650 research outputs found

    How active perception and attractor dynamics shape perceptual categorization: A computational model

    Get PDF
    We propose a computational model of perceptual categorization that fuses elements of grounded and sensorimotor theories of cognition with dynamic models of decision-making. We assume that category information consists in anticipated patterns of agent–environment interactions that can be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This information is firstly encoded when category information is acquired, and then re-enacted during perceptual categorization. The perceptual categorization consists in a dynamic competition between attractors that encode the sensorimotor patterns typical of each category; action prediction success counts as ‘‘evidence’’ for a given category and contributes to falling into the corresponding attractor. The evidence accumulation process is guided by an active perception loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected sensorimotor patterns that count as evidence for the object category. We present a computational model incorporating these elements and describing action prediction, active perception, and attractor dynamics as key elements of perceptual categorizations. We test the model in three simulated perceptual categorization tasks, and we discuss its relevance for grounded and sensorimotor theories of cognition.Peer reviewe

    Diagnostic information use to understand brain mechanisms of facial expression categorization

    Get PDF
    Proficient categorization of facial expressions is crucial for normal social interaction. Neurophysiological, behavioural, event-related potential, lesion and functional neuroimaging techniques can be used to investigate the underlying brain mechanisms supporting this seemingly effortless process, and the associated arrangement of bilateral networks. These brain areas exhibit consistent and replicable activation patterns, and can be broadly defined to include visual (occipital and temporal), limbic (amygdala) and prefrontal (orbitofrontal) regions. Together, these areas support early perceptual processing, the formation of detailed representations and subsequent recognition of expressive faces. Despite the critical role of facial expressions in social communication and extensive work in this area, it is still not known how the brain decodes nonverbal signals in terms of expression-specific features. For these reasons, this thesis investigates the role of these so-called diagnostic facial features at three significant stages in expression recognition; the spatiotemporal inputs to the visual system, the dynamic integration of features in higher visual (occipitotemporal) areas, and early sensitivity to features in V1. In Chapter 1, the basic emotion categories are presented, along with the brain regions that are activated by these expressions. In line with this, the current cognitive theory of face processing reviews functional and anatomical dissociations within the distributed neural “face network”. Chapter 1 also introduces the way in which we measure and use diagnostic information to derive brain sensitivity to specific facial features, and how this is a useful tool by which to understand spatial and temporal organisation of expression recognition in the brain. In relation to this, hierarchical, bottom-up neural processing is discussed along with high-level, top-down facilitatory mechanisms. Chapter 2 describes an eye-movement study that reveals inputs to the visual system via fixations reflect diagnostic information use. Inputs to the visual system dictate the information distributed to cognitive systems during the seamless and rapid categorization of expressive faces. How we perform eye-movements during this task informs how task-driven and stimulus-driven mechanisms interact to guide the extraction of information supporting recognition. We recorded eye movements of observers who categorized the six basic categories of facial expressions. We use a measure of task-relevant information (diagnosticity) to discuss oculomotor behaviour, with focus on two findings. Firstly, fixated regions reveal expression differences. Secondly, by examining fixation sequences, the intersection of fixations with diagnostic information increases in a sequence of fixations. This suggests a top-down drive to acquire task-relevant information, with different functional roles for first and final fixations. A combination of psychophysical studies of visual recognition together with the EEG (electroencephalogram) signal is used to infer the dynamics of feature extraction and use during the recognition of facial expressions in Chapter 3. The results reveal a process that integrates visual information over about 50 milliseconds prior to the face-sensitive N170 event-related potential, starting at the eye region, and proceeding gradually towards lower regions. The finding that informative features for recognition are not processed simultaneously but in an orderly progression over a short time period is instructive for understanding the processes involved in visual recognition, and in particular the integration of bottom-up and top-down processes. In Chapter 4 we use fMRI to investigate the task-dependent activation to diagnostic features in early visual areas, suggesting top-down mechanisms as V1 traditionally exhibits only simple response properties. Chapter 3 revealed that diagnostic features modulate the temporal dynamics of brain signals in higher visual areas. Within the hierarchical visual system however, it is not known if an early (V1/V2/V3) sensitivity to diagnostic information contributes to categorical facial judgements, conceivably driven by top-down signals triggered in visual processing. Using retinotopic mapping, we reveal task-dependent information extraction within the earliest cortical representation (V1) of two features known to be differentially necessary for face recognition tasks (eyes and mouth). This strategic encoding of face images is beyond typical V1 properties and suggests a top-down influence of task extending down to the earliest retinotopic stages of visual processing. The significance of these data is discussed in the context of the cortical face network and bidirectional processing in the visual system. The visual cognition of facial expression processing is concerned with the interactive processing of bottom-up sensory-driven information and top-down mechanisms to relate visual input to categorical judgements. The three experiments presented in this thesis are summarized in Chapter 5 in relation to how diagnostic features can be used to explore such processing in the human brain leading to proficient facial expression categorization

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Eye movements in the wild : Oculomotor control, gaze behavior & frames of reference

    Get PDF
    Understanding the brain's capacity to encode complex visual information from a scene and to transform it into a coherent perception of 3D space and into well-coordinated motor commands are among the outstanding questions in the study of integrative brain function. Eye movement methodologies have allowed us to begin addressing these questions in increasingly naturalistic tasks, where eye and body movements are ubiquitous and, therefore, the applicability of most traditional neuroscience methods restricted. This review explores foundational issues in (1) how oculomotor and motor control in lab experiments extrapolates into more complex settings and (2) how real-world gaze behavior in turn decomposes into more elementary eye movement patterns. We review the received typology of oculomotor patterns in laboratory tasks, and how they map onto naturalistic gaze behavior (or not). We discuss the multiple coordinate systems needed to represent visual gaze strategies, how the choice of reference frame affects the description of eye movements, and the related but conceptually distinct issue of coordinate transformations between internal representations within the brain.Peer reviewe

    Work, aging, mental fatigue, and eye movement dynamics

    Get PDF

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated
    corecore