11,659 research outputs found

    An easily implemented agro-hydrological procedure with dynamic root simulation for water transfer in the crop–soil system: validation and application

    Get PDF
    Models for water transfer in the crop–soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop–soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop–soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration

    Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Get PDF
    Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i) compare different methods for determining soil hydraulic parameters and ii) evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone) simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a) laboratory measured retention and hydraulic conductivity data and b) field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c) Rawls and Brakensiek, d) HYPRES, and e) ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter a of the van Genuchten curve. This is reflected in a variability of the modeling results which is, as expected, different for each model and each variable analysed. The variability of the simulated water content in the root zone and of the bottom flux for different soil hydraulic parameter sets is found to be often larger than the difference between modeling results of the two models using the same soil hydraulic parameter set. Also we found that a good agreement in simulated soil moisture patterns may occur even if evapotranspiration and percolation fluxes are significantly different. Therefore multiple output variables should be considered to test the performances of methods and model

    A second-order Budkyo-type parameterization of landsurface hydrology

    Get PDF
    A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature

    Effect of fire induced water repellency on soil hydraulic properties and water flow

    Get PDF
    Water infiltration into the root zone, its retention in soil and drainage from the soil profile, are highly sensitive to the presence, degree and persistence of soil water repellency (SWR). Prolonged drought periods and wildfires can increase SWR substantially, thus    the aim of this study was to determine the effect of forest fire-induced water repellency    on soil hydraulic properties, infiltration and water flow in unsaturated soil (vadose) zone. Infiltration experiments with water and ethanol were conducted on forest sites, selected according to their exposure to fire: heavily burned (A), burned (B) and non-affected as the control site (C). Infiltration data were used as an input for inverse determination of soil hydraulic parameters required for computer model calibration (HYDRUS 2D/3D). Then, a one-year climatic scenario for 2016 with measured meteorological data was simulated using HYDRUS-1D software. Data showed that in the case of soil exposure to high temperatures (forest fires), a relatively large increase of SWR is observed. Compared to the control plot, a considerably greater difference between the hydraulic conductivity, Ks, values for water and ethanol was found at both fire affected plots. This suggested positive relationship between soil water repellency and reduced water infiltration. Numerical simulation of the intensive (extreme) rainfall event clearly showed that SWR affects soil water balance by reducing the infiltration and increasing the surface runoff

    Evolution of the spherical cavity radius generated around a subsurface emitter

    Get PDF
    The emitter discharge in subsurface drip irrigation can be affected by soil properties. A positive pressure develops at the emitter outlet where a spherical cavity is assumed to form. In steady-state conditions, the pressure in the soil relates to soil hydraulic 5 properties, the emitter discharge, and the cavity radius. This pressure in the soil is very sensitive to the cavity radius. In this paper, the development of the cavity around the emitter outlet was measured for various emitter discharges in laboratory tests carried out in containers with uniform loamy soils. A trend between soil pressure and emitter discharge was established that illustrates the performance of buried emitters in the 10 field. Its application to the prediction of water distribution in subsurface drip irrigation units and its effect on the estimation of irrigation performance is also show

    Estimation of effective hydrologic properties of soils from observations of vegetation density

    Get PDF
    A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface

    Describing the soil physical characteristics of soil samples with cubical splines

    Get PDF
    The Mualem-Van Genuchten equations have become very popular in recent decades. Problems were encountered fitting the equations¿ parameters through sets of data measured in the laboratory: parameters were found which yielded results that were not monotonic increasing or decreasing. Due to the interaction between the soil moisture retention and the hydraulic conductivity relationship, some data sets yield a fit that seems not to be optimal. So the search for alternatives started. We ended with the cubical spline approximation of the soil physical characteristics. Software was developed to fit the spline-based curves to sets of measured data. Five different objective functions are tested and their results are compared for four different data sets. It is shown that the well-known least-square approximation does not always perform best. The distance between the measured points and the fitted curve, as can be evaluated numerically in a simple way, appears to yield good fits when applied as a criterion in the optimization procedure. Despite an increase in computational effort, this method is recommended over the least square method

    Measurement and Modeling of Unsaturated Hydraulic Conductivity

    Get PDF

    Integrated basin modeling

    Get PDF
    Simulation models / Irrigation management / Water balance / Groundwater / River basins / Hydrology / Flow / Evapotranspiration / Precipitation / Soils / Turkey / Gediz Basin

    Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC

    Get PDF
    Degradation of water quality has been widely observed in China, and loadings of nitrogen (N) and other nutrients from agricultural systems play a key role in the water contamination. Process‐based biogeochemical models have been applied to quantify nutrient loading from nonpoint sources at the watershed scale. However, this effort is often hindered by the fact that few existing biogeochemical models of nutrient cycling are able to simulate the two‐dimensional soil hydrology. To overcome this challenge, we launched a new attempt to incorporate two fundamental hydrologic features, the Soil Conservation Service curve and the Modified Universal Soil Loss Equation functions, into a biogeochemistry model, Denitrification‐Decomposition (DNDC). These two features have been widely utilized to quantify surface runoff and soil erosion in a suite of hydrologic models. We incorporated these features in the DNDC model to allow the biogeochemical and hydrologic processes to exchange data at a daily time step. By including the new features, DNDC gained the additional ability to simulate both horizontal and vertical movements of water and nutrients. The revised DNDC was tested against data sets observed in a small watershed dominated by farmlands in a mountainous area of southwest China. The modeled surface runoff flow, subsurface drainage flow, sediment yield, and N loading were in agreement with observations. To further observe the behaviors of the new model, we conducted a sensitivity test with varied climate, soil, and management conditions. The results indicated that precipitation was the most sensitive factor determining the rate of N loading from the tested site. A Monte Carlo test was conducted to quantify the potential uncertainty derived by variations in four selected input parameters. This study demonstrates that it is feasible and effective to use enhanced biogeochemical models such as DNDC for quantifying N loadings by incorporating basic hydrological features into the model framework
    corecore