112 research outputs found

    Arterial mechanical motion estimation based on a semi-rigid body deformation approach

    Get PDF
    Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques.The authors thank Ana Palomares for revising their English text. This work has been supported by the National Grant (AP2007-00275), the projects ARC-VISION (TEC2010-15396), ITREBA (TIC-5060), and the EU project TOMSY (FP7-270436)

    Progressive Attenuation of the Longitudinal Kinetics in the Common Carotid Artery: Preliminary in Vivo Assessment

    Full text link
    Longitudinal kinetics (LOKI) of the arterial wall consists of the shearing motion of the intima-media complex over the adventitia layer in the direction parallel to the blood flow during the cardiac cycle. The aim of this study was to investigate the local variability of LOKI amplitude along the length of the vessel. By use of a previously validated motion-estimation framework, 35 in vivo longitudinal B-mode ultrasound cine loops of healthy common carotid arteries were analyzed. Results indicated that LOKI amplitude is progressively attenuated along the length of the artery, as it is larger in regions located on the proximal side of the image (i.e., toward the heart) and smaller in regions located on the distal side of the image (i.e., toward the head), with an average attenuation coefficient of −2.5 ± 2.0%/mm. Reported for the first time in this study, this phenomenon is likely to be of great importance in improving understanding of atherosclerosis mechanisms, and has the potential to be a novel index of arterial stiffness

    Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion

    Get PDF
    Analyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results show that the proposed method outperforms a recently proposed optical flow based method

    Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

    Full text link
    L'athĂ©rosclĂ©rose est une maladie vasculaire complexe qui affecte la paroi des artĂšres (par l'Ă©paississement) et les lumiĂšres (par la formation de plaques). La rupture d'une plaque de l'artĂšre carotide peut Ă©galement provoquer un accident vasculaire cĂ©rĂ©bral ischĂ©mique et des complications. Bien que plusieurs modalitĂ©s d'imagerie mĂ©dicale soient actuellement utilisĂ©es pour Ă©valuer la stabilitĂ© d'une plaque, elles prĂ©sentent des limitations telles que l'irradiation, les propriĂ©tĂ©s invasives, une faible disponibilitĂ© clinique et un coĂ»t Ă©levĂ©. L'Ă©chographie est une mĂ©thode d'imagerie sĂ»re qui permet une analyse en temps rĂ©el pour l'Ă©valuation des tissus biologiques. Il est intĂ©ressant et prometteur d’appliquer une Ă©chographie vasculaire pour le dĂ©pistage et le diagnostic prĂ©coces des plaques d’artĂšre carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminositĂ© d'Ă©cho ou l’impact de cette plaque sur les caractĂ©ristiques de l’écoulement sanguin, ce qui peut ne pas ĂȘtre suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montrĂ© le potentiel de dĂ©termination de la stabilitĂ© d'une plaque. NIVE peut dĂ©terminer le champ de dĂ©formation de la paroi vasculaire en mouvement d’une artĂšre carotide provoquĂ© par la pulsation cardiaque naturelle. En raison des diffĂ©rences de module de Young entre les diffĂ©rents tissus des vaisseaux, diffĂ©rents composants d’une plaque devraient prĂ©senter diffĂ©rentes dĂ©formations, caractĂ©risant ainsi la stabilitĂ© de la plaque. Actuellement, les performances et l’efficacitĂ© numĂ©rique sous-optimales limitent l’acceptation clinique de NIVE en tant que mĂ©thode rapide et efficace pour le diagnostic prĂ©coce des plaques vulnĂ©rables. Par consĂ©quent, il est nĂ©cessaire de dĂ©velopper NIVE en tant qu’outil d’imagerie non invasif, rapide et Ă©conomique afin de mieux caractĂ©riser la vulnĂ©rabilitĂ© liĂ©e Ă  la plaque. La procĂ©dure Ă  suivre pour effectuer l’analyse NIVE consiste en des Ă©tapes de formation et de post-traitement d’images. Cette thĂšse vise Ă  amĂ©liorer systĂ©matiquement la prĂ©cision de ces deux aspects de NIVE afin de faciliter la prĂ©diction de la vulnĂ©rabilitĂ© de la plaque carotidienne. Le premier effort de cette thĂšse a Ă©tĂ© dĂ©diĂ© Ă  la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a Ă©tĂ© introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplĂ©es Ă  deux estimateurs de contrainte fondĂ©s sur un modĂšle de dĂ©formation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont Ă©tĂ© Ă©valuĂ©es. Pour toutes les Ă©tudes de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformĂ© par rapport Ă  l'APBE avec imagerie par oscillations transversales. NĂ©anmoins, des estimations de contrainte principales comparables ou meilleures pourraient ĂȘtre obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hĂ©tĂ©rogĂšnes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxiĂšme objectif de cette thĂšse Ă©tait d'Ă©valuer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expĂ©rimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les rĂ©sultats in vitro ont montrĂ© plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. MalgrĂ© tout, nous avons nĂ©anmoins obtenu des estimations de dĂ©formations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrĂ©lation supĂ©rieurs Ă  0.85). Pour un jeu de donnĂ©es cliniques de 18 participants prĂ©sentant une stĂ©nose de l'artĂšre carotide, nous avons proposĂ© d'utiliser deux jeux de donnĂ©es d'analyses sur la mĂȘme plaque carotidienne, soit des images transversales et longitudinales, afin de dĂ©duire les mouvements hors plan (qui se sont avĂ©rĂ©s de 0.25 mm Ă  1.04 mm). Les rĂ©sultats cliniques ont montrĂ© que les estimations de dĂ©formations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrĂ©lation inter-images Ă©taient supĂ©rieurs Ă  0.70 et que les corrĂ©lations croisĂ©es normalisĂ©es entre les images radiofrĂ©quences Ă©taient supĂ©rieures Ă  0.93, ce qui a permis de dĂ©montrer une plus grande confiance lors de l'analyse de jeu de donnĂ©es cliniques de plaques carotides Ă  l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les dĂ©formations des parois des vaisseaux Ă  partir d’images reconstituĂ©es dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thĂšse Ă©tait de dĂ©velopper un algorithme d'estimation de contrainte avec une rĂ©solution de la taille d’un pixel ainsi qu'une efficacitĂ© de calcul Ă©levĂ©e pour l'amĂ©lioration de la prĂ©cision de NIVE (Chapitre 7). Nous avons proposĂ© un estimateur de dĂ©formation de modĂšle fragmentĂ© (SMSE) avec lequel le champ de dĂ©formation dense est paramĂ©trĂ© avec des descriptions de transformĂ©es en cosinus discret, gĂ©nĂ©rant ainsi des composantes de dĂ©formations affines (dĂ©formations axiales et latĂ©rales et en cisaillement) sans opĂ©ration mathĂ©matique de dĂ©rivĂ©es. En comparant avec le LSME, le SMSE a rĂ©duit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la mĂ©thode SMSE rĂ©duit de 4 Ă  25 fois le temps de traitement par rapport Ă  la mĂ©thode LSME pour les simulations, les Ă©tudes in vitro et in vivo, ce qui pourrait permettre une implĂ©mentation possible de NIVE en temps rĂ©el.Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time

