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FOREWORD 
 

 Unmanned Aerial Systems (UAS) and contemporary tools in geospatial analysis offer 

exciting opportunities to those prepared to pave their own path and think creatively. The research 

contained within this document represents a culmination of hardware and software technologies 

that although presented challenges every step of the way, offered the ability to conduct 

previously unavailable inquiries into precision forestry. This work is both a continuation and an 

expansion of my master’s research, completed at the University of New Hampshire in 2017. 

Although in some cases, the accuracy or the depth of the investigation fell short, due to the 

events of 2020 (Covid pandemic) and the time allotted for completing this degree, the results and 

insights gathered by both myself and those who collaborated on this research are immeasurable. 

Additionally, current literature suggests that it is only a matter of time before even more capable 

and accessible techniques are available. There is a lot to look forward to in the fields of computer 

science, remote sensing, Geographic Information Systems (GIS), Geographic Information 

Science, and forestry. Perhaps with the research that these and similar studies inspire, we can be 

one step closer to monitoring and managing global forests in a sustainable manner.  
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ABSTRACT 
 

CHARACTERIZING FOREST STANDS USING UNMANNED AERIAL SYSTEMS (UAS) 

DIGITAL PHOTOGRAMMETRY: ADVANCEMENTS AND CHALLENGES IN 

MONITORING LOCAL SCALE FOREST COMPOSITION, STRUCTURE, AND HEALTH 

 

By 

 

 BENJAMIN T. FRASER 

University of New Hampshire, September 2021 

 

  Present-day forests provide a wide variety of ecosystem services to the communities that 

rely on them. At the same time, these environments face routine and substantial disturbances that 

direct the need for site-specific, timely, and accurate monitoring/management (i.e., precision 

forestry). Unmanned Aerial Systems (UAS or UAV) and their associated technologies offer a 

promising tool for conducting such precision forestry. Now, even with only natural color, 

uncalibrated, UAS imagery, software workflows involving Structure from Motion (SfM) (i.e., 

digital photogrammetry) modelling and segmentation can be used to characterize the features of 

individual trees or forest communities. In this research, we tested the effectiveness of UAS-SfM 

for mapping local scale forest composition, structure, and health. Our first study showed that 

digital (automated) methods for classifying forest composition that utilized UAS imagery 

produced a higher overall accuracy than those involving other high-spatial-resolution imagery 

(7.44% - 16.04%). The second study demonstrated that natural color sensors could provide a 

highly efficient estimate of individual tree diameter at breast height (dbh) (± 13.15 cm) as well 

as forest stand basal area, tree density, and stand density. In the final study, we join a growing 

number of researchers examining precision applications in forest health monitoring. Here, we 



xv 

 

demonstrate that UAS, equipped with both natural color and multispectral sensors, are more 

capable of distinguishing forest health classes than freely available high-resolution airborne 

imagery. For five health classes, these UAS data produced a 14.93% higher overall accuracy in 

comparison to the airborne imagery. Together, these three chapters present a holistic approach to 

enhancing and enriching precision forest management, which remains a critical requirement for 

effectively managing diverse forested landscapes.  



1 

 

 

INTRODUCTION 
 

 Numerous disturbances and resource management challenges are influencing 21st century 

forests which require our best efforts if these ecosystems are to retain their vital functions. Many 

studies in recent decades have focused on quantifying and qualifying the direct and indirect 

outputs of ecosystem functions, or ecosystem services, to support decision making in policy and 

natural resource management (Lindenmayer, et al., 2000; Young, 2010; Asbeck, et al., 2021). 

These services include such things as water quality, net primary productivity, carbon 

sequestration, nutrient cycling, flora and fauna, and recreation. Most evaluations value these 

services to be much higher than their input costs; some even suggest ecosystem services are 

worth several times that of global economies (Costanza, et al., 1997; Nowak, et al., 2008; Foody, 

2015). While there is still noted uncertainty in their exact contribution to societies, one aspect 

that cannot be denied is that many ecosystem services are being overburdened and degraded in 

our current setting. Issues such as land cover conversion, climate change, and invasive species 

are negatively altering the projections of future environments, at both global and local scales 

(Foody, 2002; Ge, et al., 2007; Ackerly, et al., 2015). While we struggle with understanding 

these conservation concerns, factors such as increasing populations and urbanization create 

further demands on the remaining resources (Congalton, et al., 1993; McKinney, 2006). It is also 

already known that local variations and sensitivities to change are what’s driving vegetative 

cover change and lowered resilience (Townshend, et al., 1991; Ackerly, et al., 2015). Such fine 

scale variability may contribute to misleading assumptions if unacknowledged or unrecognized. 

This sensitivity to local scale forest diversity and management is especially true here in New 

England as a major portion of the forested landscape, greater than 80%, is under private 
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ownership and management (Janowiak, et al., 2018). At global and regional scales, we are 

beginning to refine our models of which forest ecosystems remain, what their condition is, and 

what negative impacts are influencing them. During this analysis, we must establish a specific 

definition for what a forest is, so that we can accurately monitor their distributions. For example, 

in this research, we define forests based on the definition by The Food and Agriculture 

Organization of the United Nations (FAO). In this definition, “forest includes natural forests and 

forest plantations. It is used to refer to land with a tree canopy cover of more than 10 percent and 

area of more than 0.5 ha. Forests are determined both by the presence of trees and the absence of 

other predominant land uses…” (FAO, 2000). Using these understandings, we must then make 

every effort to effectively collect and communicate about the relevant characteristics of the 

forested landscape.  

 It is evident that most of the world’s forests have been heavily modified from their 

natural state (IPCC, 2000; Hansen, et al., 2001; FAO, 2016; Vitousek, 2016). The degree of 

change has been reflected in recent research by Gunn et al., (2019) who have shown that New 

England Forest Inventory and Analysis (FIA) plots estimate 40% of the forest land as being 

understocked with desirable trees. Present day forest inventory and monitoring require accurate 

and timely data on the most relevant attributes to remain cognizant of landscape patterns and 

development (Coppin and Bauer, 1996; Betchold and Patterson, 2005; Goodbody, et al., 2017). 

Many of the relevant forest inventory attributes correspond directly or indirectly with biophysical 

properties at the forest stand level. Forest stands are homogenous groupings of trees and 

associated vegetation, which comprise similar soils and climatic conditions (Oliver and Larson, 

1996; Hyyppä, et al., 2000). The dynamics of forest stands have been studied extensively and are 

used to influence the strategies used to achieve management objectives (Oliver and Larson, 
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1996). At the national scale, monitoring programs such as the U.S. Forest Service FIA program 

continually sample permanent plots to analyze resource trends (Tomppo and Katila, 1991; Smith, 

2002; Koch, et al., 2015; Pause, et al., 2016). At the local scale, frameworks such as Continuous 

Forest Inventory (CFI) (or other systematic network) plots, set out by conservation groups or 

universities are available, but often slightly less discoverable (Eisenhaure, 2018). While the 

inventory designs of many of these programs are being continually enhanced, field-based 

methods still require a considerable amount of time, money, and effort, to collect sufficient data. 

As Redford (1992) has stated, “while the presence of trees has long been used as a surrogate for 

conservation, the system could be destroyed or degraded from within. Ground-based inventories 

may be able to model trends over time, but they often leave many of the characteristics of the 

forest stand to be desired.”  

 A combination of advancements in fields such as computer science, statistics, signal 

theory, and mathematics have encouraged the application of remote sensing and Geographic 

Information Systems (GIS) to overcome some of the short comings of field-based, or in situ, 

sampling at various scales of analysis (Avery, 1969; Hogland, et al., 2018). Over the past 

century, basic and applied research in both fields, and the aggregation of ideas with other 

disciplines has led to natural resource conservation becoming an increasingly data driven science 

(Michener and Jones, 2012). Remote sensing offers a potential enhancement of inventory 

methods, creating both a cost-effective alternative and the ability to make measurements based 

on the total area covered instead of from isolated samples (Coppin and Bauer, 1996; Kerr and 

Ostrovsky, 2003; Liu and Yang, 2015; Shen and Cao, 2017; Lu, et al., 2018). GIS and 

Geographic Information Science offer ways of handling these data by supporting data storage, 

exploratory data analysis, spatial statistical analysis, and geovisualization (Narumalani, et al., 
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1997; Burrough, 2001). After decades of development, GIS have integrated the tools from 

various disciplines which can then be used to repeatedly test models and resolve issues that are 

inherently spatial (Goodchild, 1992; Congalton, et al., 1993; Burrough, 2001; Longley, et al., 

2015).  

 The harmonization of field-based inventories, remote sensing imagery, and GIS analysis 

allows forest managers to turn vast amounts of data into decision supporting information. While 

forests lend themselves well to broad-scale inventories, it is important to retain assessments at 

larger (local) scales, as well (Ackerly, et al., 2015; Sonti, 2015). The scaling of data from the 

landscape scale, to the forest stand, to the individual tree, and tree sub-components remains a 

major challenge for spatial statistics (Hansen et al., 2001; Fortin et al., 2012; Michener and 

Jones, 2012). In recent years, this emphasis on fine scale forest characterization has expanded 

into a field known as precision forestry. Precision forestry encompasses geospatially driven, site-

specific forest management that is economically, environmentally, sustainability mindful 

(Taylor, et al., 2002; Šumarstvo and Pripadajuće, 2010; Goodbody, et al., 2017). Collecting and 

validating data at a greater number of scales benefits these efforts. Novel remote sensing 

technologies have made progress towards collecting the desired data to conduct precision 

forestry (Lehmann, et al., 2015; Lu, et al., 2018; Hadas, et al., 2019), but that remains only the 

first step of the process. 

Unmanned Aerial Systems (UAS) have been attributed with renewing perspectives on 

each stage of geospatial analysis. From data collection, to pre-processing, specific feature 

classification and extraction, and accuracy assessments, UAS have connected fundamental 

principles to modern methods. While not technically novel technology, UAS still face an 

ambiguous definition and preferred reference as anything from Unmanned Aerial Vehicle 
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(UAV), to Remotely Piloted Aircraft (RPA), Aerial Robotics, or drones (Barnhart, et al., 2012; 

Colomina and Molina, 2014; Nex and Remondino, 2014; Maturbong, et al., 2019). Here, in 

agreement with other researchers, we suggest UAS as the best term, as it captures the 

understanding that there are many essential components to make up the ‘system’ (Dalamagkidis, 

et al., 2008; Marshall, et al., 2016; Fraser and Congalton, 2018). A marked transition from solely 

military development can be seen following the advent of micro-computers in the early 2000s 

(Marshall, et al., 2016; Cummings, et al., 2017). This progression to civilian use is not unlike 

many other forest engineering technologies (e.g., Global Positioning System (GPS), laser range 

finding, and aerial reconnaissance) (Horcher and Visser, 2004).  

Further hardware refinement, software development and market demands have promoted 

a burst of UAS applications, allowing end-user participation with little barrier of access. The 

expansion of users and personalized systems is projected to continue at a rapid pace through the 

turn of the next decade, supported by ultra-high-resolution data collection, on-demand 

deployment, platform flexibility, and low operational costs (Tang and Shao, 2015; Day, et al., 

2016; Corte, et al., 2020; Rudge, et al., 2021). Today’s UAS operations include: historic building 

re-creations (Püschel, et al., 2008), wildlife inventories (Jones, et al., 2006; Baylis, et al., 2016), 

precision agriculture (Zhang and Kovacs, 2012; Gago, et al., 2015), public safety (Kakaes, et al., 

2015; Turner, et al., 2017; Bullock, et al., 2019), geomorphology (Westoby, et al., 2012; 

Hugenholtz, et al., 2013; James, et al., 2017), and rangeland plant surveys (Hardin and Jackson, 

2005; Gillan, et al., 2020). More specific to forests, UAS have been applied at several spatial 

scales for real-time fire monitoring (Merino, et al., 2012; Fernández-álvarez, et al., 2019), forest 

structure characterization (Fritz, et al., 2013; Iizuka, et al., 2017), and forest health assessments 

(Lehmann, et al., 2015; Michez, et al., 2016; Otsu, et al., 2019).  
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 Within the U.S., the lack of a clear regulatory framework for UAS in the National 

Airspace System (NAS) to integrate with piloted aircraft, has been a significant yet recently 

diminishing obstacle (Dalamagkidis, et al., 2008; Cummings, et al., 2017). With a controversial 

history of military use and poor judgement being highlighted in civilian operations, serious 

concerns for safety, ethics, security, and privacy are relevant (Marshall, et al., 2016). To best suit 

various requested uses of UAS, a specific class of small UAS (sUAS) were distinguished, and a 

Remote Pilot in Command license (Part 107) was created (FAA, 2021). The establishment of this 

program, along with collaborations with various governmental agencies, designated testing 

facilities, and improved safety systems have reduced, but not eliminated, the burden of exploiting 

these cutting-edge technologies. 

 One substantial innovation leveraged with UAS technologies is the maturation of 

Structure from Motion (SfM) (i.e., digital photogrammetry or Structure from Motion Multi-View 

Stereo) semi-automated workflows (Burns, et al., 2015; Smith, et al., 2016; Noordermeer, et al., 

2019; Xu, et al., 2020). SfM modelling allows users to create ultra-high-spatial-resolution 

products from uncalibrated imagery. These 2-dimensional (2D) and 3D data products may 

include photogrammetric point clouds, digital elevation models, or orthomosaics (Figure 1). 

Using these products, fine scale features can be visually or digitally characterized more 

effectively. In association with the ability to model individual landscape objects, such as 

individual trees, automated image segmentation algorithms have expanded considerably in the 

last decade (Chen, et al., 2018; Puliti, et al., 2018; Abdullah, et al., 2019; Lobo Torres, et al., 

2020). The combined effect of spatial modelling and segmentation is the ability to quantify 

features that were previously unavailable.  
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Figure 1. Digital photogrammetry representations of a champion aspen tree located at Kingman Farm, 

Madbury, NH. Left: Digital elevation model produced using Structure from Motion (SfM). Right: natural 

color photogrammetric point cloud. 

 

The unification of technologies which contribute to UAS-SfM have presented both enhanced 

methods for acquiring vital forest ecosystem data, and new possibilities for integrating even 

further fields of knowledge. Although UAS-SfM was not designed for complex natural 

environments such as dense forests, its continued development may offer the chance to bridge 

gaps between local dynamics and broad-scale analyses (Harwin and Lucieer, 2012; Aguilar, et 

al., 2019; Alvarez-Vanhard, et al., 2020). However, understanding natural processes at the local 

level will require more than larger quantities of reliable data, more effective methods and 

communication must also be created (Lambin, et al., 2001; Naidoo, et al., 2008; Gunn, et al., 

2019). Therefore, the objectives of this research are to better characterize forest landscapes, by 
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focusing on the forest stand and individual trees. Several components of forest classification will 

be addressed to both update tools for guiding silvicultural management and establish novel 

methods of collecting data to inform larger-scale analyses (Oliver and Larson, 1996; Yurtseven, 

et al., 2019). Both actions serve to define a niche for UAS by comparing these new methods to 

field-based practices and conventional remote sensing platforms. We are also testing these 

methods for exceptionally complex (structurally and compositionally) forests to ensure that the 

results are transferable to other natural environments (Nowacki and Abrams, 2015; Janowiak, et 

al., 2018; Kirchhoefer, et al., 2019). These forests represent ‘complex’ ecosystems due to their 

large number of species (i.e., compositionally complex) and high density of trees with 

overlapping canopies and diverse canopy architectures (i.e., structurally complex) (Ducey and 

Knapp, 2010; Harwin and Lucieer, 2012; Sankey et al., 2017; Liang et al., 2018).  

This research will be divided into three sections that will be included in this dissertation as 

chapters and published separately as papers in peer-reviewed journals. The specific objectives 

for each section/chapter are as follows: 

 

Objectives 

CHAPTER 1 

1. Compare digital (automated) and photo interpretation (manual) approaches for classifying 

fine scale forest composition using high-spatial resolution remotely sensed imagery.  

a. Evaluate the photo interpretation accuracy and uncertainty for Google Earth, NAIP 

imagery, and UAS imagery. 

b. Assess the digital classification of NAIP and UAS imagery using three supervised 

classification algorithms: CART, random forests, and SVM.  
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CHAPTER 2 

1. Estimate forest stand biometrics derived from UAS-SfM models of Northeastern Forests. 

a. Estimate tree specific dbh using crown geometry and UAS digital photogrammetry.  

b. Calculate stand density using basal area and trees per acre by species.  

c. Compare these UAS-based estimates to CFI plot field inventory measurements at the 

forest stand level.  

2. Assess the detection of ‘large’ trees as economic and ecological indicators of forest 

condition.  

CHAPTER 3 

1. Determine the capability of UAS for classifying forest health at the individual tree level. 

2. Compare the results of forest health classification using UAS to high-resolution, 

multispectral, airborne imagery.  
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CHAPTER 1: A Comparison of Methods for Determining Forest          

Composition from High-Spatial Resolution Remotely Sensed 

Imagery 
 

ABSTRACT 

Remotely sensed imagery has been used to support forest ecology and management for 

decades. In modern times, the propagation of high-spatial resolution image analysis techniques 

and automated workflows have further strengthened this synergy, leading to the inquiry into 

more complex, local-scale, ecosystem characteristics. To appropriately inform decisions in 

forestry ecology and management, the most effective and efficient methods should be adopted. 

For this reason, our research compares photo interpretation to digital (automated) processing for 

forest plot composition and individual tree identification. During this investigation, we 

qualitatively and quantitatively evaluated the process of classifying species groups within 

complex, mixed-species, forests in New England. This analysis included a comparison between 

three high-resolution remotely sensed imagery sources: Google Earth, National Agriculture 

Imagery Program (NAIP) imagery, and Unmanned Aerial Systems (UAS) imagery. We 

discovered that although the level of detail afforded by the UAS imagery spatial resolution (3.02 

cm average pixel size) improved the photo interpretation results (7.87% - 9.59%) the highest 

thematic accuracy was still only 54.44% for the generalized composition groups. Our qualitative 

analysis of the uncertainty for photo interpreting different composition classes revealed the 

persistence of mislabeled hardwood compositions (including an early successional class) and an 

inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The results of digitally 

classifying the same forest compositions produced a higher level of accuracy for both detecting 

individual trees (93.9%) and labeling them (59.62% - 70.48%) using machine learning 

algorithms including Classification and Regression Trees, Random Forests, and Support Vector 
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Machines. These results indicate that digital, automated, classification produced an increase in 

overall accuracy of 16.04% over photo interpretation for generalized forest composition classes. 

Other studies, which incorporate multi-temporal, multispectral, or data fusion approaches 

provide evidence for further widening this gap. Further refinement of the methods for individual 

tree detection, delineation, and classification should be developed for structurally and 

compositionally complex forests to supplement the critical deficiency in local scale forest 

information around the world. 

 

BACKGROUND AND LITERATURE REVIEW 

The accurate identification of tree species is an important component of successful forest 

management (Shen and Cao, 2017; Zhao, et al., 2020). For hundreds of years, societies have 

prepared land cover maps to better understand and manage the distribution of vegetation 

communities (Kuchler, 1976; Xie, et al., 2008; Congalton, et al., 2014). While the 

methodologies to produce such spatial representations have changed dramatically, it is apparent 

that these generalizations still serve as an important tool for solving a number of environmental 

problems (Martin, et al., 1998; Foody, 2002; USGCRP, 2017). Many known drivers of 

ecosystem change and degradation stem from land cover and land use conversion at the local 

scale. For forested areas, this can mean a considerable reduction in neighboring area 

functionality and resource availability in addition to the influences of direct land cover 

transformation. With land cover maps, and especially forest cover type maps, serving to guide 

critical management decisions and research understanding, it is important that their 

representations are as reliable and as detailed as possible (Townshend, et al., 1991; Zhao, et al., 

2020). Remotely sensed data have come to provide some of most accurate and cost effective 
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ways of producing such forest composition information (Avery, 1969; Shen and Cao, 2017). 

Modern high-spatial resolution imagery, with 1 meter or smaller pixels sizes, are becoming more 

attainable and as such are spurring a multitude of precision forestry applications (Ko, et al., 

2015; Maxwell, et al., 2017; Berhane, et al., 2018; Schepaschenko, et al., 2019). Freely available 

high-resolution imagery from sources such as Google Earth provide users one such tool for 

compiling local scale information (Chen, et al., 2015; He, et al., 2017; Yadav and Congalton, 

2017). Despite the undeniable benefits that this imagery provides, the best practices for using 

them to generate reliable and detailed forest cover information is yet undetermined.  

 For most research and management uses, raw imagery must be converted to information 

or classified (i.e., labeled or put into categories) to be effective for geospatial analysis. 

Classification involves the arrangement of objects into groups based on their relationship (Sokal, 

1974). For land cover or land use classifications, the term thematic mapping could also be used 

(Pugh, 1997; Jensen, 2016). This arrangement of objects is a subjective, analytical, process 

which should be totally exhaustive, mutually exclusive, hierarchical, and defined by rules and 

labels to remain valid (Foody, 1999; Congalton and Green, 2019). The classification of remotely 

sensed imagery generates thematic maps (or layers) by distinguishing individual features based 

on a classification scheme. This creation of thematic maps is one of the most common 

applications of remotely sensed imagery (Foody, 2002; Verhulp and Niekerk, 2017). While there 

is a rich history of manually interpreted thematic layers, countless techniques have been 

developed using computer-based algorithms for reliably automating this procedure (Moessner, 

1953; Avery, 1969; Holloway and Mengersen, 2018; Maxwell, et al., 2018a; Schepaschenko, et 

al., 2019). Identifying tree species through visual interpretation takes a trained specialist and 

remains time consuming for larger areas (Avery, 1969; Zhao, et al., 2020). It is more common 
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today, that information on forest species is produced using automated approaches and high-

resolution remotely sensed data (Schepaschenko, et al., 2019; Zhao, et al., 2020). To sufficiently 

handle the increasing amount of digital remotely sensed data, an approach called digital image 

processing has also been developed to analyze and explore the characteristics of the acquired 

imagery (Lillesand, et al., 2015; Jensen, 2016; Maxwell, et al., 2017). 

The techniques for image classification are defined by several characteristics including 

simple or advanced, supervised or unsupervised, pixel-based or object-based (Otukei and 

Blaschke, 2010; Jensen, 2016). The first distinction, simple or advanced, specifies whether the 

algorithm integrates machine learning as a function for separating the defined classes. Following 

breakthroughs in computer science, classification algorithms used in thematic mapping began to 

integrate artificial intelligence (AI) or machine learning in the mid-1990s (Foody, 1999; Otukei 

and Blaschke, 2010; Maxwell, et al., 2018b). Common and powerful examples of such 

classifications include decision trees (e.g., Classification and Regression Trees (CART) or 

random forests) and the support vector machine (SVM) algorithm (Breiman, 2001; Brown de 

Colstoun, et al., 2003; Verhulp and Niekerk, 2017; Maxwell, et al., 2018a). The second 

distinction, supervised or unsupervised, specifies whether the algorithm relies on training data to 

base its assignments (supervised classifications) or if the user defines some clustering parameters 

used to divide the sample units to maximize separability (unsupervised classifications) (Jensen, 

2016). While conventional, supervised, algorithms are still used frequently for remote sensing 

image classification, machine learning methods have been found to generally perform better (Pal 

and Mather, 2005; Yu, et al., 2014; Maxwell, et al., 2018a). For the final distinction, pixel-based 

classifications (PBC) denote algorithms which operate on the smallest divisible unit of digital 

images, the pixel (Jensen, 2016). Object-based classifications (OBC) operate on homogenous 



14 

 

image primitives, also termed image areas, polygons, objects, or segments (Frauman and Wolff, 

2005; Blaschke, 2010; Radoux, et al., 2011). PBC relies heavily on spectral data to assign class 

labels, with only a few, more advanced, classification algorithms including ancillary information 

such as texture (Harris and Ventura, 1995; Lu and Weng, 2007; Fraser and Congalton, 2018). 

