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Abstract

Atherosclerosis manifests as plaques within large arteries of the body and remains as

a leading cause of mortality and morbidity in the world. Major cardiovascular events

may occur in patients without known preexisting symptoms, thus it is important to

monitor progression and regression of the plaque burden in the arteries for evaluating

patient’s response to therapy. In this dissertation, our main focus is quantification

of plaque burden from the carotid and femoral arteries, which are major sites for

plaque formation, and are straight forward to image noninvasively due to their super-

ficial location. Recently, 3D measurements of plaque burden have shown to be more

sensitive to the changes of plaque burden than one-/two-dimensional measurements.

However, despite the advancements of 3D noninvasive imaging technology with rapid

acquisition capabilities, and the high sensitivity of the 3D plaque measurements of

plaque burden, they are still not widely used due to the inordinate amount of time

and effort required to delineate artery walls plus plaque boundaries to obtain 3D

measurements from the images. Therefore, the objective of this dissertation is devel-

oping novel semi-automated segmentation methods to alleviate measurement burden

from the observer for segmentation of the outer wall and lumen boundaries from: (1)

3D carotid ultrasound (US) images, (2) 3D carotid black-blood magnetic resonance

(MR) images, and (3) 3D femoral black-blood MR images.

Segmentation of the carotid lumen and outer wall from 3DUS images is a

challenging task due to low image contrast, for which no method has been previously

reported. Initially, we developed a 2D slice-wise segmentation algorithm based on

the level set method, which was then extended to 3D. The 3D algorithm required

fewer user interactions than manual delineation and the 2D method. The algorithm

reduced user time by ≈ 79% (1.72 vs. 8.3 min) compared to manual segmentation for

generating 3D-based measurements with high accuracy (Dice similarity coefficient

(DSC) > 90%). Secondly, we developed a novel 3D multi-region segmentation

algorithm, which simultaneously delineates both the carotid lumen and outer

wall surfaces from MR images by evolving two coupled surfaces using a convex

max-flow-based technique. The algorithm required user interaction only on a single
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transverse slice of the 3D image for generating 3D surfaces of the lumen and outer

wall. The algorithm was parallelized using graphics processing units (GPU) to

increase computational speed, thus reducing user time by ≈ 93% (0.78 vs. 12 min)

compared to manual segmentation. Moreover, the algorithm yielded high accuracy

(DSC > 90%) and high precision (intra-observer CV < 5.6% and inter-observer

CV < 6.6%). Finally, we developed and validated an algorithm based on convex

max-flow formulation to segment the femoral arteries that enforces a tubular shape

prior and an inter-surface consistency of the outer wall and lumen to maintain a

minimum separation distance between the two surfaces. The algorithm required the

observer to choose only about 11 points on its medial axis of the artery to yield the

3D surfaces of the lumen and outer wall, which reduced the operator time by 97%

(1.8 vs. 70–80 min) compared to manual segmentation. Furthermore, the proposed

algorithm reported DSC greater than 85% and small intra-observer variability (CV

≈ 6.69%). In conclusion, the development of robust semi-automated algorithms for

generating 3D measurements of plaque burden may accelerate translation of 3D

measurements to clinical trials and subsequently to clinical care.

Keywords:

Image segmentation, carotid atherosclerosis, peripheral artery disease, 3D carotid

ultrasound, carotid MRI, contour evolution, convex optimization, level sets.
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Chapter 1

Introduction

1.1 Atherosclerosis

Atherosclerosis is an inflammatory disease, in which the inner layer of the arteries

progressively accumulates low density lipoproteins and macrophages over a period of

several decades forming plaque [1]. Disease progression commences at adolescence

with the dysfunction of the endothelial layer of the artery and continues to build

up plaque, which may be accelerated by risk factors including hypercholesterolemia,

smoking, hypertension, diabetes mellitus, physical inactivity, rheumatoid arthritis,

overweight, and obesity to name a few [2, 3]. Atherosclerosis is the disease of interest

for this dissertation, and substantial portion of it is devoted to describing algorithms

for generating vascular atherosclerotic measurements.

The American heart association (AHA) has classified the atherosclerotic process

into six main stages [4, 5], which can be broadly divided into three main categories:

fatty streak, intermediate lesions, and advanced lesions. The initial stage known as

the fatty streak stage could occur in childhood, and is a pure inflammatory lesion [6].

It appears as a yellow streak running along the major arteries, which consists of

smooth muscle cells filled with cholesterol and macrophages. Over time, the fatty

streak may progress into an intermediate lesion (also known as preatheroma), which

consists of microscopically visible extracellular lipid droplets [4]. The plaque forms

in the inner layer of the artery and, as it continues to grow, may narrow the lumen of

the artery or may change arterial cross-sectional area, which is also known as ‘arterial

remodeling’ [7]. As intermediate lesions progress to advanced lesions, they tend to

form a fibrous cap that covers the lesion from the lumen. The fibrous cap covers a

mixture of leukocytes, lipid, and debris, which might form a necrotic core [6].

Despite efforts to lower cholesterol levels and lifestyle changes to include more

exercises, cardiovascular disease continues to be the principle cause of death in the

world [6, 8]. Atherosclerotic lesions occur mostly in large- and medium-sized muscular
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arteries and can lead to ischemia of the brain, heart or extremities, resulting in

infarction [6]. The coronary, carotid, renal, and femoral arteries are major sites

for developing atherosclerosis in patients. As a result, different disease conditions

may develop based on which arteries are affected. For example, atherosclerosis in

the coronary arteries causes ischemic heart attack, the leading cause of death in

the world [2, 9]. Atherosclerosis occurring in the carotid arteries (see Fig. 1.1) may

lead to ischemic stroke whereas atherosclerosis occurring in the superficial femoral

arteries (see Fig. 1.6) may lead to critical limb ischemia. Imaging of coronary arteries

is challenging due to the heart and respiratory motion, and their interior location

within the body compared to carotid and superficial femoral arteries. The main focus

of this dissertation is on imaging and quantification of atherosclerosis in the carotid

and femoral arteries using noninvasive techniques. Carotid atherosclerosis and its

imaging techniques are described in Section 1.2 and peripheral arterial disease of

femoral arteries and its imaging are described in Section 1.6.

1.2 Carotid atherosclerosis

Carotid arteries are paired structures located in both the left and right sides of the

neck. The left common carotid artery (CCA) originates at the aortic arch, whereas the

right CCA originates at brachiocephalic artery. The CCA bifurcates into the internal

carotid artery (ICA) and external carotid artery (ECA) as shown in Fig. 1.1(a).

Schematic sagittal cross-section of a carotid artery showing the bifurcation point (BF)

and the CCA, ICA, and ECA are shown in Fig. 1.1(b). The ICA supplies oxygenated

blood to the brain and the ECA supplies oxygenated blood to the face, scalp, and

skull. Figure 1.1(c) shows the layers of an artery: the intima, media, and adventitia.

The intima layer is the inner layer of the artery, which comprises of elastic membrane

lining and a smooth endothelium. The middle layer is the media, which is comprised

of smooth muscle cells and elastic fibers. The outermost layer is the adventitia, which

contains connective tissue, collagen, and elastic fibers.

In particular, plaque formation at the carotid bifurcation is a major cause for the

generation of thrombosis and subsequent cerebral emboli [10]. An unstable plaque

may suddenly rupture forming a thrombus causing an embolism, which may ulti-

mately lead to an ischemic stroke by blocking the oxygenated blood supply to parts
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Figure 1.1: (a) The anatomy of the carotid artery. The image is courtesy from 20th U.
S. edition of Gray’s Anatomy page #549 (Also available at https://en.wikipedia.
org/wiki/Common_carotid_artery); (b) schematic sagittal cross-section of a carotid
artery showing the bifurcation point (BF), common carotid artery (CCA), internal
carotid artery (ICA), and external carotid artery (ECA); and (c) transverse cross-
section of a carotid artery showing the adventitia (A), media (M), intima (I), and
lumen (L), as well as the IMT measurement.

https://en.wikipedia.org/wiki/Common_carotid_artery
https://en.wikipedia.org/wiki/Common_carotid_artery
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of the brain [10, 11]. Plaque formation in the arteries often has no symptoms and is

unknown to the patient and doctor until it disrupts blood flow to the brain [11].

1.2.1 Ischemic stroke

Stroke remains the third leading cause of mortality and morbidity worldwide in the

developed world, and is expected to take a growing toll in the developing world [2, 9].

It is the most common, serious neurological problem globally and the third leading

cause of death among North American adults [8]. Approximately 87% of all stroke

cases are ischemic, mostly due to a blockage of a cerebral artery by a thrombotic

embolus [12]. Therefore, improved methods to identify patients at increased risk for

stroke, and better techniques to treat and monitor them will have an enormous impact

in the management of patients who are at risk of stroke.

1.3 Monitoring of carotid arthrosclerosis

Framingham risk factors such as age, sex, obesity, smoking, diabetes, lipid levels, and

hypertension are still used to stratify stroke risk and monitor treatment effect [13].

In addition to Framingham risk factors, biochemical biomarkers of lipid metabolism

and inflammation [14] have been investigated and shown to be stronger predictor of

cardiovascular events. However, these risk factors are indirect measurements of the

disease and do not consider current status of the plaque burden in the arteries. Thus,

they are limited in assessing the actual risk of stroke.

Treatment of severe carotid artery stenosis includes carotid endarterectomy,

carotid angioplasty, and stenting [15]. However, not all the plaques are high risk

to the patient, thus it is important to evaluate vulnerability of the plaque to rupture

to determine patient’s eligibility for invasive procedures [16, 17].

Some treatment strategies of carotid atherosclerosis focuses on the prevention of

progression [11]. Patients who are at risk of stroke due to atherosclerosis may either

undergo changes in their diet and overall lifestyle habits, or be treated with medical

interventions for atherosclerosis to prevent stroke [18]. Therefore, monitoring the

carotid plaque progression and regression in patients over a period of time is very

important for proper risk management of the patients [19, 20]. There have been new

therapies developed to regress plaque and inflammation, but they lack intermediate
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end points to use as efficacious targets. To study such treatments, it is necessary to

directly measure changes in plaque burden, morphology and/or composition.

Medical imaging is widely used for diagnosis of carotid atherosclerosis and can

be used to assess severity of the disease [21]. Unlike the blood-based biomarkers,

the imaging biomarkers provide direct measurements of plaque burden. Even though

diagnosis of the disease is possible with Doppler ultrasound (see Section 1.4.4), the

challenge and impact lie in quantitative monitoring of the carotid plaque progres-

sion and regression in patients for evaluating efficacy of treatments and for assessing

vulnerability of the plaque to rupture. In this chapter, we describe carotid imaging

techniques in Section 1.4 and the corresponding carotid phenotypes in Section 1.5.

1.4 Imaging of carotid atherosclerosis

Noninvasive and sensitive imaging systems capable of detecting and monitoring

carotid atherosclerosis in populations may be the next leap in patient management.

Recently, there has been an increased interest in area and volumetric measurements

of carotid plaque burden [22, 23]. The hypothesis is that the area and volumetric

measurements are more reflective of the plaque burden, thus they are more sensitive

and may provide complementary information to one/two dimensional measurements.

As such, new sensitive and specific measurements may provide critically needed and

more specific risk management tools and more sensitive ways to assess new patient

treatments. One main advantage is shorter clinical trials with imaging end-points as

opposed to long clinical trials with hard endpoints. Here we briefly describe some of

the imaging modalities that have been recently investigated for carotid imaging.

1.4.1 Computed tomography angiography (CTA)

The advent of high-speed multi-detector computed tomography angiography (CTA)

allows for direct evaluation and measurement of lumen diameter and stenosis in

3D [24]. CTA is an accurate modality for the detection of severe carotid artery

disease, especially for detection of occlusions [25]. Although, CTA provides informa-

tion about lumen stenosis, aneurysms, and calcifications, it does not provide high

image contrast of the outer wall boundary and vessel wall composition except calci-

fications [26, 27]. Moreover, CTA exposes patients to radiation as well as requires
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injection of iodinated contrast agents. Therefore, CTA is not practical for longitudinal

monitoring of asymptomatic patients.

1.4.2 2D B-mode ultrasound

2D B-mode ultrasound (US) is widely used in clinical studies for imaging of carotid

atherosclerosis due to its noninvasiveness, cost-effectiveness, and short acquisition

times [28]. Since the carotid arteries are superficial structures, it is relatively easy to

acquire high quality B-mode ultrasound images of the carotid arteries for the purpose

of quantitative analysis. Carotid B-mode US of the long axis view of the artery

allows evaluation of lumen diameter, intima-media thickness (IMT), and presence and

extent of plaques [29]. The IMT measurement, a one dimensional measurement of the

arterial thickness, has been widely used as an surrogate end point for cardiovascular

disease [29, 30, 31].

Since plaque growth occurs in 3D, measurements based on 2D are not very sensi-

tive to changes in plaque burden. The 2D US image represents a thin plane at some

arbitrary angle in the body. Therefore, it is difficult to localize the image plane and

reproduce it at a later time for follow-up studies [32]. In addition, with extensive

plaque burden, particularly if calcified, acoustic shadowing may hamper insonation

of the area distal to the calcification.

1.4.3 Intra-vascular ultrasound (IVUS)

Intravascular ultrasound (IVUS) uses a miniaturized US probe attached to a catheter

and the images are acquired while the catheter is guided through the vessel [33].

Unlike angiographic techniques, IVUS provides high-resolution images of the vessel

wall and is widely used during coronary artery interventions [34]. Moreover, virtual

histology IVUS [15] is a new development of the IVUS technology allowing analysis

of both the intensity and frequency of the reflected US signals. This capability has

been used to identify individual plaque components in the carotid arteries. Although,

IVUS is used during interventional procedures including carotid artery stenting [35]

for patients with severe CAS, IVUS is too expensive and invasive to be used for

longitudinal monitoring of plaque burden.
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1.4.4 Doppler ultrasound

Doppler US measures the direction and speed of blood cells flowing through the

arteries and shows blood flow as a colour-coded dynamic image. It is noninvasive and

cost-effective, and has been widely used as a diagnostic and screening tool of carotid

stenosis [11, 36, 37]. A measurement of the velocity of flow in the longitudinal view

of the artery is usually performed and is used as an indirect estimate of the degree

of luminal narrowing [38]. In particular, colour Doppler images are primarily used in

diagnosis and grading of ICA stenosis [39].

For Doppler US, angle of insonation should remain unchanged for obtaining ve-

locity measurements, since subtle changes in angle may affect absolute velocity mea-

surements [38]. Although, Doppler US is a very useful in its utility to detect CAS,

it does not provide good contrast of the vessel wall for further analysis of the plaque

burden.

1.4.5 3D ultrasound (3DUS)

3D ultrasound (3DUS) has shown promise in quantifying carotid atherosclerosis for

monitoring carotid disease progression and regression in clinical trials. As such,

3DUS has been increasingly investigated over the last decade due to its ability to

obtain volumetric and morphological measurements rapidly, non-invasively, and cost-

effectively [23, 37, 40, 41, 42]. Thus, 3DUS imaging capability is now widely available

in commercial systems and in ones developed in research laboratories. Advances

in computing capabilities and visualization technology have made 3DUS imaging a

viable technology for carotid imaging applications [32]. 3DUS imaging overcomes

several limitations of the conventional US techniques. For instance, 3DUS imaging

avoids the inherent variability of the conventional 2D US exam due to need to men-

tally integrate multiple 2D images to produce a 3D impression of the anatomy [32].

Because plaque burden changes occur in three-dimensions, 3DUS imaging provides

sensitive and reproducible measurements of carotid atherosclerosis [19, 37]. Due to

availability of the out-of-plane information, the outer wall and lumen boundaries may

also be robustly located in 3DUS images. However, similar to the conventional US

technique, 3DUS is low contrast and is also affected by numerous US artifacts [43].
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(a) (b)

Figure 1.2: (a) Mechanically assisted 3DUS transducer probe; and (b) acquiring a
3DUS image by translating the transducer along the patient’s neck at least up to a
distance of 4 cm encompassing portions of the CCA, ICA, and ECA.

Chapter 2 and 3 of this dissertation is based on algorithm developments for 3D

carotid US images. Therefore, the 3DUS image acquisition process is briefly described

in the following subsections.

1.4.5.1 3DUS image acquisition

Although, 2D transducer arrays are available for real-time 3D imaging [44], such

transducer arrays are expensive and the transducer apertures are too small for

imaging the carotid arteries at least up to a length of 4 cm [32, 45]. Therefore, most

of the 3DUS systems use a conventional US linear transducer, which is translated

either by free-hand or mechanically to obtain 3DUS images [32]. Irrespective of the

method used for translating the US probe along the patient’s neck, the position and

orientation of the transducer are required to be tracked to reconstruct 3DUS images.

The two translation mechanisms are concisely described below.

Free-hand scanning One of the main advantages of the free-hand scanner is

that it does not require a bulky mechanical moving system and scanning is done

only using a regular probe. The most commonly used tracking method is based on

magnetic field sensing technology. A sensor is mounted on to the US probe, which

comprises of three orthogonal coils to track in six degrees-of-freedom. The sensor

measures a time-varying 3D magnetic field, which is transmitted using a device close
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to the sensor [32]. The signals induced in each orthogonal coil of the sensor can be

used to track the position and the orientation of the probe. The main disadvantage of

free-hand scanning is the need for the probe to be moved at a suitable consistent speed

to maintain proper spatial sampling and to avoid any gaps in the reconstructed image.

Mechanical scanner A linear US transducer is translated using a motorized

mechanism along the patient’s neck over the carotid arteries as shown in Fig 1.2(b).

To ensure that each acquired 2D image is spaced equally and all images are parallel

to each other, a motor is used to move the transducer linearly at a constant velocity.

In our experiments, 2D US images are acquired every 0.2 mm. When the 2D US

images are acquired at a frame rate of 30 per second, a 4 cm length of the artery can

be acquired in 6.7 s without cardiac gating. The in-plane resolution of the 3DUS

image is isotropic. However, the resolution in the scanning direction depends on the

elevation resolution of the transducer and is coarser than in-plane resolution.

System used in our experiments The 3DUS images were acquired using

a ATL HDI 5000 US machine (Philips, Bothell, WA, USA) by translating a L12-5

linear US transducer (Philips, Bothell, WA, USA) with a central frequency of

8.5 MHz along the patient’s neck at a uniform speed of 3 mm/s for about 4 cm,

without cardiac gating [41, 46]. The transducer was attached to a motorized linear

mover (see Fig. 1.2(a)) driven by 3DUS acquisition system consisting of a computer

workstation with a video capture device digitizing 2D frames at 30 Hz. 3D images

were constructed in real time as the images are acquired and displayed using

multi-planar reformatting [32]. Figure 1.3 shows transverse and longitudinal views of

two example 3DUS images for a subject with moderate stenosis and a subject with

ulceration.

1.4.6 Magnetic resonance imaging (MRI)

Excellent soft tissue contrast and noninvasiveness of MR imaging make it ideally

suited for carotid in vivo imaging. Multi-parametric MR imaging techniques including

black-blood MR, bright-blood MR, diffusion-weighted (DW) MR, and 3D time-of-

flight (TOF) MR angiography have allowed high contrast imaging of the arterial wall

and plaque [47, 48]. Figure 1.4 shows a transverse view of the left and right CCA
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(a) (b) 

(c) (d) 

Figure 1.3: Multi-planer views of the 3DUS images. (a) Transverse view of a 3DUS
image of carotid artery for a subject with moderate stenosis; (b) longitudinal view
of a 3DUS image of carotid artery for the subject with moderate stenosis; (c) trans-
verse view of a 3DUS image of carotid artery for a subject with ulceration; and (d)
longitudinal view of a 3DUS image of carotid artery for the subject with ulceration.
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Figure 1.4: Transverse view of the left and right CCA of an T1w black-blood MR
image of a patient with mild stenosis.

of a patient with mild stenosis. Note that, the carotid vessel wall boundaries are

better defined in MR images than 3DUS images shown in Fig. 1.3. In addition, there

have been recent developments in dedicated pulse sequences, gradient technology,

and specially designed radio frequency (RF) coils to improve the overall quality of

imaging.

MR has shown promise in providing accurate and reproducible measurements

of not only volumetric and morphological measurements of carotid plaque bur-

den [47, 49], but also plaque composition [48, 50] and inflammation [51, 52], which

are important indicators of vulnerability of plaque and, in turn, risk of stroke. Chap-

ter 4 of this dissertation is based on segmentation algorithms developed for generating

volumetric measurements of plaque burden from carotid MR images.

Although capabilities of carotid MR imaging are substantial, its main limitations

for monitoring of large numbers of asymptomatic patients are limited availability and

high cost.
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1.5 Imaging phenotypes

Some carotid imaging modalities were described in the previous section. In this sec-

tion, I describe imaging phenotypes that are derived from medical images for quan-

tifing carotid plaque burden. As described in Section 1.4, carotid imaging techniques

are increasingly becoming popular as tools to quantify surrogate end-points of carotid

atherosclerosis due to their capability of direct measurement of plaque as opposed to

indirect measurements (i.e, blood serum levels [53]). Such carotid imaging pheno-

types allow assessment of atherosclerotic disease progression, and reduce the need

for studying the effect of interventions on hard clinical end-points including stroke

or myocardial infraction (MI) [54]. The ideal phenotypes should correlate with the

extent of atherosclerotic disease and ideally be obtained from noninvasive, reliable,

safe, inexpensive, and reproducible techniques [55].

Numerous phenotypes of carotid atherosclerosis have been used in the past, which

have been investigated as surrogate end points of vascular outcomes for monitoring the

progression and regression of atherosclerotic plaque burden in patients during medical

interventions. The focus of this dissertation is on noninvasive phenotypes derived from

US and MR images, and more specifically on volumetric phenotypes. Some of the

most relevant US and MR imaging phenotypes, which have been used recently, such

as carotid artery stenosis (CAS) [56], intima media thickness (IMT) [30], total plaque

area (TPA) [57], total plaque volume (TPV) [58], vessel wall volume (VWV) [59],

and vessel-wall-plus-plaque thickness (VWT) maps [60, 61], are described below.

1.5.1 Carotid artery stenosis (CAS)

Carotid artery stenosis (CAS) is a one dimensional measurement of lumen narrow-

ing, which is often measured using duplex US. CAS is a noninvasive measurement

and is the current clinical imaging standard for diagnosing carotid plaque burden

and is a deciding factor for patient’s eligibility of carotid endarterectomy [62]. For

example, the North American symptomatic carotid endarterectomy trial (NASCET)

trial [63] showed that a CAS of ≥ 70% identifies a group of subjects who will benefit

from carotid endarterectomy. However, the presence of stenosis alone is not a good

indicator of risk of stroke, since the early stages of the disease progress outwards

without actually obstructing the lumen. The results from NASCET showed that 74%

of the subjects with severe stenosis (>70%) did not experience stroke within two
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(a) (b)

Figure 1.5: (a) Manual delineation of the IMT measurement of the CCA from a
longitudinal 2D US image; and (b) manual delineation of the plaque boundary for
TPA measurement from a longitudinal 2D US image.

years [64]. The results from European carotid surgery trial (ECST) showed that 10%

of symptomatic subjects with low-grade stenosis (17-50% by NASCET) experienced

ipsilateral stroke within 4 years [65]. Moreover, recent studies suggest that CAS is

less sensitive than lesion size expressed by vessel wall volume, which is also used as a

measurement of therapeutic effects [47, 49, 50].

1.5.2 Intima-media thickness (IMT)

Intima-media thickness (IMT) is a one dimensional measurement of combined thick-

ness of the intima and media layers of the artery, which is measured using longitudinal

2D US images. When the measurement is obtained over a specified vessel length, as

shown in Fig. 1.5(a), the mean thickness is considered as IMT. During the last two

decades 2D US IMT measurement has been widely investigated as a surrogate end-

point of vascular outcomes for monitoring carotid atherosclerosis in subjects during

medical interventions [28, 66].

Even though CCA IMT is a reproducible measurement that correlates with the

risk factors of stroke in large clinical trials [66, 67], it is not sensitive to the changes in

plaque burden, which is a stronger predictor of cardiovascular events [68, 69, 70, 71].

Moreover, changes in IMT occur at a rate of a fraction of a millimeter per year [72],

resulting in long follow-up times. In addition, it is challenging to design algorithms

with required high precision to detect subtle changes in IMT.
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1.5.3 Total plaque area (TPA)

Total plaque area (TPA) is a 2D measurement of the carotid plaque burden (see

Fig. 1.5b), which is the sum of the maximum longitudinal cross-sectional areas of

all the plaques within a specified length of the carotid artery [66]. TPA has been

widely used in clinical studies in the past [55, 73, 74, 75, 76], and has been shown to

be more sensitive than IMT. For example, the results from the six-year follow up of

the Tromso study [77] involving more than 6000 subjects showed that in the general

population, carotid TPA was a stronger predictor of myocardial infarction than IMT.

With a 10-year follow-up, the study also reported that the TPA is a strong predictor

of first-ever ischemic stroke than IMT [78]. In addition, unlike IMT, the quantities

being measured are larger in value relative to the resolution of the US image.

1.5.4 Total plaque volume (TPV)

Total plaque volume (TPV) is a direct volumetric measurement of plaque burden

in the left and right carotid arteries [19, 79]. TPV measurements encompass more

complex plaque morphologies and geometries than TPA measurements that are per-

formed only in 2D longitudinal view with maximum area. TPV has shown to be more

sensitive to change than CAS, IMT, and TPA [80]. Both TPA and TPV reflect more

advanced stages of the disease than IMT [66]. Currently, TPV measurements are

obtained by manual segmentation of the plaque [45, 58, 79]. Initially, the observer

defines the medial axis of the artery in a longitudinal view. After familiarizing with

the orientation and geometry of the plaque, the observer outlines the plaque bound-

ary on transverse slices with inter-slice distance (ISD) of 1 mm. Figure 1.6 shows

the manual segmentations of plaque overlaid on a 3DUS image and the reconstructed

surface of plaque for the computation of TPV.

TPV has been used in several clinical studies [41, 42, 80]. For instance, Ainsworth

et al. [41] has conducted a small randomized control trial to evaluate the effect of

atorvastatin using 3DUS TPV. The control group had a progression of 16.81± 74.10

mm3 whereas the atorvastatin group had a regression of 90.25 ± 85.12 mm3. A

significant difference has been reported between the two groups.
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(a) (b)

Figure 1.6: (a) Manual segmentation of the plaque boundaries of the 3D US image
used for TPV measurement; and (b) reconstructed plaque surfaces from the manual
segmentations.

(a) (b) 

(c) (d) 

Figure 1.7: (a) An example 3DUS image of a patient’s carotid artery; (b) and (c)
manual segmentation of the CCA, ICA, and ECA lumen and outer wall boundaries
from 3DUS images; and (d) reconstructed surfaces for the lumen and outer wall
boundaries from the manual segmentations. The outer wall surface of the CCA, ICA,
and ECA is rendered in yellow. The lumen surfaces of the CCA, ICA, and ECA are
rendered in red, blue, and green, respectively.
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1.5.5 3DUS and MRI vessel wall volume (VWV)

Vessel wall volume (VWV) is the volume enclosed between the outer wall and the

lumen boundaries for the CCA, ICA, and less commonly for ECA [49, 59]. VWV

is a combined measurement of both the plaque and wall thickness. The primary

measurement of interest of this dissertation is VWV. Chapter 2, 3, 4, and 5 of this

dissertation describe segmentation algorithms developed for the purpose of generating

VWV.

The measurement of VWV requires an observer to manually outline the lumen-

intima/plaque and media-adventitia boundaries. Both 3DUS and MR images [49]

can be used to generate VWV. 3DUS VWV is generated by outlining the lumen-

intima boundary (LIB) and media-adventitia boundary (MAB), whereas MRI VWV

is generated by outlining the LIB and adventitia boundary (AB).

Figure 1.7 shows manual segmentations of the outer wall and lumen boundaries

overlaid on a 3DUS image and the surfaces of the outer wall and lumen for computing

VWV. Manual segmentation of the boundaries is performed on transverse slices with

an inter-slice distance of 1 mm. The VWV measurements have higher reproducibil-

ity than TPV measurements [37], because lumen-intima/plaque and media-adventitia

boundaries are more straightforward to interpret than plaque-lumen and wall bound-

aries in 3DUS images. In addition, VWV boundaries are more regular and circular,

which may simplify the development of semi-automated segmentation technique to

delineate the outer wall and lumen boundaries. VWV measurements have a higher

reproducibility than TPV measurements due to the fact that the outer wall and lumen

boundaries are easier to delineate than plaque boundaries [37]. Egger et al. [37] com-

pared the coefficient-of-variation (CV) and intra-class correlation coefficients (ICC) of

VWV and TPV measurements for 10 subjects. CV (4.6% vs. 22.7%) and ICC (0.95

vs. 0.85) measurements indicated a higher intra-observer variability and inter-scan

variability in TPV measurements.

3DUS VWV imaging is increasingly being used as a surrogate for monitoring

carotid plaque burden in patients in clinical trials during medical interventions. Shai

et al. [23] used 3DUS VWV measurements to assess the effect of dietary interventions

for reducing the carotid plaque burden. The study [23] found that diet-mediated

weight loss over a 2-year period induced significant regression of 3DUS carotid VWV,

even though the effect is similar in low-fat, Mediterranean, or low-carbohydrate diets.
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Krasinski et al. [59] used 3DUS VWV measurement to assess the effect of atorvas-

tatin in reducing the carotid plaque burden. The randomized control trial of three

months [59] had 35 subjects with carotid stenosis > 60%, where subjects were as-

signed to either the statin drug or placebo. The results have showed an increase of

70± 140 mm3 in 3DUS VWV in the placebo group and a reduction of 30± 130 mm3

in the atorvastatin group.

1.5.6 Vessel wall thickness/change (VWT) maps and

flattened VWT maps

The measurements discussed so far are global measurements of plaque progression

and/or wall thickening, which provide a single value of measurement, such as an area

or volume. While such phenotypes provide valuable quantitative information about

global plaque burden, they do not identify the locations with substantial changes

in the vessel. Identification of the locations of change in plaque burden will enable

more precise evaluation of changes in plaque burden and will provide insights to the

disease progression during medical interventions. Chiu et al. [81] proposed 3DUS

vessel-wall-plus-plaque thickness (VWT) maps, which visualize the thickness of the

vessel wall plus plaque at each location as a colour map as shown in Fig. 1.8(a). 3DUS

VWT change maps [61] quantify and allow visualization of local changes in plaque

morphology on a point-by-point basis between a baseline and follow-up measurements.

To facilitate the visualization and interpretation of these maps for clinicians, Chiu et

al. [61] proposed a technique to flatten the 3D VWT maps and VWT change maps

to 2D. Similar to the VWV, VWT maps require segmented surfaces of the lumen and

outer wall of the carotid arteries.

1.6 Peripheral arterial disease (PAD)

Peripheral arterial disease (PAD) is a common circulatory disease, which occludes

the arteries in the lower extremities including the superficial femoral artery (SFA)

with long term accumulation of plaque due to atherosclerosis. PAD affects 12%−14%

of the general population and its prevalence increases with age affecting up to 20%

of patients over the age of 75 [82]. PAD has long been underestimated, and may
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(a) (b)

Figure 1.8: (a) Vessel-wall-plus-plaque thickness (VWT) map for a patient with mod-
erate stenosis. Manual segmentations of the lumen and outer wall boundaries were
used to generate the VWT maps. The thickness is indicated in millimeters; and (b)
corresponding flattened VWT map for better visualization.

have been overshadowed by cardio- and cerebro-vascular disease. In addition, asymp-

tomatic and symptomatic PAD are consistent and powerful independent predictors of

coronary artery disease (CAD) and cerebrovascular disease (CBVD) [83]. The symp-

toms due to PAD may range from intermittent claudication to critical limb ischemia,

which may lead to gangrene and in serious cases limb amputation [84].

1.7 Imaging phenotypes for PAD

So far, imaging phenotypes pertaining to carotid atherosclerosis have been described.

Compared to carotid atherosclerosis, fewer imaging phenotypes have been investigated

for quantifying PAD plaque burden, which are described below.

1.7.1 Ankle-brachial index (ABI)

Ankle-brachial index (ABI) is an approximate estimate of the relative blood flow in

the ankle compared to the brachial artery. In particular, ABI is the ratio of the

systolic blood pressure of the lower legs and arms, which is measured using a Doppler

US blood flow detector [85]. Currently, ABI is used for diagnosis and assessment of

the severity of PAD [86]. Typically, normal range for ABI is 1.10 − 1.29 and ABI

< 0.9 is an indication of stenosed femoral arteries [85]. Although ABI has been
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Superficial 
Femoral artery 

Figure 1.9: The anatomy of the femoral artery. The image is courtesy from 20th U.
S. edition of Gray’s Anatomy page #550 (Also available at https://en.wikipedia.
org/wiki/Femoral_artery).

significantly correlated with carotid IMT and Framingham risk score [85, 86], ABI is

an indirect measurement of plaque burden for assessing the progression of the disease

and prediction of clinical events.

1.7.2 Stenosis

Patients with ABIs less than 0.9 may be followed up with CTA [87]. However, sim-

ilar to carotid lumenographic techniques, the femoral vessel wall is imaged with low

contrast. Therefore, CTA has limited capabilities for assessing the progression of

the disease and prediction of clinical events [88]. Similar to carotid atherosclerosis,

stenosis measurements are more suitable for latter stages of the disease.

1.7.3 Vessel wall area and vessel wall volume measurements

Although, 2D US/3DUS imaging has not been widely investigated for the assessment

of femoral artery plaque burden, MR imaging has been investigated for assessment

of PAD [88] plaque burden, because it facilitates thickness and volumetric measure-

ments, which may be more sensitive to clinical outcomes than ABI and stenosis.

https://en.wikipedia.org/wiki/Femoral_artery
https://en.wikipedia.org/wiki/Femoral_artery
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Assessment of PAD using MR imaging has continued to be developed [89], due to its

noninvasiveness and its ability to image the femoral artery vessel wall with high im-

age contrast. In this dissertation, we use 3D black-blood MRI images acquired using

the 3D motion-sensitized driven equilibrium (MSDE) prepared rapid gradient echo

sequence (3D MERGE) [90, 91], which enables evaluation of the femoral artery vessel

wall up to a length of 50 cm. Due to the high vessel wall image contrast, MR imaging

facilitates morphological and volumetric measurements of plaque burden, which may

be more sensitive to clinical outcomes [84, 88, 89, 92]. Chapter 5 of this dissertation

is based on the development of segmentation algorithms to quantify VWA and VWV

measurements from femoral black-blood MR images.

1.8 Motivation and objectives

In this section, the motivation and specific objectives of this dissertation are described.

1.8.1 Motivation for developing segmentation algorithms

Major cardiovascular events, such as stroke and myocardial infraction may occur in

patients without known preexisting symptoms [86]. With the advancements of medi-

cal imaging hardware towards high resolution 3D imaging and clinical advancements

of therapeutics and personalized medicine, there is a great requirement for more sensi-

tive measurements of vascular atherosclerotic measurements. As discussed in Section

1.5, 3D measurements of carotid plaque burden, such as VWV and TPV, are more

sensitive than 1D and 2D measurements, and there is an increased interest to use

them in clinical trials. Although 3D measurements provide many advantages com-

pared to measurements of arterial wall thickening or TPA alone, they are still not

widely used in research or clinical practice because of the inordinate amount of time

required to train observers and to generate 3D measurements using manual segmenta-

tion. Even though, manual segmentation is still widely used for segmentation tasks,

semi-automated or automated segmentation algorithms are preferred over manual

techniques since manual techniques are tedious, time-consuming, and require more

expertise.

In this dissertation, the main objective is to develop accurate and robust semi-

automated algorithms for the following three segmentation problems of interest:
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(a) (b) (c) 

LIB 
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Figure 1.10: (a) Transverse and sagittal views of a 3DUS image; (b) same image with
overlaid manual segmentation of lumen-intima boundary (LIB) and media-adventitia
boundary (MAB); and (c) image intensity histogram of the lumen, outer wall and
background.

• Carotid artery lumen and outer wall segmentation from 3DUS images

• Carotid artery lumen and outer wall segmentation from MR images

• Femoral artery lumen and outer wall segmentation from MR images

for the purpose of generating measurements of VWV. We anticipate that the semi-

automated algorithms will alleviate measurement burden from the observer for gen-

erating volumetric measurements (i.e., VWV) of plaque burden. The algorithm de-

velopment for each of the problem is motivated by: (1) increased interest in 3DUS

imaging for noninvasive monitoring of plaque burden, but lack of available segmenta-

tion methods; (2) a segmentation algorithm for carotid MR imaging would not only

be useful for volumetric imaging, but also for plaque component analysis for assess-

ment of vulnerability of the plaque; and (3) femoral vessel wall is yet to be explored

using femoral MR vessel wall images and robust algorithms for segmentation may

accelerate their use in clinical trials.

