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Modeling nitrogen loadings from agricultural soils
in southwest China with modified DNDC

Jia Deng,1 Bo Zhu,2 Zaixing Zhou,1 Xunhua Zheng,1 Changsheng Li,3 Tao Wang,2
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[1] Degradation of water quality has been widely observed in China, and loadings of
nitrogen (N) and other nutrients from agricultural systems play a key role in the water
contamination. Process‐based biogeochemical models have been applied to quantify
nutrient loading from nonpoint sources at the watershed scale. However, this effort is often
hindered by the fact that few existing biogeochemical models of nutrient cycling are
able to simulate the two‐dimensional soil hydrology. To overcome this challenge, we
launched a new attempt to incorporate two fundamental hydrologic features, the Soil
Conservation Service curve and the Modified Universal Soil Loss Equation functions, into
a biogeochemistry model, Denitrification‐Decomposition (DNDC). These two features
have been widely utilized to quantify surface runoff and soil erosion in a suite of
hydrologic models. We incorporated these features in the DNDC model to allow the
biogeochemical and hydrologic processes to exchange data at a daily time step. By
including the new features, DNDC gained the additional ability to simulate both horizontal
and vertical movements of water and nutrients. The revised DNDC was tested against data
sets observed in a small watershed dominated by farmlands in a mountainous area of
southwest China. The modeled surface runoff flow, subsurface drainage flow, sediment
yield, and N loading were in agreement with observations. To further observe the
behaviors of the new model, we conducted a sensitivity test with varied climate, soil, and
management conditions. The results indicated that precipitation was the most sensitive
factor determining the rate of N loading from the tested site. A Monte Carlo test was
conducted to quantify the potential uncertainty derived by variations in four selected input
parameters. This study demonstrates that it is feasible and effective to use enhanced
biogeochemical models such as DNDC for quantifying N loadings by incorporating basic
hydrological features into the model framework.

Citation: Deng, J., B. Zhu, Z. Zhou, X. Zheng, C. Li, T. Wang, and J. Tang (2011), Modeling nitrogen loadings from
agricultural soils in southwest China with modified DNDC, J. Geophys. Res., 116, G02020, doi:10.1029/2010JG001609.

1. Introduction

[2] Since the Green Revolution in the late 1950s, synthetic
fertilizers have played a key role in sustaining ever‐growing
agricultural production. However, low fertilizer use effi-
ciency results in a significant portion of the nutrients being
transferred into bodies of water worldwide [Carpenter et al.,
1998; Galloway et al., 2003; Karlen, 1998; Tilman et al.,

2001]. For instance, Seitzinger et al. [2005] estimated that
about 25 Tg of dissolved inorganic nitrogen (N) was exported
by rivers on a global scale, of which about 21% resulted
directly from synthetic fertilizer use. In China, about 7% of
the applied fertilizer N (about 1.8 Tg N) was estimated to
have entered bodies of water in 2004 [Z. Zhu et al., 2006].
Nonpoint (diffuse) source N pollution has been recognized as
a primary source of eutrophication and groundwater con-
tamination in many countries [Novotny and Olem, 1994;
Rabalais, 2002; Seitzinger, 2008]. The loadings of N from
soil into water systems result from the interaction between
water movements and N transformation in the soil matrix
[Neitsch et al., 2001]. A large number of experiments con-
ducted in the field and in laboratories have demonstrated the
complex relationship between N loading and its drivers (e.g.,
climate, soil texture, crop phenology, farming management)
[Cassman et al., 2002; Jaynes et al., 2001].
[3] During the past 2 decades, two kinds of modeling

approaches have been applied to predict nutrient loadings. On
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the one hand, a number of hydrologic models, such as MIKE
SHE [Refsgaard and Storm, 1995], RHESSys [Band et al.,
2001; Tague and Band, 2004], and SWAT [Arnold et al.,
1998; Neitsch et al., 2001; Saleh et al., 2000], have been
enhanced by incorporating nutrient transport and transfor-
mation into the model frameworks. On the other hand, several
soil biogeochemical models have been modified by including
more accurate hydrologic processes. For example, a pro-
cess‐based model of carbon (C) and N biogeochemistry,
Denitrification‐Decomposition or DNDC, has been modified
to simulate N leaching losses with improved drainage algo-
rithms [Li et al., 2006; Tonitto et al., 2007, 2010]. However,
both approaches based upon hydrology‐ or biogeochemistry‐
oriented models have their advantages and disadvantages.
The hydrologic models incorporate spatial distribution algo-
rithms for simulating water movement at the watershed scale
but usually lack detailed biogeochemical processes for nutrient
transformation. In contrast, the biogeochemical models have
relatively detailed processes for nutrient transformation but
are unable to account for the transport of nutrients through
lateral flow. Some researchers have tried to link the existing
hydrologic and biogeochemical models to let them exchange
input/output parameters [Cui et al., 2005]. However, this
approach was time‐demanding and led to clumsy information
feedback between hydrologic and biogeochemical models.
As water flow and N transformation jointly control N loading
in soils, it would be ideal to integrate the hydrologic process
and detailed nutrient biogeochemistry into a single model
framework. However, few existing models meet the criteria,
considering the absence or simplified representation of com-
plex processes of water or nutrient transformation in these
models [e.g., Boyer et al., 2006; Kimura et al., 2009; Li et al.,
2006]. In this study, we undertook a new attempt to incor-
porate two fundamental hydrological features, the Soil Con-
servation Service (SCS) curve and the Modified Universal
Soil Loss Equation (MUSLE) functions, into a biogeochem-
istry model, DNDC. These two features have been widely
utilized to quantify surface runoff and soil erosion in a suite
of hydrologic models. Here we report the modified DNDC
and the applicability of the new model against field data sets

observed in cropland in a small watershed in southwest
China.

