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Abstract: Many planted Pinus forests are severely affected by defoliation and mortality processes
caused by pests and droughts. The mapping of forest tree crown variables (e.g., leaf area index and
pigments) is particularly useful in stand delineation for the management of declining forests. This
work explores the potential of integrating multispectral WorldView-2 (WV-2) and Airborne Laser
Scanning (ALS) data for stand delineation based on selected tree crown variables in Pinus sylvestris
plantations in southern Spain. Needle pigments (chlorophyll and carotenes) and leaf area index
(LAI) were quantified. Eight vegetation indices and ALS-derived metrics were produced, and seven
predictors were selected to estimate and map tree crown variables using a Random Forest method and
Gini index. Chlorophylls a and b (Chla and Chlb) were significantly higher in the non-defoliated and
moderately defoliated trees than in severely defoliated trees (F = 14.02, p < 0.001 for Chla; F = 13.09,
p < 0.001 for Chlb). A similar response was observed for carotenoids (Car) (F = 14.13, p < 0.001). The
LAI also showed significant differences among the defoliation levels (F = 26.5, p < 0.001). The model
for the chlorophyll a pigment used two vegetation indices, Plant Senescence Reflectance Index (PSRI)
and Carotenoid Reflectance Index (CRI); three WV-2 band metrics, and three ALS metrics. The model
built to describe the tree Chlb content used similar variables. The defoliation classification model was
established with a single vegetation index, Green Normalized Difference Vegetation Index (GNDVI);
two metrics of the blue band, and two ALS metrics. The pigment contents models provided R2 values
of 0.87 (Chla, RMSE = 12.98%), 0.74 (Chlb, RMSE = 10.39%), and 0.88 (Car, RMSE = 10.05%). The
cross-validated confusion matrix achieved a high overall classification accuracy (84.05%) and Kappa
index (0.76). Defoliation and Chla showed the validation values for segmentations and, therefore, in
the generation of the stand delineation. A total of 104 stands were delineated, ranging from 6.96 to
54.62 ha (average stand area = 16.26 ha). The distribution map of the predicted severity values in the
P. sylvestris plantations showed a mosaic of severity patterns at the stand and individual tree scales.
Overall, the findings of this work underscore the potential of WV-2 and ALS data integration for the
assessment of stand delineation based on tree health status. The derived cartography is a relevant
tool for developing adaptive silvicultural practices to reduce Pinus sylvestris mortality in planted
forests at risk due to climate change.

Keywords: forest plantations; pine dieback; defoliation; segmentation; random forest

1. Introduction

Forest defoliation and mortality resulting from biotic and abiotic tree damage have
been identified among the most significant disturbance and deleterious processes threaten-
ing the existence of forests in south-western Europe [1], being exacerbated due to climate
change [2]. Forest decline may be caused by a variety of factors, including both natu-
ral processes, such as pests and diseases [3], climate variability [4], and fires [5], and
anthropogenic activities (e.g., lack of silvicultural practices) [6] that alter the dynamics
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and ecological processes in the remnant vegetation. In the western Mediterranean Basin,
Pinus sp. plantations are one of the most important environmental issues regarding climate
change [7]. Forest decline in these ecosystems, caused mainly by droughts and forest
pests, has quickly spread in latest years in the southeastern Iberian Peninsula [8]. Studies
have shown that large areas of pine plantations are affected by these processes in southern
Andalusia (southern Spain, [9]). Hence, these are some of the ecosystems most vulnerable
to climate change in the Mediterranean area.