The increasing spatial resolution of remotely sensed data has caused subsequently greater 

challenges for positional registration and the heightened amount of detail in each pixel. Due to 

these challenges, classification methods have shifted towards using homogenous windows (e.g., 

3x3 or 5x5 pixels) and/or image objects (Congalton and Green, 2019; Fraser and Congalton, 

2019). OBC uses region-growing, thresholding, or clustering algorithms to segment images into 

more holistic units of analysis (Frauman and Wolff, 2005; Desclée, et al., 2006). These image 

segments are commonly referred to as objects, polygons, areas, or primitives, in various 

disciplines. OBC incorporates greater context into each individual unit, such as size, 

compactness, spectral or geometric heterogeneity, and spectral averages, while maintaining user 

defined thresholds for between object variability (Coppin and Bauer, 1996). Like the preference 

for OBC over PBC, machine learning algorithms often allow for a greater number of inputs, 

reducing the reliance on spectral properties of individual pixels alone  (Coppin and Bauer, 1996; 

Lehmann, et al., 2015). Deciding between algorithms and classification approaches is a choice 

dictated by the specific needs of the project and the characteristics of the source imagery (Pugh, 

1997; Lu and Weng, 2007).  

To confront the constraints of time, money, and effort on site-specific (i.e., precision) 

forestry data collection, improved technologies need to be embraced (Šumarstvo and 

Pripadajuće, 2010; Hassaan, et al., 2016; Baena, et al., 2017; Goodbody, et al., 2017). No longer 

considered ‘Dangerous, Dirty, and Dull contraptions’ (Barnhart, et al., 2012), UAS have been 
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used in recent years for numerous high-precision applications (Lelong, et al., 2008; Burns, et al., 

2015; Puliti, et al., 2015; Goodbody, et al., 2017; Gu and Congalton, 2021). Apart from the 

collection of raw imagery and videos, UAS imagery provides valuable information from 3- 

dimensional (3D) models created using Structure from Motion (SfM). The mathematical process 

behind SfM, or digital photogrammetry, provides a nearly autonomous workflow for 

reconstructing 3D surfaces from numerous 2D projections (images) (Verhoeven, et al., 2012; 

Fonstad, et al., 2013; Hugenholtz, et al., 2013). The fundamental processing now in use has 

resulted from historic studies such as Ullman (Ullman, 1979), in which multiple representations 

of moving objects were used to form unique solutions of their 3D structure (Westoby, et al., 

2012; Bohlin, et al., 2017, 2020). These algorithms are able to simultaneously calculate scene 

geometry, camera position, and camera orientation without the need of expensive, specialized, 

metric (i.e., calibrated) cameras (Westoby, et al., 2012; Burns, et al., 2015). UAS pairs well with 

this workflow given the ability to capture thousands of images, with the required overlap within 

a short amount of time.  

In our study, we compared the capability of photo interpretation to digital processing for 

forest plot composition and individual tree identification using UAS and other high-spatial 

resolution remotely sensed imagery. A similar investigation by Holbling et al., (2017), compared 

manual and semi-automated classification approaches for landslide mapping. They determined 

that while there were obvious trade-offs in the techniques, the final accuracy varied depending 

on the study site. In our analysis, we quantify the accuracy achieved when photo interpreting 

forest composition classes from three different sources of remotely sensed imagery (Google 

Earth, National Agriculture Imagery Program (NAIP), and Unmanned Aerial Systems (UAS)). 

We also provide a qualitative assessment of the uncertainty in forest composition mapping from 
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photo interpretation when using these image sources. To provide a comparison of these results 

with digital (automated) approaches, we quantified the individual tree identification accuracy 

achieved using the NAIP and UAS imagery. Three supervised classification algorithms were 

used for this test: CART, random forests, and SVM. This investigation provided a critical 

evaluation of the methods used to support local scale forest management, which for many parts 

of the world face a severe deficiency in coverage (Tang and Shao, 2015; Janowiak, et al., 2018; 

Schepaschenko, et al., 2019). We also specifically targeted UAS applications which can be 

adopted by a broad audience by implementing only natural color sensors and straightforward 

classification frameworks. Our research complements studies which have adopted multispectral, 

multi-temporal, Light Detection and Ranging (lidar), or hyperspectral approaches to UAS-based 

classifications of individual tree species (Sankey, et al., 2017; Franklin and Ahmed, 2018; Gini, 

et al., 2018; Xu, et al., 2020). In doing so, we provided a novel investigation of the capability for 

UAS to enhance forest inventory assessments and extend the availability of structurally diverse 

and species rich forest species composition data and the most relevant methods to do so 

(Goodbody, et al., 2017).  

 

METHODS 

Study Areas 

  A combination of nine forested properties, located in Southeastern New Hampshire were 

studied during this research. The properties included a total of 605.15 hectares (ha) of forested 

land comprising a variety of species compositions, forest successional classes, and stand 

structures (Figure 2). These sites were selected due to the availability of field-based inventory 

data (i.e., Continuous Forest Inventory (CFI) plots), and because of their limited management. 

The average size of these properties is 70.36 ha, while the smallest (Moore Fields) contains 17.2 
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ha of forested land cover. All but one of the properties, the Blue Hills Foundation lands, are 

owned and managed by the University of New Hampshire. These include: College Woods, 

Kingman Farm, Thompson Farm, Moore Fields, East Foss Farm, West Foss Farm, Dudley, and 

Burley-Demeritt (Woodlands, 2021). The Blue Hills study site is a contiguous forest, 

conservation lands, managed by the Harvard Forest.  

 

Figure 2. Location and Unmanned Aerial System (UAS) orthoimagery coverage of the nine 

study areas in Southeastern New Hampshire (NH). In Blue: The Blue Hills conservation lands in 

Strafford, NH. In Red: the eight University of New Hampshire (UNH) study areas located near 

Durham, NH. 
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Field Reference Data 

  Ground-based inventory designs are unique for each land manager. For UNH properties, 

forest inventory data are collected so that communities can be managed to maintain research 

integrity and characteristics of the broader New England region (Woodlands, 2021). Individual 

CFI plots are positioned systematically throughout each property with 1 plot per hectare (2.47 

acres) (Eisenhaure, 2018). At each plot, an angle gauge methodology is used to elicit a 

probability proportional to size selection of each measured tree (Kershaw, et al., 2016). The 

UNH woodlands office follows the regional recommendation of a basal area factor (BAF) 4.59 

𝑚2/ ℎ𝑎  (20 𝑓𝑡2/ 𝑎𝑐𝑟𝑒) inventory (Ducey, 2001; Eisenhaure, 2018). Any tree with a sufficient 

basal area and proximity from the plot center is recorded as a representative of the broader forest 

stand. Such methods give each plot a variable radius instead of a fixed size. Each selected tree 

had several biophysical measurements taken including: species name, diameter at breast height 

(dbh), collection date, and a silvicultural code (i.e., live or dead). Bearing and distance from the 

plot center were also recorded for all measured trees.  

 For several of the UNH woodlands included in this study, we elected to resample the plot 

locations and attributes ourselves to correct specific uncertainties. The newly resampled 

locations were chosen because the recorded positional accuracy appeared poor during 

exploratory data analysis and initial study (Fraser and Congalton, 2019). The GPS receivers now 

available include Wide Area Augmentation System (WAAS) positional averaging for improved 

registration with remotely sensed imagery. These study sites included College Woods, Kingman 

Farm, East Foss Farm, and Thompson Farm.  

 At the Blue Hills conservation lands in Strafford, NH, CFI plots follow a randomly 

generated distribution. Plot data, first collected in 2008, were distributed across upland forests 
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following a GIS analysis which removed areas within 50 m of parcel boundaries and non-

forested land cover. To minimize spatial autocorrelation and capture a larger extent of the forest, 

a 50 m minimum spacing between plots was also defined. Individual inventory plots were 

resampled in 2010 and 2017, with the addition of 20 new plots in 2017. At each plot location, 

fixed area (20 x 20 m) plots were generated in which all trees taller than 1.4 m and with a dbh 

greater than or equal to 2.5 cm were measured (in cm). Vegetation recorded with a dbh smaller 

than 12.7 cm (5 inches) were filtered, however, to remove non-tree vegetation and present an 

estimate of species composition following a similar procedure as the other study sites. 

The training data used for analysis of the digital classification approaches (i.e., individual 

tree classifications) in this study were generated from a combination of (1) ground-based 

inventory trees that were remeasured specifically for this analysis or (2) photo interpretations of 

CFI plot measured trees that were cross-referenced by two experienced, undergraduate 

technicians (Fraser and Congalton, 2021a). A high-precision EOS Arrow 200 RTK GPS with 

positional averaging was used to gather the locations of individual training trees for each class 

across several study areas (EOS, 2021). To ensure that a minimum number of both training and 

validation trees for each class were available, photo interpreters used a combination of the 

ground-based inventory trees, their local forestry knowledge (i.e., elements of photo 

interpretation for coniferous and deciduous trees), and specifically generated species-based 

training keys to generate additional reference data for several classes. For each class 70 reference 

trees were collected  for use in both the NAIP and UAS supervised classifications. This reference 

data included each composition class found within our forest inventory plot classification 

scheme: white pine (Pinus strobus), Eastern hemlock (Tsuga canadensis), other conifers (e.g., 

red pine (Pinus resinosa)), American beech (Fagus grandifolia), oaks (Quercus spp.), red maple 
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(Acer rubrum), other hardwoods (e.g., shagbark hickory (Carya ovata)), and early successional 

forest species.  

Remotely Sensed Imagery 

To evaluate the use of photo interpretation for forest plot composition three image types 

were selected in this study. These are: Google Earth imagery, NAIP imagery, and UAS imagery.  

To evaluate the use of digital image analysis for forest plot composition and tree identification 

only the NAIP and UAS imagery were used. Our analysis began with evaluating photo 

interpretation because numerous research projects opt for photo interpretation of remotely sensed 

imagery as their source for reference data (e.g., Google Earth or airborne imagery) (Kirui, et al., 

2013; He, et al., 2017; Oldoni, et al., 2019; Schepaschenko, et al., 2019). These data yield a 

synoptic view, can be cost effective, in modern times are high resolution, and in some cases 

provide multi-date or multispectral inferences. The Google Earth images are based on 

composites of natural color high-resolution satellite imagery with the most current, cloud free, 

and seamless appearance (Google Earth, 2021). For our study areas these included satellite 

imagery captured during the beginning of October 2018 and October 2020, with no specific 

sensor listed. The maximum resolution for the global coverage in Google Earth, however, is 15 

m, with many areas featuring a much higher spatial resolution. The 2018 U.S. National 

Agriculture Imagery Program (NAIP) imagery maintains the same specifications as the imagery 

collected in 2016 (Maxwell, et al., 2017; USDA, 2021). That is, New Hampshire was collected 

at a 60 cm spatial resolution with 4 spectral bands (blue, green, red, and near infrared (NIR)). For 

our study sites, NAIP imagery was collected between August 6th and October 16th, 2018.  

Two fixed-wing unmanned aircraft, the senseFly eBee Plus and eBee X, deployed with 

natural color sensors were used to capture the UAS imagery for this research (senseFly, 2018, 



21 

 

2019a). The eBee Plus was deployed with its associated Sensor Optimized for Drone 

Applications (S.O.D.A.) while the eBee X was operated with the senseFly Aeria X sensor 

(senseFly, 2019b, 2019c). While the eBee X flight characteristics and camera quality are an 

improvement over the eBee Plus, hardware and logistical constraints required that several study 

areas were flown using the eBee Plus to ensure that summer leaf-on imagery (e.g., May – August 

in 2018, 2019, and 2020) could be captured. Both UAS were piloted using the eMotion flight 

management software (v3.15 and v3.19) (eMotion 2021). The preferred flight parameters were 

based on the results of previous research (Dandois, et al., 2015; Fraser and Congalton, 2018). All 

missions were conducted with 85% forward overlap, 90% side overlap, winds perpendicular to 

the flight lines, consistent sun-angle and exposure, and flown at the Federal Aviation 

Administration (FAA) sUAS height limit of 121.92 m (400 ft) (Dandois, et al., 2015; Puliti, et 

al., 2015; Fraser and Congalton, 2018).  

Following the collection of the UAS imagery, the individual image locations were post-

processed using the National Oceanic and Atmospheric Administration (NOAA) Continuously 

Operating Reference Stations (CORS) network RINEX files and the given eBee flight log 

(NOAA, 2019). These positionally corrected images were then transferred to Agisoft MetaShape 

(v1.5.5.) for SfM modelling. Our processing workflow started with a “High Accuracy” image 

alignment to ensure that the maximum number of images could be aligned while still maintaining 

a precise alignment. Next, the “Ultra High” quality settings were selected to create the dense 

point cloud, digital elevation model (DEM), and orthomosaic. This maximum quality setting 

ensured that DEM was generated using the full resolution of the imagery, which is the 

foundation of the segmentation process in the next section (Gu, et al., 2020). For each study area 

an ultra-high-resolution natural color orthomosaic and DEM were generated. These spatial data 
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products ranged in spatial resolution from 2.53 cm to 3.6 cm with an average pixel size (ground 

sampling distance) of 3.02 cm.  

Classification Scheme 

The characterization of New England Forest cover types is inherently difficult because of 

the density and species diversity of the trees (Nowacki and Abrams, 2015; Janowiak, et al., 

2018). Due to New England being a transition zone between boreal forests (to the north) and 

temperate hardwoods (to the south) there is a heterogeneous distribution of communities which 

must be captured even over small areas (Pugh, 1997). Several classification schemes exist for 

forest cover types in this region including Eyre (Eyre, 1980), Pugh, (1997), Justice et al., (2002), 

and MacLean et al., (2012). Each classification scheme uses the overstory tree species 

composition as a means of subdividing community types. The goal of our classification was to 

provide knowledge of the distribution of ecologically and economically similar forest stands. To 

best suit this goal and capture prominent and unique communities we adopted and modified the 

scheme given by Pugh, (1997). We began by defining forested land cover areas and individual 

trees. Here we used the definition by Anderson, (1976) as areas that have 10% or more aerial 

tree-crown density (coverage), capable of producing timber, and influential on the climate or 

water regime. Our definition of trees, based on the above forest-inventory methods, reflect 

woody vegetation with a minimum height of 3 m and a minimum diameter of 12.7 cm (5 inches). 

The first level of our classification hierarchy distinguishes Coniferous Forests, Mixed Forests, 

Deciduous Forests, and Early Successional Forests. Coniferous forests are forests which are 

dominated by tree species, comprising an overstory with greater than 66.6% basal area per unit 

area coniferous species. Mixed forests are forests which are dominated by tree species, 

comprising an overstory with less than or equal to 66.6% basal area per unit area and greater than 

or equal to 33.3% basal area per unit area coniferous species. Deciduous forests are forests which 
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are dominated by tree species, comprising an overstory with less than 33.3% basal area per unit 

area coniferous species. Lastly, early successional forests include forests which represent highly 

distinct tree composition and structure, are representative of unique ecosystem function and 

management, and are a key element of the New England landscape (King and Schlossberg, 2014. 

Here we include Birch (Betula spp.), Ash (Fraxinus spp.), and Aspen (Populus spp.) mixtures 

(not found in the previous classification scheme) within this ‘Early Successional’ category as an 

example of distinct early successional forests. The full definitions of each class within the next, 

more specific, level of forest classification are: 

 

Coniferous (Softwood) 

▪ White Pine - any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 70% basal area per unit area Eastern white pine.  

▪ Hemlock - any forested land surface dominated by tree species, comprising an overstory 

canopy with greater than 70% basal area per unit area Eastern hemlock. 

▪ Mixed Conifer - any forested land surface dominated by tree species, comprising other 

coniferous species besides white pine or Eastern hemlock (or a combined mixture of 

these species) that comprises greater than 66% basal area per unit area of the overstory 

canopy.  
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Mixed Forest 

▪ Mixed Forests – any forested land surface dominated by tree species, comprising a 

heterogeneous mixture of deciduous and coniferous species each comprising greater than 

20% basal area per unit area composition. Important species associations include eastern 

white pine and northern red oak (Quercus rubra), red maple (Acer rubrum), white ash 

(Fraxinus americana), eastern hemlock, and birches.  

 

Deciduous (Hardwood) 

▪ Red Maple – any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 50% basal area per unit area red maple. 

▪ Oak – any forested land surface dominated by tree species, comprising an overstory 

canopy with greater than 50% basal area per unit area white oak (Quercus alba), black 

oak (Quercus velutina), northern red oak, or mixture of each.  

▪ American Beech – any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 25% basal area per unit area American beech 

composition. This unique class takes precedence over other mentioned hardwood classes 

if present.  

▪ Mixed Hardwoods - any forested land surface dominated by tree species, comprising 

other deciduous species besides red maple, oak, or American beech (or a combined 

mixture of these species) that comprises greater than 66% basal area per unit area of the 

overstory canopy. 
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Early Successional 

▪ Early Successional - any forested land surface dominated by tree species, comprising an 

overstory composition that is highly distinct including areas dominated by early 

successional species such as paper birch (Betula papyrifera), white ash (Fraxinus 

americana) or aspen (Populus spp.).  

 

Forest Composition from Photo Interpretation  

Accuracy/Uncertainty from Photo Interpretation  

At each CFI plot location, a 30 x 30 m fixed area, was registered to the plot center. Two 

trained, forest technicians interpreted and independently assigned a forest composition class to 

each NAIP, Google Earth, and UAS inventory plot sample. Any plot that was not interpretable in 

the imagery or was not labeled forest on any of the imagery sources was removed. This filtering 

of poor image quality locations resulted in a final sample size of 408 inventory plots. Each 

individual sample was interpreted a minimum of three times by each technician so that a 

combined consensus for each interpreter (rather than a single estimation) was determined. The 

majority composition, or mixture of classes, was then used to label the final plot composition for 

each source of imagery (see Fraser and Congalton, (2019)). A thematic map accuracy assessment 

error matrix was then used to quantitatively compare the plot level agreement for each imagery 

source to the field reference data (Congalton and Green, 2019). To aid the manual interpretation, 

training keys for each composition class were created for selected CFI plot locations for each 

image source. These training keys provided clear examples of each individual species and a 

distinct threshold between the forest classes. Additionally, both photo interpreters were trained 

using local reference imagery and the elements of photo interpretation regarding both coniferous 

and deciduous forest canopy characteristics. To ensure that each inventory plot was labeled 
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based on a consensus and not a single visual assessment, both interpreters classified each sample 

three times, leading to a total of six trials for each source of imagery. The consensus between 

these six trials were used to label the final composition for each inventory plot. The agreement 

(or conversely variability) between these six trials was investigated during our qualitative 

analysis of photo interpretation uncertainty.  

Following the quantitative analysis of photo interpretation accuracy using each of the 

three remotely sensed imagery sources, we conducted a qualitative assessment of both specific 

and generalized composition class uncertainty. This qualitative assessment included a review a 

minimum of four inventory plots, randomly selected from each composition class. In total 36 of 

the original 408 plots were sampled. We then analyzed the variability and misclassification of 

such plots across each of the three interpretation trials that both photo interpreters conducted (6 

in total). This test was completed for each of the three imagery sources so that similarities and 

differences in their ability to label individual classes could be better understood. We applied this 

qualitative analysis to both the more specific, 9-composition class scheme, and generalized. 4-

composition class scheme.  

 

Forest Composition from Digital Classification 

Image Segmentation and Tree Detection  

To evaluate the digital classification approaches, both the NAIP and UAS imagery were 

segmented and classified using three supervised classification algorithms. The Google Earth 

imagery was not classified using these methodologies as the data were only hosted within the 

Google Earth Pro software and therefore cannot be digitally processed.  
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We used a multiresolution segmentation technique, found within eCognition (v9.1) to 

delineate individual tree crowns on the NAIP imagery. A range of segmentation scale, shape, and 

compactness parameters were administered (e.g., Scale 10-600, Shape 0.1-0.7, Compactness 0.3-

0.8). The results of these segmentation parameters were evaluated both qualitatively (i.e., 

visually) and quantitatively in comparison to manually digitized reference trees at several of our 

study areas. For the quantitative assessment, we calculated the over segmentation accuracy (Oa), 

under segmentation accuracy (Ua), and quality rate (QR) of each parameter combination for over 

200 digitized reference trees. The goal of this segmentation was to provide pure tree species 

segments, which dictated that over segmentation took priority over the other evaluation metrics. 

Following the selection of an optimal parameter combination, individual tree crowns were 

delineated on the NAIP imagery. A total of 29 object level features (spectral, textural, and 

geometric attributes) were calculated for use in the supervised classification algorithms (see 

APPENDIX 1). Two of these features, the mean and the standard deviation of the near-infrared 

(NIR) band were unique to the NAIP imagery. 

Segmentation of the UAS imagery was conducted using a marker-controlled watershed 

segmentation (MCWS) technique (Chen, et al., 2018; Jianyu Gu, et al., 2020). This MCWS 

workflow consisted of several stages, each reliant on the 3D tree crown data available for each 

study area. We began by creating an ultra-high-resolution canopy height model (CHM) based on 

the DEMs. A 2 m New Hampshire lidar bare earth dataset was used to adjust the SfM DEMs to 

height above elevation values (GRANIT, 2021). Next, we applied a Gaussian filter to this raster 

dataset to diminish excessive pits and peaks (i.e., noise) in the data (Panagiotidis, et al., 2017; 

Chen, et al., 2018; Gu, et al., 2020). To begin the individual tree detection and delineation 

(ITDD) process, we applied a local maxima filter, with a fixed-window size, to the final filtered 
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CHM to establish the MCWS marker (i.e., individual tree crowns). A fixed, circular, window 

size of 45 cells (~1.65 m) was chosen for this step. This window size was selected during initial 

testing because it met our objective of avoiding under segmentation (omission error) as much as 

possible and for generating tree segments which represented only single species. Other similar 

studies for this region, selected larger fixed-window sizes for the purpose of determining the best 

performance for individual tree delineation as represented by QR at the expense of greater 

omission error (Gu, et al., 2020; Fraser and Congalton, 2021a; Gu and Congalton, 2021). To 

quantify the individual tree detection error, we calculated the object detection rate (ODR), as 

well as the over detection (over segmentation or commission) and under detection (under 

segmentation or omission) by comparison with over 200 digitized reference trees (Mohan, et al., 

2017; Gu, et al., 2020; Fraser and Congalton, 2021a). The next stage in the MCWS process 

consisted of masking the non-forested areas and large canopy gaps based on a minimum height 

threshold. A height threshold of 6 m was applied to the CHM prior to delineating the individual 

tree crowns (Hirschmugl, et al., 2007). The final stage of the MCWS process applied the 

segmentation algorithm, which were initialized at the given markers and delineated tree 

boundaries using the height gradients from the CHM (Gu, et al., 2020). Similar to the NAIP 

segmentation results, the final UAS tree segments were quantitatively and qualitatively evaluated 

against manually digitized reference trees using the Oa, Ua, and QR metrics (Chen, et al., 2018). 

After this assessment of segmentation quality, 26 spectral, geometric, and textural features were 

generated for each tree segments using eCognition which were then available for use the digital 

classification approaches (see APPENDIX 1).  

Automated Classifications 

Three supervised classification algorithms were applied to tree segments generated from 

the NAIP and UAS data to label the segment into one of the classes in the classification scheme. 
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Multiple classification algorithms were implemented because of their often contradictory 

performance in other studies (Maxwell, et al., 2018a). First, we applied a singular decision tree 

(CART) to determine if the complexity of our forests could be differentiated by a more simplistic 

classifier (Brown de Colstoun, et al., 2003; Verhulp and Niekerk, 2017). Secondly, we applied a 

random forests (RF), ensemble classifier, made up of 500 decision trees to these same tree 

segments (Breiman, 2001; Maxwell, et al., 2018a). We used the Gini index for this classification 

to control the decision tree splits (Loh, 2011; Krzywinski and Altman, 2017). For both decision 

tree-based classifications the mean decrease in impurity (MDI) was calculated for each of the 

included features to ensure an optimal confluence of input data could be enforced. In other 

words, individual features with the lowest scores could be pruned to both reduce the 

dimensionality of the classification and improve the overall accuracy. For the final supervised 

classification algorithm we implemented a support vector machine (SVM) classifier, based on 

the one-against-one form (Chapelle, et al., 1999; Pal and Mather, 2005). A linear kernel was 

selected for the kernel function (Maxwell, et al., 2018a). All three of these classifications were 

performed in Python using the Sickit-learn package and with all of the available geometric, 

spectral, and textural features (Leckie, et al., 2003; Pedregosa, et al., 2011; Gini, et al., 2014; 

Franklin and Ahmed, 2018). Using this package, a number of procedures for selecting the 

training and validation samples were implemented. These included: (1) splitting the reference 

data to achieve a minimum validation sample size of 30 samples per class (i.e., 55% training and 

45% validation); (2) splitting the reference data to achieve a minimum validation sample size of 

30 samples per class and performing removing negatively influential features based on the MDI 

scores; (3) splitting the reference data to achieve a 65% training/ 35% testing split; and (4) 

conducting a permutation-based out-of-bag validation with 3% of the total sample size selected 
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for validation. We then elected to apply the procedure that achieved both the highest overall 

accuracy and maintained a statistically valid accuracy assessment (Congalton and Green, 2019). 

