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Abstract. The work presented in this paper deals with the development of a methodology
for resource-efficient behaviour synthesis on autonomous systems. In this context, a defini-
tion of a maximal problem with respect to the resources of a given system is introduced. It
is elucidated by means of an exemplary implementation of the solution to such a problem
using the mini-robot Khepera as the experimental platform. The described task consists of
exploring an unknown and dynamically changing environment, collecting and transporting
objects, which are associated with light-sources, and navigating to a home-base. The critical
point is represented by the accumulated positioning errors in odometrical path-integration
due to slippage. Therefore, adaptive sensor calibration using a specific variant of Kohonen’s
algorithm is applied in two cases to extract symbolic, e.g. geometric, information from the
sub-symbolic sensor data, which is used to enhance position control by landmark mapping
and orientation. In order to successfully handle the arising complex interactions, a heteroge-
neous control-architecture based on a parallel implementation of basic behaviours coupled
by a rule-based central unit is proposed.

1 Introduction

When considering autonomous mobile robots, small systems are preferred to resolve partial
problems applying a bottom up approach. They are relatively cheap and due to their small size
the experimental environment stays small too. The restricted resources of such a system pose
problems, which should be seen as a challenge and turned into an advantage. The limits regard-
ing energy (period of validity), computing power, memory capacities, actuators (manipulators
of environment), and sensors enforce the development of efficient solutions to the considered
problems. For that reason, mostly partial aspects are considered up to now [2], e.g. obstacle
avoidance [6], edge following, or simple navigation tasks [8]. The gained knowledge and re-
sults can be transferred onto large robots. However, the problem of integrating partial solutions
to work together efficiently still remains.
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Figure 1. The mini-robot Khepera [14, 29] transporting a paper cube.

The focus of our research in the area of behaviour generation on autonomous systems follows
the principle of maximal economy: The task may be defined asto create maximal functionality
with respect to a given system under the constraint of limited resources. In the context of
robotics, a problem may be considered as being (weakly) maximal, if its solution requires the
use of all available sensor-resources and actuators of the system in question. The so called
Dynamical Nightwatch’s Problem presented in [21] by Löffler et. al. for example, does fulfil
this criterion. This paper now describes substantial extensions to the work presented in the
earlier article.

1.1 Presentation of the Experimental Platform

The experimental platform utilized is the mini-robot Khepera [14] with two additional turrets
(Fig. 1). The base module has a height of 30 mm, a diameter of 55 mm, a mass of about 90 g and
is equipped with a Motorola 68331 micro-controller (256 kByte RAM), two DC motors with
incremental encoders, four Ni-Cd accumulators (4.8 V) for energy supply and eight infrared-
proximity sensors (transmitters and receivers). The sensors may also be used for measuring
the infrared intensity of the ambient light (receivers only) in which case they are referred to
as light-sensors. Moreover, various add-on turrets are available, two of which are applied in
the presented work: the gripper and the K213 vision turret (linear camera). The gripper may be
moved to 256 positions and has two states (open/closed). The vision turret has an opening angle
of 36◦ with a resolution of 64 pixels with a resolution of 8 bit; its maximal update frequency is
2 Hz. Due to the robot’s small size and easy operability, it represents a versatile tool for scientific
investigation in the field of autonomous systems. For a historical review concerning both the
design and the development of the mini-robot Khepera as well as the underlying motivation,
please refer to article [28] by Mondada et. al. in [23].
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Figure 2. Schematic of the implementation concept, which assures the effi-

cient usage of the given system resources.

1.2 Design Methodology Used

The task to implement a solution to a maximal problem has led to the development of a par-
ticularly adapted interaction concept (Fig. 2). The operating system of the Khepera allows the
processing of up to 15 concurrent tasks. These tasks may represent the basic behavioural mod-
ules (e.g. obstacle avoidance, edge following, etc.) which operate on a subset of the available,
multidimensional sensor space (8 infrared-/light-sensors, 2 incremental encoders, etc.). The
motor values calculated by the respective basic modules are transferred to the central control
unit that makes decisions about their (weighted) interaction due to both input-data (e.g. current
sensor state) as well as internal states (e.g. memorized landmarks). The requests from the cen-
tral module to transfer the calculated motor values occur in fixed time-intervals, which ensures
the real-time capability of the system (if no new values are available, the old ones are taken).
The update time is designed to maximize the number of program cycles which may be carried
out during the autonomy time, which is determined by the allocated energy resources. Further-
more, the basic modules are designed in a simple and robust way, which does not overextend
the sensor-hardware’s range and precision and also guarantees fast data processing. Eventu-
ally, only the locations of meaningful objects, e.g. landmarks, are memorized which limits
the required storage capacities. The observation of this concept assures a resource-efficient
implementation. In this context, resource-efficiency may be defined as a Pareto-optimization
problem: real-time capability has to be assured, the number of program cycles maximized
(with respect to the available energy reserves) and the allocated memory minimized, whereby a
correct accomplishment of the envisaged task is assumed. Note that one program cycle corre-
sponds to one situation that the robot has to master. Therefore, the objective is to successfully
cope with a maximum number of situations. The resulting overall optimization task represents a
complex problem which cannot be solved analytically. Consequently, the illustrated interaction
concept has to be accompanied by a particular design cycle (Fig. 3) which closely couples the
behaviour synthesis, with various steps of analysis, leading to an iterative optimization of the
program parameters. The behaviour synthesis is carried out using the bottom-up methodology,
e.g. to succeedingly add new basic modules which entails the modification of the correspond-
ing interaction schema (Fig. 2), and is constantly accompanied by simulations [26]. The applied
methods are analysed by means of error propagation techniques whereby the sensor characteris-
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Figure 3. The design cycle. Essential to the proposed concept is the close

coupling between behaviour synthesis and various analysis loops.

tics, on which the corresponding algorithms are based, are recorded with the real system. Both
lead to ana priori parameter optimization. After having carried out the real experiment, the
recorded data are graphically analysed using a specially developed visualization tool described
in [19, 20]. This method may be applied to compare the performances of simulator solutions
and real cases as well as to further optimize, i.e. in ana posterioriway, the program parameters.

The applied methods concerning the behaviour generating modules can be classified into three
basic groups:
Firstly, geometrical calculations have been applied for position control tasks. They include both
the odometrical path integration based on the incremental encoder values (‘step counters’) and
the landmark orientation processes. This has been done for two reasons: on the one hand these
problems are of geometrical nature and on the other hand they are responsive to calculus of
error.
Secondly, Braitenberg [1] neural networks have been used to create simple, but robust basic
behaviours like obstacle avoidance, edge following, etc. They have the advantage that, because
of their reflexive nature, they do not require a high precision on the part of the sensor system.
Moreover, they are not in conflict to the real-time demands due to their low complexity. Fur-
thermore, a variant of Kohonen’s algorithm [25] has been applied for sensor preprocessing in
cases where accurate actions have to be carried out demanding a higher sensorial precision.
Thirdly, concerning the central unit which controls the interactions of the various modules,
rule-based reasoning has been applied. This has the advantage that higher, i.e. ‘cognitive-like’,
decisions may be carried out. Note that in cases where more than one module may contribute
to current actions, no explicit subsumption architecture as proposed by Brooks [2] is used, but
a weighted superposition of the incoming motor values, which leads to the establishment of an
implicit priority system.