Forest decline and mortality processes include accelerated defoliation dynamics and
changes in forest biophysical properties (e.g., Leaf Area Index-LAI, [10]), as well as alter-
ation of biochemical variables in leaves (e.g., pigments, [11]). Therefore, the understanding
of decline processes requires detailed, quantitative, accurate, and repeatable techniques
(including defoliation mapping and analysis of biochemical properties) as well as the de-
termination of their spatial distribution at the stand scale [12]. Forest decline assessment is
mainly based on defoliation, changes in leaf pigments content, leaf water status, and crown
structural changes in damaged forests [13,14]. Broadband multispectral remote sensing has
been used to monitor forest defoliation and leaf pigment properties replacing traditional
field assessment techniques [15]. Previous research has reviewed the assessment of forest
decline based on field measurements, remote sensing [16,17], and geographic information
systems (GIS) [18]. More recently, a new generation of multispectral sensors, such as
WorldView-2 (WV-2), Rapid Eye, and Sentinel, has been widely used to link field defolia-
tion measurements and remote sensing data [17,19]. Spectral information and vegetation
indexes have provided acceptable classifications of defoliation [16]; however, the inclusion
of structural information (especially the crown cover) is important since it can improve
forest health assessment and mapping [14]. Therefore, Airborne Laser Scanning (ALS)
has also been used to assess tree defoliation state and distinguish between healthy and
defoliated trees [20,21]. Thus, the integration of multispectral and ALS high-resolution data
offers many advantages in the evaluation of forest defoliation stage in forest ecosystems.

Sensor data integration is one of the best alternatives to traditional methods of stand
delineation [22]. Those traditional methods based on photointerpretation and field data,
although they have been useful for years, are limited by costs and by the impossibility
of incorporating complex variables such as the vertical and horizontal structure of the
canopy or the physiological state of the trees. Automatic processes based on image seg-
mentation techniques improve complex relationships among silvicultural patterns and
stand delineation methods [23]. In this context, quantification of the spatial distribution
of selected tree crown properties, as visual and pre-visual predictors of forest decline at
the stand scale, helps to improve our understanding of the dynamics of those processes
and our development of adaptive strategies [24]. The use of crown and stand delineation
based on multispectral and ALS data, as well as machine learning algorithms, has proven
useful in these integration processes [23,25]. Additionally, the Gini inequality index has
been broadly used in forest science [26], particularly in defoliation studies [27].

Therefore, stand delineation maps are a necessary tool to describe the declining status
of forests, thus simplifying forest management; however, there is a lack of stand delineation
studies based on biochemical properties [23]. Our hypothesis was that stand delineation in
large Pinus plantations can be improved by using field biophysical variables and integrating
data from multispectral sensors (e.g., from the WV-2 sensor) and ALS [28,29]. Therefore,
the objective of this study was to develop a methodology for stand delineation based on
the integration of defoliation (e.g., LAI) and biochemical properties (e.g., chlorophyll and
carotenoids) using WV-2 and ALS data and a machine-learning modeling approach, based
on tree crown delineation in Pinus sylvestris L. plantations. The methodology comprised
three steps: (i) Accurate detection and delineation of individual trees using airborne LiDAR
data, (ii) Determination of LAI, pigment content, and defoliation level at tree scale from
WV-2 multispectral and ALS data using Random Forest algorithm, and (iii) Production of
detailed tree/stand damage maps using the Gini inequality index. The main novelty of this
work is based on the use of field biophysical parameters that describe the physiological
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status of the trees, its modeling by machine learning algorithms (e.g., Random Forest), and
the segmentation using the Gini index. The cartography of stands based on biochemical
properties is a necessary tool to estimate defoliation level and tree mortality episodes
related to droughts and biotic agents in Pinus plantations, and the spatial data produced
are critical to implementing adaptive silvicultural practices.

2. Materials and Methods
2.1. Study Area

The study area was located at Sierra de los Filabres (Andalusia region, Almería, south-
eastern Spain, 37◦22′N, 2◦50′W; around 45,000 ha, between 750 and 2168 m.a.s.l; Figure S1,
Supplementary Material). The average temperature over the whole year is 13.1 ◦C, with
annual precipitation ranging between 300 and 400 mm. The xerorthents regosols are the
dominant soils and steep slopes (>35%) describes the local topography with loam and silty
loam textures. The current vegetation shows a marked altitudinal gradient and is strongly
influenced by reforestation programs carried out between 1955 and 1983. The vegetation
consists of a 40 to 50-year-old pine plantation dominated by Scots pine (Pinus sylvestris L.),
with a current density between 509 and 1405 trees ha−1. The basal area ranges from 18.33
to 40.85 m2 ha−1 (Table 1).