2. Field Site Description

[4] The Yanting Agro‐Ecological Station (N31°16′,
E105°28′, 400–600 m above sea level) is located in a hilly
area of Sichuan Basin in southwest China. The area experi-
ences a subtropical monsoon climate, with an annual mean
temperature of 17.3°C and precipitation of 826 mm during
1981–2006. The local soil is classified as Pup‐Orthic Entisol
in the Chinese Soil Taxonomy, or an Entisol in the U.S. Soil
Taxonomy [Zhu et al., 2009]. The soil has pH of 8.3, bulk
density of 1.33 g cm−3, organic matter content of 8.75 g kg−1,
and saturated hydraulic conductivity of 0.28 mm min−1 [Zhu
et al., 2009]. Lysimeters (8 m × 4 m) with various slopes
were permanently installed in the fields to measure surface
runoff and subsurface drainage leaching flows starting in
2001. The cropping systems, fertilization, and other farming
management practices at the lysimeter plots were consistent
with the management commonly applied in the area. Winter
wheat‐summer maize rotation was adopted during the exper-
imental period from 2004 to 2006. Each of the wheat sea-
sons received 130 kg N ha−1 (as ammonia bicarbonate), 90 kg
P2O5 ha−1 and 36 kg K2O ha−1. Each of the corn seasons
received the same amounts of P2O5 and K2O but 20 kg N ha−1.
The fertilizers were applied basally at the beginning of the
crop season.
[5] During 2004–2006, field measurements were con-

ducted at three replicate lysimeter plots in the Station. Each
plot has an area of 32 m2 with slope of 7°. The soil profile
depth is 60 cm. The measured items included (1) surface
runoff flow, (2) subsurface leaching flow, (3) sediment yield,
(4) particulate and dissolved N concentrations in the surface
runoff flow, (5) subsurface nitrate leaching flux, and (6) crop
yield. Daily and annual water and N fluxes for the surface
runoff and subsurface drainage flow were calculated based
on the measurements of the tested plots [Zhu et al., 2008,
2009]. The technical details of the field experiments have
been described by Zhu et al. [2009].
[6] During the experimental period, the annual precipitation

was 860, 835, and 806 mm for 2004, 2005, and 2006,
respectively, mainly occurring fromMay toOctober (Figure 1)
[Zhu et al., 2009]. Measurements indicated that (1) rainfall
events resulted in significant surface runoff and subsurface
drainage flow from May through October, (2) about 15% of
N fertilizer was lost through the surface runoff and sub-
surface drainage flow, and (3) theN losseswere highly variable
in time, driven by weather, soil, and farming management
conditions [Wang et al., 2006; B. Zhu et al., 2006; Zhu et al.,
2008, 2009]. The 3 year measurements provide a unique data
set containing synchronized water and N fluxes from both
surface runoff and subsurface drainage for a same site. This
data set was used to test the modified DNDC in the study.

3. Model Modifications

[7] We hypothesized that the capacity of a biogeochemistry
model for simulating N loadings could be improved if the
basic hydrological algorithms were incorporated into the
model framework. The DNDCmodel was adopted to test this
hypothesis. DNDC was originally developed for quantifying

Figure 1. Daily average air temperature and precipitation
during 2004–2006 at the experimental site in Yanting Agro‐
Ecological Station, Sichuan, China.
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carbon sequestration and greenhouse gas emissions from
U.S. agricultural lands [Li, 2000; Li et al., 1992a, 1992b, 1994,
1996]. A relatively complete suite of biochemical and geo-
chemical processes (e.g., decomposition, nitrification, deni-
trification, ammonia volatilization, fermentation) has been
embedded in themodel, which enables it to precisely compute
the complex transformations of C and N in agroecosystems.
DNDC consists of two components. The first component
consists of the soil climate, crop growth, and decomposition
submodels that convert primary drivers (e.g., climate, soil
properties, vegetation, and anthropogenic activity) to soil
environmental factors (e.g., temperature, moisture, pH, redox
potential, and substrate concentration gradients). The second
component consists of the nitrification, denitrification, and
fermentation submodels that simulate C and N transforma-
tions mediated by the soil microbial activities. In DNDC,
soil N exists in several pools, including organic N, ammo-
nium, ammonia, and nitrate. Nitrogen exchange between the
pools is driven by a series of biogeochemical reactions,
such as decomposition, nitrification, ammonia volatilization,
ammonium adsorption, denitrification, and nitrate dissolution.
DNDC tracks N dynamics and quantifies the sizes of the
N pools in each layer of the soil profile at a daily or hourly
time step. The original version of DNDC had routines cal-
culating vertical water movement driven by precipitation,
transpiration, evaporation, infiltration, and drainage [Li et al.,
2006; Tonitto et al., 2007, 2010; Zhang et al., 2002]. If
drainage occurs in a soil layer, a fraction of the nitrate existing
in the layer will be distributed into the leachate [Li et al., 2006].
However, the original version of DNDC did not explicitly
simulate surface runoff and was therefore unable to estimate
sediment yield or nutrient transport associated with the sur-
face runoff (Figure 2). This deficiency limited the applica-

bility of DNDC for estimating N loadings from watersheds.
To improve the model’s performance, we incorporated the
SCS curve and the MUSLE functions into the framework of
DNDC.
[8] The SCS curve [Mockus, 1972;Williams, 1995] has been

widely utilized in hydrologic models. By using an empirical
number, the Curve Number or CN, the SCS function calcu-
lates surface runoff flow based on precipitations and several
soil hydrologic parameters shown as follows:

Q ¼ P � Iað Þ2= P þ S � Iað Þ if P > Ia
Q ¼ 0 if P � Ia

ð1Þ

where Q is daily surface runoff (mm H2O), P is daily pre-
cipitation (mm H2O), Ia is the initial water abstraction (the
value accumulated precipitation must exceed before surface
runoff occurs), and S is the soil water retention parameter
(mm H2O).
[9] The retention parameter (S) is related to the Curve

Number (CN) according to SCS equation [Mockus, 1972]:

S ¼ 25400=CN�254 ð2Þ

[10] During the model simulation, the value of S is updated
at a daily time step based on soil water content shown as
follows [Neitsch et al., 2001; Williams, 1995]:

S ¼ Smax � 1� SW= SW þ exp w1 � w2 � SWð Þ½ �f g ð3Þ

where S is daily retention parameter (mm H2O), Smax is the
maximum retention parameter on any given day (mm H2O),
SW is amount of water in soil profile (mm H2O), and w1, w2

are shape coefficients. The parameter Smax is calculated by

Figure 2. Structure of the soil hydrology submodel of DNDC. The solid arrows represent the processes
originally existing in DNDC, and the dotted arrow represents the new process added to the model in this
study.
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solving equation (2) using the curve number in dry moisture
condition (CN1); the CN1 is determined based on the
curve number in average moisture condition (CN2) (see
equation (A4) in Appendix A). The shape coefficients, w1

and w2, are calculated based on the retention parameters
in the dry and moisture conditions (Smax, S3) and several
soil hydrologic parameters (see details in equations (A8)
and (A9) in Appendix A). The value of CN2 is usually
obtained from a table based on the soil permeability and land
use type or determined by calibration [SCS, 1986;White and
Chaubey, 2005].
[11] Theoretically, the Ia value represents initial water

losses due to the soil surface water storage, interception, and
infiltration prior to the occurrence of surface runoff. The Ia
value can be computed by measuring the amount of the
rainfall during the period from the beginning of precipitation
until the occurrence of the surface runoff. In practice, the Ia
value is empirically determined as 0.2 S [Neitsch et al.,
2001].
[12] TheModified Universal Soil Loss Equation (MUSLE)

[Williams, 1975, 1995; Wischmeier and Smith, 1978] calcu-
lates soil erosion based on the surface runoff flow and other
soil surface properties specified as follows:

sed ¼ 11:8 � qpeak � Q � A� �0:56 � K � LS � C � PS � R ð4Þ

where sed is sediment yield (metric ton soil d−1), Q is surface
runoff flow (mm d−1), qpeak represents the peak runoff rate
(m3 s−1), A is the area of a plot or hydrology responsibility
unit (ha), K is the soil erodibility factor, C is the soil surface
cover and management factor, PS is the factor related to soil
conservation management practices, LS is the topographic
factor, and R is the soil coarse fragment factor. The parameter
qpeak is calculated based on rainfall intensity, surface runoff,
time of concentration, etc. (see details in equations (A12)–
(A16) in Appendix A). K can be determined by field mea-
surement or calculated as a function of soil texture (see
equations (A17)–(A21) in Appendix A); it was fixed as 0.4
in this study. C is a function of vegetation coverage, whose
value was fixed as 0.25 in this study. Ps was set as 1. LS is a
function of the slope and slope length (see equations (A22)–
(A24) in Appendix A). R is calculated based on the stone
fraction in the soil (see equation (A25) in Appendix A).
[13] Based on the MUSLE functions, the N losses from

soil erosion can be calculated as described by McElroy et al.
[1976] and Williams and Hann [1978]:

SedN ¼ 0:001concsedN � sed=A � "sedN ð5Þ

where SedN is the sediment N loss with the surface runoff
(kg N ha−1 d−1), concsedN is the concentration of sediment N
in the surface soil (g N tonne−1), sed is the runoff‐induced
sediment yield (metric ton soil d−1), A is the area of the
hydrology responsibility unit (ha), and "sedN is the N
enrichment ratio (see details in equations (A26)–(A28)) in
Appendix A).
[14] The above described SCS curve and MUSLE functions

have been incorporated in DNDC at code level so that the
revised DNDC can simulates both the water flow and N
biogeochemistry in synchrony at daily time step. The mod-
ifications have substantially improved the capacity of the

DNDC for modeling the soil N losses through both surface
runoff and subsurface drainage flows. This two‐dimensional
simulating ability should have set a sound basis for the model
to be applied at watershed scale.

4. Model Tests

[15] To confirm the applicability of the modified DNDC,
we conducted tests against the observed data sets of crop
yield, surface runoff flow, subsurface drainage flow, sedi-
ment yield, and N losses at the experimental site. Because the
revised DNDC contains the SCS and MUSLE functions,
several new input parameters were required to run the model,
including the plot slope, slope length, plot surface area, initial
CN value, soil erodibility factor (K), soil surface cover and
management factor (C), and soil conservation management
factor (Ps). In this study, the values of plot slope, slope length,
and plot surface area were 7°, 8 m, and 32 m2, respectively,
based on the field measurement. The bounds of initial CN, K,
and C (73–83, 0.33–0.45, and 0.20–0.30, respectively) were
set by referring to other studies with similar soil, hydrologic
conditions, and managements [Deng et al., 2003; Gao et al.,
2006; Neitsch et al., 2001; SCS, 1986; Shi et al., 1997;
Wischmeier and Smith, 1978; Zhang et al., 2001]. Through
calibration with 2004 field data, the values of initial CN, K,
and C were fixed as 77, 0.40, and 0.25, respectively. The
P value was set as 1.0, as no specific soil conservation man-
agement practices (e.g., contour tillage, contour strip cropping
or terrace land reforming) took place in the experimental
field. The daily maximum 0.5 h rainfall was determined based
on detailed weather records. The rate of bypass flow through
the soil macropores was 0.2 based on observed subsurface
leaching flow in 2004. In general, the data measured in 2004
were utilized to calibrate the input parameters described
above, and the data from 2005 and 2006 were used for model
validation.
[16] The revised DNDCwas run for 2005 and 2006, and the