1.3 Organization of the Paper

This paper is organized as follows: after giving an overview of related works in section 2,
sections 3 to 6 describe the three parts of the developed algorithms in detail:

• Firstly, the position control by means of odometrical path integrating (section 3) and
reflexive schemata (section 4) are investigated. These schemata—exploration and navi-
gation [22] algorithms—are based on the positioning system. Their particularity resides



in the fact that the environment is supposed to be unknown and not static, i.e. they are
subjected to dynamical changes while the program is carried out.

• The second part describes a first approach to reduce the errors of the positioning sys-
tem using additional sensor information. Therefore, section 5 gives an introduction to a
methodology for adaptive sensor calibration [22], which allows to extract symbolic, i.e.
geometrical, information from a sub-symbolic sensor data stream.

• The third part shows applications of the sensor calibration in two different cases (sec-
tion 6). In the first one a local position correction is introduced and in the second, a
global positioning system.

Eventually in section 7 the full-scale problem will be defined, the arising interactions discussed
and the overall solution evaluated. The paper closes with a short conclusion (section 8).

2 Works Related to Our Approach

The related works discussed in this section have to be seen exemplary since they do not claim to
be complete and should only be regarded in relation to this work. It is broadly divided into the
three subsections—‘simulated vs. real experiments’, ‘behaviour synthesis utilizing the mini-
robot Khepera’, ‘navigation techniques’—and concludes with a short classification of the work
presented in this paper.

2.1 Simulated vs. Real Experiments

De Śa et. al. [5] describes the (simulated) implementation of a controller comprising of three
stages: the first level (reactive sensor-data processing) is realized by using a feedforward neural
network, the second level (instinct-like manoeuvring) consists of pre-defined behaviour mod-
ules which are selected by a fuzzy controller, and the third level (cognitive motion planning)
steers the global behaviour through rule-based reasoning.

Prem [32], on the one hand, extensively discusses the aspect of embodiment (embedding the
controller into a real robot) which is especially crucial for hardware realisations of autonomous
agents. On the other hand, Pipe et. al. [31] quantitatively analyze the learning performance of
autonomous systems on the basis of simulations, concerning so-called cognitive maps under the
assumption that senor and motor values are subjected to noise.

Miglino et. al. [27] presents results regarding the transfer of evolutionary developed controllers
to real robots. This is particularly interesting in the context of genetic algorithms and similar
techniques, because of the fact that generally a high number of evolution cycles have to be
carried out to obtain viable results. This categorically forbids the use of a real system during
the process of evolution. It is shown that an accurate model of the robot can be obtained,
if real sensor characteristics are included, and that the introduction of conservative noise into
the evolutionary process considerably smooths the transition to the real system, which—after
carrying out some additional evolution cycles—shows the same performance as the simulated
one.

Jakobi [13] contributes substantially to the ongoing discussion concerning the transfer of simu-
lated controllers to real autonomous systems by developing the concept of the so-called minimal



simulation. When modelling system and environment, this approach proposes to exclusively
concentrate on the most important parts of both. The concept is elucidated by an example with
the mini-robot Khepera: a robot which drives towards a T-shaped crossway receives a light sig-
nal from one of the two sides and has to follow the corresponding way. The controller, which
succeeded in this task, evolved through genetic algorithms (300 lines of commented C-code,
1000 generations, 4 h simulations on a Sun Ultra 1 workstation).

2.2 Behaviour Synthesis utilizing mini-robot Khepera

Lambrinos [18] proposes an interesting approach to on-line learning of a sense-of-orientation
using an internal ‘sun-compass’ implemented by means of a two-dimensional Kohonen feature
map. The task consists of obstacle avoidance combined with the return to the starting position
after a given period of time, while orientating itself with respect to a globally visible light-
source. The most frequently encountered error arises from a lateral drift with respect to the
initial position.

Ziemke [39] is concerned with the design of a connectionist-architecture for action-selection
on the basis of monolithic recurrent neural networks. The investigated (simulated) controller
consists of two neural networks: a three-layer functional network (slave) that maps the sensor-
input (first layer) to a state (second layer) and an output-vector (third layer) respectively, and a
contextual network (master) which dynamically calculates the input weights of the functional
network. The on-line adaption is done by backpropagation and typically requires about 15000
update cycles.

Floreano et. al. [7] presents an experiment with co-evolving predator-prey species (genetic al-
gorithms with approximately 100 generations). The predator has an additional vision turret, but
only drives with half of the prey’s velocity. It is demonstrated that the prey utilizes sensor noise
to generate random trajectories, whereas goal-directed following strategies are evolved by the
predator.

Franz et. al. [9] describes a scene-matching technique using a so-called parametrical disparity
field that is based on the comparison of a current visual impression with the memorized vicinity
of the home-base, through which a homing behaviour can be realized. The average success rate
(robot drives up to 1 cm to the goal within 30 sec, 20 test runs with random initial position)
varies between 94 (distance to goal 5 cm) and 46 (25 cm) percent.

In the task of obstacle avoidance in a given environment, Floreano et. al. [6] compares evolu-
tionary optimized controllers with a genetic algorithm (80 individuals, 20 genes each, 100 gen-
erations) to neural network solutions (three neurons with 27 synapses altogether). The results
are comparable in their performance, whereas the neural networks show a faster convergence
rate.

Scheier et. al. [35] investigates the constraints on neural controllers which arise through the spe-
cial requirements of the autonomous system in question and their corresponding environment.
It is shown that knowledge about the environmental structure (e.g. symmetries and the scaling
of the obstacle structure) can be incorporated into the training algorithms leading to a reduction
of their time-complexity.

Verschure et. al. [37] tries to reproduce the flexibility of biological life-forms by using a three-
level (reactive, adaptive and cognitive) distributed controller. The described task consists of
repeated navigation to different goals in an unknown environment. It is shown that adding the



second level reduces collisions with walls, but also the number of reached goals per time period
(with respect to the one-level controller). In contrast, appending the third level leads to an
increase in the number of encountered goals, while simultaneously decreasing collisions and
reducing mileage (the calculation power of the system had to be extended by four PentiumPros
and one Sun Ultra 1 workstation).

A comprehensive overview of current research projects in the area of behaviour implementa-
tion on the mini-robot Khepera can be found in the proceedings of the 1st International Khep-
era Workshop [23] covering the areas of ‘artificial evolution’, ‘neural networks and learning’,
‘hardware design’ and ‘human interfaces’.

2.3 Navigation Techniques

Hoppen [11] defines the navigational task as the manoeuvring of a mobile object on the basis of
incomplete information and the given restrictions to a pre-defined destination. In the case of an
unknown environment, the so-called backtracking method is advocated: the system is moved
on a straight line towards the envisaged destination; if an obstacle is encountered, the algorithm
first avoids it and then tries to realign the robot. In case this re-alignment is not possible, the
robot is driven back to the last branching point, where an alternative route is explored. Practical
in most cases, this algorithm still runs short if the underlying position calculation is subjected
to a high noise level.

Using the desert antcataglyphisas biological model, Hartmann et. al. [10] presents a neural
architecture which approximately implements a position control system on the basis of odomet-
rical path integration. The proposed architecture consists of chain-like neural networks, where
travelling activity patterns represent the path and angular differences. In the discussion section,
it is outlined that other mechanisms, like landmark orientation, have to be added in order to
correct the accumulated errors, e.g. due to slippage. The last point is particularly interesting
with respect to the transfer of such position control mechanisms to mobile autonomous robots.

