149 research outputs found

    Stand Delineation of Pinus sylvestris L. Plantations Suffering Decline Processes Based on Biophysical Tree Crown Variables: A Necessary Tool for Adaptive Silviculture

    Get PDF
    Many planted Pinus forests are severely affected by defoliation and mortality processes caused by pests and droughts. The mapping of forest tree crown variables (e.g., leaf area index and pigments) is particularly useful in stand delineation for the management of declining forests. This work explores the potential of integrating multispectral WorldView-2 (WV-2) and Airborne Laser Scanning (ALS) data for stand delineation based on selected tree crown variables in Pinus sylvestris plantations in southern Spain. Needle pigments (chlorophyll and carotenes) and leaf area index (LAI) were quantified. Eight vegetation indices and ALS-derived metrics were produced, and seven predictors were selected to estimate and map tree crown variables using a Random Forest method and Gini index. Chlorophylls a and b (Chla and Chlb) were significantly higher in the non-defoliated and moderately defoliated trees than in severely defoliated trees (F = 14.02, p < 0.001 for Chla; F = 13.09, p < 0.001 for Chlb). A similar response was observed for carotenoids (Car) (F = 14.13, p < 0.001). The LAI also showed significant differences among the defoliation levels (F = 26.5, p < 0.001). The model for the chlorophyll a pigment used two vegetation indices, Plant Senescence Reflectance Index (PSRI) and Carotenoid Reflectance Index (CRI); three WV-2 band metrics, and three ALS metrics. The model built to describe the tree Chlb content used similar variables. The defoliation classification model was established with a single vegetation index, Green Normalized Difference Vegetation Index (GNDVI); two metrics of the blue band, and two ALS metrics. The pigment contents models provided R2 values of 0.87 (Chla, RMSE = 12.98%), 0.74 (Chlb, RMSE = 10.39%), and 0.88 (Car, RMSE = 10.05%). The cross-validated confusion matrix achieved a high overall classification accuracy (84.05%) and Kappa index (0.76). Defoliation and Chla showed the validation values for segmentations and, therefore, in the generation of the stand delineation. A total of 104 stands were delineated, ranging from 6.96 to 54.62 ha (average stand area = 16.26 ha). The distribution map of the predicted severity values in the P. sylvestris plantations showed a mosaic of severity patterns at the stand and individual tree scales. Overall, the findings of this work underscore the potential of WV-2 and ALS data integration for the assessment of stand delineation based on tree health status. The derived cartography is a relevant tool for developing adaptive silvicultural practices to reduce Pinus sylvestris mortality in planted forests at risk due to climate change