Each accuracy assessments for each of the classification methods and imagery sources was 

performed 10 times so that an average of their overall accuracy could be recorded.  

 

RESULTS 

Accuracy/Uncertainty in Photo Interpretation  

The accuracy achieved when photo interpreting forest inventory plot level compositions 

using the Google Earth, NAIP, and UAS imagery was evaluated for both the nine class and four 

class composition schemes. The sample sizes and labels for these classes can be seen in Table 1. 

In total, 408 forest inventory plots were classified for each of the three imagery sources. A large 

portion of these plots, based on the field-inventory data were coniferous (a combination of white 

pine, Eastern hemlock, and mixed conifer composition classes).  

Table 1. Forest inventory plot sample sizes, for each composition class during both the nine-

composition class photo interpretation and generalized four class photo interpretation. 

Photo Interpretation Sample (Inventory Plot) Sizes 

WP EH MC MF OAK RM AB MH ES 

85 10 44 131 40 23 10 37 28 

Conifer MF Deciduous ES 

139 131 110 28 

 

Plot level classification accuracies using the each of the three high-resolution imagery 

sources were low given the species complexity of these forests (see APPENDIX 1). The overall 

accuracy for interpreting 9 classes using the Google Earth imagery was 29.9%. Classes such as 
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AB, EH, RM, and OAK, showed the lowest thematic accuracies. When generalized to only four 

classes, the overall accuracy using the Google Earth imagery increased to only 44.85%. 

Interpreting these same plots using the NAIP imagery resulted in a similar performance. Our 

nine class thematic accuracy was 31.86%, while the generalized 4-class assessment resulted in an 

overall accuracy of 46.57%. Both the nine class and four class interpretation accuracies were 

higher when using the highest spatial resolution UAS imagery. The forest inventory plot 

compositions reached an overall accuracy of 39.46% for 9 classes (Table 2) and 54.44% for 4 

composition classes (Table 3).  
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Table 2. Plot level forest composition thematic accuracy for UAS photo interpretations of nine 

classes 

 

 

 

 

 

Field (Reference) Data 
  

   

WP EH MC MF AB RM OAK MH ES 
TOTAL 

USERS  

ACCURACY 

 

 

 

 

  UAS Photo 

Interpretation 

WP 51 1 17 13 0 1 0 1 1 85 60.0% 

EH 2 1 1 3 1 0 0 1 0 9 11.11% 

MC 5 3 3 9 0 1 0 1 2 24 12.5% 

MF 22 2 20 65 2 8 14 12 8 153 42.48% 

AB 0 0 2 0 3 0 0 1 0 6 50.0% 

RM 0 0 0 3 1 5 3 3 0 15 33.3% 

OAK 2 0 1 10 1 1 17 10 4 46 36.96% 

MH 2 3 0 25 2 5 6 6 3 52 11.54% 

ES 1 0 0 3 0 2 0 2 10 8 55.56% 

TOTAL 
 

85 10 44 131 10 23 40 37 28 161/408  

PRODUCERS  

ACCURACY 

 
60.0% 10.0% 6.8% 49.62% 40.0% 21.74% 42.50% 16.22% 35.71% 

 
OVERALL  

ACCURACY 

39.46% 
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Table 3. Plot level forest composition thematic accuracy for UAS photo interpretations of four 

classes. 

 

 

 

We conducted a qualitative assessment of the uncertainty incurred during the photo 

interpretation of complex, mixed-species, forests. Our assessment included the labeling of plot 

level composition across Google Earth, NAIP, and UAS imagery. Table 4 shows a subsample of 

36 plots where the results of the field data are compared to the photo interpretation results. For 

example, we see that the first OAK plot (Table 4), comprised of 81.2% OAK, with the 

remainder of the composition (18.2%) being American beech. With the proportion of OAK being 

greater than 50%, based on the field data, each of the interpretations should have also labeled the 

plot as OAK, however, there were several instances in which the interpreter labeled the plot as 

mixed hardwoods (MH). A MH classification would indicate that the plot was visually 

interpreted as having greater than 66% deciduous composition, while also consisting of less than 

 Field (Reference) Data 

   
C MF D ES TOTAL USERS ACCURACY 

 

 

UAS Photo 

Interpretation   

C 84 26 3 3 116 72.41% 

MF 44 65 38 8 115 41.94% 

D 10 38 63 7 118 53.39% 

ES 1 2 6 10 19 52.63% 

TOTAL 
 

139 131 110 28 222/408  

PRODUCERS  

ACCURACY 

 
60.43% 49.62% 57.27% 35.71% 

 
OVERALL  

ACCURACY 

54.44% 
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50% OAK composition and less than 20% AB composition. The final Eastern hemlock (EH) 

plot, containing 85.7% EH, was mislabeled once as mixed forest (MF) and twice as mixed 

conifer (MC). These interpretations indicated that the interpreters did not recognize a 

composition containing greater than 70% EH. For each of the four AB plots, and six 

interpretation trials each, these plots were only mislabeled as coniferous dominated once. The 

most common misclassification of AB plots was MH. This misclassification of AB as MH 

indicated that both interpreters did not recognize forest compositions containing greater than 

20% AB. Photo interpretations conducted using the Google Earth imagery showed large amounts 

of uncertainty for all plots other than those heavily dominated by mixed forest (MF). Of the 36 

plots that were included in this analysis, only three reported a consensus (4 or more labels in 

agreement) for the correct forest composition. The NAIP imagery photo interpretations fared 

slightly better. For these assessments, most classes were identified correctly labeled at least once. 

Composition classes such as WP, MH, and Early Successional (ES) were correctly identified 

more often with the NAIP imagery than the Google Earth imagery. Still, only five of the 38 plots 

were interpreted with a majority agreement for the correct composition. When interpreting the 

UAS imagery, there was a noticeable decrease in the uncertainty for identifying individual 

species (e.g., American beech and red maple). MH, however, showed a noticeable drop in 

successful identifications, when using the UAS imagery. Although individual classes were 

correctly identified more often, there was still a low percentage of classes which formed an 

agreement for the correct forest composition. Six of the 36 plots (16.7%) interpreted using the 

UAS imagery resulted in a majority agreement for correct composition class.  
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Table 4. Unmanned Aerial Systems (UAS) qualitative assessment of photo interpretation 

uncertainty for at individual forest inventory plots of varying species composition (9 classes) 

across six trials. Note: the green box indicates agreement with the field data while the red box 

indicates disagreement. The two photo interpreters are referenced as ‘J’ and ‘H’ with their three 

trials labeled each as ‘1’, ‘2’, and ‘3’.  

Unmanned Aerial Systems (UAS) Photo Interpretation Uncertainty: 9 Composition Classes 

Field Data Field-based Composition (%) J-1 J-2 J-3 H-1 H-2 H-3 

WP 87.5% WP, 6.3% EH, 6.3% AB WP MC MC WP MC MC 

WP 75% WP, 12.5% RM, 12.5% MH WP MC MC WP MC MC 

WP 83.3% WP, 8.3% OAK, 8.3% ES MF MF MF WP MF MF 

WP 91.7% WP, 8.3% RM WP MC WP WP MC WP 

EH 75% EH, 25% WP WP WP WP MC WP WP 

EH 90% EH, 10% ES EH MF MF EH EH MC 

EH 85.7% EH, 14.3% ES EH WP EH MC MF EH 

EH 85.7% EH, 14.3% ES MF MC EH EH EH MC 

MC 41.7% EH, 41.7% WP, 8% RM, 8% MH MF MC EH MC WP MF 

MC 44.4% WP, 33.3% EH, 22.2% BB EH MC EH MC MC EH 

MC 69.23% WP, 15.4% ES, 7.7% MH, 7.7% OAK WP WP MC WP WP WP 

MC 45.5% WP, 27.3% EH, 27.3% OAK MC MF WP WP MF MC 

MF 60% EH, 40% ES EH MF MF EH EH MF 

MF 50% WP, 33.3% OAK, 8.3% MH, 8.3% RM MH MF MF MF MF MC 

MF 54.5% WP, 45.5% OAK MF WP WP MF MC MC 

MF 62.5% WP, 37.5% OAK OAK MF MH MF OAK MH 

OAK 81.2% OAK, 18.2% AB OAK MH MH OAK OAK MH 

OAK 66.7% OAK, 33.3% MH MH MH MH OAK MF EH 

OAK 60% OAK, 20% RM, 20% WP OAK MH MH MH MF OAK 

OAK 66.7% OAK, 33.3% EH OAK OAK RM OAK OAK OAK 

RM 100% RM MH RM MH RM MH EH 

RM 50% RM, 50% MH ES ES ES WP ES RM 

RM 77.8% RM, 11.1% EH, 11.1% OAK MH RM RM RM RM AB 

RM 60% RM, 20% WP, 20% OAK MF OAK OAK RM RM MH 

AB 44.4% OAK, 33% AB, 22.2% EH AB OAK OAK AB MH EH 

AB 

33.3% MH 25% AB, 16.7% EH, 16.7% RM, 

16.7% ES AB ES AB AB AB MH 

AB 66.7% AB, 33.3% OAK MF MH MH AB MH RM 

AB 40% AB, 20% RM, 20% MH, 20% ES RM MH OAK AB OAK OAK 

MH 50% MH, 25% OAK, 25% EH MH MH MF OAK MH MF 

MH 

33.3% MH, 22.2% OAK, 22.2% ES, 11.1% 

EH, 11.1% RM OAK MH MH OAK MC MH 

MH 37.5% RM, 25% MC, 25% ES, 12.5% OAK OAK MH OAK MF MH MF 

MH 50% RM, 16.7% EH, 16.7% ES, 16.7% MH MF AB AB MF AB MH 

ES 100% ES ES EH ES MF EH EH 

ES 100% ES MH ES AB MF ES ES 

ES 100% ES OAK MH MH MF MH MH 

ES 100% ES ES ES ES WP MH ES 
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We also assessed the uncertainty in photo interpretations when the forest classes were 

generalized to conifer forest (C), deciduous forest (D), mixed forest (MF), and early successional 

forest (ES). For the Google Earth and NAIP interpretation assessments of forest composition, 

there was a less obvious contrast between the uncertainty incurred in labeling four classes and 

the uncertainty in labeling nine classes. Much of the misclassification for both imagery sources 

resulted in commission to the MF class, instead of a similar species dominance. Using the 

Google Earth imagery, nine of the 36 inventory plots were labeled correctly, based on a majority 

agreement. With the NAIP imagery, 11 of the 36 plots reported a majority agreement for the 

correct forest composition. Below in Table 5, we see the plot level interpretations using the UAS 

imagery. Classes such as WP, OAK, and American beech (AB) have fewer misclassifications at 

this level of generalization. The third ES plot, containing a 100% ES basal area composition was 

still mislabeled as deciduous during all trials. The third WP plot (third from the top was 

incorrectly labeled MF during five of the six trials, despite containing only 8.3% OAK and 8.3% 

ES composition. Many of the MF classes were incorrectly labeled as either coniferous or 

deciduous dominated. Using the UAS imagery to photo interpret four generalized forest 

composition classes at the plot level resulted in the lowest amount of uncertainty. Overall, 28 of 

the 36 (77.78%) were labeled with a consensus for the correct forest composition.  
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Table 5. Unmanned Aerial Systems (UAS) qualitative assessment of photo interpretation 

uncertainty for at individual forest inventory plots of varying species composition (4 classes) 

across six trials. Note: the green box indicates agreement with the field data while the red box 

indicates disagreement. The two photo interpreters are referenced as ‘J’ and ‘H’ with their three 

trials labeled each as ‘1’, ‘2’, and ‘3’. 

Unmanned Aerial Systems (UAS) Photo Interpretation Uncertainty: 4 Composition Classes 

Field Data Field-based Composition (%) J-1 J-2 J-3 H-1 H-2 H-3 

C 87.5% WP, 6.3% EH, 6.3% AB C C C C C C 

C 75% WP, 12.5% RM, 12.5% MH C C C C C C 

C 83.3% WP, 8.3% OAK, 8.3% ES MF MF MF C MF MF 

C 91.7% WP, 8.3% RM C C C C C C 

C 75% EH, 25% WP C C C C C C 

C 90% EH, 10% ES C MF MF C C C 

C 85.7% EH, 14.3% ES C C C C MF C 

C 85.7% EH, 14.3% ES MF C C C C C 

C 41.7% EH, 41.7% WP, 8% RM, 8% MH MF C C C C MF 

C 44.4% WP, 33.3% EH, 22.2% BB C C C C C C 

C 69.23% WP, 15.4% ES, 7.7% MH, 7.7% OAK C C C C C C 

C 45.5% WP, 27.3% EH, 27.3% OAK C MF C C MF C 

MF 60% EH, 40% ES C MF MF C C MF 

MF 50% WP, 33.3% OAK, 8.3% MH, 8.3% RM D MF MF MF MF C 

MF 54.5% WP, 45.5% OAK MF C C MF C C 

MF 62.5% WP, 37.5% OAK D MF D MF D D 

D 81.2% OAK, 18.2% AB D D D D D D 

D 66.7% OAK, 33.3% MH D D D D MF C 

D 60% OAK, 20% RM, 20% WP D D D D MF D 

D 66.7% OAK, 33.3% EH D D D D D D 

D 100% RM D D D D D C 

D 50% RM, 50% MH ES ES ES C ES D 

D 77.8% RM, 11.1% EH, 11.1% OAK D D D D D D 

D 60% RM, 20% WP, 20% OAK MF D D D D D 

D 44.4% OAK, 33% AB, 22.2% EH D D D D D C 

D 

33.3% MH 25% AB, 16.7% EH, 16.7% RM, 

16.7% ES D ES D D D D 

D 66.7% AB, 33.3% OAK MF D D D D D 

D 40% AB, 20% RM, 20% MH, 20% ES D D D D D D 

D 50% MH, 25% OAK, 25% EH D D MF D D MF 

D 

33.3% MH, 22.2% OAK, 22.2% ES, 11.1% 

EH, 11.1% RM D D D D C D 

D 37.5% RM, 25% MC, 25% ES, 12.5% OAK D D D MF D MF 

D 50% RM, 16.7% EH, 16.7% ES, 16.7% MH MF D D MF D D 

ES 100% ES ES C ES MF C C 

ES 100% ES D ES D MF ES ES 

ES 100% ES D D D MF D D 

ES 100% ES ES ES ES C D ES 
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Image Segmentation and Tree Detection  

Quantitative metrics (Oa, Ua, and QR) were used to determine an optimal set of 

multiresolution segmentation parameters to delineate individual tree crowns within the NAIP 

imagery. The optimal selection of segmentation parameters included a scale parameter of 10, a 

shape of 0.2, and a compactness of 0.5. Measuring the correspondence of these tree segments to 

230 reference trees resulted in an Oa of 0.382, a Ua of 0.849, and a QR of 0.657.  

 For the MCWS of the UAS CHM and orthomosaic, we began by assessing the individual 

tree detection accuracy. A total of 231 samples were used for this assessment (Table 6). The 45-

cell fixed window size led to an overall detection accuracy of 93.9%. This detection rate is a 

combination of the 231 reference trees that were detected as a singular canopy (correct or 1:1 

detection) and those that were detected as multiple trees. In other words, only 6.1% of the 

reference trees were not detected (under detection or omission error). While a smaller window 

size did eventually remove the omission error, it caused every tree to be heavily over segmented. 

A larger window size increased the omission error (under detection) to greater than 10%.  

 

Table 6. Individual tree detection accuracy for the Unmanned Aerial System (UAS) imagery 

segmentation. 

Correct Detection Over Detection 

(Commission Error) 

Under Detection  

(Omission Error) 

Total 

85 132 14 231 

36.80% 57.14% 6.1% Overall Detection Accuracy 

   93.9% 
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Continuing through the MCWS process, we quantitatively evaluated the final 

segmentation results against these same 231 reference samples (Chen, et al., 2018). These UAS 

tree segments resulted in a Oa of 0.73, a Ua of 0.523, and a QR of 0.6438.  

 

Automated Classification  

Both the NAIP and UAS imagery were evaluated for their effectiveness in identifying 

individual trees using three supervised digital classification algorithms. The sample sizes for 

each of the eight composition classes for both imagery sources are included in Table 7. Since 

these are for labeling individual trees, the mixed forest class is not possible. 

Table 7. Reference data samples sizes by class for individual tree classifications conducted using 

the UAS and NAIP automated approaches. 

Individual Tree Reference Data Sample Sizes 

 WP EH OC ES OH OAK RM AB 

NAIP 97 76 90 79 77 135 95 77 

UAS 102 77 85 74 88 152 97 77 

 

Individual tree digital classifications using the segmented NAIP imagery were generated 

using the CART, RF, and SVM classifiers. Following the examination of feature importance 

scores (see APPENDIX 1), we removed the gray level co-occurrence matrix (GLCM) contrast, 

GLCM dissimilarity, border index and gray level difference vector (GLDV) contrast for the 

NAIP imagery CART and RF classifications. This removal resulted in an increase in overall 

accuracy of 1.13% and 1.55% for CART and RF respectively. The overall accuracy of labeling 8 

classes for the three classifiers were 21.44% (CART), 29.23% (RF), and 29.36% (SVM).  

The digital classification of eight composition classes using UAS imagery resulted in 

higher overall accuracies for each of the three supervised classifiers. For this imagery, the least 
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important features were asymmetry, density, shape index, radius of the short ellipsoid, and 

compactness (see APPENDIX 1). The removal of these features improved the overall accuracies 

between 0.235% (CART) and 1.33% (SVM). The overall accuracies for eight composition 

classes using the UAS imagery, based on an average of 10 iterations were 33.27% (CART), 

46.67% (RF), and 46.90% (SVM) (Table 8). These UAS thematic accuracies are, on average, a 

15.60% increase over the same methods when using the NAIP imagery.  

 

Table 8. Thematic map accuracy assessment error matrix for individual trees using the UAS 

imagery and the SVM algorithm for 8 classes. 

 Field (Reference) Data 

   

WP EH OC AB RM OAK OH ES 
TOTAL 

USERS  

ACCURACY 

 

 

UAS  

Imagery  

Using the 

SVM  

Classifier 

WP 36 4 6 0 1 1 7 2 57 63.16% 

EH 2 16 3 13 4 6 3 7 54 29.63% 

OC 5 1 20 1 2 2 3 2 36 55.56% 

AB 0 6 2 14 2 2 3 3 32 43.75% 

RM 1 2 0 1 18 2 4 3 31 58.06% 

OAK 0 4 2 4 7 49 13 9 88 55.68% 

OH 2 1 4 0 6 4 6 1 24 25.0% 

ES 0 1 1 2 4 2 1 6 17 35.29% 

 
TOTAL 

 
46 35 38 35 44 68 40 33 165/339 

 

 
PRODUCERS  

ACCURACY 

 
78.26% 45.71% 52.63% 40.0% 40.91% 72.06% 

 
15.0% 18.18% 

 
OVERALL 

ACCURACY 

48.67% 
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The overall classification accuracies for both the NAIP and UAS imagery increased when 

the eight classes were collapsed to conifer, deciduous, and early successional. We again 

evaluated the feature importance for both the NAIP and UAS image classifications (see 

APPENDIX 1), to determine the optimal feature selection for classifying coniferous, deciduous, 

and early successional cover types. Both imagery sources showed a consensus for the most 

important (e.g., greenness and brightness) and least important (e.g., border index and 

compactness) features. The NAIP imagery correctly classified on average 45.32% of the tree 

segments using the CART algorithm. Using the RF and SVM algorithms, the average overall 

accuracies increased to 53.58% and 52.69% respectively. Classifying these same image segments 

using the UAS imagery produced average overall accuracies of 59.62% (CART), 70.48% (RF) 

(Table 9) and 68.59% (SVM).   

 

Table 9. Thematic map accuracy assessment error matrix for individual trees using the UAS 

imagery and the RF algorithm for three classes. 

 Field (Reference) Data 

 

UAS 

Imagery  

Using the  

RF  

Classifier 

 
C     D ES TOTAL USERS ACCURACY 

C 86 18 18 122 70.49% 

D 27 126 34 187 67.38% 

ES 6 8 11 25 44.0% 

TOTAL 
 

 119  152 63 229/334 
 

PRODUCERS 

ACCURACY 

 
 72.27%   82.89% 17.46% 

 
OVERALL ACCURACY 

68.56% 
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DISCUSSION 

Analysis of Photo Interpretation Uncertainty  

The qualitative analysis of photo interpretation uncertainty showed regular progression in 

the ability to differentiate composition classes within complex forests. When classifying more 

specific composition classes (i.e., 9 groups) we saw that all three remotely sensed imagery 

sources struggled to provide a consensus across six interpretation trials. Such a consensus is 

needed to provide both an accurate and confident label for the composition of each inventory 

plot. The UAS imagery also showed slightly less variability in the identification of more pure 

species classes, in comparison to the Google Earth and NAIP imagery. The perceived ability to 

identify individual species however, also led to a lower percentage of plots labeled as mixed 

hardwoods or mixed conifers. Other classes, such as EH, demonstrated that even with nearly 

absolute plot composition (> 85%) there was a significant amount of confusion and 

misclassification with other species. Such classes likely require further training or revision of the 

classification scheme (Avery, 1969; Zhao, et al., 2020). When the forest composition was 

generalized to only four classes, all three imagery sources showed a considerable reduction in 

misclassifications. While there was still some confusion between specific mixtures or 

dominance, many of the plots for each source of imagery could be identified at least in these 

basic compositional groups. Additional classification rules such as forming a hierarchical 

classification by first identifying the plot as coniferous, deciduous, mixed, or other forest could 

have bridged this gap in misclassifications (Verhulp and Niekerk, 2017). One potential source of 

confusion in the labeling of these inventory plots could have been the presence and visual 

perception of large trees. Large trees are known to disproportionately account for stand structure 

and function (Whitman and Hagan, 2007; Fraser and Congalton, 2021a). A few large trees (or 

even a single tree in some cases) could have accounted for a large portion of the perceived plot 
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composition based on the synoptic view of the photo interpreter. These same trees, however, 

may not be representative of the same compositional dominance when measured using the 

variable plot radius design that we used to collect the field-based reference data. This research 

was conducted within the transition forest region of New England forests (Janowiak, et al., 

2018). These mixed specific forests comprise a rich diversity of hardwood species at local scales 

but also contain a common white pine and Eastern hemlock component. The lower spatial 

resolution Google Earth and NAIP imagery may suffer from this tendency for species mixtures, 

as both result in a large amount of MF commission error, even during the labeling of on four 

composition classes. Lastly, certain classification scheme edge cases (e.g., a plot with 33% 

coniferous composition which could be interpreted as deciduous dominated or MF depending on 

the interpreter) were found during this qualitative analysis.  

 When looking at the overall thematic accuracies for the Google Earth, NAIP, and UAS 

plot level interpretations we formed several important insights. For both the 9-class composition 

accuracy and the 4-class composition accuracy, the Google Earth and NAIP imagery produced 

approximately equal results (± approximately 2%). Both sources of imagery demonstrated a 

considerable amount of commission error for the MF class. The NAIP imagery acquisition 

(influencing phenology) and image characteristics were not consistent, leading to challenges in 

interpretations across study areas (Maxwell, et al., 2017). Further spatial data exploration and 

pre-processing before using the NAIP imagery could be integrated to influence species 

classification success. Despite the increased spatial resolution to only 3.02 cm using the UAS 

imagery however, the highest overall accuracy achieved using photo interpretation was still only 

54.44%. As with other studies, specific hardwood classes and early successional species 
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mixtures (ES) showed a high amount of thematic classification error (Franklin and Ahmed, 

2018).  

