5,687 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    The Mini-Robot Khepera as a Foraging Animate: Synthesis and Analysis of Behaviour

    Get PDF
    Löffler A, Klahold J, Rückert U. The Mini-Robot Khepera as a Foraging Animate: Synthesis and Analysis of Behaviour. In: Rückert U, Sitte J, Witkowski U, eds. Proceedings of the 5th International Heinz Nixdorf Symposium: Autonomous Minirobots for Research and Edutainment (AMiRE01). Vol 97. Paderborn, Germany: Heinz Nixdorf Institut, Universität Paderborn; 2001: 93-130.The work presented in this paper deals with the development of a methodology for resource-efficient behaviour synthesis on autonomous systems. In this context, a definition of a maximal problem with respect to the resources of a given system is introduced. It is elucidated by means of an exemplary implementation of the solution to such a problem using the mini-robot Khepera as the experimental platform. The described task consists of exploring an unknown and dynamically changing environment, collecting and transporting objects, which are associated with light-sources, and navigating to a home-base. The critical point is represented by the accumulated positioning errors in odometrical path-integration due to slippage. Therefore, adaptive sensor calibration using a specific variant of Kohonen’s algorithm is applied in two cases to extract symbolic, e.g. geometric, information from the sub-symbolic sensor data, which is used to enhance position control by landmark mapping and orientation. In order to successfully handle the arising complex interactions, a heterogeneous control-architecture based on a parallel implementation of basic behaviours coupled by a rule-based central unit is proposed

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Dual-layered Multi-Objective Genetic Algorithms (D-MOGA): A Robust Solution for Modern Engine Development and Calibrations

    Get PDF
    Heavy-duty (HD) diesel engines are the primary propulsion systems used within the freight transportation sector and are subjected to stringent emissions regulations. The primary objective of this study is to develop a robust calibration technique for HD engine optimization in order to meet current and future regulated emissions standards during certification cycles and off-cycle vocation activities. Recently, California - Air Resources Board (C-ARB) has also shown interests in controlling off-cycle emissions from vehicles operating in California by funding projects such as the Ultra-Low NOx study by Sharp et. al [1]. Moreover, there is a major push for the complex real-world driving emissions testing protocol as the confirmatory and certification testing procedure in Europe and Asia through the United Nations - Economic Commission for Europe (UN-ECE) and International Organization for Standardization (ISO). This calls for more advanced and innovative approaches to optimize engine operation to meet the regulated certification levels.;A robust engine calibration technique was developed using dual-layered multi-objective genetic algorithms (D-MOGA) to determine necessary engine control parameter settings. The study focused on reducing fuel consumption and lowering oxides of nitrogen (NOx) emissions, while simultaneously increasing exhaust temperatures for thermal management of exhaust after-treatment system. The study also focused on using D-MOGA to develop a calibration routine that simultaneously calibrates engine control parameters for transient certification cycles and vocational drayage operation. Several objective functions and alternate selection techniques for D-MOGA were analyzed to improve the optimality of the D-MOGA results.;The Low-NOx calibration for the Federal Test Procedure (FTP) which was obtained using the simple desirability approach was validated in the engine dynamometer test cell over the FTP and near-dock test cycles. In addition, the 2010 emissions compliant calibration was baselined for performance and emissions over the FTP and custom developed low-load Near-Dock engine dynamometer test cycles. Performance and emissions of the baseline calibrations showed a 63% increase in engine-out brake-specific NOx emissions and a proportionate 77% decrease in engine-out soot emissions over the Near-Dock cycle as compared to the FTP cycle. Engine dynamometer validation results of the Low-NOx FTP cycle calibration developed using D-MOGA, showed a 17% increase brake-specific NOx emissions over the FTP cycle, compared to the baseline calibrations. However, a 50% decrease in engine-out soot emissions and substantial increase in exhaust temperature were observed with no penalties on fuel consumption.;The tools developed in this study can play a role in meeting current and future regulations as well as bridging the gap between emissions during certification and real-world engine operations and eventually could play a vital role in meeting the National Ambient Air Quality Standards (NAAQS) in areas such as the port of Los Angeles, California in the South Coast Air Basin

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    • …
    corecore