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ABSTRACT 

Metabolism of xenobiotics remains a central challenge for the discovery and 

development of drugs, cosmetics, nutritional supplements and agrochemicals. 

Metabolic transformations are frequently related to the incidence of toxic effects 

which may result from the emergence of reactive species, the systemic accumulation 

of metabolites or by induction of metabolic pathways. Experimental investigation of 

the metabolism of small organic molecules is particularly resource demanding, hence 

computational methods are of considerable interest to complement experimental 

approaches. 

This review provides a broad overview of structure- and ligand-based 

computational methods for the prediction of xenobiotic metabolism. Current 

computational approaches to address xenobiotic metabolism are discussed from three 

major perspectives i) prediction of sites of metabolism (SOMs), ii) elucidation of 

potential metabolites and their chemical structures and iii) prediction of direct and 

indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the 

cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics 

metabolizing enzymes.  

For each of these domains, a variety of approaches and their applications are 

systematically reviewed, including expert systems, data mining approaches, 

quantitative structure-activity relationships (QSARs) and machine learning-based 

methods, pharmacophore-based algorithms, shape-focused techniques, molecular 

interaction fields (MIFs), reactivity-focused techniques, protein-ligand docking, 

molecular dynamics (MD) simulations and combinations of methods. 
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Predictive metabolism is a developing area and there is still enormous potential for 

improvement. However it is clear that the combination of rapidly increasing amounts 

of available ligand- and structure-related experimental data (in particular, quantitative 

data) with novel and diverse simulation and modeling approaches is accelerating the 

development of effective tools for prediction of in-vivo metabolism, which is 

reflected by the diverse and comprehensive data sources and methods for metabolism 

prediction reviewed here. This review attempts to survey the range and scope of 

computational methods applied to metabolism prediction and also to compare and 

contrast their applicability and performance. 
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INTRODUCTION 

In the discovery and development of new medicines, attrition rates are still very 

significant, despite the comprehensive measures taken by the chemical and 

pharmaceutical industry to lower the risk of failure. In pharmaceuticals, toxicity is a 

major contributor to the withdrawal of new drugs and often the underlying biological 

mechanism of toxicity is related to metabolism. Metabolic liability is not only a safety 

concern for drugs but is also highly relevant to a host of industries including 

nutritional supplements, cosmetics or agrochemicals (basically any situation in which 

biology is exposed to chemistry).1, 2 

Metabolic liability can lead to a number of diverse issues, for example drug-drug 

interactions (DDIs),3 including enzyme inhibition, induction and mechanism-based 

inactivation,4 resulting in substantial variations (one or more orders of magnitude) of 

drug concentrations present at target and anti-target sites.5 These effects potentially 

lead to a loss of pharmacological efficacy due to enhanced clearance or toxic effects 

caused by accumulation. DDIs may also increase the rate of reactive, toxic 

intermediates formed.6, 7 The more the metabolism of a drug is specific to one 

enzyme, the more likely is the occurrence of DDIs. 

DDIs caused by monoamine oxidase (MAO) inhibition often limit the co-

administration of multiple drugs. This is problematic in the case of depression and 

infections, where co-administration of drugs is common.8 Because of potentially 

lethal dietary and drug interactions, monoamine oxidase inhibitors have historically 

been reserved as a last line of treatment, used only when other classes of 

antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic 

antidepressants have failed. Tyramine metabolism can be compromised by dosing of 

MAO inhibitors, and in the case of dietary intake of large amounts of tyramine (e.g. 
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aged cheese9) one theory is that tyramine displaces norepinephrine from the storage 

vesicles and may result in a cascade in which excess norepinephrine is released giving 

a hypertensive crisis. Many drugs are potentially lethal if ingested with MAO 

inhibitors. For example tryptamines, co-administered with an MAO inhibitor, can 

reach very high concentrations and result in serotonin syndrome.10 The co-

administration of drugs which are metabolized by MAOs requires great care as they 

may in combination saturate the capacity of MAO for metabolism, resulting in altered 

pharmacokinetics of the drugs and very high concentrations can be reached on 

multiple dosing. Another example is change of behavior, where transient behavioral 

sensitization to nicotine becomes long-lasting with addition of MAO inhibitors.11 

Metabolic reactions may also be systematically exploited in drug design to optimize 

ADME and toxicity properties following a prodrug concept.12 It may remain unclear 

whether the parent molecule is responsible for the entirety of the pharmacological 

effects observed or if one or several of its metabolites are contributing to the desired 

therapeutic effect. Another aspect to consider is that for a metabolism-activated 

prodrug, inhibition of the enzyme required for its activation may cause a loss of 

pharmacological efficacy or induce toxicity. 

Identification of sites of metabolism (SOMs) on molecules and the structure of their 

metabolites can be decisive for the design of molecules with favorable metabolic 

properties. Medicinal chemistry driven ADME optimization programs can thus 

systematically address vulnerabilities in proposed drug molecules (Figure 1). 

However, experimental techniques to detect and quantify DDIs, as well as to 

determine SOMs and structures of metabolites are still highly resource-demanding 

and challenging,13 which is why in recent years, substantial efforts have been applied 

to develop computational approaches to predict these metabolic outcomes. 
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In this review, we begin with a general perspective of the scope of ligand-based and 

structure-based methods for the prediction of xenobiotic metabolism. We then provide 

an overview of recent developments in computational methods for predicting: 

(i) SOMs, 

(ii) structures of potential metabolites, 

(ii) interactions of small molecules with metabolizing enzymes and metabolic 

pathways, focusing on CYPs. This section also includes a comprehensive 

overview on structure and MD (molecular dynamics) simulations of this 

enzyme superfamily. 

We conclude with a perspective and outlook on the scope and limitations of in 

silico methods for the prediction of xenobiotic metabolism. 

Overviews of computational methods discussed in this work are provided in Table 1 

and Figure 2. 

 

LIGAND-BASED AND STRUCTURE-BASED METHODS FOR PREDICTING 

XENOBIOTIC METABOLISM 

Computational techniques for predicting xenobiotic metabolism can be classified 

into ligand-based and structure-based approaches. In the first approach, structures of 

known active and inactive compounds may be modeled to derive structure-activity 

relationships (SARs, where “activity” refers to a measure of metabolism) and other 

properties such as SOMs, etc. In the second approach, efforts are focused on the 

properties of the metabolizing enzyme itself, its interactions with the ligand, and the 

mechanism of the reaction. 
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Ligand-based methods need to deal with significant uncertainties about the binding 

site environment of a metabolizing enzyme, in comparison to structure-based 

approaches, since the properties of the proximate target environment a ligand binds to 

may remain largely speculative if no structural data are available. Minor 

modifications of the ligand may lead to clashes with the protein and, hence, to a loss 

of bioactivity. However, for ADME processes, small changes in ligand structure do 

not typically result in major changes in metabolism, presumably due to the flexibility 

of the metabolizing enzyme active sites. 

There is increasing interest in methods considering the molecular shape of both 

ligands and enzyme active sites. While pharmacophoric interaction patterns have long 

been established as a major factor for bioactivity, in recent years methods for the 

inclusion of molecular shape as a key component for molecular recognition have 

gained popularity. Besides metabolism prediction, shape-based methods are also 

applied in many areas of computational drug discovery such as protein active site 

comparisons, virtual screening and lead optimization. 

Of course the relative utility of ligand-based and structure-based computational 

approaches is not as imbalanced as it may seem in the first instance. The substantially 

higher level of complexity introduced by the consideration of macromolecular 

structures raises demands in computational power, expert knowledge and manual 

interaction, as well as reliance on the phenomenological descriptions of the protein, 

the ligand and their environment. 

In general, structure-based methods have focused on deriving patterns from static 

structures of protein-ligand complexes without considering time-dependent 

conformational fluctuations, unless combined with even more resource-intensive MD 

simulations or similar methodologies (see the section on “Molecular dynamics 
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simulations on the structure of CYPs”). Receptor-ligand conformations observed in 

X-ray crystallographic experiments may include crystal packing effects and other 

experimental uncertainties.14 Also, an observed ligand pose may not necessarily 

reflect the relevant binding mode for the metabolic transformation. 

 Structure-based methods that predict receptor-ligand binding geometry (e.g. for 

SOM prediction) should ideally take some of the changing properties upon 

complexation of both the ligand, the protein and the ligand/protein complex into 

consideration. For example, desolvation and entropic components often play a 

dominant role in the energetics and geometry of ligand binding, however both 

desolvation and entropic effects are difficult to model accurately (including diffusion, 

on-off rates and solvent reorganization). The approximations necessary to enable 

predictions to be made in a reasonable time-scale are significant. Additionally, ligands 

typically approach a binding/active site through a size-limiting access channel and it 

is non-trivial for structure-based approaches to simulate the dynamic changes in 

geometry required for the approach of the ligand to the binding site. Ligands that are 

metabolized, however, may be assumed to include all these properties, which to some 

degree are intrinsically included in ligand-based models. 

Despite the challenges structure-based methods have significantly contributed to the 

rationalization of metabolic reactions and with rapidly advancing technologies for 

structure elucidation and computation of dynamics and reactivity structure-based 

methods are becoming ever more predictive and accurate. Certainly, the combination 

of both ligand-based and structure-based approaches is most promising, leading to 

synergistic effects between different algorithmic approaches that allow more 

comprehensive descriptions of metabolic reactions. 

PREDICTING SITES OF METABOLISM 
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Identifying SOMs of a molecule may give decisive hints in the development of a 

medicinal chemistry strategy to optimize metabolic properties and, consequently, 

crucial parameters such as toxicity, bioavailability and bioactivity. Chemical 

reactivity and orientation of the ligand bound to the catalytic site of the enzyme are 

key for the location of SOMs. 

Today, a plethora of computational approaches are available, which attempt to 

identify the most likely SOMs. Algorithms include reactivity-based approaches, 

fingerprint-based data mining approaches, shape-focused techniques, molecular 

interaction fields (MIFs), protein-ligand docking and combinations of methods 

(Figure 2). Most of the techniques available to date consider a single aspect of 

metabolic reactions, such as the reaction energy barrier, geometrical properties or 

pharmacokinetic properties for predicting SOMs or potential metabolites.13 In reality 

however, a combination of factors (energetics, geometry, reaction mechanism etc.) is 

decisive for a metabolic reaction to take place and hence combined approaches render 

a more realistic and more accurate view of biotransformations. 

To quantify the SOM prediction performance of an algorithm it is usually tested on 

a set of compounds for which at least one SOM has already been identified 

experimentally. Many testing protocols use the “Top-N” metric, which for a given 

compound is the occurrence of an experimentally confirmed SOM within the N top-

ranked predicted SOMs. A major insufficiency of this metric is that it does not 

account for the fact that for some substrates the prediction of a SOM may be biased. 

This metric is for example strongly influenced by the size of a molecule, as larger 

molecules intrinsically have more putative SOMs. More recently, the “Lift” metric 

has been introduced in order to overcome this bias.15 This measure includes the 

prediction accuracy of a computed model compared to a random model. 
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Reactivity-based approaches 

Reactivity-based approaches utilize descriptors that are derived from the electronic 

structure of the molecule to predict its liability for metabolic transformations (see 

“Reactivity of CYPs” for more information on the reaction mechanism of CYPs). For 

computational efficiency, semi-empirical quantum mechanical methods can be used. 

As a preamble to the main calculation, a 2D-representation of a ligand must be 

converted to a 3D representation and the correct hydrogen addition performed 

considering tautomeric states and pKa values of ionizable groups, followed by 

geometry optimization. 

QMBO16 estimates hydrogen abstraction energies based on bond order. Starting 

with the premise that the hydrogen abstraction by Compound I (see “Reactivity of 

CYPs”) from a substrate is the rate-limiting step, the method relates the reactivity of 

each hydrogen atom to the strength of its covalent bond. Using a wavefunction 

generated from density functional theory (DFT), bond orders for all C-H bonds in a 

substrate are calculated, and then normalized. Bond strength is correlated to 

deviations from average bond orders. Corrections are made for buried hydrogen 

atoms through scaling by a factor that is a function of the solvent accessible surface 

area (SASA) of the hydrogen atom.  

Given that the highly electrophilic Compound I has received an electron from the 

substrate, the substrate will form a positively charged radical intermediate, and where 

this spin hole is localized, there will be a likely SOM. Using a DFT wavefunction, the 

QMSpin16 tool calculates spin densities on all hydrogen atoms using Fermi contact 

values. The same SASA scaling approach used in QMBO is applied. Of these two 

methods, QMBO is reported to perform slightly better than QMSpin. Using the Top-3 

metric for SOMs over 81 molecules, QMBO predicts 84% and QMSpin 78%.16 
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CypScore17 makes use of a range of atomic reactivity descriptors generated from an 

AM118 wavefunction, with molecular properties derived from this using the software 

VAMP19 and ParaSurf.20 These descriptors are used for the generation of individual 

models for the most important reactions catalyzed by CYPs. Using the Top-3 metric, 

87% of SOMs were identified from a test set of 39 molecules. 

Most reactivity-based approaches put substantial weight on correction factors often 

related to topological properties describing accessibility. These are discussed in the 

section “Combined approaches” below. 

Fingerprint-based data mining approaches 

Fingerprint-based data mining approaches describe the presence or absence of 

chemical features within a molecule and relate these to metabolic reaction sites and 

products. The chemical environment of a SOM is associated with a fingerprint 

descriptor enabling predictions to be made about novel compounds by searching for 

locations with the same or similar fingerprint within the target molecule. The relative 

likelihood of a fingerprint being associated with a SOM can be calculated from the 

number of occurrences of this transformation and the method can be trained on a 

dataset of known metabolic transformations. This can suggest a ranking for different 

sites within a molecule according to their likelihood of being a SOM. 

Metaprint2D21-24 is a data-mining tool, which identifies SOMs based on circular 

fingerprints. The software package is Java-based and an online service25 allowing 

prediction of SOMs for uploaded or drawn structures is available. Metaprint2D mines 

large biotransformation databases such as the Accelrys Metabolite Database,26 which 

contains more than 100,000 metabolic transformations. For each atom of each 

substrate-metabolite pair included in the database, the atom type at the SOM, as well 
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as its proximate environment is encoded in a fingerprint. In order to derive 

probabilities for a specific atom to be involved in a metabolic interaction, the 

occurrence of each of the encoded atom environments is calculated and compared to 

the number of biotransformations recorded in the database for this particular atom 

environment. The normalized occurrence ratio does not reflect the absolute 

probability of a metabolic reaction to occur, but can indicate the prevalence of a 

reported transformation in the literature. The Metaprint2D algorithm uses a memory 

cache to store the fingerprints, allowing results to be returned in under a second. A 

disadvantage of this data mining approach is that predictions cannot be made about 

novel atomic sites where the fingerprint does not exist in the dataset. MetaPrint2D 

detects novel sites within a query molecule and acknowledges that they are outside 

the applicability domain when it presents the metabolic predictions in its graphical 

results output. 

Tests of the method using compounds added to later versions of the Accelrys 

Metabolite Database (other than that used for model training) indicate that SOMs are 

correctly predicted in about 70-80% of cases among the top-3 highest-scored atom 

positions.21  

Metaprint2D-React21 is an extension of MetaPrint2D that allows prediction of 

metabolic products based on the structure of a substrate (see “Predicting Xenobiotic 

Metabolites”). The metabolites proposed by MetaPrint2D-React are ranked according 

to the relative occurrence of matching transformations in the training database 

associated with that fingerprint pattern. A freely accessible online version of the 

software is available.27 

Machine-learning approaches 
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SOM prediction methods based on machine learning methods such as support 

vector machines (SVMs) and artificial neural networks (ANNs) have recently gained 

more attention for use in SOM prediction. Simulations Plus have introduced the 

Metabolite Prediction module28 to their ADMET Predictor software. Like 

MetaPrint2D, this prediction tool is trained on the Accelrys Metabolite Database. This 

dataset has been curated and some further sources for metabolic reactions were added. 

Models for the prediction of SOMs are based on artificial neural network ensembles 

(ANNEs) derived using atomic descriptors to generate an artificial neural network 

classification (ANNC) model. For each atom of a molecule a score (0-1) for the 

likelihood of a metabolic reaction to happen is assigned. In addition to that, a 

substrate classification model can predict whether a compound is a substrate of five 

CYP isoforms.  

Further examples include combined approaches, which are discussed in the section 

“Combined approaches” below. 

Shape-focused approaches 

The concept of shape-focused methods is based on the observation that compounds 

sharing a similar shape have a high probability of binding to the same receptor. The 

shape of a ligand is thought to resemble the partial complementary shape of the 

binding site. In this way, shape-focused methods attempt to identify bioactive 

molecules by molecular shape recognition. Shape similarity between the bioactive 

template molecule superimposed upon a candidate molecule is used for a quantitative 

calculation of the likelihood for metabolism, with the site identified from the 

proximity to the experimentally determined site on the template molecule. 
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Shape-based methods can be effective and have become increasingly popular in the 

area of similarity-based virtual screening29-34 and bioactivity profiling.35 Shape-

focused methods are advanced versions of shape-based methods, where alignment and 

ranking are performed using a chemistry-aware algorithm. The inclusion of chemical 

information (resembling pharmacophoric constraints) to molecular shape can be an 

additional factor in improving the accuracy of these methods.30 

The shape-focused screening method Rapid Overlay of Chemical Structures 

(ROCS)36 was employed to predict the SOM of CYP2C9 substrates.37 Flurbiprofen, a 

substrate of CYP2C9 that is hydroxylated by the enzyme at position 4’, was extracted 

in a protein-bound conformation from an X-ray structure for use as a structural 

template for a ROCS search. The assumption was that the SOM of any CYP2C9 

substrate should be located in proximity to the SOM of flurbiprofen. ROCS was 

employed to superimpose 70 known CYP2C9 substrates to the flurbiprofen template 

and encouraging results were found: The SOMs of 60% of all investigated molecules 

were positioned within 3 Å of the 4’-hydroxylation site of flurbiprofen, with 39 (89%) 

out of the 44 top-ranked molecules correctly predicted. Additionally, alignments were 

further analyzed including the protein background to evaluate whether the positioning 

of the SOM also relates to the heme iron. The average distance between the known 

SOM and the heme iron was found to be 5.21±0.95 Å, which is in agreement with 

experimentally observed substrate-heme distances. The approach is rapid, largely 

unbiased and does not require manual interaction, which allows large-scale profiling 

of drugs and other similar molecules to a defined substrate. 

Molecular interaction fields 
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Molecular interaction fields (MIFs) are one of the most established and most 

versatile concepts in drug discovery. The idea of MIFs is to encode the variation of 

interaction energies between a target molecule and a chemical probe in 3D space. The 

probes are usually an atom, a point charge or a molecular fragment and depending on 

the physicochemical properties of the probe, distinct characteristics about the target 

molecule can be derived from the calculated interaction energies. 

In ligand-based design, MIFs may be used to derive 3D-QSAR models and 

pharmacophoric representations and to predict pharmacokinetic parameters such as 

cell permeability and metabolism. In structure-based research they are employed to 

analyze structural features of macromolecules such as protein-ligand and protein-

protein interfaces. MIFs have been reported to be useful to elucidate information for 

rational drug design on how to optimize protein-ligand interactions, areas of ligands 

vulnerable to metabolism and ligand/isoform specificity. There are currently a number 

of implementations of MIFs in CYP-related metabolism of xenobiotics and examples 

covering many of these aspects have been published (as discussed in the following 

and in “Predicting interaction of xenobiotics with CYPs”). 

GRID38 has been developed as a tool to explore and characterize protein structures 

for areas favorable for interaction with small organic molecules. The software is well 

known for its key role in the design of the anti-influenza drug zanamivir.39 Common 

probes in GRID include DRY (representing hydrophobic interactions), N1 

(representing hydrogen bond donors, derived from planar NH such as amides) and O 

(representing hydrogen bond acceptors derived from a sp2 carbonyl oxygen). 

An example of a MIF-based software package for predicting SOMs is MetaSite.40 

Further approaches utilizing MIFs have been reported, in general combined with other 
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computational techniques. For more detail on these approaches the reader is referred 

to “Combined approaches”. 

Protein-ligand docking 

Protein-ligand docking has become an integral part of today’s rational lead 

identification and optimization process. By 2004 it is estimated that about 50 new 

entities had reached clinical trials and/or market approval guided by structure-based 

drug design.41 With crystal structures available for the major human CYP isoforms, 

protein-ligand docking is showing promise for the analysis and prediction of CYP-

induced metabolism.7 

Docking consists of two parts. First, the ligand is docked into the receptor binding 

site. This is the actual docking process and involves sampling the conformational 

space of the ligand within the binding site. In the second step, the generated docking 

poses are evaluated and some measure of affinity or the fit of the ligand for the 

receptor is estimated. This step is also referred to as scoring. 

By using protein structures directly as model systems, docking is largely unbiased 

by known SAR, offering opportunities to reveal entirely new binding modes. Current 

ligand docking methods are limited by many approximations including approximate 

descriptions of desolvation, entropic and enthalpic components as well as dynamic 

structural changes of the protein upon ligand binding. Generally the faster the method, 

the more significant are the approximations made. Packing forces also introduce bias 

to the model. Ligand-induced mobility of the binding site becomes apparent when 

comparing re-docking with cross-docking results. In the first case, a docking 

algorithm is used to re-dock a ligand extracted from the binding pocket (no induced 

fit) while in the latter case, ligands are cross-docked to target structures derived from 
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protein structures templated to an alternative ligand. Cross-docking in general shows 

significantly lower accuracy compared to re-docking. The reasons for this include the 

conformational changes induced in both the protein and ligand.42 

Docking may allow the derivation of SOMs by relating the proximity of ligand 

atoms of a docking pose to the catalytic center of the enzyme. Additionally, docking 

also allows investigation of binding properties of ligands to their target proteins and 

suggests SAR (see “Predicting interaction of xenobiotics with CYPs”). Direct 

consideration of the protein environment allows the elucidation of residues involved 

in ligand binding and can allow rationalization of different metabolic properties of 

enantiomers by analysis of the protein-ligand interactions. This information is 

valuable for the design and optimization of drug candidates. 

Generally speaking, current docking algorithms offer adequate performance for 

elucidating the ligand-binding mode provided an appropriately complimentary (to the 

ligand binding pose) protein structure is applied that covers the relevant receptor 

conformation. Cross-docking still poses significant problems. Despite decades of 

research, some cardinal issues of docking -and in particular of scoring- have not yet 

been resolved.7 Key aspects such as diffusion, entropy and solvation effects remain 

largely neglected by scoring functions.43 

A systematic investigation of the impact of water molecules present/absent in the 

active site of 19 CYP structures44 has been reported for AutoDock,45 FlexX,46 and 

Genetic Optimization for Ligand Docking (GOLD).47 Performance was compared for 

the process of docking into water-free binding sites, binding sites with 

crystallographic water present, and binding sites with water molecules placed using 

GRID. It was found that the consideration of crystallographic water molecules 

generally improves the docking accuracy of all three approaches and that the 
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introduction of water molecules predicted with GRID leads to a further increase of 

accuracy with regard to root mean square deviations (RMSDs) of the docked ligand 

from the experimentally determined position and SOM prediction accuracy. 

In a follow-up study focusing on CYP2D6, considering several different scenarios 

for the inclusion of water, it was confirmed that the placement of water molecules 

almost always leads to an increase in docking accuracy.48 Correctly placed water 

molecules improve docking-based SOM prediction (as well as virtual screening 

accuracy). The combination of GOLD with ChemScore49 was found to perform 

particularly well. 

Recently, Santos et al.50 systematically investigated the impact of water molecules 

on protein-ligand docking of substrates of CYP2D6. Representative protein 

conformations used for docking were generated using MD simulations of an X-ray 

structure of (R)-3,4-methylenedioxy-N-ethylamphetamine (MDEA) bound to 

CYP2D6. Hydration sites were derived from the trajectory and water molecules were 

placed at the computed positions for water in the protein frames used for docking. 