modeled results were compared with observations of crop
yield, surface runoff flow, subsurface drainage flow, sediment
yield, and N losses with surface runoff or subsurface drainage
flow. Two statistical indexes, the Nash‐Sutcliffe index of
model efficiency (ME) and the coefficient of determination
(R2), were used for quantitative comparisons. ME is a mea-
sure of improvement in prediction as compared to the mean
of observations (equation (6)). A positive ME value indicates
that the model prediction is better than the mean of observa-
tions, and the best model performance has ME value equal to
1 [Miehle et al., 2006; Nash and Sutcliffe, 1970]. The coeffi-
cient of determination (R2) examines the correlation between
model predictions and field observations (equation (7)).

ME ¼ 1�
Pn

i¼1 pi � oið Þ2Pn
i¼1 oi � oð Þ2 ð6Þ

R2 ¼
Pn

i¼1 oi � oð Þ pi � pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 oi � oð Þ2Pn

i¼1 pi � pð Þ2
q

0
B@

1
CA

2

ð7Þ

where oi and pi are the observed and simulated values, o
and p are their averages and n is the number of values.
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4.1. Comparison Between Observed and Modeled
Crop Yields

[17] In agroecosystems, crop growth plays a key role in
determining the soil environment and nutrient status. Correctly
simulating the crop growth is a precondition for modeling
soil biogeochemical processes. The revised DNDC was run
for 3 years (2004–2006) based on the actual climate, soil,
and farming management conditions at the experimental site.
The modeled yields of wheat and maize are in agreement
with observations for all of the seasons, except for maize in
2006 (Figure 3). In 2006, maize growth was depressed by a
short‐term drought occurring in the crop jointing stage in
the experimental field; DNDCmissed the impact of the short‐
term drought. Except for this single season, the modeled
yields deviated from the observations by 7.7% on average
(ranging from 0.4% to 18.7%).

4.2. Comparison Between Observed and Modeled
Surface Runoff and Subsurface Drainage Flows

[18] Observed surface runoff and subsurface drainage flow
showed a clear relationship with the rainfall events in the
experimental field. Driven by the local weather data, soil
properties, and farming management practices, DNDC pro-
duced daily surface runoff and subsurface drainage flows
for 2005 and 2006. The modeled daily surface runoff flow
during the rainfall events ranged from 2.5 to 98.2 mm, with
a mean of 18.1 mm. The results are comparable to observed
measurements, ranging from 4.6 to 83.8 mm with a mean of
18.1 mm. The patterns of the modeled surface runoff flows
also match observations (Figure 4a). The correlation between
the simulated and observed surface runoff is statistically sig-

nificant (R2 = 0.99, p < 0.01; ME = 0.95, Figure 5a). How-
ever, it may be noteworthy that interpreting the accuracy of
simulated extreme surface runoff is difficult due to inadequate
data availability (Figures 4a and 5a, 4 September 2006). The
statistical result could be affected by the fact that measure-
ments only include one extreme event [Moriasi et al., 2007].
In spite of the single event on 4 September 2006, the corre-
lation between the modeled and observed surface runoff is
still high (R2 = 0.92, p < 0.01).
[19] The simulated daily subsurface drainage flows during

rainfall events ranged from 2.6 to 86.6 mm, with a mean of
19.0 mm. These results are in agreement with measurements
ranging from 2.9 to 92.4 mm, with a mean of 19.5 mm.
Figures 4b and 5b show that the patterns and magnitudes of
the modeled and observed subsurface leaching fluxes have a
significant correlation (R2 = 0.97, p < 0.01; ME = 0.96).
These results suggest that the revised DNDC is capable of
simulating both the horizontal and vertical water flows in
the tested field.

4.3. Comparison Between Observed and Modeled
Sediment Yields

[20] The modeled daily sediment yields during rainfall
events ranged from 219 to 11397 kg ha−1, with a mean of
2107 kg ha−1. These results are comparable with measure-
ments ranging from 172 to 11818 kg ha−1, with a mean of
2176 kg ha−1. The model well captured the magnitudes and
seasonal variations of the sediment yields compared with
observations (R2 = 0.99, p < 0.01; ME = 1.00) (Figures 4c
and 5c). Similar to the surface runoff simulations, peak sedi-
ment yield predictions were highly uncertain due to inadequate
observations during intensive storm events (Figure 5c).