Icking et. al. [12] describes so-called competitive algorithms (the algorithmical solution is
slower than the exact one only by a constant factor) for robot navigation. An intuitive ex-
ample is the search for a door in a wall by alternately driving left and right while doubling the
search range after each turn. Unfortunately, these kinds of algorithms are also of limited use for
real robots, because they require high standards concerning both sensor range and precision.

Kurz [17] presents a method to create a topological map (a two dimensional Kohonen feature
map with10 × 10 neurons) of an unknown environment, which is based on a sensor fusion
technique both applying ultrasonic and goniometry. The map is constructed using both the
current ultrasonic data as well as a position calculated by path integration as input parameters,
which requires a regular matrix of points of known positions used to correct position errors.
Problems with this approach arose especially during experiments in cases where neither the
structure of the environment nor the position of the robot were known.

Oore et. al. [30] proposes another interesting method where the robot is enabled to (in a quasi-
unsupervised way) learn its location in non-static environments on the basis of noisy ultrasonic
data. A probabilistic measure, which allows the prediction of the ultrasonic sensor data at a
certain location by means of radial-basis-function networks, is introduced. On the other hand,
previous ultrasonic data are used to correct the positioning system. The coupling of these two
processes enables the system to learn a correlation between geometrical position and corre-
sponding ultrasonic data. Moreover, the method shows good convergence characteristics under
simulated conditions.



Tani et. al. [36] deals with self-organising processes to learn certain trajectories (e.g. 0- and
8-like ones). The proposed method is based on a two level neural structure. The first processing
level, a three-dimensional Kohonen feature map (6 × 6 × 6 neurons with 24 synapses each),
compresses the sensor data of a laser scanner. The second, a partly recurrent network (three
levels with 5, 8, 3 neurons respectively), will only be activated at critical branching points
where a binary decision is made. In real experiments, only a very low noise percentage could
be tolerated without causing strong negative effects on the stability of the trajectories.

2.4 Classification of the Work Presented

To conclude this section, one may state that—in contrast to many previous publications [5, 30,
39]—the presented work does not limit itself to purely simulated systems and environments, but
deliberately investigates the possibilities of behaviour generation on a real autonomous system,
the mini-robot Khepera [28, 29], with its limited resources. Although several of the mentioned
publications have dealt with the transfer from simulations to real experiments [13, 27, 31, 32],
a new design methodology (cf. Fig. 2, 3) has to be applied to solve a maximal problem. More-
over, one may infer that—due to their differing research goals—previous experiments using the
mini-robot Khepera as the implementation platform [6, 7, 37] only partly scooped out the attain-
able behavioural complexity of the system. Especially the question of a resource-efficient im-
plementation [35] as well as—in a more general context—the analysis of methods applied and
behaviour obtained [7, 17, 18, 36] have been treated only marginally. Eventually, the navigation
techniques investigated are mostly limited to static or quasi-static environments [9, 10, 11, 12].

The following work now attempts to achieve maximal functionality with respect to the given
resources of the system, wherein the common assumption of a static environment is omitted.
Moreover, ample space is dedicated to the analysis of the methods applied and behaviour ob-
tained. Note that the presented work follows the broad outline of the conceptual framework of
the so-called ‘novelle artificial intelligence’ advocated for example by Brooks [3, 4] and Maes
[24].

3 Position Control I

The exploration of an unknown environment and in particular the navigation towards a point-
like destination requires the existence of a position control system. The mini-robot Khepera
offers—through its incremental encoders—the possibility to implement such a position control
system on the basis of odometrical path integration (Fig. 4). In the next two sections, a corre-
sponding geometrical model is developed and critically analysed by classical error propagation
techniques as well as graphical visualization.

3.1 Odometrical Path Integration

The current position(xR, yR, αR) is calculated in an incremental way on the basis of the pre-
vious position(xR0 , yR0 , αR0 ), the incremental encoder values(nL, nR), the wheel-distance
(d = 52 mm) and the advancement per pulse(∆l = 0.08 mm). Two cases have to be differ-
entiated. In the first one it is assumed, that the wheels of the robot are symmetrical driven
(Eqn. 1-3). The remaining situations are handled by the second case (Eqn. 4-10).
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1. case:|nL| = |nR|

αR = αR0 + (nR − nL)
∆l

d
(1)

xR = xR0 +
nR + nL

2
∆l cos(αR) (2)

yR = yR0 +
nR + nL

2
∆l sin(αR) (3)

2. case:|nL| 6= |nR|

∆αR =

∣∣∣∣(|nR| − sign(nRnL) |nL|) ∆l

d

∣∣∣∣ (4)
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( |nR|+ |nL|
|nR| − |nL|

)sign(nRnL)
d

2

∣∣∣∣∣ (5)

∆xR = r − r cos(∆αR) (6)

∆yR = r sin(∆αR) (7)

xR = xR0 + sign(nR + nL)∆yR cos(αR0) + ∆xR cos
(
αR0 + sign (|nR| − |nL|) π

2

)
(8)

yR = yR0 + sign(nR + nL)∆yR sin(αR0) + ∆xR sin
(
αR0 + sign (|nR| − |nL|) π

2

)
(9)

αR = αR0 + ∆αR sign (nR − nL) (10)



−100
−50

0
50

100

−100
−50

0
50

100

0.08

0.0804

0.0808

nLnR

po
si

tio
n 

er
ro

r 
F

 [m
m

]

Figure 5. Arising position errors per program update cycle due to non-

controllable influences, in particular slippage, during the process of odometri-

cal path integration.

3.2 Error Propagation

In order to estimate the arising error, which mainly stems from slippage, the error in the incre-
mental encoder values is assumed to be one (FnL

= FnR
= 1) per update cycle. They propagate

as follows:

Fα =

∣∣∣∣
dαR

dnL

∣∣∣∣FnL
+

∣∣∣∣
dαR

dnR

∣∣∣∣ FnR
(11)

Fx =

∣∣∣∣
dxR

dnL

∣∣∣∣ FnL
+

∣∣∣∣
dxR

dnR

∣∣∣∣ FnR
(12)

Fy =

∣∣∣∣
dyR

dnL

∣∣∣∣FnL
+

∣∣∣∣
dyR

dnR

∣∣∣∣FnR
(13)

F =
√

Fx
2 + Fy

2 (14)

Since the two functionsFx andFy are orthogonal with respect to the angleαR, the total error
F (Fig. 5) does not depend onαR; assuming that the incremental encoder values are smaller
than 100 pulses, one obtains a maximal position error of 0.081 mm per update cycle. Moreover
Fα = 0.18◦ is constant and in particular independent of the incremental encoder values. An
example—corresponding to the exploration task described in section 4—may illustrate the ef-
fects of these errors: the position is calculated about 12.5 times per second in average and the
program shall run for 80 sec which equals 1000 update cycles. A worst-case estimation leads to
a maximal position error of 8.1 cm and a maximal angular error of180◦. It can clearly be seen
that the angular error is much more critical—we will return to this point in section 6.