Eleven substrates similar to MDEA and 53 structurally distinct compounds were then 

docked into the representative protein conformations. These results indicated that 

water molecules placed into the binding site might have a beneficial impact on the 

docking performance of substrates closely related to the crystallographically 

determined ligand. However, this effect is strongly dependent on the protein and 

ligand conformation. Also, there seemed to be no benefit from the inclusion of MD-

derived water molecules for substrates dissimilar to MDEA. Overall, in this case, 

water molecules were found rather weakly bound inside the CYP2D6 binding pocket, 

with an average residence time below 10 ps, which may contribute to the lack of 
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beneficial effect on inclusion of specific water on docking and the observed substrate 

promiscuity of the enzyme. 

Examples of the successful prediction of SOMs include a study by Vasanthanathan 

et al.,51 who performed docking experiments on CYP1A2 employing GOLD with 

various docking scenarios. These scenarios differed in the treatment of the 

crystallographic water molecules mediating a hydrogen bond between the enzyme and 

the ligand and in the scoring function used (ChemScore or GOLDScore). Docking 

was deemed successful if the known SOM of a docking pose was computed to be 

within a 6 Å radius from the heme iron. While docking performed adequately to allow 

the elucidation of binding orientations and conformations of ligands as well as 

moderate enrichment rates during virtual screening, superior performance in 

classifying individual compounds into those that were, or were not metabolized, was 

observed for machine learning methods (reviewed later). In contrast to several other 

docking studies on CYPs, the authors did not detect a significant benefit from 

including water molecules in protein-ligand docking (see below). 

Unwalla et al.52 used Grid-based LIgand Docking with Energetics (GLIDE)53 and a 

homology model for CYP2D6 to predict the SOMs of 16 substrates. Predictions were 

deemed correct if the known SOM is located less than 4.5 Å from the catalytic iron 

among the five top-ranked docking poses, which was the case for 85% of all 

investigated cases. Docking results obtained from this CYP2C5-derived homology 

model were significantly better correlated to the experiment than docking results 

obtained from a X-ray structure of apo CYP2D6. 

Scoring ligand interactions with the heme prosthetic group is challenging, requiring 

specific parameterized scoring functions. Extensive hydrophobic surface areas which 

are present in CYPs contribute to the difficulty of docking ligands to this protein 
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family. The lack of strong, directed hydrogen bonding interactions makes scoring 

functions highly dependent on the interpretation of weak van der Waals interactions 

between the ligand and the enzyme surface. 

With today’s computer hardware, computational resources are hardly an issue for 

most docking methods. A significant cost factor of docking is the degree of expert 

knowledge on the target under investigation and the interpretation of results from 

docking algorithm itself - not only during setup, but also during final data analysis. 

Relatively sparse coverage of structural information on CYPs (they are 

conformationally labile) limits the applicability of docking for this enzyme family. 

Techniques to extend the scope of docking include homology modeling and MD 

simulations, as discussed in the following section. 

Combined approaches 

As pointed out above, chemical reactivity and accessibility are the decisive aspects 

for a metabolic reaction to take place. It would not be anticipated that a metabolic 

reaction would proceed at a highly reactive site of a molecule that, for steric reasons, 

cannot be oriented within the CYP to interact with the reaction center. In such a case, 

a method purely considering reactivity-related aspects is likely to fail. Consideration 

of both aspects is crucial, which is reflected in the variety of combined approaches 

that have been reported.13 

MetaSite is an integrated software package for predicting CYP-mediated 

metabolism.40 It evolved from earlier approaches combining GRID and ALMOND54, 

55 and includes several different components to predict SOMs: MIF-based modules 

for the analysis of protein and ligand characteristics and quantum-chemical and 

knowledge-based components to account for metabolic reactivity. The software 
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package encodes the characteristics of CYP enzymes in the form of a fingerprint that 

is independent of the initial conformation of side chains in order to account for 

protein adaption induced by ligand binding. Atoms of the small organic molecule 

under investigation are categorized by their GRID probe counterparts to reflect their 

hydrogen-bonding and charge capabilities as well as their hydrophobic characteristics. 

Subsequently, they are transformed into a distance-binned representation, resulting in 

a fingerprint for each GRID probe category. The descriptors of the CYP structure and 

of the ligand are then compared in order to quantify the exposure toward the catalytic 

heme moiety for any of the ligand atoms, which relates to the liability for metabolism. 

MetaSite includes a reactivity component that estimates the likelihood of a metabolic 

reaction based on molecular orbital calculations, estimating the energetic barrier of 

hydrogen bond abstraction. The overall susceptibility at a certain atom position is then 

derived from a probability function accounting for both accessibility and reactivity. 

Only atoms obtaining high values for both measures are considered likely to be 

involved in metabolic reactions. The software also includes a knowledge-based 

reaction mechanism component for weighting preferences for types of metabolic 

reactions for the individual CYP isoforms.56 

Results of a MetaSite analysis are reported as a histogram bar chart indicating the 

likelihood of metabolism for any of the ligand atoms. An interesting feature of 

MetaSite is the Partial Contribution plot, which indicates moieties of the compound 

that are expected to interact favorably with the CYP isoform under investigation. This 

can provide valuable hints on how to optimize the metabolic properties of a ligand.57 

A structure-based approach such as this is limited to enzymes where a protein 

structure or homology model is available. A drawback of MetaSite is that it reports 

only the relative likelihood for a specific metabolic reaction to occur at a certain atom 



22 

position. Results among different molecules cannot be directly compared. This is also 

the case for the Partial Contribution plot. 

The authors of MetaSite claim a success rate of 85% for tagging a known SOM 

among the top-2 ranked atom positions. It was successfully employed to identify the 

main metabolites of the angiotensin receptor antagonists lorsartan, candesartan, 

valsartan, and tasosartan.54 In a study by Zhou et al.,58 MetaSite was found to 

correctly predict the SOM among the three highest-ranked atom positions for 78% of 

the investigated compounds. A more recent study employed MetaSite for the 

identification of SOMs to support experimental mass-spectrometric metabolite 

identification.59 The SOM top-ranked by MetaSite were experimentally confirmed for 

55% of the analyzed compounds. The hit rate improved to 84% when considering the 

three top-ranked atom positions. 

De Groot et al.60 reported one of the earliest approaches combining several methods 

to pinpoint SOM. They employed ligand-based pharmacophores, homology modeling 

and molecular orbital calculations (AM118) to identify the SOM of substrates of 

CYP2D6. Based on the information gained from the three domains, the SOM of six 

out of eight investigated ligands could be correctly identified. 

Rydberg et al. have released an open-source, Java-based, SOM predictor called 

SMARTCyp61-63. This software package contains a database of pre-calculated DFT 

activation energies for various ligand fragments undergoing a CYP3A4-mediated 

transformation. SMARTCyp performs a lookup for a ligand using this database which 

contains SMiles ARbitrary Target Specification (SMARTS) based fragments which 

are matched, in conjunction with an accessibility descriptor, to provide a ranking of 

the SOM. Using the Top-2 metric, 76% of SOM are identified over a test set of 394 



23 

compounds. The tool is fast due to the pre-cached QM results. Most recently, 

SMARTCyp was extended to predict reactivities for CYP2D6.63 

StarDrop64 predicts SOM based on quantum chemical analyses of molecules. For 

each atom of a molecule a metabolic site liability, reflecting the potential metabolite 

formation, is computed. The metabolic site liability of a ligand atom is denoted by 

values between 0 and 1. This is derived from an estimate of the hydrogen abstraction, 

which is related to the enzyme decoupling rate. While the same quantum chemical 

module is used for all CYP isoforms, specificity is assessed by alignment of the query 

molecule to a ligand-based model derived from known substrates of the respective 

isoform. Also logP, which appears to influence CYP-mediated metabolism (see 

“Expert systems”), is taken into account. StarDrop was reported to give success rates 

comparable to SMARTCyp.62 More information on the performance of these tools is 

provided in Ref. 15. 

RegioSelectivity (RS)-predictor15 is a recently released, isoform-specific approach 

to predict SOM. It utilizes 148 topological and 392 quantum chemical atom-specific 

descriptors, a support vector machine (SVM)-based ranking and multiple instance 

learning method. Some of these descriptors are modified to include contributions 

from neighboring atoms. Using the Top-2 metric, 78% of SOMs were identified, 

outperforming SMARTCyp and StarDrop using either the Top-2 or Top-3 metrics. 

The authors also supply their 394 compound test set in their supporting materials. 

This is annotated with experimental SOM in addition to StarDrop and SMARTCyp 

predicted SOMs. This is an excellent resource for comparison testing of future 

methods. 

Hasegawa et al.65 have developed a machine learning-based approach for the 

prediction of SOMs related to CYP3A4-based metabolism, which combines five 
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quantum chemical descriptors related to reaction energies plus the activation energies 

calculated for the SMARTCyp approach to account for reactivity, solvent accessible 

surface area (SASA) to estimate the exposure of a ligand atom to the heme iron and 

pharmacophoric constraints to reflect the requirements of CYP3A4 for ligand binding. 

The latter were derived from known substrates using MOE.66 Random 

forest/ensemble decision trees were employed to predict metabolic sites with these 

models, with k-nearest neighbor as a baseline method. The model considering only 

reactivity-related descriptors and SASA was outperformed by the models accounting 

for pharmacophoric requirements. The best-performing model included all three types 

of descriptors, with pharmacophoric constraints limited to a distance maximum of 10 

Å, employing the random forest algorithm. Known SOMs were correctly predicted in 

82% of all investigated cases among the two top-ranked atom positions. It should be 

kept in mind that only ten molecules were contained in the test set, which is rather 

small when judging performance of the model in real-world situations, where new 

molecules will almost certainly be outside of the applicability domain. 

A method to predict the metabolic reactivity of small endogenous metabolites has 

recently been presented which combines expert knowledge, computational chemistry 

and machine learning.67 Based on the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway database,68 4843 reactions were characterized and classified into 80 

different reaction classes. SMARTS patterns were used to define chemical 

substructures (reaction centers and surrounding moieties) and the physicochemical 

properties of these were encoded using electrostatic, inductive, energetic, topological, 

steric and distance properties. A SVM binary classification model was trained for 

each reaction center SMARTS pattern in order to predict whether or not a certain 

atom position is a SOM. A score was obtained for candidate reaction centers of a 
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molecule, which was then used to rank the likelihood of a metabolic reaction taking 

place. 3-fold cross validation was performed, obtaining an average sensitivity of 0.74 

and an average specificity of 0.87. Comparable results were found when applying the 

method to predict molecules that have been recently added to the KEGG database and 

which were outside of the training set. Interestingly, the four most important features 

identified were distance properties (encoding the geometrical position of a reaction 

center in a small organic molecule). The encouraging results obtained with this 

approach make it an interesting opportunity to extend its applicability domain to 

xenobiotics. 

Several studies employed protein-ligand docking in combination with other 

approaches to predict metabolism. Lacking a component to account for reactivity, 

docking is frequently combined with quantum chemical methods in order to generate 

a more accurate description of the highly complex catalytic process. In this respect, 

the hydroxylation and O-dealkylation reactions of sirolimus (rapamycin) and 

everolimus (RAD-001) catalyzed by CYP3A4 were analyzed using a combined 

quantum chemical/docking/MD simulations approach.69 The electronic properties of 

both CYP3A4 substrates were described employing B3LYP DFT. The substrates were 

also analyzed by docking on a CYP3A4 homology model using DOCK70 and 

subsequent MD simulations using Assisted Model Building with Energy Refinement 

(AMBER).71, 72 The combined approach turned out to be useful to extend knowledge 

on electronic and orientation effects of substrates of CYP3A4. 

MLite73 is a combined model for CYP3A4-mediated metabolism, employing 

protein-ligand docking and the quantum chemical reactivity estimation method 

developed by Korzekwa et al.74 and Jones et al.,75 see above. Hydrogen atoms 

exposed to the heme iron were identified by docking and reactivity was considered 
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based on the results of quantum chemical calculations. In the case of O-dealkylation, 

a penalty for the activation energy was required to lower the number of incorrect 

predictions by the reactivity-based approach. The optimized model gave 76% correct 

predictions for the 25 compounds of the test set when considering the two highest-

ranked atom positions for each molecule. This approach is related to a further method 

developed by this research consortium,76 which also employed the semi-empirical 

(AM160) method developed by Korzekwa et al. and Jones et al. for reactivity 

estimation - in this case for CYP1A2. AutoDock was used to orientate the ligands in 

the binding site, to examine potential SOM and to estimate binding free energies. The 

overall prediction of SOM was derived from both measures. The SOM of eight out of 

twelve substrates were correctly predicted as the primary SOM and for all of them as 

the secondary SOM. 

Insufficient structural data on the conformational flexibility of CYPs is still limiting 

the applicability of docking approaches for this enzyme family. Homology modeling 

is one approach to address this problem, in order to derive structural models from 

closely related target structures that can serve as a template for model generation. 

Several CYPs, however, exhibit extraordinary levels of flexibility, which is a major 

problem for structure-based approaches in general. Docking algorithms are highly 

susceptible even to marginal conformational changes of the target structure. The 

approach benefits greatly from using collections of target structures crystallized in the 

presence of ligands of distinct shape and binding modes, so-called ensemble-based 

docking.77 Apo structures of a target in general perform less well compared to holo 

structures due to the absence of a ligand inducing conformational shifts in the binding 

site.52 
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If the relevant conformational space of a target is not adequately covered by 

experimental structures, representative target conformations from MD simulations 

may boost docking performance, in particular in cases where heterogeneous binders 

induce conformational shifts in the binding region.77 Thanks to its remarkable 

flexibility,78 CYP3A4 is a prime target for ensemble-based docking approaches. A 

recent study employing an ensemble of CYP3A4 structures derived from several MD 

simulations to identify SOMs points out the importance of covering the 

conformational space of the catalytic binding site.79 

Hritz et al.80 found that the binding site of the apo structure of CYP2D6 is too tight 

to facilitate the binding of 80% of 65 investigated substrates of this isoform. By 

employing an ensemble-based approach, however, they were able to successfully 

identify the correct SOM for all of the ligands with at least one of the MD-derived 

target conformations. In this approach, the known substrates were docked to an 

ensemble of 2500 protein conformations of CYP2D6 derived by MD simulations 

from structures with five heterogeneous substrates bound in order to simulate the 

induced fit effect and thermal motion of the enzyme. To speed up future docking runs, 

a binary decision tree was derived that allows identification of the best suitable 

protein conformation for docking specific ligands. In this way, Hritz et al. were able 

to successfully predict the SOM of CYP2D6 substrates for 80% of all cases when 

docking to the single protein conformation selected by the decision tree model. 

Instead of generating an ensemble of protein conformations for subsequent docking, 

MD simulations can also be employed for refinement of docking results. For example, 

Keizers et al.81 found that automated docking of ligands to CYP2D6 structures is not 

accurate enough to reflect the ligand orientations identified in experiments. Using 
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docked poses as a starting point for MD simulations, they found a significant 

improvement in ligand orientation and SOM prediction. 

Moors et al.82 derived an ensemble of 1000 protein conformations based on a X-ray 

structure of CYP2D6 employing tCONCOORD83 (which employs a set of distance 

constraints to explore the conformational space). Carbons or atom groups with one or 

more hydrogen atoms attached were considered potential SOMs. The closest distance 

between these hydrogen atoms and the heme iron was used to identify the likely 

SOMs. The optimum of that distance was determined to be 2.7 Å. Several different 

docking and scoring protocols were explored, obtaining AUC (area under the ROC 

curve) values of up to 0.93 for an independent test set. 

IDSite84 is a combined approach based on the Schrödinger software GLIDE, Protein 

Local Optimization Program (PLOP - implemented to the Schrödinger software suite 

as the Prime85 package) and a reactivity model derived using Jaguar.86 First, the 

ligand is placed into the CYP active site using docking (GLIDE). Then, two distinct 

refinements are carried out using PLOP. This includes both the refinement of protein 

side-chains and the conformation and orientation of the ligand itself. Poses are filtered 

considering their structures and energies and clustering by similarity of the ligand 

conformations is performed. In the last phase, the best poses are collected based on a 

physical score, which considers the intrinsic chemical reactivity (based on a reactivity 

model derived from DFT calculations employing the B3LYP functional with the 6-

31G* basis set) of potential SOM as well as the energy of the ligand poses. Its 

application on CYP2D6 has been reported recently84 and models for other CYP 

isoforms are currently under development. For a test set of 56 CYP2D6 substrates, the 

correct SOM could be recovered for 83% of all cases. When using a training set of 36 

compounds to fit four parameters (rescaling of the PLOP energy with two parameters, 
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fitting radical intrinsic reactivities and score cutoff), 94% of the known SOMs of a 

test set of 20 compounds were successfully identified. Computational power appears 

to be limiting the application of this approach. The authors report a calculation time of 

approximately 450 hours on a single 2.2 GHz AMD Opteron 6174 processor for a 

compound with three rotatable bonds. 

PREDICTING XENOBIOTIC METABOLITES 

The identification of metabolites of small organic molecules contributes to the 

understanding of ADME and pharmacological properties. Experimental identification 

of metabolites is highly demanding in infrastructural resources, expert knowledge and 

time. If enough material is available, NMR allows structure elucidation of 

metabolites. Mass spectrometry (MS) is particularly valuable for the analysis of small 

amounts of material. Most common experiments are liquid chromatography/mass 

spectrometry (LC/MS) or liquid chromatography/tandem mass spectrometry 

(LC/MS/MS), which allows the identification of moieties of a molecule where the 

biotransformation has taken place (even if they do not always allow for the 

identification of SOMs). These experimental methods can decisively benefit from 

computational approaches supporting data analysis to pinpoint the actual SOM. For 

extensive reviews on these experimental approaches the reader is referred to Refs. 57, 

59, 87. 

While numerous computational methods aim to predict SOMs, only a very few 

approaches have been developed so far that allow prediction of the products of 

xenobiotic metabolism. Prediction methods are dominated by expert systems. 

Additionally, a fingerprint-based data mining approach is available and very recently 
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an SVM-based technique has been reported, which, however, focuses exclusively on 

endogenous metabolites (see below). 

Expert systems 

A number of expert systems have been developed that aim to predict the sites and 

products of metabolism using dictionaries of biotransformations. These approaches 

are based on knowledge rules, which are typically developed from a reservoir of in 

vivo and in vitro experimental results. They are inherently subjective in their nature as 

they are based on “expert” human knowledge rather than “robust and objective 

computational estimates” - although given the approximations involved in most 

computational methods these can of course be poor substitutes for the real 

experimental conditions. So, expert systems have a strong history in this area and they 

can help bridge the gap between empirical knowledge and hard data. Potential 

metabolites are identified by searching a query molecule for the presence of a target 

fragment and converting this into a product fragment, as defined by a 

biotransformation dictionary. 

The main drawback with this approach is the generation of a combinatorial 

explosion of predictions, as all possible combinations of transformations permitted by 

the dictionary are considered. Therefore a key challenge is to prioritize the results and 

to stop when it is deemed that the molecule has been transformed into a sufficiently 

water soluble state to enable excretion from the body. A further caveat is that most 

expert systems tend to contain combined data and rules for many different 

mammalian species and so are useful as a general indicator of biotransformations in 

the “average” mammal. However, metabolic pathways can be very different even in 
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closely related mammalian species, so some expert systems have been developed to 

allow filtering of specific subsets of the data to a specific species. 

Examples of expert systems include MetabolExpert,88 META89, Meteor,90, 

University of Minnesota Pathway Prediction System (UM-PPS),91 Systematic 

Generation of potential Metabolites (SyGMa)92 and TImes MEtabolism Simulator 

(TIMES),93 as described below. They typically include functionality for the user to 

amend or add new rules to tailor the program to their specific needs and typically 

display the results as a tree of metabolites depicting multiple pathways and molecular 

structures. The main differentiating features apart from different data sources and 

knowledge rules include the methodologies used to prioritize predictions and 

terminate the chain of predictions. 

MetabolExpert was one of the pioneering attempts at a metabolic site predictor, 

created in 1985. The knowledge database contains rules, which include substrate and 

metabolite listings but also contain lists of substructures, which inhibit or promote the 

reaction. The system lists all potential metabolites without applying any ranking 

system and predictions are terminated once known phase II metabolites are generated. 

Features of this system include the presentation of the results in a dendrogram 

showing chemical formulae along with hydrophobicity values and the generation of 

first and second order kinetics data. Additional enhancements include modules 

specific to animal and plant metabolism and soil degradation. 

META uses a larger dictionary of biotransformations, each assigned with a priority 

enabling the metabolites to be arranged hierarchically to manage the combinatorial 

explosion problem. A genetic algorithm is used to prioritize the transformations 

dictionary. Additionally, this system uses quantum mechanical descriptors to test a 

proposed metabolite for stability and convert to a stable conformation if necessary. 
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Further metabolic products are only generated after a stable conformation has been 

achieved. Subsets of the metabolic dictionary can be chosen to allow focus on specific 

areas such as mammalian metabolism, aerobic and anaerobic biodegradation. 

Meteor extends the concept of biotransformation rules by using a structure 

representation language to describe atoms and bonds and is able to include descriptors 

such as charge and valency. This enables a more sophisticated description of the 

activating biophore rather than just functional groups. Over-prediction is countered by 

classifying transformations as probable, plausible, equivocal, doubted or improbable 

and the use of relative reasoning rules to prioritize potentially competing reactions. 

Predictions are terminated once an external logP predictor deems that the molecule 

has become sufficiently water soluble to be excreted. The biotransformation 

probabilities fall with decreasing lipophilicity as the ability of a molecule to cross 

membrane boundaries and undergo further biotransformations is reduced. Additional 

features of Meteor include a link to a metabolism database where examples of the 

biotransformation in the literature are reported with the ability to filter on sequence 

length, enzyme and species. The creators of Meteor note that despite the strategies 

described above Meteor still tends to generate a high volume of false positives. The 

results generated should be regarded as potential metabolites requiring further 

analysis, an observation that is generally true of all expert systems. They also make 

the observation that biological factors are interdependent in a nonlinear way rendering 

it a difficult problem to provide fail-safe rules to encompass all metabolic 

transformations. 

UM-PPS uses a classification system similar to Meteor and biotransformations are 

classified as either very likely, likely, neutral, unlikely or very unlikely. Over-

prediction remains a problem and further relative reasoning rules are used to rank and 
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prioritize predictions. The system is specific to microbial catabolic metabolism and 

uses the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD)91 

as a source to generate the rules. The creators make similar observations to Meteor, 

that definitive prediction rules applied to a wide region of chemical space are hard to 

generate. They note that predictions work best where query molecules show similarity 

to those already in the database and where reaction conditions and concentrations are 

similar to those documented. The system tends to produce a wide range of predictions 

and so is more suited to general environmental metabolism rather than when applied 

to a specific microbial organism.  

Some other systems use statistical analysis to evaluate a set of biotransformation 

rules when applied to a dataset. SyGMa contains rules derived from inspection of the 

Accelrys Metabolite Database with each rule assigned a probability score relating to 

the number of correct predictions when applied to the database. Metabolites are 

assigned the probability score of the rule from which they were formed, allowing 

them to be ranked. This enables a more finely grained view of probabilities than the 

higher-level categorization performed in Meteor and UM-PPS. To allow for greater 

differentiation and specificity in predictions the rules are broken down into subsets 

and applied to specific chemical reaction series. 

TIMES93 utilizes a comprehensive library of biotransformations and employs a 

heuristic algorithm to generate plausible metabolic maps. Reaction rates from 

systematic and toxicity testing are used to generate transformation likelihoods, 

otherwise a combinatorial algorithm is used to translate known metabolic maps taken 

from reference systems into best-fit transformation probabilities. 