A flowchart outlining the different methodological steps is provided in Figure 1.
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Table 1. Silvicultural characteristics of Pinus sylvestris stands in Sierra de los Filabres (Southern
Spain). Height (H), basal-area (BA), weighted mean diameter (Dg), Assman dominant height (Ho),
density (N), Leaf Area Index (LAI), and pigment content (chlorophyll a and b, Chla and Chlb, and
carotenoids Car).

Measured
Variables

No. of
obs. Min Mean Max StDev Range

Variation
Coefficient

(%)

Pinus sylvestris

H (m) 430 4.34 8.62 13.02 1.68 8.68 19.42
Dbh (cm) 430 8.70 18.50 30.1 4.03 21.4 21.79
Ho (m) 9 5.00 8.11 10.10 1.54 5.10 19.03

BA (m2/ha) 9 18.33 26.71 40.85 7.02 22.52 26.29
N (trees/ha) 9 509.30 952.90 1405.66 296.58 896.36 31.12

LAI
(m2 m−2) 45 0.30 1.84 2.82 0.64 2.52 64.54

Chla
(mg g−1) 45 0.03 1.37 2.38 0.67 2.35 49.19

Chlb
(mg g−1) 45 0.02 0.55 1.02 0.27 1.00 49.18

Carc
(mg g−1) 45 0.01 0.42 0.76 0.20 0.75 49.46

2.2. Field Data

In July 2015, nine plots were settled within the range of the airborne LiDAR strips
(Figure S1, Supporting Information) in P. sylvestris plantations. The plots were randomly
located, and all trees with DBH ≥ 10 cm were measured. The diameter at breast height
(1.3 m above ground level –DBH—cm) and height (H, m) were measured in circular plots
with a radius of 12.6 m (500 m2) using Field-Map equipment (http://www.fieldmap.cz/)
(Table 1). The crown defoliation was estimated for 430 trees by expert visual assessment
based on the percentage crown decline and transparency according to the ICP-Forests
protocol [30] (http://icp-forests.net/page/icp-forests-manual) (Figure S2, Supplementary
Material). Defoliation was classified in percentage classes in 5% intervals (between 0 and
100) in comparison to a local “reference tree” [31]. The selected trees were in an area affected
by drought-related mortality processes without the presence of pests and diseases [32].
Individual tree position was recorded using a sub-meter global satellite receiver (Leica
Zeno 20 GIS, Leica Geosystems, Switzerland).

Three needle samples were taken from five trees in each plot (N = 135 samples,
N = 45 trees) from branches with southern exposure, at the top of the tree crown, at noon
(between 12:00 and 14:00, wintertime, GTM + 1). The needles were immediately protected
from light exposure and frozen by placing them in foil envelopes that were then inserted
in liquid nitrogen. Chlorophylls a and b (Chla and Chlb) and carotenoids (Car) were de-
termined for a sample of 5 young needles (one-year-old) collected from the top of the
crown. In the laboratory, the total leaf pigments were extracted and determined following
the methodology of [33] (see [32,34] for further details). The pigments were expressed in
content unit; that is, mass per unit leaf dry weight (mg g−1, Table 1).