In the following subsections, each segmentation problem is briefly described by

providing a concise description of image segmentation algorithms and motivation for

the choices of the segmentation algorithm.
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Figure 1.11: (a) A 3D view of a T1-weighted 3T carotid MR image showing the
transverse and sagittal cross sections of the CCA, ICA, and ECA. The CCA divides
into the ICA and ECA at the bifurcation (BF); (b) the same 3D carotid MR image
with the overlaid manual segmentations of the adventitia (AB) and lumen-intima
(LIB) of the CCA, ICA, and ECA. The manual segmentations are performed on each
transverse slice; and (c) image intensity histogram of the lumen, outer wall, and
background.

1.8.2 Carotid artery lumen and outer wall segmentation

from 3DUS images

Figure 1.10(a) and (b) show an example 3DUS image with overlaid manual seg-

mentations of the lumen and outer wall boundary (also referred to as lumen-intima

boundary (LIB) and media-adventitia boundary (MAB)). Out of the three research

goals, segmentation of the carotid outer wall and lumen from 3DUS images is the most

challenging task, mostly due to the lack of image contrast at the lumen and outer

wall boundaries and overlapping intensity probability density functions (PDF) (also

known as “intensity histograms”) Moreover, 3DUS images suffer from artifacts, such

as poor definition of the vessel boundaries, image speckle, and acoustic shadowing.

These artifacts decrease differentiation between the object of interest and background

with respect to image features and pose a challenge for segmentation algorithms. Due

to such challenges posed to image-based segmentation algorithms by plaque and US

imaging artifacts, high-level user interaction and domain knowledge are required for

the segmentation. Figure 1.10(c) shows the intensity histograms of the lumen, outer

wall, and background regions. Segmentations algorithms can be easily automated

when the histograms are separable, whereas more manual interactions are needed

when the histograms overlap.
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(a) (b)

Figure 1.12: (a) An example 3D femoral MR image with manual delineations; and (b)
a transverse slice of a 3D femoral MR image with manual delineations of the femoral
lumen and outer wall.

1.8.3 Carotid artery lumen and outer wall segmentation

from MR images

For MRI VWV, the carotid lumen and outer wall boundaries are also referred to

as the lumen-intima boundary (LIB) and adventitia (AB) boundary. Compared to

3DUS images, the lumen boundary of MR images has high image contrast, the outer

wall boundary is relatively more distinguishable as shown in Fig. 1.11(c), and the

intensity PDFs are more distinguishable from each other than for 3DUS. As such,

segmentation of the carotid wall and lumen from MR images is less challenging than

3DUS segmentation. Therefore, due to distinguishing image features and with the

incorporation of some anatomical prior knowledge, the algorithm can be automated

to a higher extent requiring fewer user interactions to drive the segmentation.

1.8.4 Femoral artery lumen and outer wall segmentation

With the advent of rapid and noninvasive 3D black-blood MRI sequences, such as

the 3D motion-sensitized driven equilibrium (MSDE) prepared rapid gradient echo

sequence (3D MERGE), femoral artery vessel wall can be assessed up to a length of 50

cm for monitoring PAD plaque burden. Therefore, precise segmentation of the femoral

artery outer wall and lumen is important for generating volumetric and morphological

measurements of plaque burden for longitudinal monitoring of PAD. An MR image of
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a patient’s leg is shown in Fig. 1.12 along with the manual delineations of the femoral

artery lumen and outer wall. The major challenges for a segmentation algorithm of

the femoral lumen and outer wall are thin and elongated shape appearance of the

femoral artery (see Fig. 1.12(a)) as well as the lack of distinctive image boundary at

the outer wall boundary, and strong similarity in image intensity (i.e. intensity PDFs

of outer wall and background overlap with each other) between the outer wall and its

surrounding region.

1.9 Image segmentation

Image segmentation is a way of partitioning an image I(x), x ∈ Ω into two or more

meaningful regions or objects-of-interest. In computer vision research, image seg-

mentation is one of the oldest and most widely investigated problems [93]. Image

segmentation algorithms have been developed to segment images of scenes, videos,

and 2D/3D/4D/nD medical images. Specifically, the focus of this dissertation is on

medical image segmentation. Image segmentation algorithms are required in clinical

applications to assist the observer in generating quantitative measurements and aid

in medical interventions. For example, in this dissertation, the carotid and femoral

lumen and wall boundaries are required to be segmented for generating VWV mea-

surements.

The main objective of this section is to provide a brief description of the state-of-

the-art segmentation algorithms and their evaluation methods, before describing our

proposed algorithms in Chapters 2-5.

1.9.1 Segmentation algorithms

While it is possible to classify segmentation algorithms based on many criteria, such

as mathematical principle (variational methods vs. graph partitioning methods),

degree of automation, global- or local-optimality, here we broadly categorize image

segmentation into three based on the way the segmentation problem is formulated:

• Heuristic methods e.g., thresholding, region growing, region split-and-merge,

etc.

• Clustering methods e.g., K-means clustering, mean shift algorithm, etc.
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• Functional optimization methods e.g., active contours, level sets, live wire, graph

cuts, convex relaxation techniques, etc.

1.9.1.1 Heuristic methods

Heuristic methods rely entirely on the image features in order to perform segmenta-

tion and are mostly based on a heuristic criterion to obtain the segmentation. Some

examples of heuristic methods are thresholding, region-growing [94], and region split

and merge [95] to name a few. These methods rely on heuristically defined crite-

ria for segmentation and make decisions based on local pixel information and ignore

spatial information. Thus, heuristic methods are effective when the intensity levels

of the objects fall squarely outside the range of intensities of the background. Al-

though, heuristic methods are fast and simple, they are often not suitable for US and

MR segmentation tasks due to numerous variations, image artifacts, and poor image

quality.

1.9.1.2 Clustering methods

An intuitive way of segmentation is to determine which voxels of a data set belong

together based on some similarity [96]. Such similarity is determined based on a

distance measure. Clustering algorithms form clusters from images based on voxel

intensity, colour, texture, location, or some combination of these. Numerous cluster-

ing algorithms have been developed with different induction principle. Readers are

referred to Rokach et al. [96] for more information.

K-means [97] and mean shift algorithms [98] are some example clustering algo-

rithms that have been used for image segmentation. For clustering algorithms the

starting locations of the partitions are important for achieving optimal solution since

they are susceptible to termination when achieving a local maximum. A main chal-

lenge for clustering algorithms in medical image segmentation applications is the

difficulty to incorporate anatomical and spatial information into segmentation.

1.9.1.3 Functional optimization methods

Unlike the heuristic and clustering methods, functional optimization methods allow

for the incorporation of high-level knowledge of the desired segmentation result, such
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as boundary smoothness, shape, and appearance [99, 100]. In contrast to the heuris-

tic methods, funtional optimization methods first formalize a mathematical criterion

for the “goodness” of a given segmentation. This allows formulation of the segmen-

tation problem as an optimization problem under certain geometric constraints. For

I(x), x ∈ Ω, there are many possible decision boundaries (contours) C partitioning

the domain Ω into subdomains. The main idea is to start with some initial boundary

shape represented in the form of spline curves, and iteratively modify it by apply-

ing various shrinking/expansion operations according to some energy function. An

objective function E(C) is then minimized to find the best boundary as follows

C∗ = arg min
c

E(C). (1.1)

The objective function contains two types of energy terms: external energy and inter-

nal energy. External energies are derived from the (preprocessed) image data to guide

the segmentation. Internal energy terms are derived from high-level knowledge of the

expected shape of the boundaries as well as from user-specified anchor points. The

most widely used internal energy term is a regularization term, which minimizes the

length of the boundary. Various approaches are available for solving this optimization

problem and defining the curve C. A variety of constraints can be incorporated into

an energy functional E(C) in a form of internal or external energies, in which case

E(C) becomes a weighted sum of a number of subcomponents:

E(C) =
∑
i

wiEi(C), i = 1 . . . N , (1.2)

where wi are balancing weights and N is the number of energy terms. Most widely

used segmentation based tasks are performed using optimization approaches. Active

contours, level sets, graph cuts, and convex relaxation methods are some examples of

funtional optimization methods. Here is a brief description of each of the methods. In

this dissertation, I used the level set technique and convex max-flow based techniques

for segmentations. The motivations for using such techniques are discussed in the

corresponding chapters.

Snakes\Active contours Proposed by Kass [101], active contours use a parametric

representation of a contour by explicitly defining it using a set of points. The
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points on the boundary are evolved iteratively by minimizing an objective function

towards image features such as strong edges. Snakes depend on local optimization

schemes, so the initialization needs to be close to the desired boundary to obtain an

accurate segmentation. It is challenging for these techniques to change topology of

the initially defined contour and to perform multi-region based segmentations.

Level set methods Level set methods proposed by Osher and Sethian [102]

provide an implicit representation of a contour/surface by defining it using a level set

function, which is of one dimension greater than object dimension. Cassels [103] and

Malladi et al. [104] introduced level sets for image segmentation. Unlike deformable

snakes, level set methods can implicitly change their topology and incorporate

region-based statistics into the segmentation. Level set methods also rely on local

optimization by explicitly solving the associated convection partial differential

equations (PDE) for which the Courant-Friedrichs-Lewy (CFL) condition restricts

the discrete propagation time step-size [105]. In addition, level set methods are also

extendable to multi-region segmentations. One of the main disadvantages of the

level set method is that it is computationally expensive.

Graph Cuts In graph-based segmentation methods the pixels are represented

as vertices and their boundaries as edges in a graph. For the binary case, any pixel

is attached to two terminals: source s and sink t. s/t cut of a graph partitions a

graph into two disjoint subsets and the cost of the cut is the sum of all costs of the

edges and the minimum cut offers a globally optimal object extraction method for

n-dimensional images [106]. This minimum s/t cut problem can be solved by finding

a maximum flow from the source s to the sink t. There are numerous polynomial

time algorithms to solve min-cut/max-flow problems [107].

Graph cuts-based methods use implicit representation of object boundaries,

which makes them a discrete counterpart of level sets. Metrication artifacts are a

limitation of graph-based approaches [105, 108]. Although, reducing metrication

artifacts is possible with increasing the number of neighbouring graph nodes, it

substantially increases computation and memory load [109, 110].

Continuous max-flow methods We use convex optimization methods for

the carotid MR and femoral MR segmentations in Chapter 4 and 5. Continuous
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max-flow-based approaches have advantages of both the level sets and graph cuts, and

have recently been widely investigated for image segmentation problems. Comparison

of discrete and continuous optimization techniques have shown that, in the case of

3D or higher-dimensional grids, continuous max-flow-based approaches outperformed

graph cuts in speed and accuracy [111]. Moreover, the implementation of convex

relaxation approaches can be parallelized to reduce computational time [112].

Convex optimization methods have been successfully used in recent studies for

solving the classical piece-wise constant binary segmentation model [110, 113] and

multi-region segmentation problems [112]. Moreover, a new global optimization-

based approach to the contour evolution has been proposed by Yuan et al. [105] using

continuous max-flow techniques, which provides the basic mathematical foundation

for the methods described in Chapter 4 and 5 of this dissertation. More precisely,

their method formulates evolving a contour/surface at each discrete time frame by

achieving the minimum cost of region changes, which can be identically modeled as

a spatially continuous min-cut problem. To this end, a continuous max-flow model is

proposed, which provides an elegant dual formulation to the convex relaxed continu-

ous min-cut formulation and proves the global optimality of the computed continuous

min-cut solution by means of convex relaxation.

Compared to the discrete contour evolution methods [114], the contour evolution

is solved in the spatially continuous setting by the continuous max-flow based ap-

proach [105]. The method also avoids metrication artifacts [115, 116], and obtains a

sub-pixel accuracy of the contour position.

1.9.2 Level set methods

In Chapter 2 and 3, a level set method is used for 3DUS lumen and wall segmentation.

In level set, the segmentation boundary is represented as the zero level of an implicit

function. The segmentation boundary is iteratively evolved by optimizing an objective

function to find the boundary of an object.

Let the bounded open subset Ω ⊂ R3 represent the image domain. Each image

is defined as I : Ω → R, and x ∈ Ω is a spatial variable representing a single point

within the image domain Ω. The level set is an implicit representation of a boundary

defined by the function φ(x) : Ω→ R. The boundary is specified as the zero level of

the level set function, i.e., the set of spatial locations x for which φ(x) = 0. During



29

the segmentation process, the function φ(x) is evolved, rather than explicitly evolving

the boundary itself as when using a parametric boundary representation. The level

set evolution equation is given by

∂φ(x)

∂t
+ F |∇φ(x)| = 0, (1.3)

where F is the speed function. Equation (1.3) is often derived by minimizing an

energy E following the standard Euler-Lagrange descent equations [117], with t an

artificial algorithmic time parameterizing the descent direction. The mean curvature

motion given by F = div(∇φ(x)/|∇φ(x)|)) is widely used to evolve the level set as

follows:
∂φ(x)

∂t
= |∇φ(x)| div

( ∇φ(x)

|∇φ(x)|

)
. (1.4)

1.9.2.1 Sparse field level set (SFLS) method

One of the main drawbacks of classical level set methods is that they are computation-

ally expensive, because many computations are required to maintain φ(x) during the

contour evolution. In this dissertation, we use a narrowband level set implementation

(known as sparse field level set (SFLS)) proposed by Whitaker [118]. Narrowband

methods update only the level set evolution around the neighbourhood of the zero

level set rather than computing φ(x) for the entire image domain.

The SFLS method uses lists of points that represent the zero level set as well

as points adjacent to the zero level set. An efficient representation of φ(x) can be

maintained, by carefully moving points to and from the appropriate list [119].

1.9.3 Convex optimization using continuous max-flow

methods

The conventional contour evolution methods, e.g., [99, 101, 120, 121] etc., gradually

propagate a contour/surface subject to the minimization of a certain energy function,

while the associated time-explicit convection equations are often solved by local-

optimization methods. In practice, the computational result and efficiency of such

approaches are limited since the contour may be trapped in a locally optimal position

during each time frame. The final result depends heavily on the initial position of

the segmentation. The discrete time-step has an upper bound to achieve numerical
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Figure 1.13: The current contour Ct evolves to the contour Ct+1 at next time frame t+
1. A voxel pays cost e− for a pixel transitioning from object region to the background
region and a voxel pays cost e+ for a pixel transitioning from background region to
the object region during the current iteration. Costs e+ and e− are region-based costs
that are usually computed by matching the current segmentation with a prior model
that is characteristic of the object region.

stability, such as the Courant–Friedrichs–Lewy (CFL) condition for explicitly solving

the convection partial differential equations (PDE) [122]. The nonlinear high-order

derivatives, such as curvature, are also highly affected by image noise.

In contrast, global optimization-based contour evolution approaches [114, 123]

overcome such challenges and generate simple, efficient, and robust algorithms for

computation. For example, the convex relaxation-based approach proposed by Yuan

et al. [105] propagates a contour to its globally optimal position at each discrete

time frame by solving a sequence of convex optimization problems, for which an

efficient continuous max-flow algorithm [124] is available. In addition, the new contour

position at each evolution step is computed in a fully time-implicit manner, which

allows a large time-step and substantially speeds up contour propagation [105, 125].

As shown in Fig. 1.13, for the given contour Ct at the current time t, its new

position Ct+1 at the next discrete time t+ 1 can be achieved by solving the following

optimization problem [105]:

min
C

∫
C+

e+(x) dx +

∫
C−

e−(x) dx +

∫
∂C
g(s) ds , (1.5)

where C+ and C− are the expansion and shrinkage regions with respect to the current

contour Ct, and the functions e+(x) and e−(x) define the cost corresponding to the
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pixel x in C+ and C−.

1. C+ indicates the region expansion w.r.t. Ct: for ∀x ∈ C+, it is initially outside

Ct at time t, and ‘jumps’ to be inside Ct+1 at t + 1; for such a ‘jump’, it pays

the cost e+(x).

2. C− indicates the region shrinkage w.r.t. Ct: for ∀x ∈ C−, it is initially inside Ct
at t, and ‘jumps’ to be outside Ct+1 at t+ 1; for such a ‘jump’, it pays the cost

e−(x).

In (1.5), the functions g(s) is the weighted length smoothness term. In this disserta-

tion, g(s) is considered as

g(|∇I(x)|) = λ1 + λ2 exp(−λ3 |∇I(x)|) , (1.6)

where I(x) ∈ Z is the given image and λ1,2,3 > 0.

When the cost functions e+(x) and e−(x) are given by the distance between x

and the boundary of Ct, the contour evolution given by (1.5), is equivalent to the

well-known mean-curvature driven contour motion [105]. Moreover, the other typical

contour evolutions applied in image processing can also be well described by (1.5)

with different configurations of e+(x) and e−(x).

In particular, the optimization problem (1.5) can be equivalently formulated as a

spatially continuous min-cut problem:

min
u(x)∈{0,1}

〈
1− u,D1

〉
+
〈
u,D2

〉
+

∫
Ω
g(x) |∇u| dx , (1.7)

where u(x) ∈ {0, 1} is the indicator function of the contour C, and the two label

assignment functions D1(x) and D2(x) are given by

D1(x) :=

{
e−(x) , where x ∈ Ct
0 , otherwise

(1.8)

D2(x) :=

{
e+(x) , where x /∈ Ct
0 , otherwise

. (1.9)

It is challenging to solve the combinatorial optimization problem (1.7), because

it is non-linear and non-convex. However, it has be proven that using continuous
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max-flow theory [105], the combinatorial optimization problem (1.7) can be solved

globally and exactly via convex relaxation such that

min
u(x)∈[0,1]

〈
1− u,D1

〉
+
〈
u,D2

〉
+

∫
Ω
g(x) |∇u| dx , (1.10)

where u(x) ∈ {0, 1} is now relaxed to u(x) ∈ [0, 1]. According to the convex max-flow

theory, thresholding the result of the convex relaxation of (1.10) provides the exact

and global optimum of (1.5) [126].

An efficient continuous max-flow algorithm [124] can be employed to solve the

continuous min-cut (1.7) globally and exactly, which implies that the new contour

Ct+1 at the next time step t + 1 is globally optimal. In addition, the solution of

(1.5) provides exactly a fully time-implicit scheme of the contour evolution, for which

a large time evolution step-size is allowed to substantially speed up the evolution

process [105]. The readers are referred to Yuan et al. [105] for more information on

continuous max-flow algorithm.

1.9.4 Level sets and convex max-flow: a brief comparison

A brief qualitative comparison is provided for the level sets and convex max-flow-

based methods in Table 1.1. Both level sets and convex max-flow methods are useful

for image segmentation tasks. However, convex max-flow methods can usually yield

higher computational speed than the level set methods, due to allowable large step-

size and ability to fully parallelize the algorithm. In addition, the convex max-flow

methods are easily extendable to multi-region segmentations than level sets-based

methods. Therefore, with the advent of novel convex max-flow techniques [105] in

our lab in 2011, convex max-flow based approaches were used for Chapter 4 and 5.

1.10 Segmentation evaluation

So far, we discussed our segmentation objectives and numerous segmentation meth-

ods available to be adapted to our segmentation problems. When a segmentation

algorithm is developed, it needs to be properly validated. The performance of the

proposed algorithms are evaluated in terms of accuracy, intra- and inter-observer vari-
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Table 1.1: Comparison of level sets and convex max-flow methods

Level set methods

1. Have flexibility in integrating numerous energy functionals
2. Defined in a continuous setting, thus provides sub-voxel accuracy
3. Use a local optimization method
4. Widely used for medical image segmentation
5. Can be partially parallelized in a GPU
6. Explicit evolution of contours using PDEs,
thus speed is limited by the time-step size
7. Require large number of iterations for convergence
8. Implementations of multi-region segmentations are challenging

Convex max-flow-based methods

1. Have flexibility in integrating numerous energy functionals
2. Defined in a continuous setting, thus provides sub-voxel accuracy
3. Use a global optimization method at each iteration,
but cannot guarantee global optimum across iterations
4. Recently introduced to medical image segmentation
5. Can be fully parallelized in a GPU
6. Implicit evolution of contours. Thus large time-step size is allowed
7. Usually require fewer number of iterations for convergence
8. Easily extendable to multi-region segmentations
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abilities, and computational time. Interactions and expertise required from the user

are other aspects of the algorithm.

Since the actual boundaries cannot be determined in patients, expert manual

delineations of the medical images are often used as a surrogate for ground truth.

Therefore, the validations of the proposed algorithms were carried out by evaluating

the accuracy of the algorithm-generated contours in comparison to the expert-drawn

contours.

1.10.1 Accuracy

We used volume\area-based, region-based, and boundary distance-based metrics to

evaluate the accuracy of the algorithm. Volume-based metrics capture the aspect of

the segmentation that is of greatest clinical interest: the VWV. Region- and boundary

distance-based metrics evaluate the spatial fidelity of the segmentations to those

generated manually by the user. Most of the metrics used in the following chapters

are described below.

Let V iA be algorithm generated volume and V iM be the manual volume for either

outer wall or lumen of a single 3D image i. We used volume error δV ij = V iA − V iM
and percentage volume error as

δV ij =
(V iA − V iM )

V iM
× 100% j = VWV,LIB,MAB (1.11)

for volume-based metrics. In addition, we also computed absolute volume error

|δVj | = |VA − VM | and absolute volume error

|δV ij | =
|V iA − V iM |

VM
× 100% j = VWV,LIB,MAB (1.12)

as a percentage. The mean volume error δVj is

δVj =

∑NI
i=1 δV

i
j

NI
j = VWV,LIB,MAB (1.13)

where NI is the number of images. The mean absolute volume difference |δVj | is the

geometric mean of the absolute volume error for each image. Similar to volume-based
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metrics, area-based metrics can be computed for the date set.

We used the Dice similarity coefficient (DSC) [127], area overlap (AO), and area

difference (AD) as region-based metrics. DSC is given by

DSC =
2(RM ∩RA)

RM +RA
× 100%, (1.14)

where RM and RA denote the regions enclosed by the manual and algorithm-

generated surfaces.

The AO and AD measures are given by

AO =
(RM ∩RA)

RM ∪RA
× 100%, (1.15)

and

AD =
|RM −RA|

RM
× 100%. (1.16)

The mean absolute distance (MAD) error, root-mean squared error (RMSE), max-

imum absolute distance (MAXD) error are used as distance-based metrics. We denote

the manual contour M as a set of vertices {mi : i = 1, ..., K}, the algorithm-generated

contour A as the vertice set {ai : i = 1, ..., N}, and d(mi, A) as the distance between

the vertex mi of the contour M and its closest vertex on the contour A.

The MAD error, RMSE of distance, and MAXD error are given by

MAD =
1

K

K∑
i=1

d(mi, A), (1.17)

RMSE =

√√√√ 1

K

K∑
i=1

d(mi, A)2, (1.18)

and

MAXD = max
i∈[1,K]

{d(mi, A)}, (1.19)

respectively. Averages of DSC, RMSE, and MAXD were computed for the entire data

set to obtain overall estimates of each metric.
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1.10.2 Precision

We used the coefficient-of-variation (CV)

CV =
SD

Vmean
× 100% (1.20)

to evaluate the intra- and/or inter-observer variability of the algorithm in computing

the clinically relevant VWV and/or VWA. The intra-observer CVs were computed

to evaluate the variability (relative to the mean) among repeated measurements of

each of the user, whereas inter-observer CV was computed to evaluate the variability

among users. The intra-class correlation coefficient (ICC) [128] was also used to

evaluate the algorithms. ICC measures the reliability by computing the proportion

of variance between observations. A single measure of absolute agreement using a

two-way mixed study was used to compute ICC.

The minimum detectable difference (MDD) [129] provides an indication of the

change in volume between two successive measurements that can be detected at a

given confidence level [129]. We computed the MDD

MDD = Za
√

2× SEM (1.21)

for the algorithm segmentation in generating VWV, where Za is the standard normal

deviate exceeded in either direction with probability α (i.e for α = 0.05, Za = 1.96)

and SEM is the standard error of the measurement.

1.11 Overview of dissertation

This dissertation consists of the papers that have been published in, or submitted

to, peer-reviewed international journals. Chapters 2–5 of the dissertation explain the

details of implementation, and validation of the various aspects of the research of

developing segmentation algorithms for 3D images of arteries. The dissertation ends

with chapter 6 containing a summary and discussion of the research work presented

and future directions. The following is a description of each chapter.
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Chapter 2: 2D segmentation of the carotid lumen and outer wall from

3DUS images using a modified SFLS method

The main purpose of this chapter was to develop and evaluate a semi-automated

segmentation algorithm for delineating the MAB and LIB of the CCA from 3DUS

images. At the beginning of my doctoral studies, I first attempted a 2D slice-by-slice

segmentation algorithm for this problem. To segment the MAB and LIB, we used

a SFLS method and combined several low-level image cues with high-level domain

knowledge and limited user interaction. First, the operator initialized the algorithm

by choosing anchor points on the boundaries, identified in the images. The MAB was

segmented using local region- and edge-based energies and an energy that encourages

the boundary to pass through the anchor points from the preprocessed images. For

the LIB segmentation, we used local and global region-based energies, anchor point-

based energy, as well as a constraint promoting a boundary separation between the

MAB and LIB. The data set consisted of 231 2D images (11 2D images per each

of 21 subjects) extracted from 3DUS images. The image slices were segmented five

times each by an observer using the algorithm and manual method. Volume-based,

region-based, and boundary distance-based metrics were used to evaluate accuracy

and repeated measures analysis was used to evaluate precision. The algorithm yielded

an absolute VWV difference of 5.0± 4.3% with a segmentation bias of −0.9± 6.6%.

For the MAB and LIB segmentations, respectively, the method gave absolute volume

differences of 2.5±1.8% and 5.6±3.0%. DSCs (1.14) of 95.4±1.6% and 93.1±3.1%,

MAD errors of 0.1± 0.1 and 0.2± 0.1 mm, MAXD errors of 0.6± 0.3 and 0.7± 0.6

mm, respectively. The CVs of the algorithm (5.1%) and manual methods (3.9%) were

not significantly different but the average time saved using the algorithm (2.8 vs. 8.3

min) was substantial.

Chapter 3: 3D segmentation of the carotid lumen and outer wall from

3DUS images using a modified SFLS method

One of the main limitations of the method presented in Chapter 3 is the need for user

initializations on every slice. In this work, we describe a 3D algorithm based on a

modified sparse field level set (SFLS) method for segmenting the MAB and LIB of the

CCA from 3DUS images. To our knowledge, the proposed algorithm is the first direct

3D segmentation method, which has been validated for segmenting both the carotid
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MAB and LIB from 3DUS images for the purpose of computing VWV. Initialization

of the algorithm requires the observer to choose anchor points on each boundary

on a set of transverse slices with a user-specified inter-slice distance (ISD), in which

larger ISD requires fewer user interactions than smaller ISD. The main contribution

of this work is the extension of the 2D segmentation algorithm into 3D. To address

the challenges of the MAB and LIB segmentations from 3DUS images, we integrated

regional- and boundary-based image statistics, expert initializations, and anatomi-

cally motivated boundary separation into the segmentation. The MAB is segmented

by incorporating local region-based image information, image gradients, and the an-

chor points provided by the observer. Moreover, a local smoothness term is utilized to

maintain the smooth surface of the MAB. The LIB is segmented by constraining its

evolution using the already segmented surface of the MAB, in addition to the global

region-based information and the anchor points. The algorithm-generated surfaces

were sliced and evaluated with respect to manual segmentations on a slice-by-slice

basis using 21 3DUS images. We used ISD of 1, 2, 3, 4, and 10 mm for algorithm ini-

tialization to generate segmentation results. The algorithm-generated accuracy and

intra-observer variability results are comparable to the previous methods, but with

fewer user interactions. For example, for the ISD of 3 mm, the algorithm yielded an

average DSC of 94.4 ± 2.2% and 90.6 ± 5.0% for the MAB and LIB and the CV of

6.8% for computing the VWV of the CCA, while requiring only 1.72 min (vs. 8.3 min

for manual segmentation) for a 3DUS image.

Chapter 4: 3D carotid multi-region MRI segmentation using globally op-

timal evolution of coupled surfaces

In this chapter, we describe a novel global optimization based 3D multi-region seg-

mentation algorithm for T1-weighted black-blood carotid MR images. The proposed

algorithm partitions a 3D carotid MR image into 3 regions: wall, lumen, and back-

ground. The algorithm performs such partitioning by simultaneously evolving two

coupled 3D surfaces of carotid artery adventitia boundary (AB) and lumen-intima

boundary (LIB) while preserving their anatomical inter-surface consistency such that

the LIB is always located within the AB. In particular, we show that the proposed

algorithm results in a fully time implicit scheme that propagates the two linearly

ordered surfaces of the AB and LIB to their globally optimal positions during each

discrete time frame by convex relaxation. In this regard, we introduce the continuous
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max-flow model and prove its duality/equivalence to the convex relaxed optimization

problem with respect to each evolution step. We then propose a fully parallelized

continuous max-flow-based algorithm, which can be readily implemented on a GPU

to achieve high computational efficiency. Extensive experiments, with four users us-

ing 12 3T MR and 26 1.5T MR images, demonstrate that the proposed algorithm

yields high accuracy (DSC > 90% for the carotid CCA and ICA) and small observer

variability ((intra-observer CV < 5.6% and inter-observer CV < 6.6%)) in computing

VWV. In addition, we show the algorithm outperforms previous methods in terms of

high computational efficiency and robustness with fewer user interactions.

Chapter 5: Joint segmentation of lumen and outer wall from 3D femoral

artery MR images

In this chapter, we propose a novel algorithm to jointly segment the femoral artery

lumen and outer wall surfaces from 3D black-blood MR images. Initially, the femoral

artery lumen and outer wall are straightened by reorienting the femoral MR trans-

verse slices using the medial axis of the femoral artery. The proposed segmentation

algorithm enforces a spatial consistency prior between adjacent slices of the reori-

ented MR slices in a global optimization manner. We demonstrate that the reduced

challenging combinatorial optimization problem can be solved globally and exactly

by means of convex relaxation. For this task, we introduce a novel coupled continu-

ous max-flow (CCMF) model based on an Ishikawa-type flow configuration and show

its duality to the studied convex relaxed optimization problem. Using the proposed

CCMF model, the exactness and globalness of its dual convex relaxation problem is

proven. Moreover, the CCMF model is implemented in a GPU to achieve high com-

putational speed. Experiments were conducted using 355 2D slices extracted from

10 3D black-blood MR images of seven subjects. The proposed method yielded high

accuracy (i.e., DSC greater than 85%) for both the lumen and outer wall and high

reproducibility (ICC of 0.95) for generating vessel wall area. The proposed method

also outperformed the previous method in terms of reproducibility and computation

time by a factor of ∼ 20.
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Chapter 6: Conclusions and future directions

This chapter summarizes the results and conclusions from the research presented in

the proceeding chapters. It also provides directions for future work.
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Chapter 2

3DUS of carotid atherosclerosis:

Semi-automated segmentation using a

level set-based method†

2.1 Introduction

3DUS of the carotid artery provides measurements of VWV that are complementary

to one-dimensional measurements of the carotid artery as discussed in Section 1.4.5

of Chapter 1. One of the main issues in computing VWV is the requirement for time-

consuming delineation of the carotid media-adventitia boundary (MAB) and lumen-

intima boundary (LIB) in three-dimensions. Therefore, development and validation

of an accurate and robust segmentation method to delineate the carotid MAB and

LIB are required to alleviate the measurement burden from the user. In this chapter,

we describe and evaluate a new semi-automated segmentation tool based on the level

set method to delineate the MAB and LIB of the carotid arteries on a sequence of

2D US images (see Fig. 2.1 and 1.10(b) in Chapter 1) extracted from 3DUS images.

2.1.1 Previous work

Several investigations have been reported that rely on an expert observer to manu-

ally outline the MAB and LIB [2, 3, 4, 5, 6]. However, manual segmentation of these

boundaries is labour intensive and time-consuming [6]. There are several studies

that report on semi-automated segmentation methods for delineating the LIB and/or

MAB on 2D US [7, 8, 9, 10, 11, 12], 3DUS [13, 14], MRI [15], and CTA [16, 17]. Here,

†. A version of this chapter has been published [1]: E. Ukwatta, J. Awad, A. D. Ward, D.
Buchanan, J. Samarabandu, G. Parraga and A. Fenster, “A Three-dimensional ultrasound
of carotid atherosclerosis: Semiautomated segmentation using a level set-based method,”
in Medical physics, 38(5), 2479–95 2011.
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(a) (b)

Figure 2.1: (a) Sagittal cross-section of the common carotid artery (CCA) in a 3DUS
image. The contours overlaid on the image represent the manual delineations done
by an expert with an ISD of 1 mm; and (b) transverse view of a 3DUS image of the
CCA showing expert-drawn contours delineating the MAB and LIB.

we focus on segmentation methods that aim to segment the LIB and/or MAB on US

images. We classify the segmentation approaches developed for carotid US segmen-

tation broadly into three categories based on the US imaging technique used: (1) 2D

longitudinal US, (2) 2D transverse US, and (3) 3DUS. The majority of the existing

literature on the segmentation of the carotid MAB and LIB focuses on obtaining IMT

measurements from 2D US images passing through and parallel to the approximate

central axis of the artery (henceforth referred to as “longitudinally oriented images”).

These studies on the segmentation of the carotid artery boundaries included the ap-

plication of dynamic programming [7], deformable snakes [8], Hough transforms [9],

stochastic optimization [18] and classification approaches [10] to detect the carotid

boundaries on longitudinally oriented images.

A number of other investigators have also described approaches for carotid LIB

segmentation using the transverse view. Mao et al. [11] proposed a discrete dynamic

contour model for extracting the carotid LIB from 2D transverse US images. They

used a combination of local gradient difference and local gray level ratio between the

outside and inside of the deformable contour to drive the evolution of the contour and

validated their method using a total of seven transverse 2D slices. Abolmaesumi et al.

[12] introduced a method based on the star algorithm improved by Kalman filtering to

extract the LIB from transverse carotid US images, but did not validate the method

using human patient images. Gill et al. [13] proposed a semi-automatic segmentation
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method based on a dynamic balloon model to extract the LIB in 3DUS, and validated

the method using a single 3D US patient image. Their method requires placing a seed

point within the carotid artery, which is initially inflated to determine the approxi-

mate LIB and then refined using image edge-based forces, which are susceptible to

regions of poor image contrast at the boundary. Zahalka et al. [14] proposed a LIB

segmentation method on 3DUS images using a geometrically deformable model with

a stopping term based on the image gradient, which was validated using phantoms.

In 3D carotid US images, the contrast is lower at boundaries parallel to the US beam,

compared to boundaries orthogonal to the US beam. Image edge-based active contour

methods may leak at low contrast boundaries as these methods assume the existence

of image edges at the object boundary for the evolution to stop. For similar reasons,

the applicability to 3DUS of techniques for MAB segmentation used for MRI and

CTA images [15, 16] is unclear, and the assumption of elliptical vessel shape made

by these techniques is tenuous, especially near the bifurcation (BF) (see Fig. 1.1(b)

in Chapter 1). To the best of our knowledge, techniques for MAB segmentation on

transverse images have not been previously reported for 2D or 3D carotid US images.

2.1.2 Contributions

The key innovation of this work was the incorporation of local and global image

statistics with a boundary separation-based constraint and anchor points provided

by the operator as high-level domain knowledge, enabling the accurate segmentation

of the MAB and LIB. To our knowledge, no method has been previously reported for

segmenting both the carotid artery LIB and MAB from 3DUS images. However, a

preliminary study of this work has been published in a conference paper [19].

Out of the nine energies used for segmentation, we introduced the anchor point-

based and boundary separation-based energies for level set methods. The developed

algorithm would provide accurate quantification of VWV, thus enabling the accurate

and noninvasive monitoring of progression and regression of carotid atherosclerosis.
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Figure 2.2: Block diagram of the workflow of the algorithm. Our contributions are
shown in bold italic letters.

2.2 Materials and methods

2.2.1 Study subjects and imaging

3DUS images for 21 subjects were used, and all subjects provided written informed

consent to the study protocol, which was approved by The University of Western

Ontario Standing Board of Human Research Ethics. To better represent a diverse

subject group, images were blindly selected from three subject groups: seven images

from diabetes subjects, seven images from rheumatoid arthritis subjects, and seven

images from atorvastatin subjects with carotid stenosis of 60% or more. The presence

of stenosis was confirmed using carotid Doppler US flow velocities. Subjects were

recruited from The Stroke Prevention Clinic at University Hospital (London Health

Sciences Centre, London, Canada) and the Stroke Prevention and Atherosclerosis

Research Centre (Robarts Research Institute, London, Canada).

The mechanical 3DUS system [20, 21, 22] used in this study has been described

previously in Section 1.4.5.1. The voxel size of the 3DUS images was ≈ 0.1×0.1×0.15

mm3.
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2.2.2 Overview and summary of approach

As shown in Fig. 2.2, the workflow consists of four main steps: (1) user initializa-

tion, (2) image preprocessing, (3) MAB segmentation, and (4) LIB segmentation.