Metabolizer 94 is a commercially available metabolism prediction module which 

enumerates all possible metabolites of a given compound and allows a prognosis to be 
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made on metabolic pathways, major metabolites and metabolic stability. Besides 

human metabolism, it supports predictions on various species including rat, bacteria 

and plants. 

Fingerprint-based data mining approaches 

Metaprint2D-React21 is an extension of MetaPrint2D (see “Predicting Sites of 

Metabolism”) that allows prediction of the metabolites that are likely to be formed 

from a transformation. SMARTS patterns are used to classify the transformations 

based on structural changes between substrate and metabolite and occurrence counts 

for each type of transformation are recorded. A separate occurrence ratio is calculated 

for each type of transformation and the structures of predicted metabolites are 

generated through reaction rules using SMIRKS patterns. Predictions can be selected 

from human, dog, rat or all species. 

Combined approaches 

X-ray structures of CYPs indicate that the position and orientation of substrates and 

their metabolites are largely preserved. Consequently, metabolites would be expected 

to match the chemical and geometric constraints of the binding site, which would 

make them distinguishable from decoy molecules for docking algorithms. This is the 

hypothesis in recent work by Tarcsay et al.,95 who used the expert system 

MetabolExpert to generate putative metabolites from known substrates. The docking 

program GLIDE53 was subsequently employed to reduce the false positive rate. 

MetabolExpert was found to produce 74% of the known metabolites using the default 

setup and 82% following an enhanced rule set. Using the best setup for the 

combination of MetabolExpert with docking as a post-processing filter, Tarcsay et al. 
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report that their method is able to identify the correct metabolite among the three 

highest-ranked structures in 69% of all cases. 

Also MetaSite allows the generation of likely metabolites56 for selected CYP 

isoforms (see “Combined approaches” in section “Predicting Sites of Metabolism”). 

THE CYP SUPERFAMILY OF METABOLIZING ENZYMES 

The CYP family of monooxygenase enzymes facilitate phase I metabolism of 

endogenous and xenobiotic chemicals in many organisms and bacteria. CYPs are 

classified into families and subfamilies. Each family is indexed with a digit, a 

subfamily with a letter and an individual gene with a digit. In humans, many CYP 

isoforms exist, with CYP1A2, 2C9, 2D6, 2C19, 3A4 and 2E1 having been identified 

as playing the most significant roles in drug metabolism. 

Structure of CYPs 

CYPs are predominantly composed of α-helices, labeled A to L, commencing from 

the N terminus (Figure 3). Helices F and G form the roof of the embedded active site 

and between the I and L helices, lies the heme B prosthetic group, which is also 

termed iron protoporphyrin IX. This is present in all CYPs and provides the proximal 

ligand to the heme via the sulfur on the cysteine. Protoporphyrin IX and a small group 

of neighboring residues form a heme cradle region, which is highly conserved. 

Helix I has a highly conserved kink above the active site, which may facilitate 

proton transfer. Otyepka et al.96 have described mammalian (families 2 and 3) CYP 

isoforms based upon available crystal structures. An overview of available X-ray 

structures for CYPs is provided in Ref. 97. 
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Generally, the available crystal structures have had two sets of mutations carried 

out to facilitate their crystallization and purification. Helices F', G', F/G loop and the 

N terminus putatively make contact with the membrane region, hence a large 

hydrophobic transmembrane anchor at the N terminus is replaced with a shorter, more 

hydrophilic chain. Secondly, a four to five sequence polyhistidine-tag is inserted at 

the C-terminus. It is generally accepted that such changes do not modify the reactivity 

properties of the enzyme.98 

The active site volume of CYP isoforms varies as a function of isoform. Cruciani et 

al.99 investigated the structural characteristics of the binding sites of various isoforms 

using GRID. They point out the remarkable differences of the active site volumes 

computed using a hydrogen probe. While CYP1A2 shows a site volume of 630 Å3, 

the binding site of the CYP3A4 model extends to 1500 Å3. They also ranked CYP 

isoforms by the prevalence of hydrophilic regions in the binding pockets as CYP2D6 

> 3A4 > 1A2 > 2C19 > 2C9 and highlighted the strong dependency of the hydrophilic 

patterns on protein flexibility. Otyepka et al.96 partitioned the mammalian CYPs into 

three categories, starting with the largest: CYP2C5, 2C8, 2C9, 3A4 > 2B4, 2D6 > 

2A6. 

Various pathways from the interior active site, leading to the solvent exterior have 

been identified. For a comprehensive study making use of the CAVER100 tool and a 

naming scheme of these pathways the reader is referred to Ref. 101. 

Reactivity of CYPs 

Upon arrival at the active site, a substrate will undergo chemical modification 

facilitated by the heme iron's unusual transient electronic state and the protein 

environment. However, there is a set order to this process. CYP functions within a 
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catalytic cycle, with iron undergoing changes in its spin state, oxidation number and 

ligand coordination number as it proceeds around the ordered cycle. For more detail, 

the reader is referred to the review of Shaik et al.102 The currently accepted 

mechanism is as follows. In its first state, the resting state, Fe(III) is in a low spin, 

doublet state and is hexacoordinated, with a water molecule occupying its distal axial 

position. Arrival of a substrate displaces the axial water leading to the formation of a 

pentacoordinate Fe(III) with a sextet state. The change in redox potential associated 

with this displacement allows it to accept an electron from a reductase, nicotinamide 

adenine dinucleotide phosphate (NADPH)-P450, thus forming the third state, Fe(II) 

that has a high spin state. Molecular oxygen is then bound, yielding state four, a 

singlet, oxy-ferrous complex. This singlet complex, readily accepts a second electron 

from the reductase, resulting in the formation of state five, a ferric-peroxo anion. The 

protein environment facilitates the shuttling of a proton to form state six, which is also 

referred to as Compound 0. 

A second proton is accepted, followed by the heterolytic cleavage of the molecular 

oxygen and loss of a water molecule to form state seven, the electrophilic, high 

valence, iron-oxo compound. This is the active species, analogously termed 

Compound I, which then oxygenates the substrate. Next, the product leaves the active 

site and a water molecule returns to the distal axial position, completing the cycle. 

Compound I is a ferryl-porphyrin-pi cation radical and has three unpaired electrons 

(a triradicialoid). Two unpaired electrons are localized on the ferryl group and the 

other is shared between the sulfur on the covalently bonded cysteine and the 

porphyrin. It is similar in all isoforms and due to its electronic structure being a 

function of its protein environment, has earned itself the title of “Chemical 

Chameleon”.103, 104 Recent electron paramagnetic resonance (EPR) studies have 
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managed to provide experimental evidence for the long sought intermediate, 

Compound I.105 

Molecular dynamics simulations on the structure of CYPs 

Classical MD simulations of various CYP isoforms have been used to gain insight 

into the proteins' flexibility, investigate channels into the active site and generate 

ensembles of structures for higher level QM and QM/MM calculations. This first 

section focuses primarily on classical simulations used to specifically study properties 

arising from system dynamics. Simulations employed as a preamble to generating 

starting QM/MM structures will be covered in the subsequent section. 

Classical parameters developed for CYPs 

Most modern classic biological force fields have parameters for residues and base-

pairs found in proteins and DNA, hence modeling a similar system can be easily 

accomplished. Entities that lie outside of this chemical space, such as small organic 

molecules or unusual residues need special attention and additional preprocessing to 

develop missing parameters. Usually, there is a force field specific protocol for 

parameter development to ensure that the new parameters are consistent with the rest 

of the existing force field. Generally, parameter development focuses on bonded and 

electrostatic terms. A corollary to this is that a parameterization for a moiety within a 

specific force field is not transferable to a different force field. 

The heme B prosthetic found in CYPs is such a group and various parameters for 

different force fields have been developed over time. A further complication to this 

arises due to iron's changing electronic state as it proceeds around the CYP catalytic 

cycle, since each state will have different classical parameters.102 A range of 
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parameterizations for the heme B prosthetic in CYPs have been carried out, some 

exclusively as a parameterization process, others for use within a specific study 

(Table 2). 

In their study of the interaction of the P450cam isoform with valproic acid, Collins 

et al.106 developed a set of heme B parameters for use with AMBER 3a. Schöneboom 

et al.103 derived Chemistry at HARvard Molecular Mechanics (CHARMM)107, 108 

parameters for Compound I based on existing CHARMM heme parameters, by 

adding axial ligands and updating charge parameters. Bathelt et al.109 carried out a 

similar process with the CHARMM22 parameter set. Oda et al.110 developed AMBER 

parameters for the pentacoordinate Fe(III) in the sextet state, and Seifert et al.111 

reported AMBER parameters for CYP in the Compound I state. Favila et al.112 

presented improved heme B parameters to carry out MD simulations on CYP2C9 and 

CYP19 (also known as aromatase).  

Although not CYP parameters, the classical force field parameters for the heme C 

prosthetic developed by Authenrith et al.113 for both the CHARMM and AMBER 

force fields provided a foundation for derived CYP parameters by Skopalík et al.114 

(resting state) and Favia et al.112 (ferrous low spin state). 

Shahrokh et al.115 have recently developed a set of AMBER compatible CYP 

parameters, which are readily accessible in their supporting information, for a range 

of heme states found in its catalytic cycle. 

Classical simulations of CYPs 

The majority of simulations to date have been carried out with either the AMBER 

or CHARMM force field, although some have also utilized variants of the GROMOS 

or OPLS force field. All simulations have made use of explicit water solvent and 
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followed a standard MD protocol. Recent simulations are on average 20 ns long, and 

in a few cases are an order of magnitude greater than this. However, since simulation 

length is largely dictated by available computational power, older simulations are 

shorter. Generally, the simulations described here make use of a standard protocol for 

condensed phase biological MD as outlined below. 

A crystal structure usually provides starting coordinates, but if there are missing 

residues or if a crystal structure is unavailable, homology modeling methods may be 

used. Missing hydrogens are then added. The correct protonation state of certain 

residues at physiological pH is assigned according to estimation of local pKa, before 

finally assigning force field terms to the system. Counter-ions are added to neutralize 

charge in the system and to provide a solvent salt concentration that reproduces 

physiological or experimental conditions as appropriate. The system is placed under 

periodic boundary conditions and Particle Mesh Ewald (PME) is used for accurate 

treatment of long-range electrostatic interactions. Next, energy minimization is 

carried out to relax any bad contacts between protein and solvent, followed by short 

thermalization (allowing the system to reach the desired temperature) and 

equilibration MD phases, prior to the production simulation. In some cases, extra 

biasing potentials or force field modifications may be introduced, for example, to 

calculate the thermodynamics of CYP binding site solvation and ligand binding, or to 

delineate substrate access pathways. 

During normal production dynamics, the backbone RMSD relative to the original 

experimental or modeled structure may be monitored over time to check that the 

protein is stable under the influence of the simulation force field. Analysis approaches 

may include the calculation of the per-residue root mean squared fluctuation (RMSF), 

which provides a measure of backbone mobility and can be directly compared to 
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crystallographically-derived temperature-factors. Large concerted motions may be 

identified using principal component analysis (PCA; the result of diagonalization of a 

covariance matrix that has been calculated from the dynamics), which filters out rapid 

thermal atomic fluctuations. Finally, the molecular details and energetic interactions 

between protein, ligand, and solvent may be analyzed, supplemented by visual 

analysis of the trajectory. 

Early simulation studies focused on the local structure/dynamic relationships 

associated with alternative ligand binding modes in CYP isoforms. Wade and et al. 

designed a series of camphor analogues designed to fill an empty region of the 

substrate binding pocket of P450cam and a mutant, and experimentally measured 

thermodynamic properties of binding were rationalized via substrate-protein/solvent 

interactions observed in MD simulations.116 The same group applied multicopy MD 

simulations, in which several ligands are simulated in the presence of a single protein 

to locally enhance sampling, to explore multiple ligand binding modes of different 

enantiomers of camphor in P450cam, revealing differences in binding modes for 

similar but chemically different ligands.117 The structural reorganization associated 

with differential substrate selectivity in CYP17 isoforms from various species has also 

been investigated via MD simulation approaches.118 Moreover, simulations of a 

CYP2A4 model has helped to rationalize key interactions with active site residues 

shown via mutation to determine specificity for testosterone metabolism (in contrast 

with CYP2A5).119 Strobel et al.120 used simulations to provide a molecular 

explanation for the observation that inactivators are able to discriminate between the 

closely related CYP P450 isoforms 2B4 and 2B5 in terms of differential stabilities of 

inhibitor binding orientation. 
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Several simulation studies have sought to provide a molecular basis for the 

promiscuous nature of substrate specificity exhibited by CYPs in terms of their 

dynamics. Park et al.121 used nanosecond-timescale MD simulations of CYP3A4 to 

propose that the high-amplitude flexibility of a loop near to an egress channel in the 

apo state (but damped when bound to a substrate or inhibitor) may be responsible for 

the enzyme’s broad specificity. More recently, Lampe et al.122 generated 200 ns 

trajectories of the thermophilic P450 CYP119 enzyme, providing evidence for a 

flexible conformational selection mechanism in substrate binding, and revealing from 

an analysis of correlated motions that the active site moves relatively independently 

from the rest of the protein, leading to “insulation” from external dynamics.123 Seifert 

et al.111 examined the interaction of CYP2C9 with its substrate, warfarin, using an 

AMBER FF99 model with their own heme B parameters. Multiple 5 ns trajectories 

were run and they observed a stable protein core and a mobile surface that gave rise to 

two channels, and concluded that this leads to a broad substrate profile with high 

regioselectivity. Sano et al.124 studied three polymorphisms of CYP2C9 which 

involved the mutation of a single amino acid residue, using MD and docking methods, 

and related catalytic activity to deformations of this pocket. 

Skopalík et al.114 carried out simulations on three members of CYP3A4, 2C9 and 

2A6. In addition to the standard MD simulations of each isoform, a MD run was 

carried out at 398 K. High temperature simulations enable a more extensive sampling 

of protein dynamics, and have previously been used, for example, to understand the 

origins of stability of the thermophilic and barophilic CYP119 enzyme via 

nanosecond-timescale simulations.125 An analysis of the dynamics of the three 

isoforms revealed that CYP malleability is directly related to substrate specificity. 

CYP2A6 was the most rigid investigated CYP and consequently has a narrow range 
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of substrates, while CYP3A4 was the most flexible and most promiscuous analyzed 

CYP. They also identified ten flexible regions and a rigid core as well as a malleable 

distal side and a less flexible proximal side. Such observations could not be concluded 

from previous X-ray structure analyses, as a comparison of calculated and 

experimental B-factors confirmed that protein dynamics are damped in the presence 

of crystal lattice contacts.  

CYP substrate specificity and associated conformational flexibility has also been 

investigated via combined simulation and experimental approaches. A flexible loop 

around the active site has been observed in a CYP2C9 mutant, leading to a more open 

conformation consistent with spectroscopic data.126 In another study, NMR-derived 

residual dipolar couplings were incorporated via torsional restraints within MD 

simulations of P450cam to identify a more open and accessible active site with a 

wider range of substrate orientations than those observed crystallographically.127 

Sigmoidal behavior in kinetic studies led Fishelovitch et al.128 to examine the 

possibility of cooperative binding between two substrates. They modeled diazepam in 

CYP3A4, comparing simulations of this with the substrate-free state, and concluded 

that F304 on the proximal I helix plays a key role in the mechanism of co-operativity 

between substrate molecules. 

Significant effort has been devoted to understanding the properties of internal CYP 

solvation. While the volumes of the active sites of different CYPs vary significantly, 

they have been shown to contain water that must be displaced upon substrate binding, 

and this must be considered when attempting to calculate the binding free energy of a 

particular substrate. Moreover, the reactivity of the active site is dependent upon 

water. Displacement of water favors the ferrous Fe(II) state and prevents electron 

uncoupling,129 whilst water “wires” may relay proton transfers needed for heterolytic 
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cleavage of dioxygen. Only limited information regarding water occupancy may be 

extracted from crystal structures, necessitating complementary simulation approaches. 

Several factors contribute to this issue, such as conformational flexibility of the 

protein, the difficulty of cryoprotection schemes as well as the disordered nature of 

solvent molecules. 

The simulations of Skopalík et al.114 enabled observation of water exchange 

between the active site and bulk solvent, with the number of water molecules reaching 

a dynamic equilibrium after 1.5 ns. Analysis of access/egress channels (pw2e and 

pw2c) identified a solvent channel. In a more recent analysis, Hendrychová et al.130 

examined the effect of high pressures (300 MPa) upon CYP1A2, 2A6, 2C9, 2D6 and 

3A4 both by experimental spectroscopy and molecular dynamics simulation. Using a 

similar protocol as in their previous paper, they found that with increased pressure, 

the flexibility of the CYPs decreased and the number of water molecules in the active 

site increased, with the exception of CYP3A4. They also concluded that of the five 

CYPs examined, CYP2A6 and 1A2 have the least malleable active sites. 

Because of the relatively long timescales required to observe water exchange 

between internal cavities and bulk solvent, Helms and Wade131 implemented a 

pioneering “alchemical” MD approach, in which a water molecule is gradually 

annihilated in bulk solvent and another is inserted into the protein cavity, enabling 

calculation of the relative free energy of hydration of the CYPcam active site via a 

simple thermodynamic cycle. This revealed that hydration by around six water 

molecules was thermodynamically most favorable, in agreement with experimental 

estimates, suggesting the active site water density is about half that of bulk solvent. 

Recent improvements in computational power enabled Miao and Baudry132 to observe 

the unbiased water diffusion into and out of the active of P450cam over a 300 ns 
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trajectory, confirming that on average, six water molecules are found in the camphor-

free active site. However, between zero and twelve water molecules could be present 

at any given time, since solvent exchanged rapidly with bulk solvent via multiple 

channels identified with the CAVER100 tool. Rydberg et al.133 also showed that active-

site waters could exchange with bulk during 4 ns simulations of six mammalian 

CYPs. The mean number of waters and exchange pathways varied significantly 

between isoforms, consistent with the variability in active site volume.99 

MD simulations have also been utilized to study the effect of organic co-solvent 

molecules such as DMSO on the structure and dynamics of CYPs134, 135 for 

commercial exploitation, since many industrially important substrates are poorly 

soluble in water. Moreover, a series of 1 ns MD trajectories have been used to identify 

docking sites for CO binding to P450cam, rationalizing laser flash photolysis data.136 

Because the active sites of the CYP, enzymes are substantially buried within the 

protein structure, specificity and kinetics are likely to be directly linked to the passage 

of water, substrates and products into and out of the protein. For this reason, much 

focus has been placed on the identification of static or dynamic channels that connect 

the active site to the protein surface. Available crystal structures yield a wealth of 

information regarding access/egress channels101, but simulation approaches can 

complement this by providing insight into the dynamics and energetics of substrate 

passage. For example, Fishelovitch et al.137 identified a gated water pathway and an 

additional substrate channel in CYP3A4 using their MolAxis tool.138 A second 

MolAxis channel study on the same isoform139 examined cooperative binding of 

ketoconazole and ligand-induced conformations changes. The authors also identified 

various bottleneck residues, and concluded that two channels could serve as egress 

routes for the substrate ketoconazole. Haider et al.140 identified three channels that 
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converged on the heme in a homology model of CYPC17, identified using the MOLE 

tool.141 MD simulations demonstrated different substrate binding modes, and a 

correlation between low vibrational modes and active site gating was demonstrated. 

Accelerated MD approaches have also been developed to lower the energy barriers 

between different crystallographically-identified open and closed conformational 

states of P450cam, providing insight into the likely mechanisms of ligand binding.142 

The direct observation of ligand/product entry/exit is generally not possible using 

typical MD simulations due to limitations in accessible timescales. As a result, a 

variety of “biased” simulation approaches have been utilized to enhance sampling of 

ligand egress within CYPs.143 The Wade group developed the random expulsion MD 

method, involving the application of a randomly oriented artificial force to an 

initially-bound ligand, to identify channels in three bacterial CYPs.144 Steered MD, in 

which a constant force is applied to a virtual spring attached to a molecule along a 

pre-defined vector, was subsequently used to drag ligands along each channel. A 

minimization-based approach identified a channel common to all three bacterial CYPs 

- with specific channel features in each isoform adapted for their respective 

substrate/product specificity - as the most likely route of ligand passage.145 A similar 

approach was applied to a mammalian CYP2C5 enzyme, and used to propose that 

hydrophilic substrates and products may pass through one channel, whereas lipophilic 

substrates may enter via a channel embedded within the membrane.146 This was 

recently supported by the first reported MD simulations of a full-length mammalian 

CYP inserted within a lipid bilayer.147 Coarse grained simulations were used to 

efficiently sample various orientations of the membrane-bound CYP, providing the 

starting point for subsequent all-atom simulations. Correlations were found in the 

permittivity of putative ingress and egress tunnels, and presence of the membrane 
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stabilized the open state of an internal aromatic gate in the previously identified 

channel connecting the active site to the bilayer phase. 

The steered MD method and its variants have been applied to a number of other 

CYP systems including CYP2B1148, 149 and CYP3A4,150-152 enabling the identification 

of possible channels and associated rupture forces during ligand passage, and to probe 

interactions with key residues identified by site-directed mutagenesis. As it becomes 

easier to generate longer timescales and steered MD simulation ensembles, it has even 

become possible to estimate the free energy pathways associated with ligand entry 

and egress.153 

Molecular dynamics approaches for the calculation of affinity of substrates 

and metabolites 

As well as providing qualitative information concerning protein-ligand interactions, 

a number of methods within the MD simulation framework may be utilized to directly 

estimate ligand binding energies. Although this tends to involve greater computational 

cost than e.g. docking, the results are normally more reliable due to the use of an 

accurate physical force field and extensive conformational sampling (if sufficient 

starting points are included). In more or less all the approaches, calculation of the 

ligand binding free energy (∆G) relies on the observation that its value is a state 

function and is hence dependent only on its initial energy in solution and final energy 

following binding. Thus, a thermodynamic cycle may effectively be invoked, 

considering either the “transfer” of a ligand into solution and into the protein binding 

site, yielding the absolute binding energy, or the transfer of two different ligands to 

the binding site, yielding the relative binding energy. 
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For example, Åqvist et al.154 devised the semi-empirical linear interaction energy 

(LIE) technique to estimate ligand-protein binding energies. In contrast with some 

more rigorous approaches (see below), only the physically relevant protein-bound and 

free solvated states of the ligand (i.e. the “corners” of the thermodynamic cycle) are 

considered with LIE, necessitating just two MD or Monte Carlo simulations.155 From 

the equilibrium ensemble of non-bonded interaction energies between the ligand and 

its surroundings for these two states, ∆G may be calculated as an empirically 

weighted difference between the average bound and unbound energies. There are 

separate scaling coefficients for the non-polar and electrostatic interactions and an 

extra independent constant may be included. Whilst default values for these 

parameters are available, they are often optimized using a training set. Good 

correlation between experimental and calculated binding energies has been 

demonstrated in many cases when utilizing LIE, particularly for related series of 

ligands, and as early as 1996, it was shown that the approach could be successfully 

applied to the estimation of relative and absolute binding free energies for a range of 

substrates in P450cam.156 

Vasanthanathan et al.157 investigated ligand binding affinity of thirteen ligands with 

CYP1A2 using a LIE-based method. GOLD was initially used to place the ligand in 

the active site, followed by a standard MD protocol using the GROMOS 45A4 force 

field, totaling 1 ns of NPT production dynamics. From this trajectory ∆G was 

calculated using LIE. For comparison and validation, experimental IC50 values were 

converted to equilibrium constants (Ki), which in turn were used to estimate ∆G. They 

demonstrated a linear correlation between experimental and calculated values with a 

RMSD of 2.1 kJ/mol, and concluded that the van der Waals interaction dominated 

over the electrostatic. 
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Karlsson et al.158 constructed homology models of 26A1 and 26B1, and various 

ligands, including five retinoic acid metabolizing blocking agents (RAMBAs), were 

docked into each respective site, followed by 0.5 ns of NVT MD simulation. The LIE 

method was used to calculate values of ∆G which were compared to experimental 

IC50 values. The authors concluded that the homology models could distinguish 

between strong and weak inhibitors and identified various important residues in the 

active site. 