4.4. Comparison Between Observed and Modeled
Nitrogen Losses With Surface Runoff or Subsurface
Leaching Flows

[21] DNDC calculates N losses with the surface runoff flow
based on the organic and inorganic N contents in the eroded
soils. The field measurements captured nine episodes of
losses of particulate N, mainly in organic forms, driven by
rainfall events during 2005 and 2006. The measured loss
rates ranged from 0.03 to 7.96 kg N ha−1, with a mean of
1.14 kg N ha−1, while the modeled results ranged from 0.12
to 6.10 kg N ha−1, with a mean of 0.92 kg N ha−1 (Figure 4d).
Comparison between the modeled and measured particulate
N losses gave a high ME value (0.93). Figure 5d demon-
strated a significant zero‐intercept linear regression of the
modeled N losses against observations (R2 = 0.98, p < 0.01).
However, Figure 5d also shows that the model could under-
estimate particulate N losses by about 23% on average. The
total N loss with the surface runoff flow is the sum of the
losses of the N in both particulate and dissolved forms in
the flow. The modeled daily total N losses varied between
0.18 and 8.20 kg N ha−1, with a mean of 1.34 kg N ha−1, a
result that is similar to observations ranging from 0.18 to
8.29 kg N ha−1, with a mean of 1.33 kg N ha−1 (Figure 4e).
There is a significant zero‐incept linear regression between
the simulated and observed daily total N losses (R2 = 1.00,
p < 0.01; ME = 1.00). However, there was one measured
flux on the high end that could skew the statistical result
[Moriasi et al., 2007]. By excluding the single high value

Figure 3. Comparisons between simulated and observed
yields of (a) winter wheat and (b) maize planted in the
experimental field. Observed yields are the mean values of
three replicates. The vertical bars represent standard errors.
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observed on 4 September 2006, we recalculated the R2 and
ME values. The new results still showed significant corre-
lations between the measured and modeled particulate N
losses (R2 0.91 and ME 0.90) or total N losses (R2 0.90 and
ME 0.85).
[22] The original DNDC quantified nitrate leaching loss

by simulating the vertical movement of water as well as the
distribution of nitrate between liquid and solid phases in the
soil profile [Li et al., 2006]. The addition of the SCS and
MUSLE functions improved the simulation of the subsurface
drainage by more accurately estimating surface runoff flow
based upon the water mass balance. In this study, the modeled
daily nitrate leaching losses during the rainfall events ranged
from0.5 to 18.1 kgNha−1, with amean of 5.4 kgNha−1. These
results are comparable to observations ranging from 0.7 to
28.6 kg N ha−1, with a mean of 5.1 kg N ha−1. DNDC basi-
cally captured the seasonal pattern of nitrate losses through
the subsurface drainage flow (Figures 4f and 5f). The corre-
lation between the model outcomes and observations is

statistically significant (R2 = 0.95, p < 0.01; ME = 0.79),
although the slope of 0.79 for the zero‐intercept linear
regression indicates that DNDC could have underestimated
leached nitrate by about 20%.
[23] In summary, results from comparisons between the

observed and modeled surface runoff flow, subsurface
drainage flow, sediment yields, soil N losses, and crop yield
indicate that the revised DNDC is capable of describing
water, sediment, and N fluxes from an agricultural field with
sloping terrain.

5. Sensitivity Analysis

[24] To investigate the general behaviors of the revised
DNDC, we conducted a series of sensitivity tests by varying
several input parameters including climate (precipitation),
landform (slope), soil property (SOC), and management
practice (fertilization). The baseline scenario was set based
on the actual conditions at the experiment site in the Yanting

Figure 4. Simulated and observed (a) surface runoff flows, (b) subsurface drainagewater flows, (c) sediment
yields, (d) particulate nitrogen losses with surface runoff, (e) total nitrogen losses with surface runoff, and
(f) nitrate leaching losses from 2004 to 2006. Observations are mean values of three replicates with standard
error bars.
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Agro‐Ecological Station, which consists of land slope 7°,
annual precipitation 860 mm, SOC content 5.0 g C kg−1 and
nitrogenous fertilizer (ammonia bicarbonate) application
rate 280 kg N ha−1 yr−1. Daily climate data of 2005 were
adopted for the baseline simulation. Alternative scenarios
were created by varying a single input parameter while
keeping others constants. The varied ranges were 1–13° for
slope, 602–1118 mm for precipitation, 0.1–10 g C kg−1 for
SOC content, and 196–364 kgN ha−1 for fertilizer application
rate. The surface runoff flow, subsurface drainage flow,
sediment yield, and N losses simulated with each of the
scenarios were collected for comparison. The sensitivity of
the modeled water, sediment or N fluxes to the input para-
meters was expressed with a sensitivity index (SI) following
Nearing et al. [1990] andWalker et al. [2000]. The sensitivity
index (SI) was calculated as follows:

SI ¼ O2 � O1ð Þ=Oavg

� �
= I2 � I1ð Þ=Iavg
� � ð8Þ

where I1, I2, and Iavg are the minimum, maximum, and
average values of a selected input parameter, O1, O2, and Oavg

are the corresponding modeled fluxes of water, sediment or
N losses.
[25] The calculated SI values are shown in Table 1. The

results indicated that (1) N losses through either surface
runoff or subsurface drainage flow were very sensitive to
variation in precipitation, which dominated almost all of
the tested fluxes; (2) the variation in slope mainly affected
the sediment yield and relevant particulate N loss; and (3) the
variation in fertilizer application rate mainly affected N losses
through subsurface drainage discharge. These results are in
agreement with observations reported by other researchers
[Ng Kee Kwong et al., 2002; Schlesinger et al., 1999] and
imply that the revised DNDC has normal behaviors in sim-
ulating water, sediment, and N fluxes in the agroecosystems
with sloping landforms.