Simultaneously, 45 LAI measures were taken with an LAI-2000 Plant Canopy Analyzer
(PCA, LI-COR Inc., Lincoln, NE, USA) on the same trees selected for needle sampling
(Table 1) as the average of five PCA readings per tree (height of about 1.3 m under clear
sky conditions and less than 1 h before sunrise or after sunset [35]). The defoliation
categories were analyzed statistically using one-way ANOVA, considering defoliation as
the independent factor and biochemical variables (pigments and LAI) as the dependent
variables. When difference among the defoliation levels was observed, the means were
separated by Scheffe’s multiple range test for unequal sample sizes (p = 0.05) [36]. Statistical
analyses were conducted using the R statistical package, version R-3.5.2 [37].

http://www.fieldmap.cz/
http://icp-forests.net/page/icp-forests-manual
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2.3. Remote Sensing Data
2.3.1. Airborne Laser Scanning Data

The ALS data were acquired on 10 April 2013 by the company Heliografics Fotograme-
tria S.L. (Alicante, Spain), using an ALS60 laser scanner (Leica-Geosystems AG, Heerbrugg,
Switzerland) operated by plane from a flight altitude of 3300 m, and with an average point
density of 10 points m−2 (Figure S1 Supplementary Material). The system operated at a
scan frequency of 100 Hz and a laser pulse repetition rate of 158.2 kHz, and the FOV was
12 degrees, resulting in an illuminated footprint diameter of 32 cm (Table S1 Supplementary
Material). The data were geo-referenced in the European Terrestrial Reference System 1989
(ETRS89) coordinate system. The 2-year time interval between the acquisition of the ALS
data and the field data collecting period was considered negligible due to forest-stand
homogeneity and the low annual height and diameter growth in the study area (dbh
average annual increment of 3.58 ± 0.43 mm year−1).

2.3.2. WorldView-2 Images

For this study, orthorectified 8-bands WV-2 satellite imagery was selected because it
improves the spatial and spectral analysis and the cartography and allows the monitoring
of large areas in great detail and with deeper vegetation analysis [38]. The date of the
flight was 10 July 2015. The imagery over the study area contained 0% cloud cover. The
multispectral and panchromatic bands were ordered, with 2 m and 0.5 m spatial resolution,
respectively. The imagery was obtained from the company DigitalGlobe (Spain) at a
processing level of 1B. The pixel size at the geometric resolution (or ground sampling
distance, GSD) of this band was 1.84 m in the nadir.

Previous to data analysis, the WV-2 image was processed by performing an atmo-
spheric correction, a pan-sharpening technique, and orthorectification. The image was
corrected atmospherically using the coefficients of the rational information polynomial
(RPCs) provided by the satellite data. As differences in coordinates X and Y data were
observed between the ALS data and remote sensing image, even though WV-2 data are
sensor-based rectified (OrthoReady Standard-2A), a more specific orthorectification was
conducted. Therefore, the 0.5 m pan-sharpened multispectral image was orthorectified,
using 50 points taken as ground control points (GCPs) on WV-2 by considering the Canopy
Height Model (CHM) calculated from the ALS data as a reference image for guidance and
with assistance from an orthoimage (recorded in summer 2016, 0.5 m pixel size). Correc-
tions achieved a RMSE of 0.72 pixels on the 0.5 m WV-2 imagery. The software ENVI 5.3
(Exelis Visual Information Solutions, Boulder, CO, USA) was used in all the processes made
to the image and the FLASH tool was used for the atmospheric corrections.

2.4. Methods
2.4.1. Segmentation for Tree Crown Delineation

A segmentation based on ALS data was performed to detect and delineate individual
trees. The “Pit-free” method of Khosravipour et al. [39] was used to create the canopy
height model (CHM) with the LAStools software [40]. Next, the resulting CHM was used
for the individualization of trees, following the Region Growing methodology with SAGA
software [41]. Segmentation was accomplished by obtaining seeds from the Imagery-
Segmentation option. Next, the seeds were used with the Simple Region Growing function,
to calculate the growth regions (segments per individual tree) in raster format, so it was
necessary to vectorize in QGIS software [42]. After running the tree delineation algorithm,
the accuracy was evaluated with the reference 430 trees in the 9 testing plots, the recall
(r, Equation (1)), precision (p, Equation (2)), and F-score (F, Equation (3)) were calculated
using the methodology in Li et al. [43]:

r =
TP

TP + FN
(1)
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p =
TP

TP + FP
(2)

F = 2× r× p
r + p

(3)

where TP (true positive) corresponds to a tree correctly segmented, FN (false negative or
omission error) to a tree not segmented but assigned to a nearby tree, and FP (false positive
or commission error) if a tree does not exist but is segmented from the point cloud.