    Vascular Segmentation Algorithms for Generating 3D Atherosclerotic Measurements

    Get PDF
    Atherosclerosis manifests as plaques within large arteries of the body and remains as a leading cause of mortality and morbidity in the world. Major cardiovascular events may occur in patients without known preexisting symptoms, thus it is important to monitor progression and regression of the plaque burden in the arteries for evaluating patient\u27s response to therapy. In this dissertation, our main focus is quantification of plaque burden from the carotid and femoral arteries, which are major sites for plaque formation, and are straight forward to image noninvasively due to their superficial location. Recently, 3D measurements of plaque burden have shown to be more sensitive to the changes of plaque burden than one-/two-dimensional measurements. However, despite the advancements of 3D noninvasive imaging technology with rapid acquisition capabilities, and the high sensitivity of the 3D plaque measurements of plaque burden, they are still not widely used due to the inordinate amount of time and effort required to delineate artery walls plus plaque boundaries to obtain 3D measurements from the images. Therefore, the objective of this dissertation is developing novel semi-automated segmentation methods to alleviate measurement burden from the observer for segmentation of the outer wall and lumen boundaries from: (1) 3D carotid ultrasound (US) images, (2) 3D carotid black-blood magnetic resonance (MR) images, and (3) 3D femoral black-blood MR images. Segmentation of the carotid lumen and outer wall from 3DUS images is a challenging task due to low image contrast, for which no method has been previously reported. Initially, we developed a 2D slice-wise segmentation algorithm based on the level set method, which was then extended to 3D. The 3D algorithm required fewer user interactions than manual delineation and the 2D method. The algorithm reduced user time by ≈79% (1.72 vs. 8.3 min) compared to manual segmentation for generating 3D-based measurements with high accuracy (Dice similarity coefficient (DSC)\u3e90%). Secondly, we developed a novel 3D multi-region segmentation algorithm, which simultaneously delineates both the carotid lumen and outer wall surfaces from MR images by evolving two coupled surfaces using a convex max-flow-based technique. The algorithm required user interaction only on a single transverse slice of the 3D image for generating 3D surfaces of the lumen and outer wall. The algorithm was parallelized using graphics processing units (GPU) to increase computational speed, thus reducing user time by 93% (0.78 vs. 12 min) compared to manual segmentation. Moreover, the algorithm yielded high accuracy (DSC \u3e 90%) and high precision (intra-observer CV \u3c 5.6% and inter-observer CV \u3c 6.6%). Finally, we developed and validated an algorithm based on convex max-flow formulation to segment the femoral arteries that enforces a tubular shape prior and an inter-surface consistency of the outer wall and lumen to maintain a minimum separation distance between the two surfaces. The algorithm required the observer to choose only about 11 points on its medial axis of the artery to yield the 3D surfaces of the lumen and outer wall, which reduced the operator time by 97% (1.8 vs. 70-80 min) compared to manual segmentation. Furthermore, the proposed algorithm reported DSC greater than 85% and small intra-observer variability (CV ≈ 6.69%). In conclusion, the development of robust semi-automated algorithms for generating 3D measurements of plaque burden may accelerate translation of 3D measurements to clinical trials and subsequently to clinical care

    Estimation du mouvement de la paroi carotidienne en imagerie ultrasonore par une approche de marquage ultrasonore