 

Analysis of Digital Classifications 

Despite watershed segmentation being one of the most common and powerful methods 

for delineating tree crowns given the availability of 3D data, the visual assessment of tree 

segment quality was never absolute for all species (Chen, et al., 2018; Gu, et al., 2020). Our 

individual tree detection accuracy produced a final omission error  of 6.1%, similar to other 

studies conducted using remotely sensed data (Shen and Cao, 2017; Xu, et al., 2020). During the 

manual refinement of the digital classification training samples, it was observed that many tree 

segments still contained some portion of a species mixture. The occurrence of mixed-species tree 

segments was especially common for the large coniferous trees, which displayed the lowest 

classification accuracy. The individual segments for these large coniferous trees commonly 

absorbed neighboring sub-dominant canopy deciduous trees. A more advanced segmentation 

technique could be adopted in future studies to better produce pure tree segments (Gu and 

Congalton, 2021) 

Turning to the automated individual tree classification results, the UAS imagery 

produced on average a 15.65% increase in overall accuracy over the NAIP imagery when 

comparing the same classification algorithms and composition classes. Digital classification of 

the NAIP imagery, as with the interpretation analysis likely suffers from inconsistencies in 

collection date and spectral characteristics (Maxwell, et al., 2017). The highest overall accuracy 

for eight classes was achieved using the UAS imagery and the SVM classifier, at 46.90%. This 

classification accuracy represents a 7.44% higher accuracy than photo interpretations at the plot 
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level, for the more discrete classification scheme. Both the NAIP and UAS imagery supervised 

classifications still result in low accuracies for more specific classes such as EH and RM, 

however. In the automated classification of generalized (3) classes, we again observed an 

increase in performance for the UAS imagery over the NAIP imagery. The accuracy of the UAS 

imagery was on average 15.70% higher for the three supervised algorithms in comparison with 

the NAIP imagery. The highest overall accuracy for the 3-class automated classification was 

produced using the UAS and the RF algorithm, at 70.48%, which is an increase over the four-

class photo interpretation accuracy of 16.04%. Achieving a higher overall accuracy for eight 

classes using the SVM algorithm and for three classes using the RF algorithm is not inconsistent 

with other findings. Many studies have either evaluated the results of multiple machine learning 

algorithms or found that the best classifier is application dependent (Belgiu and Drăgu, 2016; 

Maxwell, et al., 2018a; Wessel, et al., 2018). As part of our initial testing, we compared various 

procedures for training and validating these individual tree classifications (Table 10). These 

methods included: (1) splitting the reference data to achieve a minimum validation sample size 

of 30 samples per class; (2) splitting the reference data to achieve a minimum validation sample 

size of 30 samples per class and performing removing negatively influential features; (3) 

splitting the reference data to achieve a 65% training/ 35% testing split; and (4) conducting a 

permutation-based out-of-bag validation with 3% of the total sample size selected for validation. 

Based on both the performance and statistical validity, we applied the second method for each of 

the digital classification evaluations (Holloway and Mengersen, 2018; Congalton and Green, 

2019).  
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Table 10. Impacts of digital classification training/testing split designs using the RF classifier, 

UAS Imagery, and eight composition classes. 

Individual Tree Classification Accuracies using the RF classifier, UAS Imagery, and 8 and 3 Composition Classes. 

 
55% Training 

/ 45% Testing 

55% Training / 45% Testing 

with Feature Reduction 

65% Training /  

35% Testing 

Out-of-Bag (OOB) 

Validation 

Minimum Sample Size  
30 per Class 30 per Class 26 Per Class 

Permutations of 3% 

from the total 

Average Accuracy 8 Classes 45.84% 46.67% 43.07% 45.84% 

Average Accuracy 4 Classes 
64.01% 70.48% 65.36% 65.51% 

 

 

Similar studies, employing the use multispectral and multi-temporal UAS have been 

known to produce higher overall accuracies.  In Gini et al., (2018) accuracies were produced 

which ranged from 58% to 87%. These findings, however, were for the classification of several 

hardwood species within a private nursery, which is different from the species-rich, New 

England forests evaluated here. Xu et al., (2020) produced comparable accuracies for 8 

subtropical species (conifer and deciduous) by incorporating both multispectral imagery and use 

of the photogrammetric point cloud. For the classification of eight, conifer and deciduous, 

species they found a 65% overall accuracy and an 80% overall accuracy for labeling only 

coniferous and deciduous species. The inclusion of multispectral bands and indices, or simply an 

increase in spectral resolution, would likely increase the classification accuracy when using the 

UAS imagery (Zaman, et al., 2011; Candiago, et al., 2015; Gini, et al., 2018; Otsu, et al., 2019). 

One of the most important features, as reported in Figure 2 and Figure 4, for the NAIP imagery 

individual tree classifications was the NIR band. Numerous studies have outlined the importance 

of NIR reflectance in tree species classification (Fassnacht, et al., 2016; Maxwell, et al., 2017; 

Hernandez-Santin, et al., 2019). Our results however, show that natural color photogrammetric 
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sensors, which provide a more efficient and sometimes more effective platform for surveying 

contiguous forests, can be used with a decrease in accuracy of approximately 10% (Fraser and 

Congalton, 2018). One important factor for this success was selection and reduction in 

classification features (Mishra, et al., 2018). Our MDI test and subsequent feature reduction, 

while only resulting in a 2% difference in classification accuracy here, will become more 

important as the number of features and spectral complexity is increased (Persad and Armenakis, 

2017; Holloway and Mengersen, 2018). Lastly, image segmentation quality improvements could 

be explored to enhance individual tree classification. High-resolution image segmentation 

techniques and individual tree detection and delineation methods are being developed at a rapid 

pace (Pal and Pal, 1993; Chen, et al., 2018; Yan, et al., 2018; Lobo Torres, et al., 2020; Gu and 

Congalton, 2021). The ability to accurately detect and delineate the range of tree species and 

crown morphologies present in this landscape would provide more representative training 

samples for each species and therefore enhance the potential of each classification algorithm.  

 

Future Perspectives 

Future research should continue to investigate the best methods for adopting UAS for 

fine scale (i.e., precision) forest management (Tang and Shao, 2015; Franklin and Ahmed, 2018; 

Janowiak, et al., 2018). Data fusion techniques, such as the integration of both satellite and UAS 

data (Effiom, et al., 2019), or optical and lidar (Sankey, et al., 2017; Shen and Cao, 2017), 

present methods for overcoming the limitations of UAS digital photogrammetry and achieving 

high accuracies for individual tree identification. Advanced classification algorithms may also 

present a variety of methods for better handling of the data dimensionality. however, such 

techniques would require a far greater amount of training data and technical expertise to 
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complete (Holloway and Mengersen, 2018; Maxwell, et al., 2018a). The extension of forest 

composition data from one location for classification of another could provide several 

advantages to forest managers, such as semi-automated classifications, considerable gains in 

time, cost reductions, and lower expert user knowledge required when given proper 

consideration for potential sources of uncertainty (Leukert, et al., 2004). Unlike satellite-based 

generalizations of forest composition data across study sites, UAS are not prone to the same 

dissimilarities in image characteristics (Pax-Lenney, et al., 2001; Leukert, et al., 2004; Verhulp 

and Niekerk, 2017). Instead, UAS applications face a myriad of rapidly evolving computer 

vision and data science challenges and solutions (Michener and Jones, 2012). The development 

of these disciplines and tools is hoped to lead to achieving sufficient tree level accuracies, which 

can then be aggregated to the plot or forest stand levels.  

 

CONCLUSIONS 

 Trends in automated and semi-automated forest classifications using high-resolution 

remotely sensed data have made the thematic classification of individual trees a realistic 

aspiration. In this study, we evaluated, both qualitatively and quantitatively, the application of 

Google Earth, NAIP, and UAS imagery for plot composition and individual tree identification. 

For this analysis, we compared photo interpretation and digital processing approaches. Our 

results indicated that supervised, machine learning, classifiers outperformed photo interpreters 

for specific (+ 7.44%) and generalized (+ 16.04%) species composition. While photo 

interpretation is commonly applied for broad scale inferences of forest composition, the 

uncertainty for labeling more specific classes as well as the costs required to train interpreters 

makes fine-scale assessments impractical. Our results indicate that automated, machine learning, 
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approaches can be an effective alternative for local scale forest surveys, even with only single-

date natural color imagery. In comparison with other research, the inclusion of multi-temporal 

imagery, multispectral imagery, or more advanced segmentation techniques would likely 

increase this divide even further. Subsequent studies should continue to examine diverse forests 

and geospatial analysis techniques for delineating the trees within them.  
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CHAPTER 2: ESTIMATING PRIMARY FOREST ATTRIBUTES 

AND RARE COMMUNITY CHARACTERISTICS USING 

UNMANNED AERIAL SYSTEMS (UAS): AN ENRICHMENT OF 

CONVENTIONAL FOREST INVENTORIES 
 

ABSTRACT  

The techniques for conducting forest inventories have been established over centuries of 

land management and conservation. In recent decades, however, compelling new tools and 

methodologies in remote sensing, computer vision, and data science have offered innovative 

pathways for enhancing the effectiveness and comprehension of these sampling designs. Now, 

with the aid of Unmanned Aerial Systems (UAS) and advanced image processing techniques we 

have never been closer to mapping forests at field-based inventory scales. Our research, 

conducted in New Hampshire on compositionally complex, mixed-species forests, utilized 

natural color UAS imagery for estimating individual tree diameters (diameter at breast height 

(dbh)) as well as stand level estimates of Basal Area per Hectare (BA/ha), Quadratic Mean 

Diameter (QMD), Trees per Hectare (TPH), and a Stand Density Index (SDI) using digital 

photogrammetry. To strengthen our understanding of these forests, we also assessed to ability of 

UAS to map the presence of large trees (i.e., > 40 cm in diameter). We assessed the ability of 

UAS digital photogrammetry to identify large trees in two ways: (1) using the UAS estimated 

dbh and the 40 cm size threshold and (2) using a random forests supervised classification and a 

combination of spectral, textural, and geometric features. Our UAS-based estimates of tree 

diameter reported an average error of 19.7% to 33.7%. At the stand level, BA/ha and QMD were 

overestimated by 42.18% and 62.09% respectively, while TPH and SDI were underestimated by 

45.58% and 3.34%. When considering only stands larger than nine ha however, the 

overestimation of BA/ha at the stand level dropped to 14.629%. The overall classification of 

large trees, using the random forests supervised classification achieved an overall accuracy of 
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85%. The efficiency and effectiveness of these methods offer local land managers the 

opportunity to better understand their forested ecosystems. Future research into individual tree 

crown detection and delineation, especially for co-dominant or suppressed trees, will further 

support these efforts.  

 

BACKGROUND AND LITERATURE REVIEW 

The alteration of forest stand dynamics by mechanisms such as anthropogenic climate 

change, landscape fragmentation, land cover change, and overutilization have driven the need to 

revise our conventional forest management tools and procedures with modern technologies 

without forgetting silvicultural fundamentals. With the support of more contemporary 

workflows, forestry professionals can make more effective decisions. The main objective of 

many forest inventories is to quantify the size, structure, and distribution of observed tree species 

(Smith, 2002; Eisenhaure, 2018). Numerous plot sampling designs have been established and 

refined over the centuries based on silvicultural practices and evolving technologies (Husch, et 

al., 1972; Betchold and Patterson, 2005; Kershaw, et al., 2016; Zhou, et al., 2018; Cao, et al., 

2019). However, field-based campaigns are still severely limited in terms of their temporal and 

spatial scales. These inventory designs also do not often record the full suite of forest attributes, 

which could be useful for managing and understanding the dynamics of forest communities. 

For many researchers and land managers, forest characterization has been achieved 

through sampling designs which quantify stand basal area and tree density (Stage and Rennie, 

1994; Cade, 1997; MacLean and Congalton, 2012; Shang, et al., 2020; Xu, et al., 2020). Basal 

area, or the cross-sectional areas of a tree at breast height, is used to define size classes, and 

therefore, inferring stand dynamics such as resource availability and competition (Oliver and 

Larson, 1996; Cade, 1997; Kershaw, et al., 2016). Tree density, a measure of the number of trees 
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per unit area (e.g., hectare), provides insight regarding stand biomass, carbon accumulation, 

species diversity, growth, and mortality (Ducey and Knapp, 2010; Forrester, 2014). Both of these 

variables are often key elements collected during timber cruises and permanent plot frameworks 

(i.e., Continuous Forest Inventory (CFI) and Forest Inventory and Analysis (FIA)) (Leckie, et al., 

2003). From these variables, indirect estimations or broad trends in biomass, carbon stock, 

economic value, and other ecosystem services can be drawn (Frolking, et al., 2009; Boisvenue 

and White, 2019; Saeed, et al., 2019; Gunn, et al., 2020). Forest managers are becoming 

increasingly aware of the resources provided by forest ecosystem functions outside of those 

typically measured (i.e., economic value or abundance of wood) (FAO, 2016; Lausch, et al., 

2017). To manage forest stands for alternative characteristics, either indirect estimates must be 

made (with accepted uncertainty), or additional effort must be made to take supplementary 

measurements in the field. For this purpose, many ecological researchers have turned to using 

indicators (Gatica-Saavedra, et al., 2017; Lausch, et al., 2017; Asbeck, et al., 2021).  

Indicators provide access to otherwise unavailable attributes, representing a more 

complete understanding of community condition and function although at often a higher cost of 

sampling. They are also important due to the inability to both sample every desired stand feature 

and sample across a large enough area (Juutinen and Mönkkönen, 2004; Whitman and Hagan, 

2007). However, selection of the most appropriate indicator is no simple task. Using imperfect 

representation can quickly lead to error in understanding and management (Lindenmayer, et al., 

2000; Lausch, et al., 2016).  

Vascular plants have served as cost-effective indicators of community dynamics 

(Kuchler, 1976; Juutinen and Mönkkönen, 2004). Large diameter trees have been widely 

recognized as important indicators. These trees comprise most of the stand structure and 
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dynamics across tropical and temperate forests (Whitman and Hagan, 2007; Lutz, et al., 2012). 

Large diameter trees are defined in several different ways, usually dependent on the region or 

forest community type and the tree species (Lindenmayer, et al., 2012; Lutz, et al., 2018). Lutz 

et al., (2018) recommends an upper percentile (e.g., 99th percent) of the observed tree size 

distribution. Such definitions, however, can be biased when considering unevenly sized 

populations. Better suited is the definition for New England forests proposed by Whitman and 

Hagan (2007), and followed by Ducey et al., (2013) which classifies large trees as those greater 

than or equal to 40 cm (15.748 inches) diameter at breast height (dbh). These large trees, both 

living and dead, have been successfully used as indicators of old growth and late-successional 

forests (Whitman and Hagan, 2007; Lutz, et al., 2013). Living large trees create both timber and 

non-timber value, through culturally and spiritually important qualities (Lutz, et al., 2012). Large 

dead trees remain as keystone elements within the ecosystem for decades due their ecosystem 

services, including nutrient cycling and wildlife habitat (Lindenmayer, et al., 2012; Jones, et al., 

2018). However, the presence of large trees alone cannot be used to define old growth forests. 

The density of large trees can, however, provide a signal for the ecological and economic status 

of the stand (Congalton, et al., 1993; Oliver and Larson, 1996). Even in low stem densities, large 

trees control much of the forest community carbon storage and biomass (Lutz, et al., 2012; 

Ducey, et al., 2013; Lutz et al., 2018). Low stem densities, restricted sampling extents, and 

between plot variability have challenged most attempts to understand the presence or absence of 

large diameter trees. Although it seems an obvious choice to implement remote sensing to locate 

and quantity large tree presence, many platforms lack the combined spatial, spectral, and 

temporal resolution to reliably generate estimates (He, et al., 1998; Berni, et al., 2009; 

Guimarães, et al., 2020). 
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Remote sensing has a long history of collaboration with forest inventory and 

management, with photogrammetric mapping and aerial surveys in use for nearly 100 years 

(Spurr, 1948; Colwell, 1955; Husch, et al., 1972; Hinkley and Zajkowski, 2011; Pause, et al., 

2016; Liang, et al., 2019). Advanced tools and techniques such as Light Detection and Ranging 

(LiDAR) and radar sensors present current users with promising results (Vierling, et al., 2008; 

Jensen, 2016; Chen, et al., 2017; Lausch, et al., 2017; Muhamad-Afizzul, et al., 2019). Many of 

these cutting-edge technologies, however, bring with them barriers such as hardware and 

software costs or the need for additional specialized knowledge. Additionally, they often do not 

provide the temporal or spatial resolution to map individual trees or scales which would be best 

suited for individual landowners (Janowiak, et al., 2018). To ensure operationally feasible 

management, remote sensing systems must find compelling ways to estimate a variety of forest 

attributes while maintaining workflows that can be adapted to diverse projects and users.  

 Since their proliferation in the early 2000’s, Unmanned Aerial Systems (i.e., UAS, UAV, 

or drones) have made vast strides in their ability to monitor and model forests (Falkowski, et al., 

2009; Hinkley and Zajkowski, 2011; Lu, et al., 2018; Corte, et al., 2020). UAS offer the 

potential to further reduce the moderate amounts of uncertainty in estimating forest attributes 

from high-resolution manned aircraft or satellite imagery (Leckie, et al., 2003; Taylor, et al., 

2016; Hogland, et al., 2018). The expanded adoption of UAS can also provide managers with 

better qualitative and quantitative information at large scales, while maintaining relatively low 

levels of uncertainty (Lindenmayer, et al., 2000; Goodbody, et al., 2018; Corte, et al., 2020). 

Technological advances including Structure from Motion (SfM), segmentation algorithms for 

automated individual tree detection and delineation, and increases in battery performance have 

paved the way for the general adoption of this platform (Cummings, et al., 2017; Kuželka and 
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Surový, 2018). While there are noted improvements in spatial data resolution and associated 

processing techniques the use of high-resolution imagery is not without its inherent challenges 

measuring complex stand structure and composition (Fritz, et al., 2013; Goldbergs, et al., 2018). 

Here we used UAS to estimate individual tree dbh, as well as stand basal area and density, 

and compared these results to field based measurements. Additionally, we provided a new 

perspective on the challenges of species-based mapping through the classification of individual 

large trees (Franklin and Ahmed, 2018). Similar studies, such as Iizuka et al., (2017) have 

demonstrated a strong relationship between crown area or crown width and tree diameter, 

although for predominantly coniferous forests. Ramalho de Oliveria et al., (2021) demonstrated 

that both UAS-LiDAR and UAS photogrammetry methods could achieve tree detection 

accuracies higher than 90% among tree plantations. Many other studies, such as Goodbody et al., 

(2017) have compared UAS photogrammetric measurements to other remotely sensed data for 

the measurement of tree height. Our research instead focused on complex, mixed-species forests, 

with two primary objectives focused on enhancing the power of local scale land managers. These 

objectives are: 

1. Estimate forest stand biometrics from UAS-SfM models of Northeastern Forests.  

a. Estimate tree specific dbh using crown geometry and UAS digital 

photogrammetry.  

b. Calculate stand density using basal area and trees per acre by species.  

c. Compare these UAS-based estimates to CFI plot field inventory 

measurements at the forest stand level.  

2. Assess the detection of ‘large’ trees as economic and ecological indicators of forest 

condition.  
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METHODS 

Study Areas 
To conduct the analysis for our first objective, estimating forest stand biometrics using 

UAS-SfM, seven woodland properties located in Southeastern New Hampshire were studied 

(Figure 3). In total, 466 hectares (ha) were quantified, representing a mixture of forest 

community types and ages. Each of these sites were selected based on their availability of field-

based inventory data within 5 years of when the woodlot could be sampled using our UAS. All 

of the properties (College Woods, Kingman Farm, East Foss Farm, Moore Fields, Dudley, and 

Burley-Demeritt), other than the Blue Hills study area are managed by the University of New 

Hampshire (UNH) for their naturalness and research integrity. The Blue Hills Foundation lands 

are contiguous forests, managed by the Harvard Forest as conservation lands. Due to logistical 

constraints with the UAS, only 118.64 ha out of the original 1034.78 ha of upland forests within 

the Blue Hills conservation lands were used in this study. These seven properties were stratified 

into 44 forests stands, with an average stand size of 10.59 ha, based on the available forest 

inventory data, using the methods described in the next section. 
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Figure 3. Depiction of the forest stands for each of the seven study areas, located in Southeastern 

New Hampshire. In numbered order (1) Kingman Farm (97.2 ha), (2) College Woods (111.6 ha), 

(3) Moore Fields (17.2 ha), (4) East Foss Farm (59.9 ha), (5) Burley- Demeritt (43.9 ha), (6) 

Dudley (17.5 ha), and (7) Blue Hills (118.6 ha). 
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For our second objective, quantifying the presence of large trees, we revisited two of our 

original study areas: College Woods and Kingman Farm. These study areas were selected due to 

their proximity, known presence of large trees, and diversity of forest stand types. For these two 

properties, seven forest stands were selected to conduct our large tree analysis. These included 

three predominantly coniferous stands, two mixed forest stands, and two deciduous stands. These 

stands reflected approximately 103 ha of forest and a minimum of 100 sampled trees in each of 

the coniferous, deciduous, and mixed forest stand types. 

 

Field Data Collection 

 CFI plot parameters were measured across UNH woodlands using a systematic grid 

sampling design. These plots were distributed on a grid spacing of 1 plot per hectare. At each 

plot location, a variable radius plot (using horizontal point sampling) was established 

(Eisenhaure, 2018). Measured trees were identified using a basal area factor (BAF) 4.95 𝑚2/ha 

(BAF 20 𝑓𝑡2/ acre) angle gauge. For each measured tree, the species, dbh, and a silvicultural 

code (i.e., living or dead status) was recorded. Each measured tree was also numbered and 

geolocated using a bearing and distance from the plot center.  

 To improve the positional accuracy of the original CFI plot center locations, based on the 

uncertainty discovered in Fraser and Congalton, (2019) the plot centers for several sites were re-

collected during the 2018-2020 summer field seasons. These sites included: College Woods, 

Kingman Farm, and East Foss Farm. During this recollection, a wide area augmentation system 

(WAAS) enabled GPS and location averaging was utilized.  

 For the Blue Hills conservation land forests, field inventories were conducted in 2008, 

2010, and 2017. In 2008, 100 inventory plots were randomly distributed across the conservation 
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lands upland forests and measured, with a 50-m minimum buffer between plots to increase their 

distribution. These same 100 plots were then remeasured in 2010 and 2017. In 2017, an 

additional 20 new plots were generated. At each plot, overstory vegetation measurements were 

made for all trees taller than 1.4 m and having a dbh greater than or equal to 2.5 cm. This data 

was filtered so that only trees with a dbh greater than or equal to 12.7 cm (5 inches) were 

retained. This filtering ensured that non-tree vegetation would be removed and so that the 

calculations of forest stand composition, based on basal area, would more closely match the 

sampling design of the other study areas.  

 Using the provided forest inventory data, forest stands were delineated into nine mutually 

exclusive community types. These community types included: White Pine (Pinus strobus), 

Eastern Hemlock (Tsuga canadensis), Other Conifer, Mixed Forest, Red Maple (Acer rubrum), 

Oak (Quercus spp.), American Beech (Fagus grandifolia), Other Hardwoods, and Other Forest. 

The full definitions for theses forest communities can be found in Appendix 2. This stand 

delineation was accomplished using the majority class composition of the individual forest 

inventory plots, based on species basal area proportions, aggregated in their local area. 

Additionally, high-resolution image interpretation conducted by trained and experienced forest 

technicians familiar with the study sites was used to digitize specific boundaries (see Fraser and 

Congalton, (2019)).  

For each of these forest stands, the aggregated CFI plot measurements were used as the 

basis for calculating stand level attributes which served as the field-based reference data for our 

first objective. These stand level attributes are summarized in Table 11. 
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Table 11. Forest biometric equations for the stand level characterizations of structure and 

composition. 