3.3 Parameter Optimization

A crucial aspect is the choice of the parametersd and∆l. This may be alleviated by means
of the developed visualization tool [19], which allows the testing of (and insofar optimize)
different parameter pairs for an individual robot on the basis of only one recorded data set and
the known geometry of the environment in question. An example may elucidate this point: in
a real experiment, a Khepera followed the (internal) walls of a rectangular environment (75 ×



∆l[mm] 0.076 0.077 0.078 0.079 0.080
∆α[◦] 18.6 9.4 0.1 -9.1 -18.3

∆l[mm] 0.081 0.082 0.083 0.084
∆α[◦] -27.6 -36.8 -46.0 -55.2

Table 1. Final angular error ∆α with respect to variation of ∆l (original con-

figuration: bold).

d[mm] 48 49 50 51 52
∆α[◦] -79.8 -63.5 -47.9 -32.81 -18.3

d[mm] 53 54 55 56
∆α[◦] -4.4 9.0 21.9 34.4

Table 2. Final angular error ∆α with respect to variation of d (original config-

uration: bold).

obstacle avoidance

drift

turning

edge following

Figure 6. The interaction structure incorporating both the basic schemata re-

sponsible for the exploration of an unknown environment (without drift schema)

as well as the point-to-point navigation to a destination of known position (in-

cluding the drift schema).

60 cm) for roughly two rounds (i.e. 92 sec corresponding to 1126 program cycles) and stopped
at an internal angle of71.7◦ instead of the expected90◦. Tables 1 and 2 show the obtained final
angular values with respect to variations ofd and∆l respectively, where the original values
(d = 52 mm,∆l = 0.08 mm) have been averaged over four different robots. From these data,
one may conclude that the parameter pairs (d = 52 mm,∆l = 0.078 mm or d = 53 mm,∆l =
0.08 mm respectively) would have been better suited for the tested robot.

4 Exploration and Navigation

Exploration and navigation in unknown and potentially changing environments represent one of
the basic and most intriguing problems concerning mobile autonomous robots. The most impor-
tant constraints reside in the limited energy resources of such a system limiting its autonomy
time, the real-time demands, the restricted calculation power, memory capacities and sensor
range and precision. These severe constraints motivate the development of simple, but robust
basic schemata with limited absolute time complexity. Moreover, the unknown and changing
nature of the environment entails the use of heuristics as well as avoiding explicit maps for three
reasons: the environment is non-static, the position control is subjected to considerable errors
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whereby the mean value has been taken from 50 samples.

and the available memory capacities are severely constricted. The exploration and navigation
concept developed, incorporates the four basic modules of obstacle avoidance, edge following,
drift and turning, whose interaction schema is depicted in Fig. 6. Thereby the motor output
values of edge following (respectively drift) and obstacle avoidance are superimposed, wherein
the obstacle avoidance has an implicit priority and also provides the basic propulsion. Eventu-
ally, in cases where turning on the spot is necessary, the schema turning suppresses the other
ones. Before describing the developed algorithms, ana priori analysis of the infrared proximity
sensors is presented, on which all of the algorithms in the current section rely.

4.1 Analysis of the Infrared Proximity Sensors

The recorded characteristics of the infrared proximity sensors and corresponding standard devi-
ation (Fig. 7) show that the proximity sensitivity is limited to an interval from approximately 1.7
to 3.3 cm. Moreover, the maximal, respectively minimal values are shown, which may differ by
∆ ≈ 100. For distances smaller than 1.7 cm the sensors saturate and above 3.3 cm only noise is
detectable, which is caused by the quantization. Relating this to the system’s diameter (5.5 cm),
one realizes that the robot has to carry out its exploration task with a sensing system restricted
to local perception. Moreover, despite the fact that the standard deviation with about 3 impulses
seems to be quite low, the algorithms have to be designed in such a way that a noise level of 50
impulses can be tolerated.

Eventually, on the basis of the recorded sensor characteristics, a model for the visualization
tool was developed (Fig. 8 left). The scalar sensor values are transformed to areas in which
an obstacle may be located (Fig. 8 right). The thickness of the characteristics represents the
corresponding noise level. This sensor model may be utilized for the process ofa posteriori
graphical analysis, thereby reconstructing the system’s perception of its environment (Fig. 9).
The reconstruction consists of two steps; first the accumulated sensor characteristics are drawn
(Fig. 9 middle), and then the parts the robot travelled across are erased to correct the view (Fig. 9
right). The real environment (Fig. 9 left) is given as reference.



Figure 8. The scalar sensor values are—by means of the adjustable angu-

lar characteristics (left)—transformed to areas in which an obstacle may be

located (right).

4.2 Obstacle Avoidance

Obstacle avoidance is one of the most basic tasks for mobile autonomous robotics. The pre-
sented algorithm is inspired by Braitenberg’s vehicle IIIb [1] and also provides the basic propul-
sion. The velocity reduction of the right motor due to an obstacle on the left (Fig. 10 left) is
represented by the dashed arrow. In order to get the relationship betweendistance-to-obstacle
and speed, The activation function of the neurons (Fig. 10 right) has to be superimposed on
the sensor characteristic (Fig. 7). The right (respectively the left) front sensors’ values and the
corresponding weight vector (w0 = w5 = 0, w1 . . . w4 = 1/2) are multiplied by means of the
dot product and transferred in an inhibitory way to the opposite motor. The initialization of
the weights may be considered as a sensitivity function; the factw0 = w5 = 0 is necessary to
guarantee a smooth interaction with the edge following algorithm (see below). Moreover, the
activation function of the two neurons represents a modified step function (the threshold is ran-
domly chosen to be475± 25, which avoids the formation of a preference direction) combined
with a proportionality relation, permitting a smoother driving behaviour.

4.3 Edge Following

The edge following algorithm enables the system to leave room-like substructures of the en-
vironment in a time-efficient way. The basic concept consists of keeping the distance-to-wall



Figure 9. On the basis of the sensor model it is possible to regain a notion

of the perceived environmental structure.
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Figure 11. Behaviour implemented during the edge following algorithm.

constant, i.e. to implement a control system which keeps the sensor valueS0 (resp.S5) constant.
Thereby three different situations may occur (Fig. 11):

a) driving along a newly found wall (the sensor valueS0 will be memorized);

b) approaching a wall if the robot has drifted away (current sensor value is lower than the
memorized one);

c) the robot drives away from the wall by means of the obstacle avoidance schema.

Moreover, a neural interpretation of the edge following algorithm is shown in Fig. 12. Therein a
neuron, represented by a circle, calculates the sum of its input values, represented by incoming
arrows, if not specified otherwise. If the difference of the current to the previous sensor value
is smaller than a noise discriminating threshold of−7 and is detected, a drift value of−1 is
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Figure 13. Representation of the effects of the drift schema depending on

the angular miss-alignment.

superimposed on the left motor. If the difference is greater than7 (approximately twice the
standard deviation), i.e. the robot is approaching the wall, the current sensor value will be
memorized (Smem = −S0(t)). In case the robot loses the wall (S0(t)+Smem < −100), a strong
curve towards the wall will be driven until either the wall is relocated (Smem = −S0(t)) or 120
program cycles have been carried out. The edge following process starts with a reset.