Stjernschantz et al.159 developed an iterative protocol employing multiple MD 

simulations accounting for an ensemble of generated docking poses. The approach 

was tested on a set of twelve known binders of CYP2C9 and the RMSD for predicted 

binding affinity was 2.9 kJ/mol. It was shown that this technique is able to lower the 

impact of the initial pose selection and it also takes into account the possibility of 

multiple binding modes. 

Despite these reports, which often demonstrated impressive correlation between 

experimental and calculated ∆G, the inherently empirical nature of LIE may be 

undesirable in some cases. An alternative is to use “computational alchemy”, which 

includes related methods such as free energy perturbation (FEP) and thermodynamic 

integration (TI). Such formally correct approaches tend to be computationally 

demanding, but have the capacity to yield highly accurate relative or absolute ligand 

binding free energies, in principle limited only by the quality of the underlying force 

field and sufficient conformational sampling.160 

The key feature of alchemical methods is that the configurations sampled between 

different states should have a significant degree of “overlap”.161 Thus, unlike in LIE 

where two ensembles must be generated, a multistep approach must be used, in which 

a path between the “corners” of the thermodynamic cycle (see above) is sampled. 
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Practically, this is normally implemented by introducing a series of intermediate 

potential energy functions constructed as a linear combination of end states. Thus, one 

ligand is alchemically transformed to another (to yield the relative ∆G), or a ligand is 

alchemically “annihilated” (for the absolute ∆G). 

Wade et al.131 utilized an alchemical MD approach to calculate the relative ∆G of 

water molecule binding to the CYPcam active site, and later extended this work to 

couple the exchange of six high-occupancy water molecules to the alchemical 

transformation of camphor inside the active site, yielding an accurate measure of its 

ligand binding ∆G.162 Deng and Roux161 pointed out that this strategy required prior 

knowledge of the solvation properties of the cavity in question. They therefore 

recently implemented a novel approach combining alchemical MD for ligand-binding 

∆G calculation, with a grand canonical Monte Carlo algorithm, enabling the number 

of waters to vary freely during the simulation. This yielded extremely accurate 

estimations for the thermodynamics of camphor binding to P450cam,163 and the 

method should be generalizable to any CYP site. It is clear that careful consideration 

of CYP solvation properties is necessary, even when combining MD with more 

empirical approaches to binding ∆G calculations.157 

QM/MM approaches with CYPs 

Classical simulations can yield information about dynamics and conformation 

changes. However, this level of theory does not have the ability to represent bond 

breaking or making processes, whereas a richer quantum mechanical treatment of all 

the electrons within the system, is still too computationally demanding. 

A common approach is to partition the calculation into two regions which are 

treated at different levels of theory. Generally, a small quantum mechanical region is 
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defined around the active site, where bond breaking is presumed to occur, and the rest 

of the system, usually the rest of the protein and bulk solvent, is treated classically. 

The two regions are not independent, but are coupled. For example, the wavefunction 

in the QM region will be polarized by the influence of the point charges in the 

classical MM region, and conversely, the MM region will be influenced by a non 

static point charge distribution emanating from the QM region. Many coupling 

methods exist and the QM/MM approach can be used to calculate single point 

potential energies or gradients can be evaluated for the system to be propagated 

dynamically (QM/MM MD). 

The Thiel group has published several excellent papers characterizing the dynamics 

and catalytic mechanism of CYPs. Their work includes investigations on polarization 

and hydrogen bonding effects of the protein environment on Compound I.103 They 

carried out 215 ps of MD using their protoporphyrin IX parameters to generate 

snapshots for subsequent QM/MM calculations and concluded that it transformed 

from a sulfur-centered radical to a porphyrin-centered radical cation. Further studies 

from this group include the QM/MM-based analysis of the C-H hydroxylation 

mechanism164 and the theoretical investigation of the Compound I reactive 

intermediate.165 This and additional work is discussed in their comprehensive 

review102 on the structural properties, reactivity and substrate selectivity of CYPs 

analyzed by QM/MM approaches and therefore we provide here a brief summary on 

this topic. 

Starting configurations are usually generated from a classical MD simulation. A 

QM/MM hybrid approach is used whereby a truncated porphyrin (both propionate 

groups are removed) and a truncated cysteine (S), is set as the QM region. In the QM 

region, an UB3LYP method is used with the Los Alamos effective core potential and 



52 

associated triple zeta contracted basis, LACVP, on Fe and the 6-31G(d) basis on the 

remaining QM atoms.166 

Bathelt et al.109 examined the electronic properties of Compound I and concluded 

the lowest electronic state to be a near degenerate pair of doublet/quartet 

optimizations of A2u states, with two unpaired electrons localized on the Fe-O and 

the other delocalized on the porphyrin and thiolate ligand. In a later study,167 they 

examined the mechanism of benzene hydroxylation facilitated by CYP2C9 and found 

that the energy barrier for the addition step is comparable to the experimental rate 

constants of the same family member, CYP2E1. They also compared the energetics of 

benzene approach towards the side or face (relative to the porphyrin plane) and 

concluded that these arene addition pathways are both accessible. 

Fishelovitch et al.168 explored the effect of a substrate on Compound I, showing that 

in a substrate-less Compound I state, the Fe-S bond elongated and localized the 

radical on the sulfur. Conversely, the presence of substrate shortened this bond. 

Sen et al.169 studied the dynamics of CYP51 with specific reference to the proton 

shuttling involved in the molecular oxygen activation. They conclude that the protein 

environment is important in tuning the electronic structure of intermediates and 

highlighted the range of proton shuttling routes within the CYP family. The study also 

demonstrates opportunities for experimental validation since much experimental data 

is available for the peroxo intermediate. 

Lonsdale et al.170 investigated the chemoselectivity of alkene oxidation with 

CYP101, finding that QM/MM reaction barrier heights were in qualitative agreement 

with experimental selectivities. Given the accessibility of both hydroxylation and 

epoxidation to the ferryl oxygen, this is the relative reactivity of Compound I which 

determines the relative ratio of products. Attention is also drawn to the complexities 
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of such modeling and the need for a wide ensemble of starting geometries for 

QM/MM approaches. In a different study,171 the same author demonstrates the 

importance of a dispersion correction for B3LYP methods in the study of CYPs. Their 

work showed that inclusion of dispersion has a significant effect on the energies and 

geometries of transition states and encounter complexes. Furthermore, an improved 

agreement with experimental data was observed compared to their original CYP101 

study.170 

Li et al.172 conducted a QM/MM study of CYP2A6 on (S)-(-)-nicotine. From 

calculating a minimum QM/MM energy path they determined a reaction method: 

initial abstraction from the 5'-position to the oxygen on Compound I followed by an 

O-rebound step, the recombination of the nicotine moiety with the iron hydroxyl to 

produce the 5'hydroxynicotine product. They conclude that nicotine exists in a less 

favorable protonation state when undergoing CYP catalysis. 

The reaction mechanism of the conversion of tyramine to dopamine, as catalyzed 

by CYP2D6 was examined by Schyman et al.173 The traditional Meisenheimer-

complex mechanism, i.e. direct aromatic hydroxylation, was ruled out based on 

energetics. Instead, they deduced that the reaction path is entirely dictated by the local 

electric field of the protein environment. An initial phenolic H-abstraction of the 

protonated tyramine by Compound I is followed by a phenoxyl ring rebound, 

culminating in a keto-enol rearrangement to dopamine, outside of the protein. 

Interestingly in this QM/MM study, the authors found that only a 3 Å radius sphere of 

the charges from the MM environment needed to be included in the QM/MM model 

for the H-abstraction intermediate to be stabilized to a value comparable to that of the 

full QM/MM model. 
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The mechanism of H-abstraction, followed by O-rebound is common between these 

two simulations. However, the tyramine is in a protonated state (protonated amino 

tail), whereas nicotine is in its unfavorable free base state. 

A more recent study by Lonsdale et al.174 investigated the electronic structure of the 

Compound I state between different CYP isoforms using a QM/MM approach, with 

the Compound I Fe-O bond enthalpy as the comparison metric. Interestingly, they 

find that there is little variation between the three isoforms they examined, and 

significantly more variation within a single isoform's ensemble of MD generated 

structures. They conclude that the hydrogen bonding, the polarizing environment and 

thermal fluctuations influence Compound I's electronic structure and stress the 

importance of using an ensemble of structures in QM/MM studies. They also state 

that the substrate's presence in the cavity alters the electronic structure of Compound 

I. It reduces the number of hydrogen bonds that ferryl oxygen has to the water 

solvent, increasing the spin density on ferryl oxygen, thus weakening the Fe-O bond. 

Predicting interaction of xenobiotics with CYPs 

Interaction of xenobiotics with metabolizing enzymes is likely to lead to substantial 

changes in biological effects, potentially causing a loss of activity or toxic effects. 

CYPs are key metabolizing enzymes, accounting for approximately 75% of total 

metabolism.175 They play a pivotal role in drug metabolism, where seven of the 57 

known human CYP isoforms facilitate more than 90% of the metabolism, as well as 

DDIs.176 Polymorphism of certain CYP isoforms such as CYP1A2, 2D6, 2C9 or 2C19 

add another layer of complexity to the problem.177-179 Due to the wide range of 

metabolism rates observed for xenobiotics, determination of the kinetic profile and 

optimization of dosing (to remain within the therapeutic window) becomes an even 
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more challenging and sometimes impossible task. Mutations of metabolizing enzymes 

and their impact on the kinetics of drug molecules are difficult to predict and would 

require a substantial computational effort for each compound and CYP. 

Consequently, prevention of interaction of compounds with polymorphic CYPs by 

rational design is a favorable strategy. 

Predicting DDIs is a non-trivial and complex problem that has been traditionally 

addressed in elaborate clinical studies.180 Even for the extrapolation of in vitro assay 

data to in vivo effects some major uncertainties and controversies exist.181 Several in 

vitro CYP inhibitors, such as clotrimazole and other compounds sharing an imidazole 

scaffold, have been observed to induce these proteins in vivo.182 One major challenge 

in predicting systemic effects derives from the crosstalk of receptors regulating 

metabolizing enzymes.183 Though in vitro assays are becoming more readily available 

and more and more insight on the mechanism of inhibition and induction of metabolic 

enzymes has been gathered, a complete framework that would allow the accurate 

prediction of enzyme inhibition and induction is still missing.5 Here, we provide an 

overview of computational methods aimed at (among other functions) the prediction 

of interactions between xenobiotics and CYPs. For more detail, the reader is referred 

to Refs. 7, 184, 185. 

Predicting CYP inhibition by xenobiotics 

CYP inhibition is in general considered to be more problematic than CYP 

induction. CYP inhibition may cause toxic effects by an increase of activity at targets 

and anti-targets and is commonly evaluated by determining the inhibition constant, Ki, 

using liver microsomes or cDNA-expressed microsomes.179 CYP induction is a 

central focus for drug safety, potentially leading to a loss of therapeutic efficacy due 
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to increased metabolism rates but also to an increased production of toxic metabolites 

(see below). 

QSAR and machine learning methods. 

MD simulations are typically able to deal with previously unseen ligand-target pairs 

when attempting to predict metabolic sites on small molecules or their binding 

affinity (see “Molecular dynamics simulations on the structure of CYPs”). However, 

they are at the same time computationally demanding and, consequently, they are not 

always applicable, particularly when time is at a premium. In real-world situations, 

very often an interactive, “immediate” prediction of the likelihood of being a substrate 

or an inhibitor of particular CYPs is desired, for instance when medicinal chemists are 

interactively designing a series of structures. QSAR, machine learning and other 

approaches are in many cases well suited to provide this kind of instant feedback to 

the user. At the same time, they are both based on prior knowledge. Hence, their main 

shortcoming is, generally speaking, their limited extrapolation ability to novel 

chemical series or molecules outside of their applicability domain. 

QSARs attempt to derive quantitative relationships between the structure of a 

compound and its activity. Those relationships are based on the principle that the 

chemical structure of compounds -and similarities and trends of a chemical series- are 

related to the molecular properties exhibited.186 Hence, in order to generate 

relationships between structure and function, a way to describe the molecule is needed 

(see Ref. 187 for a recent review), as well as a suitable statistical or machine learning 

method188 to generate the particular SAR of interest. Activity in the particular context 

of this review means the inhibition of one or more metabolizing enzymes, in 
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particular isoforms of the P450 enzymes by a small molecule, or its ability to act as a 

substrate of these enzymes. 

What is remarkable about the area of QSAR in toxicology and metabolism is that 

guidelines for the validation of models have only relatively recently been published, 

as part of the Organisation for Economic Co-operation and Development (OECD) and 

European Union efforts to reduce the amount of animal testing performed in the 

context of exploring properties of novel chemical entities (NCEs). In order to trust 

QSAR models – which are essentially computational predictions of molecular 

properties - without resorting to experiment in every single case, requires validation 

and tests of robustness, and is fundamental in order to gain trust in the models. In this 

context, it might be useful to consider a recently published summary of requirements 

pertaining to a practically useful QSAR model as follows (according to OECD 

guidelines): “The guidelines recommend that QSAR models should be associated 

with (i) a defined end point, (ii) an unambiguous algorithm, (iii) a defined domain of 

applicability, (iv) appropriate measures of goodness-of-fit, robustness, and 

predictivity, and (v) a mechanistic interpretation, if possible”.189, 190 Certainly, these 

are essential criteria that should be applied to any trustworthy QSAR model upon 

which important practical decisions will be based. 

The term “QSAR” does not immediately define which mathematical methods are 

used to derive those SARs. They can be statistical models, or more complex machine 

learning models such as SVMs,191 random forests192 and similar approaches. In the 

following we will discuss approaches to predict CYP inhibitors and substrates using 

conventional (statistical) structure-activity modeling methods as well as machine 

learning methods applied to the area. Apart from reviewing work directly, the reader 

is also referred to previous reviews for further information, namely those focusing on 
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QSAR modeling applied to CYP metabolism178, 184, 185, 193, 194 as well as those focusing 

on the machine learning approaches to the field.178, 195-198 What is also remarkable is 

that in the field of metabolism or ADME/Tox prediction in general, “open” (free, and 

often open-source) approaches are making progress, in tandem with public bioactivity 

databases199 etc. The reader is referred to a recent review of the field for an overview 

of many of the current available tools.200 

Approaches to classify or quantify the interaction of chemical compounds with 

members of the CYP family can also be differentiated depending on how data is 

analyzed. Models can be generated for either inhibitors, substrates, or, most generally 

“ligands” or interaction partners of the enzyme. They can be either global or local, 

depending on the size and nature of the dataset. While global models are built on 

large and diverse collections of compounds and therefore have a large domain of 

applicability, local models are specialized to a very specific chemical and biological 

space. Global models generally maintain their performance when predicting more 

diverse molecules (and properties), while local models may show superior prediction 

accuracy within the chemical space they are trained on. 

Models can be either trained on molecules with measured activities for a whole 

enzyme family or for a specific isoform. Most challenging for the development of 

models is the fact that biological data such as IC50, Ki and Km values depend very 

much on the experimental conditions (these are indeed different experimental 

measures which are often, through the sparsity of data, combined in single models), 

which leads to a significant variance in the data. Good models may thus be able to 

explain 65% to 85% of the variance in a dataset. Models reported with higher 

accuracy are very likely to be overfitted. 
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Furthermore, different parameters can vary from model to model, such as the 

composition of the training set, the validation method, the choice of descriptors, and 

last but not least, the mathematical modeling method employed to generate SARs. 

Here again, models may be based on categorical or continuous variables. All of the 

above factors generally differ between models to be compared, and this needs to be 

kept in mind when relating the performance of models to each another. For more 

information on modeling toxicity data and its challenges the reader is referred to a 

recent review.201 

Classification models 

As an example of a relatively typical classification study, k-nearest neighbor, 

decision trees, random forests, ANNs and SVMs using different kernels were 

employed to predict substrates, inhibitors or “interactors” with the CYP1A2, 2D6 and 

3A4 isoforms based on a set of 335 structurally diverse compounds.202 188 descriptors 

such as atom counts, charge properties and connectivity indices were used for model 

building, employing 10-fold cross validation as a model validation method. 

Classification performances of 81.7% to 91.9% for CYP1A2, 89.2% to 92.9% for 

CYP2D6, and 87.4% to 89.9% for CYP3A4 were obtained. Interestingly, in this work 

various decision tree methods were found to outperform “numerical” methods such as 

SVMs – a result that seems not to hold when applying these algorithms to larger 

datasets.203 

While single metabolizing enzyme predictions are easier to perform from the 

computational side, they do not reflect the situation that in reality many compounds 

are metabolized by more than one enzyme. To reflect this situation, in a more recent 

study204 a total of 580 CYP substrates of seven different isoforms have been analyzed 
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by applying multi- and single-label classification strategies, including SVMs, multi-

label k-nearest neighbor classifiers, as well as ANN modeling methods. While single-

label and multi-label classifiers at first sight seem to achieve similar performance, the 

authors state that “the multi-label approach more coherently reflects the real 

metabolism information”, namely that compounds are in many cases metabolized by 

different CYP isoforms, though at different rates and giving rise to different 

metabolites. In this particular case, out of the 580 compounds 488 were metabolized 

by a single CYP isoform, while the remaining 92 structures are metabolized by up to 

five enzyme variants. 

The idea of having “true negatives” in a dataset is also critical to address. However, 

compounds of unknown activity are often treated as “putative inactives”. This was 

however approached explicitly in a recent study where for CYP3A4, 2D6, and 2C9 

inhibitors and substrates were analyzed using SVMs.205 For the prediction of 

inhibitors, only CYP3A4 and 2D6 were used, but substrate models have been 

generated for all isoforms. In particular, two consensus SVM methods, namely 

"positive majority" and "positive probability" were employed in this work on a large 

dataset comprising several hundred active datapoints. In addition to the inhibitors and 

substrates, likely “non-inhibitors” and “non-substrates” were generated. The model 

obtained accuracies for classification of substrates and non-substrates, respectively, of 

98.2% and 90.9% for CYP3A4, 96.6% and 94.4% for CYP2D6, and 85.7% and 

98.8% for CYP2C9. Regarding the different machine learning methods employed, the 

consensus support vector machine methods were generally found to give better 

performance than those based on single SVM classification systems. 

In many cases, datasets are not balanced, which poses additional challenges when 

developing machine learning models. In a recent study using CYP2D6 inhibitors,206 a 
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set of 185 training and 78 test datapoints were employed using “ensemble” 

descriptors (containing atom counts, constitutional descriptors, topological descriptors 

etc.) in combination with a SVM. In this work, the influence of various oversampling 

and “threshold moving” techniques on classification performance was investigated 

and overall it was found that employing oversampling and threshold moving indeed 

had a positive impact on obtaining accurate classifiers. 

isoCYP207 is a software tool for the prediction of human CYP isoform specificity 

based on the work of Terfloth et al.,208 who developed a number of classification 

models using multinomial logistic regression, decision trees and SVM. The models 

are trained on a set of 146 compounds known to be metabolized by human CYP3A4, 

2D6 and 2C9 isoforms and the models were evaluated using an external validation 

data set comprising 233 compounds. The best model obtained a leave-one-out cross-

validated predictivity of 83% (correct predictions) for the external validation set. 

Another study employing SVM to identify and classify substrates of CYP1A2, 2C9, 

2C19, 2D6, and 3A4 is based on a 17000 compounds data set from the National 

Institutes of Health Chemical Genomics Center (NCGC).209 Classification models 

obtained area under the receiver operating characteristic (ROC) curves equal to or 

higher than 0.85 for any of the investigated CYP isoforms. 

Quantitative models 

While classification models are sometimes preferred to numerical/regression 

models since they often have superior performance in validation experiments when 

only class labels are required, they are generally not able to make affinity predictions, 

which are at least in relative terms often needed when considering competing 
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interactions in biological systems. Some of those quantitative models relating to 

metabolism prediction shall be discussed below. 

Classical quantitative QSAR models 

Lewis et al.210 established quantitative models for ligands for a total of six P450 

isoforms, namely CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4. In this work the authors 

obtained correlation coefficients ranging from R = 0.94 to 0.99 between predicted and 

experimental P450 binding affinity, which in this case included a mixture of Km, Kd 

or Ki values. They found that including hydrogen bonding parameters in the QSAR 

analysis in combination with the number of pi-pi stacking interactions was crucial for 

model performance. Hence, given that interpretable variables were employed in the 

model in the first place, knowledge about interactions could also be derived – to some 

extent – from the resulting model. 

For the isoforms CYP2D6, 1A2, 3A4, 2A6, 2C9, 2C8, 2C19 and CYP17, PLS 

regression as well as 18 machine learning methods as implemented in WEKA211 were 

recently employed on a dataset comprising a total of 797 ligand-CYP IC50 

datapoints.212 PLS regression as a baseline method was employed on a subset of six 

and 15 selected descriptors, respectively. From the resulting models, R2 values from 

0.69 to 0.94 were obtained for the six-descriptor subset, and from 0.78 to 0.99 for the 

set comprising 15 descriptors, respectively. However, a particular modeling 

technique, namely PLS “with mixed-integer linear programming based hyperboxes”, 

was able to improve upon those results using only six descriptors. The method 

involved homology modeling, docking, and finally ligand-based classification steps 

which likely renders it time-intensive in practice. Also the descriptors selected to be 

the most significant are largely non-interpretable connectivity indices which are not 

generally intuitively related to metabolic mechanisms. 
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In a similar fashion, the way data for CYP inhibition or substrate-likeness data are 

obtained experimentally can have a profound impact on the performance and 

applicability of CYP SAR models. In a recent study,213 the data sets consisted of 

marketed drugs and drug-like compounds all tested in four assays measuring the 

inhibition of the metabolism of four different substrates by the CYP3A4 enzyme, 

benzyloxycoumarin, testosterone, benzyloxyresorufin, and midazolam. It was found 

that by employing only a single one of the four datasets no reliable inhibition model 

could be generated. On the full dataset however, a multiple pharmacophore 

hypothesis could be developed which was able to model promiscuity, in particular the 

CYP3A4 isoform of the CYP family. Hence, care should be paid not only to the 

statistical model validation method employed, but also to the data used to generate 

models for P450 activity. 

As a commercial software provider, ACD has a software suite on the market that is 

able to make regioselective predictions of metabolic transformations in its P450 

Regioselectivity Module.214 Based on more than 900 training set compounds, every 

atom is assigned a likelihood of undergoing one of five possible transformations, 

namely N-dealkylation, O-dealkylation, aliphatic hydroxylation, aromatic 

hydroxylation, S-oxidation. A Reliability Index for the prediction is provided, 

depending on the similarity to the training set atoms as well as the consistency of 

metabolic transformation information. Optionally, isoform-specific predictions can 

also be performed for CYP3A4, 2D6, 2C9, 1A2, and 2C19 using additional software 

modules. However, to the knowledge of the authors no standardized validation of the 

tool has been publicly released. 

In silico tools using different machine learning methods have been derived for 

various enzyme isoforms. For the CYP2D6 and 2C9 isoforms multidimensional 
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QSAR has been employed to quantify the binding affinity of 56 compounds and 85 

compounds, respectively, to their metabolizing enzymes.215 In this study, a cross-

validated R2 of 0.81 and 0.69 was obtained, and models were validated by different 

methods including Y scrambling and an additional external test set. This model is also 

available publicly at VirtualToxLab, which combines multi-dimensional QSAR with 

a flexible docking approach.216 

VirtualToxLab supplies QSAR models for 16 proteins known or suspected to be 

responsible for adverse drug effects, including AhR, androgen receptor (AR), 

estrogen receptor (ER), etc., and reports a calculated toxic potential.216 It was used to 

predict the toxic potential of more than 2000 xenobiotics and chemicals and to 

estimate the binding affinities of anthracene- and steroid-based compounds on various 

CYP isoforms and on AhR (see below). 

