids, free energy,
hydration, and isoelectric point which are all properties
responsible for biological activity (Vora et al., 2018; Wang
et al, 2012). One such model based on inductive descriptors
was developed by Cherkasov (2005), where the prediction
was based on artificial neural network (ANN) for a series of
newly synthesized polypeptides (Cherkasov, 2005; Torrent,
Andreu, Nogués, & Boix, 2011). Taboureau et al. (2006) used
GRID to generate 3D descriptors and built a high-perform-
ance QSAR model for novispirin AMPs (Taboureau et al.,
2006). Fjell et al. (2009) also carried out an ANN virtual
screening using physicochemical descriptors to screen for
potential AMPs (Fjell et al., 2009). QSAR is an important tool,
as it allows for the accurate design and structural elucidation
of the descriptors responsible for peptide activity (Porto
et al, 2012). This computational tool uses specific physico-
chemical descriptors that are directly responsible for the
mechanism of action of aCPPs (Torrent et al, 20171;
Vishnepolsky & Pirtskhalava, 2014). This quantitative method
of predicting activity is used to design or modify aCPPs to
elucidate their antibacterial activity.

Moreover, pharmacophore models can be generated
based either on the ligand or the target, which identifies the
groups in the former that are responsible for the potency or
the binding targets with respect to the target site (Xie, Qiu,
& Xie, 2014). QSAR models developed for antimicrobial pepti-
des correlate their structural features with antimicrobial activ-
ity (Toropova, Veselinovi¢, Veselinovi¢, Stojanovi¢, & Toropov,
2015). It has been reported that the higher the T, the higher
the bacterial cell penetrating ability (Aoki & Ueda, 2013;
Matsuzaki, 2009; Tripathi, Kathuria, Kumar, Mitra, & Ghosh,
2015). To the best of our knowledge, till date no QSAR mod-
els have been used to predict the bacterial cell specificity of
a CPP based on its Tl. The use of QSAR as a chemo-infor-
matic tool to predict the Tl of potential aCPPs by analysing
available experimental data will therefore hasten the design
and synthesis of novel aCPPs specific for bacterial cell, lead-
ing to development of efficient antibacterials. The Tl com-
pares the amount of a therapeutic agent to the amount that
causes toxicity (Muller & Milton, 2012; Tamargo, Le Heuzey, &
Mabo, 2015), with a high Tl being preferable for a drug to
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Figure 1. Workflow for identification of best aCPP for membrane penetration.

have a favourable safety profile. It is important in pharmaco-
therapy as an essential tool for therapeutic drug monitoring
to ensure a greater therapeutic benefit without resulting in
undesired toxicity (Tamargo, Le Heuzey, & Mabo, 2015). This
study aimed to develop a QSAR model to validate the cell
penetrating ability of aCPPs based on their Tl. The Tl was cal-
culated by correlating the minimum inhibitory concentration
(MIC) of the aCPPs to their effect on eukaryotic cells, with an
indicative Tl being calculated by relating the cell viability
ECso value to the MIC value. Pharmacophore hypothesis gen-
eration and 3D-QSAR were used to understand the cell pene-
trating ability of the aCPPs utilised based on their Tls. Finally,
the validated pharmacophore model was used to identify
the best aCPP and from the dataset obtained. The obtained
hits were further examined based on the fit function, and
the best fit was further tested using molecular dynamics to
study its membrane penetrating ability. Molecular dynamic
(MD) simulations are widely applied to understand the
atomic-level information peptides structures (Agrawal &
Skelton, 2016, 2018) and aCPP’s interactions with the mem-
branes (Arasteh & Bagheri, 2017; Mizuguchi & Matubayasi,
2018; Velasco-Bolom, Corzo, & Garduno-Juarez, 2017). Thus,
an integrated approach comprising of pharmacophore mod-
elling and MD simulation were employed to identify the best
aCPPs with optimal membrane penetrating ability across a
POPC bilayer membrane. POPC which is a phospholipid that
is ubiquitous in cell membranes, contains a phosphatidylcho-
line (PC) component which provides a structural framework
and functions as a permeability barrier (Koymans et al,
2015). POPC has also been found in numerous lipid mixtures
used to mimic bacterial cell membranes (Raymonda,
Almeida, & Pokorny, 2017). Therefore, in the context of
molecular dynamics, this phospholipid serves as a good tem-
plate for simulations studies to predict ligand—-membrane
interactions.

2. Materials and methods
2.1. Dataset

The data set was obtained from Park et al. (2009) and
Bahnsen et al. (2013), with the Tl being calculated and the
synthesized peptides showcasing the potent MIC values
against S. aureus (Bahnsen et al., 2013; Park et al., 2009). The
obtained data was randomly divided into 21 training set

compounds, with seven being reserved for a test set. The
biological activities (—log 1Cso) of both datasets were similar,
suggesting that the dataset was reasonable. The peptides’
3D structures which served as ligands were generated in
Maestro 9.8 molecular modelling package from Schrodinger.
Figure 1 describes the computational workflow conducted in
this study.

2.2. PHASE methodology

PHASE 3.0 was used for pharmacophore-based alignment and
utilized for the QSAR model development (Dixon et al., 2006).
Default pharmacophoric features used to develop the pharma-
cophore model included a hydrogen bond acceptor (A), hydro-
gen bond donor (D), hydrophobic (H), negative (N), positive (P)
and aromatic ring (R). Five steps were used in the process of
developing a pharmacophore model, which include ligand
preparation, creating pharmacophore sites from a set of fea-
tures, discovering common pharmacophore, scoring the
hypotheses, and building of the QSAR model. The maximum
and minimum number of sites was set to five to discover a
common pharmacophore. The size of the box of the pharmaco-
phore was set to 2 A, with the top-ranking hypotheses selected
for 3D QSAR analysis, for which grid spacing was 1 A and the
maximum partial least squares (PLS) was set to 3.

2.3. Pharmacophore hypothesis generation

PHASE is an important tool in the identification of 3D struc-
tural arrangements of the ligand functional groups, which
are common and responsible for inducing biological activity
(Kaur, Sharma, & Kumar, 2012). For site generation, the
default pharmacophoric features were utilised. The variant
AAHRR, for which all the compounds were matched, was
searched to generate the best common pharmacophore
hypothesis (AAHRR.114). The hypothesis AAHRR.114 was
selected as most appropriate as it has the highest survival
score (3.984) for common pharmacophore hypothesis, which
gives the best alignment of the active ligands. This align-
ment also gives the fitness to all the inhibitors, while the
best aligned ligand gives the maximum fitness. The evalu-
ation of the newly formed common pharmacophore was
achieved by comparing the experimental and the calculated
activities for the training set molecules. Common
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pharmacophore of significant statistical values was selected
for molecular alignments.

2.4. Pharmacophore model validation

The aim of the pharmacophore generation was to develop a
QSAR model that was statistically significant both internally
and externally (Kaur et al., 2012), where the evaluation and
predictability of the model being achieved by external valid-
ation. A scatter plot of experimental versus predicted activity
for the training set showed a substantial linear correlation
and a slight difference between the experimental and pre-
dicted activity. External validation was used to determine the
efficacy of the model. The dataset obtained was separated
into training and test set where validation of the model
(AAHRR) for the test set was judged by the cross-validation
coefficient (Q%). R* was determined for the training set which
depicted relevance of the model. The F value (which assesses
the statistical significance) and Pearson-R (which measures
the strength of the linear relationship between two variables)
indicated greater confidence of the model, where a higher F
value implies a more significant correlation and a Pearson-R
value closer to 1 indicates a strong positive linear correlation.
Standard deviation (SD) and Root-mean squared error (RMSE)
were calculated which reflected good stability of the model.
Model validation is an important step during pharmacophore
design, as it determines the success, accuracy and reliability
of the developed model (Meraj et al., 2013).

2.5. Molecular dynamic simulations

2.5.1. Peptide structure prediction

The 3D structure of “KLWKLWKKWLK” aCPP was predicted
using PEP-FOLD server, which uses a de-novo approach for
predicting peptide structure from amino acid sequences
(Figure 2(B)). PEP-FOLD server uses a greedy algorithm driven
by a coarse-grained force field for predicting the 3D model
of a peptide (Shen & Maupetit, 2012).

2.5.2. Molecular dynamics simulations
POPC bilayer was constructed using the CHARMM-GUI mem-
brane builder and contains a total of 128 lipid molecules

(A) KIWKIWKKWI K € Amino acid sequence

l Prediction of 3-D structure

Lo ot
A
I

Constructed POPC lipid bilayer
contains 128 lipids, 64 in upper
leaflet and 64 in lower leaflet

el

5"

(B) *=
i
B

gy
(©)

Figure 2. (A) Representation of the single amino acid code of the aCPP pep-
tide. (B) Representation of the predicted 3-D structure of aCPP and (C) shows
the constructed POPC lipid bilayer, P atoms have been shown in VdW sphere.

(Wu et al.,, 2014) (Figure 2(C)). The peptide was placed more
than 5 A away from any lipid molecules of the upper leaflet
of the bilayer. The Charmm36 force field was used for pep-
tide and POPC bilayer system, which was solvated using
TIP3P water model (Huang & MacKerell, 2013). The system
contains a total of 7572 water molecules, and 5Cl~ ions
were added to neutralize the system. The system was energy
minimized using the steepest descent algorithm, and 500 ps
simulated annealing under the isobaric-isothermic (NPT) con-
ditions was performed to equilibrate the water molecules
around the lipid head group atoms (Bixon & Limn, 1966).
The system was further equilibrated for 100 ps with canonical
(NVT) ensemble, followed by 1000 ps with NPT ensemble and
a 50ns production run was performed in the NPT ensemble.
The hydrogen bond lengths of peptide and lipid molecules
were constrained using the LINCS algorithm (Hess & Fraaije,
1997). Particle mesh Ewald (PME) method was used for calcu-
lation of long-range electrostatic interactions (Darden et al.,
2007). The van der Waals (vdW) and electrostatic interactions
were calculated using a cut-off of 1.2nm. The
Parrinello-Rahman method was used for pressure coupling
and the Nose-Hoover thermostat was used for temperature
coupling (Braga & Travis, 2014; Parrinello & Rahman, 1995).
The simulation was performed at a pressure of 1bar and a
temperature of 323 K using the GROMACS package (Hess &
Fraaije, 1997).