2.4.2. LAI and Pigments Data Modeling

Eight published spectral indices were calculated for the WV-2 image and were evalu-
ated to determine the relationship between the pigments content and LAI (Table 2). These
indices have been proven to be effective throughout the remote sensing defoliation as-
sessment literature [44] and in forest health evaluation [45]. The maximum, minimum,
and mean values for each WV-2 band in every tree crown were computed. Thus, in total,
32 metrics were extracted from the image bands and indices. Additionally, from the ALS
data, calculations of 61 metrics were performed for each tree crown delineated: namely
statistics for the characterization of the return heights distribution, maximum, minimum,
mean, standard deviation, percentiles of the return heights, percentiles of the first return
heights, percentiles of return heights from the upper half of the tree, percentiles of return
heights of first returns from the upper half of the tree, bincentiles of heights, bincentiles of
heights from the first returns, bincentiles of height from the upper half of the tree, bincen-
tiles of heights of first returns from the upper half of the tree, coverage percentage, and
percentage of unique returns, of first returns, of last returns, and of intermediate returns.
Thus, overall, there were 93 predictors (Table S2, Supplementary Material). All the ALS
metrics were computed with lidR package v2.0.0 [46,47].

Table 2. World View-2 vegetation indices (VIs) were used as predictor variables for building regres-
sion and classification models of defoliation, LAI, and pigments content [48].

Abbreviation Name Formula

Chlorophyll
CSI Carter stress index Band 5/Band 7

NDVI Normalized Difference Vegetation
Index (Band 7 − Band 5)/(Band 7 + Band 5)

GNDVI Green Normalized Difference
Vegetation Index (Band 7 − Band 3)/(Band 7 + Band 3)

PRI Photochemical reflectance index (Band 2 − Band 3)/(Band 2 + Band 3)
PSRI Plant Senescence Reflectance Index (Band 5 − Band 2)/Band 6

RENDVI Red Edge Normalized Difference
Vegetation Index (Band 7 − Band 6)/(Band 7 + Band 6)

Carotenoid
CRI Carotenoid reflectance index (1/Band 3) − (1/Band 6)

Leaf Area Index

NDVI Normalized Difference Vegetation
Index (Band 7 − Band 5)/(Band 7 + Band 5)

REY Red-Edge Yellow ratio (Band 6 − Band 3)/(Band 6 + Band 3)

For defoliation level assessment, a Random Forest (RF) classification [49] was accom-
plished, while for every physiological data (chlorophyll a, chlorophyll b, carotenoids, and
LAI) a k-NN regression model with Random Forest distance calculation was computed.
In total, 300 segmented trees, from the 430 in which defoliation was evaluated (70% of
the sample), were assigned to build a model for the prediction of classification stage,
which included WV-2 and ALS metrics and defoliation data, using the RF non-parametric
method [49]. This method has been extensively used to classify different types of remotely
sensed data [50], including defoliation [51]. As the defoliation data were grouped in
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categorical values [31], the RF classifier method (instead of the regression method) was
automatically selected by the program [49].

For the LAI and biochemical variables, 30 segmented trees (2/3 of those used to
obtain the physiological data) were used to build a k-NN regression model [52]. From
the different neighbors’ distance calculation methods for the models (Euclidean distance,
Raw Euclidean without normalization, Mahalanobis distance, Independent Component
Analysis distance, Most Similar Neighbor distance, Most Similar Neighbor with variance
weighting, Random Forest distance, Random distance, and Gower distance), Random
Forest was selected because of its demonstrated suitability in the study area [53].