3D-QSAR and molecular interaction fields 

3D-QSAR analyses such as Comparative Molecular Field Analysis (CoMFA),217 

GRID/Generating Optimal Linear PLS Estimations (GOLPE)218 and GRid alignment 

INDependent (GRIND) approaches have been employed to predict interaction 

partners of CYP enzymes. CoMFA as well as GRID descriptors depend on the 

alignment of molecules, which is problematic for many 3D-QSAR applications, as 

ligand alignment is non-trivial and time-consuming and induces a bias into the model. 

GRID alignment independent descriptors have been developed to overcome these 

shortcoming.219, 220 They are derived from MIFs by a data compression process that 

elucidate the most-relevant interaction regions of a molecule. GRIND descriptors are 

independent from the orientation of the molecule and hence only the internal 

coordinates of interaction patterns are encoded. Most importantly, GRIND descriptors 

can be back-converted into the primary MIF descriptors by an autocorrelation 
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transform, which allows visualization and interpretation of data in the original 3D 

space. The ALMOND220 software package allows the calculation, analysis and 

interpretation of GRIND descriptors. It has recently been superseded by Pentacle.221 

Classification Models. Crivori et al.222 trained a classification model for the 

prediction of the metabolic stability of small organic molecules to CYP3A4 

combining GRIND descriptors with VolSurf, a MIF-based program to calculate 

pharmacokinetic properties of small organic molecules.223 The training set consisted 

of 1800 from the Pharmacia compound collection. The model derived using these data 

obtained a correct prediction rate of 75% to 85% of the test set compounds, with a 

precision of 86% correctly identified metabolically stable compounds. A further study 

reporting classification and regression models for CYP2C9224 is reported in the next 

section. 

Regression Models. CoMFA and GRID/GOLPE regression models were reported 

for CYP1A2 inhibition, based on a consistently assembled dataset of 52 compounds 

comprising different scaffolds.225 CoMFA models yielded a Q2 of 0.69 (five-fold 

cross validation) and R2 of 0.87, GRID/GOLPE yielded a Q2 of 0.79 and R2 of 0.90, 

respectively. In a similar approach, a CoMFA model for CYP2B6 inhibition226 was 

prospectively validated, which led to the discovery of three potent pyridine-based 

novel CYP2B6 inhibitors. For a CYP2D6 isoform model based on the CoMFA 

method, a training set of 24 compounds with reported Km values was developed 

which achieved a predictive R2 of 0.62. 

CoMFA/GOLPE models were also obtained for 50 steroid inhibitors of CYP19 

(aromatase). The CoMFA fields are consistent with known, potent inhibitors of 

aromatase, not included in the model (R2 of 0.885, cross-validated Q2 of 0.673).227 In 

a similar fashion, the CYP2A5 and 2A6 isoforms were analyzed using CoMFA and 
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GRID/GOLPE.228 From this work, it was suggested that the CYP2A5 binding site is 

likely larger than that of CYP2A6, as indicated by larger steric regions in the CoMFA 

coefficient arrays as well as a similar view of the corresponding GOLPE maps. From 

an analysis of electrostatic maps, it was deduced that CYP2A6 disfavors a negative 

charge near the lactone moiety of coumarin, which was in agreement with available 

data. 

The GRID/GOLPE approach was also successfully employed to derive a 3D-QSAR 

model for CYP2C9 inhibitors.229 In this study, the selection of ligand conformers was 

guided by docking a set of ligands to a CYP2C9 homology model employing GOLD. 

Following up on their prior effort, Afzelius et al.224 used a more diverse dataset to 

create regression (and classification models) for CYP2C9 inhibitors. The high 

diversity of the data, including ligands of MW 100-1000, rendered the elucidation of 

specific alignment rules unfeasible and lead to the application of a GRIND-based 

approach using ALMOND. In this study, 74% of the compounds of an external test 

set could be correctly classified. A subsequently derived quantitative model was able 

to predict the Ki values within half a log unit for the vast majority of compounds. This 

work was again extended by adapting the CORE method developed by Goodford230 to 

handle ligand flexibility in order to account for ligand movement during the approach 

to the ligand binding site. Using this method the relevant conformational space is 

encoded in the form of a probability-of-interaction map. The resulting MIFs were 

transformed into GRIND descriptor values using ALMOND. The experimental Ki 

values of eleven out of twelve compounds representing the external test set were 

predicted within half a log unit by this confomer- and alignment-independent QSAR 

model. 
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A further 3D-QSAR study compared the GRID/GOLPE approach with 

COMparative BINding Energy (COMBINE) analysis, an approach that analyses a 

series of structures of protein-ligand complexes to derive 3D-QSAR models.231 It was 

found that, provided an appropriate alignment is used for model generation, the 

derived interaction patterns are largely consistent with each other. 

A GRIND-based 3D-pharmacophoric model for CYP3A4 was reported by 

Cianchetta et al.232 A dataset of 331 compounds with inhibition data available for 

CYP3A4 was used to derive a 3D-QSAR model from MIFs. In parallel, GRIND 

descriptors were also calculated for four CYP3A4 crystal structures and subsequently 

compared with the pharmacophore model derived from the ligands. A clear 

correlation between the 3D-QSAR model and the MIFs generated from the 

experimental protein structures was found and three features crucial for binding 

affinity, two hydrophobic areas and one hydrogen-bond acceptor, were revealed. 

Classic pharmacophore-based approaches 

Interactions of ligands with biomolecules are driven by the complementarity of 

global and local physicochemical properties. Detection and analysis of patterns 

among ligands, the receptor, and ligand-receptor complexes form the fundamental 

basis for rational drug design. A pharmacophore defines a pattern of chemical and 

steric features essential for the interaction of a ligand with its receptor. The robustness 

of the approach infers from its simplicity. Only a very few feature types are required 

to characterize most of the commonly observed protein-ligand interaction types, such 

as hydrogen bond donors/acceptors, aromatic interactions, hydrophobic interactions, 

ionic and metal interactions. These are usually depicted as colored spheres, disks or 
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graphs, and directed features (hydrogen bonding, pi-stacking and metal binding 

features) generally include a vector to indicate their orientations, if determinable. 

Classic pharmacophore models are derived in a ligand-based or structure-based 

approach. For the ligand-based approach the ligands are superimposed based on 

matching chemically similar moieties, while for the structure-based approach analyses 

of the receptor or receptor-ligand complexes are used to derive pharmacophore 

models. In cases where the target itself or target structure are unknown or not 

amenable, ligand-based techniques are typically the only approaches available. 

Development of a pharmacophore model is an iterative process, attempting to 

derive the optimum selection of ligands, chemical features and geometric constraints 

during the model training phase. Rigid templates are particularly favorable for ligand-

based modeling, as they allow the conformational degrees of freedom to be narrowed 

down. Once the model has been validated, large-scale virtual screening is rapid. 

Pharmacophore models allow qualitative and quantitative predictions on the 

metabolism of small organic molecules. A pharmacophore model can only cover the 

chemical space considered for training of the model and, as a matter of fact, only a 

particular binding mode. This is in contrast to protein-ligand docking, where the 

protein-ligand interaction motifs are taken as a global model of the receptor. In 

general, the limitation of pharmacophore models to a specific binding mode is 

unlikely to affect the applicability of this approach. If required, multiple 

pharmacophore models can be constructed to account for the different interaction 

patterns. However, in the case of highly promiscuous binding sites such as in 

CYP3A4 this may be a limiting factor.78 

Plasticity of the binding site can be reflected in classical pharmacophore models in 

part by adjustment of tolerances surrounding the pharmacophore feature points. For 
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example, molecular dynamics simulations can be used to quantify and characterize 

target flexibility at an atomic level of detail. These observations can then be included 

in pharmacophore models for scoring of the fitness of molecules to the 

pharmacophoric constraints. 

Reported pharmacophore models have been summarized in a number of 

comprehensive reviews,176, 233-237 and therefore only a brief overview is presented 

here. 

Qualitative and quantitative pharmacophore models have been developed for the 

classification/prediction of substrates and inhibitors of all CYP isoforms important to 

drug discovery, including CYP1A2, 2A6, 2B6, 2C9, 2D6, 3A4, 3A5 and 3A7. For 

example CYP2D6 includes a characteristic positive charge about 5 - 7 Å distant from 

the oxidation site as well as an aromatic interaction.233 Various pharmacophore 

models were proposed with respect to the underlying metabolic reaction.233, 236 Most 

of the CYP2C9 pharmacophore models include a hydrophobic/aromatic and a 

negatively charged interaction area.233, 238 However, non-anionic substrates of 

CYP2C9 are known,239 which illustrates the possibility of bias introduced into a 

pharmacophore model by the training data. In contrast to CYP2C9, 3A4 appears to 

have no obvious specific pharmacophoric requirements. This isoform has often been 

reported as being a particularly challenging target for computational approaches, but 

at the same time, it is the most important CYP for xenobiotic metabolism.176 Schuster 

et al.240 have reported a collection of eleven structure-based and ligand-based 

pharmacophore models for the identification of substrates and inhibitors binding to 

various CYP isoforms. 
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A single pharmacophore model cannot characterize a promiscuous ligand binding 

site. Mao et al.213 have shown for CYP3A4 that the generation of several local models 

trained on distinct datasets performs best. 

Overall, pharmacophore-based methods have contributed significantly to the 

understanding of CYP ligand binding. They are powerful, accurate tools for local 

predictions, driving lead optimization and rapid pre-filtering. Their moderate 

capabilities to reflect the global characteristics of promiscuous, highly plastic 

interaction sites may limit their applicability in CYP modeling. 

Protein-ligand docking 

Protein-ligand docking can be used for predicting the binding mode of small 

organic molecules to their target as well as providing an estimate of the binding 

affinity, although most docking tools estimate the geometry of binding with a scoring 

function that is relevant to only this property and not to binding affinity. The ligand 

and protein conformations used as a starting configuration can be decisive for a 

docking algorithm. 

Docking has also been successfully applied to predict and rationalize drug-drug 

interactions on CYP2D6. Twenty established drugs were investigated for their ability 

to bind to a homology model of CYP2D6. Out of the thirteen drugs predicted to 

inhibit this CYP, eleven were experimentally confirmed. In the course of this study, 

an aromatic N-hydroxy metabolite of metoclopramide, a drug to treat nausea and 

vomiting, was identified and experimentally confirmed.241 

Using the same isoform, docking via AutoDock into CYP1A2 homology models 

has been performed, followed by COMBINE and GRID/GOLPE analyses of twelve 

heterocyclic amines. In this case it was found that including structural information for 
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the alignment of compounds did indeed improved model performance, in agreement 

with previous findings.242 

Combined approaches for interaction prediction 

Leong et al.243 used a pharmacophore ensemble/SVM approach to increase the 

predictive power of a model for CYP2A6 interaction. Protein flexibility was 

simulated by employing three individual pharmacophore models. 

An interesting method employing MIFs is the proteochemometric analysis of CYP 

sequences to relate these to the activity of inhibitors.244 Using this approach, 

Kontijevskis et al. aimed to establish a general model for the prediction of isoform-

specific inhibition rates and to gain knowledge about properties of the different CYP 

isoforms and their inhibitors. A dataset of 375 structurally diverse inhibitors with 

reported IC50 values for 14 different CYP isoforms was collected and GRIND 

descriptors were calculated for all of these small organic molecules. The protein 

sequences of 14 CYP isoforms were aligned and analyzed for characteristic patterns. 

Six groups of aligned amino acid positions showed the same variance throughout the 

sequence alignment. These groups consist of two or more amino acid positions with 

binary sequence variability, encoded in binary descriptor values. Similar descriptors 

were also created for 20 additional amino acid positions that differed between two 

amino acids, but without co-variation with any other sequence position. Finally, the 

remaining 388 amino acid positions were encoded by five z-scale properties,245 which 

represent principal components for a set of measured physicochemical properties of 

amino acids. Principal component analysis (PCA) was employed to reduce the 

number of descriptors for both CYPs and ligands, cross-terms were generated to 

describe ligand-CYP interactions, and PLS was applied for generation of the models. 
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Results of the model validation indicated a RMSD of prediction of 0.65 to 0.81 for the 

prediction of new ligand data on the investigated 14 CYP isoforms. Novel insights 

into SARs derived from the MIF-based analysis may help designing drugs with 

favorable metabolic profiles. The method could also be used for fast metabolic 

profiling in virtual screening. 

Bazeley et al.246 analyzed the binding affinity of substrates of CYP2D6 using a 

combination of machine learning, protein modeling and protein-ligand docking 

algorithms. Structural models of various CYPs were aligned and analyzed for 

structurally conserved regions, which were conformationally preserved during 

subsequent simulated annealing runs. This resulted in twenty distinct protein 

conformations reflecting the flexibility of CYP2D6. 82 small organic molecules with 

known affinities for CYP2D6 were docked to these protein conformations. The 

docking scores were used as attributes for ANN model generation. Also compound-

specific descriptors were calculated and employed as attributes for model building. 

The best performing, optimized ANN model gave a prediction accuracy of 85%. 

Attribute selection for the ANN model identified docking scores of three of the 20 

protein conformations as being dominant for the predictability of binding affinity. 

From the ligand perspective, the number of positive charges, ALogP and the number 

of aromatic rings were identified as the most important descriptors. 

VirtualToxLab247 uses a combination of multi-dimensional QSAR and flexible 

docking for the prediction of the interactions of small organic molecules with 16 anti-

targets, including CYP450 1A2, 2A13, 2C9, 2D6 and 3A4. Interactions of query 

molecules with any of the 16 target structures can be visualized. 

Predicting CYP induction by xenobiotics 
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CYP induction is caused by either an amplified de novo synthesis of the protein or, 

less frequently, by a decelerated enzyme degradation pathway.5 Depending on the 

CYP isoform involved in DDIs, enzyme induction can cause minor to substantial 

clinical effects.177 CYP isoforms known to be induced in humans include CYP1A, 

2A, 2B, 2C, 2E1 and 3A.248 

Nuclear receptors are a primary control mechanism for gene transcription and, 

hence, a molecule that activates a nuclear receptor may function as an enzyme 

inducer. Among the nuclear receptors most important for the transcription of CYPs 

are the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and 

pregnane X receptor (PXR).5, 177 These are also referred to as xenobiotic-activated 

receptors (XARs). They are known to be highly promiscuous sensors, binding a set of 

structurally diverse xenobiotics, in particular those that are hydrophobic.182 For 

example, PXR binds rifampicin, dexamethasone, bosentan and artimisinin 

antimalarials. Additionally, the peroxisome proliferator activated receptor (PPAR) 

and the glucocorticoid receptor (GR) have also been shown to mediate CYP enzyme 

expression7 and inducing xenobiotics have been reported to bind to the hepatocyte 

nuclear factor-4α (HNF4α) and the vitamin D receptor.182 For more detail on 

xenobiotic inducers of CYPs, the interested reader is referred to excellent review on 

modeling CYP substrates, inhibitors, activators and inducers by de Lisle et al.249 

In silico methods have been reported for many of these receptors but their 

promiscuity, resulting from their flexibility, their extended binding pockets and their 

non-specific, lipophilic interaction features make them challenging targets. A number 

of in silico methods in particular struggle with the problem of multiple binding modes 

for one target. In the case of pharmacophore models, individual models generally 

need to be created for each binding mode. 
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Pregnane X receptor (PXR) 

PXR is one of the key xenobiotics sensing enzymes regulating the expression of 

CYP 3A4.248 It is known for its promiscuity, being able to accommodate a large range 

of diverse chemical compounds within the binding site. Single ligands can be 

observed to bind in multiple modes, which adds to the complexity of understanding 

the binding of antagonists at this receptor. Xue et al.,250 who aimed to develop 

antagonists by introducing sterically hindering moieties to known agonists, were 

unable to find any, due to the enormous promiscuity of this protein. 

QSAR studies including a PLS approach in combination with VolSurf descriptors 

have been used to derive models for ligands of human PXR and AhR.251 Ung et al.252 

employed the machine learning methods SVM, k-nearest neighbor and probabilistic 

neural network (PNN) for classifying activators and non-activators. Prediction 

accuracy rates for a 10-fold cross validation test were found in the range of 61% to 

87%, depending on the compound class (activators and non-activators). 

Also, a number of pharmacophore-based studies have been reported that aim to 

derive models identifying compounds binding to PXR (see Refs. 253-255). These 

models in general include three to five hydrophobic areas as well as one or two 

hydrogen bonding features. Yasuda et al.256 used several pharmacophore models 

published in earlier studies to assess their potential in predicting PXR activators. They 

found two of these pharmacophore models obtained reasonable prediction accuracy, 

while the model based on the most diverse training set had inferior performance. This 

is likely to be caused by the presence of more than one binding mode, which cannot 

be adequately covered by a single model. Intriguingly, dicloxacillin was found to be 

the only PXR binder that could be successfully mapped with any of the three 
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investigated pharmacophore models. The authors also employed the docking software 

FlexX to investigate the binding of known activators to PXR. 

Gao et al.257 introduced new hydrophilic moieties to PXR activators to lower their 

activity on this receptor. The optimization strategies were developed from results of a 

protein-ligand docking approach.  

In a recently published study assessing the performance and reliability of PXR, 

using in vitro assays and in silico modeling approaches, the physicochemical 

properties of 37 marketed drugs and their interaction with PXR were examined.258 

The computational analyses pointed out that descriptors for molecular weight and 

shape of a ligand are decisive for its potential to bind to PXR. Compounds of 

molecular weight lower than 300 as well as compounds that have a molecular shape 

which does not correspond to the inverse shape of the protein binding site are unlikely 

to exhibit activity. Strong binders show favorable hydrophobic interactions and 

hydrogen bonding features within the binding pocket, as observed during docking 

studies using GLIDE.53 Binding promiscuity is facilitated by the flexibility of the 

protein but also by the conformational space accessible to the binders. 

Aryl hydrocarbon receptor (AhR) 

AhR is a cytosolic transcription factor that is a key regulator for CYP1A1 and 

CYP1A2 in humans.248 Besides the induction of these CYP isoforms, AhR signaling 

also induces a number of other enzymes including UDP-glucuronosyltransferase 1A 

(UGT1A1) and glutathione S-transferase A2 (GSTA2). 

In addition to the QSAR models for human AhR and PXR presented above, recent 

examples include the work of Bisson et al.,259 who derived homology models of the 

AhR PAS domain to investigate intra- and inter-species differences in ligand binding 
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using Internal Coordinate Modeling ICM.260 Amongst other observations, their 

approach led to the successful identification of two flavonoids, pinocembrin and 5-

hydroxy-7-methoxyflavone, which are experimentally shown to be promoters of 

nuclear translocation and transcriptional activation of AhR and AhR-dependent 

induction of endogenous target genes. As an example of an implementation in a 

commercial software product, a model for the prediction of ligand activity on AhR is 

included in VirtualToxLab. 

Constitutive androstane receptor (CAR) 

The constitutive androstane receptor (CAR) is responsible for the induction of 

CYP2B6, which is a key enzyme for the metabolism of a large number of drugs 

including human immunodeficiency virus (HIV) therapeutics, chemotherapeutics and 

opioids.248 

Using a pharmacophore-based approach, CAR ligands were reported to show planar 

structures with a hydrogen bond acceptor and two to three hydrophobic areas.261 

Jyrkkärinne et al.262 used pharmacophore-based virtual screening to identify novel 

agonists of CAR and employed these data to develop a GRID/GOLPE-based 3D-

QSAR model in an attempt to explain activity of compounds on CAR. For a leave-

20%-out validation method, the model obtained a q2 value of 0.68 and a standard 

error of prediction of 0.93. Further to that, docking studies of CAR agonists on the X-

ray structure of human CAR revealed several key interactions for ligand binding. 

More recently, homology models derived for CAR, AhR, and PXR (all in the rat) 

were used as a structural basis for docking a number of organic pollutants such as 

polybrominated dibenzofurans and polybrominated diphenyl ethers to these nuclear 

hormone receptors, with the aim of identifying potential binders to these proteins.263 
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The results of this retrospective study were found to be in agreement with results of 

experiments and suggest that such structure-based modeling methods represent 

valuable tools for the evaluation of effects of small organic molecules on nuclear 

hormone receptors. 

PERSPECTIVE AND OUTLOOK 

Metabolic properties are decisive for the discovery, development and market 

success of drugs, nutritional supplements and agrochemicals. Interactions of 

xenobiotics with key metabolizing enzymes may lead to considerable changes in 

kinetics, which may cause toxic effects or failure of action. Genetic polymorphism 

adds another layer of complexity to the problem. 

Numerous drug candidates and agrochemicals have failed in the past and novel 

entities are still failing because of unfavorable metabolic profiles, despite substantial 

efforts being made in industry to predict such problems early and to develop strategies 

to counter them. 

A plethora of computational methods, both ligand-based and structure-based have 

been developed, which can provide decisive insights on the metabolic fate of 

xenobiotics. They allow the prediction of likely sites of metabolism (SOMs), the 

chemical structure of potential metabolites and inhibition and induction of key 

enzymes involved in xenobiotic metabolism. For all of these areas of research, a 

number of success stories have been published, as discussed in this review. 

The complexity of predicting xenobiotic metabolism suggests that one particular 

algorithm will not show superior performance in all of the three domains discussed 

here. Rather, the combination of techniques is most promising to lead to valid 

conclusions. 
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SOM prediction is feasible, with state-of-the-art computational methods 

successfully identifying SOMs among the three highest-ranked atom positions in a 

range of 70-90% for most cases. Even though relative ranking of atom positions is 

feasible, current methods do not make accurate predictions for the absolute likelihood 

of a certain biotransformation. This limitation makes it difficult if not impossible to 

draw any quantitative conclusions on the metabolic liability of a certain molecule and, 

hence, to compare different molecules with respect to their metabolic stability. In 

particular, the combination of individual methods covering different aspects of the 

biotransformation process could be expected to lead to a potential boost in prediction 

accuracy. Systems biology approaches (not reviewed here) have a major contribution 

to make, by incorporation of multiple models which take into account not only the 

likelihood of metabolism at a site in a molecule at a specified rate, but also the 

molecules bioavailability and concentration at the tissue site of metabolism. A much 

more complicated scenario. 

Knowledge-driven approaches such as expert systems and data mining techniques 

allow extrapolation of the structure to likely metabolites. Most challenging in this 

domain is addressing the combinatorial explosion problem, which arises from the 

virtually unlimited possibilities for processing generations of metabolites. Advanced 

reasoning rules and knowledge-based potentials considered for metabolite ranking, as 

well as consideration of physicochemical properties of the generated metabolites 

(such as logP) attempt to address this problem as well as possible. 

Also, a respectable number of computational approaches have been developed and 

applied to the prediction of direct and indirect interactions of xenobiotics with key 

metabolic enzymes. CYPs represent the primary focus of research and inhibition of 

this enzyme family has been successfully predicted by a variety of computational 
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approaches including (3D)-QSAR and machine learning methods, pharmacophore- 

and docking-based approaches, as well as combinations of these. The expression of 

CYPs is steered by nuclear receptors such as PXR, AhR and CAR, to which similar 

methodologies have been applied, but to a lower extent. 

Methods developed in academia all too often lack maturation of the promising 

concepts they are based upon or an implementation of these algorithms into accessible 

-in the best case- user-friendly software packages. Tools freely available to the 

scientific community are still scarce. Further, the limited data related to metabolism 

(experimentally-derived SOMs, structures of metabolites, enzyme inhibition and 

induction data) are a bottleneck for method development. However, recent major 

releases of bioactivity data to the public, such as ChEMBL,264 World Of Molecular 

BioAcTivity (WOMBAT)265 and others,199 give promising indications of a paradigm 

shift in the scientific community, fostering the open publication of experimental data. 