3. Results

Upon completion of the pharmacophore identification pro-
cess, 65 variant hypotheses were generated. In this study, 28
aCPPs were used to predict activity using PHASE and fitness
score determined (Table 1), with molecules 9, 10, 19, 20, 23
and 28 not being picked up by the system. The most appro-
priate pharmacophore model (AAHRR.114) to predict aCPP
activity had a five-point hypothesis that consisted of two
hydrogen bond acceptor (A), one hydrophobic group (H) and
two aromatic ring features (R), as shown in Figure 3.
Pharmacophore hypothesis scoring values are shown in
Table 2. Compound 25 had the best alignment on the
pharmacophore AAHRR as shown in Figure 4, and the dis-
tance between the sites in the pharmacophore is shown in
Figure 5. Alignment of both active and inactive molecules to
the hypothesis AAHRR.114 is shown in Figures 6 and 7,
respectively. A depiction of the cubes produced for the high-
est active molecule (compound 25) in the present 3D-QSAR
is shown in Figure 8(A-E), where the blue cubes indicate
favourable effect on activity and red cubes indicate
unfavourable effect. For the 3D-QSAR model generation, the
PHASE descriptors were considered as independent variables
and the activity values as dependent variables in deriving
the 3D-QSAR models by the PLS regression method. The 3D-
QSAR was evaluated by the Fisher test (F), correlation coeffi-
cient (R%) and Pearson-R. Table 2 outlines the summary of
the 3D-QSAR results. The statistical results of the model
exhibited an R? value of .9016, RMSE =0.5911, Q*=0.5311,
SD =0.2072, variance ratio (F) =36 and Pearson-R=.847. The
validation of the above model was achieved by predicting
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Table 1. aCPPs for training and test set (Bahnsen et al., 2013; Park et al., 2009)

Biological activity

Therapetic PHASE predicted

Entry Peptide Set index (Tl) MIC (uM) against S. aureus (—log 1Cs) activity (—log 1Cs) Fitness score
1 Penetratin Training set 4.4t 64 1.806 1.44 0.32
2 penArg Training set 231 16 1.204 1.30 0.31
3 pen13 Training set >33t 256 2.408 2.07 0.22
4 Pen13Arg Training set 1.1t 32 1.505 1.86 0.23
5 Penshuf Training set 0.3t 64 1.806 1.89 0.68
6 PenshufLeu Training set 0.6 16 1.204 137 0.76
7 PenshuflLysLeu Training set 1.0t 32 1.505 1.48 0.76
8 PenshufArgLeu Training set 0.3t 16 1.204 133 0.76
9 WR8 Training set 10.11 44 ND ND ND
10 Tat13 Training set <33t >256 ND ND ND
1" K8Ws3 Training set 200* 4 0.602 0.59 2.51
12 KL7W3 Training set 200* 4 0.602 0.53 2.97
13 K6L2W3 Training set 400* 2 0.301 0.51 2.98
14 K3L5W3 Training set 0.8* 4 0.602 0.54 299
15 K2L6W3 Training set 0.05* 32 1.505 0.58 297
16 R8W3 Training set 100* 8 0.903 0.81 2.46
17 R6L2W3 Training set 100* 4 0.602 0.66 2.50
18 06L2W3 Training set 200* 4 0.602 0.56 0.72
19 06X2W3 Training set 100* 4 ND ND ND
20 R6L2W3-D Training set 200%* 2 ND ND ND
21 Indolicidin Training set 12.5% 4 0.602 0.53 0.35
22 PenLys Test set >3.91 256 2.408 1.45 0.32
23 PenLeu Test set >15.6t1 64 ND ND ND
24 pen13Lys Training set >3.9t 256 2.408 2.02 0.23
25 K5L3W3 Test set 50* 2 0.602 0.52 3
26 K4L4W3 Test set 3.0% 2 0.602 0.53 299
27 R7LW3 Test set 200* 4 0.301 0.70 248
28 K6L2W3-D Test set 100* 4 ND ND ND

ND, not determined.
tValues taken as such from the literature.
*Values calculated by dividing %cell viability by MIC against S. aureus.

“Represents peptide sequences: |, Isoleucine; R, Arginine; K, Lysine; M, Methionine; L, Leucine; Q, Glutamine; W, Tryptophan; F, Phenylalanine; O,

Pyrrolysine; N, Asparagine; P, Proline; X, Any amino acid.

@ G

L«

Figure 3. Pharmacophore hypothesis (AAHRR). Purple sphere—A, green
sphere—H and brown ring—R.

Table 2. Summary of 3D-QSAR results

PLS statistical

PLS statistical parameters Results parameters Results

Number of molecule in training set 18 R? 9016

Number of molecule in test set 6 Q? 0.5311

Number of PLS factors 3 Standard 0.2072
deviation (SD)

Root-mean squared error (RMSE) 0.5911 Variance ratio (F) 36
Pearson-R .847

Figure 4. The best common pharmacophore hypotheses for compound 25.

Figure 5. The pharmacophore hypothesis showing distance between the phar-
macophoric sites of compound 25.

the biological activities of the training set molecules, as indi-
cated in Table 1. To further confirm the 3-D QSAR results,
compound 25 which was considered as the best aCPP based
on the fit function was further analysed for its membrane
penetrating ability by MD simulation. Figure 9 shows the
representative images from the simulation at different time
points. The time evolution of the distance of each residue of
the aCPP from the POPC bilayer showed that the peptide
formed strong interactions with the POPC bilayer at two dif-
ferent time points, one at approximately 28 ns and remained
bound until 50ns (Figure 10). The next time period we
observed the peptide to be bound at approximately 109 ns
and remained bound until 200ns. During this time, we
observed Lys-1 inserted into the PO4 groups of the mem-
brane (Figure 11). To further observe the closest residues
during the binding, average distances for each residues for
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Figure 6. Alignments of active molecules.

Figure 7. Alignments of inactive molecules.

(a) # é [=e} (b) . l

(e)

Figure 8. The 3D QSAR model based on compound 25 illustrating (A) hydrogen bond donor groups, (B) hydrophobic groups, (C) Electron withdrawing groups, (D)
other effects and (E) combined effects.

=120 ns t=200 ns

Figure 9. Two representative images of aCPP-POPC lipid bilayer interaction showing interaction, one at 120 ns and at 200 ns. PO, atoms of bilayer have been
shown in VDW representation and aCPP peptide has been shown in cartoon representation.



—LYS 1
— LEU-2
TRP-3
LU
504 th.i ﬁ \: il ,w
2 aof ¥ 'W‘w
£ 30 ’J" . A
A 20 '!.Iw")'ﬂ '
X

50 100 150 200

Time (ns)

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS . 7

150 200

100
Time (ns)

Figure 10. Time evolution of centre of mass (COM) distance between each residue of peptide with the phosphate (PO,4) group of upper leaflet.
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Figure 12. Average distance for the last 20 ns for each residue.

the last 20 ns (180-200 ns) were calculated (Figure 12). As in
our simulation we have used periodic boundary conditions
(PBC), we observed the peptide to interact with both the
lower and upper leaflet of the membrane. Therefore, we
have calculated the COM between both leaflets and peptide
separately. The last 20ns (180-200 ns) average distances of
each residues (Figure 12) reveal that the Lys-1, Leu-2, Trp-3
and Trp-6 were the closest to the membrane during the
binding. The MD simulations therefore confirmed the inter-
action of compound 25 with the POPC bilayer.

4. Discussion

In this study, pharmacophore and QSAR model development
was performed by PHASE. Several hypotheses were gener-
ated, with the top-ranking ones being subjected to 3D-QSAR
analysis, where the grid spacing was set to 1 A and the max-
imum PLS factors set to 3. Partial least squares (PLS) is a stat-
istical method which is used to find the relationship
between two matrices and/or finds a linear regression model
between variables. The first hypothesis, AAHRR.114, was
found to be the best, being characterized by a high survival

score (3.984) and an R? of .9016. AAHRR 114 featured two
hydrogen bond acceptor (A), one hydrophobic group (H) and
two aromatic ring features (R). A R? value greater than .5 and
close to 1 confirmed the models predictive ability for the
compounds(Frimayanti, Yam, Lee, & Othman, 2011). Q? meas-
ures the robustness and predictive power of the QSAR model
and must be >0.5 but lower that the R? value (Veerasamy
et al, 2011). Compound 25 was the best and comprised of
the amino acids, lysine (K-5), leucine (L-3) and tryptophan
(W-3), with a positive net charge of +5 and a total hydro-
phobic ratio of 57%. There are several reports on peptides
which are rich in the amino acids lysine, leucine and trypto-
phan being specific for bacterial membrane penetration that
support our findings (Jin et al, 2016; Kim et al, 2013;
Nguyen et al.,, 2010; Su, Doherty, Waring, Ruchala, & Hong,
2009). The positive charge allows the aCPP to interact with
the negatively charged bacterial cell membrane whereas the
hydrophobicity allows the aCPP to penetrate deeper into the
hydrophobic core of the bacterial cell membrane causing
membrane lysis and pore formation (Chen et al, 2007).
Figure 8(A-E) represents features responsible for activity
(blue cubes) and those which attenuate activity (red cubes).
Features responsible for activity are specifically represented
in Figure 8(B and C) whereas Figure 8(A and D) show fea-
tures that attenuate activity. Substitutions at the domains
represented by the red cubes with amino acids which will
increase the aCPP’s cationicity will confer favourable activity
(Faraz, Verma, & Akhtar, 2016; Mehta, Khokra, Arora, &
Kaushik, 2012).

The MD simulation which ran for 200 ns showed spontan-
eous insertion of the aqueous phase aCPP into the upper
and lower leaflet region of the lipid bilayer. The last 20 ns of
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the simulation revealed that the Lys-1, Leu-2, Trp-3 and Trp-6
were the closest to the membrane during the binding,
revealing the importance of these amino acids in membrane
penetration based on their net charge. The importance of
charged residues in membrane penetration is well known
(Futaki, 2005; Herce & Garcia, 2008; Nakase, Takeuchi, Tanaka,
& Futaki, 2008; Persson, Esbjo, Gokso, Lincoln, & Norde,
2004). It could be significant since we observed in our study
that the C terminal region (residue 6-11) has more positive
charge compared with the N terminal region (residue 1-5),
which assisted the C terminal region to insert into the
bilayer. Charged Lys side chains have been seen to possess
high pKa values and this allows them to form strong electro-
static interactions with membranes, which leads to mem-
brane penetration (Li, Vorobyov, & Allen, 2013). Trp is
particularly prevalent among naturally occurring antimicro-
bial peptides and can strongly interact with hydrophobic
membrane components, thus leading to increased antimicro-
bial activity (Bi, Wang, Dong, Zhu, & Shang, 2014; Li et al.,
2013). The MD studies confirmed the importance of Trp and
Lys residues in interacting with the POPC lipid bilayer, which
allows the peptide to penetrate the model membrane.