    Scale challenges in inventory of forests aided by remote sensing

    Get PDF
    The impact of changing the scale of observation on information derived from forest inventories is the basis of scale-related research in forest inventory and analysis (FIA). Interactions between the scale of observation and observed heterogeneity in studied variables highlight a dependence on scale that affects measurements, estimates, and relationships between inventory data from terrestrial and remote sensing surveys. This doctoral research defines "scale" as the divisions of continuous space over which measurements are made, or hierarchies of discrete units of study/analysis in space. Therefore, the "scale of observation" (also known as support) refers to that integral of space over which statistics are computed and forest inventory variables regionalized. Given the ubiquitous nature of scale issues, a case study approach was undertaken in this research (Articles I-IV) with the goal to provide fundamental understanding of responses to the scale of observation for specific FIA variables. The studied forest inventory variables are; forest stand structural heterogeneity, forest cover proportion and tree species identities. Forest cover proportion (or simply forest area) and tree species are traditional and fundamental forest inventory variables commonly assessed over large areas using both terrestrial samples and remote sensing data whereas, forest stand structural heterogeneity is a contemporary FIA variable that is increasingly demanded in multi-resource inventories to inform management and conservation efforts as it is linked to biodiversity, productivity, ecosystem functioning and productivity, and used as auxiliary data in forest inventory. This research has two overall aims: 1. To improve the understanding of the association between the scale of observation and observed heterogeneity in inventory of forest stand structural heterogeneity, forest-cover proportions, and identification of tree species from a combination of terrestrial samples and remote sensing data. 2. To contribute knowledge to the estimation of scale-dependence in inventory of forest stand structural heterogeneity, forest-cover proportions, and identification of tree species from a combination of terrestrial samples and remote sensing data. Different scales of observation were considered across the four case studies encompassing individual leaf, crown-part or branch, single-tree crown, forest stand, landscape and global levels of analysis. Terrestrial and remote sensing data sets from a variety of temperate forests in Germany and France were utilized across case studies. In cases where no inventory data were available, synthetic data was simulated at different scales of observation. Heterogeneity in FIA variable estimates was monitored across scales of observation using estimators of variance and associated precision. As too much heterogeneity is hardly interpreted due to a low signal to noise ratio, object-based image analysis (OBIA) methods were used to manage heterogeneity in high resolution remote sensing data before evaluating scale dependence or scaling across observed scales. Similarly, ensemble classification techniques were applied to address methodological heterogeneity across classifiers in a case study on classification of two physically and spectrally similar Pinus species. Across case studies, a dependence on the scale of observation was determined by linking estimates of heterogeneity to their respective scales of observation using linear regression and a combination of geo-statistics and Monte-Carlo approaches. In order to address scale-dependence, thresholds to scale domains were identified so as to enable efficient observation of studied FIA variables and scaling approaches proposed to bridge observations across scales. For scaling, this research evaluated the potential of different regression techniques to map forest stand structural heterogeneity and tree species wall-to-wall from remote sensing data. In addition, radiative transfer modelling was evaluated in the transfer between leaf and crown hyperspectra, and a global sampling grid framework proposed to efficiently link different stages of survey sampling. This research shows that the scale of observation affected all studied FIA variables albeit to varying degrees, conditioned on the spatial structure and aggregation properties of the assessed FIA variable (i.e. whether the variable is extensive, intensive or scale-specific) and the method used in aggregation on support (e.g. mean, variance, quantile etc.). The scale of observation affected measurements or estimates of the studied FIA variables as well as relationships between spatially structured FIA variables. The scale of observation determined observed heterogeneity in FIA variables, affected parameter retrieval from radiative transfer models, and affected variable selection and performance of models linking terrestrial and remote sensing data. On the other hand, this research shows that it is possible to determine domains of scale dependence within which to efficiently observe the studied FIA variables and to bridge between scales of observation using various scaling methods. The findings of this doctoral research are relevant for the general understanding of scale issues in FIA. Research in Article I, for example, informs optimization of plot sizes for efficient inventory and mapping of forest structural heterogeneity, as well as for the design of natural resource inventories. Similarly, research in Article II is applicable in large area forest (or general land) cover monitoring from sampling by both visual interpretation of high resolution remote sensing imagery and terrestrial surveys. This research is also useful to determine observation design for efficient inventory of land cover. Research in Article III contributes in many contexts of remote sensing assisted inventory of forests especially in management and conservation planning, pest and diseases control and in the estimation of biomass. Lastly, research in Article IV highlights scale-related effects in passive optical remote sensing of forests currently understudied and can ultimately contribute to sensor calibration and modelling approaches

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Investigating the potential for detecting Oak Decline using Unmanned Aerial Vehicle (UAV) Remote Sensing