Also with regard to structure-based approaches there is still enormous potential left 

for further development. Even though several crystal structures of a variety of CYPs 

have become available, their numbers are not sufficient to adequately represent, in 

particular, flexibility of the enzyme catalytic site, though homology modeling and 

MD simulation techniques can help to overcome some of these limitations. For 

instance, for the development of agrochemicals it would be of utmost importance to 

have structures available of pest species. Expeditious technological progress in 

structure determination will improve this situation in the future and make enzyme-

focused methods other than CYPs even more powerful and important. An improved 

data situation will also contribute to solving cardinal problems of structure-based 

approaches, such as target flexibility (in particular for CYPs), solvent, entropic effects 

and, as a consequence, affinity and rate of reaction prediction. 
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However, it is not expected that computational methods will substitute in vitro and 

in vivo methods in the foreseeable future. In fact, it is crucial for the generation of 

computational models to be based on further enhanced assay technology. 

Computational methods are still limited by the reliability of assay systems and the 

information content of the read out. 
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ABBREVIATIONS 

ADME absorption, distribution, metabolism and excretion 

AhR aryl hydrocarbon receptor 

AMBER Assisted Model Building with Energy Refinement 

ANN artificial neural network 

ANNC artificial neural network classification 

ANNE artificial neural network ensemble 

CAR constitutive androstane receptor 

CHARMM Chemistry at HARvard Molecular Mechanics 

COMBINE COMparative BINding Energy 

CoMFA Comparative Molecular Field Analysis 

CYP cytochrome P450 

DDI drug-drug interaction 

DFT density functional theory 

EPR electron paramagnetic resonance 

FEP free energy perturbation 

FF force field 

GLIDE Grid-based LIgand Docking with Energetics 

GRIND GRid alignment INDependent 

GOLD Genetic Optimization for Ligand Docking 

GOLPE Generating Optimal Linear PLS Estimations 

GSTA2 glutathione S-transferase A2 

HIV human immunodeficiency virus 

ICM Internal Coordinate Modeling 
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KEGG Kyoto Encyclopedia of Genes and Genomes 

k-NN k-nearest neighbor 

LC liquid chromatography 

LIE linear interaction energy 

MAO monoamine oxidase 

MC Monte Carlo 

MD molecular dynamics 

MDEA (R)-3,4-methylenedioxy-N-ethylamphetamine 

MIF molecular interaction field 

MM molecular mechanics 

MS mass spectrometry 

NADPH nicotinamide adenine dinucleotide phosphate 

NCE novel chemical entity 

NCGC National Institutes of Health Chemical Genomics Center 

OECD Organisation for Economic Co-operation and Development 

PCA principal component analysis 

PLOP Protein Local Optimization Program 

PLS partial least squares 

PME Particle Mesh Ewald 

PNN probabilistic neural network 

PXR pregnane X receptor 

QM quantum mechanics 

QM/MM quantum mechanics/molecular mechanics 

QSAR quantitative structure-activity relationship 

RAMBA retinoic acid metabolizing blocking agent 
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RMSD root mean square deviation 

RMSF root mean square fluctuation 

ROC receiver operating characteristic 

ROCS rapid overlay of chemical structures 

RS-predictor RegioSelectivity predictor 

SAR structure-activity relationship 

SASA solvent-accessible surface area 

SMARTS SMiles ARbitrary Target Specification 

SOM site of metabolism 

SVM support vector machine 

SyGMa Systematic Generation of potential Metabolites 

TI thermodynamic integration 

TIMES TImes MEtabolism Simulator 

UGT1A1 UDP-glucuronosyltransferase 1A 

UM-BBD University of Minnesota Biocatalysis/Biodegradation Database 

UM-PPS University of Minnesota Pathway Prediction System 

WOMBAT World Of Molecular BioAcTivity 

XAR xenobiotic-activated receptor 
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35. Pérez-Nueno, V. I.; Ritchie, D. W. Using consensus-shape clustering to 

identify promiscuous ligands and protein targets and to choose the right query for 

shape-based virtual screening. J. Chem. Inf. Model. 2011, 51, 1233-1248. 

36. Nicholls, A.; Grant, J. A. Molecular shape and electrostatics in the encoding of 

relevant chemical information. J. Comput.-Aided Mol. Des. 2005, 19, 661-686. 

37. Sykes, M. J.; McKinnon, R. A.; Miners, J. O. Prediction of metabolism by 

cytochrome P450 2C9: Alignment and docking studies of a validated database of 

substrates. J. Med. Chem. 2008, 51, 780-791. 

38. Goodford, P. J. A computational procedure for determining energetically 

favorable binding sites on biologically important macromolecules. J. Med. Chem. 

1985, 28, 849-857. 

39. von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; 

Van Phan, T.; Smythe, M. L.; White, H. F.; Oliver, S. W. Rational design of potent 

sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418-423. 

40. Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; 

Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the 

perspective of the chemist. J. Med. Chem. 2005, 48, 6970-6979. 

41. Jorgensen, W. L. The many roles of computation in drug discovery. Science 

(New York, N.Y.) 2004, 303, 1813-1818. 

42. Mukherjee, S.; Balius, T. E.; Rizzo, R. C. Docking validation resources: 

Protein family and ligand flexibility experiments. J. Chem. Inf. Model. 2010, 50, 

1986-2000. 

43. Kirchmair, J.; Spitzer, G.; Liedl, K. R. Consideration of water and solvation 

effects in virtual screening. In Virtual screening – principles, challenges, and 

practical guidelines, Sotriffer, C., Ed. Wiley-VCH: Weinheim, Germany, 2011; pp 

263-290. 

44. de Graaf, C.; Pospisil, P.; Pos, W.; Folkers, G.; Vermeulen, N. P. E. Binding 

mode prediction of cytochrome P450 and thymidine kinase protein-ligand complexes 

by consideration of water and rescoring in automated docking. J. Med. Chem. 2005, 

48, 2308-2318. 

45. Goodsell, D. S.; Olson, A. J. Automated docking of substrates to proteins by 

simulated annealing. Proteins 1990, 8, 195-202. 

46. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking 

method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470-

489. 

47. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and 

validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727-

748. 

48. de Graaf, C.; Oostenbrink, C.; Keizers, P. H. J.; van Der Wijst, T.; Jongejan, 

A.; Vermeulen, N. P. E. Catalytic site prediction and virtual screening of cytochrome 

P450 2D6 substrates by consideration of water and rescoring in automated docking. J. 

Med. Chem. 2006, 49, 2417-2430. 

49. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. 

Empirical scoring functions: I. The development of a fast empirical scoring function 



87 

to estimate the binding affinity of ligands in receptor complexes. J. Comput.-Aided 

Mol. Des. 1997, 11, 425-445. 

50. Santos, R.; Hritz, J.; Oostenbrink, C. Role of water in molecular docking 

simulations of cytochrome P450 2D6. J. Chem. Inf. Model. 2010, 50, 146-154. 

51. Vasanthanathan, P.; Hritz, J.; Taboureau, O.; Olsen, L.; Jørgensen, F. S.; 

Vermeulen, N. P. E.; Oostenbrink, C. Virtual screening and prediction of site of 

metabolism for cytochrome P450 1A2 ligands. J. Chem. Inf. Model. 2009, 49, 43-52. 

52. Unwalla, R. J.; Cross, J. B.; Salaniwal, S.; Shilling, A. D.; Leung, L.; Kao, J.; 

Humblet, C. Using a homology model of cytochrome P450 2D6 to predict substrate 

site of metabolism. J. Comput.-Aided Mol. Des. 2010, 24, 237-256. 

53. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; 

Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; 

Francis, P.; Shenkin, P. S. Glide: A new approach for rapid, accurate docking and 

scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 

1739-1749. 

54. Berellini, G.; Cruciani, G.; Mannhold, R. Pharmacophore, drug metabolism, 

and pharmacokinetics models on non-peptide AT1, AT2, and AT1/AT2 angiotensin II 

receptor antagonists. J. Med. Chem. 2005, 48, 4389-4399. 

55. Zamora, I.; Afzelius, L.; Cruciani, G. Predicting drug metabolism: A site of 

metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem. 2003, 

46, 2313-2324. 

56. MetaSite user manual 3.1.2. Molecular Discovery: Ponte San Giovanni - 

Perugia, Italy, 2008. 

57. Vaz, R. J.; Zamora, I.; Li, Y.; Reiling, S.; Shen, J.; Cruciani, G. The 

challenges of in silico contributions to drug metabolism in lead optimization. Expert 

Opin. Drug Metab. Toxicol. 2010, 6, 851-861. 

58. Zhou, D.; Afzelius, L.; Grimm, S. W.; Andersson, T. B.; Zauhar, R. J.; 

Zamora, I. Comparison of methods for the prediction of the metabolic sites for 

CYP3A4-mediated metabolic reactions. Drug Metab. Dispos. 2006, 34, 976-983. 

59. Trunzer, M.; Faller, B.; Zimmerlin, A. Metabolic soft spot identification and 

compound optimization in early discovery phases using MetaSite and LC-MS/MS 

validation. J. Med. Chem. 2009, 52, 329-335. 

60. de Groot, M. J.; Ackland, M. J.; Horne, V. A.; Alex, A. A.; Jones, B. C. Novel 

approach to predicting P450-mediated drug metabolism: Development of a combined 

protein and pharmacophore model for CYP2D6. J. Med. Chem. 1999, 42, 1515-24. 

61. Rydberg, P.; Gloriam, D.; Olsen, L. The SMARTCyp cytochrome P450 

metabolism prediction server. Bioinformatics 2010, 26, 2988-2989. 

62. Rydberg, P.; Gloriam, D. E.; Zaretzki, J.; Breneman, C.; Olsen, L. 

SMARTCyp: A 2D method for prediction of cytochrome P450-mediated drug 

metabolism. ACS Med. Chem. Lett. 2010, 1, 96-100. 

63. Rydberg, P.; Olsen, L. Ligand-based site of metabolism prediction for 

cytochrome P450 2D6. ACS Med. Chem. Lett. 2011, 3, 69-73. 

64. StarDrop, version 5.0; Optibrium: Cambridge, UK, 2011. 

65. Hasegawa, K.; Koyama, M.; Funatsu, K. Quantitative prediction of 

regioselectivity toward cytochrome P450/3A4 using machine learning approaches. 

Mol. Inf. 2010, 29, 243 - 249. 

66. Molecular Operating Environment (MOE), version 2011.10; Chemical 

Computing Group: Montreal, QC, 2011. 



88 

67. Mu, F.; Unkefer, C. J.; Unkefer, P. J.; Hlavacek, W. S. Prediction of metabolic 

reactions based on atomic and molecular properties of small-molecule compounds. 

Bioinformatics 2011, 27, 1537-1545. 

68. Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for 

integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 

2012, 40, D109-D114. 

69. Kuhn, B.; Jacobsen, W.; Christians, U.; Benet, L. Z.; Kollman, P. A. 

Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: 

Insights from docking, molecular dynamics, and quantum chemical calculations. J. 

Med. Chem. 2001, 44, 2027-2034. 

70. Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D. DOCK 4.0: Search 

strategies for automated molecular docking of flexible molecule databases. J. 

Comput.-Aided Mol. Des. 2001, 15, 411-428. 

71. Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham III, T. 

E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer 

programs for applying molecular mechanics, normal mode analysis, molecular 

dynamics and free energy calculations to simulate the structural and energetic 

properties of molecules. Comput. Phys. Commun. 1995, 91, 1-41. 

72. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; 

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The AMBER biomolecular 

simulation programs. J. Comput. Chem. 2005, 26, 1668-1688. 

73. Oh, W. S.; Kim, D. N.; Jung, J.; Cho, K.-H.; No, K. T. New combined model 

for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. 

J. Chem. Inf. Model. 2008, 48, 591-601. 

74. Korzekwa, K. R.; Jones, J. P.; Gillette, J. R. Theoretical studies on cytochrome 

P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions. J. 

Am. Chem. Soc. 1990, 112, 7042-7046. 

75. Jones, J. P. Computational models for cytochrome P450: A predictive 

electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab. 

Dispos. 2002, 30, 7-12. 

76. Jung, J.; Kim, N. D.; Kim, S. Y.; Choi, I.; Cho, K.-H.; Oh, W. S.; Kim, D. N.; 

No, K. T. Regioselectivity prediction of CYP1A2-mediated phase I metabolism. J. 

Chem. Inf. Model. 2008, 48, 1074-1080. 

77. Amaro, R. E.; Li, W. W. Emerging methods for ensemble-based virtual 

screening. Curr. Top. Med. Chem. 2010, 10, 3-13. 

78. Ekroos, M.; Sjögren, T. Structural basis for ligand promiscuity in cytochrome 

P450 3A4. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 13682-13687. 

79. Teixeira, V. H.; Ribeiro, V.; Martel, P. J. Analysis of binding modes of 

ligands to multiple conformations of CYP3A4. Biochim. Biophys. Acta 2010, 1804, 

2036-2045. 

80. Hritz, J.; de Ruiter, A.; Oostenbrink, C. Impact of plasticity and flexibility on 

docking results for cytochrome P450 2D6: A combined approach of molecular 

dynamics and ligand docking. J. Med. Chem. 2008, 51, 7469-7477. 

81. Keizers, P. H. J.; de Graaf, C.; de Kanter, F. J. J.; Oostenbrink, C.; Feenstra, 

K. A.; Commandeur, J. N. M.; Vermeulen, N. P. E. Metabolic regio- and 

stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-n-

alkylamphetamines: In silico predictions and experimental validation. J. Med. Chem. 

2005, 48, 6117-6127. 



89 

82. Moors, S. L. C.; Vos, A. M.; Cummings, M. D.; Van Vlijmen, H.; Ceulemans, 

A. Structure-based site of metabolism prediction for cytochrome P450 2D6. J. Med. 

Chem. 2011, 54, 6098-6105. 

83. Seeliger, D.; Haas, J. r.; de Groot, B. L. Geometry-based sampling of 

conformational transitions in proteins. Structure 2007, 15, 1482-1492. 

84. Li, J.; Schneebeli, S. T.; Bylund, J.; Farid, R.; Friesner, R. A. IDSite: An 

accurate approach to predict P450-mediated drug metabolism. J. Chem. Theory 

Comput. 2011, 7, 3829–3845. 

85. Prime, version 3.0.111; Schrödinger: New York, NY, 2011. 

86. Jaguar, version 3.0.111; Schrödinger: New York, NY, 2011. 

87. Walker, G. S.; O'Connell, T. N. Comparison of LC-NMR and conventional 

NMR for structure elucidation in drug metabolism studies. Expert Opin. Drug Metab. 

Toxicol. 2008, 4, 1295-1305. 

88. Darvas, F. In Metabolexpert: An expert system for predicting metabolism of 

substances, 1987; Reidel: 1987; pp 71-81. 

89. Klopman, G.; Dimayuga, M.; Talafous, J. Meta 1. A program for the 

evaluation of metabolic transformation of chemicals. J. Chem. Inf. Model. 1994, 34, 

1320-1325. 

90. Marchant, C. A.; Briggs, K. A.; Long, A. In silico tools for sharing data and 

knowledge on toxicity and metabolism: DEREK for Windows, METEOR, and 

VITIC. Toxicol. Mech. Methods 2008, 18, 177-187. 

91. Gao, J.; Ellis, L. B. M.; Wackett, L. P. The University of Minnesota 

Biocatalysis/Biodegradation Database: Improving public access. Nucleic Acids Res. 

2010, 38, D488-491. 

92. Ridder, L.; Wagener, M. SyGMa: Combining expert knowledge and empirical 

scoring in the prediction of metabolites. ChemMedChem 2008, 3, 821-832. 

93. Mekenyan, O. G.; Dimitrov, S. D.; Pavlov, T. S.; Veith, G. D. A systematic 

approach to simulating metabolism in computational toxicology. I. The TIMES 

heuristic modelling framework. Curr. Pharm. Des. 2004, 10, 1273-1293. 

94. JChem - Metabolizer software module, version 5.7.1; ChemAxon: Budapest, 

Hungary, 2011. 

95. Tarcsay, A.; Kiss, R.; Keserű, G. M. Site of metabolism prediction on 

cytochrome P450 2C9: A knowledge-based docking approach. J. Comput.-Aided Mol. 

Des. 2010, 399-408. 

96. Otyepka, M.; Skopalík, J.; Anzenbacherová, E.; Anzenbacher, P. What 

common structural features and variations of mammalian P450s are known to date? 

Biochim. Biophys. Acta 2007, 1770, 376-389. 

97. Lewis, D. F. V.; Ito, Y. Human CYPs involved in drug metabolism: 

Structures, substrates and binding affinities. Expert Opin. Drug Metab. Toxicol. 2010, 

6, 661-674. 

98. Williams, P. A.; Cosme, J.; Ward, A.; Angova, H. C.; Vinkovic, D. M.; Jhoti, 

H. Crystal structure of human cytochrome P4502C9 with bound warfarin. Nature 

2003, 424, 464-468. 

99. Cruciani, G.; Aristei, Y.; Vianello, R.; Baroni, M. GRID-derived molecular 

interaction fields for predicting the site of metabolism in human cytochromes. 

Methods Princ. Med. Chem. 2006, 27, 273-290. 

100. Petrek, M.; Otyepka, M.; Banas, P.; Kosinova, P.; Koca, J.; Damborsky, J. 

CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC 

Bioinformatics 2006, 7, 316. 



90 

101. Cojocaru, V.; Winn, P. J.; Wade, R. C. The ins and outs of cytochrome P450s. 

Biochim. Biophys. Acta, Gen. Subj. 2007, 1770, 390-401. 

102. Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 

enzymes: Their structure, reactivity, and selectivity-modeled by QM/MM 

calculations. Chem. Rev. 2010, 110, 949-1017. 

103. Schöneboom, J. C.; Lin, H.; Reuter, N.; Thiel, W.; Cohen, S.; Ogliaro, F.; 

Shaik, S. The elusive oxidant species of cytochrome P450 enzymes: Characterization 

by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J. 

Am. Chem. Soc. 2002, 124, 8142-8151. 

104. Ogliaro, F.; Cohen, S.; de Visser, S. P.; Shaik, S. Medium polarization and 

hydrogen bonding effects on compound I of cytochrome P450: What kind of a radical 

is it really? J. Am. Chem. Soc. 2000, 122, 12892-12893. 

105. Rittle, J.; Green, M. T. Cytochrome P450 Compound I: Capture, 

characterization, and C-H bond activation kinetics. Science 2010, 330, 933-937. 

106. Collins, J. R.; Camper, D. L.; Loew, G. H. Valproic acid metabolism by 

cytochrome-P450 - a theoretical-study of stereoelectronic modulators of product 

distribution. J. Am. Chem. Soc. 1991, 113, 2736-2743. 

107. Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; 

Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; 

Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, 

K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. 

Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; 

York, D. M.; Karplus, M. CHARMM: The biomolecular simulation program. J. 

Comput. Chem. 2009, 30, 1545-1614. 

108. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, 

S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, 

and dynamics calculations. J. Comput. Chem. 1983, 4, 187-217. 

109. Bathelt, C. M.; Zurek, J.; Mulholland, A. J.; Harvey, J. N. Electronic structure 

of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J. 

Am. Chem. Soc. 2005, 127, 12900-12908. 

110. Oda, A.; Yamaotsu, N.; Hirono, S. New AMBER force field parameters of 

heme iron for cytochrome P450s determined by quantum chemical calculations of 

simplified models. J. Comput. Chem. 2005, 26, 818-826. 

111. Seifert, A.; Tatzel, S.; Schmid, R. D.; Pleiss, J. Multiple molecular dynamics 

simulations of human P450 monooxygenase CYP2C9: The molecular basis of 

substrate binding and regioselectivity toward warfarin. Proteins: Struct., Funct., 

Bioinf. 2006, 64, 147-155. 

112. Favia, A. D.; Cavalli, A.; Masetti, M.; Carotti, A.; Recanatini, M. Three-

dimensional model of the human aromatase enzyme and density functional 

parameterization of the iron-containing protoporphyrin IX for a molecular dynamics 

study of heme-cysteinato cytochromes. Proteins: Struct., Funct., Bioinf. 2006, 62, 

1074-1087. 

113. Autenrieth, F.; Tajkhorshid, E.; Baudry, J.; Luthey-Schulten, Z. Classical 

force field parameters for the heme prosthetic group of cytochrome c. J. Comput. 

Chem. 2004, 25, 1613-1622. 

114. SkopalÍk, J.; Anzenbacher, P.; Otyepka, M. Flexibility of human cytochromes 

P450: Molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, 

which correlate with their substrate preferences. J. Phys. Chem. B 2008, 112, 8165-

8173. 



91 

115. Shahrokh, K.; Orendt, A.; Yost, G. S.; Cheatham, T. E. Quantum 

mechanically derived AMBER-compatible heme parameters for various states of the 

cytochrome P450 catalytic cycle. J. Comput. Chem. 2011, 119-133. 

116. Helms, V.; Deprez, E.; Gill, E.; Barret, C.; Hui Bon Hoa, G.; Wade, R. C. 

Improved binding of cytochrome P450cam substrate analogues designed to fill extra 

space in the substrate binding pocket. Biochemistry 1996, 35, 1485-1499. 

117. Das, B.; Helms, V.; Lounnas, V.; Wade, R. C. Multicopy molecular dynamics 

simulations suggest how to reconcile crystallographic and product formation data for 

camphor enantiomers bound to cytochrome P-450cam. J. Inorgan. Biochem. 2000, 

81, 121-131. 

118. Mathieu, A. P.; LeHoux, J.-G.; Auchus, R. J. Molecular dynamics of substrate 

complexes with hamster cytochrome P450c17 (CYP17): Mechanistic approach to 

understanding substrate binding and activities. Biochim. Biophys. Acta - Gen. Subj. 

2003, 1619, 291-300. 

119. Gorokhov, A.; Negishi, M.; Johnson, E. F.; Pedersen, L. C.; Perera, L.; 

Darden, T. A.; Pedersen, L. G. Explicit water near the catalytic I helix Thr in the 

predicted solution structure of CYP2A4. Biophys. J. 2003, 84, 57-68. 

120. Strobel, S. M.; Szklarz, G. D.; He, Y. Q.; Foroozesh, M.; Alworth, W. L.; 

Roberts, E. S.; Hollenberg, P. F.; Halpert, J. R. Identification of selective mechanism-

based inactivators of cytochromes P-450 2B4 and 2B5, and determination of the 

molecular basis for differential susceptibility. J. Pharmacol. Exp. Ther. 1999, 290, 

445-451. 

121. Park, H.; Lee, S.; Suh, J. Structural and dynamical basis of broad substrate 

specificity, catalytic mechanism, and inhibition of cytochrome P450 3A4. J. Am. 

Chem. Soc. 2005, 127, 13634-13642. 

122. Lampe, J. N.; Brandman, R.; Sivaramakrishnan, S.; de Montellano, P. R. O. 

Two-dimensional NMR and all-atom molecular dynamics of cytochrome P450 

CYP119 reveal hidden conformational substates. J. Biol. Chem. 2010, 285, 9594-

9603. 

123. Brandman, R.; Lampe, J. N.; Brandman, Y.; de Montellano, P. R. O. Active-

site residues move independently from the rest of the protein in a 200 ns molecular 

dynamics simulation of cytochrome P450 CYP119. Arch. Biochem. Biophys. 2011, 

509, 127-132. 

124. Sano, E.; Li, W.; Yuki, H.; Liu, X.; Furihata, T.; Kobayashi, K.; Chiba, K.; 

Neya, S.; Hoshino, T. Mechanism of the decrease in catalytic activity of human 

cytochrome P450 2C9 polymorphic variants investigated by computational analysis. 

J. Comput. Chem. 2010, 31, 2746-2758. 

125. Chang, Y.-T.; Loew, G. Homology modeling, molecular dynamics 

simulations, and analysis of CYP119, a P450 enzyme from extreme 

acidothermophilic archaeon sulfolobus solfataricus. Biochemistry 2000, 39, 2484-

2498. 