Forest Parameter Equation Variables 

Cross-sectional Area 

(CA) of individual 

trees 

CA = 𝒅𝒃𝒉𝟐 ∗ 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟖𝟓𝟒 dbh = diameter at breast height  

Basal Area per Hectare 

(BA/ha) 
BA/ha = 

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒆𝒆𝒔 ∗ 𝑩𝑨𝑭)

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒍𝒐𝒕𝒔
 BAF = Basal Area Factor 

Trees Per Hectare 

(TPH) 

𝜮 𝑻𝑭𝒊

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒍𝒐𝒕𝒔
  𝑻𝑭𝒊 = Tree Factor of Tree i 

Quadratic Mean 

Diameter  

(QMD or �̅�𝑸) 
�̅�𝑸 =  √

𝑩𝑨/𝒉𝒂

𝑻𝑷𝑯 ∗ 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟖𝟓𝟒
 

 

Stand Density Index 

(SDI) 
 𝐒𝐃𝐈 =  𝑻𝑷𝑯 ∗  (

𝑸𝑴𝑫

𝟐𝟓.𝟒
)𝟏.𝟔𝟎𝟓 1.605 and 25.4 are constants  

 

Basal area is a useful characteristic for defining the composition of forest stands 

(Kershaw, et al., 2016). The Quadratic Mean Diameter (QMD) complements basal area as a 

description of stand composition and provides an additional level of insight for those looking to 

quantify stand volume (Curtis and Marshall, 2000; Kershaw, et al., 2016). Stand density (SDI), 

and stocking, are used to depict the production quality of a given site (i.e., a measure of the sites 

production efficiency or quality) (Woodall, et al., 2005; Kershaw, et al., 2016). 

Using the delineated stand maps, seven forest stands located throughout the Kingman 

Farm and College Woods study sites were used to collect field-based reference data on large 

trees. This stratification allowed for the evaluation of large trees across divergent forest 

communities (Whitman and Hagan, 2007; Ducey, et al., 2013). These forest stands included a 

variety of coniferous, hardwood, and mixed forest types. For each of these forest stands, the 

original CFI plot data was reviewed for the presence of large trees. From these CFI plot records, 

all trees with a dbh greater than or equal to 37 cm (14.57 inches) were remeasured during the 
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2020 field season. Trees smaller than 40 cm in dbh were included in this sampling so that the 

classification accuracy of trees below the size threshold of ‘large’ would be evaluated. A new 

tree-specific position was recorded using our high-precision GPS and a new dbh measurement 

was taken. An EOS Arrow 200 GPS (EOS, 2021) was used to collect this position, which is 

reported to reach centimeter level accuracy. From our use below the dense canopy, the GPS 

receiver reported a 1.54 m average confidence, which would provide an approximate estimate of 

the tree location given the known difference between the tree stem and crown apex (Fuchs, 

2003). From these data, approximately 459 trees were sampled for this second research 

objective, 45 of these trees were snags and 64 had a dbh smaller than 40 cm. The dbh of these 

trees ranged from 17.272 cm to 130.81 cm. The point locations of individual trees were manually 

edited in ArcGIS when necessary to better correspond with tree crowns visible within the UAS 

orthoimagery. GPS points which could not be matched to tree crowns based on their dbh or 

species were removed, resulting in a final count of 393 reference trees. 

 

UAS Data Collection and Processing 

 The UAS imagery collected for this study was captured using a combination of two 

fixed-wing aircraft and two natural color sensors. These aircraft included the senseFly eBee Plus 

and its newer iteration, the senseFly eBee X, from Parrot (senseFly, 2018, 2019a). Both UAS 

were controlled using pre-programmed autonomous mission planning software (eMotion 

versions 3.15 and 3.19) (eMotion, 2021). The results of previous studies were used to select the 

flight parameters, including flying only on days with consistent sun-angle and exposure, flying 

when winds were light and perpendicular to the flight lines, and flying at altitudes near the 

maximum allowed by the Federal Aviation Administration (FAA) Part 107 guidelines of 121.92 

m (400 ft) (Dandois, et al., 2015; Puliti, et al., 2015; Fraser and Congalton, 2018). All missions 
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were set to have 85% forward overlap and 80% side overlap to aid the modeling of the complex 

forest landscape (Fraser and Congalton, 2018, Fraser and Congalton, 2019). The internal Real 

Time Kinematic (RTK) feature of both aircraft was enabled during all missions so that the image 

capture locations could be post processed to a higher precision before SfM modeling. The two 

sensors deployed by these aircraft included (1) the Aeria X, natural color camera and (2) the 

Sensor Optimized for Drone Applications (SODA) natural color camera (senseFly, 2019b, 

2019c). Due to its improved hardware characteristics, the Aeria X sensor was used whenever 

possible, however the SODA was used to capture several of the study sites due to logistical and 

technical constraints. 

A number of best practices have discussed for UAS-SfM software choice and settings, 

but with constant refinements and no established output standards there remains some flexibility 

in this procedure (Dandois, et al., 2015; James, et al., 2017; Fraser and Congalton, 2018). 

Agisoft MetaShape (previously ‘Agisoft PhotoScan’) v1.5.5. was used for all SfM modeling. The 

processing workflow selected first the “High Accuracy” image alignment, and then the “Ultra 

High” quality settings for the dense point cloud formation, digital elevation model (DEM) 

generation, and orthomosaicking. These selections ensured that the full resolution of the original 

imagery was used during the Structure from Motion Multi-View Stereo (SfM-MVS) processing. 

This also provided a far greater amount of detail in the DEMs, which was necessary for 

establishing the segmentation process (Gu, et al., 2020). For each image collection date, the SfM 

outputs included an ultra-high-resolution natural color orthoimage and an ultra-high-resolution 

DEM. 
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Individual Tree Detection and Delineation  

 Our original individual tree detection and delineation (ITDD) procedure consisted of 

applying a multiresolution segmentation to the orthoimagery and relying on their spectral, 

textural, and geometric principals to segment individual tree canopies. After several iterations of 

this method however, even the best results, quantitatively and visually, displayed poor 

performance. Instead, a marker-controlled watershed segmentation (MCWS) approach, outlined 

in Gu et al., (2020), was used to achieve far more realistic individual tree segments (Panagiotidis, 

et al., 2017). For our approach, we utilized an ultra-high-quality canopy height model (CHM) for 

each study area due to its performance during initial testing. To create each of the CHMs, we 

began by normalizing the heights to above ground elevation values by subtracting the New 

Hampshire 2m lidar bare earth dataset using a common datum and vertical coordinate system 

(GRANIT, 2021). We then applied a low pass (Gaussian) filter to the resulting layer to reduce 

the notable presence of noise (i.e., excess pits and peaks) (Panagiotidis, et al., 2017; Chen, et al., 

2018; Gu, et al., 2020). A local maxima operation was applied to this final CHM in ArcGIS Pro 

version 2.7 to identify the individual treetops (i.e., markers for MCWS). The fixed window size 

for this operation was set to the average size of the reference tree crowns, approximately 4.5 m, 

based on the results of similar studies (Hwang and Lee, 2011; Gu, et al., 2020). To evaluate the 

performance of the individual tree detection and mitigate biases for the under detection of sub-

dominant trees which is occurs with remotely sensed imagery acquired from above, we 

calculated the object detection rate of the final treetops in comparison to our field reference data 

(Leckie, et al., 2003; Hirschmugl, et al., 2007; Yang, et al., 2017). We also compared the tree 

detection error (commission and omission rate) for this 4.5 m fixed window size to both larger 

and smaller window sizes on a subset of our data to ensure the most accurate representation of 

individual tree canopies (i.e., optimal detection of singular trees). The identified treetops were 
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then compared to digitized reference trees to calculate the individual tree detection accuracy (i.e., 

object detection rate or ODR) as well as the rate of over detection and under detection (Mohan, 

et al., 2017; Gu, et al., 2020). For the College Woods and Kingman Farm study sites, two 

iterations of reference tree segments were on-screen digitized by trained and experienced field 

technicians using the species, size, and location information from our field inventory. These 

reference trees were distributed throughout both of these properties and represented the full 

range of tree sizes and species visible in the imagery. We then used the intersection of these two 

independent sample sets as reference polygons to validate the accuracy of our MCWS. This 

produced a total of 237 reference polygons.  

 A two-stage algorithm written in Python was used to complete the MCWS (Gu, et al., 

2020). The first stage involved masking non-forest areas and large canopy gaps. This mask set a 

minimum height threshold of 3 m (~10 ft) for all image segments. Due to the presence of pits 

and smoothed regions within some of the CHM canopy gaps, an additional greenness index 

threshold was calculated from the orthoimagery and applied to this mask. A conservative 

greenness index threshold was used to retain connected portions of lower canopy vegetation, still 

present in the imagery, but remove isolated or understory remnant vegetation. The second stage 

of the algorithm applied the MCWS segmentation. This algorithm started with the identified 

treetops, and delineated individual tree boundaries using the height gradients found within the 

CHM (Gu, et al., 2020).  

The accuracy of these final individual tree segments was evaluated both quantitatively 

and qualitatively. An overlap index (OI) was used to determine the corresponding best match 

between the digitized reference polygons and the canopy segments to support our quantitative 

evaluation of the image segments (Chen, et al., 2018; Gu, et al., 2020). During this empirical 
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evaluation of the segmentation quality, three matching indices were calculated. Both an Over-

segmentation index (Oa) and Under-segmentation index (Ua) were calculated to determine the 

degree to which the segments corresponded with individual trees (Clinton, et al., 2010; Chen, et 

al., 2018). Over-segmentation was prioritized over under-segmentation while comparing the 

results of various segmentation parameters, due to its influence on species classification (Chen, 

et al., 2018). The final empirical evaluator that we calculated was a Quality Rate (QR) index. 

The QR index measures the geometric correspondence between the reference polygon and the 

segmented trees, with a result of 0 indicating a complete match (Weidner, 2008; Chen, et al., 

2018; Gu, et al., 2020). A final, visual assessment was conducted following each empirical 

assessment of segmentation quality to ensure that the crown edges represented in the 

orthoimagery matched the highest performing quantitative results (Chen, et al., 2018). 

 

Tree Species Classification  

 For each of the final tree segments (canopies), a variety of spectral, geometric, and 

textural attributes were calculated using eCognition Developer (v9.1). These attributes, shown in 

Table 12, were used as both the species classification parameters and for the secondary 

classification framework for large trees. 
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Table 12. Individual tree crown features (parameters) derived from both eCognition and ArcGIS 

software tools. 

Classification Features 

Spectral Geometric Textural (all directions) 

Greenness 

Mean of Brightness band 

Mean of red band 

Mean of green band 

Mean of blue band 

Std. Dev red band 

Std. Dev. green band 

Std. Dev. blue band 

Intensity 

 

 

 

 

 

 

*Greenness= 
(𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛 −𝑀𝑒𝑎𝑛 𝑅𝑒𝑑)+(𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛−𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)

(2 ∗𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛)+(𝑀𝑒𝑎𝑛 𝑅𝑒𝑑)+(𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)
 

Area (Pixels) 

Length/Width 

Asymmetry 

Border index 

Compactness 

Density 

 

Radius of largest enclosed ellipse 

Radius of smallest enclosed ellipse 

Roundness 

Shape Index 

Area (m2) 

Radius (minimum bounding circle 

radius) 
 

 

*Area (m2) and Radius calculated in 

ArcGIS 

GLCM Homogeneity 

GLCM Contrast 

GLCM Dissimilarity 

GLCM Entropy 

GLCM Mean 

GLCM Correlation 

GLDV Mean 

GLDV Contrast 

 

 

 

 

 

 

*GLCM = Gray Level Co-

Occurrence Matrix 

*GLDV = Grey Level 

Difference Vector 

 

Our species classification was completed using a Random Forests supervised 

classification algorithm in Python (Pedregosa, et al., 2011). This classification scheme included: 

White Pine, Eastern Hemlock, Other Conifer, American Beech, Red Maple, Oak, Other 

Hardwood, Other Forest, and Snag. The full definitions of these classes can be seen in Appendix 

2. An additional sampling of individual reference trees, gathered through a blend of field 

inventory and photo interpretation, was used to generate reference data for this classification. A 
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minimum of 30 training and 30 validation trees, located throughout several of the study areas, 

were used for each class. The Gini index was used to control the impurity of the individual 

decision tree splits (Loh, 2011; Krzywinski and Altman, 2017). A measure of variable 

importance was also generated using the mean decrease in impurity (MDI) to ensure the 

performance of the algorithm (Breiman, 2001). The thematic accuracy of this species-based 

classification was evaluated using a thematic map accuracy assessment error matrix (Congalton 

and Green, 2019). 

 

UAS Regression Analysis and Biometrics 

 A linear regression was used to empirically model estimates of dbh from the UAS data. 

Both the crown area and crown radius of individual tree segments were examined for their 

relationship (i.e., fit) to field-based measurements of dbh (Lamson, 1987; Lockhart, et al., 2005). 

Crown area was calculated for all of the individual tree segments based on their geometry in 

ArcGIS. Crown radius was derived from the radius of the minimum bounding circle for each 

segment. The relationship between UAS tree canopies (segments) and field-based measurements 

of dbh included 393 reference trees. This data was split, with a consideration for species 

diversity, size diversity, and stand composition diversity, so that 75% of the reference samples 

were used to build the regression models and 25% were used to validate its accuracy. Both the 

crown area and crown radius models were examined for all species, coniferous species, and 

deciduous species independently (Minor, 1951; Bonnor, 1964; Kershaw, et al., 2016). The 

Pearson’s coefficient (𝑟) was used to determine the strength of the relationship (Snedcor and 

Cochran, 1980). Additionally, the validation trees were used to generate a root mean square error 

(RMSE) for the best fitting regression model to determine if this data fell within the 2% to 18% 

confidence interval expected from field-based measurements of dbh (Bohlin, et al., 2012). 
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Using this new relationship for dbh derived from the UAS data, the dbh for all of the 

detected trees for our seven study sites was calculated. From this variable, stand level attributes 

such as basal area per hectare, TPH, QMD, and SDI were calculated using the same fundamental 

equations as the field inventory assessment with two adjustments (Ducey and Knapp, 2010; 

Ducey, et al., 2013; Kershaw, et al., 2016). The first adjustment was that these estimates of stand 

level characteristics were made using all of the observed trees within each stand, and not just the 

independent field sampling plots. Second, to calculate the total observed stand basal area and 

then basal area per hectare, individual tree segments which were smaller than 3 𝑚2 or 500 pixels 

were removed using a semi-automated method based on visual inspection of the orthoimagery 

and then implementing a filter in ArcGIS Pro. This process removed small and erroneous image 

objects, located mostly around canopy gaps and edges, which did not represent tree canopies and 

would positively bias the total stand basal area. The accuracy for these UAS-based forest 

inventory estimates were assessed based on their percent difference from the field-based 

estimates for each stand. 

 

UAS Large Tree Survey 

 To meet our second objective, the quantification of large tree presence, we again used the 

geometry of the individual tree segments (crowns) identified in the last section. With these tree 

canopies, two distinct methods were used to categorize large and small trees. First, we used the 

best fitting regression equation from objective one to estimate the dbh of each of our reference 

trees from their crown geometry. This dbh was then cross-referenced with the validation trees to 

determine their agreement in classification for large and small trees (i.e., greater than or less than 

40 cm dbh). Trees with an estimated dbh smaller than 40 cm were labeled as small, while trees 

with an estimated dbh greater than or equal to 40 cm were labeled as large. Our second method 
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consisted of a supervised classification of large and small trees using the random forests 

classifier, similar to the original species-based classification. This random forests classification 

was established using the same training and validation samples as the estimated dbh regression 

(Congalton and Green, 2019). Each of the features calculated for the original species-based 

classification (29 features) were reapplied for the purpose of defining large and small trees. The 

species of each reference tree was also used as an additional feature for this classification. This 

secondary, thematic, classification was evaluated using a thematic map accuracy assessment 

error matrix (Congalton and Green, 2019) 

 

RESULTS 

UAS-SfM Modelling  

The spatial resolution of the SfM-MVS orthoimagery and CHMs ranged from 2.53 cm to 

3.6 cm. The average spatial resolution was 2.94 cm. In total 14 spatial models were created; one 

orthoimage and one CHM for each of the seven study areas using the Ultra-High-quality setting 

in Agisoft MetaShape. 

 

Individual Tree Detection and Delineation  

A total of 237 digitized reference trees from College Woods and Kingman Farm were 

used to quantify the overall tree detection accuracy based on our selected, optimal window size. 

Alternate window sizes and segmentation parameters were evaluated but found to be less 

accurate for overall detection accuracy. Table 13 shows the overall detection accuracy for 

individual trees, as well as the rate of over detection (commission error) and under detection 

(omission error). Of these trees, 64.56% were correctly identified and delineated as a singular 

canopy. The percentage of over detected (i.e., over segmented) trees, 18.14%, and under detected 
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(under segmented) trees, 17.3%, were roughly balanced. The overall detection rate was 82.7%. 

This is a combination of the trees detected with a singular canopies (i.e., "correct detection') and 

those that were falsely detected as multiple trees (i.e., over detected). 

 

Table 13. Individual tree detection (ITD) accuracy, including the rates of commission and 

omission error as well as the overall detection accuracy. 

Individual Tree Detection Field (Reference) Data 
 

   
Correct 

Detection 

Over Detection 

(Commission Error) 

Under Detection 

(Omission Error) 
TOTAL 

UAS 

Detected 
Total 153 43 41 237 

 

Accuracy Percentage 64.56% 18.14% 17.3% 

OVERALL 

Detection 

82.7% 

 

The geometric accuracy of the final tree segments were compared to these same digitized 

reference trees using the Oa, Ua, and QR indices. This resulted in an Oa of 0.2103, a Ua of 

0.3741, and a QR of 0.49796. In the effort to obtain the most accurate delineation of individual 

trees, we tested the influence of applying an additional multiresolution segmentation to these tree 

segments. This would further interject spectral information into the segmentation process. All 

tests however, resulted in a minimum of a 0.86% decrease in the QR, which would negatively 

affect the resulting estimates of dbh.   

 

Tree Species Classification 

Our species-based classification, including nine classes, resulted in an overall accuracy of 

56.10% (Table 14). Classes such as snags, white pine, and other conifer displayed the highest 

producer’s and user’s accuracies. Alternatively, classes such as other forest, other hardwoods, 
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and red maple resulted in the lowest user’s accuracies with 36.11%, 37.84%, and 43.75% 

accuracies, respectively. This was echoed in the producer’s accuracies, with each of these classes 

as well as the oak class showing increased rates of commission error.   

 

Table 14. Species-based classification thematic map error matrix conducted on nine species: 

American beech (AB), Eastern hemlock (EH), oaks, other conifers (OC), other forests (OF), 

other hardwoods (OH), red maple (RM), snags, and Eastern white pine (WP). Classification was 

completed using the random forests (RF) supervised classification algorithm. 

Random Forests  

Classification                                                                                          Field (Reference) Data 

   

AB EH OAK OC OF OH RM SNAG WP 
TOTAL 

USERS  

ACCURACY 

 

 

 

 

 

UAS 

Data 

AB 23 4 9 0 2 0 0 0 0 38 60.05% 

EH 6 16 8 3 0 1 2 0 3 39 41.03% 

OAK 6 2 44 6 8 6 4 0 0 76 57.89% 

OC 2 6 2 32 0 0 0 0 3 45 71.11% 

OF 6 1 9 0 13 5 2 0 0 36 36.11% 

OH 1 1 9 2 4 14 4 1 1 37 37.84% 

RM 2 0 11 2 4 7 21 0 1 48 43.75% 

SNAG 0 0 0 1 0 0 1 33 5 40 82.50% 

WP 2 5 1 3 1 1 1 3 34 51 66.67% 
 

TOTAL 48 35 93 49 32 34 35 37 47 230/410 
 

 

PRODUCERS 

ACCURACY  
47.92

% 

45.71

% 

47.31

% 

65.31

% 

40.63

% 

41.18

% 

60.00

% 

89.19

% 

72.34

% 

 
OVERALL 

ACCURACY 

56.10% 

 

 

UAS Regression Analysis and Biometrics 

To model the relationship between crown geometry and dbh, two regression models were 

examined. First, the relationship between crown area and dbh was modeled (Figure 4) for all 

species, then coniferous and deciduous species independently. Crown area resulted in an 𝒓 value 
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of 0.2816 overall, with deciduous and coniferous species reaching 𝑟 values of 0.1517 and 

0.3603. The second regression modelled the relationship between crown radius and dbh (Figure 

5). All three trend lines for this model had a better overall fit than those of the crown area 

regression. The combined species 𝑟 value reached 0.3792, while deciduous and coniferous 

species had values of 0.3895 and 0.4686. In comparing these two models, deciduous species in 

both cases showed a worse fit than did coniferous species. The equation for the line of combined 

species crown radius to dbh is given below in Equation 1. This equation gave the best overall fit 

for all species, and was used as the basis for the stand level biometric estimation in the next 

section. In this equation ‘x’ is the crown radius of an individual tree segment, and ‘Y’ is the trees 

dbh. 

 

Equation 1. UAS-based estimation of diameter at breast height (dbh) derived from the 

segmentation of individual tree crown radius. 

        Y = 3.26057x + 36.05689             

                                        

 

Using this equation, we compared the UAS estimated dbh for our validation trees to the 

field-measured dbh. This comparison resulted in a RMSE of 13.15 cm, which is equivalent to an 

error of 19.7% to 33.7% based on the average size of our measured trees (based on one standard 

deviation from the mean). 
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Figure 4. Linear regression between field measured dbh and crown area estimated using the UAS 

tree segments. Three trend lines and their respective equations are displayed for all species 

combined, as well as deciduous species and coniferous species independently. 

 

 

Figure 5. Linear regression between field measured dbh and crown radius estimated using UAS 

tree segments. Three trend lines and their respective equations are displayed for all species 

combined, as well as deciduous species and coniferous species independently. 
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To understand the accuracy for estimating stand level characteristics, the crown radius to 

dbh regression equation above was used to calculate the basal area of individual tree segments. 

In conjunction with this, TPH was determined based on the detection of treetops in each stand, 

and both were used to derive estimates of QMD and SDI which could be compared to field-based 

reference data. Figure 6, below, shows our comparison between UAS estimates of BA/ha, TPH, 

QMD, and SDI.  In this figure, 100% on the y-axis denotes the UAS-based estimate for a given 

stand is equivalent to the field inventory estimate for the given attribute (e.g., 100% of the 

reference data value). The estimates of BA/ha showed that the UAS on average was 42.18% 

higher (142.181% or + 8.59 𝑚2 / ha) than field-based measurements. On the other hand, TPH 

estimates were 45.58% lower than the field-based estimates at 54.417% (322 vs 626.5 TPH). 

This overestimation of BA/ha and underestimation of TPH were reflected in the other 

comparisons which resulted in overestimations of 62.081% for QMD (+14.99 cm) and an 

underestimation of 3.337% for SDI (-6.01). 
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Figure 6. Comparison of field-based inventory estimates and UAS-based inventory estimates of stand 

level characteristics including: Basal Area per Hectare (BA/ha), Trees per Hectare (TPH), Quadratic 

Mean Diameter (QMD), and Stand Density Index (SDI).The y-axis is based on the estimation of the UAS 

data when compared to the field-measured reference for each stand; 100% on this axis denotes that these 

estimates are equivalent in value, while 200% would denote that the UAS-based estimate was twice that 

of the reference data.  

 

UAS Large Tree Survey 

Two methods were used to quantify the accuracy of large tree classification using the 

UAS tree segments (Table 15). The first consisted of classifying trees as large, greater than or 

equal to a 40 cm dbh, based on their estimated dbh from the crown radius regression model 

discussed above. For the 100-validation trees measured and classified based on our field 

reference data, 84% were correctly classified as large trees. In addition, all 16 trees that were 

smaller than 40 cm in diameter (100% of these samples) were also classified as large based on 

the UAS data. The second method to classify trees as large or small included applying a random 

forests supervised classification to the same training (n = 293) and validation (n = 100) trees as 

the regression model. This supervised classification utilized the same input features as the 
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species-based classification (Table 12) with one addition, a numeric code for the known species 

identification. This random forests classification resulted in an overall accuracy of 85%. The 

slight increase in classification accuracy was the result of the successful classification of one 

small sugar maple (Acer saccharum) tree. 

 

Table 15. Thematic accuracy error matrices for the classification of large trees. (A) Using the linear 

regression equation for dbh based on the segmented crown radius and (B) using a random forests 

supervised classification. 