4.4 Drift

The drift schema in conjunction with the obstacle avoidance and the turning algorithm (which
may be considered as a special case of the drift schema) enables the robot to navigate to a point
of known coordinates. Note that—for the discussed reasons—no map of the environment is
available, e.g. no optimal path may be calculated; in consequence, this schema tries to manoeu-
vre the robot towards its destination on a straight line. An initial turn on the spot (Fig. 14 (1))
orientates the robot towards its navigational destination. If, during the process of manoeuvring
towards this destination an obstacle is encountered (2), it will be avoided and the system will
try to reorientate itself (3) by superimposing an adequate drift with respect to the angular miss-
alignment (Fig. 13). Moreover, in order to avoid cyclic movements, the nearest point reached is
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turning schemata (Fig. 16).

memorized; in case this point is reencountered for the second time (with a tolerance of 5 cm),
the drift is halved which leads to wider movements permitting the robot to leave small envi-
ronmental substructures. If this still leads to cyclic behaviour, the navigation algorithm will be
interrupted for a fixed (but increasing with the number of failures) number of program cycles in
order to search a new starting point, which in practice amounts to an edge following behaviour.
Finally, if the robot has approached its target by 15 cm (Fig. 14 (4)), a turn on the spot to reori-
entate the system is carried out and the basic propulsion is halved, avoiding an ‘overshot’. In
case the target is reached within 5 cm, the task is considered to be completed. This tolerance
area concerning both target and nearest-point-reached is introduced due to the errors stemming
from the path integration process. Eventually, the drift schema may also be interpreted in a
neural way (Fig. 15).

4.5 Turning

The presented structure for implementing the drift schema (Fig. 15) may also be utilized to
realize a turning-on-the-spot algorithm, where only the thresholds as well as the switch between
a strong and a weak drift cease to exist. The resulting behaviour together with a visualization
for two criteria causing a turn of180◦ are shown in (Fig. 16).



0 1 2 3 4 5

0 1 2 3 4 5

Figure 16. If it is not possible to leave a pre-defined circle during a given

number of program cycles (left) or if its front IR-sensors perceive certain char-

acteristical patterns (right), the robot performs a 180◦ turn.
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4.6 Results: Point-to-Point Navigation

Concerning the simulator (Fig. 17 left), the developed navigation algorithm shows a very good
behaviour in case of ‘open’ environments, i.e. structures without narrow, maze-like obstacle
arrangements, for which the chosen parameter set is not adapted. This example (Fig. 17 left)
points out the different drift factors (strong/weak) as well as the interception of the algorithm
and the reorientation in the vicinity of the target. In the real case (Fig. 17 right), a comparable
performance may be achieved on a smaller scale. Although a particularly harsh structure (two
successive dead ends) was chosen, the robot reached the envisaged target with a deviation of
∆x = 2 cm and∆y = 1 cm which is well inside the tolerance area.

It is nevertheless obvious that the proposed navigation algorithm is heavily dependent on the
underlying position calculation. For this reason, the next two sections will see the introduction
of a technique for adaptive sensor calibration and its application to enhance the positioning
system.

5 Adaptive Sensor Calibration

Adaptive sensor calibration provides a means by which two different goals may be achieved: on
the one hand, it allows the extraction of symbolic information from the generally sub-symbolic
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the training period.

sensor data, and on the other hand, the quite intriguing problem of varying responses of indi-
vidual sensors to identical circumstances, due to fabrication tolerances, may be approached. In
the context of the presented work, a methodology on the basis of a variant of Kohonen’s algo-
rithm [16] inspired by Malmstroem et. al. [25] is used to extract geometrical informations from
high dimensional sensor data in two cases: the calibration of the light-sensors leads to an angle-
to-light-source value and the calibration of the linear camera provides distance-to-landmark
information. First of all, the underlying algorithm shall be briefly explained.

5.1 Description of the Algorithm

The basic idea consists of approximating a function f which maps an n-dimensional input vector
onto an m-dimensional output vector by classifying the input vectors, wherein a particular out-
put vector is associated with every class. In the following, the output will be a scalar value due
to the particular structure of the encountered problems; please note however, that the presented
methodology is not restricted to this case.

f : Rn −→ Rm , here m = 1 (15)

The methodology is divided into a training and a recall phase. In the training phase, it is as-
sumed that a suitable data set is available (either by previous recording or by on-line input)
which consists of example vectors containing both the sensorial data (~s) as well as the associ-
ated output value (o). The network consists of k randomly initialised neurons which match the
example vectors regarding their dimensions. Moreover, they have fixed locations, i.e. it is as-
sumed that the vectori is adjacent to the vectorsi−1 andi+1, which results in a 1-dimensional
structure being the most appropriate for the investigated cases. Again this does not represent
a principal restriction; on the contrary, the dimension of the network should be adapted to the
dimension of the output vector in question, which considerably simplifies the visualization of
the results.
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Figure 19. Characteristic curve of the light-sensors.

During the training phase, the neuron with the minimal distance to the current example vector
(Eqn. 16) is determined (best match) and all neurons (Eqn. 17) are adapted towards the example
(Eqn. 18, 19), whereby the adaption strengthλ is dependent on the distance of the neuron in
question to the best match. Moreover, the adaption strength decreases in time which leads to
a quick but coarse ordering in an early phase of the training process and fine-tuning later on.
In the given example (Fig. 18) the triangles represent the various learning rates and adaption
ranges at different times (t0 < t1 < t2). The marked neuron represents the best match, which
means the neuron with the weight vector closest to the input vector. The vectors contain the
input values and the corresponding output value associated by training. The training phase ends
when no further decrease of the classification error can be detected. Note that the number of
neurons utilized is dependent on the requirements of the application in question.

~Vex = (s0 . . . sn, o) (16)

~Vi = (~wi, ϕi) (17)

min
i=1...k

∥∥∥~Vi − ~Vex

∥∥∥ ⇒ ~Vbm (18)

~Vi(t + 1) = ~Vi(t) + λ (t, |i− bm|) ~Vbm(t) (19)

During the recall phase, only the sensorial data (Eqn. 20) is available to the system; conse-
quently, the best-match search is carried out considering only the first n components of the
network vectors. The complementary part associated with this best-match represents the re-
quired output (Eqn. 21), i.e. the complete n+m-dimensional information is recovered by means
of a classification restricted to a n-dimensional subspace.

~sre = (s0 . . . sn) (20)

min
i=1...k

‖~wi − ~sre‖ ⇒ ~wbm ⇒ f(~sre) = ϕbm (21)

5.2 Analysis of the Light-Sensors

The light-sensors (passively) measure the intensity of the infrared part of the ambient light. A
characteristic, which has been obtained by a single measurement, is shown in (Fig. 19); the
sensor value decreases with increasing intensity, i.e. decreasing distance to the light-source.
When using a light-source with different intensity, the curve will be spread or compressed. In
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this context, it should be noted that the measured characteristic depends on the intensity of
the light-source in relation to the background infrared radiation, which prompts one to use the
light-sensors in a way which is independent of absolute intensity values. Furthermore, one
may artificially create ‘events’, such as for example ‘light-source encountered’, by introducing
corresponding intensity thresholds (dashed lines in Fig. 19), which have to be initially adapted
to the background radiation. Note that noise plays a significantly lesser role here as for the
(active) proximity sensors.