126. Roberts, A. G.; Cheesman, M. J.; Primak, A.; Bowman, M. K.; Atkins, W. M.; 

Rettie, A. E. Intramolecular heme ligation of the cytochrome P450 2C9 R108H 

mutant demonstrates pronounced conformational flexibility of the B-C loop region: 

Implications for substrate binding. Biochemistry 2010, 49, 8700-8708. 

127. Asciutto, E. K.; Dang, M.; Pochapsky, S. S.; Madura, J. D.; Pochapsky, T. C. 

Experimentally restrained molecular dynamics simulations for characterizing the open 

states of cytochrome P450cam. Biochemistry 2011, 50, 1664-1671. 



92 

128. Fishelovitch, D.; Hazan, C.; Shaik, S.; Wolfson, H. J.; Nussinov, R. Structural 

dynamics of the cooperative binding of organic molecules in the human cytochrome 

P450 3A4. J. Am. Chem. Soc. 2007, 129, 1602-1611. 

129. Oprea, T. I.; Hummer, G.; Garcia, A. E. Identification of a functional water 

channel in cytochrome P450 enzymes. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 2133-

2138. 

130. Hendrychová, T.; Anzenbacherova, E.; Hudecek, J.; Skopalík, J.; Lange, R.; 

Hildebrandt, P.; Otyepka, M.; Anzenbacher, P. Flexibility of human cytochrome P450 

enzymes: Molecular dynamics and spectroscopy reveal important function-related 

variations. Biochim. Biophys. Acta, Proteins Proteomics 2011, 1814, 58-68. 

131. Helms, V.; Wade, R. C. Hydration energy landscape of the active site cavity in 

cytochrome P450cam. Proteins: Struct., Funct., Bioinf. 1998, 32, 381-396. 

132. Miao, Y.; Baudry, J. Active-site hydration and water diffusion in cytochrome 

P450cam: A highly dynamic process. Biophys. J. 2011, 101, 1493-1503. 

133. Rydberg, P.; Rod, T. H.; Olsen, L.; Ryde, U. Dynamics of water molecules in 

the active-site cavity of human cytochromes P450. J. Phys. Chem. B 2007, 111, 5445-

5457. 

134. Roccatano, D.; Wong, T. S.; Schwaneberg, U.; Zacharias, M. Structural and 

dynamic properties of cytochrome P450 BM-3 in pure water and in a 

dimethylsulfoxide/water mixture. Biopolymers 2005, 78, 259-267. 

135. Roccatano, D.; Wong, T. S.; Schwaneberg, U.; Zacharias, M. Toward 

understanding the inactivation mechanism of monooxygenase P450 BM-3 by organic 

cosolvents: A molecular dynamics simulation study. Biopolymers 2006, 83, 467-476. 

136. Mouawad, L.; Tetreau, C.; Abdel-Azeim, S.; Perahia, D.; Lavalette, D. Co 

migration pathways in cytochrome P450cam studied by molecular dynamics 

simulations. Protein Sci. 2007, 16, 781-794. 

137. Fishelovitch, D.; Shaik, S.; Wolfson, H. J.; Nussinov, R. How does the 

reductase help to regulate the catalytic cycle of cytochrome P450 3A4 using the 

conserved water channel? J. Phys. Chem. B 2010, 114, 5964-5970. 

138. Yaffe, E.; Fishelovitch, D.; Wolfson, H. J.; Halperin, D.; Nussinov, R. 

MolAxis: Efficient and accurate identification of channels in macromolecules. 

Proteins: Struct., Funct., Bioinf. 2008, 73, 72-86. 

139. Krishnamoorthy, N.; Gajendrarao, P.; Thangapandian, S.; Lee, Y.; Lee, K. W. 

Probing possible egress channels for multiple ligands in human CYP3A4: A 

molecular modeling study. J. Mol. Model. 2010, 16, 607-614. 

140. Haider, S. M.; Patel, J. S.; Poojari, C. S.; Neidle, S. Molecular modeling on 

inhibitor complexes and active-site dynamics of cytochrome P450 C17, a target for 

prostate cancer therapy. J. Mol. Biol. 2010, 400, 1078-1098. 

141. Petrek, M.; Kosinova, P.; Koca, J.; Otyepka, M. MOLE: A Voronoi diagram-

based explorer of molecular channels, pores, and tunnels. Structure 2007, 15, 1357-

1363. 

142. Markwick, P. R. L.; Pierce, L. C. T.; Goodin, D. B.; McCammon, J. A. 

Adaptive accelerated molecular dynamics (Ad-AMD) revealing the molecular 

plasticity of P450cam. J. Phys. Chem. Lett. 2011, 2, 158-164. 

143. Wade, R. C.; Motiejunas, D.; Schleinkofer, K.; Sudarko; Winn, P. J.; 

Banerjee, A.; Kariakin, A.; Jung, C. Multiple molecular recognition mechanisms. 

Cytochrome P450 - a case study. Biochim. Biophys. Acta - Proteins Proteom. 2005, 

1754, 239-244. 

144. Luedemann, S. K.; Lounnas, V. r.; Wade, R. C. How do substrates enter and 

products exit the buried active site of cytochrome P450cam? 1. Random expulsion 



93 

molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. 

Biol. 2000, 303, 797-811. 

145. Luedemann, S. K.; Lounnas, V. r.; Wade, R. C. How do substrates enter and 

products exit the buried active site of cytochrome P450cam? 2. Steered molecular 

dynamics and adiabatic mapping of substrate pathways. J. Mol. Biol. 2000, 303, 813-

830. 

146. Schleinkofer, K.; Sudarko; Winn, P. J.; Ludemann, S. K.; Wade, R. C. Do 

mammalian cytochrome P450s show multiple ligand access pathways and ligand 

channelling? EMBO Rep. 2005, 6, 584-589. 

147. Cojocaru, V.; Balali-Mood, K.; Sansom, M. S. P.; Wade, R. C. Structure and 

dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput. Biol. 2011, 

7, e1002152. 

148. Li, W.; Liu, H.; Scott, E. E.; Graeter, F.; Halpert, J. R.; Luo, X.; Shen, J.; 

Jiang, H. Possible pathway(s) of testosterone egress from the active site of 

cytochrome P450 2B1: A steered molecular dynamics simulation. Drug Metab. 

Dispos. 2005, 33, 910-919. 

149. Scott, E. E.; Liu, H.; Qun He, Y.; Li, W.; Halpert, J. R. Mutagenesis and 

molecular dynamics suggest structural and functional roles for residues in the n-

terminal portion of the cytochrome P450 2B1 I helix. Arch. Biochem. Biophys. 2004, 

423, 266-276. 

150. Fishelovitch, D.; Shaik, S.; Wolfson, H. J.; Nussinov, R. Theoretical 

characterization of substrate access/exit channels in the human cytochrome P450 3A4 

enzyme: Involvement of phenylalanine residues in the gating mechanism. J. Phys. 

Chem. B 2009, 113, 13018-13025. 

151. Li, W.; Liu, H.; Luo, X.; Zhu, W.; Tang, Y.; Halpert, J. R.; Jiang, H. Possible 

pathway(s) of metyrapone egress from the active site of cytochrome P450 3A4: A 

molecular dynamics simulation. Drug Metab. Dispos. 2007, 35, 689-696. 

152. Yang, K.; Liu, X.; Wang, X.; Jiang, H. A steered molecular dynamics method 

with adaptive direction adjustments. Biochem. Bioph. Res. Co. 2009, 379, 494-498. 

153. Fukunishi, H.; Yagi, H.; Kamijo, K. Ä.; Shimada, J. Role of a mutated residue 

at the entrance of the substrate access channel in cytochrome P450 engineered for 

vitamin D3 hydroxylation activity. Biochemistry 2011, 50, 8302-8310. 

154. Åqvist, J.; Luzhkov, V. B.; Brandsdal, B. O. Ligand binding affinities from 

MD simulations. Acc. Chem. Res. 2002, 35, 358-365. 

155. Brandsdal, B. O.; Österberg, F.; Almlöf, M.; Feierberg, I.; Luzhkov, V. B.; 

Åvist, J. Free energy calculations and ligand binding. In Advances in protein 

chemistry, Valerie, D., Ed. Academic Press: 2003; Vol. Volume 66, pp 123-158. 

156. Paulsen, M. D.; Ornstein, R. L. Binding free energy calculations for P450cam-

substrate complexes. Protein Eng. 1996, 9, 567-571. 

157. Vasanthanathan, P.; Olsen, L.; Jørgensen, F. S.; Vermeulen, N. P. E.; 

Oostenbrink, C. Computational prediction of binding affinity for CYP1A2-ligand 

complexes using empirical free energy calculations. Drug Metab. Dispos. 2010, 38, 

1347-1354. 

158. Karlsson, M.; Strid, Å.; Sirsjö, A.; Eriksson, L. A. Homology models and 

molecular modeling of human retinoic acid metabolizing enzymes cytochrome P450 

26A1 (CYP26A1) and P450 26B1 (CYP26B1). J. Chem. Theory Comput. 2008, 4, 

1021-1027. 

159. Stjernschantz, E.; Oostenbrink, C. Improved ligand-protein binding affinity 

predictions using multiple binding modes. Biophys. J. 2010, 98, 2682-2691. 



94 

160. Durrant, J.; McCammon, J. A. Molecular dynamics simulations and drug 

discovery. BMC Biology 2011, 9, 71. 

161. Deng, Y.; Roux, B. Computations of standard binding free energies with 

molecular dynamics simulations. J. Phys. Chem. B 2009, 113, 2234-2246. 

162. Helms, V.; Wade, R. C. Computational alchemy to calculate absolute protein-

ligand binding free energy. J. Am. Chem. Soc. 1998, 120, 2710-2713. 

163. Deng, Y. Computation of binding free energy with molecular dynamics and 

grand canonical monte carlo simulations. J. Chem. Phys. 2008, 128, 115103. 

164. Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. Quantum 

mechanical/molecular mechanical investigation of the mechanism of C-H 

hydroxylation of camphor by cytochrome P450cam: Theory supports a two-state 

rebound mechanism. J. Am. Chem. Soc. 2004, 126, 4017-4034. 

165. Schöneboom, J. C.; Neese, F.; Thiel, W. Toward identification of the 

Compound I reactive intermediate in cytochrome P450 chemistry: A QM/MM study 

of its EPR and Mossbauer parameters. J. Am. Chem. Soc. 2005, 127, 5840-5853. 

166. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6-

31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976-984. 

167. Bathelt, C. M.; Mulholland, A. J.; Harvey, J. N. QM/MM modeling of 

benzene hydroxylation in human cytochrome P450 2C9. J. Phys. Chem. A 2008, 112, 

13149-13156. 

168. Fishelovitch, D.; Hazan, C.; Hirao, H.; Wolfson, H. J.; Nussinov, R.; Shaik, S. 

QM/MM study of the active species of the human cytochrome P450 3A4, and the 

influence thereof of the multiple substrate binding. J. Phys. Chem. B 2007, 111, 

13822-13832. 

169. Sen, K.; Hackett, J. C. Molecular oxygen activation and proton transfer 

mechanisms in lanosterol 14 alpha-demethylase catalysis. J. Phys. Chem. B 2009, 

113, 8170-8182. 

170. Lonsdale, R.; Harvey, J. N.; Mulholland, A. J. Compound I reactivity defines 

alkene oxidation selectivity in cytochrome P450cam. J. Phys. Chem. B 2010, 114, 

1156-1162. 

171. Lonsdale, R.; Harvey, J. N.; Mulholland, A. J. Inclusion of dispersion effects 

significantly improves accuracy of calculated reaction barriers for cytochrome P450 

catalyzed reactions. J. Phys. Chem. Lett. 2010, 1, 3232-3237. 

172. Li, D.; Huang, X.; Han, K.; Zhan, C.-G. Catalytic mechanism of cytochrome 

P450 for 5 '-hydroxylation of nicotine: Fundamental reaction pathways and 

stereoselectivity. J. Am. Chem. Soc. 2011, 133, 7416-7427. 

173. Schyman, P.; Lai, W.; Chen, H.; Wang, Y.; Shaik, S. The directive of the 

protein: How does cytochrome P450 select the mechanism of dopamine formation? J. 

Am. Chem. Soc. 2011, 133, 7977-7984. 

174. Lonsdale, R.; Olah, J.; Mulholland, A. J.; Harvey, J. N. Does Compound I 

vary significantly between isoforms of cytochrome P450? J. Am. Chem. Soc. 2011, 

133, 15464-15474. 

175. Guengerich, F. P. Cytochrome P450 and chemical toxicology. Chem. Res. 

Toxicol. 2008, 21, 70-83. 

176. de Groot, M. J. Designing better drugs: Predicting cytochrome P450 

metabolism. Drug Discovery Today 2006, 11, 601-606. 

177. Chu, V.; Einolf, H. J.; Evers, R.; Kumar, G.; Moore, D.; Ripp, S.; Silva, J.; 

Sinha, V.; Sinz, M.; Skerjanec, A. In vitro and in vivo induction of cytochrome P450: 

A survey of the current practices and recommendations: A pharmaceutical research 

and manufacturers of america perspective. Drug Metab. Dispos. 2009, 37, 1339-1354. 



95 

178. Stjernschantz, E.; Vermeulen, N. P. E.; Oostenbrink, C. Computational 

prediction of drug binding and rationalisation of selectivity towards cytochromes 

P450. Expert Opin. Drug Metab. Toxicol. 2008, 4, 513-527. 

179. Zhang, L.; Zhang, Y. D.; Zhao, P.; Huang, S.-M. Predicting drug-drug 

interactions: An FDA perspective. The AAPS journal 2009, 11, 300-306. 

180. Hewitt, N. J.; de Kanter, R.; LeCluyse, E. Induction of drug metabolizing 

enzymes: A survey of in vitro methodologies and interpretations used in the 

pharmaceutical industry - do they comply with FDA recommendations? Chem.-Biol. 

Interact. 2007, 168, 51-65. 

181. Wienkers, L. C.; Heath, T. G. Predicting in vivo drug interactions from in 

vitro drug discovery data. Nat. Rev. Drug Discovery 2005, 4, 825-833. 

182. Zhou, S.-F. Drugs behave as substrates, inhibitors and inducers of human 

cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310-322. 

183. Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; 

Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current 

status. Arch. Toxicol. 2008, 82, 667-715. 

184. Li, H.; Sun, J.; Fan, X.; Sui, X.; Zhang, L.; Wang, Y.; He, Z. Considerations 

and recent advances in QSAR models for cytochrome P450-mediated drug 

metabolism prediction. J. Comput.-Aided Mol. Des. 2008, 22, 843-855. 

185. Roy, K.; Roy, P. P. QSAR of cytochrome inhibitors. Expert Opin. Drug 

Metab. Toxicol. 2009, 5, 1245-1266. 

186. Bender, A.; Glen, R. C. Molecular similarity: A key technique in molecular 

informatics. Org. Biomol. Chem. 2004, 2, 3204-3218. 

187. Bender, A.; Jenkins, J. L.; Scheiber, J.; Sukuru, S. C.; Glick, M.; Davies, J. W. 

How similar are similarity searching methods? A principal component analysis of 

molecular descriptor space. J. Chem. Inf. Model. 2009, 49, 108-119. 

188. Mitchell, T. M. Machine learning. McGraw-Hill: New York, 1997. 

189. Zvinavashe, E.; Murk, A. J.; Rietjens, I. M. Promises and pitfalls of 

quantitative structure-activity relationship approaches for predicting metabolism and 

toxicity. Chem. Res. Toxicol. 2008, 21, 2229-2236. 

190. OECD quantitative structure-activity relationships project. 

http://www.oecd.org/document/23/0,3746,en_2649_34377_33957015_1_1_1_1,00.ht

ml (Access date 2012-01-12). 

191. Li, Q.; Bender, A.; Pei, J.; Lai, L. A large descriptor set and a probabilistic 

kernel-based classifier significantly improve drug-likeness classification. J. Chem. 

Inf. Model. 2007, 47, 1776-1786. 

192. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. 

P. Random forest: A classification and regression tool for compound classification 

and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958. 

193. Chohan, K. K.; Paine, S. W.; Waters, N. J. Quantitative structure activity 

relationships in drug metabolism. Curr. Top. Med. Chem. 2006, 6, 1569-1578. 

194. Hansch, C.; Mekapati, S. B.; Kurup, A.; Verma, R. P. QSAR of cytochrome 

P450. Drug Metab Rev 2004, 36, 105-156. 

195. Burton, J.; Ijjaali, I.; Petitet, F.; Michel, A.; Vercauteren, D. P. Virtual 

screening for cytochromes P450: Successes of machine learning filters. Comb. Chem. 

High Throughput Screening 2009, 12, 369-382. 

196. Fox, T.; Kriegl, J. M. Machine learning techniques for in silico modeling of 

drug metabolism. Curr. Top. Med. Chem. 2006, 6, 1579-1591. 



96 

197. Klon, A. E. Machine learning algorithms for the prediction of hERG and 

CYP450 binding in drug development. Expert Opin. Drug Metab. Toxicol. 2010, 6, 

821-833. 

198. Kulkarni, S. A.; Zhu, J.; Blechinger, S. In silico techniques for the study and 

prediction of xenobiotic metabolism: A review. Xenobiotica 2005, 35, 955-973. 

199. Bender, A. Databases: Compound bioactivities go public. Nat. Chem. Biol. 

2010, 6, 309-309. 

200. Gupta, R. R.; Gifford, E. M.; Liston, T.; Wallker, C. L.; Hohman, M.; Bunun, 

B. A.; Ekins, S. Using open source computational tools for predicting human 

metabolic stability and additional absorption, distribution, metabolism, excretion, and 

toxicity properties. Drug Metab. Dispos. 2010, 38, 2083-2890. 

201. Gleeson, M. P.; Modi, S.; Bender, A.; Marchese-Robinson, R. L.; Kirchmair, 

J.; Promkatkaew, M.; Hannongbua, S.; Glen, R. C. The challenges involved in 

modeling toxicity data in silico: A review. Curr. Pharm. Des. 2012, article in press. 

202. Hammann, F.; Gutmann, H.; Baumann, U.; Helma, C.; Drewe, J. 

Classification of cytochrome P450 activities using machine learning methods. Mol. 

Pharm. 2009, 6, 1920-1926. 

203. Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N. P. E.; 

Olsen, L.; Jørgensen, F. S. Classification of cytochrome P450 1A2 inhibitors and 

noninhibitors by machine learning techniques. Drug Metab. Dispos. 2009, 37, 658-

664. 

204. Michielan, L.; Terfloth, L.; Gasteiger, J.; Moro, S. Comparison of multilabel 

and single-label classification applied to the prediction of the isoform specificity of 

cytochrome P450 substrates. J. Chem. Inf. Model. 2009, 49, 2588-2605. 

205. Yap, C. W.; Chen, Y. Z. Prediction of cytochrome P450 3A4, 2D6, and 2C9 

inhibitors and substrates by using support vector machines. J. Chem. Inf. Model. 

2005, 45, 982-992. 

206. Eitrich, T.; Kless, A.; Druska, C.; Meyer, W.; Grotendorst, J. Classification of 

highly unbalanced CYP450 data of drugs using cost sensitive machine learning 

techniques. J. Chem. Inf. Model. 2007, 47, 92-103. 

207. isoCYP, version 1.0; Molecular Networks: Erlangen, Germany, 2007. 

208. Terfloth, L.; Bienfait, B.; Gasteiger, J. Ligand-based models for the isoform 

specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J. Chem. Inf. Model. 

2007, 47, 1688-1701. 

209. Sun, H.; Veith, H.; Xia, M.; Austin, C. P.; Huang, R. Predictive models for 

cytochrome P450 isozymes based on quantitative high throughput screening data. J. 

Chem. Inf. Model. 2011, 51, 2474–2481. 

210. Lewis, D. F.; Modi, S.; Dickins, M. Quantitative structure-activity 

relationships (QSARs) within substrates of human cytochromes P450 involved in 

drug metabolism. Drug Metabol. Drug Interact. 2001, 18, 221-242. 

211. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H. 

The WEKA data mining software: An update. SIGKDD Explorations 2009, 11, 10-18. 

212. Dagliyan, O.; Kavakli, I. H.; Turkay, M. Classification of cytochrome P450 

inhibitors with respect to binding free energy and pIC50 using common molecular 

descriptors. J. Chem. Inf. Model. 2009, 49, 2403-2411. 

213. Mao, B.; Gozalbes, R.; Barbosa, F.; Migeon, J.; Merrick, S.; Kamm, K.; 

Wong, E.; Costales, C.; Shi, W.; Wu, C.; Froloff, N. QSAR modeling of in vitro 

inhibition of cytochrome P450 3A4. J. Chem. Inf. Model. 2006, 46, 2125-2134. 

214. ACD/ADME suite - P450 Regioselectivity module, version 1.0; ACD/Labs: 

Toronto, ON, 2011. 



97 

215. Rossato, G.; Ernst, B.; Smiesko, M.; Spreafico, M.; Vedani, A. Probing small-

molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for 

generating toxicity alerts. ChemMedChem 2010, 5, 2088-2101. 

216. Vedani, A.; Spreafico, M.; Peristera, O.; Dobler, M.; Smiesko, M. 

VirtualToxLab - in silico prediction of the endocrine-disrupting potential of drugs and 

chemicals. Chimia 2008, 62, 322-328. 

217. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular-field 

analysis (CoMFA) .1. Effect of shape on binding of steroids to carrier proteins. J. Am. 

Chem. Soc. 1988, 110, 5959-5967. 

218. Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, 

S. Generating optimal linear PLS estimations (GOLPE): An advanced chemometric 

tool for handling 3D-QSAR problems. Quant. Struct.-Act. Rel. 1993, 12, 9-20. 

219. Fontaine, F.; Pastor, M.; Sanz, F. Incorporating molecular shape into the 

alignment-free grid-independent descriptors. J. Med. Chem. 2004, 47, 2805-2815. 

220. Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. Grid-independent 

descriptors (GRIND): A novel class of alignment-independent three-dimensional 

molecular descriptors. J. Med. Chem. 2000, 43, 3233-3243. 

221. Pentacle, version 1.05; Molecular Discovery: Ponte San Giovanni - Perugia, 

Italy, 2010. 

222. Crivori, P.; Zamora, I.; Speed, B.; Orrenius, C.; Poggesi, I. Model based on 

GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug 

candidates. J. Comput.-Aided Mol. Des. 2004, 18, 155-166. 

223. Cruciani, G.; Pastor, M.; Guba, W. VolSurf: A new tool for the 

pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 2000, 11, S29-

S39. 

224. Afzelius, L.; Masimirembwa, C. M.; Karlén, A.; Andersson, T. B.; Zamora, I. 

Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus 

non-inhibitors using alignment independent GRIND descriptors. J. Comput.-Aided 

Mol. Des. 2002, 16, 443-458. 

225. Korhonen, L. E.; Rahnasto, M.; Mähönen, N. J.; Wittekindt, C.; Poso, A.; 

Juvonen, R. O.; Raunio, H. Predictive three-dimensional quantitative structure-

activity relationship of cytochrome P450 1A2 inhibitors. J. Med. Chem. 2005, 48, 

3808-3815. 

226. Korhonen, L. E.; Turpeinen, M.; Rahnasto, M.; Wittekindt, C.; Poso, A.; 

Pelkonen, O.; Raunio, H.; Juvonen, R. O. New potent and selective cytochrome P450 

2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity 

relationship (3D-QSAR) analysis. Br. J. Pharmacol. 2007, 150, 932-942. 

227. Oprea, T. I.; Garcia, A. E. Three-dimensional quantitative structure-activity 

relationships of steroid aromatase inhibitors. J. Comput.-Aided Mol. Des. 1996, 10, 

186-200. 