A: Linear Regression: Large Trees Field (Reference) Data 

  

   

LARGE SMALL 
TOTAL 

USER 

ACCURACY 

UAS 

Data 

LARGE 84 16 100 84.00% 

SMALL 0 0 0 100% 
 

TOTAL 84 16 100 
 

 
PRODUCERS 

ACCURACY 

100% 0% 
 

OVERALL 

ACCURACY 

84/100 

84.00% 

   

B: Random Forests: Large Trees Field (Reference) Data 
  

   

LARGE SMALL 
TOTAL 

USER 

ACCURACY 

UAS 

Data 

LARGE 84 15 99 84.85% 

SMALL 0 1 0 100% 
 

TOTAL 84 16 100 
 

 
PRODUCERS 

ACCURACY 

100% 6.25% 
 

OVERALL 

ACCURACY 

85/100 

85.00% 
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Figure 7 shows the feature importance of all 30-image object features implemented for 

the supervised random forests classification of large trees. These feature importance values are 

calculated using the MDI. Crown radius (0.0585) followed by the greenness index (0.0493) and 

crown area in 𝑚2 (0.0467), displayed the highest feature importance. Many of the additional 

geometric and textural features displayed the lowest feature importance. 

 

Figure 7. Feature importance values for the random forests classification input features for large trees 

based on the mean decrease in impurity (MDI) index. 

 

 

DISCUSSION 

The quantification of forest stand and individual tree characteristics using remote sensing 

has been a topic of interest for several decades (Gillis, et al., 2005; Bohlin, et al., 2012; Kuželka 

and Surový, 2018; Goodbody, et al., 2020). Our first objective investigated the ability for UAS-

SfM photogrammetry to estimate individual tree diameter as well as stand level characterizations 

of BA/ha, TPH, QMD, and SDI. In addition to this, we utilized a random forests supervised 

classification to examine individual tree species and in support of our second objective, a survey 

of large tree presence using UAS.  

 The overall classification accuracy for our nine-class (species) system was 56.10%. 

Classes that were highly distinct, such as white pine and snags, reported both high producer’s 
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and user’s accuracies. Other classes such as other forest and other hardwoods showed the worst 

performance. The class for Eastern hemlock also showed poor performance, likely because of 

their poor reconstruction in the SfM models for some regions of the orthoimagery and DEMs 

which was realized during the visual exploration of the data and canopy delineation procedures. 

The results of quantifying dbh for individual trees using crown geometry demonstrated a 

relatively low precision (±13.15 cm) and fit (𝑟 = 0.3792). This contrasts with a study by Iizuka et 

al., (2017) which demonstrated a strong relationship between canopy geometry and field-

measured dbh, especially for crown width (𝑟 = 0.7786). Their study, however, was conducted 

using predominantly coniferous species (e.g., Chamaecyparis obtuse) in a low species diversity 

area while our study had a complex mixture of dense conifers and deciduous trees. In Figure 5, 

we see the presence of several large outlier trees, with low crown radius values, that were over 

segmented. These training trees were recorded with diameters ranging up to 130 cm. 

Segmentation has been a large concern when considering the modeling of large trees using only 

optical, natural color imagery. Our approach utilized an MCWS algorithm, following multiple 

testing cycles. For example, when performing this same MCWS algorithm on medium-quality 

SfM data products, we achieved a slightly higher individual tree detection accuracy, however, 

there was a subsequent 9% decrease in the segments QR which negatively impacted each of the 

dbh regression models. More recent, region growing, segmentation algorithms have been 

published which show promising results for this same procedure (Gu and Congalton, 2021). The 

complexity of these Northeastern, mixed-species forests present a challenge, however. The 

diversity of tree canopy appearances has led to a continual pursuit for the improved identification 

and delineation of trees within closed canopy forests (Kuželka and Surový, 2018; Liu, et al., 

2019). The correct identification and extraction of small trees in particular is noted as a source of 
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uncertainty for the classification of large and small trees, which will be further reflected on in the 

next section. Lastly, several studies have recognized that site-specific and species-specific 

allometric equations based on crown geometry have achieved good performance for measuring 

indirect forest characteristics (Rautiainen, et al., 2008; Pretzsch, et al., 2015; Pretzsch, 2019; 

Rudge, et al., 2021). Future research will explore methods for improving species-based 

classifications and the increases in accuracy found by adapting species-specific equations for tree 

crown-dbh mathematical models.  

Based on the regression equation for crown radius, our UAS-based estimates of tree 

diameter showed an average difference of 19.7% to 33.7% when compared to field reference 

data. In a study by Wieser et al., (2017) UAS-lidar measurement errors for tree diameter ranged 

from 9% for trees between 20 and 30 cm in diameter to 1.8% for trees larger than 40 cm in 

diameter. This study was conducted on pre-alpine alluvial forests in Austria (Wieser, et al., 

2017). Corte et al., (2020) established a similar result for UAS-lidar with the measurements of 

individual tree diameter reaching an RMSE of 11.3% on a eucalyptus planation (Eucalyptus 

benthamii). While our results have not yet reached those of UAS-lidar, the affordability and 

technical accessibility of our photogrammetric framework provide a strong incentive for its use 

in local scale management. Our results for stand level estimations showed an overestimation of 

BA/ha (42.181%) and QMD (62.088%) while TPH and SDI were underestimated by 46.439% 

and 3.309%. The underestimation of tree density using UAS-SfM is not uncommon. Goldbergs 

et al., (2018) analyzed the detection rate of individual trees using SfM point cloud. Their results 

showed that dominant and co-dominant trees had a detection accuracy of approximately 70% 

while suppressed trees resulted in a detection accuracy under 35%. The complexity of our multi-

canopy forests make the comparison of field-based and remote sensing inventory measurements 
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challenging. In a study by Ramalho de Oliveira et al., (2021) the detection accuracies of 

individual trees, within a loblolly pine (Pinus taeda) plantation in central Florida, reached 96% 

and 92% for UAS-lidar and UAS photogrammetry, respectively. Recognizing that the UAS-

based estimations of tree diameter tended to exaggerate their actual sizes, we implemented a 

filtering of tree segments that were smaller than 500 pixels or 3 𝑚2. Identified treetops that were 

delineated as only a few pixels during the MCWS were registered as trees with a minimum dbh 

of 36.057 cm using Equation 1. This caused the initial estimates of total stand basal area and 

BA/ha to be two to three times higher. Lastly, we considered the influence of stand size of these 

inventory characteristics. Most of the stands that are shown as outliers in Figure 6 are smaller 

than 10 ha in size. For example, a stand at the Dudley study area that was 5.77 ha in size resulted 

in the greatest overestimation of BA/ha with a calculation of 748.05% of the field-based value. 

This translated into an overestimation of QMD and SDI of 401.2% and 374.5% respectively. 

Stand size can present a considerable source of variability in the estimation of forest 

characteristics, with moderate stability not being reached for some remote sensing data sources 

until the stand size is 10 to 20 ha or larger (Hyyppa and Hyyppa, 2001). Several mechanisms 

may be involved in this trend in estimation error including; (1) that the accuracy of the reference 

(field-based) measurements may be improved with the inclusion of more inventory plots; (2) 

larger stands may exhibit less variability (i.e., more homogenous area) for the remote sensing 

estimates; or (3) the small differences in stand boundary may be more impactful for the smallest 

of stands (Hyyppa and Hyyppa, 2001). When comparing only stands larger than nine ha (n = 19), 

the overestimation of BA/ha reduced from 42.181% to 14.629%, with a subsequent boost to the 

precision of these estimations. This resulting overestimation of 14.6% for BA/ha at the stand 
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level more closely coincides with the results of other studies using photogrammetric 

measurements (Bohlin, et al., 2017). 

Exploring the results of our second objective, an evaluation of large tree mapping, we set 

a 40 cm dbh size threshold as the definition of large trees. Large trees represent a key ecosystem 

component, even in low densities (Ali, et al., 2019; Kebrle, et al., 2021; Yuan, et al., 2021). Our 

random forests classification performed slightly better than the estimated dbh regression model 

for crown radius. These inflated overall accuracies of 85% and 84%, for the random forests and 

regression classifications, would likely decrease with the availability of a larger sample size of 

small trees as the classification accuracy of both models for this class was less than 10%. 

Previous studies have acknowledged the difficulty in surveying or tracking changes in large tree 

presence in the field (Lutz, et al., 2012; Harris, et al., 2021).  While many recent studies have 

investigated the function of large trees in various habitats, few reflect on the accuracy or cost of 

estimating their presence and distribution (Hartel, et al., 2018; Jones, et al., 2018). As discussed 

above, more research is also needed to adopt these methods for the assessment of small or non-

dominant trees in dense canopy stands (Goldbergs, et al., 2018). These trees, located lower in the 

forest canopy, represent a considerable source of uncertainty when employing photogrammetric 

methods (citation).  

While the quality of the segmentation results, i.e., individual tree delineation, is a primary 

source of uncertainty for these applications, the challenge of defining a standard segmentation 

practice for specific forest cover types is not easily overcome (Kuželka and Surový, 2018; Gu 

and Congalton, 2021). Future research should look at the benefits of multi-temporal workflows 

or the fusion of natural color sensors with lidar point clouds or hyperspectral imagery. This 

addition of data sources however brings to question the feasibility of not only collecting, but 
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understanding and processing such products, in a way, which would be adaptable for managing 

local-scale forests. The flexibility and efficiency of UAS-photogrammetry using SfM, and 

modern individual tree crown delineation methods makes it a fundamental target for updating 

and extending forest inventories (Panagiotidis, et al., 2017; Ganz, et al., 2019; Shang, et al., 

2020). These methods must remain approachable for local scale management, to remain 

applicable to a significant percentage of woodlands throughout this region (Morin, et al., 2015; 

Janowiak, et al., 2018). 

 

CONCLUSIONS 

Today’s forests require detailed and up-to-date information to support local-scale 

management. Our research investigated the proficiency for UAS natural color imagery, 

integrating refined Structure from Motion (SfM) and advanced segmentation algorithms, for the 

estimation of individual tree and stand level characteristics. In our first objective, we estimated 

individual tree diameters within complex forests using their segmented crown radius. This 

resulted in an average error of 19.7% to 33.7%. At the stand level, this regression model resulted 

in overestimations of basal area per hectare, quadratic mean diameter, and the stand density 

index, while trees per hectare was underestimated. The results of this stand level assessment was 

improved when considering only stands larger than nine ha. Bringing the accuracy of our UAS 

methods closer to other studies conducted using photogrammetry and those which utilized lidar 

sensors. For the second objective, our assessment of large trees presented a high overall accuracy 

for both the crown radius regression model and random forests classification, 84% and 85% 

respectively. This classification, however, further highlighted in inability of UAS 

photogrammetry for identifying and delineating small or suppressed trees with this class 

receiving an accuracy of less than 10% for both methodologies. A major principal of this 
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research was the accuracy of the individual tree detection and delineation, which is rapidly 

progressing. The results of this study provide an additional exploration of complex forest 

photogrammetry using modern software and hardware technology as well as a relatively 

accessible framework for local scale management, which will lead to a greater understanding of 

our forested landscape 
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CHAPTER 3: Monitoring Fine-Scale Forest Health using UAS-SfM 

Multispectral Models 
 

ABSTRACT 

 Forest disturbances, driven by pests, pathogens, and discrete events, have led to billions 

of dollars in lost ecosystem services and management costs. To understand the patterns and 

severity of these stressors across complex landscapes there must be an increase in reliable data at 

scale compatible with management actions. Unmanned Aerial Systems (UAS or UAV) offer a 

capable platform for collecting local scale (e.g., individual tree) forestry data. In our study, we 

evaluate the capability of UAS multispectral imagery for differentiating healthy, stressed, and 

degraded individual trees throughout mixed-species forests. We also make a comparison of these 

results to freely available high-resolution airborne imagery. During these investigations, several 

approaches to classifying forest health classes using the random forests and support vector 

machine (SVM) machine learning algorithms are applied. Using the random forests classifier, the 

UAS imagery correctly classified five forest health classes with an overall accuracy of 65.43%. 

When these classes were generalized to healthy, stressed, and degraded trees, the accuracy 

improved to 71.19%. Using similar methods, the high-resolution imagery achieved an overall 

accuracy of 50.50% for the five health classes, a reduction of 14.93%. Further analysis into the 

precise calibration of UAs multispectral imagery, a refinement of image segmentation methods, 

and the fusion of these data with more widely distributed remotely sensed imagery would further 

enhance the potential of these methods.  

 

BACKGROUND AND LITERATURE REVIEW 

Forest disturbances, coupled with invasions by foreign pests and pathogens, have come to 

dramatically alter vegetation systems. These discrete events transform physical structure, 
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ecosystem processes, and resource allocations which comprise a significant role at local and 

global scales and across both natural and developed environments (Oliver and Larson, 1996; 

Frolking, et al., 2009; Coleman, et al., 2018; Wilson, et al., 2019). Examples of prevalent forest 

disturbance include fires, flooding, windstorms, droughts, overharvesting, pollution, 

fragmentation, and biological invasions. Invasions by insects and pathogens threaten the stability 

of forest ecosystems, events that are projected to increase (Aukema, et al., 2011; Pontius, et al., 

2017). Private landowners and local governments most heavily endure the degradation and 

ecosystem change caused by these biological invasions (Aukema, et al., 2011; Hassaan, et al., 

2016; Lausch, et al., 2017). In conjunction with distinct disturbance events, continuous stress 

from anthropogenic activities have had a measured impact (Lausch, et al., 2016). Managing 

forests for peak growth requires not only a combination of nutrients, light, temperature, and 

moisture but also the absence or diminished presence of threats and invasions (Kopinga and 

Burg, 1995; Lausch, et al., 2016; Pan, et al., 2018). Reconciling forest disturbances and stress 

requires understanding where it occurs and what influences it may have at several spatial and 

temporal scales. Despite such a need for information, forest disturbance and health assessments 

are still a task often left to the limited number of land managers and conservation resources. 

Unfortunately, even in the simplest of environments, forests present complex interactions of 

cause and effects which further hinder research and management. Individual tree species are 

known to display differences in their response to changes in resource availability or stand 

dynamics (Oliver and Larson, 1996; Lausch, et al., 2016; Gerhards, et al., 2019). 

The definition of ‘forest health’ requires a multifaceted consideration of scales ranging 

from the individual tree branch to the entire forest ecosystem while including both biotic and 

abiotic factors. Lausch et al., (2016) defines forest health most simply, at the tree scale, as “the 
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absence of disease or damage.” Ward and Johnson, (2007) provide two more complete 

definitions for forest health. First, “a measure or condition of forest ecosystem robustness, 

including rates of growth and mortality, crown condition or vigor, and the incidence of damage” 

(Steinman, 2004; Ward and Johnson, 2007). Second, forest health is defined as “a capacity to 

supply and allocate water, nutrients, and energy in ways that increase or maintain productivity 

while maintaining resistance to biotic and abiotic stresses” (McLaughlin and Percy, 1999; Ward 

and Johnson, 2007). With both the complexity of natural processes to observe (both the internal 

functions and external interactions of trees) and the potential for influences and responses to 

coalesce, forest health presents a uniquely difficult challenge for adequate monitoring (Lausch, et 

al., 2016; Meng, et al., 2016). 

In New England forests there are numerous regionally important tree species that are 

facing devastating disturbances. These species include eastern white pine (Pinus strobus), ash 

(Fraxinus spp.), oaks (Quercus spp.), eastern hemlock (Tsuga Canadensis), and American beech 

(Fagus grandifolia), among others. For hundreds of years, white pine has played a central role 

for northern U.S. and Canadian forest ecosystem services (Broders, et al., 2015). In recent 

decades, combinations of several fungal pathogens and air pollutants have caused measurable 

disturbances to white pine (Broders, et al., 2015). This phenomenon, now known as white pine 

needle damage (WPND) or white pine needle cast, was discovered to be most prominently 

caused by the fungus (Canavirgella banfieldii). WPND is expected to increase in severity and 

distribution given its current geographic extent and the projected climate scenarios (Broders, et 

al., 2015; Wyka, et al., 2017). The value of ash species stems from their fast growth and wood 

density, because of which they are a basis for many timber products (Poland and McCullough, 

2006). Since 2002 however, emerald ash borer (EAB) (Agrilus planipennis) has devastated over 
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15 million ash trees, costing the U.S. economy an estimated $30 billion (Poland and 

McCullough, 2006; Pontius, et al., 2017). Oaks provide both commercial value as priority timber 

products and numerous wildlife resources (Tirmenstein, 1991; Carey, 1992). Throughout New 

England however, disturbance events stimulated by gypsy moths (Lymantria dispar dispar) are 

threatening the future of their resources at alarming rates (Pasquarella, et al., 2018). Eastern 

hemlock present several resources for wildlife due to their dense stand structure and food 

provisioning (Carey, 1993). Hemlocks represent a common feature of the New England forested 

landscape. Nearly as ubiquitous as these host trees, hemlock woolly adelgid (HWA) has 

devastated the region’s populations. Following invasion, HWA has been known to severely 

impair over 90% of hemlock trees (Orwig and Foster, 1998; Simoes, et al., 2019). Beech trees 

provide food for both wildlife and humans, an excellent source of fuelwood, lumber for many 

wood products, and even medicine as a source creosote (Burns and Honkala, 1990). Due to 

infestations of beech scale (Cryptococcus fagisuga) (i.e., beech bark disease), entire stands of 

trees are being impacted.  

Due to the variability in responses to disturbance that various tree species exhibit, it is 

difficult to quantify and communicate how such negative trends could be mitigated (McCune, 

2000; Pause, et al., 2016). The rapid progression of change and mortality caused by many of 

these disturbances has come to outpace the critical obtainment of reliable information using in 

situ (i.e., field-based) methods (Tucker, et al., 1985; Goetz and Dubayah, 2011; Zaman, et al., 

2011; Lausch, et al., 2017). Field-based methods for the early detection of forest stress involve 

either visual assessments of crown vigor, or the analysis of soil and foliar biophysical properties 

to evaluate photosynthetic activity (Lausch, et al., 2016). Crown vigor assessments focus on the 

defoliation, thinning, and dieback of tree crowns in relation to expected site development (Innes, 
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1998; Hallett, et al., 2006, 2018; Pontius and Hallett, 2014; Wyka, et al., 2017). Well defined 

guides created by the U.S. Forest Service (USFS) provide methods for classifying crown vigor 

classes based on defoliation, transparency, and discoloration charts (Pontius and Hallett, 2014; 

Hallett, et al., 2018; HTHC, 2021). These methods can be standardized and compared across 

study areas to monitor the severity of the disturbances. Alternatively, foliar analysis using 

spectroscopy has become far more accessible in recent years. Field spectrometers and lab-based 

chlorophyll fluorescence measurements give evidence for pre-visual decline in leaf activity 

(Kopinga and Burg, 1995; Pontius and Hallett, 2014; Lausch, et al., 2017; Guidi, et al., 2019). 

Both methods are routinely applied to protect global forest ecosystems. A comprehensive 

evaluation of forest health including multiple observations or measurements is needed for 

effective monitoring (Frolking, et al., 2009; Gatica-Saavedra, et al., 2017; Lausch, et al., 2017).  

To observe, or measure, a reduction in forest health using remote sensing requires 

choosing a well-fitting indicator (Noss, 1999; Lindenmayer, et al., 2000; Juutinen and 

Mönkkönen, 2004; Pause, et al., 2016). Choosing such an indicator is often one of the first steps 

in a forest health assessment (Meng, et al., 2016). At both the individual tree level and at the 

level of forest stands or landscapes these indicators measure conditions, or the changes in them 

using a range of variables. These variables include crown vigor (Pontius, et al., 2017; Grulke, et 

al., 2020; Schrader-Patton, et al., 2021), structural characteristics such as tree height, growing 

stock, or crown size (Pause et al., 2016), phenology, water content, defoliation (Royle and 

Lathrop, 1997; Wyka, et al., 2017), canopy discoloration, and fragmentation (Lausch, et al., 

2016; Bigler and Vitasse, 2021). Two prevailing techniques exist for conducting these 

assessments of forest health using modern, high-resolution, imagery: (1) aerial surveys or (2) 

digital image classification.  
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Aerial visual surveys using piloted aircraft provide excellent scales of observation, with 

potentially highly accurate results. The methods for conducting these surveys are well-defined 

and broadly adopted, allowing trained personnel to detect both tree species and disturbance type 

(e.g., disease or defoliation cause) even among complex forests (Broders, et al., 2015; Coleman, 

et al., 2018). Still, these surveys are restricted due to their: cost, inability to fly on-demand, 

insufficient temporal frequency for observing all types of disturbance, and limitation of only 

detecting areas that already show signs of invasion or stress. Close range digital remote sensing 

and satellite imagery classification allows users to precisely monitor long-term stress and change 

using indicators (Pause, et al., 2016; Lausch, et al., 2017). Digital imagery with modern 

hardware often assimilates the use of signal theory and increased spectral dimensionality for 

obtaining information from measured reflectance (Hoffbeck and Landgrebe, 1996). A primary 

example of this is chlorophyll fluorescence measurements, which assess the photosynthetic 

efficiency, or variation in it (stress), to determine vegetation status or health (Lausch, et al., 

2017; Guidi, et al., 2019). When a plant becomes stressed, due to the impacts of some stressors, 

it is said to be ‘chlorotic’ which most results in a reduction in photosynthetic activity and is 

marked by a shift towards greater amounts of green and red reflectance (Horsley, et al., 2002; 

Jensen, 2016). Both healthy and stressed leaves can be identified based on the internal and 

external structures of the leaf (e.g., chlorophylls and xanthophyll) and their responses to 

electromagnetic energy (Gago, et al., 2015; Jensen, 2016). From small handheld devices to 

multimillion-dollar platforms, sensors are being developed and applied that can detect stress or 

changes in photosynthetic efficiency (i.e., metabolism) before visible indications are available 

(Chaerle and Van Der Straeten, 2000; Lausch, et al., 2017). These remote sensing spectral 

responses are tested against laboratory analyses to distinguish between true and observed 
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reflectance (i.e., defining necessary radiometric corrections) (Hoffbeck and Landgrebe, 1996; 

Näsi, et al., 2016; Choi, et al., 2019). Once the true reflectance from a given sensor is defined, 

statistical relationships between spectral response and various biotic traits can be empirically 

modeled (Lausch, et al., 2017; Lu, et al., 2018). For example, many spectral band indices have 

been developed which can be used to interpret changes in vegetation status or condition (Royle 

and Lathrop, 1997; Pontius, et al., 2017; Lu, et al., 2018). The Normalized Difference 

Vegetation Index (NDVI), including modified versions, and forms of visible vegetative indices 

(VVI) represent two of the most readily applied methods (Kerr and Ostrovsky, 2003; Goodbody, 

et al., 2018; Otsu, et al., 2019; Zhang, et al., 2020). The formula for NDVI and two common 

VVI can be seen below (Equations 2, 3, and 4). 

                                                              

Equation 2. Normalized Difference Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                                   

                     

Equation 3. Visible Vegetation Index (VVI).  

𝑉𝑉𝐼 = [(1 − |
𝑅𝑒𝑑−𝑅𝑒𝑑_0

𝑅𝑒𝑑+ 𝑅𝑒𝑑_0
|)(1 − |

𝐺𝑟𝑒𝑒𝑛−𝐺𝑟𝑒𝑒𝑛_0

𝐺𝑟𝑒𝑒𝑛+ 𝐺𝑟𝑒𝑒𝑛_0
|)(1 − |

𝐵𝑙𝑢𝑒−𝐵𝑙𝑢𝑒_0

𝐵𝑙𝑢𝑒 + 𝐵𝑙𝑢𝑒_0
|)]                     

                

Equation 4. Normalized Green Red Difference Index (NGRDI). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 𝑅𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑁𝐺𝑅𝐷𝐼) =   
(𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑)
                   

 

More advanced sensors, such as Goddard's LiDAR Hyperspectral and Thermal Imager 

(G-LiHT), bring together hyperspectral imaging and 3D laser scanner reconstructions to form 

fusion datasets. G-LiHT and comparable sensors are able to map vegetation communities, 

invasive species presences, natural disturbances, and carbon cycles (Lausch, et al., 2017; Liu, et 
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al., 2017; Gerhards, et al., 2019; Zhao, et al., 2020). Multi-sensor data fusion has become more 

prominent in recent decades. However, challenges such as spectral intercalibration, temporal 

discontinuity, and positional misregistration must be managed when adopting these methods 

(Jenerowicz, et al., 2017; Berra, et al., 2019; Alvarez-Vanhard, et al., 2020). Regardless of 

which platform and sensor is deployed, there remains two primary procedures for monitoring 

forest health using digital remotely sensed data. The first method is called image differencing 

which uses a time series analysis to diagnose patterns of change in an area. This method can be 

reliable but is sensitive to misregistration and calibration errors (Coppin and Bauer, 1996; Royle 

and Lathrop, 1997; Desclée, et al., 2006). The second method is image classification. Image 

classification uses spectral responses, and any additional geospatial data, to distinguish distinct 

biotic traits (Royle and Lathrop, 1997; Jensen, 2016). Like aerial visual surveys, these digitally 

classified remotely sensed images can be still limited by temporal infrequencies, inflexible 

deployment conditions, cost, and cloud coverage (Jenerowicz, et al., 2017; Berra, et al., 2019; 

Næsset, et al., 2019). Therefore, the question remains of how to best harmonize these evolving 

technologies with operational feasibility. 