The first step involves an operator interactively placing manually selected points

(henceforth referred to as “anchor points”) on the MAB and LIB on each transverse

cross-section. The MAB is segmented from contrast enhanced images using the level

set approach by optimizing an objective function encoding smoothness energy, local

region-based energy, edge-based energy utilizing the edge map obtained from prepro-

cessing, and an energy which depends on the distance of the boundary to the anchor

points (henceforth referred as “anchor point-based energy”). The motivation for the

use of these energy terms is based on the observations that: (1) the parts of the MAB

that are orthogonal to the US beam direction have relatively high image contrast,

but poor contrast elsewhere (necessitating a region-based energy term to augment

the edge-based term); and (2) this boundary has a smooth low-order shape. After

the MAB has been segmented, lumen segmentation is performed, also using the level

set method. The objective function for the LIB segmentation encodes smoothness

energy, local and global region-based energies, an anchor point-based energy, and a

boundary separation-based energy. The motivation for the use of these energy terms

is based on the observations that: (1) the lumen region is relatively homogeneous

and low intensity, (2) the LIB has missing edges, and (3) the LIB cannot be closer

than some minimum distance from the MAB. The algorithm-generated contours were

evaluated for accuracy and variability by comparison to contours delineated manually

by an expert using volume-based, region-based, and boundary distance-based metrics

on the 21 3DUS patient images, comprising 231 acquired 2D US frames.

2.2.3 User interaction

Rather than performing a fully manual outlining of the MAB and LIB, the opera-

tor initializes both boundaries by placing anchor points on each boundary on every

transverse slice. The anchor points serve two purposes: (1) they attract the evolving

curve to pass through them, and (2) they are used to define a spline that serves as

the initialization boundary to the segmentation algorithm. In the clinical scenario,

the operator would have full discretion over the number of anchor points to select,
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with the intent to select as few points as possible such that the algorithm provides a

clinically acceptable segmentation.

2.2.4 Preprocessing

The preprocessing steps of the algorithm are shown in Figure 2.2. Contrast lim-

ited adaptive histogram equalization (CLAHE) [23] was applied to enhance the local

contrast of the US images prior to the MAB and LIB segmentations. CLAHE parti-

tions the image into contextual regions and applies histogram equalization by fitting

a Rayleigh distribution to each local region. In this chapter, the values used for

the CLAHE parameters [23]—number of image partitions, the contrast enhancement

limit (CEL) to reduce the over-saturation of the image, and the mode of the Rayleigh

distribution—are shown in Table 2.1.

The rest of the preprocessing steps were applied to obtain an edge map to aid in

the MAB segmentation. Next, a cascaded stick filter [24] with stick length from 1 to

1.5 mm was applied to the contrast enhanced images to reduce the effect of image

speckle. The stick filter employs line segments in different orientations and enhances

edges by providing high response at the orientation that most likely represent an edge

in the image. The stick filter lengths were chosen to correlate well with the MAB

segments of the same length but large enough that it smoothes small-scale features

and reduces the magnitude of edges with high curvature, which are not of interest.

A Gaussian filter was then applied to smooth the image, followed by a Canny edge

detection [25] to obtain an edge map that contains desired edges on the MAB and

false edges corresponding to other structures. Morphological opening was used to

remove edges that were smaller than 2 mm. The resulting filtered edge map

M(x) =

{
1 if x lies on an edge point

0 otherwise
, (2.1)

was incorporated into the objective function of MAB segmentation.

In this chapter, values for the image preprocessing parameters were determined

via a systematic search of the space of parameter values, which is described in Sec-

tion 2.2.8. The parameters and their optimized values for preprocessing are shown in

Table 2.1.
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Table 2.1: Parameters and their optimized values for the preprocessing.

Operation Parameters Values

CLAHE # Partitions, CEL, Rayleigh dist. mode 8, 0.02, 0.4
Stick filter Stick length, interval 1–1.5 mm, 0.2 mm
Gaussian filter Kernel size, SD 0.7 mm, 0.3 mm
Canny edge filter High and low threshold 0.25, 0.08
Morphological opening Element size 2 mm

2.2.5 Segmentation using level sets

We used active contours based on the level set method [26] to segment the MAB and

LIB from 3DUS images. Our rationale for the use of the level set method, in contrast

to, e.g., a parametric approach, is that it incorporates an implicit representation of

contours and provides for the straightforward implementation of region-based seg-

mentation, in addition to the edge-based segmentation [27]. US images suffer from

artifacts, such as poor definition of the vessel boundaries, image speckle, and shad-

owing. These artifacts decrease the differentiation between the object of interest and

background and pose a challenge to automated segmentation algorithms. Due to such

challenges posed to image-based segmentation algorithms by plaque and US imaging

artifacts, high-level user interaction and domain knowledge are incorporated into our

proposed approach.

Let the bounded open subset Ω ⊂ R2 represent the image domain. Each image

is defined as I : Ω → R , and x ∈ Ω is a spatial variable representing a single point.

The level set is an implicit representation of a boundary defined by the function

φ(x) : Ω → R. The boundary is specified as the zero of the level set function, i.e.,

the set of spatial locations x for which φ(x) = 0. During the segmentation process,

the function φ(x) is evolved according to the evolution equation given by

∂φ(x)

∂t
+ F |∇φ(x)| = 0, (2.2)

where F is speed function. In our implementation, φ(x) is initially represented as

a signed distance function of the boundary, and is evolved via the optimization of

an objective function representing the goal of segmentation. The objective function

contains two types of energy terms: external energy terms, derived from the (pre-
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processed) image data, and internal energy terms, derived from high-level knowledge

about the expected shape of the boundaries as well as from user-specified anchor

points.

In this chapter, we use sparse field level set (SFLS) method, which is a narrow-

band level set implementation proposed by Whitaker [28]. Narrow-band methods

update only the level set evolution around the neighbourhood of zero level set rather

than computing φ(x) for the whole image domain. The narrow-band technique is

required to implement the anchor-point based energy in our implementation.

The objective functions used in this work for the MAB and LIB are described

below. Due to the differences in region and geometric features of the MAB and LIB

two separate objective functions were used for their segmentations.

2.2.6 MAB segmentation

The MAB segments that are orthogonal to the US beam direction have high image

contrast whereas the boundary segments that are parallel to the US beam direction

have low image contrast. Moreover, the image intensity of the interior and exterior of

the MAB (illustrated by the dashed outer contours in Fig. 2.1(b)) is heterogeneous.

Therefore, a segmentation method solely based on region-based or edge-based energies

may not yield an accurate segmentation. In addition, global region-based methods

provide accurate segmentations, only when the interior and exterior of the object

boundary can be accurately modeled by global statistics. Therefore, we use a hybrid

geodesic energy combining local region-based and edge-based energies for the MAB

segmentation. Edge-based forces drive the segmentation successfully in the presence

of strong image gradients whereas the local region-based forces localize the boundary

in the local neighbourhood without the presence of image gradients. The objective

function EMAB for MAB segmentation is defined as

EMAB = αSES + αLRELR + αAEA + αEEE , (2.3)

where ES (2.4), ELR (2.6), EA (2.11), and EE (2.13) are the regularization, local

region-based, anchor point-based, and edge-based energies, respectively. To generate

the results presented in this work, the parameters αS , αLR, αA, and αE were set as

shown in Table 2.2.
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ES promotes the smoothness of the boundary by minimizing its length and is

given by [29]

ES(φ) =

∫
Ω
|∇H(φ(x))|dx, (2.4)

where

H(x) =


1 if x < −ε
0 if x > ε
1
2

[
1 + x

ε + 1
π sin(πxε )

]
if |x| ≤ ε

, (2.5)

is the regularized Heaviside function [29] representing the interior region of the bound-

ary. Similarly, the exterior region of the boundary is defined as (1 − H(φ(x))). ε is

a small positive constant. The gradient of the Heaviside function within the inte-

gral (2.4) is the length of the boundary.

The local region based energy ELR proposed by Lankton and Tannenbaum [30]

assumes that at each point on the object boundary, the local interior and exterior

neighbourhoods can be modeled by their mean intensities. Let x̂ ∈ Ω be another

independent spatial variable. The local region-based energy ELR is

ELR(φ) =

∫
Ω
δ(φ(x))

∫
Ω
BL(x, x̂)

[
H(φ(x̂))(I(x̂)− ux)2 + (1−H(φ(x̂)))(I(x̂)− vx)2

]
dx̂dx,

(2.6)

where

δ(x) =


1 if x = 0

0 if |x| > ε
1
2ε

[
1 + cos(πxε )

]
if |x| ≤ ε

, (2.7)

is the regularized Dirac delta function and

BL(x, x̂) =

{
1 if ||x− x̂|| < rL

0 otherwise
(2.8)

is used to define a circular-shaped local region with localizing radius rL.

ux =

∫
ΩBL(x, x̂)H(φ(x̂)I(x̂)dx̂∫

ΩBL(x, x̂)H(φ(x̂))dx̂
, (2.9)

and

vx =

∫
ΩBL(x, x̂)(1−H(φ(x̂)))I(x̂)dx̂∫

ΩBL(x, x̂)(1−H(φ(x̂)))dx̂
(2.10)
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are the mean image intensities of the interior and exterior of the active contour within

the region defined by BL(x, x̂). rL is an important parameter that determines the

degree of blending local statistics around the boundary to global statistics of the

image. A small rL essentially would act as an edge detector while an increasing rL

would cause convergence to global statistics.

Several previous segmentation methods have used user defined anchor points to

guide the segmentation [31, 32]. Similarly, the energy EA given by (2.11) encourages

the contour to pass through each anchor point xiA, placed by the expert if the evolving

contour is within a distance rA to the anchor point. When the contour points are

away from the anchor point by more than rA, there is no influence by this energy.

EA(φ) =

NP∑
i=1

∫
Ω
δ(φ(x))BiA(x)(φ(x)− φ(xiA))2dx, (2.11)

where

BiA(x) =

{
1 if ||x− xiA|| < rA

0 otherwise
, (2.12)

is used to define a circular-shaped region around the anchor point with radius rA

and Np is the number of anchor points. In our implementation, the curve evolution

was started with an initial spline, which passed through the anchor points where EA

would be already at its minimum.

Caselles et al. [33] and Malladi et al. [34] introduced edge-based geometric active

contours, which evolve an interface towards the desired object boundary under the

assumption that there will be strong gradients at the object boundaries to stop the

evolution. Here, we used an edge-based energy which utilizes the edge map M(x) (2.1)

generated during the preprocessing stage. The edge-based energy EE is

EE(φ) = −
∫

Ω
δ(φ(x))

BE(x)

ε+ |φ(x)− φ(XE(x))|dx, (2.13)

where

BE(x) =

{
1 if 0 < ||x−XE(x)|| < rE

0 otherwise
, (2.14)

is the circular-shaped region around the point x with a radius rE and ε is a small
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positive constant.

XE(x) = arg min
x̂∈s

||x− x̂||, s = {x̂;M(x̂) = 1}; (2.15)

is the nearest edge point from point x. The edge force is non-zero when the contour

is within a distance rE to the closest edge point. According to (2.13), the energy EE

is minimum when the contour is placed on the edge.

By taking the first variation of the EMAB (2.3) with respect to φ we obtain the

evolving equation

∂φ(x)

∂t
=δ(φ(x))

{
αS div

( ∇φ(x)

|∇φ(x)|

)
+ αLR

∫
BL(x, x̂)δ(φ(x̂))

[
(I(x̂)− ux)2 − (I(x̂)− vx)2

]
dx̂

+ αA

Np∑
i=1

BiA(x)(φ(x)− φ(xiA)) + αEBE(x)

× sgn(φ(x)− φ(XE(x)))

(ε+ |φ(x)− φ(XE(x))|)2

}
, (2.16)

where

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

, (2.17)

for the MAB segmentation. The stopping criteria of the MAB segmentation were

based on the convergence test that terminates when the evolution does not change

within bounds of 0.4 mm2 on successive iterations and a maximum iteration criterion.

2.2.7 LIB segmentation

Unlike the MAB, the LIB has an irregular shape due to the presence of plaque and

does not typically contain sharp, high contrast edges. However, the intensity distri-

bution of the interior of the LIB is fairly homogeneous, whereas the outside region

is heterogeneous. Therefore, we employed a combination of local region-based and
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global region-based forces to segment the LIB. The objective function ELIB used to

segment the LIB is given as

ELIB = λSES + λLRELR + λGEG + λAEA + λEEB , (2.18)

where ES (2.4), ELR (2.6), EG (2.19), EA (2.11), and EB (2.22) are the smoothness,

local region-based, global region-based, anchor point-based, and boundary separation-

based energies, respectively. To generate the results presented in this work, the

parameters λS , λLR, λG, λA, and λB were set as given in Table 2.2. Similarly to

MAB segmentation, the smoothness, local region-based, and the anchor point-based

energies are used in lumen segmentation.

The global region-based energy (EG) proposed by Chan and Vese [29] partitions

the image into different regions based on their global distinct characteristics of the

image region.

EG(φ) =

∫
Ω
H(φ(x))(I(x)− u)2 + (1−H(φ(x)))(I(x)− v)2dx, (2.19)

where

u =

∫
ΩH(φ(x))I(x)dx∫

ΩH(φ(x))dx
(2.20)

and

v =

∫
Ω(1−H(φ(x)))I(x)dx∫

Ω(1−H(φ(x)))dx
(2.21)

are the mean intensities of interior and exterior regions of the boundary. Equa-

tion (2.19) models the object and the background by mean intensities u and v.

Because the MAB and LIB are separated by the carotid media layer, they are

encouraged to have a greater or equal separation distance (dB) of 0.5 mm from each

other [35]. We imposed dB as a distance-based constraint to drive the LIB segmen-

tation using the algorithm-generated MAB segmentation. The boundary separation-

based energy EB is given by

EB(φ) =

∫
Ω
δ(φ(x))BB(x)dx, (2.22)



65

where

BB(x) =

 1 if min
x̂
D(x, x̂) < dT

0 otherwise
, (2.23)

and

D(x, x̂) = ||x− x̂||,∇H(φMAB(x̂)) = 1. (2.24)

The term EB discourages the intersection of the MAB and LIB. This energy is

non-zero when the LIB moves closer to the MAB than distance dB .

By taking the first variation of the ELIB (2.18) with respect to φ, we obtain the

evolving equation

∂φ(x)

∂t
=δ(φ(x))

{
λS div

( ∇φ(x)

|∇φ(x)|

)
+ λLR

∫
BL(x, x̂)δ(φ(x̂))

[
(I(x̂)− ux)2 − (I(x̂)− vx)2

]
dx̂

+ λG

(
(I(x)− u)2 − (I(x)− v)2

)

+ λA

Np∑
i=1

sgn(φ(xiA))BiA(x)(φ(x)− φ(xiA)) + λBBB(x)

}
(2.25)

for LIB segmentation. Similar to MAB segmentation, a narrow-band level set im-

plementation was used for LIB segmentation with a stopping criteria based on the

convergence test that the energy does not change within bounds of 0.4 mm3 on suc-

cessive iterations and a maximum iteration criterion.

2.2.8 Parameters of the segmentation

Initially, the parameter values were chosen empirically. Afterwards, the parame-

ters were optimized sequentially for the MAB and LIB segmentations separately by

changing a single parameter at a time for a range of its values while holding other

parameters unchanged for 100 2D US images. For a given parameter, the parameter

value corresponding to the highest overall Dice similarity coefficient (DSC) (1.14) was

chosen as the optimized value. We used DSC as the metric for parameter optimiza-

tion because it is a region-based metric that depends on spatial overlap, thus is more

stringent than volume metrics. This procedure was repeated until convergence or
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until a maximum of five repetitions was met. It should be noted that this method is

a local optimum search, thus the global optimum of the parameter values is not guar-

anteed. Table 2.2 shows the parameter values for the MAB and LIB segmentations

after optimization. The parameter values were held constant during the validation

experiments.

Table 2.2: Parameters and their optimized values for MAB and LIB segmentations.

Description MAB LIB

Parameter Value Parameter Value

Local region radius rL 1.7 mm rL 1.4 mm
Anchor radius rA 2.5 mm rA 2.5 mm
Edge radius rE 2 mm NA
Smoothness (ES) weight αS 3.4 λS 1.2
Local region (ELR) weight αLR 1 λLR 1
Anchor (EA)weight αA 5.3 λA 4.7
Edge (EE) weight αE 0.8 NA
Global region (EG) weight NA λG 0.5
Boundary separation (EB) weight NA λB 21

2.3 Validation

2.3.1 Experiment design

Expert manual segmentations were used as a surrogate for ground truth. The vali-

dation of the proposed algorithm was carried out by evaluating the accuracy of the

algorithm-generated contours by comparison to the expert-drawn contours, as well as

evaluating the reproducibility of the algorithm-generated contours. The manual seg-

mentation method was previously described by Egger et al. [36] and is summarized

here. Prior to contouring, the expert first located the bifurcation (BF) and defined

an approximate medial axis of the carotid artery by choosing two points on the axis.

The multi-planar 3D viewing software then presented 2D images of the artery by

slicing through the 3D image orthogonally to the medial axis, in the inferior direction

from the BF, with an inter-slice distance (ISD) of 1 mm. The expert then performed

contouring of the MAB and LIB on each of these images. Figure 2.1 shows a sagittal



67

cross-section of the CCA with manually annotated boundaries overlaid. An expert

outlined the MAB and LIB boundaries five times repeatedly with a 24 hour period

between repetitions on 231 transverse 2D slices extracted from 21 3DUS images. The

images were randomized and the operator was blinded to the image order during

each repetition to reduce memory bias. The operator also chose eight points on each

boundary five times on each transverse slice with a 24 hour period between repeti-

tions on the same data set. The user initialized the anchor points on the same image

planes as for the manual segmentation to ensure that the algorithm segmented the

same 2D images as segmented manually for direct comparison.

The reason behind selecting eight points initially on each boundary was to eval-

uate the sensitivity of the algorithm to the number of anchor points used for the

segmentation. To determine the effect of choosing fewer than eight anchor points on

the results of segmentation, we iteratively removed the anchor points one at a time, re-

peated the optimization, and calculated the validation metrics. Using this approach,

we tested the proposed algorithm using four to eight anchor points. In the iterative

removal process, anchor points capturing fine shape details (i.e., contributing little to

the overall area covered by the shape) were removed first. In this paper, this ordering

was achieved by the discrete contour evolution (DCE) algorithm [37]. The four points

representing the coarsest representation of the shape were selected in advance from

the eight anchor points by first numbering the eight points in order along the contour,

and then considering the set of odd-numbered points, and the set of even numbered

points. The set whose interpolating spline enclosed a region giving the greatest area

overlap with that enclosed by the spline interpolating all eight points was selected as

the coarsest, four-point representation of the shape. The DCE algorithm was then

restricted to removing points only from the other set. This approach encourages a

regular sampling of the boundary, avoiding the degenerate case where after anchor

point removal, all of the remaining anchor points lie on one side of the shape.

2.3.2 Evaluation metrics

Metrics used in this dissertation were described in Section 1.10. Three types of metrics

were used to evaluate the segmentations: volume-based, region-based, and boundary

distance-based metrics. Volume-based metrics capture the aspect of the segmentation

that is of greatest clinical interest: the VWV. Region- and boundary distance-based
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metrics describe in greater detail the spatial fidelity of the segmentations to those

generated manually by the operator. The volumes were computed by multiplying the

area enclosed by the boundary with the ISD of 1 mm.

We used six volume-based metrics: mean volume errors δVVWV , δVMAB , and

δVLIB (1.13) and mean absolute VWV errors |δVVWV |, |δVMAB | and |δVLIB |), all

expressed as percentages. The mean VWV error δVVWV for the 3DUS image set

determines the overall VWV disagreement between the algorithm and manual seg-

mentation.

A two-way mixed analysis of variance (ANOVA) with repeated measures was

performed to determine the statistical significance of the measured performance dif-

ferences between the algorithm and manual approach. The sources of variation in this

design are: method (algorithm or manual) and repetitions. A two-way ANOVA test

generates three p-values, one for each parameter independently, and one measuring

the interaction between the parameters. The ANOVA study was performed using

SPSS version 17.0 (SPSS Inc., Chicago, IL, USA).

We also computed the minimal detectable difference (MDD) (1.21) [38] for the al-

gorithm and manual segmentation. The MDD is used to determine that the changes

in VWV between two successive measurements is real and not a result of measure-

ment variability. We used coefficient-of-variation (CV) (1.20) to compare the repro-

ducibility of the algorithm and manual method for the generation of VWV. We also

performed an F-test on the VWV estimates to determine the statistical significance

of the difference between the standard deviations of the algorithm and manual seg-

mentation.

The DSC (1.14) was used as a region-based measure to compare two segmentations

for accuracy on slice-by-slice basis. The DSC quantifies the area overlap of two

segmentations. For each transverse 2D image, the DSC was computed using the

mean manual and mean algorithm boundaries. The approach to computing the mean

boundary is given in Section 2.3.3. A mean DSC across patients was calculated to

obtain an overall score determining the agreement between the algorithm and manual

segmentations.

The mean absolute distance (1.17) (MAD) and maximum absolute distance (1.19)

(MAXD) errors were used as boundary distance-based metrics. Mean boundaries were

used to compute the MAD and MAXD. Boundary distance-based metrics depend on

the establishment of a point-wise correspondence between the boundaries. We used



69

 

(a) (b) 

(c) (d) 

Figure 2.3: (a) Algorithm-generated boundaries for the MAB, (b) manually outlined
boundaries for the MAB, (c) algorithm-generated boundaries for the LIB, and (d)
manually outlined boundaries for the LIB. Legend: dotted contours - five segmented
boundaries, dashed contour - corresponding mean boundary.

the symmetric correspondence method [39] described in Section 2.3.3 to establish

correspondence. Averages of MAD and MAXD were computed across vessels to

obtain an overall estimate of boundary disagreement. In addition to the accuracy

and variability metrics, the time required to perform each manual delineation, each

initialization of the algorithm, and the time required to execute the preprocessing

steps and the level set method were recorded.

2.3.3 Mean boundary computation

We used a method similar to that of Chalana and Kim [40] to compute the mean

boundary from the repeated manual segmentations and repeated algorithm-generated

segmentations. Their method used closest point correspondence to establish corre-

spondences. We used the symmetric correspondence method [3, 38], because it over-

comes singularities (two points mapping to a single point) occurring in the closest

point correspondence method. The symmetric correspondence method used in this



70

paper is described in detail by Papademetris et al. [39]. The symmetric correspon-

dence approach is well-motivated for use on this anatomy because the MAB and LIB

are smooth and do not contain self intersections. In addition, we are establishing

correspondence between multiple segmentations of the same artery. In this situation,

the assumption that the boundaries to be corresponded are similar is stronger than

in the scenario where the boundaries to be corresponded are derived from different

objects/arteries.

Since the symmetric correspondence algorithm only establishes correspondence

between a pair of boundaries, it was applied four times to establish correspondence

between five boundaries. The boundary that was closest to the average boundary

was chosen as the initial boundary and correspondences were established between this

boundary and the other four boundaries. A point on the mean boundary was given

by the centroid of the five corresponding points. A normal to the mean boundary was

computed at each point on the mean boundary. The centroid of the intersection points

of the normal and the five input boundaries were then determined. The resulting set

of centroids gives a new mean boundary. The process was iterated until the mean

boundary converged. Figure 2.3 shows the mean boundaries of the MAB and LIB

generated using the manual delineations and algorithm-generated boundaries.

2.4 Results

We evaluated algorithm accuracy and reproducibility using 231 transverse slices from

21 carotid vessels. With the exception of the results described in Section 2.4.3, all

of the results in this section were computed using four anchor points, chosen from

the initially placed eight anchor points using the method described in Section 2.3.1.

Figure 2.4 provides a qualitative overview of the results, showing the mean boundaries

of the MAB and LIB computed using the algorithm-generated boundaries and manual

delineations overlaid on 2D transverse images that are at a distance of 1, 4, 7, and 10

mm from the BF. Each column in Fig. 2.4 was extracted from a different vessel: one

from each of diabetes, rheumatoid arthritis, and atorvastatin groups.
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Figure 2.4: Sample results of the MAB and LIB segmentations for three patients
using four anchor points chosen from the initial eight anchor points. (Dashed outer
contour - manual MAB, dashed inner contour - manual LIB, dotted outer contour -
algorithm-generated MAB, dotted inner contour - algorithm-generated LIB) 1, 5, 7,
and 10 mm indicate the distance to the BF from each slice.
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Table 2.3: Overall performance results of the algorithm for 231 2D slices extracted
from the 21 3DUS images.

Metric MAB LIB

Volume error (%) −1.3± 2.8 −1.0± 6.4
Absolute volume error (%) 2.5± 1.8 5.6± 3.0

95% CI (mm3) −23.1 to 0.3 −20.8 to 8.2
DSC (%) 95.4± 1.6 93.1± 3.1
MAD (mm) 0.2± 0.1 0.2± 0.1
MAXD (mm) 0.6± 0.3 0.7± 0.6

2.4.1 Accuracy

Bland-Altman plots [41] were used to examine the agreement between the VWVs

generated from manual and algorithm segmentations. Figure 2.5 shows the Bland-

Altman plot, which graphs the difference between manually computed and algorithm-

generated VWV versus their average for each vessel. The mean bias and the 95% limit

of agreement computed as the mean bias ± (1.96×SD of the difference between two

methods) are also shown in the figure. The mean bias for the algorithm was −5.1

mm3.

The relationship between the algorithm and manual segmentation method was

further examined using Pearson product-moment correlation analysis. Figure 2.6

graphs the VWV generated using the algorithm against the VWVs from manual

method. The Pearson correlation coefficient of the two methods for generating VWV

was highly significant (r = 0.97, p < 0.01).

In addition, we performed a two-way mixed repeated measures ANOVA on the

mean VWVs of the two methods with an α value of 0.05. The p-value for the method

(manual and algorithm) effect was 0.41, which indicates that the two methods were

not statistically significantly different for the data used in this paper. The p-value

for the repetition effect was 0.12, which indicates that repetition effect was also not

significantly different. p-value of 0.31 for the interaction between the method and

repetitions indicates no interaction between them.

We determined the 95% confidence interval (CI) of the difference between the

algorithm and manual estimates of VWV. The average discrepancy (the bias) between

the two methods was −5.1 mm3 with a 95% CI of −17.4 mm3 to 7.2 mm3. The
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MDDs [38] were computed for the segmentation methods using a level of significance

(α) of 0.05 and power (β) of 0.8. The MDDs were 64.2 mm3 and 50.3 mm3 for the

algorithm and manual segmentation, respectively.

The algorithm yielded an absolute VWV error |δVVWV | of 5.0 ± 4.3% with a

segmentation bias of −0.9 ± 6.6%. Table 2.3 shows the overall evaluation results of

the algorithm for 231 transverse 2D US images. The mean volume errors for the

MAB and LIB indicate that the algorithm has a negative bias, thus the MAB and

LIB volumes were underestimated. The algorithm reported a smaller absolute volume

error for the MAB (2.5%) than the LIB (5.6%). Similarly, the algorithm yielded a

higher DSC for the MAB (95.4%) than LIB (93.1%), although the algorithm reported

similar MAD and MAXD errors for both boundaries.

Figure 2.7 graphs overall DSC, MAD, and MAXD as a function of distance to

the BF for the MAB and LIB segmentations for 231 2D US images. The error bars

represent one standard deviation above and below the mean. Note that the DSC is

high (≈ 96% for the MAB, ≈ 94% for the LIB) distal to the BF and decreases to

≈ 93% for the MAB and ≈ 90% for the LIB) proximal to the BF. Note that the

standard deviation of the DSC is also higher near the BF. MAD and MAXD results

agree with the DSC results such that the higher distance errors occur near the BF

than distal to the BF.

2.4.2 Intra-observer variability

The CV was used to compare the intra-observer variability of the algorithm and

manual method in estimating VWVs. The manual method and algorithm reported a

CV of 3.9% and 5.1%, respectively. A two sample F-test was carried out to determine

the statistical significance difference of the two variances. F-test gave a p-value of 0.93

(NI = 21) indicating that we failed to show that the variances of the two methods

are statistically significantly different for the sample used in this paper.

2.4.3 Number of initialized points

To determine the effect of initialization of the algorithm on accuracy and reproducibil-

ity, we used the algorithm five times for four, five, six, seven, and eight anchor points.

Figure 2.8(a) shows the volume-based metrics δVVWV , δVMAB and δVLIB versus the

number of anchor points for the entire image data set. The algorithm gave a negative
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Figure 2.5: Bland-Altman plot of the VWVs generated using four anchor points
chosen from the initial eight anchor points. The plot graphs the difference between
the algorithm-generated and manual VWVs as a function of their mean.
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Figure 2.6: Correlation plot of VWV measurements for the algorithm and manual
method. The VWVs were generated using four anchor points chosen from the initial
eight anchor points for the algorithm.
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Figure 2.7: (a) Graph of DSC against distance to BF; (b) graph of MAD against
distance to BF; and (c) graph of MAXD against distance to BF for the 231 images.
The error bars represent one standard deviation.
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bias of −0.9% for δVVWV using 4 anchor points and positive biases of 1.3, 1.1 and

1,8 % for using, 5, 6, 7, and 8 anchor points. The algorithm gave a similar pattern of

biases for δVMAB and δVLIB . As shown in Figure 2.8(b), the absolute volume errors

|δVVWV |, |δVMAB |, and |δVLIB | gradually decreased with the increasing number of

anchor points.

Figure 2.8(c) plots the DSC as a function of number of anchor points. DSC

gradually increased with the increasing number of anchor points for the MAB and

LIB. Figure 2.8(d) graphs the CV in generating the VWV, MAB volume, and LIB

volume versus the number of anchor points. The algorithm achieved a lower CV with

an increasing number of anchor points for VWVs, MAB volumes, and LIB volumes.

2.4.4 Execution time

The reported times were calculated using the 231 images five times. 8.3 ± 1.5 min

of operator time was required to manually delineate the MAB and LIB for a single

3DUS image (11 2D carotid images). In contrast, the algorithm required 1.6 ± 0.3

min of operator time to choose four anchor points. Moreover, the algorithm required

a computational time of 1.2 ± 0.2 min to segment a single 3D image using a non-

optimized Matlab (Natick, MA, USA) implementation on a single core of a PC with

processor speed of 2.5 GHz.

2.5 Discussion

2.5.1 Discussion

Our goal was to develop and evaluate a semi-automated segmentation algorithm to

delineate the MAB and LIB of the CCA for generating the measurement of 3DUS

VWV [36]. Here, we report on: 1) the technical details of our 3DUS VWV segmen-

tation algorithm, 2) measurement accuracy, 3) measurement reproducibility, and 4)

execution speed on images from human subjects with a variety of underlying condi-

tions. We also examined the effect of the number of anchor points used to initialize

the algorithm.

We used a 2D segmentation method to delineate the carotid artery MAB and LIB

on the same 2D slices used for manual segmentation to allow for a direct measurement

of the benefit of the semi-automation to the existing manual procedure [2, 36, 42],
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Figure 2.8: (a) Graph of δVVWV , δVMAB and δVLIB with varying number of ini-
tialized points; (b) graph of |δVVWV |, |δVMAB | and |δVLIB | with varying number
of initialized points; (c) graph of DSC for MAB and LIB with varying number of
initialized points; and (d) graph of CV in computing VWV, MAB volume, and LIB
volume with increasing number of initialized points.
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while fixing other variables related to the operator interaction and workflow. We used

a level set method, rather than, for example, a parametric approach, because the level

set method enables the straightforward implementation of region-based energies. The

objective function of the segmentation combined region-based and edge-based ener-

gies. Local region-based energies were incorporated to localize the boundary without

the presence of edges. Energies derived from operator-placed contour anchor points

were used to attract the boundary to pass through the anchor points, incorporating

high-level direction given by the operator into the objective function. An energy

term favouring a separation between the LIB and MAB boundaries was used to con-

strain the LIB, because without it LIB segmentation may leak through a low contrast

boundary.

We then examined accuracy of the algorithm by comparing the algorithm results

to manual segmentations. In the absence of histology images confirming the locations

of the MAB and LIB, manual segmentations of the 3DUS images were used as a

surrogate for truth. Bland-Altman plots (see Fig. 2.5) and the correlation coefficient

of 0.97 (see Fig. 2.6) indicated a strong agreement of the two methods and ANOVA

failed to detect a statistically significant difference between the methods. Based on

our sample, there was a 95% chance that the VWV difference of the two methods

ranges from −17.4 to 7.2 mm3, which is not a clinically relevant difference [20]. The

utility of the algorithm for monitoring plaque progression and regression in subjects

depends on the MDD in VWV based on measurements given by of the algorithm. The

algorithm is capable of detecting changes in VWV greater than or equal to the MDD

of 64.2 mm3. Knowledge of the MDD is essential in deciding on the follow-up times

for the subjects. The follow-up time must be greater than the time required for VWV

to progress or regress by 64.2 mm3. This value is smaller than a previously reported

VWV change of ≈ ±120 mm3/yr [2, 42], which suggests that follow-up period of 7

months or more would be suitable using our method.

The accuracy of the algorithm was also examined using volume-based metrics. The

overall VWV error δVVWV of −0.9% (−5.1 mm3 ) quantifies the segmentation bias of

the algorithm. A bias of −0.9% implies that the algorithm underestimated the VWVs

for the data set. However, a bias of −5.1 mm3 may not be of clinical importance given

the MDD of 64.2 mm3. In addition, we used |δVVWV | to quantify the volume error of

the algorithm. The mean absolute volume differences was 5.0±4.3%, which indicates

that the algorithm provided equally good estimates of the VWVs when compared
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with the manual approach. The algorithm gave a smaller δVMAB (2.5 ± 1.8%) for

the MAB compared with for the LIB (5.6± 3.0%). Similarly, the standard deviation

of the algorithm in generating MAB volume (2.8%) was smaller than LIB volume

(6.4%). This may be due to the fact that four anchor points are adequate to segment

the MAB due to its smooth low order shape.

Overall DSC values of ≈ 95% and ≈ 93% for the MAB and LIB, respectively,

indicate that the algorithm-generated contours had a large amount of spatial over-

lap with manually-generated contours. The results of DSC are consistent with the

volume-based metrics, that higher overall DSC was reported for the MAB than the

LIB. Boundary distance-based metrics provide an even more detailed assessment of

the accuracy of the segmentations, since they are more sensitive to undesirable spikes

and protrusions of the algorithm-generated contours.

We also observed the variation of accuracy and error metrics as a function of

distance to the BF (Fig. 2.7(a), (b) and (c)). The DSC was relatively small (≈ 93%

for the MAB, 90% for the LIB) proximal to the BF and high (≈ 96% for the MAB,

≈ 94% for the LIB) distal to the BF for both boundaries. The variability of MAD

and MAXD versus the distance to the BF are also consistent with the DSC results.

This may be due to the significant amount of plaque present proximal to the BF of

the carotid artery. Large, calcified plaques create shadowing artifacts, making the

MAB and LIB boundaries less prominent.

Chiu et al. [43] proposed a framework for evaluating our segmentation algorithm

on a point-by-point basis. Their method [43] proposed statistical metrics to evaluate

the difference of local vessel wall-thickness-plus-plaque (VWT) produced by manual

and algorithm segmentations. The VWT maps for each subject can be pooled together

to produce 2D standardized maps for the data set. Such 2D standardized maps can

be used to improve the accuracy of the algorithm by identifying regions with larger

errors.

The algorithm reported a higher CV (5.1%) compared to manual segmentation

(3.9%) in estimating the VWV using four anchor points. However, a two-sample F-

test failed to detect a statistically significant difference (p = 0.9). The small difference

in variability (5.1% vs. 3.9%) may indicate that the variability of the algorithm is

primarily caused by the observer selection of anchor points on the boundary rather

than the variability introduced by the algorithm.
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The average operator time saved using our algorithm (with 4 anchor points),

compared with manual segmentation, was 5.5 min (8.3 min to 2.8 min), with 1.2

min spent on computation. Since our current implementation is in Matlab and is

not optimized, we speculate that computation time may be substantially reduced by

optimizing and parallelizing the implementation.

We also observed the effect of varying the number of anchor points (see Fig. 2.8)

on accuracy and reproducibility. The segmentation bias varied from a small negative

bias to a positive bias with the increasing number of points (see Fig. 2.8(a)) for VWV,

MAB and LIB volumes. However, the segmentation biases were small (≈ −1.2% to

≈ 1.8% ) and may not be of clinical significance. When we consider the MAB and

LIB separately, δVLIB showed a decreasing trend, although δVMAB did not show a

decreasing trend (see Fig. 2.8(b)). This may be due to that the MAB is a relatively

smooth and low order curve, such that four points are sufficient to describe the shape.