228. Poso, A.; Gynther, J.; Juvonen, R. A comparative molecular field analysis of 

cytochrome P450 2A5 and 2A6 inhibitors. J. Comput.-Aided Mol. Des. 2001, 15, 195-

202. 

229. Afzelius, L.; Zamora, I.; Ridderström, M.; Andersson, T. B.; Karlén, A.; 

Masimirembwa, C. M. Competitive CYP2C9 inhibitors: Enzyme inhibition studies, 

protein homology modeling, and three-dimensional quantitative structure-activity 

relationship analysis. Mol. Pharmacol. 2001, 59, 909-919. 

230. Goodford, P. In Atom movements during drug-receptor interactions, Alfred 

Benzon Symp., 1998; Munksgaard International Publishers Ltd.: 1998; pp 215-230. 



98 

231. Ortiz, A. R.; Pisabarro, M. T.; Gago, F.; Wade, R. C. Prediction of drug 

binding affinities by comparative binding energy analysis. J. Med. Chem. 1995, 38, 

2681-2691. 

232. Cianchetta, G.; Li, Y.; Singleton, R.; Zhang, M.; Wildgoose, M.; Rampe, D.; 

Kang, J.; Vaz, R. J. Molecular interaction fields in ADME and safety. Methods Princ. 

Med. Chem. 2006, 27, 197-218. 

233. de Graaf, C.; Vermeulen, N. P. E.; Feenstra, K. A. Cytochrome P450 in silico: 

An integrative modeling approach. J. Med. Chem. 2005, 48, 2725-2755. 

234. de Groot, M. J.; Ekins, S. Pharmacophore modeling of cytochromes P450. 

Adv. Drug Delivery Rev. 2002, 54, 367-383. 

235. Ekins, S.; Andreyev, S.; Ryabov, A.; Kirillov, E.; Rakhmatulin, E. A.; 

Bugrim, A.; Nikolskaya, T. Computational prediction of human drug metabolism. 

Expert Opin. Drug Metab. Toxicol. 2005, 1, 303-324. 

236. Ekins, S.; de Groot, M. J.; Jones, J. P. Pharmacophore and three-dimensional 

quantitative structure activity relationship methods for modeling cytochrome P450 

active sites. Drug Metab. Dispos. 2001, 29, 936-944. 

237. Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: 

Applications to targets and beyond. Br. J. Pharmacol. 2007, 152, 21-37. 

238. de Groot, M. J.; Alex, A. A.; Jones, B. C. Development of a combined protein 

and pharmacophore model for cytochrome P450 2C9. J. Med. Chem. 2002, 45, 1983-

1993. 

239. Locuson, C. W.; Rock, D. a.; Jones, J. P. Quantitative binding models for 

CYP2C9 based on benzbromarone analogues. Biochemistry 2004, 43, 6948-6958. 

240. Schuster, D.; Laggner, C.; Steindl, T. M.; Langer, T. Development and 

validation of an in silico P450 profiler based on pharmacophore models. Curr. Drug 

Discovery Technol. 2006, 3, 1-48. 

241. Yu, J.; Paine, M. J. I.; Maréchal, J.-D.; Kemp, C. A.; Ward, C. J.; Brown, S.; 

Sutcliffe, M. J.; Roberts, G. C. K.; Rankin, E. M.; Wolf, C. R. In silico prediction of 

drug binding to CYP2D6: Identification of a new metabolite of metoclopramide. 

Drug Metab. Dispos. 2006, 34, 1386-1392. 

242. Lozano, J. J.; Pastor, M.; Cruciani, G.; Gaedt, K.; Centeno, N. B.; Gago, F.; 

Sanz, F. 3D-QSAR methods on the basis of ligand-receptor complexes. Application 

of combine and GRID/GOLPE methodologies to a series of CYP1A2 ligands. J. 

Comput.-Aided Mol. Des. 2000, 14, 341-353. 

243. Leong, M. K.; Chen, Y.-M.; Chen, H.-B.; Chen, P.-H. Development of a new 

predictive model for interactions with human cytochrome P450 2A6 using 

pharmacophore ensemble/support vector machine (phe/SVM) approach. Pharm. Res. 

2009, 26, 987-1000. 

244. Kontijevskis, A.; Komorowski, J.; Wikberg, J. E. S. Generalized 

proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors. 

J. Chem. Inf. Model. 2008, 48, 1840-1850. 

245. Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical 

descriptors relevant for the design of biologically active peptides. A multivariate 

characterization of 87 amino acids. J. Med. Chem. 1998, 41, 2481-2491. 

246. Bazeley, P. S.; Prithivi, S.; Struble, C. A.; Povinelli, R. J.; Sem, D. S. 

Synergistic use of compound properties and docking scores in neural network 

modeling of CYP2D6 binding: Predicting affinity and conformational sampling. J. 

Chem. Inf. Model. 2006, 46, 2698-2708. 

247. Vedani, A.; Smiesko, M.; Spreafico, M.; Peristera, O.; Dobler, M. 

VirtualToxLab - in silico prediction of the toxic (endocrine-disrupting) potential of 



99 

drugs, chemicals and natural products. Two years and 2,000 compounds of 

experience: A progress report. ALTEX 2009, 26, 167-176. 

248. Tompkins, L. M.; Wallace, A. D. Mechanisms of cytochrome P450 induction. 

J. Biochem. Mol. Toxicol. 2007, 21, 176-181. 

249. De Lisle, R. K.; Otten, J.; Rhodes, S. In silico modeling of p450 substrates, 

inhibitors, activators, and inducers. Comb. Chem. High Throughput Screening 2011, 

14, 396-416. 

250. Xue, Y.; Chao, E.; Zuercher, W. J.; Willson, T. M.; Collins, J. L.; Redinbo, M. 

R. Crystal structure of the PXR-t1317 complex provides a scaffold to examine the 

potential for receptor antagonism. Bioorg. Med. Chem. 2007, 15, 2156-2166. 

251. Jacobs, M. N. In silico tools to aid risk assessment of endocrine disrupting 

chemicals. Toxicology 2004, 205, 43-53. 

252. Ung, C. Y.; Li, H.; Yap, C. W.; Chen, Y. Z. In silico prediction of pregnane X 

receptor activators by machine learning approaches. Mol. Pharmacol. 2007, 71, 158-

168. 

253. Ekins, S. A pharmacophore for human pregnane X receptor ligands. Drug 

Metab. Dispos. 2002, 30, 96-99. 

254. Lemaire, G.; Benod, C.; Nahoum, V.; Pillon, A.; Boussioux, A.-M.; Guichou, 

J.-F.; Subra, G.; Pascussi, J.-M.; Bourguet, W.; Chavanieu, A.; Balaguer, P. 

Discovery of a highly active ligand of human pregnane X receptor: A case study from 

pharmacophore modeling and virtual screening to "in vivo" biological activity. Mol. 

Pharmacol. 2007, 72, 572-581. 

255. Schuster, D.; Langer, T. The identification of ligand features essential for PXR 

activation by pharmacophore modeling. J. Chem. Inf. Model. 2005, 45, 431-439. 

256. Yasuda, K.; Ranade, A.; Venkataramanan, R.; Strom, S.; Chupka, J.; Ekins, 

S.; Schuetz, E.; Bachmann, K. A comprehensive in vitro and in silico analysis of 

antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and 

intestine. Drug Metab. Dispos. 2008, 36, 1689-1697. 

257. Gao, Y. D.; Olson, S. H.; Balkovec, J. M.; Zhu, Y.; Royo, I.; Yabut, J.; Evers, 

R.; Tan, E. Y.; Tang, W.; Hartley, D. P.; Mosley, R. T. Attenuating pregnane X 

receptor (PXR) activation: A molecular modelling approach. Xenobiotica 2007, 37, 

124-138. 

258. Xiao, L.; Nickbarg, E.; Wang, W.; Thomas, A.; Ziebell, M.; Prosise, W. W.; 

Lesburg, C. a.; Taremi, S. S.; Gerlach, V. L.; Le, H. V.; Cheng, K.-C. Evaluation of in 

vitro PXR-based assays and in silico modeling approaches for understanding the 

binding of a structurally diverse set of drugs to PXR. Biochem. Pharmacol. 2011, 81, 

669-679. 

259. Bisson, W. H.; Koch, D. C.; O'Donnell, E. F.; Khalil, S. M.; Kerkvliet, N. I.; 

Tanguay, R. L.; Abagyan, R.; Kolluri, S. K. Modeling of the aryl hydrocarbon 

receptor (AhR) ligand binding domain and its utility in virtual ligand screening to 

predict new AhR ligands. J. Med. Chem. 2009, 52, 5635-5641. 

260. Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM - a new method for protein 

modeling and design: Applications to docking and structure prediction from the 

distorted native conformation. J. Comput. Chem. 1994, 15, 488-506. 

261. Ekins, S.; Mirny, L.; Schuetz, E. G. A ligand-based approach to understanding 

selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta. 

Pharm. Res. 2002, 19, 1788-1800. 

262. Jyrkkärinne, J.; Windshügel, B.; Rönkkö, T.; Tervo, A. J.; Küblbeck, J.; 

Lahtela-Kakkonen, M.; Sippl, W.; Poso, A.; Honkakoski, P. Insights into ligand-

elicited activation of human constitutive androstane receptor based on novel agonists 



100 

and three-dimensional quantitative structure-activity relationship. J. Med. Chem. 

2008, 51, 7181-7192. 

263. Wu, B.; Zhang, Y.; Kong, J.; Zhang, X.; Cheng, S. In silico predication of 

nuclear hormone receptors for organic pollutants by homology modeling and 

molecular docking. Toxicol. Lett. 2009, 191, 69-73. 

264. Overington, J. ChEMBL. An interview with John Overington, team leader, 

chemogenomics at the European Bioinformatics Institute Outstation of the European 

Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. J. 

Comput.-Aided Mol. Des. 2009, 23, 195-198. 

265. Olah, M.; Mracec, M.; Ostopovici, L.; Rad, R.; Bora, A.; Hadaruga, N.; Olah, 

I.; Banda, M.; Simon, Z.; Mracec, M.; Oprea, T. I. WOMBAT: World of molecular 

bioactivity. Methods Princ. Med. Chem. 2005, 23, 223-239. 

266. SYBYL-X Suite, version 1.3.2; Tripos: St. Louis, MO, 2011. 

267. Vasanthanathan, P.; Olsen, L.; Jorgensen, F. S.; Vermeulen, N. P. E.; 

Oostenbrink, C. Computational prediction of binding affinity for CYP1A2-ligand 

complexes using empirical free energy calculations. Drug Metab. Dispos. 2010, 38, 

1347-1354. 

268. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, 

R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB 

protein force field. Proteins: Struct., Funct., Bioinf. 2010, 78, 1950-1958. 

269. Gogonea, V.; Shy, J. M.; Biswas, P. K. Electronic structure, ionization 

potential, and electron affinity of the enzyme cofactor (6R)-5,6,7,8-

tetrahydrobiopterin in the gas phase, solution, and protein environments. J. Phys. 

Chem. B 2006, 110, 22861-22871. 

270. MacKerell, A. D.; Bashford, D.; Bellott; Dunbrack, R. L.; Evanseck, J. D.; 

Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; 

Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; 

Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; 

Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom 

empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. 

Chem. B 1998, 102, 3586-3616. 

 



101 

TABLES AND GRAPHICS 

Table 1. Overview on Methods for Predicting SOMs, Structures of Metabolites and Interactions with Metabolizing Enzymes. 

Methods for predicting 

SOMs 
Category Description 

References 

(Examples) 

QMBO 
Reactivity-based 

method 

Derives likelihood of a metabolic reaction at a certain atom position from its 

hydrogen abstraction energy based on bond order, employing a DFT 

wavefunction. Considers accessibility of hydrogen atoms. 

16 

CypScore 
Reactivity-based 

method 

Uses AM1-based atom reactivity descriptors to estimate metabolic reactivity 

of a certain atom position. Six models to describe various generic CYP 

metabolic reactions 

17 

Metaprint2D 
Fingerprint-based data 

mining method 

Derives likelihood of metabolic transformations for atoms with a defined atom 

environment from data mining of large biotransformation databases. Encodes 

atom environments using SYBYL266 atom types in combination with circular 

fingerprints 

21-24 

ADMET Predictor – 

Metabolite Module 

Machine learning 

method 

Derives the likelihood of metabolic reactions to happen at specific atom 

positions using ANN ensembles. Classification models allow identification of 

substrates for five CYP isoforms. 

28 

ROCS 
Shaped-focused 

method 

Uses shape-focused alignment of molecules to known CYP substrates in order 

to derive a potential geometric orientation to the catalytic heme iron. Atom 

positions in the proximity of the heme iron are considered potential SOMs 

37 

Classic docking tools 

(AutoDock, FlexX, GLIDE, 

GOLD, etc.) 

Protein-ligand docking-

based method 

Evaluate orientation of the ligand to the enzyme catalytic center in order to 

identify potential SOMs. Atom positions in the proximity of the heme iron are 

considered potential SOMs 

51, 52 

MetaSite Combined approach 

Uses protein structural information, GRID-derived MIFs of protein and 

ligand, as well as molecular orbital calculations to estimate the likelihood of a 

metabolic reaction at a certain atom position 

40, 54, 55 

Combined pharmacophore, 

homology modeling and 

quantum chemical approach 

Combined approach 
Combines a pharmacophore-based approach, homology modeling and 

molecular orbital calculations to pinpoint potential SOMs 
60 
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SmartCyp Combined approach 

Utilizes a set of pre-calculated DFT activation energies in combination with a 

topological accessibility descriptors for prognosis of potential SOMs 

(CYP3A4 and 2D6) 

61, 62 

StarDrop Combined approach 

Combines quantum chemical analysis and a ligand-based model of CYP 

substrates to highlight potential SOMs. Takes into account calculated logP 

values 

64 

RS-Predictor Combined approach 

Utilizes a set of 148 topological and 392 quantum chemical atom-specific 

descriptors in combination with a SVM-like ranking and a multiple instance 

learning method to identify potential SOMs 

15 

Machine learning-based 

multi-descriptor approach 
Combined approach 

Takes into account quantum chemical, SASA and pharmacophoric descriptors 

using a random forest/ensemble decision tree approach to identify potential 

SOMs 

65 

Machine learning-based 

multi-descriptor approach 
Combined approach 

Employs electrostatic, inductive, energetic, topological, steric and distance 

properties in combination with a SVM to predict potential SOMs of 

endogenous substrates 

67 

Combined quantum 

chemical/docking/MD 

approach 

Combined approach 
Combination of quantum chemical methods with docking to account for 

reactivity, followed by MD simulations to predict potential SOMs 
69 

MLite Combined approach Combines quantum chemistry-derived reactivity estimation with docking 73 

Ensemble-based/MD-

supported docking 

Protein-ligand docking-

based method 

Accounts for protein target flexibility with conformational ensembles of 

proteins generated using MD simulations and related techniques 
79-82 

IDSite Combined approach 
Combination of an induced fit docking approach (GLIDE, PLOP) with a 

reactivity model (Jaguar) 
84 

Methods for predicting 

xenobiotic metabolites 
Category Description 

References 

(Examples) 

MetabolExpert Expert system 
Uses knowledge database of rules to predict the structures of likely 

metabolites. Predicts pathways in animals, plants or through photodegradation 
88 

META Expert system 

Uses a large dictionary of biotransformations to predict the structure of likely 

metabolites. Analyzes metabolite stability. Predicts pathways in mammals, 

through aerobic and anaerobic biodegradation 

89 

Meteor Expert system 

Employs a collection of knowledge-based biotransformation rules defined 

using a dedicated structure representation language to derive the structure of 

likely metabolites. Considers calculated logP values for predictions 

90 
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University of Minnesota 

Pathway Prediction System 

(UM-PPS) 

Expert system 
Utilizes biotransformation rules to predict the structure of likely metabolites. 

Specific to microbial catabolic metabolism 
91 

SyGMa Expert system 

Predicts structures of likely metabolites based on rules derived from the 

Accelrys Metabolite Database and assigns probability scores for each 

metabolite 

92 

TIMES Expert system 
Employs a biotransformation library and a heuristic algorithm to generate 

metabolic maps 
93 

JChem Metabolizer module Expert system 
Enumerates all possible metabolites of a given compound. Supports species-

specific predictions of likely metabolites 
94 

Metaprint2D-React 
Fingerprint-based data 

mining approach 

Predicts structures of likely metabolites based on the MetaPrint2D data 

mining approach 
21 

Machine learning-based 

multi-descriptor approach 
Combined approach See description of this software in “Predicting Sites of Metabolism” 67 

MetaSite Combined approach See description of this software in “Predicting Sites of Metabolism” 40, 54, 55 

Methods for predicting 

CYP binding 

affinity/inhibition by 

xenobiotics 

 Category Description 
References 

(Examples) 

Linear interaction energy 

(LIE) 
MD simulation 

Semi-empirical method for calculating free energy of binding for a ligand 

using ensemble averaged non-bonded interaction energies 

156, 158, 159, 

267 

Free energy perturbation 

(FEP)/thermodynamic 

integration (TI) 

MD simulation 
Simulations of unphysical states along a thermodynamic cycle connecting the 

bound and unbound ligand form for calculating the free energy of binding 
131, 161-163 

Decision tree 

k-nearest neighbor 

ANN 

Random forest 

SVM 

etc. 

QSAR and machine 

learning method: 

Classification model 

Classify compounds for enzyme inhibition. Allow drawing conclusions on 

isoform specificity 
202-206, 209 

isoCyp 

QSAR and machine 

learning method: 

Classification model 

Classifies compounds for CYP3A4, 2D6 and 2C9 inhibition 207, 208 

PCA QSAR and machine Predict inhibition enzyme rates 210, 212-216 
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PLS 

Multiple linear regression 

etc. 

learning method: 

Regression model 

CoMFA 

GRID/GOLPE 

3D-QSAR method: 

Classification model 

Classify compounds for enzyme inhibition. Allow drawing conclusions on 

isoform specificity 
222, 224 

CoMFA 

GRID/GOLPE 

3D-QSAR method: 

Regression model 

Predict inhibition enzyme rates. Allow deriving of 3D properties crucial for 

bioactivity 

224-229, 231, 

232 

Pharmacophore models 
Pharmacophore-based 

method 

Predict quantitative and qualitative enzyme inhibition. Allow drawing 

conclusions on isoform specificity 

213, 233, 236, 

238-240 

Protein-ligand docking 
Protein-ligand docking-

based method 

Predict binding mode and binding affinity. Allow drawing conclusions on 

isoform specificity 
159, 241, 242 

Combined pharmacohore 

ensemble/SVM approach 
Combined approach Uses an ensemble of pharmacophores to account for protein flexibility 243 

Proteochemometric analysis 

supported by GRIND and 

further physicochemical 

descriptors 

Combined approach 
Considers protein sequences of 14 CYPs as well as GRIND and further 

descriptors for substrates 
244 

Combined machine learning, 

protein modeling and 

docking approach 

Combined approach 
Uses simulated annealing to render conformational space of the target protein 

and docking scores as attributes for subsequent ANN model generation 
246 

VirtualToxLab Combined approach 

Uses flexible docking in combination with a multi-dimensional QSAR 

approach to predict ligand interaction with 16 anti-targets, including CYP450 

1A2, 2A13, 2C9, 2D6 and 3A4 

247 

Methods for predicting 

CYP induction by 

xenobiotics 

 Category Description 
Examples 

(References) 

PLS using VolSurf 

descriptors 
QSAR approach 

Uses PLS and VolSurf descriptors for the development of a QSAR model for 

PXR/AhR interaction 

PXR: 251 

AhR: 251 

SVM 

k-nearest neighbor 

Probabilistic neural network 

Machine learning 

approach 
Uses various machine learning methods to predict human PXR interaction PXR: 252 

Pharmacophore modeling 
Pharmacophore-based 

method 
Uses pharmacophores to predict PXR/CAR interaction 

PXR: 253-256 

CAR: 262 

Protein-ligand docking 
Protein-ligand docking-

based method 

Uses protein-ligand docking to predict PXR/AhR/CAR activation, rationalize 

SARs and gain insight on likely molecular interaction modes 

PXR: 256-

258, 263 AhR: 

259, 263 

CAR: 263 

GRID/GOLPE 3D-QSAR method Uses MIF-derived 3D-QSAR models to predict CAR interaction CAR: 262 

VirtualToxLab Combined approach 

Uses flexible docking in combination with a multi-dimensional QSAR 

approach to predict ligand interaction with AhR and 15 other targets (see 

above) 

AhR: 247 
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Table 2. Overview on MD Simulation Setups for CYPs. 

Ref FF used Isoforms Heme B parameters used 

Simulation 

time/ns 

Production 

ensemble Comments 

111 AMBER/FF99 CYP2C9 

Developed within their study 5 

(multiple) NPT 
 

114 AMBER/FF99 

CYP2A6, 2C9, 

3A4 

Own charge method with 

parameter taken from Ref. 113 5 NPT 

FF99 used, missing residues in CYP3A4 

(1TQN) 

112 AMBER/FF99 

CYP2C9, 

CYP19 

Refs. 106, 113 

Ferrous low spin state (S=0) 

Fit of heme charges done at 

DFT (B3LYP/6-31G*) level 10 NPT 

Cα RMSD plateaus in phases, culminating at 

~4 Å 

DFT wavefunction used for RESP fitting 

HEME parameters not stated, only the RESP 

charges 

128 CHARMM 27 CYP3A4 Refs. 103, 109 6 NVT Cα RMSD plateaus at ~1.5 Å 

130 AMBER/FF99 

CYP1A2, 2A6, 

2C9, 2D6, 3A4 

Developed within the study 

10 NPT 

FF99 used, missing residues in 3A4 (1TQN) 

Heme parameters provided 

140 GROMOS96 CYPC17 GROMOS96 20 NPT 

Cα RMSD seems high at ~3 Å 

Berendsen thermostat 

137 

CHARMM 27 

(protein) 

CHARMM 22 

(heme) CYP3A4 

CHARMM22 

Refit of heme charges done at 

DFT (B3LYP/MM/LACVP) 

level for sextet state 20 NVT 

Cα RMSD plateaus at ~1.5 Å 

Thorough, with a rich set of supporting 

materials 

139 GROMOS96 CYP3A4 - 5 NPT Cα RMSD plateaus at ~2.5 Å 

124 

AMBER/FF03 

with pi-pi 

stacking term 

modification  CYP2C9 

Developed within their study, 

but used the method of Ref. 110 5 NPT Cα RMSD plateaus at ~2.4 Å 

169 CHARMM27 CYP51 - 20 NPT Cα RMSD not reported 

115 

 

AMBER/ 

FF99SB268 CYP3A4 

Heme parameters for a wide 

range of states developed with 

this study. 25 NPT Cα RMSD plateaus at ~1.7 Å 

122 OPLS CYP119 Heme parameters from Ref. 269 200 NVT 

Longest all atom simulation to date 

RMSD of F/G loop region indicates large 

degree of flexibility 

Berendsen thermostat 

267 

GROMOS 

45A4 CYP1A2 Not stated. 1 NPT  

158 AMBER/FF99 

CYP26A1 and 

CYP26B1 Not stated. 0.5 NVT  

132 CHARM22 CYP101 Heme parameters from Ref. 270 300 NPT  
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Figure 1. Xenobiotic metabolism and its broad spectrum of pharmacodynamic and pharmacokinetic 

effects. Potential issues of metabolic liability and biological activity of xenobiotics on metabolizing enzymes 

include DDIs (in particular, enzyme induction and inhibition), which in turn may cause therapeutic failure, 

toxic and adverse effects. Metabolic reactions can also be exploited for the rational design of prodrugs. 

 

Figure 2. Overview on topics and computational approaches covered in this review. 
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Figure 3. Structural overview of CYPs. Here, CYP3A4 (PDB 3NXU) is depicted, with helical structures 

labeled A-L according to the general scheme for CYPs.96 The heme moiety is indicated in sticks mode (red 

color). 
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