Unmanned Aerial Systems (UAS) have become a noteworthy platform for bringing 

geospatial sciences and technologies into the hands of more diverse stakeholders. Although UAS 

have had a long history of military development, consumer market demands and concurrent 

technological innovations have made this platform both economic and adaptive (Marshall, et al., 

2016; Fraser and Congalton, 2018). Several studies have used normal color or modified normal 

color consumer-grade cameras onboard UAS to measure vegetation biophysical properties with 

high precision (Lelong, et al., 2008; Gini, et al., 2014; Lehmann, et al., 2015; Lu, et al., 2018). 

Other studies have applied UAS for estimating attributes of individual trees and forest stands 
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(Tang and Shao, 2015; Michez, et al., 2016; Liang, et al., 2019; Zhou and Zhang, 2020). These 

efforts directly assist the need for large-scale (i.e., individual tree or management unit size) data 

which can be used for disturbance monitoring and decision making (Poland and McCullough, 

2006; Kattenborn, et al., 2019; Smigaj, et al., 2019; Revill, et al., 2020). Our study further 

defines a niche for UAS forest health assessments, between that of advanced data fusion 

techniques and more limited yet operational aerial surveys. Our goal is to provide a means for 

large-scale (local) land managers to have a more complete understanding of their forests, by 

supplementing in situ surveying. By providing information on the presence and abundance of 

stressed or degraded trees forest managers can more quickly react to lowered resource 

availability or diminished ecosystem function (Grulke, et al., 2020). For this reason, we 

investigated the ability to classify coniferous and deciduous tree health classes, instead of 

targeting a specific disturbance event. To accomplish this, we evaluated the ability of simple 

multispectral sensors onboard UAS for distinguishing healthy, stressed, and degraded trees in 

complex, mixed-species, forests. Specifically, our objectives were: 

1. Determine the capability of UAS for classifying forest health at the individual tree 

level 

2. Compare the results of forest health classification using UAS to high-resolution, 

multispectral, airborne imagery  
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METHODS 

Study Areas 

 Four woodland properties, managed by the University of New Hampshire (UNH) were 

employed in this research. These properties included: Kingman Farm, Thompson Farm, College 

Woods, and Moore Fields (Figure 8) and represent a total of 304.1 hectares (ha) of forests 

located near the main UNH campus. These study sites were chosen due to the availability of 

previous forest inventory records and for having a known presence of forest disturbances (e.g., 

WPND, HWA, EAB, and beech bark disease) (Eisenhaure, 2018; Woodlands, 2021).  
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Figure 8. Four woodland properties evaluated during our assessment of forest health. Each 

property is shown using the multispectral (False Color Composite) orthoimagery generated from 

our Unmanned Aerial System (UAS) imagery. 

 

Assessing Forest Health: Field and Photo Interpretation Survey 

 Field-based sampling was conducted to provide reference data for each forest health 

class. At each study area, we visited preexisting continuous forest inventory (CFI) plots to locate 

a variety coniferous and deciduous species (Eisenhaure, 2018; Fraser and Congalton, 2021a). 

These species included: Eastern white pine (Pinus strobus), Eastern hemlock (Tsuga 

canadensis), red pine (Pinus resinosa), American beech (Fagus grandifolia), red maple (Acer 
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rubrum), white ash (Fraxinus americana), and Northern red oak (Quercus rubra). Each 

individual tree was positionally located using a high-precision EOS Arrow 200 RTK GPS (EOS, 

2021). The positional error, as reported by the device during sampling, ranged between 0.48 m 

and 3.19 m. Additional trees, were located for each health class while traversing the miles of 

trials distributed throughout each of the properties. To assess the health of each sampled tree, a 

team of two researchers used visual guides of crown vigor and degradation (Pontius and Hallett, 

2014; Pontius, et al., 2017). These visual charts and classifications are based on Pontius and 

Hallett, (2014) and supplemental practices suggested in Broders et al., (2015) and Innes (1998). 

This procedure was adopted due to the ease of implementation and available training. Using 

these charts, data on fine twig dieback, leaf discoloration, leaf defoliation, crown vigor, crown 

transparency, and crown light exposure (see Pontius and Hallett, 2014 or Hallett and Hallett, 

2018 for definitions) were entered into the Healthy Trees Healthy Cities app (HTHC, 2021). This 

app then summarized the full suite of tree health attributes, using standardized variables (Z-

scores) which were calculated using the mean and standard deviation of regional, species-

specific, observations for each attribute (Green, 1979; Pontius and Hallett, 2014; Hallett and 

Hallett, 2018). For the final step, this app translated this comprehensive, species-specific, Z-

scores for each tree into a 10-part, numeric, classification system, with lower values representing 

healthier trees (Pontius and Hallett, 2014; Hallett and Hallett, 2018).  

 For our analysis, we collapsed this 10-part classification system into five distinct forest 

health classes:  
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▪ Coniferous (C) – Healthy coniferous trees (e.g., eastern white pine or eastern 

hemlock) identified as having minimal or no signs of stress, which are calculated 

using the stress index as classes 1, 2, or 3.  

 

▪ Deciduous (D) – Healthy deciduous trees (e.g., American beech, white ash, or 

Northern red oak) identified as having minimal or no signs of stress, which are 

calculated using the stress index as classes 1, 2, or 3.  

 

▪ Coniferous Stressed (CS) – Stressed coniferous trees, displaying moderate or severe 

reductions in crown vigor, which are calculated using the stress index as classes 4 

through 9.  

 

▪ Deciduous Stressed (DS) – Stressed deciduous trees, displaying moderate or severe 

reductions in crown vigor, which are calculated using the stress index as classes 4 

through 9. 

 

▪ Degraded/Dead (Snag) – Coniferous or deciduous trees identified as stress class 10 

(dead) which represent the most degraded of each health attribute.  

 

A minimum of 20 samples for each of these five classes were collected during our field-

inventory. Using these field samples, interpretation guides for each class were established (see 

Appendix 3). These guides were then used by a trained forest technician, in addition to ultra-

high-resolution, multispectral UAS imagery, to photo interpret additional reference samples. 

Photo interpretation was conducted to provide a minimum of 70 samples for each forest health 

class providing for a more evenly distributed sample throughout the study areas.  

 

Assessing Forest Health: Digital Image Classification  

Airborne Imagery 

 To examine the performance of digitally classifying these five forest health classes using 

freely available, high-resolution, remotely sensed imagery our first analysis was conducted using 

2018 National Agriculture Imagery Program (NAIP) imagery. These images were collected at a 

60 cm spatial resolution, with 4 spectral bands (blue, green, red, and near infrared (NIR) (USDA, 

2021). To provide an evaluation of individual trees, these images were segmented using a 
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multiresolution segmentation algorithm within eCognition (v9.1). The segmentation parameters, 

as refined in our previous study (Fraser and Congalton, 2021b), were: Scale 10, Shape 0.2, and 

Compactness 0.5. These parameters provided an over segmented result, which was necessary for 

digitally classifying individual trees. For each image object, 30 object level features were 

calculated including: spectral, textural, and geometric attributes, as well as three spectral indices 

(NDVI, NGRDI, and the Greenness Index).  These spectral indices were selected due to their 

given association with plant stress (Louhaichi et al., 2001; Gago, et al., 2015; Lu, et al., 2018; 

Otsu, et al., 2019). The equations for NDVI and NGRDI are given above (Equations 2 and 4) 

while the equation for the Greenness Index is presented here (Equation 5).  

Equation 5. Greenness Index. 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =  
(𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛 − 𝑀𝑒𝑎𝑛 𝑅𝑒𝑑) + (𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛 − 𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)

(2 ∗ 𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛) + (𝑀𝑒𝑎𝑛 𝑅𝑒𝑑) + (𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)
 

 

UAS Imagery  

 UAS imagery were collected using a combination of two aircraft, the senseFly eBee X 

and its predecessor the eBee Plus (senseFly, 2018, senseFly, 2019a). To obtain natural color 

imagery, the eBee Plus was operated with its associated Sensor Optimized for Drone 

Applications (S.O.D.A.) while the eBee X utilized the senseFly Aeria X sensor (senseFly, 2019b, 

2019c). These sensors provided the photogrammetric basis for the marker-controlled watershed 

segmentation (MCWS) described in the next section as well as uncalibrated blue, green, and red 

spectral bands. Multispectral UAS imagery was collected using the Parrot Sequoia+. This five-

lens sensor system is comprised of a natural color sensor (not used in this study), as well as 

independent green (550 ±40 nm), red (660 ±40 nm), NIR (790 ±40 nm), and red edge (735 ±10 

nm), lenses (senseFly, 2021). All missions were conducted using the eMotion flight management 
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software (eMotion, 2021). The flight parameters for all missions consisted of 85% forward 

overlap between images, 90% side overlap, consistent sun-angles and cloud exposures, and 

flying heights of 121.92 m (400 ft) above the ground (Dandois, et al., 2015; Puliti, et al., 2015; 

Fraser and Congalton, 2018). Prior to missions conducted using the Parrot Sequoia+ sensor, a 

radiometric calibration target was used to adjust the camera reflectance to absolute 

measurements (senseFly, 2021). During post-processing, individual image locations were 

positionally corrected using the National Oceanic and Atmospheric Administrations (NOAA) 

Continuously Operating Reference Stations (CORS) and the aircrafts flight logs (NOAA, 2019). 

The positionally corrected images were then brought into Agisoft MetaShape (v 1.5.5.) for 

Structure from Motion Multi-View Stereo (SfM-MVS) modelling. For each study area, a set of 

both natural color and multispectral images were processed using the provided SfM workflow 

within this software. We selected the “High Accuracy” image alignment option, then the “Ultra 

High” setting for each of the remaining modelling steps (Fraser and Congalton, 2018; Gu, et al., 

2020; Fraser and Congalton, 2021b). An ultra-high-resolution digital elevation model (DEM) 

was generated from the natural color imagery to support the segmentation process. Two 

orthomosaics (i.e., orthoimages) were produced for each property; one from each of the natural 

color and multispectral workflows.  

 The UAS imagery was segmented using a MCWS technique outlined in Gu et al., (2020) 

(Chen, et al., 2018; Fraser and Congalton, 2021a). First, a canopy height model (CHM) for each 

of the four study areas was created by subtracting a 2 m New Hampshire lidar bare earth model 

from the UAS DEMs (GRANIT, 2021). A Gaussian (low pass) filter was then applied to these 

CHMs to remove residual noise in the data (Panagiotidis, et al., 2017; Chen, et al., 2018; Gu, et 

al., 2020). To establish the individual treetops (i.e., ‘markers’), a fixed, circular, window size of 
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4.5 m was used to identify the local maxima. This window size was found to provide a more 

accurate single tree delineation in previous studies (Gu, et al., 2020; Fraser and Congalton, 

2021a; Gu and Congalton, 2021). An object detection rate (ODR) and segmentation Quality Rate 

(QR) for these data and study areas are defined in our previous study, Fraser and Congalton 

(2021a).  Following the individual tree detection and delineation (ITDD) process, we created a 

composite of the natural color and multispectral UAS imagery for each study area. A nearest 

neighbor raster resampling tool, within ArcGIS Pro (v 2.8.0), was used to resample the higher 

spatial resolution natural color imagery to match the respective study areas multispectral imagery 

(Alonzo, et al., 2014; Hogland, et al., 2018; Chandel, et al., 2020). This resampling ensured we 

retained spatial data consistency during the classification process (García, et al., 2018; Alvarez-

Vanhard, et al., 2020; Gu and Congalton, 2021). These composite images were then used to 

generate 36 image object features in eCognition (see Appendix 3).  

 

Forest Health Accuracy Assessment  

For the forest health assessment of both the NAIP and UAS imagery, the final check of  the 

reference trees was conducted using photo interpretation and manual (on-screen) editing. Points 

that could not be matched to corresponding species (i.e., nearby image objects) in either set of 

imagery were removed. The final sample size for each forest health class for each set of imagery 

are in Table 16.  

 

Table 16. Reference data sample sizes for each forest health class for both the NAIP and UAS 

imagery digital classifications.  

 Coniferous Coniferous 

Stressed 

Deciduous Deciduous 

Stressed 

Dead/Degraded 

NAIP 87 70 84 71 79 

UAS 90 70 84 73 91 
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To quantify the accuracy of classifying for health classes using each source of imagery, we 

adopted thematic map accuracy assessment error matrices (Congalton and Green, 2019). A 

number of accuracy assessment (i.e., training and validation data splitting methods) and 

classification techniques were applied to analyze the results generated from the UAS and NAIP 

imagery. For the NAIP imagery, all tests were performed using a random forests (RF) supervised 

classification algorithm (Breiman, 2001; Maxwell, et al., 2018b; Fraser and Congalton, 2021a). 

For the UAS imagery, in addition to using the RF classification algorithm,  the support vector 

machine (SVM) algorithm was also employed (Chapelle, et al., 1999; Pal and Mather, 2005). 

This secondary algorithm was included due to the often case-specific superior classification 

performance found between these two techniques (Maxwell, et al., 2018b; Wessel, et al., 2018; 

Fraser and Congalton, 2021b). When using the RF classification algorithm, the following 

analyses were applied: (1) a standard cross-validation with a split of 55% training data and 45% 

validation data; (2) this same approach with a 50% training and validation data split; (3) splitting 

the training and validation data 55%/45% but with the removal of the least important image 

features (i.e., feature reduction); (4) performing the validation using an out-of-bag (OOB) 

permutation; (5) classifying coniferous and deciduous tree health classes independently; and (6) 

collapsing the forest health classes into only ‘healthy’ (a combination of coniferous and 

deciduous trees), ‘stressed’, and ‘degraded.’ Two additional tests were applied to the UAS image 

classification, using the RF algorithm, to investigate the influence of the redundant image bands 

included when making a composite of the natural color and multispectral imagery. Each 

evaluation was performed a minimum of 10 times, so that an average overall accuracy could be 

produced. For both the NAIP and UAS imagery, a mean decrease in impurity (MDI) test was 

used to quantify the importance of individual spectral, geometric, and textural image features. 
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The SVM classifier was applied only to the UAS imagery. This classification included a standard 

cross-validation, with a split of 55% training and 45% validation data (similar to the first RF 

classification analysis above). This SVM classification was also completed 10 times, so that an 

average overall classification accuracy could be compared to the RF classification results.  

 

RESULTS 

Airborne Imagery  

 Our first assessment of forest health using digitally classified thematic layers was 

implemented using the freely available NAIP imagery. The individual classification results from 

each method and averaged (10 trials) overall accuracies can be seen in Table 17. In this table, we 

see that the highest overall accuracy, when including all five classes, was achieved using a 55%, 

45% training and validation sample split and the removal of the least important image features 

(i.e., feature reduction) (Figure 9). The out-of-bag (OOB) accuracy for this same method 

resulted in a 10.7% lower overall accuracy. When the forest health classes were generalized to 

only ‘healthy’, ‘stressed’, and ‘degraded’, the overall accuracy reached 70.62%. This average 

accuracy is also similarly achieved when classifying coniferous (72.5%) and deciduous (66.3%) 

classes independently. In Table 18, we provide an example error matrix created using the 55% 

training sample size and feature reduction method, with five classes, to further understand the 

difference in accuracy between this approach and the accuracy achieved using the generalized 

(3) classes.  
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Table 17. NAIP imagery classification accuracies for each random forests classification method. 

The highest accuracy for our five-class scheme is highlighted in green.  

 

55% 

Training 

Split 

50% 

Training 

Split 

55% 

Training 

and Feature 

Reduction 

55% 

Training 

Out-of-Bag 

Coniferous 

Only 

Deciduous 

Only 

Healthy/ 

Stressed/ 

Degraded 

1 0.5568 0.5153 0.5227 0.4093 0.7196 0.6698 0.7102 

2 0.5 0.5051 0.4943 0.3907 0.729 0.6604 0.7102 

3 0.5568 0.5051 0.4545 0.4093 0.729 0.6509 0.7443 

4 0.517 0.5204 0.5 0.386 0.7102 0.6509 0.6875 

5 0.4886 0.4847 0.4659 0.4093 0.729 0.6604 0.7102 

6 0.5057 0.4796 0.4375 0.3814 0.7383 0.6227 0.6761 

7 0.4602 0.5102 0.7943 0.4093 0.7102 0.6604 0.75 

8 0.4886 0.5051 0.4716 0.3907 0.6822 0.6887 0.7045 

9 0.5 0.4643 0.4261 0.3953 0.757 0.6509 0.6818 

10 0.4487 0.5051 0.483 0.3953 0.7477 0.717 0.6875 

Average 0.50224 0.49949 0.50499 0.39766 0.72522 0.66321 0.70623 

 

 

 

 

Figure 9. Mean decrease in impurity (MDI) image feature scores calculated using the NAIP 

imagery and random forests classifier. 
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Table 18. Forest health thematic map accuracy assessment error matrix produced using the NAIP 

imagery, random forests (RF) supervised classification algorithm, and feature reduction digital 

classification method. The classes represented in this error matrix include: Coniferous (C), 

Deciduous (D), Coniferous Stressed (CS), Deciduous Stressed (DS), and Snag (Dead/Degraded).  

Field (Reference) Data 

 

 

NAIP 

Imagery  

Using the  

RF  

Classifier 

 
C     D CS DS Snag TOTAL USERS ACCURACY 

C 27 8 5 8 2 50 54.0% 

D 6 19 1 3 0 29 65.52% 

CS 2 1 12 8 4 27 44.44% 

DS 2 8 6 8 0 24 33.33% 

Snag 2 2 7 5 30 46 65.21% 

TOTAL 
 

39 38 31 32 36 96/174 
 

PRODUCERS 

ACCURACY 

 
69.23% 50.0% 38.71% 25.0% 83.33% 

 
OVERALL ACCURACY 

55.17% 

 

 

UAS Imagery  

The UAS-SfM processing for this study generated a natural color (SODA) and 

multispectral (Sequoia) orthomosaic for each of the four properties. These spatial models 

comprised pixel sizes (i.e., ground sampling distances or spatial resolution) ranging from 11.6 

cm to 13.2 cm for the multispectral imagery. The average spatial resolution was 12.55 cm. A 

number of supervised, digital, classification techniques were employed to assess forest health 

classes (Table 19). In this table, we see that the highest average overall accuracy was produced 

using a 55% training, 45% validation, sample split and the OOB evaluation method (65.43%). 

This result was only slightly higher, 0.376%, than the 55% training and feature reduction 

method. This feature reduction was based on the MDI scores found using this method (Figure 

10). We additionally applied these classification methods without the SODA green and red 

bands, and again without any of the SODA bands. Both iterations produced a slight decrease in 
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the average overall accuracy. When exchanging the random forests classifier for the SVM 

classifier, the overall accuracy lowered by approximately 8%. Lastly, when generalizing the 

health assessment to ‘healthy’, ‘stressed’ and ‘degraded’ trees, the overall accuracy reached 

71.19%. When examining one of the error matrices produced using the five-class health 

assessment (Table 20) we see that some of the misclassification was the result of confusion 

between coniferous and deciduous classes.  

 

Table 19. UAS imagery classification accuracies for each random forests and SVM classification 

method. The highest accuracy for our five-class scheme is highlighted in green. 

 
55% 

Training 

Split 

50% 

Training 

Split 

55% 

Training 

and 

Feature 

Reduction 

Without 

green 

and red 

(SODA) 

Without 

SODA 

Bands 

55% 

Training 

Out-of-

Bag 

Coniferous 

Only 

Deciduous 

Only 
SVM 

Healthy/ 

Stressed/ 

Degraded 

1 0.6685 0.6225 0.6522 0.6685 0.6576 0.6637 0.7876 0.7232 0.5761 0.7609 

2 0.6359 0.6373 0.6304 0.6522 0.6196 0.6592 0.7522 0.7321 0.6087 0.701 

3 0.6413 0.6814 0.6141 0.6413 0.6359 0.6637 0.8053 0.7679 0.587 0.7174 

4 0.6304 0.6618 0.6793 0.6793 0.6685 0.6592 0.7522 0.7946 0.5489 0.7228 

5 0.6359 0.652 0.663 0.6413 0.6087 0.6771 0.7876 0.7768 0.5543 0.701 

6 0.625 0.6373 0.6359 0.5978 0.5987 0.6099 0.7788 0.6696 0.5924 0.7065 

7 0.6685 0.6029 0.6413 0.6467 0.6467 0.6457 0.7964 0.7054 0.5543 0.6848 

8 0.6685 0.6667 0.6737 0.6033 0.663 0.6323 0.7611 0.6607 0.5707 0.7174 

9 0.6413 0.652 0.6739 0.6304 0.6576 0.6637 0.7788 0.7232 0.5435 0.6902 

10 0.6576 0.6324 0.6413 0.5924 0.6902 0.6682 0.8407 0.7232 0.5652 0.7174 

Average 0.64729 0.64463 0.65051 0.63532 0.64465 0.65427 0.78407 0.72767 0.57011 0.71194 
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Figure 10. UAS classification feature importance scores calculated using the MDI test. 

 

 

Table 20. Forest health thematic map accuracy assessment error matrix produced using the UAS 

imagery, random forests (RF) classifier, and feature reduction digital classification method. The 

classes represented in this error matrix include: Coniferous (C), Deciduous (D), Coniferous 

Stressed (CS), Deciduous Stressed (DS), and Snag (Dead/Degraded).  

Field (Reference) Data 

 

 

UAS 

Imagery  

Using the  

RF  

Classifier 

 
C     D CS DS Snag TOTAL USERS ACCURACY 

C 30 1 8 7 4 50 60.0% 

D 7 31 0 13 0 51 60.78% 

CS 3 0 18 4 0 25 72.0% 

DS 1 6 3 6 5 21 28.57% 

Snag 0 0 2 3 32 37 86.49% 

TOTAL 
 

41 38 31 33 41 117/184 

 

PRODUCERS 

ACCURACY 

 
73.17% 81.58% 58.06% 18.18% 78.05% 

 
OVERALL ACCURACY 

63.59% 
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DISCUSSION 

The invasion of forest ecosystems by exotic diseases and insects is one of the most 

detrimental threats to their stability and productivity (Vitousek, et al., 1996; Morin, et al., 2015). 