Before developing the regression and classification models, a variance inflation factor
(VIF) study was accomplished to inspect multicollinearity and select the best explanatory
variables, considering VIF ≥ 10 as the stepwise elimination threshold [54]. Secondly, the
most important variables for the imputation modeling were selected, using the generalized
root mean square distance (grmsd) as the variables were added to a k-NN imputation
model. Variables that strengthened the imputation were kept in the model while the rest
were deleted. For this, we used the varSelection function from the yaImpute [52] package
in the R statistical software [37]. We estimated the accuracy of the k-NN regression models
by two validation procedures: internal cross-validation, in which two-thirds of the samples
(30 segmented trees) were used, and an external validation, with the remaining samples.
The RMSE, bias, and R2 were calculated for each process.

To estimate the defoliation accuracy of the RF classification model, a 10-fold, 5-times
repeated cross-validated confusion matrix was constructed, using the 300 training trees, as
well as a confusion matrix for external evaluation, using the evaluation dataset, consisting
of the rest of the samples [55].

The RF classification and the k-NN regression model were performed using the
“randomForest” [56], the “yaImpute” [52], and the “caret” packages [37,57]. The optimum
value for the number of classification trees (ntree) and the number of variables (mtry) were
randomly selected at each split in the tree building process [57] considering ntree values
ranging from 500 to 2500 and mtry values extending from 1 to 10. This package also allows
the k values to be tested, to achieve the best k-NN regression model.

Once the individual values of chlorophyll and defoliation had been assigned to each
individual tree by the model prediction, the health status of all trees was assessed by the
combination of both variables [58]. Both defoliation and discoloration (estimated as total
chlorophyll) at the crown level were estimated on a 0–3 severity scale (Table 3).

Table 3. Severity classes score of individual trees as a function of defoliation percentage and pigment
concentration (total Chlorophyll). Severity classes 0: non-damage 1: slight, 2: medium, and 3: High.
Adapted from Lakatos et al. [58].

Chlorophyll a + b Concentration (mg/g)

Defoliation >2.0 2.0 < X < 1.0 1.0 < X < 0.5 <0.5
0–50% 1 0 1 2 3

50–75% 2 1 2 3 3
75–100% 3 2 3 3 3

2.4.3. Stand Delineation

Previous to stand delineation, individual tree variables (i.e., defoliation, biochemical
variables, and severity classes) were summarized according to the Gini coefficient index
(GI), Lorenz coefficient of asymmetry (LAC), the mean, minimum, and maximum values,
and the number of trees per pixel, to characterize the hierarchy of the trees within the
canopy at the pixel scale. The mean was substituted by the mode when the categorical data
of defoliation were used. Each pixel had a size equivalent to that of the field plot.
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From among the summary variables of the forest health structure, the GI was used to
characterize the inequality of the tree defoliation, LAI, and biochemical variables at the
pixel scale. The GI has been applied to discriminate stand structure variables [26,59]. The
equations used to compute the GI are available in Duduman [60]. The GI ranges from 0
(perfect equality, where all values are the same) to 1 (maximum theoretical inequality). The
ineq package [61] was used to calculate the GI and LAC of each spectral index against the
defoliation, LAI, and biochemical variables.

Once the defoliation, LAI, pigments, and severity variables had been summarized by
pixel, these variables were used to identify, and group single stands based on the phys-
iological characteristics. Mean shift segmentation, implemented within OrpheoToolBox
software (OTB) [62] for QGIS [42], was applied (Figures S2–S5 Supplementary Material).
The OTB segmentation approach is a non-parametric density estimator based on the Parzen
window [63] and was applied as explained in Varo-Martinez et al. [23]. Three parameters
were set: (1) the spatial radius, to determine the boundaries of the neighborhood, (2) the
range radius, to delimit the width in the spectral space, and (3) the minimum size of the
regions to keep after clustering. A spatial radius of 2 was determined based on the nearby
grouped spatial distribution of damaged trees observed in the study area, while the range
radius and minimum size of the regions were chosen to fulfill the whole range that each
parameter admitted.