6. Uncertainty Test

[26] When applying a model to predict soil N losses, a
large uncertainty could result from the propagation of the
uncertainties derived from the parameters employed either
in the model structure or from input data. In this study, the

Figure 5. Comparisons between simulated and observed (a) surface runoff flow (mm), (b) subsurface
drainage water flow (mm), (c) sediment yield (kg ha−1), (d) particulate nitrogen loss with surface runoff
(kg N ha−1), (e) total nitrogen loss with surface runoff (kg N ha−1), and (f) nitrate leaching loss (kg N ha−1)
during rainfall events in 2005 and 2006. The solid lines represent the zero‐intercept linear regression.
Observations are the mean values of three duplicates.
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soil hydrologic parameters such as initial CN, K, C, and
bypass flow rate were required to support the SCS and
MUSLE calculations. We empirically fixed the values of the
parameters by calibration with field observations. This pro-
cess could have produced errors in the parameter values.
These errors will be eventually reflected in the modeled
results through the model simulation. To quantify the potential

uncertainty derived from the possible errors in the values of
CN, K, C or bypass flow rate, we performed Monte Carlo
simulations using the Latin Hypercube Sampling strategy
[Helton and Davis, 2003]. As mentioned earlier, the initial
values of CN, K, and C varied from 73 to 83, 0.33–0.45, and
0.20–0.30, respectively. We arbitrarily set the variation for
bypass flow rate between ±25% of the value determined

Table 1. Calculated Sensitivity Indices Quantifying the Impacts of Variations of Four Input Parameters on Water, Sediment, and N
Fluxes Modeled With the Revised DNDCa

Tested Input Parameters SIb

Items Baseline Range SR SDW SL PN TSN NL

Precipitation (mm yr−1) 860 602–1118 2.19 2.13 2.08 2.07 2.13 1.78
Slope (o) 7 1–13 0.36 −0.17 1.11 1.11 0.85 −0.01
SOC content (kg C kg−1) 5 0.1–10 0.00 0.00 0.00 0.90 0.42 0.01
Fertilizer rate (kg N ha−1 yr−1) 280 196–364 0.00 0.00 0.00 0.09 0.15 1.52

aSR, surface runoff; SDW, subsurface drainage water; SL, sediment loading; PN, particulate nitrogen; TSN, total sediment nitrogen; NL, nitrate
leaching.

bSI is the relative sensitivity index; the higher the absolute value of the S, the greater the impact the input has on the output.

Figure 6. Frequency distributions of the (a) surface runoff flows, (b) subsurface drainage water flows,
(c) sediment yields, (d) particulate nitrogen losses with surface runoff, (e) total nitrogen losses with
surface runoff, and (f) nitrate leaching losses produced from 500 simulations in the Monte Carlo test.
The solid arrows indicate the intervals where the baseline‐simulated results fell.
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based on the field measurement. We assumed that the fre-
quency distributions of all the parameters were uniform. In
this study, simulation in 2005 was selected as the base sce-
nario to illustrate the uncertainty derived from input variance.
[27] The initial values of CN, K, C, and bypass flow rate

were randomly picked from the corresponding ranges to
compose a scenario. Five hundred combination scenarios
were then simulated in the Monte Carlo test. The Latin
Hypercube Sampling strategy generated a distribution of
plausible collections of parameter values from the multi-
dimensional distribution. Frequencies of the modeled annual
surface runoff flows, drainage water flows, sediment yields,
particulate N losses, total surface N losses, and nitrate leaching
losses resulting from the 500 simulations were calculated
(Figure 6 and Table 2). The Monte Carlo test indicated that
(1) the baseline‐simulated results are located within the ranges
derived from the Monte Carlo analysis; (2) possible variance
of input parameters produced large uncertainty in modeled
water, sediment, and N fluxes; and (3) the baseline results
have a difference between 9 and 14% compared with the
means across all Monte Carlo simulations (Table 2).

7. Discussion and Conclusion

[28] Contemporary agriculture is in state of transition,
with more concern placed on ecosystem services. In China,
especially southwest China where about 90% of agricultural
lands are located in mountainous areas [Yan et al., 2007],
loadings of N from agricultural nonpoint sources threaten
water quality at large scales [Zhu et al., 2009]. Researchers,
land managers, and policy makers are looking for tools that
are capable of quantifying N loading rates under conventional
or alternative management conditions. Process‐based models
have been recognized as powerful tools to meet the challenge.
As an agroecosystem model, DNDC has been widely used
in China to predict crop yields, soil C sequestration, and
greenhouse gas emissions with encouraging results [e.g., Li
et al., 2010; Qiu et al., 2009; Tang et al., 2006; Wang et al.,
2008; Zhang et al., 2006]. Multiyear efforts had been per-
formed to improve the DNDCmodel to predict soil N leaching
losses, but progress has been slow. The key obstacle is to
enable the biogeochemical model to simulate horizontal
overland flows. Cui et al. [2005] attempted to link DNDC
to MIKE SHE. This approach required intense coding and
memory management, and led to unwieldy information
exchange between the hydrologic and biogeochemical algo-
rithms. To explore new strategies, we directly embedded the
two fundamental hydrological features, the SCS curve and the
MUSLE functions, into DNDC. This innovation has con-
verted DNDC from a one‐dimensional to a two‐dimensional
simulator to include both the vertical and horizontal water and