5.3 Calibration of the Light-Sensors

Fig. 20 shows in a schematic way the task of the light-sensor network which consists of trans-
forming the 6-dimensional intensity signal to 1-dimensional angular information. For the train-
ing phase, a data set is obtained by placing a robot at a distance of 1 cm (4 cm for the test data
set) to a light-source and rotating it by180◦ while recording both sensor vectors (Fig. 21) and
the associated angle. The latter has been obtained by odometrical path integration on the basis
of the incremental encoders. In order to take the significant distance dependence into account,
a scaling operation is performed (Fig. 22) prior to training and recall. This operation scales the
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sensor values, so that one of the six values has the normed lowest amount (50) and another one
has the normed highest amount (500). This is more advantageous than performing a normali-
sation because of the border effects induced by the non-isotropic sensor arrangement (Fig. 20
left).

The chosen network consists of 60 neurons and has been adapted in 20 cycles while reducing
the adaption width from 10 to 1 and the learning rate from 0.6 to 0.1 (Fig. 23). The average
error amounts to the expected 1.52 degrees (the 60 neurons are distributed over the180◦ with
a spacing of3◦). In contrast, the maximum error of6.52◦, occurring at the borders due to the
non-isotropic sensor arrangement. Despite the scaling operation, a strong distance sensitivity
remains, which allows one to use the obtained network only at an optimal ‘working’ inten-
sity. Using the visualization tool the current output of the network can be eventually displayed
(Fig. 24).



Figure 24. Visualization of the trained neural network for the light-sensor

calibration.
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Figure 25. Schematic illustrating the recognition of a cylinder as a landmark

using the linear camera.

5.4 Vision Data Preprocessing

The calibration of the linear camera provides distance information with respect to a particular
cylindrical landmark (Fig. 25). In order to reduce the data dimensionality (64 pixel with a reso-
lution of 8 bit), a preprocessing is carried out. Firstly, a gradientGi of the original imageBi is
calculated (Eqn. 22) and subjected to a noise suppressing threshold (Eqn. 23), which allows the
detection of the right and left edges of the object, thereby permitting the identification of the
landmark.

Gi = Bi −Bi+1 (22)

|Gi| < 20 → Gi = 0 (23)

The result of this operation on a typical image is shown in (Fig. 26). Every image is the average
of 10 recordings; if in at least 4 recordings the system fails to identify two edges, the process
is stopped. Moreover, Fig. 27 shows that next to the width of the perceived object, the minimal
pixel value also carries some distance information, whereas the gradient values at the edges
are subjected to too much noise and the maximal value saturates at small distances. Therefore,
width and minimal values are chosen to be the sensorial input variables. Note that due to the
diameter of the utilized landmarks (about 4.8 cm) and the opening angle of the camera(36◦),
a minimal operating distance of 10 cm is necessary; above 40 cm, the resolution of the camera
does not permit a viable operation either.
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5.5 Calibration of the Linear Camera

Due to the fact that only two input components and one output value are present in this example,
the calibration of the linear camera appears suitable for a comparison between off-line and
on-line training. A network consisting of 100 neurons has been trained in both cases with
only three cycles decreasing the adaption width from 10 to 1 and the learning rate from 0.8
to 0.1. The on-line training required an initialization with the recorded data from the first
training cycle (Fig. 28). The result has been an average error of 5 mm (on-line: 9 mm) and a
maximal one of 24 mm (48 mm). The significantly lower performance in the on-line case is due
to odometrical errors which stem from a very discontinuous (periodic ac- and decelerations)
movement imposed on the system by the calculation time needed for vision data processing and
weight adaption. Moreover, in the close range of 10 to 20 cm, an expected average error of
1.5 mm has been obtained in the off-line case by distributing 100 neurons over 30 cm.

6 Position Control II

The two symbolic values obtained by adaptive sensor calibration, e.g. angle-to-light-source and
distance-to-landmark, shall be used in the following to enhance the positioning system. This
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Figure 28. The diagrams show the results of the off-line (on a workstation,

left) and on-line training (on the robots processor, right).
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Figure 29. Mapping sequence of a light-source. The areas marked by the

thresholds Θ1-Θ2 correspond to the dashed lines in Fig. 19.

is done in two consecutive steps: firstly, the angular information is used to map the locations
of encountered light-sources by means of a triangulation process—if this light-source is recog-
nized again in the following, the difference between its current and the memorized position is
used to update the internal position of the robot itself (assuming that the light-source has not
moved). Secondly, the distance information is applied to map the positions of three, globally
visible landmarks during an initialization phase; by measuring (in an event-driven way) the an-
gular differences under which these three landmarks appear, this knowledge may be used in the
following to update not only the internal position of the robot, but also its orientation.

6.1 Cartography of the Light-Sources

A typical mapping sequence is shown in Fig. 29. If the robot detects a light-source (1,Θ1 =
470), it drives in this direction (2) until the average sensor value drops below a certain thresh-
old Θ2 = 200 which signals that an optimal distance to the light-source (3) is reached. This
minimizes the error of the neural map. After the robot’s position at point 3 (x1, y1, α1) has
been memorized, it turns approximately90◦ and drives away to a specified distance (4). Then it
turns back (5) and reapproaches the light-source (6). After reaching the optimal distance again
(7), it is possible to calculate the absolute position of the light-source (xLq, yLq) with the infor-
mation from the second position (x2, y2, α2) (see left picture). Finally, the Khepera leaves the
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area of the light-source (8,Θ3 = 490). The implemented neural network used to approach the
light-source, is shown on the right of Fig. 29. The geometrical calculations are carried out ac-
cording the Eqn. 24 to 26. Note that the drive-to-light-source schema is implemented in analogy
to Braitenberg’s Vehicle IIIa, which differs from the one implementing the obstacle avoidance
behaviour in the excitatory nature of its sensori-motor coupling. Moreover, the triangulation
process is independent of the light-source’s intensity, as a higher basic radiation will only result
in the robot taking the two angles from a greater distance.

lLq =
(x2 − x1) sin (α1) + (y1 − y2) cos (α1)

sin (α2 − α1)
(24)

xLq = x2 + lLq cos (α2) (25)

yLq = y2 + lLq sin (α2) (26)

In order to recognize already encountered light-sources, two areas specific to each light-source
have been defined (Fig. 30) and are relevant for changing the state of a previously discovered
light-source. The outside margin marks the tolerance area in which a light-source is recog-
nized to be identical to the previously recorded one. In this case, the difference between the
stored position of the light-source and the current one will be used to adjust the position(x, y)
of the Khepera. Moreover, if the robot enters the inner area without detecting a light-source,
the one previously registered at this location will be removed from the list of operating light-
sources. Eventually, an error propagation calculation (Eqn. 27, 28) was carried out to evaluate
the effectiveness of the applied method (FαLq

= 1, 52◦, and number of program cycles be-
tween registering the two angles/positions = about 30, e.g. the odometrical error approximately
amounts toFxR

= FyR
= 1.7 mm, FαR

= 5.4◦).