5. Conclusion

This study presented the ligand-based pharmacophore and
3-D QSAR model which gave important structural-binding
features of aCPPs acting as S. aureus antagonists based on
their Tl. Pharmacophore modelling compares activities with
the 3-D arrangement of various physicochemical features.
The hypothesis AAHRR.114 was found to be the most appro-
priate pharmacophore model to determine the best com-
pound with potent activity. AAHRR.114 contains two
hydrogen bond acceptors, one hydrogen bond donor, two
hydrophobic regions, and one aromatic ring features. The
AAHRR.114 model was able to predict the activity of the
aCPPs, and the validation results provide additional confi-
dence. The best aCPP was found to be compound 25, with a
fitness score of 3 and the PHASE predicted activity of 0.52
being better that the experimental activity (0.602). The pro-
posed 3D-QSAR model AAHRR.114 was useful in estimating
the antimicrobial potential and cell penetrating ability of
aCPPs, confirm the relationship between the Tl and aCPPs,
where aCPPs with a higher Tl showed good activity and
PHASE was also able to predict the possible descriptors
responsible for activity. This QSAR approach in analysing
aCPP cell penetration, by observation of its Tl, can be used
for future studies to explore specific descriptors responsible
for biological activity that also accounts for cell penetration.
Membrane penetration study using MD simulation also
revealed the aCPP-POPC bilayer interaction, resulting in the
aCPP insertion across the bilayer. The combination of these
two computational studies will also lead to the rational
design of optimal and novel aCPPs for therapeutic activity
and for peptide-conjugate delivery.
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CHAPTER 4, Experimental Paper

Supramolecular Lipidation of Novel Antimicrobial Peptides Enhances
Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus (MRSA)

4.1 Introduction

This chapter addresses Aim 2, Objectives 1 — 6 and is a first authored experimental article that
has been completed and communicated to the journal of submitted to European Journal
Pharmaceutics and Biopharmaceutics (impact factor 4.491), an ISI international journal
(manuscript ID: EJPB 2018 1382). This research article focuses on the encapsulation of novel
AMPs with vancomycin (VCM) and oleic acid (OA) in a liposomal system to target MRSA
infections, and characterization and evaluation of bare novel AMPs activity in comparison to
the encapsulated materials to enhance antimicrobial activity. Data from this chapter has also
been presented in one conference:
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Abstract

Antimicrobial peptides (AMPs) have the ability to penetrate and transport cargo across
bacterial cell membranes. These AMPs have been labelled as exceptional candidates to
function in drug delivery, however their antimicrobial activity can be attenuated due to innate
peptide resistance mechanisms found in bacterial cells. The aim of this study was to investigate
the effectiveness of supramolecular lipidation of novel AMPs for enhanced MRSA activity.
The supramolecular lipidation strategy was carried out through the formulation of liposomes
by thin layer film hydration methodology, containing phosphatidylcholine, cholesterol, oleic
acid (OA), novel AMP as well as vancomycin (VCM). Characterization of the AMPs and
liposomes involved high performance liquid chromatography (HPLC) and liquid
chromatography mass spectrometry (LCMS) for peptide purity and mass determination.
Dynamic light scattering (DLS) was used to determine size, polydispersity and zeta potential.
TEM (surface morphology), broth dilution, flow cytometry (antibacterial activity), MTT assay,
hemolysis and intracellular antibacterial studies were also determined. The size, PDI and zeta
potential of the drug loaded AMP:2-Lipo-1 was 102.6+1.81, 0.157+0.01 and -9.81+1.69
respectively, while AMP3-Lipo-2 drug loaded formulation corresponded to 146.4+1.90,
0.412+0.05 and -4.27+1.25, respectively at pH 7.4. However, in acidic pH for both
formulations, we observed an increase in size, PDI and a switch to positive zeta potential, which
indicated the pH responsiveness of our liposomal systems. /n vitro antibacterial activity against
S. aureus and MRSA revealed that liposomes had enhanced activity at pH 6 compared to pH
7.4. In vitro cytotoxicity results showed percentage viability ranging from 80-85% for all cell
lines employed and both liposomes showed haemolysis of less than 1% at, which indicated its
non-toxicity to red blood cells (RBCs). The therapeutic benefit conferred by AMP2-Lipo-1 and
AMPs-Lipo-2 was evaluated on MRSA infected HEK-293 cells. From this intracellular study
it was observed that the liposomal formulations had good activity without affecting the cell line
The AMP2-Lipo-1 and AMPs-Lipo-2 liposomal formulation were seen to possess better
activity than their parent AMPs. This showed that the supramolecular assembly can potentially
be used to enhance activity and penetration of AMPs thereby improving the treatment of

bacterial infections.

Keywords: AMPs, supramolecular lipidation, membrane insertion, MRSA, liposomes, pH

response
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1. Introduction

The emergence of drug resistance over the years has prompted a need for novel compounds to
combat infectious disease[1]. Treatment options targeting MRSA infections has proven to be
challenging due to limited viable therapeutic routes that bypass resistance [2]. Resistance to
antibiotics is generally linked to the failure of antibiotic treatment, where formerly curable
infections are now part of the leading cause of high morbidity rates and escalation of healthcare
costs (WHO, 2014)[4][5]. Over the years there has been a rise in deaths caused by MRSA
infections and this is prevalent in both community and in nosocomial settings[6][7]. This
occurrence has led to the over utilisation of VCM as it has been deemed to be the last remaining
resort to treat MRSA [8]. The prevalent use of VCM has resulted in the emergence of
Vancomycin resistant Staphylococcus aureus [9][10]. Even with the great prospects antibiotics
have offered towards therapy due to bacterial infections, several limitations have been observed
with the current dosage forms. These include insufficient concentration at target sites, poor
antibiotic penetration, side effects and poor compliance[11]. These limitations have led to
resistance of antibiotics by microorganisms causing infections on a global scale[12]. The
application of fatty acids such as oleic acid (OA) in targeting pathogenic microorganisms have
also been to be effective[13]. However in vitro studies have shown that the activity of OA is
augmented when incorporated into liposomes compared to free OA[14].

AMPs have been seen to possess antimicrobial properties and could possibly mitigate the
limitations of conventional antibiotics[15][16][17][18]. The warranted attraction towards
AMPs is due to their capability to alter the conformational integrity and penetrability of
bacterial cell membranes by triggering membrane disruption, fusion, or translocation[19].
These AMPs tend to be amphipathic with a high positive zeta potential due to the distribution
of charged amino acids in their chain[20]. They also readily accumulate at the lipid membrane
interface, which can lead to membrane partitioning or cellular internalization[21][22]. They
also have been reported to confer little haemolysis making them ideal candidates in drug
delivery as well as novel antibiotics[23][24][25]. Another factor that that adds to the disease
burden is the proliferation of intracellular infections[26]. This is caused by poor delivery of
antibiotics into host cells, resulting in inadequate bacterial clearance which has the potential to
cause bacteria to develop resistance mechanisms[27]. A study conducted by Schlusselhuber et
al., 2013 reported on an a-helix AMP (eCATHI) and its ability to confer bactericidal effects
against Rhodococcus equi in macrophages[28]. Similarly, Brinch et al. (2010) reported on the
effectiveness of the AMP, NZ2114 effectiveness against intracellular S. aureus in human and

mouse monocytes[29]. All these facts highlight the need for the identification of novel and new
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AMPs to widen the pool of available antimicrobial agents that are effective against sensitive

and resistant MRSA.

The delivery of AMPs or antibiotics into specific target sites within the body is one of the main
challenges for successful therapeutics[30]. Nano drug delivery systems can enhance delivery
of AMPs by protecting then against degradative enzymes and conferring high solubility and
carrier capacity as well as efficient delivery at target site[31][32]. Specifically pH responsive
systems that can target infection sites at acidic conditions offer great exploits in controlling the
spread of infection[33]. At acidic pH, the nano system swells and eventually bursts to release
the inner contents at the infection site[34]. A widely used nano system for AMPs involves the
application of liposomes which are sphere-shaped vesicles which possess at least one lipid
bilayer[35]. Due to their biocompatibility and biodegradability, they have been broadly used
in drug delivery investigations and found to reduce toxicity and prolong drug half-
life[36][37][38]. Currently, liposomes have been used to encapsulate AMPs and/or antibiotics
for their delivery at desired target sites[30][39]. In both cases this results in higher antimicrobial
activity and sustained release with offers better therapeutic potential compared to non-
encapsulated AMPs and antibiotics[40][41]. Co-delivery of AMPs with other agents such as
antibiotic drugs and non-drug antimicrobial agents may potentiate antibacterial activity by
multiple mechanisms of action targeting the bacteria and thereby reducing the ability of
bacteria to develop resistance[42]. Indeed, co-delivery of antibiotics such as Vancomycin with
agents such as linolenic acid have improved activity against bacteria such as MRSA and S.
aureus|13]. Thus far, there is no report on co-delivery of AMPs with antibiotics drugs and other

non-drug antimicrobial agents in a single delivery system to target MRSA.

One of the current strategies used to target resistant microorganisms is supramolecular
lipidation which involves the non-covalent assembly of different moieties into a system [43].
This technique has been widely used in drug delivery to improve biological activity and to
increase affinity for lipid membranes[44]. The application of supramolecular lipidation would
offer great prospects in lowering therapeutic doses without affecting the integrity of the
designed AMPs and also enhances the activity of AMPs[45]. In the context of this research,
we propose a supramolecular lipidation assembly, employing three different agents
encapsulated in a liposome without any covalent bonding to target MRSA infections. To our
knowledge, o such approach has been described in literature for a lipid-based AMP delivery

system.
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In this study we propose the encapsulation of novel AMPs with VCM and oleic acid in a
liposomal system to target MRSA infections. Therefore, the aim of this study was to design
and synthesize novel AMPs and employ them to decorate vancomycin and oleic acid containing
liposomes to achieve pH responsiveness. In this current research we have designed nine Novel
AMPs and two of them (EKKRLLKWWR and KWWKLLRKKR) were selected based on their
antimicrobial activity to predict their bacterial membrane penetrating ability through molecular
dynamics and flow cytometry. These AMPs were further encapsulated in a liposomal
formulation containing OA and vancomycin at the core to form a pH responsive drug delivery
system for infection targeting and treatment of intracellular infections, leading to enhanced
antimicrobial activity. We envisage that at basic pH, the AMPs will form ion pairing with the
negatively charged OA incorporated in the liposomes while at acidic pH the OA gets
protonated and the ion pair is broken leading to pH responsiveness. To the best of our
knowledge, this is the first report of such a technique to improve AMPs antimicrobial activity.
This assembly is expected to enhance activity of the AMPs and offer synergistic properties
with the encapsulated moieties. In vitro and in silico findings from the synthesis of the AMPs,

liposomal decoration and antimicrobial activity are herein reported in this paper.