N flows. In the revised model, the new embedded hydrologic
processes and other existed algorithms can exchange data at
a daily time step, which should improves the model’s pre-
dictive capacity of N losses in comparison with the approach
adopted by Cui et al. [2005]. Several hydrologic input para-
meters are required to run the revised DNDC. The new input
data of landform slope, slope length, surface roughness, and
other spatially differentiated hydrologic drivers can be
derived from topographic maps or digital elevation model
(DEM) data with general geographic information system
(GIS) processing tools. In this study, we tested the revised
DNDC with validations against observations, sensitivity
analysis, and Monte Carlo uncertainty analysis. Results from
these tests indicate the revised model has normal behaviors
in comparison with the observations from the tested site and
reports from other researchers. The uncertainty analysis illus-
trates that possible variance in the input parameters could
introduce high potential uncertainties; however, the baseline‐
simulated results are within the ranges of Monte Carlo
simulations and comparable with the means across all Monte
Carlo simulations. The attempt reported in this paper demon-
strates that it is feasible and effective for improving model
prediction on N losses by incorporating basic hydrological
features into model framework.
[29] Several researchers reported that the original version

of DNDC overestimated soil drainage flows due to the weak
capacity of modeling the surface runoff flow [Kiese et al.,
2005; Tonitto et al., 2010]. We believe this shortcoming
has been improved by the modifications reported in the
paper. The validation tests with the revised DNDC dem-
onstrate that the increase in the surface runoff flow did
effectively reduce the subsurface leaching flux based upon
the water mass balance. As these modifications help to
integrate the water and N processes in the DNDC, they
should also improve DNDC’s predictions on N gas fluxes.
A set of hydrologic models, such as MIKE SHE [Refsgaard
and Storm, 1995], RHESSys [Band et al., 2001; Tague and
Band, 2001, 2004], SWAT [Arnold et al., 1998;Neitsch et al.,
2001; Saleh et al., 2000], and HSPF [Bicknell et al., 1997],
tried to incorporate N biogeochemistry in their frameworks
to evaluate and predict N dynamic at the watershed scale.
These models have been widely applied to simulate N loading
from watersheds. Comparison between field measurements
and modeled results in their previous applications demon-
strated that hydrology‐based models usually successfully
predicated stream flow, but predicted N loading less accu-
rately, highlighting the difficulty in simulating complex N
dynamics of these models [e.g., Band et al., 2001; Hu et al.,
2007; Saleh and Du, 2004; Silgram et al., 2009; Yuan et al.,
2003]. Those applications implied that it is necessary to

Table 2. Variations and Means of Annual Water, Sediment, and N Flux Modeled With Revised DNDC in the Monte Carlo Testa

SR SDW SL PN TSN NL

Variation range from Monte Carlo test 74–175 118–222 1638–7522 0.87–3.99 2.45–7.98 40.5–62.7
Mean from Monte Carlo test 119 175 4028 2.14 4.76 52.8
Baseline‐simulated result 108 200 3647 1.93 4.29 58.0
Difference between Monte Carlo mean and baseline result 11 (9%) 25 (14%) 381 (9%) 0.21 (10%) 0.47 (10%) 5.2 (10%)

aSR, surface runoff (mm); SDW, subsurface drainage water (mm); SL, sediment loading (kg ha−1 yr−1); PN, particulate nitrogen (kg N ha−1 yr−1); TSN,
total sediment nitrogen (kg N ha−1 yr−1); NL, nitrate leaching (kg N ha−1 yr−1).
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include both detailed hydrologic and biogeochemical pro-
cesses for a model to accurately predict N loading. In com-
parison with hydrology‐based models, the DNDC is relative
weak in describing watershed hydrology since it was devel-
oped as a site or field‐scale model. However, the revised
DNDC has the advantage of having long‐term tested and
relative detailed N processes embedded in themodel, which is
valuable for the simulation of N loss considering the com-
plexity and tremendous variability of N dynamic.
[30] The integration of biogeochemical models with

hydrologic processes is a very interdisciplinary effort. The
study reported here is only one attempt in our research
agenda. Encouraged by the preliminary results, we will next
try to apply the revised DNDC to more watersheds, which
will provide us with additional feedback about how to gen-
eralize the hydrologic parameters based on the existing DEM
data on various spatial scales.More accurate parameterization
may also helpful for improving the model’s performance on
prediction of N losses. For instance, because of the dynamic
change of vegetation coverage, the value of soil surface cover
and management factor in the MUSLE should varies across
different crop‐growth stages, although it has been simplified
to one value during the entire crop season in most cases
[e.g., Neitsch et al., 2001; Donald et al., 2003]. This sim-
plification may hinder the prediction of sediment yield, and
subsequently of N losses. Thus, the variance of this parameter
across different crop‐growth stages should be tested in the
future. In addition, to correctly estimate N loadings from the
nonpoint agricultural sources to lakes, reservoirs or estuaries,
the fate of N in the streams, rivers or other water bodies
cannot be ignored. Aquatic biogeochemistry of N and other
nutrients will be scheduled in our modeling studies to meet
this challenge.

Appendix A

[31] SCS and MUSLE‐related equations incorporated in
DNDC are as follows:
[32] Surface runoff

Q ¼ P � Iað Þ2= P þ S � Iað Þ P > Ia
Q ¼ 0 P � Ia

ðA1Þ

Ia ¼ 0:2 � S ðA2Þ

[33] Retention factor

S ¼ 25400=CNð Þ � 254 ðA3Þ

[34] Curve number in dry moisture (wilting point) condition

CN1 ¼ CN2 � 20 � 100� CN2ð Þ
= 100� CN2 þ exp 2:533� 0:0636 � 100� CN2ð Þ½ �f g ðA4Þ