Forest health and forest degradation, known to guide losses in species diversity and timber 

resources, are increasingly coming to the attention of forest managers (Thompson, et al., 2013; 

Gunn, et al., 2019; Meng, et al., 2019). These negative effects are subject to a positive feedback 

loop with climate change for much of the world and are further heightening the concern of forest 

owners and managers as they require demand more intense monitoring of their forest 

communities (Lehmann et al., 2015; Wilson et al., 2019). One of the most sought-after types of 

information pertaining to regional stressors is the distribution and environmental factors that 

influence forest diseases and pests (Wyka, et al., 2017; Janowiak, et al., 2018; Simoes, et al., 

2019). In our study, we showed that UAS imagery correctly classify forest health classes with an 

overall accuracy that was 14.93% higher than high-resolution airborne imagery. The lowest class 

specific producers’ accuracy was for stressed deciduous trees. Many of these trees were 

incorrectly labeled as healthy. The redundancy in the green and red image bands when using a 

composite of the SODA and Sequoia sensors did not have a negative influence on the 

classification accuracy. Instead, using all the image bands from both sensors resulted in a 1.52% 

increase in overall accuracy. Additionally, the MDI test conducted during the classification of 

the UAS imagery showed that the spectral indices (e.g., NDVI and NGRDI) were some of the 

most important image features along with the red edge band, which is unique to the Sequoia 

sensor. Our results are in agreement with several other studies (Zhang, et al., 2015; Mulatu, et 

al., 2019; Otsu, et al., 2019). Lastly, when the forest health classes were generalized to ‘healthy’, 

‘stressed’, and ‘degraded’, to avoid species misclassification, the UAS still outperformed the 

airborne imagery. During independent analysis of coniferous and deciduous species, the UAS 
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imagery reached an overall classification accuracy for forest health of 71.19%. In similar studies, 

UAS imagery was used to assess specific tree species and disturbance types. In a study by Nasi 

et al., (2018), a hyperspectral sensor was used to survey Norway spruce (Picea abies L. Karst.) 

that had been infested by European spruce bark beetles (Ips typographus L.). Their evaluation 

resulted in an overall accuracies of 79% for airborne imagery and 81% for UAS imagery for 

similar forest health classes to our study (Nasi et al., 2019). In Cardil et al., (2017) researchers 

studied two pine dominated areas experiencing defoliation due to pine processionary moth 

(Thaumetopoea pityocampa). Using only a natural color camera onboard a UAS, tree level 

defoliation was correctly identified with an overall accuracy of 79% (Cardil, et al., 2017). Time 

relevant, field-based surveys of forest health at actionable scales incurs too high of a cost, 

emphasizing the need for remote sensing tools (Kampen, et al., 2019). Many contemporary 

investigations focus on one or two specific tree species or stressors. New England forests, 

however, feature a multitude of natural and anthropogenic disturbances as well as an 

exceptionally high species diversity at local scales (Janowiak, et al., 2018; Pasquarella, et al., 

2018; Simoes, et al., 2019). A competent management tool for land managers in this region 

should be able to identify stressed or degraded individual trees from among the species rich 

population that is naturally present.  

 Despite the successes that this research and similar studies have found in the application 

of UAS for fine scale forest health monitoring, there are several sources of uncertainty that 

should be further explored. Due to the variability in response that individual trees exhibit to 

stress, disease, or pests, other researchers have regarded UAS as serving only as a predictor of 

areas requiring priority management (Barbedo, 2019). Even using a binary classification of 

‘healthy’ or ‘degraded’ trees, many environmental factors in natural ecosystems may have 
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adversely affected our ‘healthy’ reference trees. While methods do exist to collect field-based 

spectral reflectance data, which could provide a more direct comparison to UAS remotely sensed 

image features, these methods elicit considerable time and resources for large study areas 

especially in complex, mixed-species forests (Tree and Slusser, 2005; Adam, et al., 2017; Jha, et 

al., 2019; Zhu, et al., 2019). Another source of uncertainty in this study was the reliance on the 

Parrot Sequoia+ multispectral sensor. Despite the sunshine sensor and calibration plate coupled 

with the Parrot Sequoia+, this sensor is subject to influences of the camera temperature, 

atmospheric conditions, and variability in the sunshine sensor orientation during flight (Olsson, 

et al., 2021). Prior to use for normalizing the irradiance of the multispectral images, the sunshine 

sensor data should be smoothed. This pre-processing would create a more radiometrically 

consistent estimate of reflectance across flights and especially across study areas (Berni, et al., 

2009; Jensen, 2016; Olsson, et al., 2021). In our original investigations we also proposed a 

comparison to satellite sensors with a higher spectral resolution (e.g., Sentinel-2), as a way to 

more fully understand the spectral properties of these forest health classes. Early on in the 

classification however, it became clear that such satellite sensors lacked the spatial resolution to 

sufficiently address our reference trees. Table 21 provides representation of these data sources 

and the scale of the individual tree observations.  
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Table 21. Characterization of individual trees using three sources of remotely sensed imagery. 

(1) UAS natural color imagery, segmented to provide an analysis of a singular Eastern hemlock 

(Tsuga canadensis). (2) NAIP imagery, segmented to analyze this same tree. (3) Setinel-2 

imagery, depicting a singular 10 m pixel (in yellow) overlaid on the UAS segmented individual 

tree crowns.  

Spatial Resolution and the Scale of Individual Tree Analysis 

UAS 

(11.6 cm pixel) 

NAIP 

(60 cm pixel) 

Sentinel-1 

(10 m pixel) 

   

 

Instead of a comparison between UAS and other remote sensing platforms, data fusion remains a 

promising expectation for future research with these complex forests. The constraints of frequent 

monitoring make piloted aircraft techniques logistically challenging (Berra, et al., 2019). Image 

fusion allows users to overcome the shortcomings of single data source limitations. For example, 

with the fusion of satellite and UAS imagery, users could overcome the low spatial resolution of 

most satellite sensors and the limited coverage that can be accomplished by UAS (Jenerowicz, et 

al., 2017; Alvarez-Vanhard, et al., 2020). Lastly, using UAS as an intermediate step for ground-

level observations could also increase the efficiencies found in data scaling (Kampen, et al., 

2019; Revill, et al., 2020). UAS, as opposed to field measurements, allow for a far greater 

abundance of reference measurements to be made for scaling models (Kattenborn, et al., 2019). 
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These imagery combinations may help monitor fine scale change patterns over diverse 

ecosystems (Xia, et al., 2017). To accurately engage methods of data fusion between UAS and 

other sensors, several challenges should be examined. The first being spectral intercalibration. 

Despite independent radiometric calibration of the UAS data, there can remain differences 

between the spectral values measured by the UAS and satellite data (Alvarez-Vanhard, et al., 

2020). Another fundamental challenge is the co-registration of such high-resolution imagery. 

Event with real-time kinematic (RTK) receivers on the misalignment of either data source by 

mere pixels could have a dramatic impact on the accuracy of their resulting data product (Jensen, 

2016; Xia, et al., 2017; Kattenborn, et al., 2019). Lastly, there is a consequential challenge in 

collecting imagery from both data source on the same date. Even with only a few days of 

separation between collecting such UAS and satellite images, differences in spectral reflectance, 

solar/viewing angles, or environmental conditions could cause inconsistencies in the data fusion 

process (Jenerowicz, et al., 2017; Xia, et al., 2017).  

 

CONCLUSIONS 

 The distribution and severity of forest health stressors present too great of an impact on 

natural ecosystems for field-based monitoring to capture and monitor alone. These events are 

causing billions of dollars in diminished ecosystem services and management costs across a 

variety of keystone tree species. Unmanned Aerial Systems (UAS) provide forest and natural 

resource managers with the ability to evaluate and monitor individual trees across scales that are 

consistent with their silvicultural practices. In our study, we examined the viability of UAS for 

classifying various levels of forest health within complex, mixed-species, forests in New 

England. These results serve as a basis for prioritizing field investigations of stands identified to 

consist of stressed or degraded trees. Using a composite of natural color and multispectral UAS 
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imagery we achieved overall classification accuracies ranging between 65.43% and 71.19%. 

Some limitations in our approach include the imprecise calibration of our multispectral imagery 

and the variation on characteristics found among ‘healthy’ trees in natural environments. A 

necessary next step for this research is the fusion, rather than comparison, of these UAS with 

more widely available remotely sensed imagery. Such a step would expand the operational 

feasibility of UAS and address many of the challenges in precision forest health monitoring and 

management.  

 

CONCLUSIONS 
  

To engage the challenges facing forests in the 21st requires both a better understanding of 

their patterns and drivers, as well as a greater amount of information on the intricacies of forest 

ecosystems in general (Ge, et al., 2007; Young, 2010; Ackerly, et al., 2015; Asbeck, et al., 

2021). There are numerous natural resources and data science disciplines working 

collaboratively in these efforts. In our research, we examine one promising remote sensing tool, 

Unmanned Aerial Systems, which embrace compelling developments in many of these fields.  

In the first chapter, we compared the ability of UAS to classify forest compositions to 

other sources of high-resolution remotely sensed imagery. The results detailed that UAS 

provided the highest overall classification accuracy for local scale forest composition. Machine 

learning digital classifications outperformed photo interpretation methods, achieving accuracies 

as high as 70.48%, at the individual tree level for four forest classes. The individual tree 

detection accuracy, for complex mixed-species forests, was promising at 93.9% for the tree 

detection rate. Further refinement of image segmentation techniques to properly delineate 
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distinct species in overlapping canopies would benefit the mapping of local scale forest 

composition in such environments (Yan, et al., 2018; Lobo Torres, et al., 2020; Gu and 

Congalton, 2021).  

In the second chapter, we estimated individual tree and stand level attributes using UAS 

digital photogrammetry. Individual tree diameter at breast height, based on estimations using 

crown geometry produced an average estimation error of 13.15 cm (r = 0.3792). Again, the 

difficulties in accurately delineating individual trees proved one of the most prominent 

challenges. For stand level estimations, such as basal area per hectare, photogrammetric 

estimates performed well for stands larger than nine ha. For such stands, BA/ha was 

overestimated by just 14.629%. Other stand level attributes such as trees per hectare, quadratic 

mean diameter, and stand density index showed similarly promising results, given the efficiency 

of these surveying techniques. While analyzing these spatial data, one of the primary limitations 

of this procedure was the tendency for the MCWS workflow to over segment the largest trees 

and under segment the smallest trees. This is seen by comparing the field-measured dbh 

measurements, and those estimated using the UAS digital photogrammetry (Figure 11).  
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Figure 11. Frequency distributions (i.e., sample sizes) plotted by diameter at breast height (dbh) 

size ranges for both field-measured reference trees and these same tree diameters estimated using 

digital photogrammetry. 

 

As a secondary objective for this study, we included an investigation of the ability for UAS to 

survey rare community characteristics. In our analysis of mapping large trees in complex forests, 

this research provided an efficient and novel solution to the challenges previously experienced 

during field-based sampling methods (Lutz, et al., 2012; Harris, et al., 2021). As with the 

limitations experienced while measuring other individual tree characteristics during this study, 

further refinement of each analysis step (e.g., segmentation, feature extraction, and supervised 

classification) will inevitably promote these efforts as a suitable technique for conservationists.  

 The third chapter recognized the need for data on forest composition and health at scales 

that are similar to silvicultural practices (Kampen, et al., 2019). With this study, we enriched our 

assessment of individual tree and stand level characteristics from chapters 1 and 2 by 

incorporating an evaluation of individual tree health. Using a composite of UAS natural color 

and multispectral imagery, we successfully detected, delineated, and classified the health of 

individual trees. The overall classification accuracy for forest health ranged from 65.43% to 
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71.19% using digitally classified UAS imagery. While other studies have demonstrated higher 

accuracies for species- and disturbance- specific assessments (such as (Cardil, et al., 2017; Näsi, 

et al., 2018)) our objective remained to provide an approach relevant to forest managers 

confronting complex, mixed-species forests with multifaceted disturbance regimes (Janowiak, et 

al., 2018; Kirchhoefer, et al., 2019).  

While carrying out these studies we identified several factors prompting further research 

and discussion. A notable extension of our work would infer data fusion. While multi-sensor 

UAS configurations are becoming more common, a true expansion for each of our studies would 

include the scaling of these methods to airborne or moderate resolution satellite imagery 

(Sankey, et al., 2017; Kampen, et al., 2019; Kattenborn, et al., 2019; Revill, et al., 2020). The 

fusion of UAS and other remotely sensed data sources would provide a pathway for more deeply 

exploring the spectral characteristics of our UAS data and increase the transferability of these 

methods to regional level assessments (Hernandez-Santin, et al., 2019; Alvarez-Vanhard, et al., 

2020). For example, with sufficient evaluation these techniques could come to match or surpass 

the geographic coverage of leading forest health assessment methods (Coleman, et al., 2018; 

Berra, et al., 2019; Schepaschenko, et al., 2019). Another necessary augmentation of this 

research would be the expansion of our methods for the analysis of urban environments. Urban 

forests provide global communities with countless ecosystem services (McPherson, et al., 1997; 

Wolf, 2008; Dearborn and Kark, 2010). Some studies have already explored case-specific urban 

forestry applications, more research is needed to emphasis both the benefits that these trees offer 

and the degradation that they are experiencing (Wu, 2014; Hassaan, et al., 2016; Liu, et al., 

2017). Lastly, no discussion of UAS applications can ignore the influence of current regulatory 

frameworks. While decades of use have proven the benefits of UAS for countless disciplines, 
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these applications, at least in the U.S. still exist in an atmosphere of uncertainty (Dalamagkidis, 

et al., 2008; Colomina and Molina, 2014; Cummings, et al., 2017; Fraser and Congalton, 2018). 

Both the general use of these systems, and the funding of their use in scientific research are not 

without routine turbulence. As hardware and software technologies continue to progress, the true 

future of these methods will be decided by their associated policy, regulation, and public 

advocacy.  
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APPENDIX 1.  CHAPTER 1  

Google Earth Photo Interpretation Key 

Table 22. Google Earth Photo Interpretation Key for the nine forest classes defined in Chapter 1. 

Symbols (stars) represent inventory plot measured trees of the listed species composition.  

White Pine 

 
 

Eastern Hemlock 

 

Mixed Conifer 

 

Mixed Hardwoods 

 

Mixed Forest 

 
 

Other Forest 

 

American Beech 

 

Oak Mixture 

 

Red Maple 
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NAIP Photo Interpretation Key 

Table 23. NAIP Imagery Photo Interpretation Key for the nine forest classes defined in Chapter 

1. Symbols (circles) represent the inventory plot locations (center GPS point).   

White Pine 

 
 

Eastern Hemlock 

 

Mixed Conifer 

 

Mixed Hardwoods 

 

Mixed Forest 

 
 

Other Forest 

 

American Beech 

 

Oak Mixture 

 

Red Maple 
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UAS Photo Interpretation Key 

Table 24. UAS Imagery Photo Interpretation Key for the nine forest classes defined in Chapter 1. 

Opaque squares represent the 30 x 30 m fixed area placed around each forest inventory plot 

center, used as the reference area for plot level composition photo interpretations. Only the trees 

within this area were included in the classification of forest composition.  

White Pine 

 

 

Eastern Hemlock 

 

 

Mixed Conifer 

 

Mixed Hardwoods 

 

Mixed Forest 

 
 

Other Forest 

 

American Beech 

 
 

Oak Mixture 

 

Red Maple 
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Classification Features 

Table 25. Classification features (i.e., attributes or variables) used for the supervised 

classification of the NAIP (29 total) and UAS (26 total) imagery. 

Classification Features 

Spectral 

Greenness 
Mean of red Band 
Mean of green Band 
Mean of blue Band 
Mean of NIR 
HIS Transformation 

 
HIS = Hue, Intensity, Saturation 

 

Std. Dev. red Band 
Std. Dev. green Band 
Std. Dev. blue Band 
Std. Dev. NIR Band 
 
 
Greenness = 
(𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛−𝑀𝑒𝑎𝑛 𝑅𝑒𝑑) +(𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛−𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒) 

(2∗𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛) + (𝑀𝑒𝑎𝑛 𝑅𝑒𝑑) + (𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)
 

Texture 

GLCM Homogeneity 
GLCM Contrast 
GLCM Dissimilarity 
GLCM Entropy 

 
GLCM = Gray Level Co-Occurrence 
Matrix  

 
GLCM Mean 
GLCM Correlation 
GLDV Mean 
GLDV Contrast 

 
GLDV = Gray Level Difference Vector  

Geometric 

Area (m2) 
Border Index 
Border Length 
Length/Width 
Roundness 

 
NAIP Imagery Only 

 
Compactness 
Asymmetry 
Density 
Radius of Longest Ellipsoid 
Radius of Shortest Ellipsoid 
Shape Index  
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Photo Interpretation Uncertainty 
Table 26. Thematic (overall) accuracy for plot level photo interpretations using each of the three 

high-spatial resolution remotely sensed data sources. 

Plot Level Photo Interpretation Accuracy for High-Resolution Remotely Sensed Data Sources 

 Google Earth NAIP UAS 

9 Composition Classes 29.90% 31.86% 39.46% 

4 Composition Classes 44.85% 46.57% 54.44% 

 

 

 

 

Automated Classification 

 

Figure 12. Feature importance for NAIP imagery classification of eight composition classes 

calculated using the Mean Decrease in Impurity (MDI) test. 
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Figure 13. Feature importance for UAS imagery classification of eight composition classes 

calculated using the Mean Decrease in Impurity (MDI) test. 
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Table 27. Thematic map accuracy assessment error matrix for individual trees using the UAS 

imagery and the CART algorithm for eight classes. 

 

 

 

 

 

 

 

 

 

 Field (Reference) Data 

   

WP EH OC AB RM OAK OH ES 
TOTAL 

USERS  

ACCURACY 

 

 

UAS 

Imagery 

Using the 

RF  

Classifier 

WP 25 4 7 4 2 1 5 0 48 52.08% 

EH 2 7 2 6 1 6 2 6 32 21.88% 

OC 9 2 12 2 2 5 6 3 41 29.27% 

AB 2 2 1 11 4 5 7 2 34 32.35% 

RM 1 6 5 2 16 11 2 7 50 32.0% 

OAK 2 5 8 4 7 30 12 4 72 41.67% 

OH 4 5 1 3 6 9 2 4 35 5.7% 

ES 1 4 2 3 6 1 4 7 28 25.0% 

TOTAL 
 

46 35 38 35 45 68 40 33 110/340 
 

PRODUCERS  

ACCURACY 

 
54.35% 20.0% 31.58% 31.43% 35.56% 44.12% 5.0% 21.21% 

 
OVERALL  

ACCURACY 

32.35% 
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Table 28. Thematic map accuracy assessment error matrix for individual trees using the UAS 

imagery and the RF algorithm for eight classes. 

 

 

 

 

Figure 14. Feature importance for both the UAS and NAIP imagery classification of four 

composition classes calculated using the MDI test. 

 Field (Reference) Data 

   

WP EH OC AB RM OAK OH ES 
TOTAL 

USERS 

ACCURACY 

 

 

UAS  

Imagery 

Using the 

RF  

Classifier 

WP 36 4 10 3 1 1 4 3 62 58.01% 

EH 0 10 0 6 2 3 2 3 26 38.46% 

OC 2 2 18 2 3 7 1 1 36 50.0% 

AB 1 3 1 13 1 3 4 1 27 48.15% 

RM 0 2 1 3 22 3 2 6 39 56.41% 

OAK 1 9 5 5 10 48 13 8 99 48.48% 

OH 6 4 2 1 3 2 12 2 32 37.5% 

ES 0 1 1 2 3 1 2 9 19 47.37% 

TOTAL 
 

46 35 38 35 45 68 40 33 168/340 
 

 

PRODUCERS 

ACCURACY 

 
78.26% 28.57% 47.37% 37.14% 48.89% 70.59% 30.0% 27.27% 

 
OVERALL 

ACCURACY 

49.41% 



151 

 

APPENDIX 2. CHAPTER 2 

Stand Level Classification 

• White Pine - any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 70% basal area per unit area eastern white pine 

(Pinus strobus).  

• Hemlock - any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 70% basal area per unit area eastern hemlock 

(Tsuga canadensis). 

• Mixed Conifer – any forested land area dominated by trees species comprising an 

overstory canopy with greater than 66% mixture of coniferous species, but less than 

70% of white pine or eastern hemlock independently.  

• Mixed Forests – any forested land surface dominated by tree species, comprising a 

heterogeneous mixture of deciduous and coniferous species each comprising greater 

than 20% basal area per unit area composition. Important species associations include 

eastern white pine and northern red oak (Quercus rubra), red maple (Acer rubrum), 

white ash (Fraxinus americana), eastern hemlock, and birches (Betula spp.).  

• Red Maple – any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 50% basal area per unit area red maple. 

• Oak – any forested land surface dominated by tree species, comprising an overstory 

canopy with greater than 50% basal area per unit area white oak (Quercus alba), 

black oak (Quercus velutina), northern red oak (Quercus rubra), or mixture of each.  

• American Beech – any forested land surface dominated by tree species, comprising 

an overstory canopy with greater than 25% basal area per unit area American beech 

(Fagus grandifolia) composition. This unique class takes precedence over other 

mentioned hardwood classes if present.  

• Mixed Hardwoods - any forested land surface dominated by tree species, comprising 

other deciduous species besides red maple, oak, or American beech that comprises 

greater than 66% basal area per unit area of the overstory canopy. 

• Other Forest - any forested land surface dominated by tree species, comprising an 

overstory composition that is highly distinct, subject to different management or use, 

and not previously mentioned. This class includes areas dominated by early 

successional species such as paper birch (Betula papyrifera), or aspen (Populus spp.).  

 

Tree Level Classification  

• White Pine – Any woody vegetation, taller than 3 meters and larger than 12.7 cm in 

diameter, representing the species White Pine (Pinus strobus).  

• Eastern Hemlock - Any woody vegetation, taller than 3 meters and larger than 12.7 

cm in diameter, representing the species Eastern Hemlock (Tsuga canadensis).  
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• Other Conifer - Any woody vegetation, taller than 3 meters and larger than 12.7 cm 

in diameter, representing coniferous species other than White Pine or Eastern 

Hemlock. Such species include Red Pine (Pinus resinosa), Basal Fir (Abies 

balsamea), and Eastern Red Cedar (Juniperus virginiana).  

• Oak - Any woody vegetation, taller than 3 meters and larger than 12.7 cm in 

diameter, representing species of the Oak (Quercus spp.) family. Such species include 

Northern Red Oak (Quercus rubra), Black Oak (Quercus velutina), and White Oak 

(Quercus alba).  

• Red Maple– Any woody vegetation, taller than 3 meters and larger than 12.7 cm in 

diameter, representing the species Red Maple (Acer rubrum).  

• American Beech– Any woody vegetation, taller than 3 meters and larger than 12.7 

cm in diameter, representing the species American Beech (Fagus grandifolia).  

• Other Hardwood - Any woody vegetation, taller than 3 meters and larger than 12.7 

cm in diameter, representing non- early successional deciduous species other than 

Oaks, Red Maple, or American Beech. Such species include Shagbark Hickory 

(Carya ovata), Sugar Maple (Acer saccharum), and Basswood (Tilia americana).  

• Other Forest - Any woody vegetation, taller than 3 meters and larger than 12.7 cm in 

diameter, representing early successional species such as Birches (Betula spp.), 

Aspen (Populus spp.), or Ash (Fraxinus spp.).  

• Snags – Any woody vegetation larger than 12.7 cm in diameter, representing any tree 

species that is clearly identified as dead but still has a stem taller than 3 meters. 
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APPENDIX 3. CHAPTER 3 

Tree Health Survey Reference Trees 

Table 29. Reference Samples collected for forest health survey classes using both field methods 

and photo interpretation. Both coniferous and deciduous trees of the ‘Healthy’, ‘Stressed’, and 

‘Dead/Degraded’ classes collected as reference data using both sampling methods are provided 

as a guide to their similarity.  

 Healthy Stressed Dead 

Conifer: Field 

Survey 

 

 
SI = 2 

 

 
SI = 7 

 

 
SI = 10 

Conifer: Photo 

Interpretation 

 

 
 

 

 
 

 

 
 

Deciduous: Field 

Survey 

 

 
SI = 2 

 

 
SI = 6 

 

 
SI = 10 

Deciduous: Photo 

Interpretation 
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Classification Features 

Table 30. Image object features created using eCognition for the purpose of forest health 

classification using (1) UAS and (2) NAIP segmented imagery.  

Image Classification Features 
 

Geometric 
 

Area (Pixels) 

Asymmetry 

Border Index 

Border Length 

Compactness 

Density 

Length\Width 

Radius of Long Ellipsoid 

Radius of Short Ellipsoid 

Shape Index 

 

 

 

 

 

 

 

 

 

UAS Only 

Texture 
 

GLCM Contrast 

GLCM Correlation 

GLCM Dissimilarity 

GLCM Entropy 

GLCM Mean 

GLDV Entropy 

GLDV Mean 

GLDV Contrast 

Spectral 
 

Brightness 

Greenness Index 

Mean red (SODA/NAIP) 

Mean green (SODA/NAIP) 

Mean blue (SODA/NAIP) 

Mean green (Sequoia) 

Mean red (Sequoia) 

Mean NIR (Sequoia\NAIP) 

Mean red edge (Sequoia) 

NDVI 

NGRDI 

Std. Dev.  red (SODA/NAIP) 

Std. Dev.  green (SODA/NAIP) 

Std. Dev. blue (SODA/NAIP) 

Std. Dev. green (Sequoia) 

Std. Dev. red (Sequoia) 

Std. Dev. NIR (Sequoia\NAIP) 

Std. Dev. red edge (Sequoia) 
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