2. Experimental section
2.1 Materials and Methods

Rink amide paramethylbenzhydrylamine (MBHA) resin and 9 fluorenylmethoxycarbonyl
(Fmoc) amino acids were obtained from Iris Biotech, Germany. Other reagents used for peptide
synthesis included trifluoroacetic acid (TFA; Sigma), piperidine (Merck), DIC (purchased from
GL Biochem), oxyma (Luxemburg BioTechnologies) and dimethylformamide (DMF peptide
synthesis grade; Sigma). All other reagents were of analytical grade. Mueller Hinton Agar
(MHA) (Biolab, South Africa), Nutrient Broth (Biolab, South Africa), Nutrient Agar (Biolab,
South Africa) and Mueller Hinton Broth 2 (MHB) (Sigma-Aldrich, USA) were used in the
antibacterial testing studies and tested against Staphylococcus aureus (ATCC 25922) and
MRSA (ATCC BAA-1683™). Cholesterol, oleic acid, phosphatidylcholine (Sigma-Aldrich,
USA) as well as VCM (Sinobright Import and Export Co., Ltd. China) were used in the
formulation of liposomes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was obtained from Merck Chemicals (Germany). Propidium iodide dye cell viability
kit was purchased from Thermofisher (USA).
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2.2 AMP Design, Synthesis and purification
2.2.1 Peptide design
The AMPs were designed using a data filtering technology (DFT)[46] (Figure 1). A set of

antimicrobial peptides having gram positive activity were selected and mutants were generated
(APD online tool). A total of 86 AMPs made up our database. From our database, we limited
peptide length to 10 amino acid residues and a charge of > +4. Frequency of amino acids,
structure type and hydrophobicity were considered and a limit of hydrophobic percentage was
set to range between 40% to 60%. Another important filter, Motif was considered which refers
to a cluster of amino acid residues that occur frequently in natural AMPs. From this filtration
technology, it was observed that the frequency of LL, KK and WW occurred frequently in the
selected AMPs. The novel peptides were checked on APD on-line tool for novelty as well as
charge, hydrophobicity. The best designed peptides were also checked for cell penetrating
ability (CPPpred on-line tool) as well as haemolytic activity (HemoPI on-line tool) [47].

2.2.2 Synthesis and purification of peptides

The designed peptides were synthesised by solid phase peptide synthesis (SPPS) on Rink amide
MBHA resin. All syntheses were carried out under microwave (MW) conditions using a CEM
Liberty Blue system by standard Fmoc/z-Bu methodology by means of DIC/Oxyma Pure™ as
coupling reagents. Peptides were prepared in a 0.1 mmol scale and a 5-fold excess of reagents
were used. A solution of 20% piperidine in DMF was used for the Fmoc removal in each step.
To obtain fluorescent peptides to one half of the peptidyl resin 5(6)-carboxyfluorescein was
coupled using 10 equiv and equimolar amount of DIC/Oxyma Pure™. All peptides
(Fluorescent and not) were cleaved and final deprotected by treatment with TFA-TIS-H20
(95:2.5:2.5) for 1 h at room temperature. Thereafter precipitation was carried out by addition
of chilled diethyl ether, taken up in water or 10% acetic acid. Crude peptides were purified by
semi-preparative reverse-phase high-performance liquid chromatography (RP-HPLC). Purity
was confirmed by analytical high-performance liquid chromatography (HPLC) and
characterization by liquid chromatography mass spectrometry (LCMS).

2.3. Antibacterial activity
2.3.1 Determination of Minimal inhibitory concentration (MIC)

Briefly, the bacterial cultures were grown in Mueller—Hinton Broth, with (MHB) appropriate

dilutions made to achieve 5 x 10° colony forming units per mL (CFU/mL) of bacteria. Serial
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dilutions of the plain AMPs, AMP2-Lipo-1, AMPs-Lipo-2 and bare VCM were carried out in
MHB broth and incubated with bacterial cultures containing 5 % 10° colony forming units per
mL (CFU/mL) for 18 h in a shaking incubator at (1000 rpm) 37° C. 10 pL of the serial dilutions
were spotted on Mueller—Hinton Agar (MHA) plates and incubated for a further 18 h. The
minimum concentration at which no visible bacterial growth was observed and was considered

to the MIC and cell viability was evaluated via flow cytometry.

2.3.2 Intracellular studies on MRSA infected HEK-293 cell line
Briefly, HEK 293 cells were seeded in 96-well plates at a density of 5 x 10* cells/ml per well
for 24 h in DMEM medium containing 10% DMEM without any antibiotics. Overnight culture
of MRSA was washed thrice with centrifugation at 3000 rpm at 4 °C, resuspended and diluted
with DMEM medium at a cell density of 10'? cells/ml. HEK-293 cells were infected with
MRSA at a multiplicity of infection (MOI) of 100. After 2 h of incubation, the infected cells
were washed 7 times with DMEM medium containing 10% FBS to remove extracellular
bacteria. The last medium for washing was plated on MHA plate to make sure all extracellular
cells had been removed. In each well, VCM loaded AMP2-Lipo-1(7.81 pg/mL) and AMP3-
Lipo-2 (3.9 pg/mL) and bare VCM (3.9 pg/mL) were added at concentrations of 5 times the
MIC and untreated cells were incubated for 22 h. Thereafter, the cells were lysed triton X for
10 min in distilled water. The suspensions were serially diluted and spread on MHA agar plates
to determine the number of viable MRSA by colony counting, where the colony forming units

(CFU) were calculated by the following equation;

number of colonies x dilution factor
CFU/mL =

volume of the culture plate

2.4 Cell penetration studies
2.4.1 Molecular dynamics simulation

The 3D-structure of AMP-2 and AMP-3 were predicted using the PEP-FOLD server[48]. The
server uses a de-novo method for predicting peptide structures from amino acid sequences and
a greedy algorithm driven by a coarse-grained force field for predicting the 3D model of a
peptide[49][50]. Charmm-GUI martini maker was used to convert the all-atom peptides to
coarse-grained model[51]. POPC bilayer was constructed using the CHARMM-GUI Martini
maker bilayer builder option and constructed bilayer contains a total of 128 lipids, 64 lipids in
each leaflet. The bilayer was equilibrated for 100 ns before using for the peptide-membrane

simulations. The peptides were placed more than 25 A from the top leaflet of the POPC bilayer.
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The AMP-2 system contained the AMP-2, 3001 water molecules, POPC bilayer, and 4 CI” ions
were added to neutralize the system. The AMP-3 system contained AMP-3, 27773 water
molecules, POPC bilayer, and 6 CL" ions were added to neutralize the system. The two systems
were energy minimized using the steepest descent method[52] and further equilibrated for 500
ps. All simulations were performed at 310.15 K temperature and 1 atm pressure. The velocity
rescale method[53] was used for temperature and the Parrinello-rahman[54] method was used
for the pressure coupling. 1.0 ps time was used for temperature coupling and 12.0 ps was used
for the pressure coupling and semi-isotropic pressure coupling type was employed. For VAW
interactions. cut-off scheme was employed and Potential-shift-Verlet was used for vdw-
modifier and 1.1 nm cut-off was used for rdw. For coulomb type, reaction-field scheme was
used, and 1.1 nm cut-off used for r coulomb. The Leap-frog algorithm was used for the
integration of Newton’s equation of motion with an integration time of 20 fs. Martini version
2.2[55] was used for amino acids and Martini version 2.0[56] was used for lipids, water, and
Ions. GROMACS simulation package[57] was used for simulations and each simulation was

performed for 200 ns resulted in a total of 400 ns.

2.4.2 Cell membrane penetration with Flow cytometry
The membrane penetration of the two AMPs (AMP-2 and AMP-3) was evaluated on MRSA
membranes using flow cytometry. Briefly, MRSA cells were first harvested at log phase, and
then washed twice with PBS. The washed cells (5 x 10° CFU/mL were mixed with the labelled
and non-labelled AMPs in PBS, and the non-labelled AMPs were incubated with PI solution
(5 pL) for 30 min at RT. 50 pL of each sample mixture was transferred into sample vials with
each tube containing 350 puL of the sheath fluid and vortexed for 1 min. The cell-penetrating
efficiency of both AMPs was also investigated by FACScan analysis, via the influx of
carboxyfluorescein-labeled AMPs into bacterial cells. The PI fluorescence was excited by a
488-nm laser and collected through a 617 nm bandpass filter (red wavelength). The untreated
MRSA cells were considered to be the negative control. The BD FACSCANTO II (Becton
Dickinson, CA, USA) equipment was used for flow cytometry. Instrumentation settings
included sheath fluid flow rate of 16 mL/min, a sample flow rate of 0.1 mL/min. Data with
fixed cells were collected using a flow cytometer software (BD FACSDIVA V8.0.1 software
[USA]). The voltage settings used for fluorescence-activated cell sorting (FACS) analysis
were: 731 (forward scatter [FSC]), 538 (side scatter [SSC]) and 444 for PI. The bacteria were

initially gated using forward scatter, and cells of the appropriate size were then gated and at
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least 10,000 cells collected for each sample in triplicate. To avoid any background signals
from particles smaller than the bacteria, the detection threshold was set at 1,000 in SSC

analyses.

2.5 In vitro Cytotoxicity

Adenocarcinomic alveolar basal epithelial cells (A 549), HEK-293 and HeLa cell lines were
employed for cytotoxicity studies. The cell lines were grown exponentially at 37°C in a
humidified atmosphere of 5% COz. The AMPs were dissolved in milli-Q water, and dilutions
of concentrations of 20, 40, 60, 80 and 100 pg/mL were prepared. The three cell lines were
seeded equivalently (2.5 x 10%) into 96-well plates and incubated for 24 h. The wells were
replenished with fresh culture medium (100 pL per well) together with the appropriate
concentration of the test solutions to obtain the final concentrations. The positive control
comprised of wells that contained cells with culture medium only, while the negative control
contained wells with culture medium only excluding cells. After 48h incubation, the culture
medium and test materials were removed and replaced with 100 pL of fresh culture medium
and 100 pL of MTT solution (5 mg/mL in PBS) in each well. After 4 h of incubation, the media
and MTT solution was removed, and solubilization of MTT formazan was achieved by adding
100 pL of dimethyl sulfoxide. The optical density of each well was measured on a microplate
spectrophotometer (spectrostar nano, Germany) at an absorbance wavelength of 540 nm. All
the experiments were performed with six replicates. The percentage cell viability was

calculated as follows.