    Get PDF
    This PhD project develops methods for the assessment of forest condition utilising modern remote sensing technologies, in particular optical imagery from unmanned aerial systems and with Structure from Motion photogrammetry. The research focuses on health threats to the UK’s native oak trees, specifically, Chronic Oak Decline (COD) and Acute Oak Decline (AOD). The data requirements and methods to identify these complex diseases are investigatedusing RGB and multispectral imagery with very high spatial resolution, as well as crown textural information. These image data are produced photogrammetrically from multitemporal unmanned aerial vehicle (UAV) flights, collected during different seasons to assess the influence of phenology on the ability to detect oak decline. Particular attention is given to the identification of declined oak health within the context of semi-natural forests and heterogenous stands. Semi-natural forest environments pose challenges regarding naturally occurring variability. The studies investigate the potential and practical implications of UAV remote sensing approaches for detection of oak decline under these conditions. COD is studied at Speculation Cannop, a section in the Forest of Dean, dominated by 200-year-old oaks, where decline symptoms have been present for the last decade. Monks Wood, a semi-natural woodland in Cambridgeshire, is the study site for AOD, where trees exhibit active decline symptoms. Field surveys at these sites are designed and carried out to produce highly-accurate differential GNSS positional information of symptomatic and control oak trees. This allows the UAV data to be related to COD or AOD symptoms and the validation of model predictions. Random Forest modelling is used to determine the explanatory value of remote sensing-derived metrics to distinguish trees affected by COD or AOD from control trees. Spectral and textural variables are extracted from the remote sensing data using an object-based approach, adopting circular plots around crown centres at individual tree level. Furthermore, acquired UAV imagery is applied to generate a species distribution map, improving on the number of detectable species and spatial resolution from a previous classification using multispectral data from a piloted aircraft. In the production of the map, parameters relevant for classification accuracy, and identification of oak in particular, are assessed. The effect of plot size, sample size and data combinations are studied. With optimised parameters for species classification, the updated species map is subsequently employed to perform a wall-to-wall prediction of individual oak tree condition, evaluating the potential of a full inventory detection of declined health. UAV-acquired data showed potential for discrimination of control trees and declined trees, in the case of COD and AOD. The greatest potential for detecting declined oak condition was demonstrated with narrowband multispectral imagery. Broadband RGB imagery was determined to be unsuitable for a robust distinction between declined and control trees. The greatest explanatory power was found in remotely-sensed spectra related to photosynthetic activity, indicated by the high feature importance of nearinfrared spectra and the vegetation indices NDRE and NDVI. High feature importance was also produced by texture metrics, that describe structural variations within the crown. The findings indicate that the remotely sensed explanatory variables hold significant information regarding changes in leaf chemistry and crown morphology that relate to chlorosis, defoliation and dieback occurring in the course of the decline. In the case of COD, a distinction of symptomatic from control trees was achieved with 75 % accuracy. Models developed for AOD detection yielded AUC scores up to 0.98,when validated on independent sample data. Classification of oak presence was achieved with a User’s accuracy of 97 % and the produced species map generated 95 % overall accuracy across the eight species within the study area in the north-east of Monks Wood. Despite these encouraging results, it was shown that the generalisation of models is unfeasible at this stage and many challenges remain. A wall-to-wall prediction of decline status confirmed the inability to generalise, yielding unrealistic results, with a high number of declined trees predicted. Identified weaknesses of the developed models indicate complexity related to the natural variability of heterogenous forests combined with the diverse symptoms of oak decline. Specific to the presented studies, additional limitations were attributed to limited ground truth, consequent overfitting,the binary classification of oak health status and uncertainty in UAV-acquired reflectance values. Suggestions for future work are given and involve the extension of field sampling with a non-binary dependent variable to reflect the severity of oak decline induced stress. Further technical research on the quality and reliability of UAV remote sensing data is also required

    Fusion Approaches to Individual Tree Species Classification Using Multi-Source Remotely Sensed Data

    Get PDF
    Tree species information plays essential roles in urban ecological management and sustainable development, and thus tree species classification has been an active research topic over the years. This study investigated fusion approaches deployed with Support Vector Machine (SVM) and Random Forest (RF) algorithms to incorporating multispectral imagery (MSI), a very high spatial resolution panchromatic image (PAN), and Light Detection and Ranging (LiDAR) data for five object-based tree species classification in an urban environment. The results demonstrated that 3D structural features contributed more to tree species with broad crowns, such as honey locust and Austrian pine, whereas textural features were more effective in differentiating trees in narrow crowns, such as spruce. Among all the possible classification schemes based on multi-source features in combinations, decision fusion achieved the best overall accuracies (0.86 for SVM and 0.84 for RF), slightly outperforming the feature fusion approach (0.85 for SVM and 0.83 for RF). Both fusion approaches significantly improved tree species classifications produced by MSI (0.7), PAN (0.74), and LiDAR (0.8) individually