FkLq
=

∣∣∣∣
dkLq

dx2

∣∣∣∣FxR
+

∣∣∣∣
dkLq

dy2

∣∣∣∣FyR
+

∣∣∣∣
dkLq

dα2

∣∣∣∣
(
FαR

+ FαLq

)
+

∣∣∣∣
dkLq

dα1

∣∣∣∣FαLq
(27)

F =

√ ∑

k=x,y

FkLq

2 (28)

Fig. 31 shows the total error versus the angular difference depending on the absolute distance.
At position one (x1, y1), the light-source is assumed to be detected under an angle ofα1 = 90◦

(at α2 = ±90◦, e.g. |α1| − |α2| = 0◦, the algorithm diverges). Fig. 32 shows a trajectory
obtained from simulations, which underlines the effectiveness of the applied method, since all
errors concerning the light-source locations arise through the neural network used to calibrate
the light-sensors and not from odometrical errors (the position calculation in the simulator [26]
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is assumed to be perfect). Finally, the results from two real experiments (Fig. 33) illustrate the
effects of the angular error in the internal position determination, which cannot be corrected
by the proposed process. In the case without position correction (Fig. 33 left) the robot was
able to recognize the light-source 5 times after the first detection. Using position correction
(Fig. 33 right) the experiment was terminated after 24 recognitions. This experiment shows
that the position correction using detected light-sources as local landmarks works well, but
that still a problem with the angular error remains. This prompts one to investigate further
possibilities to obtain a truly ‘global’ positioning system capable of correcting this kind of error.
The next subsection shall discuss this in relation to the application of the distance-calibrated
linear camera.

6.2 A Global Positioning System

The methodology described in the following may be divided into two phases: an initialization
and operation.
During the first, the locations of the three cylindrical landmarks are determined. Due to the
fact that the robot is not able to distinguish between these landmarks by their appearance, they
have to be positioned so to allow an unique identification. The solid line (Fig. 34) marks the
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area in which it is possible to discriminate the landmarks. Preventing a cyclic permutation of
the landmarks, the angle between the outer ones has to be less then180◦. Therefore, the Khep-
era has to keep below the broken line. Moreover, the angular differences under which these
extended objects appear is to be determined. This is done by applying the odometrical path
integration (αR) and extracting the angular mid-point position of the perceived landmark in the
camera image (Fig. 26).αK is to be corrected (Eqn. 29) due to the fact that the camera is not
exactly located at the robot’s geometrical centre. Taking the resolution of the linear camera
into account, for distances of more than 400 mm the error can only be estimated (Fig. 35(a)).
Therefore a discrepancy of0.45◦ arises from a distance of 1 m. The landmark’s coordinates are
finally obtained by means of Eqn. 30 and 31. Eventually a rotation of the coordinate system
is performed in order to assure that the robot’s relative position with respect to the landmarks
is uniquely identifiable, regardless of its initial position and orientation. Furthermore, an error
propagation calculation (Eqn. 32) shows that the resulting position error increases with increas-
ing distance (Fig. 35(b)) and is periodically dependent onαK andαR (Fig. 36), whereby the
elementary uncertainties are evaluated toFlV = 24 mm, FαK

= 36◦/64 pixel andFαR
≈ 1◦.

αK = arctan

(
lV sin (α′K) + 5 mm

lV cos (α′K)

)
(29)

xLi = xR + lV cos (αR + αK) (30)

yLi = yR + lV sin (αR + αK) (31)
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Graph of the error (F ) (Eqn. 32) which occurs during the calculation of the
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Figure 36. Graph of the error (F) (Eqn. 32) which occurs during the calcula-

tion of the landmark’s position in dependence of the position of the landmark

in the picture (αK) and the angular orientation of the robot (αR).

F =

√√√√ ∑

k=x,y

(∣∣∣∣
dkLi

dlV

∣∣∣∣ FlV +

∣∣∣∣
dkLi

dαK

∣∣∣∣ FαK
+

∣∣∣∣
dkLi

dαR

∣∣∣∣ FαR

)2

(32)

During the operation phase, the position/orientation is updated in an event-driven way, whereby
an event may, for example, be represented by the encounter of a light-source or of a dead-end
structure. Fig. 37 shows the geometrical situation wherein the two difference-anglesδ1 and
δ2 are measured, permitting to calculatexR, yR andαR by means of Eqns. 33 to 44. Note
that for δ1 + δ2 + γ = 180◦, a position calculation is not possible, since Eqn. 38 no longer
supplies any information (Fig. 38). The corresponding error propagation calculation (Eqn. 45,
Fδ = 2 pixel · 18◦/64 pixel) shows that the applied method provides a good position correc-
tion for mid-range distances. In the given example (Fig. 39) the landmarks are placed at the
following positions: L1(0, 1000), L2(200, 1100) andL3(500, 1000). The asymmetry in the
error is due to the asymmetry in of the landmarks’ positions. In order to fulfil the given con-
straints (Fig. 34), the marked areas are impossible for the robot to reach. Moreover, due to
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the imprecise mapping of the landmarks’ locations during the initialization phase, systematic
distortions of the perceived robot-positions arise. Fig. 40 shows the deferral between the real
and the internal position of the robot. Exemplarily the middle landmark was deferred 10 mm
in y-direction and the right one 25 mm in x-direction. The result shows that the position cal-
culation is very sensitive to such deferrals which may arise throughout the initialization process.

t1 = arctan

(
yL2 − yL1

xL2 − xL1

)
(33)

t3 = π − arctan

(
yL3 − yL2

xL3 − xL2

)
(34)

γ = |t1 − t3| (35)

a =

√
(xL2 − xL1)

2 + (yL2 − yL1)
2 (36)

b =

√
(xL3 − xL2)

2 + (yL3 − yL2)
2 (37)

ϕ + ψ = 360◦ − γ − δ1 − δ2 (38)

a sin (ϕ)

sin (δ1)
=

b sin (ψ)

sin (δ2)
(39)

ϕ = arctan

( −b sin (δ1) sin (γ + δ1 + δ2)

a sin (δ2) + b sin (δ1) cos (γ + δ1 + δ2)

)
(40)
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r =
a

sin (δ1)
sin (π − ϕ− δ1) (41)

xR = xL1 + r cos (t1 − ϕ) (42)

yR = yL1 + r sin (t1 − ϕ) (43)

αR = arctan

(
yL3 − yR

xL3 − xR

)
− αK (44)

F =

√(∣∣∣∣
dxR

dδ1

∣∣∣∣ +
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dxR

dδ2
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+
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Fδ (45)

7 Discussion of the Foraging Animate Problem

7.1 The Foraging Animate Problem Specification

The Foraging Animate Problem considerably extends the so-called Dynamical Nightwatch’s
Problem [21], which by itself is already a maximal one. Consequently, this extension is possible
only through the additional use of two hardware modules, i.e. the gripper and the vision turret.
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It may be specified in the following way:
During an initialization phase, the robot registers the positions of the three, tower-like global
landmarks (‘skyscrapers’) utilizing the distance information extracted from the vision data. The
next step consists of searching for the location of its home-base. This home-base is located at a
dead end and labelled by a visual mark. Consequently, it may be recognized by the simultaneous
registration of both characteristics (dead-end: infrared sensors, visual mark: linear camera).
Subsequently, the robot constantly explores the unknown and potentially changing environment,
while looking for light-sources to map (applying the angular information, extracted from the
light-sensor data) and registering them. Every time the position of a light-source is registered or
deleted, the robot communicates its findings to the human observer by means of the two LEDs.
Optionally, a local position correction may be carried out using the difference-vector between
the perceived and the memorized position of the light-source in question. The next task consists
of transporting an object associated with each switched-on light-source to its home-base by
means of the point-to-point navigation algorithm. Having reached the home-base, the object is
deposited. Moreover, the position of the robot is updated by an event-driven mechanism, e.g.
each time the home-base is reached, using the global landmarks as a reference. After this, a
new light-source is sought.