However, a gradual increase in the accuracy with the increasing number of points is

noted for the DSC for both boundaries (see Fig. 2.8(c)). The CVs for VWV, MAB,

and LIB volumes gradually decreased with the increasing number of anchor points (see

Fig. 2.8(c)) to initialize the algorithm. For the LIB, the variability of the algorithm

approaches the variability of the manual segmentation. We speculate that when

increasing the number of anchor points to initialize the algorithm, the variability of

the algorithm approaches the variability in manual delineations.

We compared the algorithm-generated contours to the contours drawn by a single

operator. It is not known whether the regions of disagreement arise from inaccura-

cies in the algorithm, or from inaccuracies in the manual segmentation. Although

phantoms with a known geometry may be used to establish a ground truth, it is not

realistic to use traditional phantoms for the purposes of validating the accuracy of the

algorithm, since they do not simulate the characteristics of patients’ real 3DUS images

with sufficient fidelity. Since the LIB is more challenging to segment, the algorithm

uses segmented MAB to constrain the LIB segmentation from leaking. Therefore,

the accuracy of the LIB segmentation depends to some extent on the accuracy of the

MAB segmentation.

In this study, we only segmented a portion of the CCA. However, in the future

we will investigate the segmentation of the internal and external carotid arteries as

well. The developed algorithm segments each transverse slice independently and

is a first step toward reducing the operator interaction for carotid segmentation.
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As future work, we will investigate the use of both slice-by-slice propagation and

direct 3D segmentation to reduce the operator interaction further by utilizing the

image information along the out-of-plane direction as well. In the method, we used

image intensity for the region-based energies, but energies based on image texture

may improve the accuracy of the segmentation. In addition to generating VWV, the

segmentations of the MAB and LIB can be used as a fundamental step in the analysis

of carotid plaque composition [44] for the early identification of vulnerable plaques to

prevent possible stroke.
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Chapter 3

3D segmentation of 3DUS carotid atherosclerosis

using sparse field level sets†

3.1 Introduction

As described in Section 1.8, delineations of the carotid MAB and LIB are required

in generating 3DUS VWV and VWT measurements and are helpful in generating

the TPV measurement. Although, VWV has been shown to be more sensitive to

temporal changes in carotid atherosclerosis than the more widely used IMT, 3DUS

VWV is not used because manual segmentation of the carotid MAB and LIB is

tedious and time-consuming. Previously developed semi-automated algorithms [2, 3]

including the 2D algorithm described in Chapter 2, also require user interactions on

every slice. Therefore, VWV measurements are still mainly generated using manual

segmentations [4], and a few attempts [2, 3, 5] have been reported for developing

semi-automated algorithms. Therefore, the objective of this work is to develop and

evaluate a semi-automated 3D algorithm for segmenting the MAB and LIB of the

CCA from 3DUS images with fewer user interactions.

3.1.1 Previous studies

Some carotid ultrasound-based segmentation techniques reported in the literature are

two-dimensional and are used to determine the IMT measurements in longitudinal

views from carotid 2DUS images [13, 14, 15, 16]. However, for the purpose of obtain-

ing volumetric measurements, the entire MAB and LIB surfaces need to be delineated

†. A version of this chapter has been published [1]: E. Ukwatta, J. Yuan, D. Buchanan,
B. Chiu, J. Awad, W. Qiu, G. Parraga, and A. Fenster “Three-dimensional segmentation
of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets,” in
Medical Physics, 40(5) 2903–20, 2013.
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Table 3.1: Previous papers describing carotid LIB and/or MAB segmentations from
3DUS/B-mode images.

Paper Year Dimen- LIB MAB Time No. of images Other information
sion (min) (type)

Ukwatta 2011 2D Coupled Coupled 3.7± 0.4 21 -Anchor points on the
[6] level set level set (3DUS) boundary on each slice.
Ukwatta 2011 2D Level set Level set 2.8± 0.4 21 -Anchor points on the
[3] (3DUS) boundary on each slice.
Yang 2011 2D Active Active 4.4± 0.6 68 -Initializing a shape
[2] shape shape (3DUS) model on each slice.

model model -Requires training data
Solovey 2010 3D Level set 2 -Seed points
[7] (3DUS) inside the lumen.
Gill 2000 3D Dynamic 30 s 1 -Initializing the balloon
[8] (3DUS) model inside the LIB.
Guerrero 2007 2D Star Kalman 23 s 3 (B-mode -Seed point
[9] filters sequence) inside the LIB.
Abolmae- 2000 2D Star algorithm/ 1 (B-mode -Seed point
sumi [10] Kalman filtering sequence) inside the LIB.
Zahalka 2001 2D Active contours 25s/ 2 -Seed point
[11] (3DUS) inside the LIB.

-Results not reported.
Mao 2000 2D Active contours 0.8 s/ 7 -Seed point
[12] slice (B-mode) inside the LIB.

 

Figure 3.1: Two example transverse views of the CCA with overlaid manual segmen-
tations of the MAB and LIB from 3DUS images of two subjects with carotid stenosis
of more than 60%. Note that although the MAB has a relatively low order convex
shape, the LIB may have a nonconvex shape.
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in either transverse views or in 3D combining both transverse and longitudinal views.

In this chapter, we specifically focus on 2D and 3D algorithms that have been devel-

oped for segmenting the entire surface of carotid MAB and/or LIB from 3DUS images

as shown in Table 3.1. The algorithms can be divided into two main categories as

shown in Table 3.1: Techniques [7, 8, 9, 10, 11, 12] that only segment the carotid

LIB and ones [2, 3, 6] that segment both the carotid MAB and LIB. For example,

Gill et al. [8] and Solovey [7] proposed direct 3D segmentation methods only for LIB

segmentation. Gill et al. [8] used a 3D dynamic balloon model that is inflated to

coarsely locate the boundary and then refined using edge-based energies for LIB seg-

mentation. However, edge-based segmentation alone is not adequate to stop leaking

at low-contrast boundaries in US images [17]. Solovey [7] proposed a level set-based

method to segment the LIB by incorporating a region term that minimizes the prob-

ability distribution overlap and a weak geometric prior, which encourages convexity

of the boundary in a level set framework. However, the carotid LIB may not have

a convex shape due to the presence of plaque, which is most prominent close to the

bifurcation, as shown in Fig. 3.1. Another limitation of some of the studies [10, 11, 12]

for LIB segmentation is that they validated their algorithm on only seven 2D B-mode

patient images [12], few phantom images [11], or did not report on a quantitative

segmentation validation [10].

Three previous methods have been reported for segmenting both the carotid MAB

and LIB from 3DUS images [2, 3, 6]. Yang et al. [2] used active shape models

to segment the carotid LIB and MAB slice-wise, which involved a large number of

training images to generate models. However, the shape of the LIB could be different

between subjects, which is also affected by the degree of stenosis, as shown in Fig. 3.1.

Ukwatta et al. [3] proposed a 2D segmentation method for delineating the carotid

arteries on a slice-by-slice basis on transverse slices extracted from 3DUS images.

Ukwatta et al. [6] used a coupled level set approach to simultaneously segment the

MAB and LIB. For both techniques, the areas from individual segmentations are

summed together to generate the VWV measurement. Since each slice is segmented

independently at an ISD of 1 mm, the methods require user interaction on every

slice. Although the slice thickness of our 3DUS images is approximately 0.15 mm,

the 2D methods [3, 6] make an assumption of no considerable change in the vessel

morphology within an ISD of 1 mm.
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3.1.2 Contributions

In this chapter, we describe and evaluate a direct 3D segmentation algorithm to de-

lineate the MAB and LIB of the CCA from 3DUS images. The algorithm uses a

similar boundary-based initialization approach used previously for the 2D segmenta-

tion [3], but requires initialization only on a smaller subset of transverse slices than

the number of slices used in the 2D method [3]. However, the proposed method does

not hold the assumption of constant vessel morphology within an ISD of 1 mm, as it

provides a direct 3D segmentation of the entire 3DUS image at a slice thickness of

0.15 mm. The 3D method uses nine energy functionals in total, out of which eight

were used in the 2D method [3].

The main contribution of this chapter is the extension of the energy functions [3]

to 3D. To the best of our knowledge, the proposed algorithm is the first direct 3D

segmentation method for segmenting both the carotid MAB and LIB from 3DUS

images for the purpose of computing the VWV. A direct 3D segmentation method

has the potential for reducing user interaction over a 2D method, while increasing the

robustness of the segmentation by integrating out-of-plane image information.

A preliminary study of this work has been previously described in a conference

paper [18]. The algorithm was briefly described and validated only for accuracy

using 15 3DUS images in the conference paper [18]. In this chapter, we provide

comprehensive details of the proposed algorithm and provide a thorough analysis of

the accuracy and intra-observer variability on 21 3DUS images with five repeated

algorithm segmentations. In addition, initialization of the algorithm is investigated

with respect to accuracy and variability with ISD of 1, 2, 3, 4, and 10 mm.

3.2 Materials and methods

Our segmentation pipeline consists of four main steps as shown in Fig. 3.2: Algorithm

initialization, 3D image preprocessing, MAB segmentation, and LIB segmentation.

Each of the steps is described below.

3.2.1 Algorithm initialization

A boundary-based initialization approach is used in our algorithm as opposed to a

region-based initialization, where the observer chooses “anchor points” on the MAB
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Figure 3.2: Block diagram of the workflow of the 3D algorithm.
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Figure 3.3: The process of creating a 3D mask from anchor points as the initial surface
for the algorithm with an ISD of 2 mm.

and LIB. The anchor points are used to generate the initial mask for the segmentation

and constrain the evolving surface to always pass through them.

The observer first locates the BF and defines the long axis of the artery as shown

in Fig. 3.2. Then, the observer chooses four anchor points each on the MAB and

LIB on a set of transverse slices, which are orthogonal to the long axis of the artery,

with a pre-defined ISD. For example, ISD of 1, 2, 3, 4, and 10 mm are used in this

chapter, where large ISDs result in fewer user interactions. In comparison to the 2D

method [3], which requires user initializations on every slice at an ISD of 1 mm, our

3D method uses fewer slices for initialization.

Figure 3.3 shows the steps for generating a 3D mask to represent the initial surface

for the segmentation algorithm for the LIB or MAB. For the set of 2D planes with

user-initialized anchor points, 2D contours are first generated by cubic spline inter-

polation with approximately 0.2 mm interval between adjacent points using the four

anchor points on each plane. The 2D contours are then corrected for any intersec-

tions of the MAB and LIB automatically, by correcting the LIB to have a minimum

separation of 0.5 mm from the carotid MAB [19]. The contour points between two

adjacent parallel slices are then corresponded using the similarity correspondence al-

gorithm [20]. The symmetric correspondence algorithm provides an improvement to

the closest point algorithm by avoiding multiple points being mapped to the same

point [20]. A triangular surface is generated using the corresponding points, which
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Figure 3.4: 3D image preprocessing steps of the algorithm. The results here are shown
for a single slice of the 3DUS image.

is then converted to a 3D binary mask. Any voxel inside the triangular surface is

assigned label one and any voxel outside the surface is labeled zero.

3.2.2 3D image preprocessing

The preprocessing steps of our algorithm are shown in Fig. 3.4. Initially, a region-

of-interest (ROI) is chosen by using a 7 mm margin in all three directions from the

minimum and maximum values of x, y, and z coordinates of the initial surface. Two

separate preprocessing pipelines are used for the MAB and LIB as shown in Fig. 3.4.

The 3DUS image is first normalized using the minimum and maximum intensity of

the image to reduce the effect of different image contrast of each image. Then, edge-

preserving anisotropic diffusion filtering [21] is applied to reduce the effect of image

speckle, as shown in previous studies [17, 22, 23]. This method enhances the 3DUS

image by diffusing image regions with low or no image gradient while preserving image

edges. In addition, it provides the filtered output image within a few seconds for 3DUS

images. The output from the diffusion filtering is used as the input 3DUS image for

LIB segmentation. For MAB segmentation, filtered output from the Gaussian filter

with a kernel size of 0.7 mm is used as the input 3DUS image. The rest of the

preprocessing steps are applied to obtain an edge map to aid in MAB segmentation.

We apply Canny edge detector [24] on the filtered 3DUS images to obtain an edge map,

as previously used in US segmentation tasks [23]. Morphological operations are then
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used on the edge map to remove edge segments that are smaller than 2 mm, and edges

that are more than a distance of 10 mm from the initial surface. The resulting filtered

edge map is incorporated into the objective function of MAB segmentation. In this

chapter, values for image preprocessing parameters are determined via a systematic

search of the space of parameter values. The parameters and their optimized values

for preprocessing are shown in Table 3.2.

3.2.3 Sparse field level set (SFLS) method

In this chapter, we used a sparse field level set (SFLS) implementation [25] for both

LIB and MAB segmentations. The SFLS method updates only the level set evolution

around the neighborhood of zero level set rather than computing for the whole image

domain to speed up the evolution by reducing the amount of computation. Let the

bounded open subset Ω ∈ R3 represent the image domain, where the image I : Ω→ R
and x ∈ Ω is a spatial variable. The level set is an implicit representation of a

surface defined by the Lipschitz function φ(x) : Ω→ R, where the zero level of φ(x)

represents the segmented surface. φ(x) is represented as a signed distance function

at the beginning, where φ(x) < 0 inside the surface. The level set evolution equation

is given by
∂φ(x)

∂t
+∇E|∇φ(x)| = 0 (3.1)

where E is the objective function representing the goal of segmentation [26, 27]. φ(x)

is evolved based on the objective function, until it converges to an energy minimum.

The objective function contains two types of energy terms: external energy terms,

derived from the (preprocessed) image data, and internal energy terms, derived from

high-level knowledge about the expected shape of the boundaries as well as from

user-specified anchor points.

3.2.4 MAB segmentation

At first, we segment the MAB using the 3D SFLS method. The segmentation task

of the MAB from 3DUS carotid images is challenging due to the following reasons:

Low image contrast of the MAB especially on the surface that is parallel to the US

beam, presence of calcified plaque creating shadowing and signal dropouts, heteroge-

neous intensities on the interior and exterior of the MAB (contain both hypo-echoic
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and hyper-echoic regions), and overlapping intensity PDFs with each other as shown

in Fig. 1.10(c) in Chapter 1. To address these challenges in the segmentation, we

incorporated five types of energy criteria into the objective functional (EMAB) for

the MAB (see Fig. 3.2):

EMAB = αSES + αLSELS + αLRELR + αAEA + αEEE , (3.2)

where weights αS , αLS , αLR, αA, αE are positive constants.

The smoothness energy [27, 28] (3.3) is the standard regularization used in level

sets that penalizes the length of the segmentation surface and is given by

ES(φ) =

∫
Ω
|∇H(φ(x))|dx, (3.3)

where H(x) is the regularized Heaviside function [27] representing interior of the

segmentation surface, whereas the exterior region of the surface is defined as (1 −
H(x)). ε is a small positive constant.

The local smoothness energy [29] (ELS) reduces the convexity and concavity of

a local neighborhood region defined by a spherical mask. Let x̂ ∈ Ω be another

independent spatial variable:

ELS(φ) =

∫
Ω
δ(φ(x))(Av(x)− Au(x))2dx, (3.4)

where

BL(x, x̂) =

{
1 if ||x− x̂|| < rL

0 otherwise
, (3.5)

is used to define a spherical region with localizing radius rL. Au(x) =∫
ΩBL(x, x̂)H(φ(x̂))dx̂ and Av(x) =

∫
ΩBL(x, x̂)(1 − H(φ(x̂)))dx̂ are the volume

of the inside and outside regions of the BL(x, x̂). δ(x) is the regularized Dirac delta

function, which is the derivative of H(x).

The local region-based energy (ELR) [28] minimizes the intensity inhomogeneity

of the local interior and exterior regions:

ELR(φ) =

∫
Ω
δ(φ(x))

∫
Ω
BL(x, x̂)

[
H(φ(x̂))(I(x̂)− ux)2 + (1−H(φ(x̂)))(I(x̂)− vx)2

]
dx̂dx

(3.6)
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where u(x) and v(x) are the mean image intensities of the interior and exterior of

the active contour within the local region defined by BL(x, x̂) [28]. The parameter

rL determines the degree of blending local statistics around the boundary to global

statistics of the image.

The anchor point-energy [3] (EA) encourages the contour to pass through each

anchor point xiA, placed by the observer if the evolving contour is within a distance

rA to the anchor point:

EA(φ) =

NP∑
i=1

∫
Ω
δ(φ(x))BiA(x)(φ(x)− φ(xiA))2dx, (3.7)

where BiA(x) =

{
1 if ||x− xiA|| < rA

0 otherwise
is used to define a spherical mask around

the anchor point with radius rA and NP is the number of anchor points. When the

contour points are away from the anchor point by more than rA there is no influence of

this energy term. In our implementation, the segmentation is started with the initial

mask that already passes through the anchor points, where EA would be already

at its minimum. With initializing the segmentation close to the MAB using the

anchor points, we reduce the possibility of the evolving contour to be trapped in local

minima due to the heterogeneity of the region and also reduce the computational

time for segmentation.

The edge-based level set framework was initially proposed by Caselles et al. [30].

We use a modified edge-based energy [3] term (EE) to complement the region-based

forces, especially at locations of the surface that are orthogonal to the US beam:

EE(φ) = −
∫

Ω
δ(φ(x))

BE(x)

ε+ |φ(x)− φ(XE(x))|dx, (3.8)

where BE(x) =

{
1 if 0 < ||x−XE(x)|| < rE

0 otherwise
is the spherical region around the

point x with a radius rE and XE(x) = arg min
x̂∈s

||x− x̂||, s = {x̂;M(x̂) = 1} being the

nearest edge point from point x and M(x) =

{
1 if x lies on an edge point

0 otherwise
is the

edge map obtained from preprocessing. The edge force is nonzero when the contour

is within a distance rE to the closest edge point and minimum when the contour is
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placed on the edge.

By taking the first variation of EMAB (3.2) with respect to φ, we obtain the

evolving equation function for MAB segmentation where sgn(x) is the signum function

[3]:

∂φ(x)

∂t
=δ(φ(x))

{
αS div

( ∇φ(x)

|∇φ(x)|

)
+ αLS(Av(x)− Au(x))

+ αLR

∫
BL(x, x̂)δ(φ(x̂))

[
(I(x̂)− ux)2 − (I(x̂)− vx)2

]
dx̂

+ αA

Np∑
i=1

BiA(x)(φ(x)− φ(xiA)) + αEBE(x)

× sgn(φ(x)− φ(XE(x)))

ε+ |φ(x)− φ(XE(x))| (3.9)

3.2.5 LIB segmentation

After the MAB has been segmented, LIB segmentation is performed also using the 3D

SFLS method. The challenges in the LIB segmentation are low image-contrast edges

of the LIB and its irregular shape in some subjects due to the presence of plaque. For

LIB segmentation, we use a global region-based energy, high-level knowledge provided

by the observer, and previously obtained MAB segmentation to constrain the LIB.

The objective functional (ELIB) for the LIB comprises of four energies (see Fig. 3.2):

ELIB = λSES + λAEA + λGEG + λBEB (3.10)

where weights λS , λA, λG, λB are positive constants. ES is the smoothness en-

ergy (3.3), and EA is the anchor point-based energy (3.7) as defined previously.

The global region-based energy [27]

EG(φ) =

∫
Ω
H(φ(x))(I(x)− um)2 + (1−H(φ(x)))(I(x)− vm)2dx, (3.11)

partitions the image into different regions based on their global distinct characteristics

of the image region. um and vm are the mean intensities of interior and exterior

regions of the boundary [3, 27]. The use of a combination of local region-based
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and global region-based forces to segment the LIB is motivated by the fact that the

intensity of the interior of the lumen is fairly homogeneous while outside of the LIB

the intensity is heterogeneous.

Because the MAB and LIB are separated by the intima-media layer, we con-

strained them to have a minimum distance (dB) of 0.5 mm from each other [19]. The

algorithm-generated MAB is used to reduce leaking of the LIB at a weak boundary.

We imposed dB as a distance-based constraint to drive the LIB segmentation using

the algorithm-generated MAB segmentation. The boundary separation-based energy

(EB) is given by

EB(φ) =

∫
Ω
δ(φ(x))BB(x)dx, (3.12)

BB(x) =

 1 if min
x̂
D(x, x̂) < dB

0 otherwise
and D(x, x̂) = ||x − x̂||,∇H(φMAB(x̂)) = 1.

The term EB discourages the intersection of the MAB and LIB. This energy is nonzero

when the LIB moves closer to the MAB than distance dB .

By taking the first variation of the ELIB (3.10) with respect to φ we obtain the

evolving equation for the LIB segmentation:

∂φ(x)

∂t
=δ(φ(x))

{
λS div

( ∇φ(x)

|∇φ(x)|

)
+ λG

(
(I(x)− u)2 − (I(x)− v)2

)

+ λA

Np∑
i=1

BiA(x)(φ(x)− φ(xiA)) + λBBB(x)

}
(3.13)

The stopping criteria for MAB and LIB segmentation is based on the convergence

test that terminates when the evolution does not change within bounds of 0.4 mm3

on successive iterations and a maximum iteration criterion, which is set to be 250

iterations.

Initially, the parameter values were chosen empirically, which were then optimized

for the MAB and LIB segmentations using DSC. The optimization was performed by

changing a single parameter over a range of possible values, while holding the other

parameters fixed for ten 3DUS images. We used DSC as the metric for parameter

optimization, as it is a region-based metric that depends on spatial overlap, which is
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thus more stringent than volume metrics. This procedure was repeated until either

convergence or a maximum of five repetitions were met. It should be noted that we

performed only a local optimum search, thus the global optimum of the parameter

values is not guaranteed. Table 3.3 shows the parameter values for the MAB and LIB

segmentations after optimization. The parameter values were held constant during

the validation experiments.

Table 3.2: Parameters and their optimized values for the preprocessing

Operation Parameters Values

Diffusion filtering No. of iterations, time step, 4, 0.2, 1.0
conductance

Gaussian filter Kernel size, SD 0.7, 0.3 mm
Canny edge filter High and low threshold 0.25, 0.08
Morphological Element size, minimum size 2.5, 2, 10
opening maximum distance 2 mm

Table 3.3: Parameters and their optimized values for MAB and LIB segmentations.

Description MAB LIB

Parameter Value Parameter Value

Local region radius rL 0.7 mm
Anchor radius rA 0.8 mm rA 0.9 mm
Edge radius rE 0.8 mm
Smoothness (ES) weight αS 0.4 λS 0.6
Local smoothness (ELS) weight αLS 0.8
Local region (ELR) weight αLR 3.1
Anchor (EA)weight αA 1.9 λA 1.8
Edge (EE) weight αE 0.4
Global region (EG) weight λG 0.7
Boundary separation (EB) weight λB 1.9

3.3 Validation

The algorithm was evaluated for accuracy and reproducibility by comparison to user-

drawn contours. Manual segmentations of the MAB and LIB were performed using 3D
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multi-planar viewing software [31] on transverse views up to a distance of 1 cm of the

artery from the bifurcation with an ISD of 1 mm. For further information about the

manual segmentations the readers are referred to Egger et al. [32]. The images were

first randomized to the observer for both repeated manual and algorithm segmentation

rounds. An observer outlined the carotid MAB and LIB five times repeatedly with

a 24 h period between repetitions on 21 3DUS images. The observer initialized the

anchor points on the same image planes as for the manual segmentation to ensure

that the algorithm segmented the same 2D slices with an ISD of 1 mm as segmented

manually for direct comparison. For the five repeated algorithm segmentations, four

anchor points were chosen for both the MAB and LIB on each slice for each 3DUS

image for each round with a 24 h period between repetitions on the same data set as

described by Ukwatta et al. [3].

We also evaluated the algorithm accuracy and reproducibility with different ISDs

for initialization on the same data set. ISD of 1, 2, 3, 4, and 10 mm were used in

the experiments, where larger ISDs require fewer user interaction. For example, for

an ISD of 2 mm, user initializations on every other slice is used as anchor points and

are used to generate initial mask.

3.3.1 Evaluation metrics

The algorithm-generated surfaces were resliced at 1 mm intervals, for a direct com-

parison to manual segmentation. Similar to the 2D method [3], we used the same

volume-based, region-based, and distance-based metrics to evaluate the accuracy of

our segmentation method. Volume-based metrics capture the aspect of the segmen-

tation that is of greatest clinical interest: the VWV. Region- and boundary distance-

based metrics describe in greater detail the spatial fidelity of the segmentations to

those generated manually by the observer.

The evaluation metrics were described in Section 1.10 of Chapter 1. The volumes

were computed by multiplying the area enclosed by the boundary with the ISD. We

used volume error (δV ) and absolute volume error (|δV |) as the volume-based metrics.

We computed δV and |δV | for the MAB (δVMAB and |δVMAB |), LIB (δVLIB and

|δVLIB | ), and VWV (δVVWV and |δVVWV |). The overall mean volume error for the

3DUS image set is obtained by averaging the δV , whereas the overall absolute mean

volume error is considered as the geometric mean of the |δV |.
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We used CV to compare the reproducibility of the algorithm and manual method

for the generation of VWV. We also computed the MDD [33] of VWV for the al-

gorithm and manual segmentation. The MDD is used to determine the change in

the VWV between two successive measurements that can be detected at a given

confidence level.

Average boundaries were computed from repeated segmentations and were used

for computing region-based and distance-based metrics. Similar to evaluation of the

2D method [3], the DSC was used as a region-based measure to compare two seg-

mentations for accuracy on slice-by-slice basis, and MAD and MAXD were used as

as boundary distance-based metrics.

3.4 Results

The algorithm was evaluated for accuracy and intra-observer variability using 21

3DUS images with a fixed set of parameters as shown in Table 3.3. All of the results

in this section were computed using four anchor points per slice. We report the results

in terms of computational time, accuracy, and repeatability as follows.

3.4.1 Computational time and user interaction

The reported times were calculated as a mean of the 21 3DUS images, which have

been segmented five times. A mean observer time of 8.3 ± 1.5 min was required

to manually delineate the MAB and LIB from a 3DUS image on 11 transverse 2D

slices. The algorithm required mean observer time of 1.6± 0.3 min for choosing four

anchor points on the MAB and LIB with an ISD of 1 mm for a 3DUS image with

11 2D slices for segmentation. For the proposed 3D algorithm with an ISD of 1 mm

for initialization, the observer is required to choose 88 points in total to segment

the MAB and LIB from a 1 cm portion of the CCA similar to the 2D method [3].

However, the number of points required to initialize the algorithm is reduced to 48,

32, 24, and 16 points for ISDs of 2, 3, 4, and 10 mm for initialization, respectively.

In addition to the observer time for initialization, the algorithm required a mean

computational time of 1.14±0.83 min to segment a 3DUS image using a nonoptimized

Matlab (Natick, MA, USA) implementation on a PC with Intel core i7 processor (Intel

corporation, Santa Clara, CA) with a speed of 3.0 GHz. From the total computational
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time, mean computational time of 0.91± 0.8 min is used for computing local region-

based image force for MAB segmentation.

3.4.2 Accuracy

The slice-by-slice comparison of the algorithm to manual segmentations for two 3DUS

images is shown in Fig. 3.5 and 3.6, one with mild stenosis and one with moderate

stenosis. Each column corresponds to the algorithm segmentation results generated

with the corresponding ISD. The mean manual segmentations are shown as yellow con-

tinuous contours and the mean algorithm segmentations are shown as purple dashed

contours. A single round of algorithm segmentations, along with the anchor points

used for initialization, are shown as cyan dashed contours. For instance, for an ISD of

2 mm, every other slice is initialized, whereas for an ISD of 10 mm only the first and

last slices are initialized. For the 3DUS image with a mild stenosis (see Fig. 3.5), even

for an ISD of 10 mm, the algorithm contours for both the MAB and LIB are in good

agreement with manual contours. However, for the 3DUS image with a moderate

stenosis (see Fig. 3.6), the accuracy in terms of DSC for the entire slice set decreased

with the increase of ISD, where the lowest DSC was reported for the ISD of 10 mm

for both the MAB and LIB.

The comparison of the algorithm-generated MAB and LIB surfaces with an ISD

of 3 mm to the manual segmentations for the same two 3DUS images used in Fig. 3.5

and 3.6 are shown in Fig. 3.7. The algorithm-generated surfaces (shown in purple)

are overlaid with the manually-generated surfaces (shown in yellow), where the al-

gorithm surfaces appear smoother than the manual segmentations. This is due to

incorporation of an smoothness energy in the algorithm, and 3D segmentation of ev-

ery slice at slice thickness of 0.15 mm, while manual segmentations were generated

at an ISD of 1 mm.

The corresponding flattened VWT maps [34] for the algorithm and the manual

segmentations for the same two 3DUS images are shown in Fig. 3.8. In the flattened

VWT map, the colour encodes the thickness between the MAB and LIB. Visually,

the algorithm-generated flattened VWT map closely resembles the manual flattened

VWT map.

The region-based and distance-based metrics results for the MAB and LIB for

the 21 3DUS images are shown in Table 3.4. The results of the 2D segmentation
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Figure 3.5: 2D slice-by-slice comparisons of algorithm segmentations to manual seg-
mentations for a subject with a mild stenosis. Results for ISD from 1–4, and 10 mm
are shown. The contours are as follows: Continuous yellow contour mean manual
MAB and LIB, dashed purple contour mean algorithm MAB and LIB, and cyan
dashed contour one round of algorithm MAB and LIB. Each row corresponds to the
distance from the BF and each column corresponds to the ISD used for initialization.
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Figure 3.6: 2D slice-by-slice comparisons of algorithm segmentations to manual seg-
mentations for a subject with a moderate stenosis (stenosis is between 30% and 70%).
Results for ISD from 1–4 mm, and 10 mm are shown. The accuracy dropped at 4 and
10 mm. The contours are as follows: Continuous yellow contour mean manual MAB
and LIB, dashed purple contour mean algorithm MAB and LIB, and cyan dashed
contour one round of algorithm MAB and LIB. Each row corresponds to the distance
from the BF and each column corresponds to the ISD used for initialization.
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method [3] are also included in Table 3.4 for a direct comparison with the proposed

3D algorithm. We evaluated the accuracy of the algorithm with varying ISDs from

1 to 4 and 10 mm. The metrics were computed by comparing the mean algorithm

boundary with the mean manual boundary obtained from five repeated segmentations.

The highest mean DSC for the MAB and LIB for the proposed 3D algorithm was

reported for the ISD of 1 mm. As expected, the DSC gradually decreased with the

increasing ISD for both the carotid MAB and LIB. At all ISDs, the MAB yielded a

higher DSC than the LIB. The SD of DSC were small and gradually increased with

the ISD for both the MAB and LIB, except at ISD of 4 mm for the LIB. Paired

t-tests have been performed to evaluate the significance of the DSC measurements of

the 2D [3] and 3D methods. The 3D algorithm is significantly different from the 2D

method at all the tested ISDs.

Similar to the trend in DSC results, both MAD and MAXD errors increased with

increasing ISD for both the MAB and LIB. Similar to the 2D method [3], the 3D

algorithm yielded sub-millimeter errors for MAD and its SDs for all ISDs. Except for

MAD at ISD of 1 mm, MAD errors of the 3D algorithm were statistically significantly

different from MAD errors of the 2D method [3]. MAXD errors ranged from 0.75 to

1.19 mm for the MAB and 0.3 to 1.49 mm for the LIB, where the highest MAXD

was reported for ISD of 10 mm. Except for MAXD errors for the MAB at the ISD

of 1 mm, MAXD errors of the 3D algorithm were significantly different from MAXD

errors of the 2D method [3].

Table 3.5 shows the volume-based evaluation results for the 3D algorithm for ISDs

from 1 to 4 and 10 mm. The results of the 2D segmentation method [3] are also in-

cluded in Table 3.5 for direct comparison. For the VWV measurements, the algorithm

underestimated the volumes for ISD of 1, 4, and 10 mm and slightly overestimated for

ISD of 2 and 3 mm. Similar to the trend in the region-based and distance-based eval-

uation results, the absolute VWV error |δVVWV | gradually increased from 4.32% to

13.28% with the increase of ISD. The absolute volumes errors (|δVVWV | , |δVMAB |,
and |δVLIB |) for the proposed 3D algorithm were not significantly different from the

results of the 2D segmentation for the ISDs of 1 to 3 mm. However, the |δVVWV |
results for the ISDs of 4 and 10 mm were significantly different.

The p-values for the hypothesis test that compares the mean VWV of the al-

gorithm and manual segmentation using a two-way repeated measures ANOVA are

shown in Table 3.6, along with the mean difference and the CI of the mean differ-
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Figure 3.7: Comparison of the MAB and LIB algorithm segmentations to manual
segmentations for an ISD of 3 mm for two example 3DUS images that were used
for Fig. 6 and 7. The algorithm-generated surfaces are shown in purple and the
manually-generated surfaces are shown in yellow. (a) LIB surface comparison with
manual segmentation for a subject with a mild stenosis; (b) MAB surface comparison
with manual segmentation of the same subject; (c) LIB surface comparison with
manual segmentation for a subject with a moderate stenosis; and (d) MAB surface
comparison with manual segmentation of the same subject.
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Figure 3.8: Algorithm and manually-generated flattened VWT maps of the surfaces
shown in Fig. 8 for the same two example 3DUS images. The first row corresponds
to algorithm-generated flattened VWT maps, whereas second row corresponds to
manually-generated flattened VWT maps. (a) Subject with a mild stenosis; and (b)
Subject with a moderate stenosis.

ence of the algorithm- and manually-generated VWV. As indicated by the p-values

in Table 3.6, the algorithm failed to show a significant difference for ISDs of 1, 2, 3,

and 4 mm, with respect to the manually generated VWV. However, manually and

algorithm-generated VWVs at ISD of 10 mm are significantly different. In compari-

son to the 2D method [3], the 3D algorithm also failed to show a significant difference

for ISDs of 1, 2, and 3 mm, while there was significant difference for ISDs of 4 and

10 mm.

Figure 3.9 shows the Bland-Altman plot [35] for the comparison of algorithm- and

manually-generated VWV for an ISD of 3 mm. The algorithm had a small bias (0.64

mm3) and a small CI of −23.5–22.7 mm3, which is relatively small compared to the

244–926 mm3 range of the VWV. An example correlation plot for algorithm- and

manually-generated VWV is shown for ISD of 3 mm in Fig. 3.10. The black dashed

line indicates 95% CI of Pearson correlation coefficient (r). The Pearson correlation

coefficient is also shown in Table 3.10, along with their p-values and 95% CI. The

correlation of algorithm- and manually-generated VWVs were in the range of 0.95 to

0.97 for ISDs of 1 to 4 mm and 0.89 for ISD of 10 mm. They were also significantly

correlated (p < 0.0001) with manually-generated VWVs for all tested ISDs.
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Figure 3.9: Bland-Altman plot for comparing algorithm- and manually-generated
3DUS VWV, where ISD of 3 mm is used for the algorithm initialization. The red
continuous line indicates the bias, the blue dotted lines indicate the level of agreement,
and the red dashed lines indicate the 95% CI.

Figure 3.10: Correlation plot for algorithm- and manually-generated 3DUS VWV,
where ISD of 3 mm is used for the algorithm initialization. The dashed lines indicate
the 95% CI of the best fit line.
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Table 3.4: Results for the MAB and LIB segmentation using region-based and
distance-based metrics for the 21 3DUS images using the average boundaries. The
results of the 3D algorithm are given for ISD of 1, 2, 3, 4, and 10 mm.

Metric 2D method
3D method (ISD varied from 1–4 mm and 10 mm)

1 mm 2 mm 3 mm 4 mm 10 mm

DSCMAB 95.4± 1.6 95.03± 1.77 94.57± 2.01 94.4± 2.24 93.53± 3.83 90.4± 4.3
(%)

DSCLIB 93.1± 3.1 92.09± 4.23 91.08± 4.46 90.64± 4.97 89.24± 5.87 84.85± 5.6
(%)

MADMAB 0.2± 0.1 0.24± 0.08 0.27± 0.10 0.28± 0.18 0.31± 0.19 0.46± 0.23
(mm)

MADLIB 0.2± 0.1 0.22± 0.10 0.34± 0.16 0.35± 0.16 0.40± 0.19 0.54± 0.26
(mm)

MAXDMAB 0.6± 0.3 0.75± 0.69 0.83± 0.85 0.89± 0.82 0.92± 1.00 1.19± 0.87
(mm)

MAXDLIB 0.7± 0.6 0.3± 1.05 0.91± 0.51 0.97± 0.62 1.13± 0.82 1.49± 0.97
(mm)

Table 3.5: Results for the VWV, MAB, and LIB using volume-based metrics for the
21 3DUS images. The results of the 3D algorithm are given for ISD of 1, 2, 3, 4, and
10 mm.