A549 nm treated cells
A549 nm untreated cells

% Cell viability = ( >X 100%

2.6 In vitro Haemolysis

A previously described method was used for the determination of percentage haemolysis[58].
Briefly, freshly collected sheep blood was washed three times with autoclaved phosphate buffer
saline (PBS, pH 7.4) by centrifugation at 2800 rpm for 5 min. Plain AMPs (AMP-2 and AMP-
3) and liposomes (AMP2-Lipo-1 and AMPs-Lipo-2) were diluted with the PBS to a
concentration ranging from 0.025 to 0.2 mg/ml for each sample. The RBC suspension (0.2 ml)
was added to 1.8 ml of each sample and left for incubation at 37 °C for 30 min. Thereafter the
samples were then centrifuged at 3000 rpm for 10 min. Spectrophotometric readings of the
supernatant of each sample at different concentrations were taken for the determination of

hemoglobin release. To obtain 0% and 100% haemolysis, 0.2 ml of RBC suspension was added
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to 1.8 ml PBS and distilled water, respectively. The degree of haemolysis was calculated by

the following equation:

ABS-ABSo
ABS100-ABSo

% Haemolysis = ( )X 100%

where ABS100 and ABSo are the absorbances of the solution at 100% and 0% haemolysis,

respectively.

2.7 Preparation and characterization of liposomes
2.7.1 Preparation of liposomes
Liposomes were prepared by a thin layer film hydration method[59]. Briefly, liposomes were
prepared using phosphatidylcholine (PC), cholesterol, oleic acid (OA), AMP and a fixed
amount of drug, where blank formulation was without the presence of the drug. The lipid
mixture was dissolved in 5 mL of chloroform and the solvent evaporated using a rotary
evaporator to obtain the thin film and further dried overnight in a desiccator. The dried lipid
film was rehydrated with 5 mL of water in the presence of VCM and the resulting lipid
suspension was vortexed for 1 min and followed by probe sonication for 7 mins at 30%

amplitude to produce the desired liposomes (AMP2-Lipo-1 and AMP3-Lipo-2).

2.8 Characterisation of the decorated liposomes
2.8.1 Size, Polydispersity Index (PI), Zeta Potential (ZP) and morphology

The size, PDI, and ZP of the liposomes were analyzed by dynamic light scattering using a
Zetasizer Nano ZS90 (Malvern Instruments Ltd., UK), with all measurements being performed
in triplicate. The morphology was examined using high resolution transmission electron
microscopy on a Jeol, JEM-1010 (Japan) transmission electron microscopy (HRTEM). The
liposomes were diluted appropriately then mounted onto the surface of a copper grid, and the
excess sample blotted off using a filter paper, then dried at ambient temperature. The images
were captured at an accelerating voltage of 200 kV.

2.8.2 Entrapment efficiency (% EE)

Ultrafiltration method was used for the determination of the entrapment efficiency. 2 mL of
the liposomal formulations were placed in Amicon® Ultra-4 centrifugal filter tubes (Millipore
Corp., USA) of 10 kDa pore size and centrifuged at 3000 rpm at 25 °C for 30 min. The amount
of free VCM in the filtrate was analysed by HPLC (Shimadzu, Japan) analysis, with a UV
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detection wavelength of 230 nm. The mobile phase consisted of a mixture of 6.8mg KH2PO4
dissolved in 1L H20 and Methanol (79:21 v/v), pumped through a Nucleosil 100-5 C18 column
(150 mm X 4.6 mm internal diameter) at a flow rate of 1 mL/min, with an injection volume of
100 pL. The linear regression coefficient (R?) of 0.9997, was used to obtain the unknown
concentrations values. The % EE was calculated using the following equation:

Weight of VCM in nanoparticles
Weight of VCM added

%EE = ( )X 100%

3. Results and Discussion
3.1 Design, synthesis and characterisation of AMPs

AMP screening and design:

AMPs were designed using the module CellPPD in the antimicrobial database (APD)[60]
(Figure 1). The design strategy allowed for the placement of LL, KK, WW flanked by charged
amino acids for the first 3 sequence, followed by placement of LL, KK, WW motifs
interchangeably flanked by polar amino acids for the next three sequences and lastly flanking
the motifs interchangeably by hydrophobic amino acids to total a sequence chain of 10 amino
acid residues. This in silico method was developed to accelerate the prediction and design of
optimal cell penetrating peptides (CPPs). CellPPD which is a support vector machine (SMV)-
based model, allows for the generation of all possible single mutant analogues and predicted
whether they were cell penetrating or not. Furthermore, all the important physico-chemical
properties like net charge, hydrophobicity, structure type, molecular weight were estimated.
The net charge of all AMPs ranged between + 4 to + 7 which is an important factor for
interacting with the negatively charged bacterial membrane. The hydrophobic percentage of
the AMPs ranged between 40-60%. This is an important determinant of their distribution
between the lipid bilayer of the bacterial membrane and the aqueous core. The AMPs also
showed a-helix structural conformation, with the exception of AMP-4 and AMP-5 which had
a non-helixbeta and non-alphabeta conformation, respectively. Cell penetrating ability and
haemolytic activity probability scores range between 0 and 1, where closer to 1 meant a strong
probability to penetrate and haemolytic whereas 0 being very unlikely to be cell penetrating

and non-haemolytic (Table 1).
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Figure 1: Database filtering technology with peptide filters[46]
AMP synthesis:

Peptides and fluorescein labelled peptides were synthesized by standard SPPS methodology.
All of them were purified to homogeneity by semi-prep HPLC to purities higher than 85% and
their identity was confirmed by mass spectrometry (appendix B and C). Sequences and

theoretical properties are shown in Table 1.

Table 1: Novel Antimicrobial peptides

Name Peptide Sequence Net Hydroph- Structure Mol Cell Haemolytic
Charge obicity weight  Penetrating activity
(calc) ability (HemoPI)
(CPPpred)
AMP-1 H-AALRKKDWWK-NH, +4 40% helix 1300.5 0.908 0.50
AMP-2 H-EKKRLLKWWR-NH, +5 40% helix 1441.8 0.878 0.50
AMP-3 H-KWWKLLRKKR-NH, +7 40% helix 1440.8 0.877 0.56
AMP-4 H-QLLWKKRWWR-NH, +5 50% nonhelixbeta 1498.8  0.868 0.48
AMP-5 H-KKKSLLRWWW-NH, +5 50% nonalphabeta 1429.7 0.867 0.49
AMP-6 H-KWWRLLHKKQ-NH, +5 40% helix 1421.7 0.823 0.48
AMP-7 H-KLLRKKFWWG-NH, +5 50% helix 1360.7 0.809 0.53
AMP-8 H-RKKALLRWWV-NH, +5 60% helix 1355.8 0.781 0.49
AMP-9 H-IWWFLLRKKR- NH; +5 60% helix 1445.9 0.771 0.49
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3.2 Antimicrobial activity Results
3.2.1 MIC determination

The bare AMPs had better activity towards Gram positive bacteria (S. aureus and MRSA)
compared to Gram negative bacteria (E.coli). From this panel of AMPs, it was observed that
AMP-2 and AMP-3 had better MICs compared to the rest of the AMPs. AMP-2 had an MIC
of 125 pg/mL and AMP-3 MIC was 62.5 ng/mL against MRSA. In the case of S. aureus, AMP-
2 MIC was 125 pg/mL where AMP-3 MIC was 31.25 pg/mL (Table 2). Based on these results,
AMP-2 and AMP-3 were chosen to evaluate their antimicrobial potential in a liposomal nano
system against MRSA. The first AMP-based liposomal formulation (AMP2-Lipo-1) MIC
values were 1.95 pg/mL and 3.9 pg/mL at pH 6.0 and at pH 7.4, respectively. AMP3-Lipo-2
had an MIC of 0.48 and 3,9 pg/mL at pH 6.0 and at pH 7.4, respectively (Table 4). The MIC
value for VCM was 15.65 pg/mL against MRSA at both pH. It is envisaged that the augmented
activity of this supramolecular liposomal assembly over VCM could be due to the combination
of the cationic AMPs offering a membrane permeation ability with the OA and VCM released
at the target site in a sustained manner. The AMPs assist the VCM to kill bacteria by selectively
forming pores on the bacterial membrane through disruptive “lytic” or pore-forming
“ionophoric” mechanisms[61]. This action of AMPs allow the VCM to effectively bind to the
C-terminal D-Ala-D-Ala of the pentapeptide of lipid II and the nascent peptidoglycan,
inhibiting both transpeptidation and transglycosylation during the peptidoglycan synthesis[62].
Oleic acid (OA) also plays a major role in this liposomal assembly as it has been widely used
in different formulations due to its non-toxicity, bio-compatibility, bio-degradability,
permeation enhancement and displays antibacterial activity[63]. The fusion of the liposomes
with the bacterial membranes cause the entrapped OA to be released into the bacterial
membranes or the intracellular environment, resulting in higher local antimicrobial
concentration and more efficient bactericidal activity while allowing VCM to disrupt the
bacterial cell wall biosynthesis. Liposomal size plays an important role in their
physicochemical properties and biological functions as a drug delivery vehicle[64]. Smaller
liposomes (diameter, < 50 nm) are unstable and likely to agglutinate with others due to their
high surface tension[65]. In contrast, larger liposomes (diameter, >200 nm) are usually stable
but may have difficulty in cell penetration[66]. Liposomes with moderate size range will have

relatively prolonged stability, preserve the capability to fuse with bacterial or cell membranes,
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and possess good penetration ability[67][68]. These findings highlight the applicability of the

supramolecular liposomal assembly to enhance the activity of AMPs against MRSA infections.

Antimicrobial studies of controls were also conducted to isolate and establish the antibacterial
efficacy our two liposomes (Table 4). The bare AMP-2 (125 pg/ml) had better activity than
AMP2-lipo-1, encapsulating the AMP-2 only (AMP:2-Lipo-1+AMP-2). The liposomal
formulation which encapsulated all three agents, (AMP2-Lipo-1+OA+VCM) showed enhanced
activity (3.9 pg/ml) compared to the bare AMP-2. In addition, AMP2-Lipo-1 +VCM (3.9
pug/ml) had better activity than AMP2-lipo-1+AMP and the AMP2-Lipo-1+OA showed no

activity.