    Fusion Approaches to Individual Tree Species Classification Using Multi-Source Remotely Sensed Data

    Get PDF
    Tree species information plays essential roles in urban ecological management and sustainable development, and thus tree species classification has been an active research topic over the years. This study investigated fusion approaches deployed with Support Vector Machine (SVM) and Random Forest (RF) algorithms to incorporating multispectral imagery (MSI), a very high spatial resolution panchromatic image (PAN), and Light Detection and Ranging (LiDAR) data for five object-based tree species classification in an urban environment. The results demonstrated that 3D structural features contributed more to tree species with broad crowns, such as honey locust and Austrian pine, whereas textural features were more effective in differentiating trees in narrow crowns, such as spruce. Among all the possible classification schemes based on multi-source features in combinations, decision fusion achieved the best overall accuracies (0.86 for SVM and 0.84 for RF), slightly outperforming the feature fusion approach (0.85 for SVM and 0.83 for RF). Both fusion approaches significantly improved tree species classifications produced by MSI (0.7), PAN (0.74), and LiDAR (0.8) individually

    Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. Urban trees have the potential to mitigate some of the harm brought about by rapid urbanization and population growth, as well as serious environmental degradation (e.g. soil erosion, carbon pollution and species extirpation), in cities. This paper presents a novel urban tree extraction modelling approach that uses discrete laser scanning point clouds and object-based textural analysis to (1) develop a model characterised by four sub-models, including (a) height-based split segmentation, (b) feature extraction, (c) texture analysis and (d) classification, and (2) apply this model to classify urban trees. The canopy height model is integrated with the object-level local binary pattern algorithm (LBP) to achieve high classification accuracy. The results of each sub-model reveal that the classification of urban trees based on the height at 47.14 (high) and 2.12 m (low), respectively, while based on crown widths were highest and lowest at 22.5 and 2.55 m, respectively. Results also indicate that the proposed algorithm of urban tree modelling is effective for practical use

    CHARACTERIZING FOREST STANDS USING UNMANNED AERIAL SYSTEMS (UAS) DIGITAL PHOTOGRAMMETRY: ADVANCEMENTS AND CHALLENGES IN MONITORING LOCAL SCALE FOREST COMPOSITION, STRUCTURE, AND HEALTH

    Get PDF
    Present-day forests provide a wide variety of ecosystem services to the communities that rely on them. At the same time, these environments face routine and substantial disturbances that direct the need for site-specific, timely, and accurate monitoring/management (i.e., precision forestry). Unmanned Aerial Systems (UAS or UAV) and their associated technologies offer a promising tool for conducting such precision forestry. Now, even with only natural color, uncalibrated, UAS imagery, software workflows involving Structure from Motion (SfM) (i.e., digital photogrammetry) modelling and segmentation can be used to characterize the features of individual trees or forest communities. In this research, we tested the effectiveness of UAS-SfM for mapping local scale forest composition, structure, and health. Our first study showed that digital (automated) methods for classifying forest composition that utilized UAS imagery produced a higher overall accuracy than those involving other high-spatial-resolution imagery (7.44% - 16.04%). The second study demonstrated that natural color sensors could provide a highly efficient estimate of individual tree diameter at breast height (dbh) (± 13.15 cm) as well as forest stand basal area, tree density, and stand density. In the final study, we join a growing number of researchers examining precision applications in forest health monitoring. Here, we demonstrate that UAS, equipped with both natural color and multispectral sensors, are more capable of distinguishing forest health classes than freely available high-resolution airborne imagery. For five health classes, these UAS data produced a 14.93% higher overall accuracy in comparison to the airborne imagery. Together, these three chapters present a wholistic approach to enhancing and enriching precision forest management, which remains a critical requirement for effectively managing diverse forested landscapes
    corecore