Metric 2D method
3D method (ISD varied from 1–4 mm and 10 mm)

1 mm 2 mm 3 mm 4 mm 10 mm

δVVWV -0.9± 6.6 -3.22 ± 9.65 1.02 ± 12.32 0.56 ± 12.42 -5.5 ± 13.1 -12.7 ± 17.65
(%)

δVVWV -5.08± 26.5 -15.45± 38.9 2.28± 47.44 0.64± 49.54 -23.60± 52.47 -59.8 ± 73.5

(mm3)
δVMAB -1.3± 2.8 -0.03± 3.08 2.28 ± 3.1 0.85 ± 9.25 -2.97 ± 4.12 -9.91± 7.11

(%)
δVLIB -1.0 ± 6.4 3.60± 8.60 3.10 ± 4.0 -0.37 ± 49.5 -0.75 ± 12.42 -6.65± 17.16

(%)
|δVVWV | 5.0± 4.3 4.32± 7.20 5.6 ± 8.5 5.64 ± 8.1 6.29± 9.78 13.28 ± 12.30

(%)
|δVMAB | 2.5± 1.8 1.92± 1.69 2.53 ± 2.17 1.55± 2.45 2.79± 2.93 8.12 ± 6.50

(%)
|δVLIB | 5.6± 3.0 2.8± 7.18 3.79± 7.54 4.43± 6.26 6.10 ± 8.56 10.63 ± 10.46

(%)
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Table 3.6: Comparison of algorithm- and manually-generated VWV for 21 3DUS
images using statistical testing and Pearson r. The results of the 3D algorithm are
given for ISD of 1, 2, 3, 4, and 10 mm.

Metric 2D method
3D method (ISD varied from 1–4 mm and 10 mm)

1 mm 2 mm 3 mm 4 mm 10 mm

p-value 0.41 0.09 0.82 0.97 0.058 0.002

Mean (mm3) −5.1 -15.45 2.28 0.64 −23.6 -59.8

95% CI (mm3) −17.4− 7.2 −33.6− 2.7 -19.8–24.4 -23.5–22.7 -48.1–0.86 -94.1–25.5
Pearson r 0.97 0.97 0.96 0.95 0.95 0.89
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
95% CI for r 0.94–0.99 0.93–0.99 0.91–0.98 0.89–0.98 0.88–0.98 0.75− 0.95

Table 3.7: Standard deviation (SD), coefficient-of-variation (CV), and minimum de-
tectable difference (MDD) of volume measurements for 21 3DUS images computed
using the repeated measurements of algorithm and manual segmentations. The results
of the 3D algorithm are given for ISD of 1, 2, 3, 4, and 10 mm.

Metric Manual 2D method 3D method (ISD from 1-4 mm and 10 mm)

1 mm 2 mm 3 mm 4 mm 10 mm

SDVWV (mm3) 18.1 23.2 20.85 24.35 27.13 34 40.7
CVVWV (%) 3.89 5.1 4.97 5.57 6.8 8.23 10.82
CVMAB (%) 1.53 2.36 2.47 2.78 3.4 3.6 5.25
CVLIB (%) 3.3 3.5 3.12 2.34 3.7 4.88 6.18

MDDVWV (mm3) 50.3 64.2 57.8 67.5 75.2 94.2 112.9
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3.4.3 Reproducibility

The intra-observer variability results of generating MAB and LIB volumes and VWV

are shown in Table 3.7. The results of the previous 2D method [3] are also shown

in Table 3.7 for direct comparison. The manual segmentation yielded the smallest

CVVWV and CVMAB , although the proposed 3D algorithm reported the smallest

CVLIB at 2 mm. The CVVWV , and CVMAB , and MDD gradually increased with

the increase in ISD for the proposed algorithm. The CVLIB has a similar trend,

except at 2 mm. The CVs for the 3D algorithm, especially for ISDs of 1 and 2 mm,

are comparable to the CVs of the 2D algorithm. The MDDs of the proposed 3D

algorithm were in the range of 57.8 to 112.9 mm3, and the MDD increased with the

increasing ISD. The MDD of the 3D algorithm at ISD of 1 mm is smaller than the

2D method, although the 3D algorithm reported slightly higher MDDs for ISD of 2

and 3 mm.

3.5 Discussion

In this chapter, we developed and evaluated a 3D semi-automated segmentation al-

gorithm based on SFLS method to delineate the MAB and LIB of the CCA for

the measurement of the VWV, which is a previously developed 3DUS-based mea-

surement [32] of carotid atherosclerosis. As such, the purpose of the algorithm is

to generate VWV measurements for monitoring patients being managed for risk of

stroke using non-surgical methods [4, 5, 36]. In addition, the proposed algorithm may

also be used for generation of VWT change maps [37] and analysis of vessel wall re-

gion for plaque characterization [38, 39]. Here, we discuss the technical details of our

3DUS VWV segmentation algorithm, computational time, measurement accuracy,

measurement reproducibility, and comparison to previous methods.

3.5.1 Methodology

The proposed algorithm is an extension of the 2D slice-wise segmentation method [3]

that we have described previously. We chose SFLS method over other level set meth-

ods for two main reasons. The SFLS method is an improvement to the narrow-band

level set method [40], which is relatively less computationally expensive than classical

level set methods [26, 28], which compute the level set function for the entire image.
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Moreover, the SFLS method does not split the segmentation into multiple regions

away from the zero level, thus disjoint regions are not generated in the segmentation.

In this chapter, we used the minimum and maximum intensity values of the 3DUS

image for normalization of the entire image at once, due to both its simplicity and

the ability to perform the normalization without any additional user interactions to

identify bright intensities around adventitia. However, for a subsequent analysis of the

segmented vessel wall region, which is very sensitive to variations in image intensity,

such as texture analysis to differentiate plaque components [38], a more sophisticated

normalization would be required to normalize the images [41, 42].

In the experiments, the observer chose four anchor points on initialization bound-

aries for any chosen ISD. However, in practice, the observer can choose more anchor

points on each initialization boundary. The observer can also vary the ISD for each

3DUS image depending on the amount of plaque and the complexity of the plaque

surface. We speculate that the accuracy and reproducibility of the segmentation may

increase with the increasing number of anchor points, as indicated by the Fig. 9 in

the 2D segmentation paper [3].

The 3D algorithm has been validated on 3DUS images from a single ultrasound

device. However, different scanners could generate 3DUS images with different voxel

sizes. The differences in voxel size across images do not affect the segmentation,

because the thresholds and parameters of the algorithm are defined in millimeters.

Such millimeter values are converted to voxel values of the current 3DUS image during

the segmentation procedure.

The proposed 3D algorithm has some limitations. Although, the 3D algorithm

reduces user interactions required for segmentation with an ISD greater than 1 mm in

contrast to the 2D method [3], the 3D algorithm is still far from full automation due

to the challenges in the segmentation of very low-contrast boundaries. In addition,

the initial surface for the MAB is required to be close to the actual MAB for obtaining

accurate segmentations, because the effect of the local region-based term is limited

by its local radius rL.

3.5.2 Computational time

The algorithm required lesser user time and fewer interactions to generate segmen-

tations than manual delineations. The algorithm required a mean time of 1.6 min
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to initialize the MAB and LIB of the CCA from a 3DUS image for a portion of 1

cm with an ISD of 1 mm. In our experiments, the observer provided anchor points

with an ISD of 1 mm. For ISDs more than or equal to 2 mm, the anchor points

corresponding to the given ISD are chosen from the anchor point set generated with

the ISD of 1 mm. If we assume that number of points used for initialization is linearly

proportional to the time taken for the observer to actually choose anchor points, an

observer would take approximately 0.58 min to initialize a 1 cm portion of the CCA

with an ISD of 3 mm. In this case, the algorithm would require only 1.72 min of

total time, which comprises of user interaction time of 0.58 min and SFLS algorithm

computational time of 1.14 min. This is approximately 79% reduction in time (1.72

min vs. 8.3 min) in comparison manual segmentation.

In comparison to the previous 2D method [3], the 3D algorithm was able to re-

duce user interaction further, when ISD of more than or equal to 2 mm is used for

the initialization. For example, with an ISD of 3 mm, the observer is required to

initialize only 32 points in total on four slices for both the MAB and LIB as opposed

to 88 points in 11 slices for segmenting the MAB and LIB from a 1 cm section of

the CCA from a given 3DUS image. However, with the current nonoptimized Matlab

implementation of the SFLS method, the proposed 3D algorithm required approxi-

mately similar computational time to the 2D method [3] (1.14± 0.83 min vs 1.2± 0.2

min). The main time-consuming task for the 3D algorithm is the local region-based

force computation for the MAB segmentation, which requires about 80% (0.92 min

out of 1.14 min) of the computational time. However, the local region-based force

calculation can be performed independently for each point on the zero level set, thus

the computation can be parallelized in a graphics processing unit (GPU), which may

be able to substantially speed up the segmentation.

3.5.3 Accuracy

For 3DUS images with mild stenosis (see Fig. 3.5 for an example), accurate segmenta-

tions could be obtained even at ISD of 10 mm, because the CCA is more regular from

one slice to the next over a 1 cm distance of the CCA. However, when the subject

has moderate (see Fig. 3.6) or severe stenosis, the morphology of the artery could

differ from one slice to its adjacent slice. Therefore, when an ISD, such as 10 mm is
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used, the generated initial surface for the 3D segmentation could be too far from the

desired boundary for the algorithm to converge to the desired boundary.

The accuracy of the algorithm was evaluated with respect to distance-based,

region-based, and volume-based metrics. The algorithm yielded DSCs in the range

of 90.4–95.0 mm3 for the MAB and 84.8–92.1 mm3 for the LIB, where the DSC was

highest for the ISD of 1 mm, for both the MAB and LIB, and then gradually decreased

with the increase of ISD (see Table 3.4). Moreover, the 3D algorithm is statistically

significantly different from the 2D method [3] at all the ISDs tested.

Similar to the trend in DSC results, both the MAD and MAXD errors were small

and increased with increasing ISD for both the MAB and LIB (see Table 3.4). This

may be due to the fact that the initial surface could be further away from desired

segmentation with an increasing ISD, thus the algorithm could be trapped in local

minima providing suboptimal results. To investigate the reduction in accuracy with

increasing ISD, we computed the MAD error between the initial contours and the

manual segmentation. The results show an increase in the MAD error with the ISD,

with the highest being at an ISD of 10 mm. Except for the MAD at ISD of 1 mm,

the MAD errors of the 3D algorithm were statistically significantly different from

the MAD errors of 2D method [3]. The MAXD errors of the 3D algorithm were

statistically significantly different from the MAXD errors of 2D method [3], except

for the MAB at the ISD of 1 mm. The MAB always yielded a higher DSC than the

LIB, because the observer may be able to locate anchor points for the MAB more

robustly than for the LIB due to its regular shape. This is further supported by

the fact that manual CVMAB was smaller than manual CVLIB (1.53% vs. 3.30% as

shown in Table 3.7).

The main purpose of the 3D algorithm is for generating VWV measurements for

monitoring plaque burden. Therefore, we extensively validated the accuracy and

reproducibility of the algorithm for generating the VWV. The algorithm-generated

VWV was significantly correlated (p < 0.0001) with the manually-generated VWV

(r > 0.95 for ISDs of 1 to 4 mm, and r = 0.89 for ISD of 10 mm) with small 95% CI

for Pearson r (see Table 3.6). We failed to detect a statistically significant difference

(p > 0.05) between algorithm- and manually-generated VWV for ISD of 1 to 4 mm,

although they were statistically significant for ISD of 10 mm. The values within the

95% CIs (i.e., CI of −23.5–22.7 mm3 for ISD of 3 mm) of the VWV difference were

small for ISDs of 1 to 4 mm, in comparison to their VWV range of 244–926 mm3.
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We computed both absolute and signed volume errors (see Table 3.5) as volume-

based metrics to evaluate the algorithm. The signed volume error provides an in-

dication of the bias of the algorithm, whereas the absolute volume error is a more

stringent measure of the discrepancy between algorithm and manual measurements.

The absolute VWV errors ( |δVVWV |) of the proposed 3D algorithm were in the range

of 4.32–13.28%. However, |δVVWV | of the 3D algorithm were not significantly dif-

ferent from |δVVWV | of the 2D method for the ISDs of 1–3 mm. However, |δVVWV |
results for the ISDs of 4 and 10 mm were significantly different. For the ISD of 1, 4,

and 10 mm, the algorithm underestimated the VWV. The underestimation of VWV

could be mainly due to either the MAB volume is underestimated and/or the LIB

volume is overestimated, except for ISD of 10 mm, where both the MAB and LIB

volumes were underestimated (see Table 3.5). For ISD of 1 mm, the underestimation

of VWV occurred mainly due to the overestimation of the LIB. For ISD of 4 and

10 mm, the underestimation occurred due to the underestimation of the MAB (see

Table 3.5). We observed that for ISDs more than 2 mm, the initial surface is mostly

enclosed within the desired surface. When the initial surface is further away from the

desired boundary, the MAB segmentation could be trapped in local minima because

its region-based energy is dependent only on local statistics, which finally leads to

underestimating the MAB volume. Although global-region based energy is used for

LIB segmentation to avoid this issue, it is not used for MAB segmentation, because of

inhomogeneity of the inside and outside intensities for the MAB. However, since LIB

is constrained by the MAB segmentation, when the MAB volume is underestimated,

the LIB volume may also be underestimated.

3.5.4 Reproducibility

We used CV and the MDD (see Table 3.7) to evaluate the intra-observer variability

of the algorithm for computing VWV from repeated measurements. The algorithm

yielded small CVVWV (e.g., 5.57% for ISD of 3 mm) that are comparable with the

CVs for manual segmentation and the 2D method [3]. The CVVWV also increased

with the increase of ISD, which may be due to larger differences in initial surfaces

between repetitions for large ISD than for small ISD. Two sample F-tests were carried

out to determine the statistical significant difference of the variance of the proposed

method with manual segmentation and the 2D method [3]. The F-tests failed to
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show that the variances of the proposed methods are significantly different from the

variances of the manual segmentation and the 2D method [3] for all the ISDs.

Manual CVVWV (3.89%) was comparable with the previously reported manual

intra-observer CVVWV values of 4.6% by Egger et al. [32] and 4.7% by Egger et

al. [43]. Apart from the effect caused by different datasets, the reason for slightly

lower manual CVVWV of ours could be due to two main reasons. In our study, the

observer set the BF and axis for each 3DUS image only once and used them for

other repetitions, as opposed to setting different BF and axis for each repetition. In

addition, our study used only VWV of the CCA, whereas their study used VWV of

the ICA and ECA in addition to VWV of CCA.

Manual CVVWV was also smaller than the algorithm CVVWV (3.9% vs. 4.97–

10.82%). Although, manual CVMAB was smaller than algorithm CVMAB , manual

CVLIB is larger than the algorithm CVLIB for ISD of 1 and 2 mm. In addition,

CVMAB was always smaller than the corresponding CVLIB . This could be due to

the fact that the observer can more accurately locate the MAB for choosing anchor

points, because of its smooth and low order shape. The MDD values (see Table 3.7)

of the proposed algorithm increased with increased ISD. Although algorithm MDDs

were larger than the manual MDD, the MDD results of the proposed algorithm was

smaller than a previously reported VWV change of≈ 120 mm3/yr [36], which suggests

that a follow up period of 1 yr could be used for any ISD, although, for ISD of 1 and

2 mm, even seven month period may be suitable as follow up.

3.5.5 Comparison to previous methods

There are three previous 2D segmentation methods [2, 3, 6], reported in the literature

that segment both the MAB and LIB from 3DUS images as shown in Table 3.1.

Out of these three methods, the one proposed by Ukwatta et al. [3] is currently

used in clinical trials [5]. Therefore, in this paper, we compared the accuracy, intra-

observer variability, user interaction, and the computational time of the proposed

method to the 2D segmentation method [3]. Although the accuracy, intra-observer

variability, and computational time of the proposed 3D algorithm is comparable to

the 2D method [3], there are two main advantages of the proposed 3D algorithm over

previous methods [2, 3, 6]. One advantage is the reduction of number of anchor points

for initialization, which translates into overall reduction of total segmentation time.
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For instance for ISD of 3 mm, the number of anchor points required for segmenting

1 cm section of the CCA from a 3DUS image is 32, as opposed to 88 with an ISD of

1 mm. The other advantage is the ability to generate the segmentation at each voxel

interval (typically 0.15 mm) along the long axis direction in much less time than a 2D

segmentation method. For example, for segmentation of a 1 cm section of the CCA

at ISD of 0.15 mm, the 2D method [3] would require 17 min (67 slices where 11 slices

require 2.8 min). However, the proposed algorithm would require about 1.72 min to

segment the image at ISD of 0.15 mm with an initialization ISD of 3 mm.

The 2D segmentation method proposed by Ukwatta et al. [3] requires a total

segmentation time of 2.8 min and the one proposed by Yang et al. [2] reported 4.4

min to segment the CCA from a 3DUS image. The total segmentation time for the

proposed algorithm with an ISD of 3 mm is approximately 1.72 min, which is less

than the previous methods. However, note that the algorithm computational times

of the proposed 3D method are not directly comparable to the computational times

proposed by Yang et al. [2], due to differences in hardware and datasets used in the

papers.

3.5.6 Selection of proper ISD

Based on the evaluation results, more suitable ISDs for initialization are 2 and 3 mm,

which use fewer user interactions for initialization than the 2D method [3], while

maintaining a DSC of more than 90%, CVVWV less than or equal to 6.8%, |δVVWV |
less than or equal to 5.64%, and a bias as small as 2.28 and 0.64 mm3, in comparison

to VVWs in the range of 244–926 mm3 for VWV computation. After selecting an ISD

for a study computing VWV, our results can also be used to estimate the number

of subjects that must be monitored in a clinical trial to detect a desired average

regression in VWV at a desired power and significance [33, 44]:

n ≥
2(Zα + Zβ)2SD2

VWV

M2
d

, (3.14)

where n is the number of subjects, Md is the desired mean difference in VWV, Zα is

the standard normal deviate exceeded in either direction with probability α, and Zβ

is the standard normal deviate exceeded in one direction with probability β, where

1 − β is the desired power [33]. SDVWV is the standard deviation of the repeated
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measurements of VWV as shown in Table 3.7. For example for an ISD of 3 mm,

SDVWV = 27.13 mm3, α = 0.05, and β = 0.2 (hence, Zα = 1.96 and Zβ = 0.842) to

measure a mean VWV regression of 30 mm3 with a 95% confidence interval, which

was in fact the mean VWV regression of a patient group in a statin drug trial [36] of

3 months, the minimum number of patients required is 13.
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Chapter 4

3D carotid multi-region MRI segmentation by

globally optimal evolution of coupled surfaces†

4.1 Introduction

Excellent soft-tissue contrast and noninvasiveness of MR imaging make it ideally

suited for in vivo carotid imaging; as well as obtaining volumetric and morphologi-

cal measurements for monitoring carotid atherosclerosis [2]. Numerous studies have

established the application of MRI in quantifying measurements including VWV [3],

plaque composition [4, 5], and inflammation [6] etc. In order to compute such mea-

surements, it is required to accurately delineate the carotid adventitia (AB) and

lumen-intima (LIB) boundaries of the CCA, ICA, and ECA (as illustrated in Fig. 4.1

and 1.11 in Chapter 1) from 3D carotid MR images.

The main objective of this chapter is to introduce a novel 3D multi-region seg-

mentation approach for delineating the AB and LIB surfaces from T1-weighted (T1w)

black-blood carotid MR images (also known as “vessel wall images”) efficiently and

robustly. A fast and robust identification of the carotid AB and LIB from MR images

may greatly assist a comprehensive analysis of carotid atherosclerosis, and accelerate

the translation of these measurements to clinical researches and applications.

4.1.1 Previous studies

We summarize the previous studies of LIB and/or AB segmentation from the 3D

black-blood carotid MR images into two categories (see Table 4.1): methods that

segment both the carotid AB and LIB, and ones that segment only the LIB.

†. A version of this chapter has been published [1]: E. Ukwatta, J. Yuan, M. Rajchl, W.
Qiu, D. Tessier, and A. Fenster, “3D carotid multi-region MRI segmentation by globally
optimal evolution of coupled surfaces,” in IEEE Transactions on Medical Imaging, 32(4),
770-85 2013.
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Table 4.1: Previous studies describing carotid LIB and/or AB segmentation methods
for black-blood MR imaging.

Paper Year Dim. LIB AB Artery # of Time (s) Other

images information

Adame 2004 2D Fuzzy Ellipse CCA 50 25s/slice User interaction
[7] clustering fitting slices /boundary on each slice.
Klooster 2011 3D Surface Surface CCA 45 48 s MRA images &
[8] fitting fitting registration required.
Kerwin 2007 2D B-spline B-spline CCA, 26 ICA & ECA
[9] snakes snakes ICA segmented separately.
Ladak 2001 2D Parametric Parametric CCA, ICA 4 CCA & ICA
[10] deformable deformable segmented separately.

model model
Yuan 1999 2D Snakes Snakes CCA, ICA 5 20s-2min/slice User interaction
[11] /boundary on each slice.

Tang 2010 3D Active CCA, ICA, 76 MRA images
[12] contours ECA required.
Ladak 2000 3D Parametric CCA, ICA, 60 s Accuracy results
[13] deformable ECA not reported.

model
Jin 2004 3D Parametric CCA, ICA, 5 3 min Manually drawn
[14] deformable ECA centerline.

model

Most previous techniques [7, 9, 10, 11] that segment both the AB and LIB from

3D carotid MR images are performed in a 2D slice-by-slice manner. For example,

Adame et al. [7] and Kerwin et al. [9] proposed to segment the carotid AB and LIB

separately on each transverse (also referred to as “short-axis”) slice of the carotid

CCA and ICA based on 2D parametric deformable models. Their methods were also

used in clinical studies [15, 16]. Recently, Klooster et al. [8] introduced a five-step

approach, where the carotid LIB surface of the CCA was first extracted in MR an-

giography (MRA) images using a 3D deformable model, then registered and refined

to allow LIB segmentation of the 2D vessel wall MR image sequence. The carotid

AB was finally segmented by fitting a 3D surface using information on image gradi-

ents. However, their method [8] segmented only the carotid CCA and required MRA

images to segment vessel wall MR images. On the other hand, the 2D slice-by-slice

methods [7, 9, 10, 11] require user interaction on each slice, which results in substan-

tial user efforts. Moreover, their numerical schemes are based on local optimization

techniques, which are sensitive to user initialization and image quality. Kerwin et

al. [9] and Liu et al. [17] proposed methods that segment the carotid AB and LIB

separately and propagate the segmentation result from one slice to the next, in order
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to reduce the amount of user interaction. However, these methods also rely on the

local optimization-based 2D parametric contour evolution models, such as deformable

snakes. Due to the fact that the segmentations are propagated slice-wise, the segmen-

tation error could also propagate from one slice to the next and bias the segmentation

of its successive slices. In addition, it is challenging for such methods to handle de-

formations of multiple regions jointly, especially at the bifurcation, where changes to

the topology of the contour are required to be incorporated into the segmentation of

the carotid CCA, ICA, and ECA (see Fig. 1.11(a)).

Some other studies [12, 13, 14] (see also Table 4.1) demonstrated only segmenta-

tion of the carotid LIB. However, segmentation of both the carotid AB and LIB are

essential for a quantitative analysis of carotid atherosclerosis plaque burden [4].

4.1.2 Contributions

In this paper, we propose a novel global optimization-based approach for delineating

the carotid AB and LIB surfaces of the CCA, ICA, and ECA from 3D T1w black

blood MR images. The main contributions of this work can be summarized as follows.

• We introduce a new global optimization-based contour evolution method, which

jointly segments a 3D carotid MR image into three regions: wall, lumen, and

background. It simultaneously propagates the two contours of the AB and LIB

based on matching region related intensity PDF to their respective intensity

PDF models, while preserving the inter-surface order constraint (4.1) of the AB

and LIB. In practice, enforcing such inter-surface prior improves the accuracy

and reliability of segmentation.

• We show that the optimization problem for the simultaneous evolution of the

two ordered surfaces of the AB and LIB during each discrete time frame can be

solved globally and exactly by means of convex relaxation, i.e. the two surfaces

of AB and LIB can be evolved to their globally best positions, while keeping

their inter-surface order, at each evolution step.

• We introduce the dual/equivalent formulation of the resulting convex relaxation

problem of evolving the two ordered contours of the AB and LIB and derive

a new continuous max-flow-based algorithm. The continuous max-flow algo-

rithm enforces the inter-surface order constraint implicitly, through optimizing
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the directed flows without additional computational cost. In addition, a new

parallelized version of the continuous max-flow-based algorithm is implemented

on a GPU to achieve high computational performance.

• We demonstrate that the algorithm achieves high accuracy and precision with

fewer user interactions. The algorithm requires the initialization of only a single

transverse slice for extracting the AB and LIB surfaces from a 3D MR image.

The proposed approach is based on the recent developments of convex relaxation

methods. The readers are referred to the studies [18, 19, 20] for a detailed description

of the convex relaxation and continuous max-flow methods. Distinct from the dis-

crete global optimization methods [21], the convex relaxation methods are employed

in a spatially continuous setting, which provide sub-pixel accuracy while avoiding

metrication artifacts.

Yuan et al. [22] proposed a similar global optimization-based framework for evolv-

ing a single contour by efficiently solving a sequence of continuous min-cut problems.

Their method [22] outperforms the other contour evolution methods, such as level

set, in terms of efficiency and robustness to poor initialization. The proposed global

optimization-based evolution of the coupled surfaces AB and LIB of this paper is

motivated by their method [22].

A preliminary study of this work was described in a conference paper [23]. In this

work, we describe both the comprehensive theory of the proposed approach and its

detailed implementations. We also propose an improvement to the segmentation accu-

racy of the carotid ICA and ECA by incorporating new inter-surface separation-based

priors of the AB and LIB. Moreover, in comparison to the preliminary study [23], the

proposed algorithm is validated extensively over a large number of images, in terms

of accuracy, intra- and inter-observer variability and computing vessel wall volume

measurements. Additionally, we compare the results to those found in the existing

literature.

4.2 Method

In this section, a novel multi-region segmentation method is proposed, which par-

titions a 3D MR image into three regions: the lumen region Rl, the outer wall re-

gion Rw, and the background region Rb (see Fig. 4.1 and 4.2(a)), by simultaneously
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AB 

LIB 

Figure 4.1: A 3D view of a T1-weighted 3T carotid MR image showing the transverse
and sagittal cross sections of the CCA with overlaid manual segmentations. The
manual segmentations are performed on each transverse slice.

evolving the two coupled surfaces, the lumen-intima (LIB) CLIB and the adventitia

(AB) CAB to their optimal locations. In particular, we utilize the prior knowledge

of anatomy that the region enclosed by the surface CLIB always resides within the

region enclosed by the surface CAB , i.e.

CLIB ⊂ CAB , 1 (4.1)

which acts as an additional geometrical or order constraint on the proposed joint

optimization of CLIB and CAB . In practice, enforcing such inter-surface prior or

order (4.1) further improves the accuracy and reliability of the segmentation.

When the two surfaces CLIB and CAB are computed, the three regions Rl, Rw,

and Rb of the input 3D MR image can be determined by (see Fig. 4.2(a))

Rl := CLIB , Rw := CAB\CLIB , Rb := Ω\CAB . (4.2)

The proposed method is distinct from the previous local optimization-based con-

tour evolution solutions, such as level set, such that the two surfaces CLIB and CAB
are evolved to their globally optimal positions during each discrete time-frame, sub-

1. In this paper, the two “surfaces” CLIB and CAB may also refer to their respective
enclosed regions or volumes based on the context.
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Figure 4.2: (a) Pictorial representation of image domain Ω and its sub-domains:
Lumen region (Rl), wall region (Rw), and background (Rb); (b) region differences by
the evolution of the two surfaces CAB and CLIB ; and (c) the spatially continuous flow
configurations used in the continuous max-flow formulation.

ject to the inter-surface order constraint (4.1) by means of convex optimization. This

results in a time-implicit surface evolution scheme, which allows a large discrete-time

step-size that in turn substantially speeds up evolution of the surfaces.

Moreover, matching the estimated intensity PDFs of the three regionsRl,Rw, and

Rb to their corresponding intensity PDF models is explored as the global statistical

criterion to guide evolving CLIB and CAB .

4.2.1 Optimization model with geometrical constraint

The PDF of intensities, i.e. the intensity histogram, is a global descriptor of the

object of interest, such that matching the intensity PDF models of the object regions
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provides a robust mechanism to guide the evolution of contours [24, 25].

Let I(x) ∈ Z be a given 3D carotid MR image, where Z is the set of image

intensity values; u1(x) and u2(x) be the indicator or labeling functions of the regions

enclosed by CLIB and CAB respectively, such that

u1(x) :=

{
1 , where x is inside CLIB
0 , otherwise

, (4.3)

and

u2(x) :=

{
1 , where x is inside CAB
0 , otherwise

. (4.4)

Given the inter-surface order constraint (4.1) of the surfaces CLIB and CAB , the

binary region labeling functions u1(x) and u2(x) must satisfy the following linear

inequality:

u1(x) ≤ u2(x) , ∀x ∈ Ω , (4.5)

which is also referred to as the linear order of the labeling functions u1(x) and u2(x).

In fact, preserving such a linear order constraint of the labeling functions is essential to

gain the global optimality not only for the optimization step studied in the following

sections, but also for a series of multi-labeling problems in computer vision, e.g. [26,

27, 28] etc.

Given (4.2), the indicator or labeling functions ul,w,b(x) ∈ {0, 1} and their label

values, for ∀x ∈ Ω, of the three regions Rl,w,b can be expressed as follows:

ul = u1 , uw = u2 − u1 , ub = 1− u2 . (4.6)

In this work, the two surfaces CLIB and CAB are propagated by minimizing the

total Bhattacharyya distance [29, 30, 31] between the estimated PDFs hl,w,b(z), where

z ∈ Z, of the three object regions Rl,w,b and their respective PDF models ĥl,w,b(z):

Em(u) = −
∑

i=l,w,b

∑
z∈Z

√
hi(z) ĥi(z) , (4.7)

such that the intensity PDF models ĥl,w,b, where z ∈ Z, of the three object regions

are calculated from the sampled voxels of the 3D carotid MR image. However, the

intensity PDF models can also be generated from a training data set and the other
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statistical divergences, such as the symmetric Kullback-Leibler distance [32] etc., can

also be used.

By the Parzen method [33] and (4.6), the intensity PDFs hl,w,b(z), where z ∈ Z,

for the respective three object regions Rl,w,b can be estimated by

hi(z) =

∫
ΩK(z − I(x))ui(x) dx∫

ui(x) dx
, i = l, w, b ,

where K(·) is the Gaussian kernel function such that

K(x) =
1√

2πσ2
exp(−x2/2σ2) .

With the combination of the global statistical criterion (4.7) of matching the

intensity PDF models ĥl,w,b(z) of three regions Rl,w,b and the geometrical constraint

(4.5) on the labeling functions, we propose to segment the input 3D carotid MR image

I(x) by minimizing the following energy function

min
u1,2(x)∈{0,1}

Em(u) +
∑
i=1,2

∫
Ω
g(x) |∇ui(x)| dx , (4.8)

s.t. u1(x) ≤ u2(x) . ∀x ∈ Ω

The second term is an image gradient-weighted total-variation-based (TV)

smoothness term, which corresponds to the segmentation with the minimum geodesic

length. In this paper, the weight function g(x) in (4.8) is positive and is given by

g(x) = λ1 + λ2 exp(−λ3 |∇I(x)|) , λ1,2,3 ≥ 0 . (4.9)

Note that, the values of g(x) fall within the range [λ1, λ1 + λ2].

4.2.2 Global optimization-based coupled contour evolution

It is challenging to solve the combinatorial optimization problem (4.8) directly, due to

its highly nonlinear and non-convex energy function and the discrete-valued unknown

functions. To this end, we propose to minimize (4.8) while preserving the associated

geometrical constraint (4.5), by evolving the coupled surfaces CLIB and CAB . The
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current surfaces CtLIB and CtAB at time t are propagated to their new positions Ct+1
LIB

and Ct+1
AB during each discrete time frame t to t + 1. Finally, they are converged to

the desired position of the AB and LIB.

Motivated by the recent developments proposed by Yuan et al. [22], we introduce a

novel global optimization-based approach to propagate the coupled contours CLIB and

CAB to their globally optimal positions during each discrete time frame. In compari-

son to the classical contour evolution methods, the joint optimization of the AB and

LIB surfaces, subject to the inter-surface constraint (4.1), during each discrete time

step can be solved globally by the proposed convex optimization algorithm, where the

inter-surface constraint (4.1) is implicitly adapted in the optimization scheme. The

resulting time-implicit contour evolution approach provides high numerical efficiency.

In the following section, we first review the recent progress of the global

optimization-based single contour evolution methods. We then introduce the global

optimization-based approach for the evolution of coupled contours CLIB and CAB .

4.2.2.1 Single contour evolution by convex optimization

The conventional contour evolution methods, e.g. [25, 34, 35, 36] etc., gradually prop-

agate a contour subject to the minimization of a certain energy function, while the

associated time-explicit convection equations are often solved by local-optimization

methods. In practice, the computational result and efficiency of such approaches have

the following limitations. The contour may be trapped in a locally optimal position

during each time frame. The final result depends heavily on the initial position of

the segmentation. The discrete time-step has an upper bound to achieve numerical

stability, such as the CFL condition for explicitly solving the convection PDEs [37].

The nonlinear high-order derivatives, such as curvature, are also highly affected by

image noise.

In contrast, the global optimization-based contour evolution approaches [38, 39]

overcome such challenges and generate simple, efficient, and robust algorithms for

computation. For instance, the convex relaxation-based approach proposed by Yuan

et al. [22] propagates a contour to its globally optimal position at each discrete time

frame by solving a sequence of convex optimization problems, for which an efficient

continuous max-flow algorithm [18] is available. In addition, the new contour position

at each evolution step is computed in a fully time-implicit manner, which allows a

large time-step and substantially speeds up contour propagation [22].
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For the given contour Ct at the current time t, its new position Ct+1 at the next

discrete time t+1 can be achieved by solving the following optimization problem [22]:

min
C

∫
C+

e+(x) dx +

∫
C−

e−(x) dx +

∫
∂C
g(s) ds , (4.10)

where C+ and C− are the expansion and shrinkage regions with respect to Ct, and

the functions e+(x) and e−(x) define the cost corresponding to the pixel x in C+ and

C−. In summary, the contour evolution during each time frame is performed with the

minimum total cost with respect to region changes, i.e. expansion C+ and shrinkage

C−, and total region perimeter. When the cost functions e+(x) and e−(x) are given

by the distance between x and the boundary of Ct, the contour evolution given by

(4.10), is equivalent to the well-known mean-curvature driven contour motion [22].

Moreover, the other typical contour evolutions applied in image processing can also

be well described by (4.10) with different configurations of e+(x) and e−(x).

In particular, the optimization problem (4.10) can be equivalently formulated as

a spatially continuous min-cut problem

min
u(x)∈{0,1}

〈
1− u,D1

〉
+
〈
u,D2

〉
+

∫
Ω
g(x) |∇u| dx , (4.11)

where u(x) ∈ {0, 1} is the indicator function of the contour C, and the two label

assignment functions D1(x) and D2(x) are given by

D1(x) :=

{
e−(x) , where x ∈ Ct
0 , otherwise

(4.12)

D2(x) :=

{
e+(x) , where x /∈ Ct
0 , otherwise

. (4.13)

In this regard, the efficient continuous max-flow algorithm [18] is employed to

solve the continuous min-cut (4.11) globally and exactly, which implies that the new

contour Ct+1 at the next time step t+1 is globally optimal. In addition, the solution of

(4.10) provides exactly a fully time-implicit scheme of the contour evolution, for which

a large time evolution step-size is allowed to substantially speed up the evolution

process [22].



132

4.2.2.2 Global optimization-based evolution of coupled contours

Here, we extend the optimization theory introduced by Yuan et al. [22] to evolve the

two contours CLIB and CAB , which minimizes the energy function (4.8).