[35] Curve number in wet moisture (field capacity)
condition

CN3 ¼ CN2 � exp 0:00673 � 100� CN2ð Þ½ � ðA5Þ

[36] Curve number in average moisture condition adjusted
for slope

CN2s ¼ CN3 � CN2ð Þ=3 � 1� 2 � exp �13:68 � slpð Þ½ � þ CN2

ðA6Þ

[37] Retention parameter varying with the soil water
content

S ¼ Smax � 1� SW= SW þ exp w1 � w2 � SWð Þ½ �f g ðA7Þ

[38] The first shape coefficient

w1 ¼ ln FC= 1� S3 � S�1
max

� �� FC
� �þ w2 � FC ðA8Þ

[39] The second shape coefficient

w2 ¼ ln FC= 1� S3 � S�1
max

� �� FC
� ��

� ln SAT= 1� 2:54 � S�1
max

� �� SAT
� ��

= SAT � FCð Þ ðA9Þ

[40] Retention parameter adjusted in frozen condition

Sfrz ¼ Smax � 1� exp �0:000862 � Sð Þ½ � ðA10Þ

[41] Sediment loading

sed ¼ 11:8 � qpeak � Q � A� �0:56 � K � LS � C � Ps � R ðA11Þ

[42] Peak runoff rate

qpeak ¼ atc � Q � A=360 � tconc ðA12Þ

[43] Fraction of rain falling in the time of concentration

atc ¼ 1� exp 2 � tconc � ln 1� a0:5ð Þ½ � ðA13Þ

[44] Time of concentration

tconc ¼ tov þ tch ðA14Þ

[45] Time of concentration for overland flow

tov ¼ L0:6slp � n0:6= 18 � slp0:3� � ðA15Þ

[46] Time of concentration for channel flow

tch ¼ 0:62 � L � n0:75= A0:125 � slp0:375ch

� � ðA16Þ

[47] Soil erodibility factor

K ¼ fcsand � fcl�si � forgc � fhisand ðA17Þ

fcsand ¼ 0:2þ 0:3 � exp �0:256 � ms � 1� msilt=100ð Þ½ �f g ðA18Þ

fcl�si ¼ msilt= mc þ msiltð Þ½ �0:3 ðA19Þ
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forgc ¼ 1� 0:25 � orgC= orgC þ exp 3:72� 2:95 � orgCð Þ½ �f g
ðA20Þ

fhisand ¼ 1� 0:7 � 1� ms=100ð Þ= 1� ms=100ð Þf
þ exp �5:51þ 22:9 � 1� ms=100ð Þ½ �g ðA21Þ

[48] Topographic factor

LS ¼ Lslp=22:1
� �m� 65:41 � sin2 �ð Þ þ 4:56 � sin �ð Þ þ 0:065

� �

ðA22Þ

m ¼ 0:6 � 1� exp �35:835 � slpð Þ½ � ðA23Þ

slp ¼ tan �ð Þ ðA24Þ

[49] Coarse fragment factor

R ¼ exp �0:053 � rockð Þ ðA25Þ

[50] Sediment carbon transported by surface runoff

SedC ¼ 0:001 � concsedC � sed=A � "sedC ðA26Þ

[51] Sediment nitrogen transported by surface runoff

SedN ¼ 0:001 � concsedN � sed=A � "sedN ðA27Þ

[52] Enrichment ration

" ¼ 0:78 � concsedð Þ�0:2468 ðA28Þ

[53] See the notation section for definitions of variables.

Notation

A plot or hydrology responsibility unit area, ha.
BD average soil bulk density of the whole profile,

g/cm3.
C cover and management factor.

CN curve number.
CN1 curve number in dry moisture (wilting point)

condition.
CN2 curve number in average moisture condition.
CN2S curve number in average moisture condition

adjusted for slope.
CN3 curve number in wet moisture (field capacity)

condition.
concsed concentration of sediment in surface runoff,

Mg sed/m3 H2O.
concsedC concentration of the sediment carbon in the

surface soil, g C/tonne soil.
concsedN concentration of the sediment nitrogen in the

surface soil, g N/tonne soil.
FC water content in soil profile at field capacity,

mm H2O.
Ia initial abstractions including soil surface water

storage, interception, and infiltration prior to the
occurrence of surface runoff, mm H2O.

K soil erodibility factor.
L channel length from the most distant point to the

outlet, km.
Lslp plot or subbasin slope length, m.
LS topographic factor.
M exponential parameter in LS factor calculation.
mc percent soil clay content (<0.002 mm diameter

particles).
ms percent soil sand content.

msilt percent soil silt content (0.002–0.05 mm diameter
particles).

n Manning’s roughness coefficient for the plot or
channel.

P amount of rainfall on a given day, mm H2O.
Ps soil conservation practice factor.
Q surface runoff on a given day, mm H2O.

qpeak peak runoff rate, m3/s.
R soil coarse fragment factor.

rock percent rock in soil layer, %.
S retention parameter in SCS curve number

equation, mm.
S3 retention parameter in wet moisture condition,

mm.
Sfrz retention parameter adjusted in frozen condition,

mm.
Smax maximum retention parameter on any given day,

mm.
SAT amount of water in the soil profile when

completely saturated, mm H2O.
sed sediment yields on a given day, metric tons.
slp average slope of plot or subbasin, m/m.
SW amount of water in the soil profile, mm H2O.
tch time of concentration for channel flow, h.

tconc time of concentration for a plot or subbasin, h.
tov time of concentration for overland flow, h.
w1 shape coefficient in equation adjusting retention

parameter based on soil water content.
w2 shape coefficient in equation adjusting retention

parameter based on soil moisture content.
a0.5 fraction of daily rainfall occurring in the half‐hour

with highest rainfall intensity.
atc fraction of daily rainfall occurring during the time

of concentration.
� angle of the slope, degree.
" enrichment ratio.
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