2.4.4. Stand Cartography

Finally, a forest management map at the stand scale, based on the severity classes
(Table 3), was generated. The stand maps were obtained using the tree-scale assessment,
by applying the best models based on the WV-2 and LiDAR data to discriminate the stand
health variables [59] and silvicultural status.

3. Results
3.1. Tree Crown Biochemical Variables of Different Defoliation Levels

The means and the results of univariate ANOVA for the defoliation and biochem-
ical variables are summarized in Figure 2. Chlorophylls a and b (Chla and Chlb) were
significantly higher in the non-defoliated and slightly defoliated class (1.65 mg g−1 and
0.687 mg·g−1, respectively, and 2.34 mg·g−1 for the sum of Chla and Chlb) and in moder-
ately defoliated trees (1.59 mg g−1 and 0.625 mg·g−1, respectively, and 2.21 mg·g−1 for
the sum) than in severely defoliated trees (0.53 mg g−1 and 0.222 mg·g−1, respectively,
and 0.75 mg·g−1 for the sum) (F = 14.02, p < 0.001 for Chla,; F = 13.09, p < 0.001 for Chlb;
and F = 13.88, p < 0.001 for the sum of Chla and Chlb). A similar response was observed
for carotenoids (Car), the values being significantly lower for the severely defoliated trees
(0.159 mg g−1, F = 14.13, p < 0.001). The LAI also showed significant differences among
the defoliation levels (F = 26.5, p < 0.001), with a response similar to that of the pigments
(Figure 2). Therefore, it was possible to use the biophysical and biochemical variables (LAI
and needle pigments) to separate the defoliation groups.
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Figure 2. Mean values and standard errors of the LAI and leaf pigments measurements versus crown defoliation in Pinus
sylvestris plantations in southern Spain.

3.2. Individual Tree Crown Delineation Performance

The accuracy assessment of tree delineation using the pit-free CHM generation method
and the region growing segmentation are displayed in Table 4. Successful delineation
exceeding 80% was achieved for all the plots. Figure 3 displays the R2 value (0.975, p < 0.01)
for the fit of the linear regression model between the number of field and segmented trees
for all plots, based on pit-free CHM and the region growing segmentation algorithm.

Table 4. Accuracy assessment of tree delineation using pit-free and region growing segmentation
model for all sampled plots of Pinus sylvestris plantations. TP = True Positive, FP = False Positive,
FN = False Negative, A = Accuracy in percentage, OE = Omission Error, CE = Commission Error,
r = recall, p = precision, F = F-score.

Plot Number of
Trees TP FP FN A (%) OE

(%)
CE
(%) r p F

1 44 42 1 1 95.45 2.27 2.27 0.98 0.98 0.98
2 54 43 9 2 79.63 3.70 16.67 0.96 0.83 0.89
3 59 48 5 6 81.36 10.17 8.47 0.89 0.91 0.90
4 55 50 5 0 90.91 0.00 9.09 1.00 0.91 0.95
5 69 61 8 0 88.41 0.00 11.59 1.00 0.88 0.94
6 52 44 4 4 84.62 7.69 7.69 0.92 0.92 0.92
7 25 25 0 0 100.00 0.00 0.00 1.00 1.00 1.00
8 27 26 0 1 96.30 3.70 0.00 0.96 1.00 0.98
9 45 36 0 9 80.00 20.00 0.00 0.80 1.00 0.89

Overall 430 375 32 23 87.21 5.35 7.44 0.94 0.92 0.93
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Figure 3. Linear regression model between field tree crown delineated of Pinus sylvestris based on
pit-free CHM and region growing segmentation algorithm.

3.3. Models for Defoliation, LAI, and Needle Biochemical Parameter Estimations

From the 93 predictors, VIF separated 17 predictors within the variables from the ALS
metrics and WV-2 bands and indices datasets for each biophysical and biochemical variable
modeled. Each model used a different set of eight or fewer metrics, based on the grmsd as
each one was added to the k-NN imputation model. The variable importance of the final
models is described in Table 5 (Figure S3 Supplementary Material).