To motivate the evolution theory of coupled contours CLIB and CAB , we utilize

the key observation of the single contour evolution: For the region C and its com-

plementary Ω\C during each discrete time frame, the region shrinkage C− actually

corresponds to the expansion of the complementary region Ω\C. Hence, the opti-

mization principle (4.10) amounts to achieving the minimum total cost of the two

region expansions w.r.t. C and Ω\C, which can be applied for the evolution of the

coupled contours CLIB and CAB . Note that, CLIB and CAB partition the given image

domain Ω into three regions Rl,w,b (see Fig. 4.2(a)). Given the current contours CtLIB
and CtAB at time t, the region changes w.r.t. CtLIB and CtAB can be expressed using

the region expansions R+
l,w,b w.r.t. the current regions Rtl,w,b (see Fig. 4.2(b)). Let

e+
l,w,b(x) be the cost functions corresponding to the region expansions R+

l,w,b, such

that e+
l,w,b(x) are the first-order derivatives of the intensity PDF matching function

(4.7) [29] w.r.t. ul,w,b(x), i.e.

e+
i (x) =

1

2Vi

∑
z∈Z

{√
hi(z) ĥi(z)−

√
ĥi(z)

hi(z)
K(z − I(x))

}
(4.14)

where Vi =
∫

Ω ui dx, i = l, w, b, is the volume of the current region Rti. Similar to the

method proposed by Yuan et al. [22], an additional distance term dist(x,Rl,w,b)(x),

which is the distance from x to the boundary of the region Rl,w,b, is added to the cost

e+
l,w,b(x), respectively to constrain the contour movements during each time step. The

cost functions (4.14) guide the evolution of the contours towards the minimization of

the intensity PDF matching function (4.7).

We propose to propagate the two contours CtLIB and CtAB to their new positions

from time t to t+ 1 by achieving the minimum total cost of region expansions, i.e.

min
CLIB ,CAB

∫
R+
l

e+
l (x) dx+

∫
R+
w

e+
w(x) dx+

∫
R+
b

e+
b (x) dx (4.15)

+

∫
∂CLIB

g(s) ds+

∫
∂CAB

g(s) ds
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subject to the geometrical inter-surface constraint (4.1). As shown in Fig. 4.2(b),

the shrinkage region of the wall matches the union of the expansion region of the

lumen and the expansion region of the background. However, we formulated (4.15)

based on its current label after the evolution. For example, a voxel that moved to

the lumen region pays the cost e+
l (x) irrespective of whether it is changed from the

wall region or background region, which is counted once in the final energy function.

We show the optimization problem (4.15) can be globally and exactly solved by

means of convex relaxation. In order to achieve this, we first show that (4.15) can

be equally reformulated as a spatially continuous min-cut problem with the linearly

ordered labels proposed in [27].

We define the label assignment functions

Di(x) :=

{
e+
i (x) , where x /∈ Rti

0 , otherwise
, i = l, w, b . (4.16)

In view of the labeling functions (4.3) and (4.4) of the two contours CLIB and CAB ,

we have

Proposition 1 The optimization problem (4.15) can be equivalently expressed by the

following continuous min-cut problem with the linearly ordered labels:

min
u1,2(x)∈{0,1}

〈u1, Dl〉+ 〈u2 − u1, Dw〉+ 〈1− u2, Db〉

+
∑
i=1,2

∫
Ω
g(x)|∇ui| dx (4.17)

subject to the label order constraint (4.5), i.e. u1(x) ≤ u2(x).

proof 2 In view of (4.16), the label assignments functions Dl,w,b(x) = 0, for any

x ∈ Rtl,w,b; and Dl,w,b(x) = e+
l,w,b(x), otherwise.

Hence, the integral 〈ui, Di〉, i = l, w, b, provides the exact value
∫
R+
i
e+
i (x) dx.

Moreover, the weighted total-variation functions in (4.17) correspond to the weighted

perimeter/area of the contour CLIB and CAB. Then, the proposition is proved.
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4.2.3 Convex relaxation and continuous max-flow approach

Bae et al. [27] proved that the combinatorial optimization problem (4.17) can be

solved globally and exactly by its convex relaxation

min
u1,2(x)∈[0,1]

〈u1, Dl〉+ 〈u2 − u1, Dw〉+ 〈1− u2, Db〉

+
∑
i=1,2

∫
Ω
g(x)|∇ui| dx (4.18)

subject to the ordered label constraint u1(x) ≤ u2(x).

Note that, the binary constraint u1,2(x) ∈ {0, 1} on the values of the labeling

functions u1(x) and u2(x) in (4.17) is relaxed to be u1,2(x) ∈ [0, 1] in (4.18), which

amounts to the convex optimization problem (4.18). Moreover, we have the following.

Proposition 3 Given the global optimum u∗1,2(x) of the convex relaxation problem

(4.18), the threshold of u∗1,2(x) by any value γ ∈ (0, 1] provides the global binary opti-

mum of the combinatorial optimization problem (4.17) using the thresholding theorem

proposed by Chan et al. [40].

proof 4 Its proof directly follows [27].

The existence of the global and exact optimum to (4.17) indicates that the two

contours CtLIB and CtAB can be propagated to their globally optimal positions from

the discrete time t to t+ 1, while preserving the inter-surface order constraint (4.1).

4.2.3.1 Continuous max-flow model

We introduce the continuous max-flow theory proposed by Bae et al. [27] to compute

the proposed convex optimization problem (4.18) globally, and the original combina-

torial optimization problem (4.17) in turn (by Prop. 3).

We adapt the flow configuration introduced in [27] for the specified three region

segmentation case (see Fig. 4.2(c)). Note that, two image domains representing AB

and LIB and two additional terminals s and t are given. s is linked to any pixel x

in the image domain AB, then linked to the same pixel in the image domain LIB,

and then linked to t. The flows pb(x), pw(x), and pl(x) are directed and attached to
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the corresponding links. Within the image domains AB and LIB, there then exists

corresponding spatial flows q2(x) and q1(x) around the pixel x.

With such flow settings, we propose the associated continuous max-flow model as

follows:

max
pb,pl,pw

∫
Ω
pb(x) dx (4.19)

subject to the flow capacities

|qi(x)| ≤ gi(x) , i = 1, 2 ; (4.20)

pi(x) ≤ Di(x) , i = b, l, w ; (4.21)

and the flow conservation conditions

(div q1 − pw + pl)(x) = 0 ,

(div q2 − pb + pw)(x) = 0 .
(4.22)

It can be proven that the continuous max-flow model (4.19) is dual/equivalent to

the convex relaxation problem (4.18) [27]. The main advantage of such a continuous

max-flow formulation (4.19) is that it results in an efficient continuous max-flow-

based algorithm through the modern convex optimization theory, which embeds the

labeling constraints u1,2(x) ∈ [0, 1] and u1(x) ≤ u2(x) implicitly in the algorithm.

Moreover, the proposed algorithm avoids implementing the non-smooth and nonlinear

total-variation terms in (4.18), directly.

4.2.3.2 Continuous max-flow based algorithm

We propose a new continuous max-flow based algorithm, which explores flow maxi-

mization over all the dual flows pl,w,b(x) and q1,2(x) during each iteration simultane-

ously. In practice, such new parallelized scheme achieves a faster convergence and can

be easily parallelized on a GPU. The update equations of the continuous max-flow

algorithm are provided in Appedix A.
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Figure 4.3: Block diagram of our segmentation pipeline. The proposed continuous
max-flow algorithm with ordered geometric constraints is used in two occasions: It is
used initially for a 2D segmentation on a single transverse slice to for the purpose of
generating intensity PDFs of the three regions to aid in the 3D segmentation. It is
then used to segment the carotid arteries in 3D. The only user interaction required is
to mark seed points on the lumen, wall, and background regions prior to 2D coupled
evolution.
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4.3 Experiment design and implementations

4.3.1 Study subjects and image acquisition

The data comprise of 38 left and right carotid artery black blood MR images from

ten subjects: 12 3T T1-weighted (voxel size ≈ 0.2 × 0.2 × 2 mm3), and 26 1.5T

T1-weighted (voxel size ≈ 0.5 × 0.5 × 2 mm3) MR images. The ten subjects were

recruited from the Premature Atherosclerosis Clinic and Stroke Prevention Clinic at

University Hospital, London Health Sciences Centre (London, ON, Canada). Each

subject provided written informed consent, which has been approved by the Research

Ethics Board at The University of Western Ontario. For this study, the subjects had

moderate stenosis (30% - 50%) and were enrolled with carotid TPA of 0.5 cm2 or

greater as measured previously with B-mode ultrasound.

Subjects were scanned at 1.5T and 3.0T with GE Excite HD MRI systems (Mil-

waukee, WI, USA) operating at a 12x software level as previously described by

Krasinski et al. [3] with fat saturation and without cardiac gating. Identical pulse se-

quences and identical custom-build six-element carotid bifurcation-optimized receive-

only phase-array coils were used in the two systems. The images consisted of a

multislice 2D black-blood acquisition, with T1w contrast, using double inversion re-

covery (DIR with 180◦ pulse). Table 4.2 shows the MR imaging parameters for both

1.5T and 3T MR images. Localized shimming was performed before each sequence

to ensure good performance of fat saturation pulses.

4.3.2 Segmentation pipeline

Figure 4.3 shows a block diagram of the proposed segmentation pipeline, which is

described in detail in the following sections.

4.3.2.1 Interpolation

The 3D MR images were interpolated initially to obtain a 3D image with approxi-

mately isotropic voxel dimensions using B-spline interpolation [41]. For the 3T MR

images, nine additional slices were interpolated in the axial direction between each

adjacent pair of original slices to obtain a voxel dimension of 0.2 × 0.2 × 0.2 mm3.
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Table 4.2: Magnetic Resonance Imaging Parameters for T1-weighted Double Inversion
Recovery scans at 1.5T and 3.0T.

Acquisition Parameter 1.5T 3.0T

Echo Time, TE (ms) 12 11.4
Recovery Time, TR 1RR 1RR
Receiver Bandwidth, RBW (kHz) 41.67 41.67
Field of View, FOV (cm) 11 11
Thickness (mm) 2 2
Matrix 224×224 224×224
Number of Excitations, NEX 3 3
Scan Time (minutes) 8:48 8:48
Fat Saturation Yes Yes
Spacing Overlap 0 0
Number of Slices 16 16
Pulse Sequence FSE FSE

Similarly, for the 1.5T MR images, three additional slices were interpolated in the ax-

ial direction between each adjacent pair of original slices to obtain a voxel dimension

of 0.5× 0.5× 0.5 mm3.

This step ensures the direct applicability of the classical 3D total-variation func-

tion to equally regularize along each spatial direction. However, it is also possible to

weight regularization in each spatial direction independently to account for anisotropic

images.

4.3.2.2 User interaction

The sole user interaction in our approach was choosing some sampled voxels of the

carotid wall, lumen, and background regions on a single transverse slice of the inter-

polated input 3D MR image. The voxels were chosen by the user using a paint brush

user interface tool, as shown in Fig. 4.4(a)-(d). Such region-based user interaction

techniques have been used previously for medical image segmentation [42, 43]. The

sampled voxels marked by green, red, and blue correspond to lumen, wall, and back-

ground regions, respectively. In our experiments, the transverse slice was chosen to

be the furthest from the carotid bifurcation. However, this choice is arbitrary and the

user can also choose any other image slice for initialization. The purpose of the sam-

pled voxels is threefold: I) the sampled voxels are used to approximate the intensity
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Example user initializations and the 2D AB-LIB segmentations using the
proposed continuous max-flow algorithm. The only user interaction in the pipeline is
choosing the sampled voxels on a single transverse slice. The voxels marked by green,
red, and blue correspond to the lumen, wall and background regions respectively. (a)
and (b): Initializations for two 3T MR images, (c) and (d): Initializations for two
1.5T MR images. (e) and (f): 2D Segmentations for two 3T MR images, (g) and (h):
2D segmentations for two 1.5T MR images.

PDF models for distribution matching in the 2D AB-LIB segmentation step; II) they

are used as the hard constraints of segmentation regions such that the sampled voxels

are fixed to be in their corresponding regions, which can be readily implemented in

the introduced continuous max-flow framework (as described below); and III) they

are also used as the initial regions for the 2D AB-LIB segmentation step (as described

below).

4.3.2.3 2D AB-LIB segmentation and generation of intensity PDF models

A 2D segmentation of the carotid AB and LIB was performed on the same transverse

slice that the user initialized, in order to further refine the intensity PDF models
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(a) PDF models (b) Estimated PDFs at Iter #1

(c) Final result PDFs (d) Ground truth PDFs

Figure 4.5: Normalized intensity probability density functions (PDF) used in 3D
AB-LIB segmentation for Bhattacharyya distance matching for a single 3D image.
Gaussian kernel width of seven is used to generated the PDFs.
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using the 2D segmentation result. The 2D AB-LIB segmentation was obtained

using the proposed coupled surface evolution approach with the inter-surface order

constraint. The optimization problem of the coupled surface evolution is solved using

the proposed continuous max-flow approach by minimizing the objective function

(4.18). Four criteria were used for 2D AB-LIB segmentation: The Bhattacharyya

distribution matching (4.7), gradient-based smoothness term (4.9), hard constraints

for user marked voxels (4.23), and minimum AB-LIB separation-based prior (4.24).

The last two terms are described below.

Hard constraints for user sampled voxels: The sampled voxels (see Fig. 4.4(a)-

(d)) by the user were used both as the initial regions and as the hard region

constraints for the 2D AB-LIB segmentation step. For example, the blue voxels

marked on the background region are fixed to the background region during the whole

computation procedure (see Fig. 4.4(a)-(d)). Such region-based hard constraints can

be easily implemented into the proposed continuous flow-maximization scheme as

the following flow capacity constraints, which are standard in a max-flow procedure

(see [21] etc.):

Dw(x) = +∞ , Db(x) = +∞ , x ∈ Sl
Dl(x) = +∞ , Db(x) = +∞ , x ∈ Sw (4.23)

Dl(x) = +∞ , Dw(x) = +∞ , x ∈ Sb

where Si, i = l, w, b, denote the sampled voxel regions within the lumen, wall, and

background regions, respectively. Note that, when x ∈ Sl, the voxel x retains its

status in the lumen region, because it would otherwise incur an infinite cost to

change its status to be within either the wall or background regions.

Minimum AB-LIB separation-based prior: The lumen region usually appears

uniformly in intensity and has well defined image edges at the LIB. However, the wall

region is relatively heterogeneous in intensity and has overlapping image intensities

with the background region, which is challenging for the segmentation task. We

incorporated an anatomically motivated separation of the carotid AB and LIB by

the intima-media layer, in order to prevent the AB from collapsing to the LIB,

when the carotid AB is weakly defined in the image. Because, the AB and LIB are
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separated by the carotid media layer, they are encouraged to have a greater or equal

separation distance (dmin) of 0.5 mm from each other [44]. We used hard constraints

to implement the minimum AB-LIB separation-based prior, such that the minimum

distance between the AB and LIB should be larger than some constant dmin in order

to maintain the separation of the AB and LIB. This can be implemented as follows

Db(y) = +∞ , s.t. d(y,Rl) < dmin; (4.24)

where d(y,Rl) denotes the Euclidean distance from voxel y ∈ Rw to the lumen region

Rl.
Using the computed 2D AB-LIB segmentation result, more representative inten-

sity PDF model for each region were constructed to aid in the 3D AB-LIB segmen-

tations, as shown in Fig. 4.5.

4.3.2.4 Generation of initial surfaces for 3D segmentation

Two initial surfaces are required for the AB and LIB to initialize the proposed coupled

surface evolution algorithm. To obtain a crude estimate of the LIB surface as shown

in Fig. 4.6(a) and 4.6(c), a region growing segmentation [45] was performed on the

lumen region. A region growing method was used due to its simplicity to quickly

obtain a crude segmentation. Alternatively, other initialization methods can also

be used, such as defining a center line along long-axis views. Inputs to the region

growing method include the minimum intensity of the lumen region obtained from

the previous 2D segmentation and a threshold level defined as the percentage of the

difference between minimum and maximum intensity (Imax). In this paper, we used

20% and 15% as the Imax for 3T and 1.5T MR images for all the experiments, which

were chosen empirically. To obtain an initial surface for the AB, we dilated the surface

generated from the region growing method by 2.5 mm.

4.3.2.5 3D AB-LIB segmentation

Finally, the two initial surfaces were simultaneously evolved with the inter-surface

geometric constraint using the proposed global continuous max-flow algorithm for

segmentation of the carotid AB and LIB by minimizing the objective function (4.18).

We used four criteria for the segmentation: Bhattacharyya distribution matching

(4.7), gradient-based smoothness term (4.9), minimum AB-LIB separation-based
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Table 4.3: Algorithm parameters values for the experiments.

Parameter 3T MR images 1.5T MR images
(Equation #) LIB AB LIB AB

λ1 (4.9) 0.05 0.05 0.05 0.1
λ2 (4.9) 0.7 0.1 0.7 0.1
λ3 (4.9) 3 3 2 2
λ4 (4.26) 0.01 0.02

prior (4.24), and a maximum AB-LIB separation-based prior (4.25).

Maximum AB-LIB separation prior: We introduced an additional criterion for

the 3D segmentation, due to the fact that in some images the AB surface maintains

a smooth single surface without splitting into the ICA and ECA at the bifurcation.

This is more apparent when the AB has weak image gradient and/or wall region

has substantially overlapping intensity distributions (see Fig. 4.5(d)) with the

background. In order to encourage the splitting, we used a criterion that penalizes

the separation between the carotid AB and LIB, when the distance between them

is higher than their average separation plus one standard deviation. The maximum

AB-LIB separation-based prior is defined as

D
′
w(x) =

{
d(x,Rl), if d(x,Rl) ≥ (dmean + sd)

0, otherwise
(4.25)

where x ∈ Rw, and d(x,Rl) denotes the distance from voxel x to the lumen region Rl.

dmean and sd are the mean separation and standard deviation of separation between

the AB and LIB for the current segmentation. The new cost that a pixel must incur

to retain its status in the wall region is now given by

Dw(x) = Dw(x) + λ4D
′
w(x), (4.26)

where λ4 > 0. Note that unlike the minimum-separation-based prior, this term is

controlled using a weight parameter λ4.
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4.3.3 Validation

The performance of the algorithm was evaluated with respect to manual segmenta-

tions by an expert in terms of accuracy and reproducibility. Manual segmentations

were performed on a slice-by-slice basis on transverse views using a multi-planar re-

formatting software with a 2 mm inter-slice distance (ISD) up to 4 cm along carotid

arteries. The CCA was outlined about 2 cm below the bifurcation, whereas the ICA

and ECA were outlined by about 1 cm above the bifurcation. For a direct compar-

ison, we compared the algorithm-generated segmentations to manual segmentations

on a slice-by-slice basis. For this purpose, we sliced the algorithm-generated surfaces

on the same planes as the ones that the manual segmentations were performed.

We used volume-based, region-based, and boundary distance-based metrics to

evaluate the accuracy of the algorithm. We used volume error δVE and percentage

volume error (δVP ) (1.13) for volume-based metrics. In addition, we also computed

absolute volume error |δVE | and absolute volume error |δVP | as a percentage.

The Dice similarity coefficient (DSC) (1.14) [46] was used as a region-based metric.

The root-mean-squared-error (RMSE) of distance (1.18) and the Hausdorff distance

(MAXD) (1.19) were used as distance-based metrics. Averages of DSC, RMSE, and

MAXD were computed for the entire data set to obtain overall estimates of each

metric.

A subset of our dataset was used to evaluate the intra- and inter-observer vari-

ability of the proposed algorithm. We randomly selected 8 3D images from 12 3T

MR images and 8 3D images from 26 1.5T MR images. Five users participated in this

study; one user (U1 a trained graduate student by a radiologist) performed a single

round of manual segmentations and four different users (U2 a graduate student, U3

post-doctoral fellow, U4 a graduate student, U5 a research assistant) performed algo-

rithm segmentations of the same data set five times. Four users performed repeated

algorithm segmentations in order to assess the intra- and inter-observer variability.

We used the coefficient-of-variation (CV) (1.20) and intra-class correlation coefficient

(ICC) [47] to evaluate the precision of the algorithm in computing the clinically rele-

vant VWV. The intra-observer CVs were computed to evaluate the variability (rela-

tive to the mean) among five measurement repetitions of each of the four observers,

whereas inter-observer CV was computed to evaluate the variability among users.

The ICC measures the reliability by computing the proportion of variance between

observations. A single measure of absolute agreement using a two-way mixed study
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was used to compute ICC. We computed the minimum detectable difference (MDD)

(1.21) [48] for the algorithm segmentation in generating VWV. The MDD provides

an indication of the change in volume between two successive measurements that can

be detected at a given confidence level [48]. Paired t-tests and Pearson correlation

tests were also performed to compare algorithm-generated and manual VWV.

All statistical analyses were performed using IBM SPSS Statistical version 19

(IBM Corporation, 2010), in which results were considered significant when the prob-

ability of making a type I error was less than 5% (p < 0.05).

4.4 Experiment results

Two parameter sets were used for the 1.5T and 3T images, respectively, as shown

in Table 4.3. The parameters were initially chosen empirically, and then optimized

one parameter at a time using 5 images from the 3T MR images, and 5 images

from 1.5T MR images, which were chosen randomly from the entire dataset. The

DSC (1.14) was used as the evaluation metric in the experiments for the choice of the

parameters. These parameters were kept constant during the evaluation experiments.

The segmentation was terminated when the difference between successive iterations

for both the AB and LIB was less than 10 voxels.

Figure 4.5 shows the model, estimated, and final intensity PDFs of the algorithm

and the intensity PDF from manual segmentations for a sample 3D MR image. During

the evolution, the estimated PDFs of the current segmentation were matched with the

PDF models obtained from the 2D segmentation. As can be observed from Fig. 4.5,

the intensity PDF of the final result is very similar to the intensity PDF from the

manual segmentation.

4.4.1 Computational time

The convex max-flow algorithm was implemented using parallel computing architec-

ture (CUDA, NVIDIA Corp., Santa Clara, CA). The user interface for initialization,

preprocessing and cost calculation were performed using Matlab (Mathworks Inc.,

Natick, MA). The experiments were conducted on a Quad core Windows workstation

with 3.0 GHz, 32GB RAM and a GPU of NVDIA GTX670. Initialization for our

algorithm required a mean time of 21.0±2.7 s, including the time required to run the
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(a) (b)

(c) (d)

Figure 4.6: Example segmentations of a T1-weighted 3T image: (a) Initial surface
for LIB obtained using region growing, (b) algorithm generated AB and LIB sur-
faces. Example segmentations of a T1-weighted 1.5T image: (c) Initial surface for
LIB obtaining using region growing, (d) algorithm generated AB and LIB segmented
surfaces.

2D max-flow algorithm, which took 6.4 s (2 s for the max-flow computation and 4.4

s for the cost computation using a nonoptimized Matlab code). The 2D algorithm

required on average 4 iterations to obtain the final result. The average computational

time for one iteration of the max-flow solver was 4 s. For a 3T image, the time for

convergence of the 3D algorithm was ≈ 26 s (6 s for the max-flow computation and 20

s for the cost computation using a nonoptimized Matlab code), which was achieved

within 5-12 iterations for a single 3D MR image. For a 1.5T image, the convergence

time of the 3D algorithm was ≈ 5 s (1.4 s for the max-flow computation and 3.6 s for

the cost computation using a nonoptimized Matlab code), which was achieved within

10 iterations.
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(a) (b) (c) (d)

Figure 4.7: Visual surface comparisons of some example algorithm-generated AB
and LIB surfaces to manually generated surfaces. The manually segmented surface
is shown in blue color whereas the algorithm generated surface is shown in purple
color. (a) AB surface segmented from a T1-weighted 3T MR image, (b) LIB surface
segmented from the same T1-weighted 3T MR image, (c) AB surface segmented from
a T1-weighted 1.5T MR image, and (d) LIB surface segmented from the same T1-
weighted 1.5T MR image.

4.4.2 Accuracy

Segmentation results of two example 3D MR images are shown in Fig. 4.6. The

carotid AB and LIB surfaces generated using the proposed algorithm for 3T and

1.5T MR images are shown in Fig. 4.6(b) and (d), whereas the initial surfaces gener-

ated from region growing method are shown in Fig. 4.6(a) and (c). The comparison

of the algorithm-generated AB and LIB surfaces to the manual segmentations are

shown in Fig. 4.7. The manually segmented surface is rendered in blue, whereas the

algorithm surface is rendered in purple. Greater disagreement between the algorithm

and manual delineations is present at the bifurcation of the carotid AB surface by

visual comparison. Figure 4.8 shows the slice-by-slice comparisons of the algorithm to

the manual segmentations for the carotid AB and LIB of the CCA, ICA, and ECA.

Algorithm segmentations are shown in green continuous contours, whereas manual

segmentations corresponds to the red dashed lines. As observed in Fig. 4.8, the

algorithm segmentations are in good agreement with the manual segmentations.

The performance results of the algorithm for 12 3T MR images are shown in

Table 4.5. The algorithm yielded more than 90% DSCs for the AB and LIB of the

CCA and ICA. The DSC of ≈93% yielded for the CCA AB and LIB is the highest.
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Table 4.4: Confidence intervals (CI) and Pearson correlation coefficients for comput-
ing VWV.

Artery Pearson r p-value 95% CI (mm3) p-value
CCA 0.82 0.001 -80.5–67.3 0.998

3T ICA 0.76 0.006 -46.8–26.7 0.634
ECA 0.74 0.004 -13.2–20.7 0.560
CCA 0.94 < 0.001 -16.5–54.8 0.279

1.5T ICA 0.87 < 0.001 15.9–54.7 0.020
ECA 0.73 < 0.001 4.7–39.5 0.015

In addition, the lowest and highest standard deviations were reported for the CCA

and for the ECA, respectively. The absolute volume errors follows a similar trend,

where the lowest volume errors were obtained for the CCA, even though the actual

difference in mm3 is higher for the CCA, due to its larger size than the ICA and ECA.

The volume errors (δVE) obtained for the algorithm were small and negative (≤ 35

mm3).

The RMSEs for the segmentation and their standard deviation are sub-millimeter

for both the AB and LIB of the CCA, ICA, and ECA. For example, RMSEs for the

AB and LIB of the CCA were 0.5 mm and 0.3 mm, respectively, which is equivalent

to 2.5 and 1.5 times the width of a voxel (0.2 mm). The MAXD errors reported for

the LIB were lower than for the AB for all three sections of the CA.

Table 4.6 shows performance results of the algorithm for 26 1.5T T1-weighted

MR images. The algorithm yielded more than 90% DSCs for the AB and LIB of the

carotid CCA and ICA. The DSC of 91%±1.6% and 92%±2.1% were the highest DSC

for the CCA AB and LIB. The lowest DSCs were reported for the ECA AB and LIB,

which were ≈87% and ≈86%. Similar to the previous results with 3T MR images, the

algorithm underestimated the volumes relative to the manual segmentations except

for the ECA AB.

The RMSEs were sub-millimeter for the 1.5T MR images. For example, RMSEs for

the CCA AB and LIB were 0.6±0.1 mm and 0.5±0.2 mm, respectively. The algorithm

also yielded small MAXD errors (0.9 to 2.1 mm). For example for the CCA, MAXD

errors were 1.3±0.4 mm and 1.3±0.8 mm for the AB and LIB, respectively.
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(a) Slice-by-slice comparisons for a T1w 3T image

(b) Slice-by-slice comparisons for a T1w 1.5T image

Figure 4.8: 2D slice-by-slice comparisons of algorithm-generated surface to manual
segmentations for two example images. The algorithm generated surface is sliced
on the same planes as the 2D manual segmentations. Algorithm segmentations are
shown as a green continuous line whereas the manual segmentations are shown in red
dashed lines.
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(a) CCA (b) CCA

(c) ICA (d) ICA

(e) ECA (f) ECA

Figure 4.9: Bland-Altman plots [49] of the vessel wall volume (VWV) measurements.
Confidence interval (CI) of mean of differences between the VWVs are also indicated
by the green dotted line. 1st Column: Graph for 12 3T images, 2nd Column:
Graph for 26 1.5T images.
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Table 4.5: Accuracy results for 12 T1-weighted 3T MR images using the proposed
algorithm.

DSC RMSE MAXD |δVE| |δVP| δVE δVP
(%) (mm) (mm) (mm3) (%) (mm3) (%)

CCA AB 93.0± 1.9 0.5± 0.7 1.1± 0.9 83.0± 93.9 5.8± 5.4 −34.3± 122.6 −1.7± 8.0
LIB 93.3± 1.4 0.3± 0.2 0.8± 0.5 50.7± 33.8 7.4± 5.7 −27.7± 55.8 −4.0± 10.1

ICA AB 90.1± 3.3 0.5± 0.5 1.6± 1.4 61.0± 46.2 11.9± 7.4 −34.6± 69.8 −4.9± 14.5
LIB 90.4± 3.2 0.2± 0.1 0.6± 0.2 25.1± 17.4 14.5± 6.0 −24.5± 18.2 −14.1± 6.7

ECA AB 88.4± 4.6 0.7± 0.7 2.0± 2.1 23.8± 24.2 10.1± 9.7 −13.0± 32.0 −4.2± 13.9
LIB 84.1± 6.0 0.2± 0.1 0.6± 0.1 17.2± 11.0 23.6± 10.9 −16.8± 11.8 −23.1± 12.2

Table 4.6: Accuracy results for 26 T1-weighted 1.5T MR images using the proposed
algorithm.

DSC RMSE MAXD |δVE| |δVP| δVE δVP
(%) (mm) (mm) (mm3) (%) (mm3) (%)

CCA AB 91.3± 1.6 0.6± 0.1 1.3± 0.4 111.0± 88.0 6.7± 5.3 −16.0± 142.3 −1.1± 8.7
LIB 92.4± 2.1 0.5± 0.2 1.3± 0.8 91.6± 82.4 12.8± 11.2 −35.1± 119.3 −3.9± 17.1

ICA AB 91.1± 2.1 0.6± 0.4 2.1± 1.4 56.7± 40.5 10.0± 8.5 −7.9± 70.2 −0.1± 13.3
LIB 90.0± 4.4 0.3± 0.1 1.1± 0.6 48.0± 48.0 16.0± 12.4 −45.3± 50.6 −15.4± 13.8

ECA AB 87.4± 4.2 0.6± 0.5 2.0± 1.6 38.2± 24.6 13.9± 10.6 1.5± 46.1 3.5± 17.4
LIB 85.7± 6.6 0.3± 0.2 0.9± 0.5 28.4± 22.9 25.3± 14.6 −20.6± 30.4 −20.5± 25.6

4.4.3 Vessel wall volume (VWV) computation

The VWV quantifies the vessel wall thickness plus plaque, which is used as a

biomarker for carotid atherosclerosis [50]. The VWV for each image is obtained by

subtracting the total volume of the lumen region from the total volume enclosed by

the carotid AB of the CCA, ICA, and ECA separately. In this paper, we validate our

algorithm for the purpose of generating VWV. The Bland-Altman plots [49] shown in

Fig. 4.9, show the difference of the manual and algorithm measurements as a function

of their mean. The algorithm shows a bias of -6.6, -10.0, and 3.8 mm3 for the CCA,

ICA, and ECA for 3T MR images and a bias of 19.1, 35.4, and 22.1 mm3 for the

CCA, ICA, and ECA for 1.5T MR images. The Pearson correlation coefficients of

algorithm-generated VWV for each artery indicate a significant correlation (range for

r: 0.73–0.94, p<0.001), with the manually-generated VWV as shown in Table 4.4. For

the 3T MR images, there was no statistically significant difference (p>0.05) between

the algorithm- and manually-generated VWV. Similarly, there was no statistically

significant difference for CCA VWVs of the 1.5T MR images, although, there is a
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Table 4.7: Results of inter- and intra-observer variability of the algorithm for 8 T1-
weighted 3T MR images using the proposed algorithm.

User CCA ICA ECA

ID CV ICC MDD CV ICC MDD CV ICC MDD

(%) (mm3) (%) (mm3) (%) (mm3)
U2 0.9 0.992 17.2 1.1 0.995 7.6 1.9 0.996 9.0
U3 0.7 0.996 13.3 2.0 0.983 13.6 2.7 0.993 12.4
U4 2.4 0.949 45.8 3.3 0.952 23.2 5.6 0.966 26.6
U5 0.8 0.994 14.7 2.0 0.983 14.1 3.1 0.990 14.7
Inter

2.9 0.995 52.9 4.1 0.996 31.4 6.6 0.997 34.2
-observer

Table 4.8: Results of inter- and intra-observer variability of the algorithm for 8 T1w
1.5T MR images using the proposed algorithm.

User CCA ICA ECA

ID CV ICC MDD CV ICC MDD CV ICC MDD

(%) (mm3) (%) (mm3) (%) (mm3)

U2 0.4 0.999 11.9 0.4 0.999 2.8 0.4 0.999 2.0
U3 0.5 0.999 9.6 0.4 0.999 3.4 0.5 0.999 2.5
U4 0.6 0.999 17.0 0.7 0.997 5.9 0.8 0.999 4.8
U5 0.4 0.999 11.0 0.5 0.999 3.7 0.4 0.999 2.3

Inter
0.9 0.998 22.9 1.0 0.987 9.6 1.3 0.996 7.0

-observer

significant difference (p<0.05) between the ICA VWV and ECA VWV. The 95% con-

fidence intervals of the mean difference between algorithm- and manually-generated

VWV are also shown in Table 4.4. For example, the CI of the CCA for 1.5T MR

images indicates that the mean difference of the population may fall within -16.5 to

54.8 mm3.

4.4.4 Precision

We assessed the intra- and inter-observer variability of our algorithm for computing

the VWV by repeatedly segmenting the same image set five times with different

initializations by four users. Eight T1w 3T MR images, and eight 1.5T MR images
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were used for the analysis. Figure 4.10(a) and (b) show bar graphs of the DSC

for 5 repeated segmentations of a single user for each section of the carotid artery,

for which the user (U3 for the experiments of this paper) was selected randomly.

The error bar on the plots represents the standard deviation of DSC measurements.

Similarly, Fig. 4.10(c) and (d) show bar graphs of the DSC of four experts for each

section of the carotid artery. By visual comparison of the intra- and inter-observer

measurements, the DSC values are consistent and show very small variations across

different repetitions and different users.

The intra- and inter-observer variability analysis results of the algorithm for com-

puting VWV for T1w 3T images are shown in Table 4.7. We used CV, ICC, and

MDD to assess the precision. The intra- and inter-observer CV values were small for

all three sections of the artery as shown in Table 4.7. For example, the intra-observer

CV ranged from 0.7% to 2.4% for the CCA and inter-observer CV is 2.9%. The

algorithm yielded small intra- and inter-observer MDDs in the range of 7.6 to 52.9

mm3, although, the inter-observer MDDs were slightly larger than the intra-observer

MDDs. In accordance with the CV and MDD results, the algorithm also yielded high

intra- and inter-observer ICCs that are more than 0.94 in all occasions.

Table 4.8 shows the results of intra- and inter-observer variability in computing

VWV for 1.5T MR images. Small CVs were observed for 1.5T MR images. For

example, the CV ranged from 0.4% to 0.7% for the CCA. Similar to the results for

T1w 3T images, our algorithm obtained small intra- and inter-observer CVs in the

range of 0.4-1.3%. The MDD values also had a small range of 2.0 - 22.9 mm3, while

ICC values were more than 0.996 for all three sections of the artery.

4.5 Discussion

We described and validated a novel global optimization-based approach for jointly

segmenting the carotid lumen and wall by evolving the two coupled surfaces of AB and

LIB, which integrates an inter-surface order constraint to improve the segmentation

accuracy and robustness, especially in the absence of strong image information. Here

we discuss the algorithm in terms of experimental methodology, computational time,

accuracy, and precision in detail.

The algorithm is initialized by sampling a single 2D slice of the 3D MR image.

Although it is important to sufficiently sample the intensities, especially in the back-
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(a) Intra-observer variability of DSC for 8
3T images

(b) Intra-observer variability of DSC for 8
1.5T images

(c) Inter-observer variability of DSC for 8
3T images

(d) Inter-observer variability of DSC for 8
1.5T images

Figure 4.10: The evaluation of intra- and inter-observer variability of DSC of the
proposed method. The error bars indicate the standard deviation.
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ground for a robust segmentation, the algorithm is not sensitive to the background

initialization. The main reason for this is that the intensity PDF model generated

from the sampled background voxels is used only for the 2D AB-LIB segmentation of

only a single transverse slice, together with the application of the inter-contour priors

of the AB and LIB. Once the 2D AB-LIB segmentation is obtained, the intensity PDF

model corresponding to the background is re-computed from the entire background

region of the transverse slice instead of the sampled background voxels.

4.5.1 Computational time

The parallelized implementation of the algorithm using a GPU required only about

26 s for 3D AB-LIB segmentation from a 3T carotid MR image, within which 6

s was taken for the continuous max-flow algorithm, and 20 s was required for the

unoptimized Matlab program. The algorithm required only 5 s in total for segmenting

the AB and LIB from a 1.5T 3D carotid MR image, for which a substantial amount of

time was spent on the distance transform function and the kernel density function in

Matlab. The main purpose of the algorithm is for monitoring of carotid atherosclerosis

longitudinally and not for an OR application. Therefore, the computation speed of

the algorithm is adequate. However, the proposed approach can be further sped up

by optimizing the Matlab program, implementing the distance transforms on a GPU,

and using faster hardware.