A similar trend was observed with AMP-3 (62.5 pg/ml) which had better activity than AMP3-
Lipo-2 which encapsulated the AMP-3 only. However, the AMP3-Lipo-2 + OA+VCM (3.9
pg/ml) showed enhanced activity than the bare AMP-3. The liposomal formulation containing
the AMP-3 + VCM (7.8 pg/ml) had better activity than the formulation containing only the
AMP-3. The AMP3-Lipo-2 +OA+VCM (3.9 pg/ml) also showed good activity compared to
the AMP3-Lipo-2 +AMP-3 and the formulation containing the OA only, showed no activity.
In both liposomes which encapsulated all three agents, (AMP, OA and VCM), the activity was
better compared to the bare AMPs which validates the supramolecular approach in enhancing
the activity of AMPs. Furthermore, pH responsiveness was evaluated for the final formulations
(Table 4). It was observed that both liposomes which contained a final mixture of

AMP+0OA+VCM, had had better activity at pH 6.0 compared to pH 7.4.

Table 2: Novel Antimicrobial peptide MICs

Peptide Peptide Sequence MRSA  S. aureus E. coli

Name (mg/ml) (mg/ml) (mg/ml)
AMP-1 AALRKKDWWK N/A N/A N/A
AMP-2 EKKRLLKWWR 125 125 500
AMP-3 KWWKLLRKKR 62.5 31.25 250
AMP-4 QLLWKKRWWR N/A N/A N/A
AMP-5 KKKSLLRWWW N/A N/A N/A
AMP-6 KWWRLLHKKQ 500 500 500
AMP-7 KLLRKKFWWG N/A 250 125
AMP-8 RKKALLRWWV 250 N/A 500
AMP-9 IWWFLLRKKR 500 N/A 500
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Table 3: MICs of controls and liposomes

Peptide Name MRSA (ng/ml)
-pH74
VCM 15.625
OA 1250
Bare AMP-2 125
Bare AMP-3 62.5
AMP;-Lipo-1 + AMP-2 N/A
AMP>-Lipo-1 + OA N/A
AMP;-Lipo-1 + VCM 3.9
AMP;-Lipo-1 + OA+VCM 3.9
AMP;-Lipo-2 + AMP-3 N/A
AMP;-Lipo-2 + OA N/A
AMP;-Lipo-2 +VCM 7.8

AMP;-Lipo-2 + OA+ VCM 3.9

Table 4: pH responsiveness

Peptide Name MRSA (ng/ml) MRSA (pg/ml)
—pH 6.0 —pH74

AMP>-Lipo-1 1.95 3.9

AMP;-Lipo-2 0.48 3.9

3.2.2 Synergism studies

To further evaluate the effectiveness of this supramolecular assembly to enhance antimicrobial
activity of novel AMPs, the fractional inhibitory concentration (FIC) was determined (Table
5). The FIC is defined by the estimation of interaction between two or more drugs which are
intended to be used in combination towards a specific target. The equations used to calculate

the ZFIC is shown below:
MIC of liposome

2FIC = MIC of VCM
Table 5: FIC of liposomas at 2 pH’s
pH 6.0 pH 7.4
FIC amp2 -tipo-1 0.12 0.25
FIC AmP3 -lipo-2 0.03 0.25
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From the described parameters (Table 6), we have observed a synergistic effect for AMP2-
Lipo-1 (0.12 at pH 6.0 and 0.25 at pH 7.4) as well as for AMPs-Lipo-2 (0.03 at pH 6.0 and
0.25 at pH 7.4), where the FIC index for both formulations were found to be < 0.5 at both pH’s.

Table 6: FIC index

Index Results
<0.5 Synergistic
>0.5-1 Additive
>1 but <2 Indifference
>2 Antagonistic

3.2.3 Intracellular activity

The therapeutic benefit conferred by AMP2-Lipo-1 and AMP3-Lipo-2 was evaluated by
determining their efficacies against intracellular MRSA[69][70][71]. A cell culture assay was
established whereby HEK-293 cells were infected with MRSA for 2 h. After washing the
extracellular bacteria, bare VCM or AMP2-Lipo-1 and AMP3-Lipo-2 nanoparticles were added
to the cells. The ability of the nanoparticles to kill intracellular MRSA was determined by
colony counting. No decrease in the CFU counts of MRSA cells was observed with untreated
HEK-293 cells as well as with the application of bare VCM. AMP:-Lipo-1 and AMPs-Lipo-2
had lower CFU counts compared to VCM. AMPs-Lipo-2 which initially had better MICs
showed a significant decrease in CFU counts at 5 times the MIC (Figure 2). Even though
MRSA is thought be an extracellular pathogen, it can invade a variety of cell types where it
escapes from the endosomes/phagosomes and proliferates within the cytoplasm. Due to the
acidic nature of the phagosomes, it is thought that the liposomes broke down to release the
entrapped AMP and VCM, which led to the observed decrease in CFU counts. Intracellular
MRSA infections may contribute to persistence and relapses of infection after treatment, due
to the poor penetration of antibiotics in the intracellular compartments[72]. Using the human
embryonic kidney HEK-293 cells we demonstrated that the liposomal assembly can be
delivered within the intracellular compartment more effectively than VCM and would therefore

be more effective in killing intracellular MRSA.
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Figure 2: Intracellular activity on MRSA infected HEK 293 cells. A (AMP»-Lipo-1) and B (AMPs-
Lipo-2)

3.3 Cell penetration of the AMPs
3.3.1 Molecular dynamics (insertion of the AMPs into a model membrane)

To evaluate the process of cell membrane penetration of the AMPs, MD simulations were
performed on POPC bilayer membrane[73][74]. Visual inspection of trajectories of the two
AMPs revealed AMP-2 and AMP-3 inserted in to the POPC bilayer (Figure 3). Z-axis centre
of mass distance (COM) between peptides/each residues and PO4 beads of interacting leaflet
was calculated using the in-house tcl script. Average distance for each AMP for last 50 ns
simulations were calculated, where it was observed that both AMPs were close to the PO4
beads. To further identify which specific residues penetrated the POPC bilayer, we calculated
the average distance for the last 50 ns for each of the AMP residue. For AMP-2, residue Lys3
(1.43 £1.07) was found to be the closest to the membrane followed by Trp9, Arg4, Lys7, Lys2.
For AMP-3, residue Arg7 (1.37 + 1.05) was closest to membrane after insertion followed by
Lysl, Lys8 and Lys9 (Table 7). Several studies have reported on peptides rich in lysine and
arginine residues being specific for bacterial membrane association due to their net positive
charge, which further supported our findings[75][76]. However, from the MD simulation
studies, we can hypothesize that electrostatic interactions that occurs during peptide

rearrangement had a role to play in membrane affinity.
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Figure 3: Shows the AMP-2 and AMP-3 simulation systems at t=0 and t=200ns

Table 7: Average distances of residues from PO4 atoms for the last 50 ns

Residue name and Average distance last Residue name and Average distance last
residue id (AMP-2) 50ns (A) (AMP-2) residue id (AMP-3) 50ns (A) (AMP-3)

GLU1 4.72+1.74 LYS1 146+ 1.11

LYS2 2.80+1.80 TRP2 541+1.73

LYS3 143 +£1.07 TRP3 3.53+1.79

ARG4 2.13+£1.34 LYS4 2.68 + 1.46

LEUS 5.88+1.76 LEUS 243 +1.47

LEU6 4.99 +1.99 LEU6 4.56 +1.69

LYS7 2.72+1.50 ARG7 1.37+1.05

TRPS 3.30+1.98 LYSS8 1.55+1.13

TRPY 2.11+£1.65 LYS9 2.37+2.05

ARGI10 4.02+2.19 ARG10 5.16+2.38

3.3.2 Flow cytometry bacterial cell viability

MRSA bacterial cells were incubated with bare VCM and labelled AMPs for 24 hours. The PI
and 6 carboxyfluorescein fluorescent dye were used to determine cell penetration as well as
dead cells in the population. The data was captured and analyzed using Kaluza-1.5.20
(Beckman Coulter USA) flow cytometer software. The PI dye is a membrane impermeant dye
that is generally excluded from viable cells. It binds to double stranded DNA by intercalating
between the base pairs and its detection indicates either cell death or lack of membrane
integrity. In this study, VCM was used as a control to indicate cellular uptake or cell death. The
VCM acts by compromising the integrity of the cell wall, which enhances the PI permeability
and uptake. Treatment of MRSA cells with the bare VCM and labelled AMPs (AMP-2 and
AMP-3), a shift in PI fluorescence was observed (Figure 4). From these results it can be

deduced that the AMPs had better bacterial killing and cell penetrating ability in the defined
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cell population compared to VCM and therefore could be used in liposomal formulations to
enhance the activity of VCM.

Furthermore, MRSA was incubated with different concentrations of AMP-2 which had initially
showed lower antibacterial activity compared to AMP-3. Figure 5 shows that increased AMP-
2 concentrations resulted in a corresponding increase in membrane disrupted cells, where it
was observed that at 62.5 pg/mL or higher, > 90% of MRSA cells were PI+. These results
suggest that the AMPs showcase a concentration dependant cell permeation which is an

important factor for their utilisation in combinatorial studies.
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Figure 4: Cell counts vs Propidium uptake. Green represents untreated MRSA (live cells); red

represents percentage of uptake in the population after incubation with VCM, AMP-2 and AMP-3.
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Figure 5: Percentage uptake at different peptide concentration

3.4 Invitro Cytotoxicity

The biosafety analysis of AMP-2 and AMP-3 was evaluated on a well-known in vitro
cytotoxicity assay which assessed cell viability after their exposure to the test antimicrobial
peptides[77]. Quantification of viable cells was carried out by an MTT (tetrazolium)
cytotoxicity assay by exposing the AMPs to the mammalian cells, where viable cells reduce

the tetrazolium dye into an insoluble crystalline formazan. The amount of formazan crystals

70

v



formed in the cells is typically comparative to the number of viable cells present. The results
obtained showed percentage viability ranging from 80-85% for all cell lines employed in this
study (Figure 6). This percentage viability displayed by AMP-2 and AMP-3 was above the
minimum requirements for biocompatibility and toxicity regulatory requirements for
synthesized biomaterial[78][79][80]. These findings suggest that these peptides are safe for

biomedical applications and to be utilised in conjunction with other materials.
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Figure 6: Cytotoxicity evaluation of AMP-2 and AMP-3 at different concentrations A549, HEK293
and HeLa cells

3.5 Haemolysis results

Both naked AMPs and liposomes (AMP2-Lipo-1 and AMP3-Lipo-2) reflected haemolysis of
less than 1% at a concentration of 0.2 mg/ml, which indicates their non-toxicity to red blood
cells (RBCs). Peptides are known to lyse RBCs and therefore their design has to take into
account their chain length, type of amino acids present as well as their cationicity. Controls
were dH20 and PBS pH 7.4 which were also maintained at 0.2 mg/ml concentration. Visually
it was observed that dH20O lysed the RBCs since water is hypotonic to RBCs whereas the PBS
had similar haemolysis to that of our two formulations of less than 1% (Figure 7).