Figure 42. Visualization (bottom) of a complete data set recorded from a real

experiment concerning the Dynamical Nightwatch’s Problem together with the

corresponding environment (80 × 80 cm; top). Note the drift of the internal

position.

7.2 The Interaction Schema

The interaction schema (Fig. 41) realizes the implementation concept presented in the introduc-
tion (Fig. 2). It is an extension of the so-called Dynamical Nightwatch’s Problem [21] indicated
by the dashed line. Every basic schema operates on a specific part of the available sensor space;
only the control units may send commands to the motors. To enhance the modularity of the
implemented solution and to better visualize the internal processes, e.g. the token-transfer on
the basis of current sensor data and internal states, the central control unit has been trisected.
Note that this interaction schema has to be considerably altered—with respect to the Dynami-
cal Nightwatch’s Problem—to include the new functionalities, hence increasing the number of
possible interactions in a non-linear way.
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7.3 Graphical Analysis

The graphical analysis of the obtained behaviour shall be exemplified in two steps. Firstly,
a visualization of a real experiment concerning the Dynamical Nightwatch’s Problem is rep-
resented together with the corresponding environment (Fig. 42). Secondly, the initialization
phase concerning the mapping of the three global landmarks is depicted (Fig. 43). In reality, the
landmarks have the same x-position and y-distances of 20 and 30 cm respectively.

7.4 Discussion of the Results

Considering the possible errors regarding the positioning system, the test-results (Fig. 44) are
satisfactory with respect to the real experiment. The location of the home-base varies due to
the errors in the global positioning system causing the registration of light-source L2 at two
different points (indicated by the dashed line). Nevertheless, it should be remarked that with the
additional hardware modules (gripper and vision turret), the autonomy time, determined by the
depletion of the available energy resources, only amounts to approximately a third, whereby—
towards the end—some infrared sensor degradations were observed, negatively affecting the
obstacle avoidance and edge following behaviours. Moreover, the intensity independence, with
respect to light-sources, had to be somehow restricted: gripping the objects associated with



light-sources is to be triggered by an intensity threshold due to the negative influence of nearby
light-sources on the infrared-proximity sensors. Sometimes, the robot is not able to grab the
object because of the lower lateral angular resolution of the corresponding neural network due
to the non-isotropic sensor arrangement. Furthermore, the recognition of the home-base is sub-
jected to two independent sources of noise, i.e. the infrared proximity data and the vision turret
data. In an unfavourable situation, this may lead to a non-recognition of the home-base. Finally,
there is a possible source of conflict between the two position correction methods; the correc-
tion at the light-source location may improve the cartesian components, however, the angular
error is not corrected, which enhances the angular maladjustment due to the global positioning
system. The latter—on its own—is (cf. section 6) only suitable for mid-range distances.

8 Conclusion and Outlook

In this paper, the implementation of the solution to a maximal robotics problem, i.e. the For-
aging Animate, has been presented. Given a small and restricted system like the mini-robot
Khepera, a new design methodology as well as the corresponding implementation concept had
to be developed in order to ensure a robust, real-time capable and resource-efficient solution.
The exploration and navigation algorithms developed, inspired by the work of Braitenberg [1],
are—although dependent on internal states—basically reflexive in nature and—despite of the
fact that they have been optimized for the Khepera mini-robot—in principle scalable to larger
systems, which are potentially more interesting for industrial applications. Moreover, the appli-
cation of a variant of Kohonen’s algorithm for adaptive sensor calibration represents a method
to both extract symbolic information from sub-symbolic sensor data and to compensate fabrica-
tion tolerances of sensor components. The utilization of the geometrical informations obtained,
greatly increased the positioning system accuracy based on odometrical path integration. Fi-
nally, a particular focus of this paper has been on the analysis of the sensorial system, the
methods applied and the behaviour obtained both by classical error propagation techniques and
graphical visualization. These results then allowed the optimization of the corresponding sys-
tem parameters as well as a better evaluation of the system’s performance with respect to the
underlying constraints.

After having demonstrated the solution to a single robot’s maximal problem, the next logical
step consists of investigating maximal cooperative behaviour arising, for example, in the context
of cooperative clustering strategies. To successfully handle this kind of problem, the develop-
ment of a powerful communication module for Khepera mini-robots like the one described in
Rueping et. al. [34, 33] is required. Moreover, it is envisaged to map parts, e.g. the exploration
algorithms or the Kohonen feature maps used for sensor calibration, of the above described
software solution to the FPGA module presented in [38]. Eventually, despite our efforts to
fuse three sensorial sources to upgrade the positioning system, the inaccuracy of the position-
ing process still presents the major short-coming of the present implementation. Therefore, we
are currently investigating two different approaches to overcome this deficiency. On the one
hand, a matrix of fixed infrared-beacons in conjunction with self-organized data processing is
being studied [38], and on the other hand, we are currently examining the potentials of discrete
ultrasonic far-range sensors for mini-robots [15].
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A Nomenclature

Odometrical Path Integration

αR, αR0 Orientation of the robot with respect to the initial x-axis att andt0 with
t = t0 + ∆t, ∆t > 0

(xR, yR), (xR0 , yR0) Cartesian coordinates att andt0
nr, nL Incremental encoder values of the right and left motor: number of

counted wheel-step pulses per∆t
∆l Advancement per puls of the incremental encoders
d Diameter of the robot
r Rotation radius with respect to one integration step



∆xR, ∆yR, ∆αR By nR, nL induced alterations ofxR, yR andαR

FnR
, FnL

Estimated error of the incremental encoder values during∆t
F, Fx, Fy, Fα Position- (total-, resp.x-, y- andα-error) and angular error with respect

to one integration step

Adaptive Sensor Calibration

f Function to be approximated, which possesses an intrinsic monotony to
be preserved by the training algorithm

R Set of real numbers
~s = (s0 . . . sn) n-dimensional vector (infrared sensor values)
o Scalar output value
~Vex (n+1)-dimensional example vector
i, bm Index of a neuron
~wi Weights of the i-th neuron
ϕi Associated output value of the i-th neuron
~Vi Vector representing the i-th neuron
~Vbm = (~sbm, o) Best match vector (with respect to the 1-norm)
λ (t, |i− bm|) Learning rate of the neuron
~Vre n-dimensional recall vector

Cartography of Light-Sources

(x1, y1, α1) Position of robot and direction to light-source att1
(x1, y1, α2) Position of robot and direction to light-source att2 > t1
lLq Distance to light-source att2
(xLq, yLq) Position of light-source
FkLq

, F Error of calculated position of light-source in k-direction(k = x, y, α)
resp. total error

Θi Intensity thresholds(i = 1, 2, 3)

Global Positioning System

Bi Grey-scale level of the i-th pixel of the vision turret
Gi Difference in grey-scale level between the i-th and the (i+1)-th pixel
α′K , αK Apparent and corrected angle under which the robot perceives a global

landmark
lV , FlV Distance vision turret - mid-point of global landmark, resp. the error
(xLi, yLi) Position of the i-th global landmark(i = 1, 2, 3)
t1, t3, γ, ϕ, ψ Auxiliary angles used in the position calculation based on global land-

marks
a, b Distances of the three global landmarks
r Distance between robot and first global landmark
δ1, δ2, Fδ Perceived angular difference with respect to the positions of the three

global landmarks, resp. the error