4.5.2 Accuracy

We used region-based, volume-based, and boundary distance-based metrics for algo-

rithm evaluation. The algorithm yielded high accuracy (i.e.: DSC For the AB and

LIB of the CCA ≈ 93% for 3T MR images) for the AB and LIB of the CCA and

ICA. The algorithm reported a higher accuracy for the CCA, for both 1.5T and 3T

MR images, than for the ICA and ECA. Within the ICA and ECA, the ICA achieved

higher accuracy than the ECA. The reduced accuracy for the ECA may be due to its

smaller size in comparison to the CCA and ICA, as well as the weak image informa-

tion of the ECA AB; such that the algorithm attempts to maintain a minimum length

on the surface without splitting at the carotid bifurcations. Clinically, CCA and ICA

segmentations are more important than ECA segmentation, because the plaque tends

to be present mostly in the CCA and ICA [4].
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The distance RMSEs and their standard deviations were sub-millimeter, which

indicates a good agreement with the manual segmentations. The MAXD errors were

less than 2.1 mm for all boundaries, which also indicates a strong agreement with

the manual method. In most cases, MAXD errors (see Table 4.5 and 4.6) for the AB

were higher than the LIB, especially for the ECA and ICA. The reason may be due

to the fact that in some images the AB surface may split slightly above the actual

bifurcation region, because of the poor image quality.

The algorithm yielded comparable errors for the volume-based metrics (see Table

4.5 and 4.6). The algorithm segmentation resulted in small absolute volume errors

in the range of 17 to 111 mm3 for the entire data set. The absolute volume errors

were largest for the CCA AB (111 mm3) and CCA LIB (91.6 mm3), where CCA AB

volumes were in the range of 900 - 2129 mm3 and CCA LIB volumes were in the range

of 399 - 1026 mm3. The volume errors (δVE and δVP ) indicate that the proposed

method slightly underestimates the manually generated volumes, even though the

difference is not statistically significant. For the computation of VWV, the algorithm-

generated VWV showed a high agreement with manual VWV, as indicated by the

high Pearson correlation coefficients (see Table 4.4). The CIs provide an estimated

interval of the mean difference between algorithm-generated and manual VWV with

95% confidence level. Note that, the values within the CIs (see Table 4.4) reported

for our algorithm were small. However, the CI are affected by the sample size, where

larger sample sizes lead to a tight estimate of the CI.

For 1.5T MR images, the algorithm overestimated the VWV for the CCA, ICA,

and ECA (see Fig. 8(b), (d), and (f)). The overestimation of the VWV could occur

due to the underestimation of the LIB volume and/or overestimation of the AB

volume. According to the results for signed volume error δVp (see Table 4.6), the

algorithm underestimated the LIB volume for all sections of the CA, while δVp for

the AB volumes were small. Therefore, the bias arises from the underestimation of

the LIB volume for these images.

In some cases, disagreements with the manual segmentations are due to the fact

that the user did not follow the image boundaries at finer scale. In addition, quanti-

zation may also introduce errors in the volume computation.
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4.5.3 Precision

An algorithm used in practice should yield low intra- and inter- observer variability in

addition to high accuracy. We evaluated the variability of our algorithm for computa-

tion of the VWV. Our algorithm yielded small intra-observer CVs (see Table 4.7 and

4.8) for all three arteries for both 3T and 1.5T MR images, which indicates that the

algorithm is robust to user interaction. Because of using region-based sample points

as opposed to using boundary-based sample points, our algorithm is not subject to

the operator variability that arises from identifying object boundaries for choosing

boundary-based sample points. The low inter-observer CV and the high inter-observer

ICC of our algorithm suggests a high reproducibility. This is particularly useful in

multi-center clinical trials, where the measurements may be made by multiple ob-

servers in different locations at different times. The intra- and inter-observer MDDs

(see Table 4.7 and 4.8) were smaller (2.0 to 52.9 mm3) than the annual change (≈
120 mm3/ year) of VWV change in a patient with moderate stenosis [51, 52].

4.5.4 Other potential applications

In addition to computing VWV for monitoring plaque burden, segmentations of the

carotid AB and LIB surfaces by the proposed method may also be employed for

MR plaque component analysis [2] and for carotid stent simulation [53], where the

visibility of the carotid AB and some plaque components in MR images [2] can be used

in determining the stress distribution in the vessel wall and degree of straightening

for carotid stenting simulation. The proposed coupled-surface evolution approach

may also be investigated for use with other image segmentation tasks, such as the

segmentation of abdominal aortic aneurysms (AAA) and myocardial segmentation in

cinematic MR images. For the segmentation of AAA, it is expected that the lumen

and thrombus regions, including bifurcations, can be computed in a similar manner

using the proposed algorithm. For the myocardial segmentation, the epi- and endo-

cardial boundaries may also be simultaneously segmented using the proposed coupled

contour evolution approach.
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4.5.5 Comparison to previous studies

Some previous studies have described coupled contour evolution approaches for med-

ical imaging [54, 55, 56, 57, 58] etc., and natural imaging [59, 60] etc. Approaches

proposed by Paragios et al. [55, 60] and Yezzi et al. [59] were 2D segmentation methods

and used local optimization methods, such as level sets or snakes for curve evolution.

Zeng et al. [56] proposed a 3D level set method for coupled surface segmentation of

3D MR brain images. Delong et al. [58] and Schmidt et al. [57] used graph-cut based

coupled 2D/3D coupled contour segmentation algorithms. Li et al. [54] proposed

a 2D/3D single-shot graph-cut approach to segment coupled surfaces based on the

combinatorial optimization technique. They [54] first unwrap the image by casting

rays from the center-line of the object to obtain a polar representation of the image,

which allows their method to segment multiple nested surfaces along the resulting

columns. They [54] use smoothness constraints δx and δy to regularize the stiffness of

the surfaces, which is achieved via the TV-based smoothness term in our approach.

Their surface separation realized using constraints δl and δu, is achieved via the

minimum- and maximum separation forces in our approach. However, a limitation of

their approach is the need for unwrapping the image domain, which may introduce

distortions. In addition, handling carotid bifurcations and changes in topology are

challenging, because their method also assumes that each surface intersects each ray

at only one location.

To our knowledge, public data are not available for the validation of the carotid

vessel wall images. Therefore, we used data acquired in our center for algorithm

validation. The closest previous studies to our work were by Adame et al. [7], Kerwin

et al. [9], Ladak et al. [10], and Yuan et al. [11] as shown in Table 4.1. Note that,

here we considered only the techniques that do not require the acquisition of other

modalities such as MR angiography (e.g. work from Klooster et al. [8]) to assist

the segmentation. All the above methods are slice-by-slice methods that require

user interaction on each slice to segment the LIB and AB sequentially. In addition,

these methods may be required to initialize and segment the ICA and ECA for each

boundary separately. However, our proposed algorithm segments both the AB and

LIB simultaneously and requires expert interaction only on a single slice. From the

methods that have reported the computational time, the method proposed by Adame

et al. [7] requires 25 s per boundary per slice, whereas the method proposed by Yuan

et al. [11] requires a time of 20 s to 2 min per slice per boundary. Our method
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provides substantial improvement in speed (26 s for a 3D image with 110 slices; 6 s

for max-flow in a GPU and 20 s for cost computation using non-optimized Matlab

code) for segmenting 3D carotid MR images.

The method proposed by Adame et al. [7] has been used in clinical trials [15].

They [7] segmented only the carotid CCA and reported accuracy in terms of area

difference but not DSC. For the CCA, our method yielded absolute volume errors of

6.1% and 7.3% for the AB and LIB; whereas, their method yielded area errors of 6%

and 8% for the AB and LIB. As for the precision, their method reported intra-observer

CV of 4.3% and 3.5% and inter-observer CV of 9.5% and 5.3% for computing luminal

and wall areas of the CCA, which are more than the intra- and inter-observer CVs

reported by our method for the CCA (see Table 4.7 and 4.8 for CV values for the

CCA). However, note that the two studies used different data sets and different users,

so quantitative comparison is not meaningful. In the study proposed by Krasinski et

al. [3] a single observer performed manual VWV measurements repeatedly five times

and reported an intra-observer CV of 6.4% to 7.7% on the same dataset as ours. In

comparison to their results, our algorithm yielded a smaller intra-observer CVs (see

Table 4.7 and 4.8 for CV values) for generating VWV measurements.
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Chapter 5

Joint segmentation of 3D femoral artery

lumen and outer wall from 3D black-blood

MR images†

5.1 Introduction

Peripheral arterial disease (PAD) is a common circulatory disease, which occludes the

arteries with long term accumulation of plaque due to atherosclerosis. Although PAD

causes morbidity ranging from intermittent claudication to critical limb ischemia, it

has long been underdiagnosed and undertreated [2, 3] and may have been overshad-

owed by cardio- and cerebro-vascular events and mortality [4]. Coronary and cere-

brovascular diseases coexist with PAD [5, 6, 7] and asymptomatic and symptomatic

PAD are consistent and powerful independent predictors of coronary artery and cere-

brovascular diseases [4]. Therefore, reproducible and sensitive measurements of PAD

are important for evaluating patient’s response to medical treatment for improved

management of patients with PAD. Some previous investigations have shown that

the most occluded location due to PAD is the adductor canal region of the superficial

femoral artery (SFA) [8]. Therefore, in this work, we focus on PAD of the SFA.

Currently, ankle-brachial index (ABI), an approximate estimate of the relative

blood flow in the ankle compared to the brachial artery, is used for diagnosis and

assessment of the severity of PAD [9]. Patients with ABIs less than 0.9 may be

†. A preliminary version [1] of this chapter has been accepted for publication at Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention 2013
(MICCAI). A complete version of this chapter has been submitted for publication: E.
Ukwatta, J. Yuan, M. Rajchl, W. Qiu, B. Chiu, and A. Fenster, “Joint segmentation of
lumen and outer wall from 3D femoral artery MR images: Towards volumetric phenotypes
of peripheral arterial disease,” in IEEE Transactions on Medical Imaging, submitted on
August 26, 2013.
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followed up with a MRI or CTA. However, similar to other luminographic techniques,

it has limited capabilities for assessing the progression of the disease and prediction

of clinical events [4]. Assessment of PAD using cardio-vascular MR imaging has

been continued to develop [10], due to its non-invasiveness and its ability to image

the femoral artery vessel wall with high image contrast. In this paper, we use 3D

black-blood MR images (see Fig. 5.1(a) and (b)) acquired using the 3D motion-

sensitized driven equilibrium (MSDE) prepared rapid gradient echo sequence (3D

MERGE) [11, 12], which enables evaluation of the femoral artery vessel wall up to a

length of 50 cm.

Due to the high vessel wall image contrast, MR imaging facilitates morphologi-

cal and volumetric measurements of plaque burden, which may be more sensitive to

clinical outcomes [4, 8, 10, 13]. However, one of the current challenges for obtain-

ing volumetric/morphological measurements is the delineation of the femoral lumen

and outer wall surfaces (see Fig. 1.12(a) in Chapter 1) from 3D femoral MR im-

ages comprising of about 500–1000 slices per dataset. The manual segmentations of

the femoral outer wall and lumen are performed slice-wise on transverse view (see

Fig. 5.2(a)). However, it is usually performed at an ISD greater than the slice thick-

ness to alleviate measurement burden from a time-consuming and tedious process.

For example, manual segmentation of the lumen and outer wall from a 3D femoral

MR image at an ISD of 10 mm requires about 80 min [14] of user time. Therefore,

the objective of this work is to develop and validate an algorithm for segmenting the

femoral lumen and outer wall surfaces robustly and efficiently from 3D black-blood

MR images. The major challenges for a segmentation algorithm of the femoral lumen

and outer wall are the thin and elongated shape appearance of the femoral artery

(see Fig. 1.12(a)) and the lack of distinctive image boundary at the outer wall bound-

ary, and strong overlapping of intensity appearance between the outer wall and its

surrounding region.

5.1.1 Previous studies

To our knowledge, only one study [14] has been reported for describing a semi-

automated method for segmentation of both the femoral artery lumen and wall bound-

aries from MR images. Although, some previous studies have been reported for seg-

mentation of the carotid artery lumen and outer wall from carotid MR images [15, 16]
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Figure 5.1: (a) An example femoral MR image of a patient; (b) same image with
overlaid manual annotations of the femoral artery lumen and outer wall; (c) reorien-
tation of the femoral MR image using the medial axis of the artery. The reorientation
procedure is described in Section 5.3.2; and (d) Long axis view of reoriented 3D MR
image.

these methods may not be directly applicable to femoral artery segmentation from

MR images due to its thin and elongated appearance in the MR images and the

relative inferior quality of the femoral MR images.

Chiu et al. [14] proposed a 2D slice-by-slice B-spline snake segmentation proce-

dure, where the segmentation of the current slice is propagated as the initial contour

to assist segmenting its succeeding slice. As well, this method first segments the lu-

men region, then the outer wall region. Initially, the segmentation of the first slice

is performed manually. For the subsequent slice, the segmentation boundary of the

first slice was propagated and transformed using the transformation obtained by reg-

istering the first transverse slice to the second transverse image slice using an optical

flow-based registration procedure. When the ratio between the luminal areas of ad-

jacent slices is outside the range of 0.5 and 1.5, the segmentation pauses and requires

further user interaction to proceed. After the lumen segmentation had been ob-

tained, the outer wall was then segmented using a two-pass process with forward and

backward passes. Two such propagations were performed using a conditional shape

model, where two outer wall segmentations are obtained for each slice. Afterwards,

a gradient-based decision rule was applied to the two contours to determine the final
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Figure 5.2: (a) A transverse slice of a 3D femoral MR image with manual delin-
eations; and (b) schematic diagram denoting the notation used for lumen and outer
wall contours CLi , C

W
i and lumen, outer wall, and backgound regions RLi ,RWi ,RBi .

contour. The outer wall result is then formatted using a curved planar reformatting

view. The 2D method [14] requires about 8–10 min of user time for the lumen and

outer wall segmentations. In addition, such slice-by-slice technique does not globally

enforce the inherent spatial coherence of the contours along the medial axis of the

artery, hence segmentation errors in one slice can be propagated and accumulated in

the segmentation of the next slices.

5.1.2 Contributions

In this chapter, we describe a novel and efficient global optimization-based 3D al-

gorithm to jointly segment the outer wall and lumen of the femoral artery from 3D

black-blood MR images, while enforcing the spatial consistency of the re-oriented slice

sequence (see Fig. 5.1(c) and (d)) along the medial axis of the artery. We demon-

strate that the resulting combinatorial optimization problem can be solved globally

and exactly by means of convex relaxation, and propose the new coupled continuous

max-flow (CCMF) model, which presents the dual formulation to the studied convex

relaxation model and allows a fast numerical algorithm. In addition, the new spa-

tially continuous max-flow model directly leads to an efficient continuous max-flow

based algorithm based on modern convex optimization theories. The algorithm is

implemented in a GPU to obtain high computational efficiency.



169

To our knowledge, the proposed approach is the first 3D algorithm for segmenting

the femoral lumen and outer wall from 3D black-blood MR images. The results of

the experiments demonstrate that our method provides high accuracy and repeata-

bility with significantly less user interaction. The proposed method outperforms the

previous method [14] in terms of computational time, and amount of user interaction

needed.

A preliminary study of this work has been previously submitted to a conference

paper [1]. However, this paper is substantially extended from the previous submission

with the following information: (1) a comprehensive description of the algorithm is

included; (2) a validation of the area and volumetric segmentation results; and (3)

the algorithm is implemented in a GPU to increase the computational efficiency.

5.2 Methods

We propose a global optimization approach to simultaneously segment the femoral

artery lumen and outer wall surfaces from an input 3D femoral MR image V . Let VR
be the reoriented 3D MR image with n 2D transverse slices S1 . . .Sn, reoriented using

the medial axis of the femoral artery. When the artery is straightened using the medial

axis as shown in Fig. 5.1(c), it appears as an approximate cylindrical shape. The

process of obtaining the medial axis and the artery straightening process are described

in detail in Section 5.3.2. As an alternative to a direct 3D segmentation of V , the

proposed segmentation is performed on the reoriented image Vr to enforce the tubular-

like shape of the femoral artery, which entails spatial consistency between adjacent

transverse slices. The proposed algorithm simultaneously segments the reoriented

MR image Vr into lumen, outer wall, and background by jointly enforcing tubular

prior on both the femoral lumen and outer wall. We first describe briefly the multi-

region segmentation formulation of the femoral lumen and outer wall in Section 5.2.1

and describe the integration of the tubular prior into the multi-region segmentation

formulation in Section 5.2.2.

5.2.1 Muti-region segmentation formulation

Here we decompose the segmentation of the reoriented image Vr as a problem of

segmenting n 2D slices Si, i = 1 . . . n, simultaneously. Let CLi and CWi denote the
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lumen and outer wall contours and RBi , RWi and RLi , i = 1 . . . n, denote background,

outer wall, and lumen regions within the 2D slice Si, respectively. Let u1
i (x) and

u2
i (x) ∈ {0, 1}, i = 1 . . . n, be the corresponding indicator labeling functions of CWi

and CLi such that

u1
i (x) =

{
1 , for ∀x within CWi
0 , otherwise

, i = 1 . . . n .

and

u2
i (x) =

{
1 , for ∀x within CLi
0 , otherwise

; i = 1 . . . n .

Since the lumen region RLi is located within the outer wall region RWi (see Fig.

1(b)) in each slice Si, i = 1 . . . n, the following labeling order can be enforced in the

segmentation as follows:

u2
i (x) ≤ u1

i (x) , ∀x ∈ Si ; i = 1 . . . n . (5.1)

Then the binary labeling functions u
L,W,B
i ∈ {0, 1} for RL,W,Bi can be obtained

as follows:

uLi = u2
i , uWi = u1

i − u2
i , uBi = 1− u1

i . (5.2)

The segmentation of each slice Si, i = 1 . . . n, into the three regions of RB,W,Li

can be formulated as a coupled continuous min-cut problem [17], which minimizes

the following energy function

Ei(u
1
i , u

2
i ) :=

{∫
uBi D

B
i dx+

∫
uWi DW

i dx

+

∫
uLi D

L
i dx

}
+

{∫
Ω
gi(x)

∣∣∣∇uWi ∣∣∣ dx
+

∫
Ω
gi(x)

∣∣∣∇uLi ∣∣∣ dx
}

(5.3)

over the binary labeling functions u
1,2
i (x) ∈ {0, 1}, subject to constraint (5.1).

In (5.3), the functions DB
i (x), DW

i (x), and DL
i (x) evaluate the cost to label pixel

x ∈ Si, i = 1 . . . n, as the background region RBi , the wall region RWi and the lumen
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region RLi respectively. For example when the intensity log likelihood terms

D
j
i (x) = − ln

(
Prj (I(x) |Rji )

)
, j = L,W,B (5.4)

are used as data terms for segmentation [18, 19, 19], for pixel x to be labeled within

the region Rji , it incurs cost D
j
i (x), which is based on how well the intensity of x

matches the model/prior intensity histogram Pr (I(x)) of R
j
i . Hence, the sum of

the first three terms provides the total cost of labeling each pixel with slice Si. The

two weighted total-variation functions of (5.3) measure the smoothness of the two

contours CWi and CLi w.r.t. the labeling functions u1
i (x), u2

i (x) ∈ {0, 1}, where gi(x)

is a positive weight function of the image gradient as follows:

gi(x) = λ1 + λ2 exp(−λ3|∇I(x)|) , λ1,2,3 ≥ 0 (5.5)

where the values of gi(x) fall within the range of [λ1, λ1 + λ2].

5.2.2 Spatial consistency prior between adjacent slices

The n slices S1 . . .Sn of Vr are aligned along the medial axis of the femoral artery (see

the blue dotted line in Fig. 5.1(c)). Due to the tubular shape of the femoral artery, the

wall or lumen boundaries of two adjacent transverse slices appear similar in size. In

other words, the boundaries of adjacent slices have strong spatial consistency between

them. With this regard, we propose to enforce such spatial consistency prior of the

segmented contours CWi and CLi , i = 1 . . . n, by penalizing the total spatial/area

differences of the contours between two neighbouring slices, i.e. minimizing

πi(u) :=

{∫
Ω

∣∣∣u1
i+1 − u1

i

∣∣∣ dx
+

∫
Ω

∣∣∣u2
i+1 − u2

i

∣∣∣ dx} , i = 1 . . . n− 1 . (5.6)

Here, the first and second terms of (5.6) correspond to the spatial consistency terms

for the femoral outer wall and lumen.
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Figure 5.3: Flow configurations of the proposed coupled continuous max-flow model.

5.2.3 Optimization formulation

In view of (5.3) and (5.6), we propose to segment the 3D surfaces of the femoral

artery outer wall and lumen by segmenting the n 2D image slices while incorporating

inter-slice consistency (5.6), which can be formulated with a balancing weight α > 0

as

min
u1,2(x)∈{0,1}

n∑
i=1

Ei(ui) + α
n−1∑
i=1

πi(u) ; (5.7)

s.t. u2
i (x) ≤ u1

i (x) , i = 1 . . . n .

5.2.4 Convex relaxation and coupled continuous max-flow

model

In this study, we show that the proposed optimization problem (5.7) can be globally

and exactly solved by its convex relaxation

min
u1,2(x)∈[0,1]

n∑
i=1

Ei(ui) + α

n−1∑
i=1

πi(u) ; (5.8)

s.t. uLi (x) ≤ uWi (x) , i = 1 . . . n ,
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where the binary-valued constraints u
1,2
i (x) ∈ {0, 1} in (5.7) are replaced by their

convex relaxation u
1,2
i (x) ∈ [0, 1] [20]. Clearly, (5.8) amounts to a convex optimiza-

tion problem for which a global optimum exists. Here, we study (5.8) by introducing

its dual formulation, i.e., the novel CCMF model, and show the thresholding of the

computed optimum of the convex relaxation problem (5.8) solves its original combi-

natorial optimization problem (5.7) globally and exactly.

5.2.5 Coupled continuous max-flow (CCMF) model

We introduce the new flow configuration based on the studies in [17] (as illustrated in

Fig. 5.3). For each image slice Si, i = 1 . . . n, we add two image copies ΩWi and ΩLi
w.r.t. the regions RWi and RLi ; two additional flow terminals: the source si and the

sink ti, are added; link the source si to each pixel x in ΩWi , along which the directed

source flow psi (x) is defined; link each pixel x ∈ ΩWi to the same pixel x at ΩLi , along

which the directed outer wall flow pWi (x) is defined; link each pixel x ∈ ΩLi to the

sink ti, along which the directed lumen flow pLi (x) is defined; within ΩWi and ΩLi , the

local vector flow fields qWi (x), qLi (x) ∈ R2 are given around each pixel x. Between

two adjacent ΩWi and ΩWi+1, i = 1 . . . n − 1, we link x ∈ ΩWi to the same position

x ∈ ΩWi+1, along which a coupled flow rWi (x) streaming in both directions is defined.

Between two adjacent ΩLi and ΩLi+1, i = 1 . . . n − 1, we link x ∈ ΩLi to the same

position x ∈ ΩLi+1, along which a coupled flow rLi (x) streaming in both directions is

defined.

With the above flow configuration, we introduce the novel CCMF model, which

maximizes the total flow streaming from the n sources:

max
ps,pt,q,r

n∑
i=1

∫
Ω
psi (x) dx (5.9)

subject to the flow capacity constraints

psi (x) ≤ Csi (x) , pWi (x) ≤ CWi (x) , (5.10)

pLi (x) ≤ CLi (x) ; i = 1 . . . n ;∣∣∣qWi (x)
∣∣∣ ≤ gi(x) ,

∣∣∣qLi (x)
∣∣∣ ≤ gi(x) ; i = 1 . . . n ; (5.11)
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∣∣∣ ≤ α ,

∣∣∣rLi (x)
∣∣∣ ≤ α ; i = 1 . . . n− 1 ; (5.12)

and the flow conservation constraints within each Ω
W,L
i , i = 1 . . . n:

ρW1 (x) :=
(

div qW1 − ps1 + pW1 + rW1
)
(x) = 0 ; (5.13)

ρL1 (x) :=
(

div qL1 − pW1 + pL1 + rL1
)
(x) = 0 ; (5.14)

ρWi (x) :=
(

div qWi − psi + pWi + rWi − rWi−1

)
(x) = 0 ; i = 2 . . . n− 1 ; (5.15)

ρLi (x) :=
(

div qLi − pWi + pLi + rLi − rLi−1

)
(x) = 0 ; i = 2 . . . n− 1 ; (5.16)

ρWn (x) :=
(

div qWn − psn + pWn − rWn−1

)
(x) = 0 ; (5.17)

ρLn(x) :=
(

div qLn − pWn + pLn − rLn−1

)
(x) = 0 . (5.18)

• Capacity constraints on source and sink flows:

psi (x) ≤ Csi (x) , pti(x) ≤ Cti (x) ; i = 1 . . . n ; (5.19)

• Capacity constraints on spatial flows:

|qi(x)| ≤ gi(x) , i = 1 . . . n ; (5.20)

• Capacity constraints on coupled flows:

|ri(x)| ≤ α , i = 1 . . . n ; (5.21)

• Flow conservation constraints: all the flows at each pixel of every slice are

balanced, i.e., for each of the last n − 1 slices Si, i = 2 . . . n, at each position

x ∈ Si, it must suffice

ρi(x) :=
(

div qi − psi + pti + ri − ri−1
)
(x) = 0 ; (5.22)

and for the first slice S1, at each position x := (x1, x2) ∈ S1, the total flow

balance is evaluated by

ρ1(x) :=
(

div q1 − ps1 + pt1 + r1
)
(x)− rn(L− x1, x2)
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and it must suffice

ρ1(x) = 0 . (5.23)

5.2.6 Global and exact optimization of (5.7)

By introducing the multiplier functions u
W,L
i (x), i = 1 . . . n, to the linear equalities

(5.22) - (5.18), we then have the equivalent primal-dual model of (5.9) such that

min
uW,L

max
p,q,r

n∑
i=1

∫
Ω
psi (x) dx+

n∑
i=1

〈
uWi , ρWi

〉
+

n∑
i=1

〈
uLi , ρ

L
i

〉
(5.24)

subject to the flow capacity constraints (5.19) - (5.21).

By variational analysis, the following results can be proven. The readers are

referred to [17, 21, 22] for proofs.

Proposition 1 The coupled continuous max-flow model (5.9), the convex relaxation

model (5.8) and the primal-dual model (5.24) are equivalent to each other:

(5.9) ⇐⇒ (5.8) ⇐⇒ (5.24) . (5.25)

Proposition 2 Let (u
W,L
1 (x), . . . u

W,L
n (x))∗ ∈ [0, 1] be the global optimum of the con-

vex relaxation problem (5.8), the thresholds ũ
W,L
i (x) ∈ {0, 1}, i = 1 . . . n, by any

γ ∈ [0, 1), where

ũWi (x) =

{
1 , (uWi )∗(x) > γ

0 , (uWi )∗(x) ≤ γ
, (5.26)

ũLi (x) =

{
1 , (uLi )∗(x) > γ

0 , (uLi )∗(x) ≤ γ
i = 1 . . . n , (5.27)

solves the original combinatorial optimization problem (5.7) globally and exactly.

5.2.7 Coupled continuous max-flow (CCMF) algorithm

By Prop. 2, the global optimum of the proposed challenging segmentation problem

(5.7) can be achieved by thresholding the optimum of its convex relaxation (5.8) with

any γ ∈ [0, 1). On the other hand, Prop. 1 shows that the optimum of such convex

relaxation problem (5.8) is given by the optimal multipliers to the corresponding linear
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User interactions 
 

 
- Identify first and last slices 

- Choose mid points at ISD of 30 mm 
 

 
 
 
 
 

Medial axis computation 
 
- Generate rest of medial axis 

- Reorient the image sequence 
 

 
 
 
 

3D CCMF segmentation 
 
- Generate model PDFs 

- 3D CCMF segmentation with tubular prior 

- Mapping the surface to original space 

Figure 5.4: The block diagram of the segmentation pipeline. User interaction is
performed only in the first step.

equality conditions (5.22)-(5.18). Indeed, this directly derives the CCMF algorithm

based on the modern augmented Lagrangian algorithm [22], see also [17, 21] for

the detailed algorithmic scheme. The proposed CCMF algorithm avoids directly

solving the non-smooth function terms in (5.8) and performs at high efficiency in the

experiments of this work.

5.3 Implementation and data

The segmentation pipeline of the proposed algorithm is shown in Fig. 5.4. Each step

is described in detail below.
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5.3.1 User initialization

Using multi-planar reformatting software, the user chooses approximately a 300 mm

section of the femoral artery by identifying the first and last transverse slices for

segmentation. The observer manually delineates the femoral lumen and outer wall

boundaries in the first and last slices similar to [14]. The observer is then presented

with a set of transverse cross-sections of the artery with an inter-slice distance (ISD)

of 30 mm, where the observer chooses an approximate mid point of the femoral lumen

amounting to about 10–12 points in total for the entire 3D image.

5.3.2 Medial axis computation

An approximate medial axis of the femoral artery is required to reorient the transverse

slices as shown in Fig. 5.1(c). The user selected points from the initialization are then

connected using the live-wire algorithm [23] to find the rest of the points on the medial

axis. The live-wire algorithm sequentially generates the minimum cost path from one

point to the other from the starting slice to the end slice. The Frangi vesselness

filter [24] with a kernel size of 3 to 5 pixels is applied to the 3D MR image and

its output is used as a cost map for the live-wire algorithm, where high vesselness

response corresponds to low cost in the cost map. The user then examines the medial

axis for its correctness. In severe stenosis cases, the user may need to introduce

additional points and to recompute the medial axis. The transverse slices are then

reoriented based on the medial axis of the artery in order for the lumen and outer

wall images to appear as cylinders as shown in Fig. 5.1(c) and (d). This is performed

as a straightening operation where the axis is straightened according to starting point

of the medial axis.

5.3.3 3D CCMF segmentation

We use manual segmentation of the first and last slices as initialization for 3D seg-

mentation. An intensity log-likelihood term is used as the data term for the seg-

mentation. The model PDFs for the intensity log-likelihood matching are generated

from the manual segmentation of the first and last slices. For the wall, lumen and
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background regions, the corresponding intensity PDFs are

Prj(z) =

∫
ΩK(z − I(x))uj(x)dx∫

Ω u
j(x) dx

j = L,W,B (5.28)

where the input image I(x) ∈ Z, uj , j = L,W,B (5.2), and K(.) is the Gaussian

kernel function such that

K(x) =
1√

2πσ2
exp(−x2/2σ2) .

σ of 5 is used to generate the PDFs with 256 intensity bin sizes. We then apply the

CCMF algorithm with the spatial consistency prior and the inter-surface label order

constraint to jointly segment the femoral lumen and outer wall in 3D from reoriented

femoral MR image Vr. The femoral lumen and outer wall surfaces generated using

the algorithm are then mapped to the original space using the inverse transformation,

which can be used for further analysis of the vessel wall boundaries.

5.3.4 Data and acquisition

To our knowledge, a public data set with ground truth is not available for T1w

femoral artery images. Therefore, we used a data set acquired in by the Department

of Radiology, Renji Hospital (Shanghai Jiao Tong University, Shanghai, China). All

the subjects had provided written informed consent. The study protocol had been

approved by the ethical review board of Renji Hospital.

Our data set comprises of 10 3D motion-sensitized driven equilibrium (MSDE)

prepared rapid gradient echo sequence (3D MERGE) images from seven subjects.

Five of these subjects were symptomatic with intermittent claudication. The MR

images were acquired using two stations with field-of-view of 400 × 40 × 250 mm3

to cover up to 500 mm longitudinally with isotropic voxel size of 1.0 mm. Image

acquisition time was ≈ 7 min. The imaging parameters were TR = 10 ms, TE =

4.8 ms, flip angle = 6◦, turbo factor = 100 and one excitation (NEX). In this study,

300 mm length of the SFA was analyzed starting from the femoral bifurcation to the

end of the femur and the segment that is upstream from the femoral bifurcation is

ignored due to poor image quality.
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5.3.5 Validation

Manual segmentation of the femoral MR images is used as ground truth to evaluate

the algorithm. Manual segmentation of the femoral outer wall and lumen boundaries

were performed using a multi-planar software platform [25]. Manual segmentations

were performed on transverse views with an ISD of 10 mm. Since the algorithm

provides 3D segmentation, the algorithm-generated surfaces were sliced and were

compared to manual segmentations with an ISD of 10 mm.

Both the accuracy and reproducibility of the algorithm were evaluated. We used

regional-, area- and boundary distance-based metrics to assess the accuracy of the

algorithm for the femoral lumen and outer wall separately. We used Dice similar-

ity coefficient (DSC) [26], area overlap (1.15) (AO), and area difference (1.16) (AD)

as region-based metrics. Mean absolute distance (MAD) (1.17) and maximum ab-

solute distance errors (MAXD) (1.19) are used as boundary-distance based metrics.

MAD and MAXD were computed by establishing point-by-point correspondence of

the manual and algorithm-generated boundaries. VWA is the area of the region en-

closed between the femoral artery outer wall and lumen regions. We used VWA as

the clinical measure of evaluation for this study. We computed the mean VWA errors

(δV WAMean) and root mean square VWA errors (δV WARMSE) [14] as area-based

metrics.

Six femoral 3D MR images were chosen randomly from the entire data set to

evaluate the intra-observer variability of the proposed algorithm. To assess the re-

producibility of the algorithm in generating VWA, the user repeatedly segmented six

femoral MR images five times, each on a different day. Coefficient-of-variation (CV)

and standard deviation (SD) were used to assess the intra-observer variability of the

algorithm. We also used intra-class correlation coefficient (ICC) [27], which measures

reliability of the algorithm by computing the proportion of variance between obser-

vations. A single measure of absolute agreement using a two-way mixed study was

used to compute ICC. Statistical analyses were performed using IBM SPSS Statisti-

cal version 19 (IBM Corporation, 2010), in which results were considered significant

when the probability of making a type I error was less than 5%.
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Figure 5.5: The impact of the proposed spatial consistency prior is illustrated here:
Column 1: Algorithm results without the spatial consistency prior. Column 2: Al-
gorithm results with the spatial consistency prior. The algorithm generated-contours
are shown as cyan continuous lines whereas the manual contours are shown as dashed
yellow lines.

5.4 Results

For slice-by-slice validation, our data set consisted of 355 2D slices extracted from

10 3D femoral MR images. The parameters (i.e., α = 18, λ1,2,3 = 0.1, 1.7, 3) were

optimized sequentially by varying one parameter at a time and evaluating accuracy

using DSC. The optimized parameters were held constant during experiments for the

entire dataset.

Fig. 5.5 illustrates the usefulness of the tubular prior in femoral MR segmentation.

Algorithm contours are shown as cyan continuous lines, whereas manual contours

are shown as yellow dashed lines. The results are shown for a set of transverse

slices extracted from the segmented 3D surfaces. The segmented contours in the first
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column of Fig. 5.5 correspond to the output of the algorithm without the tubular

prior. The segmented boundary leaked into other surrounding regions partially due

to the low image contrast of the outer wall boundary. The segmentation results of the

algorithm with the tubular prior are shown in the second column of Fig. 5.5, where

the tubular prior was able to constrain the segmentation from leaking at low contrast

boundaries.

(a) (b) (c) (d) (e) (f)

Figure 5.6: Surfaces. (a) Manual segmented boundaries of the lumen; (b) man-
ual segmented boundaries of the wall; (c) algorithm-generated lumen surface; (d)
algorithm-generated wall surface; (e) reoriented algorithm-generated lumen surface;
and (f) reoriented algorithm-generated wall surface.
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5.4.1 Computational time

The experiments were performed on a Windows PC with an Intel Core i7 CPU and

16GB RAM. The continuous max-flow algorithm was implemented on a GPU using

CUDA (NVIDIA Corp., Santa Clara, CA). The user interface and image preprocessing

were implemented using Matlab (Mathworks Inc., Natick, MA). The proposed method

required about 98 s of user time for initialization and preprocessing, out of which most

of the time was required for manual interactions to compute the medial axis of the

SFA. In addition, the algorithm required ≈10 s of computational time for the CCMF

solver.

5.4.2 Accuracy

Figure 5.6 shows the femoral lumen and outer wall surfaces generated for an example

femoral 3D MR image. The algorithm generated surfaces are shown in Fig. 5.6(c)

and (d). Segmentation results of the reoriented slices were used to reconstruct the

3D lumen and outer wall surfaces by applying the inverse transform as shown in

Fig. 5.6(e) and (f), which were compared to manual segmentations on a slice-by-slice

basis.

Segmentation results of the reoriented slices were used to reconstruct the 3D

lumen and outer wall surfaces, which were compared to manual segmentations on

a slice-by-slice basis. Some example results of the algorithm for three femoral MR

images are shown in Fig. 5.7. The manual segmented boundaries for the outer wall

and lumen are shown as a dashed lines whereas the algorithm-generated boundaries

are shown as a continuous lines. Visual comparison of the manual and algorithm

segmented boundaries shows good agreement. Most of the disagreement of the outer

wall boundary is due to lack of image contrast (see bottom left image in Fig. 5.7 as

an example).