A B C D E F

solution, B non-haemolysed RBC after placing it in isotonic buffer solution, C, D, E, F no
signs of haemolysis after treating the RBC with AMP2, AMP3, AMP2-Lipo-1 and AMP3-
Lipo-2.
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Preparation and characterisation of the peptide decorated liposomes

Characterization was carried out in terms of size, polydispersity index (PDI) and Zeta potential
(ZP), (Table 8). The size, PDI and ZP at pH 7.4 of the drug loaded liposomes (AMP;-Lipo-1
and AMPs-Lipo-2) were 102.6+1.81, PDI of 0.157+0.01 and -9.81£1.69 and 146.4+1.90, PDI
of 0.412+0.05 and -4.27+1.25 for AMP»-Lipo-1 and AMP3-Lipo-2 respectively. However,
when the liposomes were placed in pH 6.0 it was observed that both liposomal formulations
had an increase in size and decrease in negative charge. AMP;-Lipo-1 had a size of
387.4+51.11and PDI of 0.81+0.03 and a zeta potential of -2.19+0.57 whereas AMP3-Lipo-2
had a size of 229.4+13.8 and PDI of 0.74+0.01, with a zeta potential of 0.14+0.31.
measurements were also made at pH 4.5 where AMP»-Lipo-1 had a size of 192.4+6.9 and PDI
0f 0.49+5.24, with a zeta potential of 1.50+0.31. AMP;s-Lipo-2 reflected similar changes at pH
4.5 where the size was 218.6+6.18 and PDI of 0.63+0.02, with a zeta potential of 1.80+2.21.
The observed differences (particle swelling and charge switch) at the three different pH is
indicative of pH responsiveness of our formulation and therefore could function considerable
well in drug delivery. This liposomal structure offers unique physicochemical properties for
carrying and delivering VCM. At physiological pH, this nano formulation will have a slower
drug release as the ion pair between OA and AMP still intact. The morphological analysis of
the liposomes was conducted using HRTEM (Figure 8), where the formed nanoparticles

observed to be spherical structures with similar size determined using DLS technique.

Table 8: DLS determination of size, PDI, Zeta potential

Zeta Potential
pH Size nm PDI mV % E.E
7.4 112.7+£2.50 | 0.174+0.00 -10.7+2.75
AMP2-Lipo-1 (blank) 6.0 150.8+£2.17 | 0.52+0.06 | 0.88+0.23
4.5 173.8+4.8 | 0.51+0.03 | 2.38+0.38
7.4 137.6+£0.75 | 0.157+0.01| -9.81+1.69 64.24%
AMP2-Lipo-1 (drug 6.0 387.4+51.11] 0.81+0.03 | -2.19+0.57
loaded) 4.5 192.446.9 | 0.49+5.24 | 1.50+0.31
7.4 137.6+0.75 | 0.34+0.01 | -6.14+1.42
AMP3-Lipo-2 (blank) 6.0 177.1£3.03 | 0.45+0.03 | 2.06+0.54
4.5 170.3+£5.75 1 0.496.02 [ 2.82+0.46
7.4 146. 4+£1.90 | 0.412+0.05| -4.27+1.25 26.57%
AMP3-Lipo-2 (drug 6.0 229.4+13.8 | 0.74+0.01 | 0.14+0.31
loaded) 4.5 218.6+6.18 | 0.63+0.02 | 1.80+2.21
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Figure 8: HRTEM of A (AMP2-Lipo-1) and B (AMP3-Lipo-2) — 200nm

4  Conclusion

We successfully synthesized a panel of nine AMPs from which two were selected based on
their antimicrobial activity. We further tested the efficacy of supramolecular lipidation of the
two selected novel AMPs for pH responsiveness and enhanced antimicrobial activity against
MRSA. AMP2-Lipo-1 and AMPs-Lipo-2 formulations were tested for intracellular activity of
MRSA infected HEK cell line. The two AMPs were found to be permeable against POPC
model membrane and using flow cytometry, it was observed that they possessed good cell
penetration against MRSA. This is indicative of the potential of these compounds to carry cargo
for intracellular delivery as well as to be used in a nanoparticle assembly to function as probes
for sustained membrane penetration while allowing the drug to be released to its target site.
However, the MIC values of the prepared liposomes which contained the novel AMPs, OA and
VCM showed enhanced activity compared to the bare AMPs. This indicated the advantage of
the nano system in improving antimicrobial activity of the AMPs. The intracellular activity of
the prepared liposomes also indicated their ability to traverse normal cells and target
intracellular MRSA. The cyto-compatibility and haemo-compatibility of AMP2-Lipo-1 and

AMPs-Lipo-2 formulations projects their safety for IV administration and toward normal cells.
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CHAPTER 5
CONCLUSION

5.1 General Conclusions

Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever
increasing range of infections caused by bacteria. AMR is an increasingly serious threat to
global public health that requires action across all government sectors and society. Without
effective antibiotics, the success of major surgery and cancer chemotherapy would be
compromised. The cost of health care for patients with resistant infections is higher than care
for patients with non-resistant infections due to longer duration of illness, additional tests and
use of more expensive drugs. The exploration and application of AMPs and their encapsulation
in nano delivery systems has been seen to be one of the significant areas to improve drug
therapy. Therefore, the broad aim of this study was to design, synthesize and evaluate novel
AMPs for their bacterial membrane penetration and activity followed by their co-encapsulation

with VCM and OA in a liposomal system to enhance their antimicrobial activity.

The specific research aims of this study were therefore to firstly develop a QSAR model which
can simultaneously estimate antimicrobial potential and bacterial cell penetrating ability of
antimicrobial cell penetrating peptide (aCPPs) against S. aureus. Secondly, to design and
synthesize novel AMPs and employ them to decorate vancomycin and oleic acid containing

liposomes to achieve pH responsiveness for enhanced antimicrobial activity

The main conclusions generated from the research data are summarised below:
Aim 1:
* A total 28 aCPPs were divided into training and test set compounds and PHASE
3.0 suite was used to build a pharmacophore. It was found that the most
appropriate pharmacophore model (AAHRR.114) to predict aCPP activity had a
five-point hypothesis that consisted of two hydrogen bond acceptor (A), one
hydrophobic group (H) and two aromatic ring features (R). AAHRR.114 was
selected for QSAR model development and the 3D-QSAR was evaluated by
Cross-validation coefficient (Q2), Fisher test (F), Correlation coefficient (R2) and
Pearson-R, Standard deviation (SD) and Root-mean squared error (RMSE). Data

analysis confirmed the validity of the model. The results from the model
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Aim 2:

showed that the higher the therapeutic index (TI), the higher the PHASE predicted
activity which is consistent with our hypothesis. The optimal aCPP was
compound 25 which had the amino acids lysine (K-3), leucine (L), and tryptophan
(W-3), which are known to be specific for bacterial membrane penetration. The
QSAR model developed was successful in identifying the optimal aCPP with high
activity prediction and provided significant insights into the structural
requirements to correlate their TI to their cell penetrating ability. The molecular
dynamics simulation also confirmed the penetration of the best aCPP obtained

from the QSAR study on the POPC model membrane.

The findings are important for future research in peptide design and will allow
researchers to focus on optimizing the TI of aCPPs for bacterial cell specificity.
It will also facilitate the synthesis of novel aCPPs for the design and development
of aCPP based drug delivery systems. A good TI also implies that the hemolytic
index is low. A low hemolytic index suggests that the designed aCPP can be

applied in clinical trials.

A prediction tool (CellPPD) from the antimicrobial peptide database was used to design
the desired AMPs. The designed peptides were synthesised by solid phase peptide
synthesis (SPPS) on Rink amide MBHA resin and successfully confirmed by HPLC
and LCMS.

Molecular dynamics simulation was also used to confirm the AMPs ability to cross
bacterial membranes. To evaluate the process of cell membrane penetration of the
AMPs, MD simulations were performed on POPC bilayer membrane using the
GROMACS package. Visual inspection of trajectories of the two AMPs revealed AMP-
2 and AMP-3 inserted in to the POPC bilayer, where it was observed that both AMP-2
(1.41 £0.97) and AMP-3 (1.42 + 0.98) were close to the PO4 beads.

Flow cytometry was used to determine the ability of the AMPs to penetrate MRSA
bacterial cells. The PI fluorescent dye was used to determine cell penetration as well as
dead cells in the population. From these results it was deduced that the AMPs had better
bacterial killing and cell penetrating ability in the defined cell population compared to
VCM and therefore could be used in liposomal formulations to enhance antimicrobial

activity.
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Cytotoxicity studies performed using an MTT assay on mammalian cell lines HELA,
A549 and HEK-293 revealed that the AMPs were biosafe with percentage viability
ranging from 80-85% for all cell lines employed.

In vitro haemolysis using sheep blood revealed that the AMPs had close to zero
haemolytic index, revealing their biosafety profile.

Liposomes encapsulating the AMPs, VCM and OA were prepared by a thin layer film
hydration method and further characterized by size, polydispersity index (PDI) and Zeta
potential (ZP).

The size, PDI and ZP at pH 7.4 of the drug loaded liposomes of AMP-2 and AMP-3
(AMP:2-Lipo-1 and AMPs-Lipo-2) were 102.6+1.81 nm, PDI of 0.157+0.01 and -
9.81£1.69 mV and 146.4+1.90 nm, PDI of 0.412+0.05 and -4.27+1.25 mV for AMP:2-
Lipo-1 and AMPs-Lipo-2, respectively. However, when the liposomes were placed in
pH 6.0 it was observed that both the liposomes formulation has an increase in size and
decrease in negative charge. AMP2-Lipo-1 had a size of 387.4+51.11 nm and PDI of
0.81£0.03 and a zeta potential of -2.19+0.57 mV whereas AMP3-Lipo-2 had a size of
229.4+13.8 nm and PDI of 0.74+0.01, with a zeta potential of 0.14+0.31 mV.
Measurements were also made at pH 4.5 where AMP2-Lipo-1 had a size of 192.4+6.9
nm and PDI of 0.49+5.24, with a zeta potential of 1.50+0.31 mV. AMP3-Lipo-2
reflected similar changes at pH 4.5 where the size was 218.6+6.18 nm and PDI of
0.63+0.02, with a zeta potential of 1.80+2.21 mV.