    Get PDF
    This work focuses on the processing of biomedical images. The aim of our study is to estimate the mechanical properties of the carotid artery in vivo using ultrasound imaging, in order to detect cardiovascular diseases at an early stage. Over the last decade, researchers have shown interest in studying artery wall motion, especially the motion of the carotid intima-media complex in order to demonstrate its significance as a marker of Atherosclerosis. However, despite recent progress, motion estimation of the carotid wall is still difficult, particularly in the longitudinal direction (direction parallel to the probe). The development of an innovative method for studying the movement of the carotid artery wall is the main motivation of this thesis. The three main contributions proposed in this work are i) the development, the validation, and the clinical evaluation of a novel method for 2D motion estimation of the carotid wall, ii) the development, the simulation and the experimental validation of the 3D extension of the estimation method proposed, and iii) the experimental evaluation of the 2D proposed method in ultra-fast imaging, for the estimation of the local pulse wave velocity. We propose a motion estimation method combining tagging of the ultrasound images, and a motion estimator based on the phase of the ultrasound images. The ultrasonic tagging is produced by means of transverse oscillations. We present two different approaches to introduce these transverses oscillations, a classic approach using a specific apodization function and a new approach based on filtering. The proposed motion estimator uses the 2D analytical phase of RF images using the Hahn approach. This thesis work shows that, compared with conventional methods, the proposed approach provides more accurate motion estimation in the longitudinal direction, and more generally in directions perpendicular to the beam axis. Also, the experimental evaluation of our method on ultra-fast images sequences from carotid phantom was used to validate our method regarding the estimation of the pulse wave velocity, the Young’s modulus of the vessels wall, and the propagation of a longitudinal movement.Ce travail de thĂšse est axĂ© sur le domaine du traitement d’images biomĂ©dicales. L’objectif de notre Ă©tude est l’estimation des paramĂštres traduisant les propriĂ©tĂ©s mĂ©caniques de l’artĂšre carotide in vivo en imagerie Ă©chographique, dans une optique de dĂ©tection prĂ©coce des pathologies cardiovasculaires. L’étude des comportements dynamiques de l’artĂšre pour le dĂ©pistage prĂ©coce de l’athĂ©rosclĂ©rose constitue Ă  ce jour une piste privilĂ©giĂ©e. Cependant, malgrĂ© les avancĂ©es rĂ©centes, l’estimation du mouvement de la paroi carotidienne reste toujours difficile, notamment dans la direction longitudinale (direction parallĂšle au vaisseau). L’élaboration d’une mĂ©thode innovante permettant d’étudier le mouvement de la paroi carotidienne constitue la principale motivation de ce travail de thĂšse. Les trois contributions principales proposĂ©es dans ce travail sont i) le dĂ©veloppement, la validation, et l’évaluation clinique d’une mĂ©thode originale d’estimation de mouvement 2D adaptĂ©e au mouvement de la paroi carotidienne, ii) la validation en simulation, et expĂ©rimentale de l’extension Ă  la 3D de la mĂ©thode d’estimation proposĂ©e, et iii) l’évaluation expĂ©rimentale de la mĂ©thode proposĂ©e, en imagerie ultrasonore ultra-rapide, dans le cadre de l’estimation locale de la vitesse de l’onde de pouls. Nous proposons une mĂ©thode d’estimation de mouvement combinant un marquage ultrasonore dans la direction latĂ©rale, et un estimateur de mouvement basĂ© sur la phase des images ultrasonores. Le marquage ultrasonore est rĂ©alisĂ© par l’intermĂ©diaire d’oscillations transverses. Nous proposons deux approches diffĂ©rentes pour introduire ces oscillations transverses, une approche classique utilisant une fonction de pondĂ©ration spĂ©cifique, et une approche originale par filtrage permettant de contrĂŽler de maniĂšre optimale leurs formations. L’estimateur de mouvement proposĂ© utilise les phases analytiques des images radiofrĂ©quences, extraites par l’approche de Hahn. Ce travail de thĂšse montre que la mĂ©thode proposĂ©e permet une estimation de mouvement plus prĂ©cise dans la direction longitudinale, et plus gĂ©nĂ©ralement dans les directions perpendiculaires au faisceau ultrasonore, que celle obtenue avec d’autres mĂ©thodes plus traditionnelles. De plus, l’évaluation expĂ©rimentale de la mĂ©thode sur des sĂ©quences d’images ultrasonores ultra-rapides issues de fantĂŽmes de carotide, a permis l’estimation locale de la vitesse de propagation de l’onde de pouls, la mise en Ă©vidence de la propagation d’un mouvement longitudinal et enfin l’estimation du module de Young des vaisseaux

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Automated analysis of 3D echocardiography

    Get PDF
    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction of 3D echocardiographic images from fast rotating ultrasound transducers is presented and methods for analysis of 3D echocardiography in general, using tracking, detection and model-based segmentation techniques to ultimately fully automatically segment the left ventricle for functional analysis. We show that reliable quantification of left ventricular volume and mitral valve displacement can be achieved using the presented techniques.SenterNovem (IOP Beeldverwerking, grant IBVC02003), Dutch Technology Foundation STW (grant 06666)UBL - phd migration 201
    • 

    corecore