Table 5.1 shows accuracy evaluation of the proposed algorithm for 355 2D slices

extracted from the 10 femoral 3D MR images. The algorithm yielded DSC of 89.1%

for the outer wall and 85.4% for the lumen, but yielded lower DSC of 75.1% for

the vessel wall region. The algorithm reported AO of over 80% for both the lumen

and outer wall. For distance-based metrics, the algorithm also yielded sub-millimeter

errors for MAD and distance errors smaller than 1 mm for MAXD. The average

area error (AAV G) for the wall was 5.03 mm2, which indicates that the algorithm
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Table 5.1: Performance results of the proposed algorithm for 355 2D slices extracted
from the 10 femoral 3D MR images. The voxel size of the MR images is≈ 1.0×1.0×1.0
mm3.

Metric Wall Lumen

DSC (%) 89.1±3.70 85.4±3.39
AO (%) 81.2±3.88 80.4±10.74
MAD (mm) 0.44±0.10 0.40±0.08
MAXD (mm) 0.97±0.23 0.87±0.13

AAV G (mm2) 5.03±7.90 −1.15± 3.74

ARMSE (mm2) 9.07 3.73

Metric Vessel wall region

DSC (%) 75.1± 8.9

VWAAV G (mm2) 6.18±5.11

VWARMSE (mm2) 7.8

Table 5.2: Intra-observer variability of the algorithm using five repetitions of the
same observer for 176 2D slices extracted from six femoral 3D MR images, which
were chosen randomly from the entire data set.

Metric Lumen Wall VWA

CV(%) 6.43 4.88 6.69
ICC 0.969 0.937 0.949

SD (mm2) 1.9 2.6 2.3

overestimated the outer wall area. In addition, AAV G for the lumen was −1.15 mm2,

which indicates that the algorithm has slightly underestimated the lumen area. For

the vessel wall region, the algorithm overestimated the VWA (i.e., VWAAV G of 6.18

mm2).



184

Figure 5.7: Slice-wise comparison of the computation results (cyan) to the manual

segmentation (yellow) for the femoral wall and lumen boundaries for three 3D MR

images. Each column corresponds to images for a different patient. The slices are

separated by 30 mm from each other.



185

Table 5.3: Comparison of the algorithm to Chiu et al. [14] using 176 2D slices ex-
tracted from six femoral 3D MR images used in their study.

Metric Proposed Chiu et al.
method [14]

Wall Lumen Wall Lumen

AO (%) 82.9±4.72 81.3±8.46 84.7±9.46 85.6±9.36
AD (%) 23.5±8.21 24.9±9.32 12.9±12.95 9.8±9.78
MAD (mm) 0.43±0.13 0.42±0.09 0.32±0.23 0.20±0.17
MAXD (mm) 0.89±0.16 0.86±0.16 0.77±0.52 0.55±0.48

Metric Vessel wall region Vessel wall region

VWAAV G (mm2) 4.77±5.12 4.58±7.10

VWARMSE (mm2) 6.29 8.45

The algorithm was compared to the 2D segmentation method proposed by Chiu et

al. [14] and the comparison is shown in Table 5.3. Their method [14] was evaluated

with six femoral 3D MR images. The same data of their study [14] were used here

for a direct comparison of the two algorithms. Compared to the 2D method [14],

the algorithm yielded lower AO and higher AD for both the femoral artery lumen

and outer wall. However, the SDs of the algorithm for AO were smaller than the 2D

method. Similar to the region-based metrics, the algorithm also yielded higher MAD

and MAXD errors than the 2D method [14]. Both algorithms yielded comparable

VWAAV G (4.77 vs. 4.58 mm2) for the VW region. The algorithm yielded a smaller

VWVRMSE compared to the 2D method [14].

5.4.3 Precision

A user repeatedly segmented six femoral MR images five times to assess the repro-

ducibility of the algorithm in generating VWA. Table 5.2 shows the reproducibility

results of the algorithm using CV, ICC, and SD. The algorithm yielded a CV of 6.69%

for VWA and a smaller CV for the outer wall than the lumen. In addition, the SDs

for the lumen, outer wall, and VWA were in the range of 1.9–2.6 mm2. The intra-

observer ICCs of the algorithm for the lumen, outer wall, and VWV were greater

than 0.93, which indicates high reproducibility of the area measurements.
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5.5 Discussion

In this chapter, a novel algorithm was described and evaluated for 3D segmentation

of the femoral artery lumen and outer wall from black-blood MR images. Here, the

technical aspects of the algorithm and its results are discussed as follows.

The algorithm was based on a CCMF model, which simultaneously segments the

femoral artery lumen and outer wall surfaces by enforcing two priors, i.e., the spatial

consistency between the adjacent 2D reoriented MR slices and the anatomical order

between the femoral artery lumen and outer wall surfaces, in a global optimization

manner. The user is required to segment the first and last slices of the slice stack and

then providing control points to identify the medial axis of the artery for initializa-

tion. Accurate computation of the femoral medial axis is crucial for the subsequent

segmentation of the outer wall and lumen.

Direct 3D segmentation of a femoral MR image (≈ 400 slices) without a spatial

consistency prior had two problems: Segmentation for the outer wall leaked due

to its high similarity to background, and (2) the segmentation surface shrunk due

to shrinking bias, especially when there was a large stenosis in the artery. The

algorithm with a spatial consistency prior overcame both of these problems. The

proposed approach to reorient the 2D MR stack based on the medial axis of the

artery and performing the segmentation with a tubular prior avoid leakage at the

boundaries with weak contrast of the femoral outer wall boundary and speeds up the

segmentation.

The main strengths of the algorithm are fast computational speed and requirement

for only few user interactions. The proposed algorithm required only 1–2% of the total

time (1.67 min vs. 70–80 min [14]) for segmenting the femoral outer wall and lumen

compared to manual segmentation.

In addition to femoral artery segmentation, the proposed algorithm can be applied

to segment objects with some symmetry. For instance, the method can be applied to

segment the prostate boundaries from MR images.

5.5.1 Accuracy

The algorithm yielded a DSC≥ 85% (see Table 5.1) for both the lumen and outer wall.

Although previous algorithms reported in this dissertation yielded DSC greater than

90% for the lumen and outer wall boundaries of the carotid artery, it is challenging
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to obtain such DSCs for femoral MR segmentations, due to its coarse resolution of

the femoral MR images, which in turn leads to fewer voxels representing the femoral

artery. Although, the femoral lumen has a high agreement by visual comparison, DSC

for the lumen was smaller than DSC for the outer wall. Moreover, DSC of 75.1% for

the VW region was smaller than DSCs for the lumen and outer wall. This may be

due to its small size, where a disagreement of few pixels may lead to a smaller DSC.

AO is a more stringent measure of regional overlap than DSC, which is reflected by

the smaller AO values reported.

Sub-millimeter error values for MAD (see Table 5.1) for both the lumen and

outer wall indicate a high agreement between the manual and algorithm boundaries.

MAXD errors smaller than 1 mm indicate that the segmentation boundary did not

leak and create isolated regions further from the desired boundary, due to the spatial

consistency prior.

As for the area-based measurements (see Table 5.1), the algorithm overestimated

(AAV G of 5.03 mm2) the outer wall boundary, while slightly underestimating (AAV G

of −1.15 mm2) the lumen boundary. This is reflected by the higher ARMSE for

the outer wall boundary. The algorithm overestimated (AAV G of 6.18 mm2) the

VW region, which is mostly attributed by the overestimation of the outer wall. The

algorithm yielded comparable ARMSE to the ARMSE (6.29 vs. 6.6 mm2) between

repeated manual segmentations.

5.5.2 Precision

Precision is one of the most important aspect of the algorithm for longitudinal moni-

toring of PAD plaque burden, because a systematic bias may cancel out when VWA

change is measured from baseline to follow-up. The sensitivity to initialization was

computed using five repeated segmentations with different initializations. The algo-

rithm yielded ICC greater than 0.93% (ICC of 0.949 for VW region), which indicates

a high consistency between repeated measurements. CV of 6.69% (see Table 5.2) for

VWA indicates that the algorithm was robust to initialization and selection of first

and last slices. One of the main strengths of the algorithm is that SD of the algorithm

(2.3 mm2) is smaller than the VRMSE of 6.6 mm2 [14] between two repeated manual

segmentations.
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5.5.3 Comparison to previous methods

Here we briefly describe the algorithmic differences of the proposed method to com-

parative methods and then focus on comparison of algorithms for femoral artery

MR segmentation. Although, comparable segmentation algorithms to the proposed

segmentation algorithm have been reported for carotid artery segmentation, the pro-

posed method is distinct from the prior studies [16, 28] both in application and theory.

The proposed CCMF is a novel flow-maximization framework with n coupled sources

and sinks, which solves n coupled min-cut problems efficiently, whereas prior stud-

ies [16, 17, 21] describe a single min-cut problem with a single source-sink max-flow

scheme.

Numerous algorithms [29, 30, 31, 32] have been developed specifically for segment-

ing tubular structures. Unlike our proposed algorithm, most of these algorithms were

developed for segmenting only the vessel lumen.

To our knowledge, only one study [14] has been reported for femoral artery lumen

and outer wall segmentation, which was performed in 2D, one boundary and one slice

at a time. However, the proposed algorithm segments both boundaries simultaneously

in 3D by enforcing spatial consistency prior. Our algorithm yielded comparably ac-

curate results to Chiu et al. [14] for VWA while requiring fewer user interactions and

less computation time (≈ 10 s vs. 230–290 s). Currently, most of the observer time

is used for identifying the medial axis of the artery, which may be further improved

by a centerline detection algorithm with minimal user interactions.

References

[1] E. Ukwatta, J. Yuan, B. Chiu, Q. Qu, M. Rajchl, and A. Fenster, “Joint seg-
mentation of 3d femoral lumen and outer wall surfaces from MR images,” in
MICCAI, 2013. 165, 169

[2] F. A. Arain and L. T. Cooper Jr, “Peripheral arterial disease: diagnosis and
management,” in Mayo Clinic Proceedings, vol. 83, no. 8. Elsevier, 2008, pp.
944–950. 165

[3] N. Shammas, “Epidemiology, classification, and modifiable risk factors of periph-
eral arterial disease,” Vascular health and risk management, vol. 3, no. 2, p. 229,
2007. 165



189

[4] D. Isbell, C. Meyer, W. Rogers, F. Epstein, J. DiMaria, N. Harthun, H. Wang,
and C. Kramer, “Reproducibility and reliability of atherosclerotic plaque volume
measurements in peripheral arterial disease with cardiovascular magnetic reso-
nance,” Journal of Cardiovascular Magnetic Resonance, vol. 9, no. 1, pp. 71–76,
2007. 165, 166

[5] M. H. Criqui, “Systemic atherosclerosis risk and the mandate for intervention in
atherosclerotic peripheral arterial disease,” The American journal of cardiology,
vol. 88, no. 7, pp. 43–47, 2001. 165

[6] Z.-J. Zheng, A. R. Sharrett, L. E. Chambless, W. D. Rosamond, F. J. Nieto, D. S.
Sheps, A. Dobs, G. W. Evans, and G. Heiss, “Associations of ankle-brachial
index with clinical coronary heart disease, stroke and preclinical carotid and
popliteal atherosclerosis: the atherosclerosis risk in communities (aric) study.”
Atherosclerosis, vol. 131, no. 1, p. 115, 1997. 165

[7] B. A. Golomb, T. T. Dang, and M. H. Criqui, “Peripheral arterial disease mor-
bidity and mortality implications,” Circulation, vol. 114, no. 7, pp. 688–699,
2006. 165

[8] J. Chi, B. Chiu, Y. Cao, X. Liu, J. Wang, N. Balu, C. Yuan, and J. Xu, “Assess-
ment of femoral artery atherosclerosis at the adductor canal using 3d black-blood
mri,” Clinical radiology, 2013. 165, 166

[9] A. B. I. Collaboration, F. Fowkes, G. Murray, I. Butcher, C. Heald, R. Lee,
L. Chambless, A. Folsom, A. Hirsch, M. Dramaix et al., “Ankle brachial index
combined with framingham risk score to predict cardiovascular events and mor-
tality,” JAMA: the journal of the American Medical Association, vol. 300, no. 2,
pp. 197–208, 2008. 165

[10] A. W. Pollak and C. M. Kramer, “Mri in lower extremity peripheral arterial
disease: Recent advancements,” Current cardiovascular imaging reports, vol. 6,
no. 1, pp. 55–60, 2013. 166

[11] N. Balu, J. Wang, X. Zhao, T. Hatsukami, and C. Yuan, “Targeted multi-contrast
vessel wall imaging of bilateral peripheral artery disease,” in Proc. Intl. Soc. Mag.
Reson. Med, vol. 18, 2010, p. 3685. 166

[12] N. Balu, V. L. Yarnykh, B. Chu, J. Wang, T. Hatsukami, and C. Yuan, “Carotid
plaque assessment using fast 3d isotropic resolution black-blood mri,” Magnetic
Resonance in Medicine, vol. 65, no. 3, pp. 627–637, 2011. 166

[13] N. Bianda, M. Di Valentino, D. Périat, J. M. Segatto, M. Oberson, M. Moccetti,
I. Sudano, P. Santini, C. Limoni, A. Froio et al., “Progression of human carotid
and femoral atherosclerosis: a prospective follow-up study by magnetic resonance



190

vessel wall imaging,” European heart journal, vol. 33, no. 2, pp. 230–237, 2012.
166

[14] B. Chiu, J. Sun, X. Zhao, J. Wang, N. Balu, J. Chi, J. Xu, C. Yuan, and
W. Kerwin, “Fast plaque burden assessment of the femoral artery using 3d black-
blood mri and automated segmentation,” Medical Physics, vol. 38, p. 5370, 2011.
xv, 166, 167, 168, 169, 177, 179, 185, 186, 187, 188

[15] R. van’t Klooster, P. de Koning, R. Dehnavi, and J. e. a. Tamsma, “Automatic
lumen and outer wall segmentation of the carotid artery using deformable 3D
models in MR angiography and vessel wall images,” J. Magn. Reson. Im., vol. 35,
2011. 166

[16] E. Ukwatta, J. Yuan, M. Rajchl, D. Tessier, and A. Fenster, “3D carotid multi-
region MRI segmentation by globally optimal evolution of coupled surfaces,”
IEEE Transactions of medical imaging, vol. 32, no. 4, pp. 770–85, 2013. 166, 188

[17] E. Bae, J. Yuan, X.-C. Tai, and Y. Boycov, “A fast continuous max-flow approach
to non-convex multilabeling problems,” UCLA, Technical report CAM-10-62,
2010. 170, 173, 175, 176, 188

[18] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient nd image segmentation,”
International Journal of Computer Vision, vol. 70, no. 2, pp. 109–131, 2006. 171

[19] M. Rajchl, J. Yuan, J. A. White, C. M. Nambakhsh, E. Ukwatta, F. Li, J. Stirrat,
and T. M. Peters, “A fast convex optimization approach to segmenting 3d scar
tissue from delayed-enhancement cardiac mr images,” in Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2012. Springer, 2012, pp.
659–666. 171

[20] J. Yuan, E. Ukwatta, X.-C. Tai, A. Fenster, and C. Schnoerr, “A fast global
optimization-based approach to evolving contours with generic shape prior,”
UCLA, Technical report CAM-12-38, 2012. 173

[21] J. Yuan, E. Bae, and X. Tai, “A study on continuous max-flow and min-cut
approaches,” in CVPR 2010. 175, 176, 188

[22] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, September 1999.
175, 176

[23] W. A. Barrett and E. N. Mortensen, “Interactive live-wire boundary extraction,”
Medical Image Analysis, vol. 1, no. 4, pp. 331–341, 1997. 177

[24] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale vessel en-
hancement filtering,” Medical Image Computing and Computer-Assisted Inter-
ventationMICCAI98, pp. 130–137, 1998. 177



191

[25] W. Kerwin, D. Xu, F. Liu, T. Saam, H. Underhill, N. Takaya, B. Chu, T. Hat-
sukami, and C. Yuan, “Magnetic resonance imaging of carotid atherosclerosis:
plaque analysis,” Topics in Magnetic Resonance Imaging, vol. 18, no. 5, pp.
371–378, 2007. 179

[26] K. Zou, S. Warfield, A. Bharatha, C. Tempany, M. Kaus, S. Haker, W. Wells,
F. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality
based on a spatial overlap index,” Academic Radiology, vol. 11, no. 2, pp. 178–
189, 2004. 179

[27] K. McGraw and S. Wong, “Forming inferences about some intraclass correlation
coefficients.” Psychological methods, vol. 1, no. 1, p. 30, 1996. 179

[28] E. Ukwatta, J. Yuan, M. Rajchl, and A. Fenster, “Efficient global optimization
based 3D carotid AB-LIB MRI segmentation by simultaneously evolving coupled
surfaces,” in MICCAI, ser. LNCS, N. Ayache, H. Delingette, P. Golland, and
K. Mori, Eds., vol. 7512, 2012, pp. 377–384. 188

[29] F. Benmansour and L. D. Cohen, “Tubular structure segmentation based on
minimal path method and anisotropic enhancement,” International Journal of
Computer Vision, vol. 92, no. 2, pp. 192–210, 2011. 188

[30] H. Li and A. Yezzi, “Vessels as 4-d curves: Global minimal 4-d paths to extract
3-d tubular surfaces and centerlines,” Medical Imaging, IEEE Transactions on,
vol. 26, no. 9, pp. 1213–1223, 2007. 188

[31] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3d ves-
sel lumen segmentation techniques: Models, features and extraction schemes,”
Medical image analysis, vol. 13, no. 6, pp. 819–845, 2009. 188

[32] T. Pock, C. Janko, R. Beichel, and H. Bischof, “Multiscale medialness for robust
segmentation of 3d tubular structures,” in Proc. Comp. Vis. Winter Workshop,
Austria, 2005. 188



192

Chapter 6

Summary and future directions

6.1 Summary

With improved strategies to treat atherosclerosis non-surgically and cost effectively,

sensitive and non-invasive imaging modalities that allow quantification of the plaque

burden are becoming more important in the management of patients who suffer from

atherosclerosis. The work of this dissertation was motivated by the need for more

informative measurements of the plaque burden (e.g., VWV). For translating such

volumetric measurements to clinical research and subsequently to clinical care, devel-

opment and validation of semi-automated algorithms for segmentation of the artery

lumen and outer wall that reduce the overall observer time and observer variability

are vital.

In this dissertation, four semi-automated algorithms were described for segmenting

the lumen and outer wall boundaries from: (1) 3D carotid US images, (2) 3D carotid

MR images, and (3) 3D femoral MR images. Development of the segmentation al-

gorithms described in this dissertation are aimed toward alleviating measurement

burden of the observer, which is a main requirement for use of 3D measurements in

practice. Algorithms for each segmentation problem were developed by integrating

information extracted from the image with domain knowledge and user interactions.

Domain knowledge of the minimal separation between surfaces were used as an inter-

surface constraint in all the cases, while the amount of user interaction was dependent

on the degree of distinguishable features of each boundary in each modality. The algo-

rithms were finally validated by comparison to manual delineations made by trained

observers.

An ideal algorithm is expected to yield high accuracy, high precision, and fast

computation time, and require fewer interactions and less expertise than manual

segmentation. While it’s challenging to develop methods that yield all five criteria

for medical image segmentation problems of this dissertation, some of the criteria was

achieved as described below.
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6.2 2D slice-wise segmentation of carotid 3DUS

images (Chapter 2)

A semi-automated algorithm based on the SFLS method was described for segmenta-

tion of the carotid artery lumen and outer wall from 3DUS images. To our knowledge,

this was the first published method to segment both the carotid outer wall and lu-

men boundaries from 3DUS images for the purpose of generating VWV. To address

the challenges of the MAB and LIB segmentations from 3DUS images, user interac-

tions on each slice and inter-surface constraints were integrated into the segmentation

method. In total, nine energy functions were used for the segmentation: four ener-

gies for the outer wall and five energies for the lumen. We introduced two of the

anchor-point based and boundary-separation based energies and the other energies

were proposed previously.

The algorithm was validated with respect to volume-, region-, and boundary

distance-based metrics using 21 3DUS images. The algorithm reduced the need for

operator interaction, and generated VWV measurements with high precision (CV <

6%) and accuracy (DSC > 95%). The user was required to choose only four anchor

points on each boundary for each transverse slice. The algorithm was able to reduce

the operators time by 66% (2.8 min from 8.3 min) compared to manual segmentation

for segmenting 1 cm length of the artery. The MDD of VWV was determined to be

less than the average anticipated change within seven months, permitting clinical use

of our tool after a seven-month interval between baseline and follow-up to monitor

treatment response. The algorithm has been integrated into an in-house software

platform, 3D Quantify, which is currently being used in clinical trials.

6.3 3D segmentation of carotid 3DUS images

(Chapter 3)

To reduce the number of interactions further, the 2D algorithm was extended into 3D.

The 3D algorithm is also based on the SFLS method and uses ten energy functions.

Initialization of the algorithm requires the observer to choose anchor points on each

boundary on a set of transverse slices with a user-specified ISD, in which larger ISD

requires fewer user interactions than smaller ISD. To our knowledge, this method is
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the first published 3D algorithm for segmenting both the MAB and LIB of the CCA

from 3DUS images for the purpose of generating VWV. Similar to the 2D method,

we integrated regional- and boundary-based image statistics, expert initializations,

and anatomically motivated boundary separation into the segmentation.

The 3D algorithm was evaluated using the same data set used in Chapter 2 and

was compared to the 2D algorithm. The 3D segmentation algorithm provided high

accuracy (i.e., DSC > 90% for ISDs of 1, 2, and 3 mm) in terms of volume-, region-,

and distance-based metrics. The algorithm reduced user time by ≈ 79% compared

to manual segmentation. The algorithm also reported MDD smaller than previously

reported VWV change of 120 mm3/yr in generating VWV. The method provided

comparable accuracy and intra-observer variability (CV of 6.8 % for ISD of 3 mm)

results to previous 2D segmentation method [1], with fewer user interactions and

shorter segmentation time, when ISD of 2 mm or more is used for the initialization.

6.4 3D segmentation of carotid MR images

(Chapter 4)

A novel multi-region segmentation algorithm based on convex max-flow was described

to segment the carotid artery lumen and outer wall from black-blood MR images.

Unlike the level set algorithms described in Chapter 4 and 5, this algorithm simulta-

neously segments the outer wall and lumen surfaces, while enforcing an inter-surface

constraint implicitly. As opposed to the boundary-based interactions in our previous

algorithms, The initialization of the algorithm performed is by choosing voxels inside

the lumen, outer wall, and background regions. The proposed global optimization

approach for simultaneous propagation of the outer wall and lumen surfaces provides

a fast segmentation of carotid, hence the measurement of carotid atherosclerosis. The

algorithm required user interaction only on a single slice of the 3D image compared

to previous methods [2, 3] requiring interactions on every slice. The algorithm was

parallelized using GPU to increase the computational speed, thus reducing user time

by 93% (0.78 vs. 12 min) compared to manual segmentations.

The algorithm yielded high accuracy (DSC >90%). Experiments show the pro-

posed method is faster and reproducible, in terms of intra- and inter- observer vari-

ability (intra-observer CV < 5.6% and inter-observer CV < 6.6%), and requires fewer
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user interactions than the previous methods [2, 3]. It can be used in clinical tri-

als involving the monitoring of carotid atherosclerosis using 3D MR imaging-based

biomarkers.

6.5 3D segmentation of femoral MR images

(Chapter 5)

We developed and validated a novel algorithm based on convex max-flow to segment

the femoral arteries that enforces a tubular shape prior and an inter-surface consis-

tency of the outer wall and lumen to maintain a minimum separation distance between

the two surfaces. The developed algorithm is the first 3D segmentation algorithm for

delineating the femoral lumen and outer wall from MR images. The algorithm re-

quired the observer to choose only about ten points on the medial axis of the artery

to yield the 3D surfaces of the lumen and outer wall, which reduced the operator time

by 97% (1.8 vs. 70–80 min) compared to the manual segmentation.

Our algorithm yielded high accuracy (i.e., DSC ≥ 85% and sub-millimeter error

values for MAD and MAXD) for both the femoral lumen and outer wall. The algo-

rithm also yielded high reproducibility (i.e., ICC of 0.95 and CV as low as 6.69% for

VWA) for generating VWA, which is the most important aspect of the algorithm for

longitudinal monitoring of PAD plaque burden, because a systematic bias may cancel

out when VWA change is measured from baseline to follow-up.

6.6 Limitations

One of main limitations of this dissertation is the lack of ground truth for evaluating

the algorithms. We used manual segmentation as a surrogate of ground truth, as

commonly reported in other image segmentation studies. However, it is not known

whether the regions of disagreement arise from inaccuracies in the algorithm, or from

inaccuracies in manual segmentation. Although phantoms with a known geometry

may be used to establish a ground truth, it is not realistic to use phantoms for the

purposes of validating accuracy of the algorithm, since they do not simulate charac-

teristics of patients’ real 3DUS and MR images with sufficient fidelity. Moreover, the

algorithm may be validated with digital histology images of excised carotid specimens
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as ground truth. However, such validation process is prone to many sources of errors

including the registration error of in-vivo images to digital histopathology images of

excised specimens, and the shrinking and deformation that occurs in fixing and slicing

the excised specimens.

In this dissertation, we have used 21 3DUS images in Chapter 2 and 3, 38 MR

images in Chapter 4, and 10 MR images in Chapter 5 for validation. While it is impor-

tant to include a larger number of images in the studies for a rigorous validation, the

number of images is limited by the requirement for repeated manual segmentations.

The limitations specific to each algorithm described in this dissertation are de-

scribed as follows:

Chapter 2 and 3: The 3DUS segmentation algorithms [4, 5] reported a compara-

ble intra-observer CVs to manual segmentation. Since a boundary-based initialization

approach is used to initialize those algorithms, variability of the user is introduced

into segmentation results. However, the multi-region MR segmentation algorithm [6]

reported smaller intra-observer CVs due to a region-based initialization approach.

Since the outer wall segmentation uses localized region- and edge- based energies,

the initial model needs to be close to the desired segmentation boundary for obtaining

accurate segmentations. When the initial spline generated from the anchor points are

away from the effect of the local-region based forces, the algorithm might not converge

to the desired boundary. Moreover, since the lumen boundary is more challenging

to segment, both the 2D and 3D algorithms use segmented the outer wall boundary

to constrain the lumen segmentation from leaking. Therefore, the accuracy of lumen

segmentation depends to some extent on the accuracy of outer wall segmentation.

Both 2D and 3D algorithms for 3DUS images use a large number of energies, thus

have a large number of parameters. When the parameter space is large, obtaining a

optimal set of parameter values is challenging.

Chapter 4: For this study, the subjects had moderate stenosis (30–50%) as

measured previously with B-mode ultrasound. None of the subjects had ultrasound

evidence of hemodynamically severe carotid artery stenosis. Thus, the maximum

AB-LIB separation prior (see Section 4.3.2.5) may pose problems for segmentation

of severely diseased arteries with the current methodology of initializing just a single

transverse slice, especially when wall intensities of the diseased region may be more

similar to the background. These cases would require additional user inputs in the
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form of hard constraints for the critical regions, and then a repeated segmentation.

The combinatorial and continuous max-flow techniques can readily integrate such

user interactions into the repeated optimization process as an editing/refinement

step [7, 8].

Chapter 5: Due to the reorientation step of the femoral MR images (see

Section 5.3.2), the femoral MR segmentation algorithm relies on accurate extraction

of the medial axis of the femoral artery. Therefore, we currently employ a semi-

automated approach to extract the medial axis. If the medial axis is not accurate,

it will substantially affect the segmentation results. To avoid this, the observer can

visually verify the medial axis for correctness before the segmentation is performed.

6.7 Future directions

Since the number of patients suffering from carotid atherosclerosis, and the number

of novel treatments for carotid atherosclerosis are expected to grow rapidly, it is

important to continue to develop and validate non-invasive, cost-effective, and direct

measurements of atherosclerosis for more accurately stratifying risk of stroke. As

such, several future directions that would benefit from the developed segmentation

methods are discussed below.

6.7.1 Towards automated segmentation

An immediate future direction is automating the developed semi-automated segmen-

tation algorithms. While it is challenging to fully automate 3DUS segmentation

approaches, the user interactions may be reduced further. However, segmentation

algorithms for carotid and femoral MR images may be fully automated.

For 3DUS carotid segmentation, when the segmentation of the baseline 3DUS im-

age is obtained using the developed approach in Chapter 3, the segmentation process

may be automated for follow-up 3DUS images. This may be achieved by registering

the follow-up 3DUS image to the baseline 3DUS image using a deformable registra-

tion algorithm [9]. The baseline segmentation model can then be registered to the

follow-up 3DUS image using the same transform, which can then be used as the

initialization for segmentation.
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For carotid MR segmentation, a large set of training MR images could be used to

generate the intensity model PDFs for the lumen, outer wall, and background regions,

an average MR image, and a multi-organ atlas. An atlas based approach can then be

employed to segment the carotid artery and surrounding structures. A new patient

MR image would be first registered to the average MR image and the model would

then be transformed to the new image as the initialization. When the initialization

model is created for the new image, the segmentation can be performed using the

coupled surface segmentation algorithm described in Chapter 4.

Similar to carotid MR segmentation, intensity model PDFs can be generated from

a training data set for femoral MR segmentation. When the user specifies the first and

last transverse slices for segmentation, an automated centerline extraction method [10]

may be applied to generated the centerline. When the centerline is extracted, the rest

of the approach in Chapter 5 can be applied to generate the femoral lumen and outer

wall surfaces.

6.7.2 Adaptive parameters and parameter optimization

In the segmentation algorithms presented in this dissertation, a fixed set of parameters

were used for algorithm evaluation. The parameters were empirically optimized by

perturbing one parameter at a time while holding other parameters constant. How-

ever, this parameter optimization method may not necessarily lead to optimal set of

parameter values. To avoid this issue, the parameters can be optimized using the

Powell’s method [11] by finding and optimizing along the conjugate directions.

For each algorithm presented in this dissertation, set of algorithm parameters were

empirically optimized using a small set of training data. However, due to the inherent

variations in medical images, fixed set of parameters may not be able to address the

variations in medical image datasets and yield accurate segmentations for each image.

Therefore, a method to adaptively adjust parameters based on information derived

from the current image may improve the accuracy of segmentation [12, 13].

6.7.3 3DUS carotid ICA segmentation

The 3DUS segmentation methods described in Chapter 2 and 3 are validated only

for segmenting the carotid CCA. Since quantifying plaque burden in the carotid ICA

is also clinically important, the algorithms for 3DUS segmentation can be extended
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to include segmentation of the carotid ICA, similar to the carotid MR segmentation

algorithm described in Chapter 4.

6.7.4 Plaque composition and inflammation

A plaque could remodel from a vulnerable plaque to a stable plaque, without essen-

tially change in size during medical treatment [14]. Therefore, volumetric measure-

ments alone are not adequate to stratify plaque vulnerability to rupture and cause

ischemic stroke. The pathophysiology of carotid plaques dictates that morphologi-

cal and compositional characterization are required for identification of vulnerable

plaques [15].

Plaque composition measurements and inflammation are strong indicators of

plaque vulnerability [16]. Collagen rich plaques are more stable and respond well

to interventions such as angioplasty and stent deployment. Lipid rich plaques are

heterogeneous in texture, are relatively unstable, but are more likely to regress with

dietary changes and drug therapy [17]. Ulcerated plaques and plaques with a thin

fibrous cap and a large lipid core have been known to have a high risk for stroke.

Plaques with high calcium content, especially when located superficially, are consid-

ered to be less vulnerable to rupture [18]. Thus, plaque characterization is useful

in selecting the appropriate clinical intervention. Moreover, sensitive plaque charac-

terization will provide valuable information in longitudinal studies of progression or

regression following lipid lowering drug and diet modification strategies.

Although the ability of MR imaging for plaque composition [19, 20] and inflam-

mation analysis [21] have been validated, the ability of 3DUS to identify individual

plaque components such as fibrous, necrotic core, loose connective tissue, and calci-

fications is still unclear. Therefore, future work lies in investigating the capability of

3DUS imaging to identify plaque components, which could be validated using digital

histopathology images of endarterectomy specimens and in vivo MR imaging.

Existing literature suggests that grey-scale texture analysis of carotid US images

can distinguish between types of plaques [22]. Collagen rich plaques are echogenic and

homogeneous in US images, while lipid rich plaques are heterogeneous in texture and

echolucent in US images [23]. As such, 3DUS imaging of carotid arteries may provide

non-invasive and cost-effective way of analyzing the plaque composition within the

segmented VW regions. With the on-going carotid atherosclerosis imaging network
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(CAIN) study [24], the developed algorithm can be used as a first step to generate

VW regions for further analysis.

6.7.5 Morphological analysis

In this dissertation, we validated our methods for computing VWV. However, the

proposed algorithms may also be used for computing vessel wall thickness and plaque

(VWT) maps to investigate localized plaque changes in clinical studies. The flat-

tened VWT maps can be averaged over a sample population for disease and control

groups of population studies to study the localized response of plaque due to treat-

ment. In addition to the use in clinical studies, the proposed VWT maps can also be

used to compare segmentation methods to manual segmentation on a point-by-point

basis [25].

6.7.6 Multi-region segmentation of the carotid lumen, outer

wall, and plaque

For 3D carotid US images, algorithms described in Chapter 2 and 3 segment only the

carotid lumen and the outer wall. Despite the popularity of the TPV measurement,

only few previous techniques have been reported for generating TPV [26], due to

numerous challenges faced by algorithms to segment the plaque boundaries. The

multi-region segmentation algorithms described in this dissertation may be extended

for segmenting plaque regions along with the lumen and outer wall regions to generate

both TPV and VWV.

Due to superior vessel wall image contrast of carotid multispectral MR images

and the ability to integrate image information from multiple MR pulse sequences, it

is possible to identify individual plaque components to assess plaque instability, which

is a predictor of stroke [14, 27]. One of the challenges in quantifying measurements of

plaque components is the labour intensive and time consuming segmentation process

of carotid artery VW, and the inherent inter- observer variability of the operators [14].

The developed algorithms may be extended to co-segment multi-spectral MR images

by utilizing information from multiple sources. Moreover, with the availability of

multi-spectral MR images from the CAIN project [24] and carotid endarterectomy

specimens as ground truth for validation, there is potential for developing novel mea-

surements of carotid atherosclerosis, which can assess the vulnerability to rupture.
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In addition to the segmentation algorithms described in this work, various ideas

presented can be utilized in segmentation of other structures. For example, the anchor

point-based energy has been used in the prostate segmentations [28, 29].
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Appendix A

Continuous max-flow based algorithm

In this chapter, the update equations of the continuous max-flow algorithm pro-

posed in Chapter 4 are provided. Using the multiplier augmented method [1], the

Lagrangian function is defined as follows.

L(p, q, u) =

∫
Ω
pb(x) dx+ 〈u1, div q1 − pw + pl〉

+ 〈u2, div q2 − pb + pw〉

along with its associated augmented Lagrangian function

Lc(p, q, u) =L(p, q, u)− c

2
‖ div q1 − pw + pl‖2

− c

2
‖ div q2 − pb + pw‖2

where c > 0 is constant.

The new continuous max-flow algorithm can therefore be summarized as follows:

for the k-th iteration,

• Update the flow functions simultaneously (flow maximization) by

qk+1
i (x) := arg max

|qi(x)|≤αi
Lc(p

k, qi, q
k
j 6=i, u

k) , (A.1)

where i = 1, 2;

pk+1
i (x) := arg max

pi(x)≤Di(x)
Lc(pi, p

k
j 6=i, q

k, uk) , (A.2)

where i = l, w, b.

• Update the labeling functions ui(x), i = 1, 2, by

uk+1
1 (x) = uk1(x)− c

(
div q1 − pw + pl

)
(x)
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and

uk+1
2 (x) = uk2(x)− c

(
div q2 − pb + pw

)
(x) .

The flow-maximization steps (A.1) and (A.2) of the proposed algorithm can

be fully parallelized. In this paper, we implement the proposed continuous max-

flow algorithm on a GPU and obtain a high computational performance. The pro-

posed continuous max-flow algorithm converges at the two optimal labeling functions

u∗1,2(x) ∈ [0, 1], which satisfy u∗1(x) ≤ u∗2(x) for ∀x ∈ Ω. Note that, in Prop. 3 of

Chapter 4, a parameter γ ∈ (0, 1] is chosen to threshold u∗1,2(x) to be u
γ
1,2(x) ∈ {0, 1}.

The labeling functions u
γ
1,2(x) indicate the new positions of the two surfaces CLIB and

CAB at the next time t + 1, which are globally optimal to the optimization problem

(4.17), and in turn to (4.15).
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