The observed differences (particle swelling and charge switch) at three different pH is
indicative of pH responsiveness of our formulation and therefore could function

considerable well in drug delivery.

The in vitro antibacterial studies carried out on bare AMPs showed that they had better
affinity towards Gram positive bacteria (MRSA and S aureus) compared to Gram
negative bacteria (E.coli). Furthermore, the two liposomal formulations had better
activity at acidic pH compared to VCM, which indicated that they can be used to target

bacterial infection sites.

The therapeutic benefit conferred by AMP2-Lipo-1 and AMP3-Lipo-2 was evaluated in
vitro by determining their efficacies against intracellular MRSA. A cell culture assay
was developed in which HEK-293 cells were first infected with MRSA

AMP2-Lipo-1 and AMP3-Lipo-2 had lower CFU counts compared to VCM. AMP3-
Lipo-2 (which initially had better MICs), showed a significant decrease in CFU counts
at 5 times the MIC.
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The findings of this study therefore confirmed the biosafety profile of the novel AMPs.
Furthermore, this study confirmed the ability of the liposomal supramolecular assembly
comprising of AMPs, OA and VCM in enhancing antibacterial activity in both extracellular

and intracellular settings.

5.2 Significance of the findings in the study

Newly designed AMPs and AMP decorated pH responsive OA and VCM loaded liposomes
were synthesized and formulated respectively to challenge antimicrobial drug resistance and
limitations of current dosage forms. The significance of the findings in this study include the
following:

New pharmaceutical products: Novel AMPs were designed and synthesized and thereafter

non-covalently co-encapsulated with VCM and OA in a liposome. These new materials are
new pharmaceutical products to combat drug resistance and serve as new drug entities for

effective therapeutic outputs.

Improved patient therapy and disease treatment: The supramolecular assembly was capable of

enhancing antibacterial activity, therefore it can improve patient therapy and disease treatment
caused by drug resistant bacterial infections by augmenting the antimicrobial activity of the
encapsulated agents for effective targeting and allowing for minimal doses to be used and

improving patience compliance.

Creation of new knowledge to the scientific community:

The following new knowledge was generated in this study:

* Identification of mechanisms, structural features and descriptors required to design

optimal novel aCPP materials for lead optimization in drug-candidate discovery.

* Synthetic methods for development of novel AMPs and their evaluation in vitro and in

silico for bacterial membrane penetration can add to the conception of new knowledge.

* Molecular modelling approaches for optimal binding and penetration of the aCPPs and

AMPs to the bacterial membrane.

* Co-delivery techniques and identification of methods for the understanding of the

synergistic mechanisms of these compounds with drug and non-drug agents in a
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liposomal delivery system to target diseases associated with bacterial infections will
also contribute to new scientific knowledge.

The non-covalent interaction between the novel AMPs, VCM and OA in a liposomal
system was successfully identified. Their effect of pH responsiveness, the antimicrobial

activity, cell penetration using flow cytometry and MD simulations was also identified.

Antimicrobial activity through the determination of MIC, flow cytometry, haemolysis
and intracellular activity successfully showed good antimicrobial activity and high

biosafety profiles

Stimulation of new research:

AMPs possess great potential to change antimicrobial therapy and their non-covalent co-

delivery with other antibacterial agents will allow them to effectively treat diseases associated

with bacterial infections. The proposed research holds great prospects in combating drug

resistance for the following reasons:

The findings are important for future research in peptide design and will allow
researchers to focus on optimizing the TI of aCPPs for bacterial cell specificity. It will
also facilitate the synthesis of novel aCPPs for the design and development of aCPP
based drug delivery systems.

The proposed supramolecular liposomal assembly can further stimulate the research
area of drug, non-drug and peptide encapsulation for enhanced membrane penetration
and activity. Furthermore, this research area can be evaluated for enhanced drug

delivery and peptide intracellular targeting for combatting drug resistance.

5.3 Recommendations for future studies

Although the designed AMPs and AMP decorated pH responsive OA and VCM loaded

liposomes show great prospects in bacterial cell membrane penetration and demonstrated the

enhanced ability to combat drug resistance, additional studies are necessary to further explore

and improve their potential as alternatives to current dosage forms. The following studies are

proposed:
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* In the case of the novel AMPs, based on their ability to traverse and carry cargo across
cell membranes, specific organelle targeting protocols could be performed to test their
efficacy in halting specific biochemical pathways or cellular functions.

* AMPs are known to possess biomimetic ability, and this can allow for further research
in this area for apoptotic pathway activation.

* AMPs are also known as host defence proteins, and this can allow for further studies to
synthesize biomimetic AMPs to stimulate the multiple immune responses.

* The tagging of AMPs with antibodies for effective neutralization of bacteria and viruses
could be performed to target specific sites within the disease-causing agents.

* The developed supramolecular assembly could be utilized with different antibiotics to
target both Gram positive and negative bacteria.

* Co-delivery of AMPs with surface enhanced nano systems could be explored effective
membrane permeation.

* Encapsulation of drug conjugated AMPs in different nano systems could be performed
to offer a bi-directional approach in membrane penetration and intracellular organelle
targeting.

* In vivo studies could be conducted on both novel AMPs as well as the liposomal

assembly to further elucidate their biocompatibility prior to clinical trials.

5.4 Conclusion

The findings from this study demonstrate the capabilities of the novel antimicrobial peptides
in bacterial membrane penetration as well as utilization of nano-based drug delivery systems
to treat both extracellular and intracellular infections. This current research has made
significant strides to circumvent limitations of current dosage forms and further directed way
towards a new class of compounds that should be explored in antibiotic therapy.
Nanotechnology has played a fundamental role in improving antibiotic therapy by allowing the
nano encapsulation of different antimicrobial moieties in a nano-based drug delivery system,
as depicted in this study. This has led to a synergistic approach to target infection sites and
improved drug delivery. Going forward, this approach will play a pivotal role in the treatment
of diseases associated with bacterial infections, thereby reducing the burden of disease

globally.
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Appendix A
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T w“f:v:‘i'is‘* i MOLECULAR DYNAMIC SIMULATION
1
o, TAKWAZULU-NATALI
Mbuse Faya', Rahul S. Kathapure!*,Dinesh Dhumal’, Nikhil Agrawal', Calvin Omolo’, Krishnacharya G. Akamanchi?,
and Thirumala Govender!”,
!Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
IDepartment of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, MAtunga (E), Mumbai, India 400019.

TION AND AIMS RESULTS AND D

*  Current research has shown cell-penetrating peptides (CPPs) and
antimicrobial peptides (AMPs) as probable vectors for use in drug
delivery and as novel antibiotics. It has been reported that the higher the
therapeutic index (TI) the higher is the bacterial cell penetrating ability.

+ The aim of this study was to develop a quantitative structure activity

relationship (QSAR) model., which can estimate antimicrobial potential

and cell-penetrating ability of aCPPs against 5. aureus. to confirm the
relationship between the TI and aCPPs and to identify specific
descriptors responsible for aCPPs penetrating ability. Molecular
dynamics (MD) simulation was also performed to confirm the membrane
insertion of the most active aCPPs obtained from the QSAR study.

Fig. 2. Features responsible for activity (blue cubes) and those attenuate activity
(red cubes).
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Fig. 3. aCPP-POPC lipid bilayer showing sustained interaction from 120ns-200ns.
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Fig. 1. Schematic representation of aCPP-pharmacophore alignment % s TS0 200 W T TS0 200
Dataset Fig. 4. Time evolution of centre of mass (COM) distance between each residue of

: peptide with the Phosphate (PO4) group of lower leaflet.
+ The data set was obtained from Park et al. (2009) and Bahnsen ef al. (2013).

* The obtained data was randomly divided into 21 training set compounds, with
seven being reserved for a test set.

+ The pt‘plidt‘s‘ 3D structutes which served as liga[lds were gclleraled in PLS statistical parameters Results PLS statistical parameters Results
Maestro 9.8 molecularmodelling package from Schrodinger.

Table 2. Summary of 3D-QSAR results

Number of molecule in training set 18 R 0.5016

PHASE Methodology

Number of molecule in test set 6 05311
* PHASE 3.0 was used for pharmacophore-based alignment and utilized for the %
QSAR model development. Number of PLS factors 3 Standard deviation (SD) 02072
+ Default pharmacophoric features used to develop the pharmacophore model
included a hydrogen bond acceptor (A). hydrogen bond donor (D), A e A ) DL Nudsace oo %
hydrophobic (H). negative (N), positive (P) and aromatic ring (R). Raesi i

* The variant AAHRR, for which all the compounds were matched, was
searched to generate the best common pharmacophore hypothesis
(AAHRR.114). Discussion

* The hypothesis AAHRR.114 was selected as most appropriate as it has the
highest survival score (3.984) for common pharmacophore hypothesis. which
gives the best alignment of the active ligands.

* The best compound comprised of the amino acids. lysine (K-5).
leucine (L-3) and tryptophan (W-3), with a positive net charge of
+5 and a total hydrophobic ratio of 57%.

The MD simulation showed spontaneous insertion of the aqueous
phase aCPP into the lower leaflet region of the lipid bilayer and the
C-terminal region (residue 6-11) of the aCPP formed strong
interactions compared to the N-terminal (residue 1-5)

We further observed the positively charged Lys-11, Lys-8, and the
non-polar aromatic Trp-9 were closest to the membrane during the
binding, revealing the importance of these amino acids in
membrane penetration based on their net charge.

Molecular Dynamic Simulations

*  3D-structure of “KLWKLWKKWLK™ aCPP was predicted using PEP-FOLD
server

+ POPC bilayer was constructed using the CHARMM-GUI membrane builder
and contains a total of 128 lipid molecules

* The peptide was placed more than 5 A away from any lipid molecules of the
upper leaflet of the bilayer and the simulation ran for 200ns

.

ES & ACKNOWLEDGMENT CONCLUSION

The proposed 3D-QSAR model was usetul in estimating the antimicrobial potential
and cell penetrating ability of aCPPs and confirmed the relationship between the TI
and aCPPs. MD simulation also revealed the aCPP-POPC bilayer interaction,
resulting in the aCPP insertion across the POPC bilayer. The combination of these
two computational studies will also lead to the rational design of optimal and novel
aCPPs for therapeutic activity and for peptide-conjugate delivery.
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Appendix B: LCMS Charts
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Appendix C: HPLC Charts
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AMP 4
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