The model for the Chla used two vegetation indices, PSRI (Plant Senescence Reflectance
Index) and CRI (Carotenoid Reflectance Index); three WV-2 band metrics, B4_max (max-
imum values in the delineated tree crown for band 4), B5_min (minimum values in the
delineated tree crown for band 5), and B8_mean (mean values in the delineated tree crown
for band 8); and three ALS metrics, zmin1r (minimum height of the first returns), binc60m
(bincentil 60 for the upper half of the tree), and cov (percentage of first returns above
2 m). Interestingly, identical variables were also selected for the carotenoids regression
model. The model built to describe the Chlb content used quite similar variables: the same
vegetation indices and different image-based metrics applied to the same bands (the yellow,
red, and second infrared). By contrast, binc60m was the only recurrent ALS metric.

With respect to LAI, no ALS metrics were selected. What the model required, instead,
were WV-2 band metrics related to the green, yellow, and red visible electromagnetic
spectrum region, B3_min (minimum values in the delineated tree crown for band 3),
B4_min (minimum values in the delineated tree crown for band 4), B5_min (minimum
values in the delineated tree crown for band 5), and B5_max (maximum values in the
delineated tree crown for band 5), as well as the CRI vegetation index.

The defoliation classification model was established with a single vegetation index,
GNDVI (Green Normalized Difference Vegetation Index); two metrics of the blue band,
B2_mean (mean values in the delineated tree crown for band 2) and B2_max (maximum
values in the delineated tree crown for band 2); and another two ALS metrics, binc40
(bincentil 40 in the delineated tree crown) and porclast (percentage of last returns in the
delineated tree crown).

Scatter plots were computed for correlation analysis of the observed versus the es-
timated values for the LAI and pigments contents (Chla, Chlb, and Car), based on the RF
algorithm in the k-NN modeling (Figure 4). The correlations obtained differed accord-
ing to the leaf variable. The lowest coefficient of determination was obtained for LAI
(R2 = 0.5, RMSE = 19.4%). The pigment contents models provided R2 values of 0.87 (Chla,
RMSE = 12.98%), 0.74 (Chlb, RMSE = 10.39%) and 0.88 (Car, RMSE = 10.05%).
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Table 5. Variable importance for the selected predictors used as inputs for random forest classification
of defoliation and for k-NN modeling using random forest distance for LAI, pigments content, and
random forest modeling for defoliation in Pinus sylvestris plantations in Southern Spain. Importance
values have been centered and scaled by subtracting the mean value and dividing by its standard
deviation. For each tree crown, maximum values in the band 8 of the WorldView2 image (B8_max),
mean values in the tree crown in the band 2 (B2_mean), mean values in the band 4 (B4_mean),
GNDVI index (GNDVI), percentage of first returns above the 2 m (cov), bincentil 60 (binc60m), mean
values in the tree crown in the band 8 (B8_mean), CRI index (CRI), maximum values in the band 5
(B5_max), minimum height of the first returns (zmin1r), minimum values in the band 5 (B5_min),
maximum values in the band 2 (B2_max), minimum values in the band 3 (B3_min), percentage of last
returns (porclast), maximum values in the band 4 (B4_max), bincentil 40 (binc40), PSRI index (PSRI)
were selected.

Chlorophyll a Rank Scale Importance

PSRI 1 1.584
B4_max 2 1.347

CRI 3 0.436
B8_mean 4 −0.517
zmin1r 5 −0.527

binc60m 6 −0.545
Cov 7 −0.709

B5_min 8 −1.068
Chlorophyll b Rank Scale importance

PSRI 1 1.461
B4_max 2 0.579

CRI 3 0.530
binc60m 4 0.032
B8_mean 5 −0.165
B5_min 6 −0.864
B8_max 7 −1.573

Carotenoids Rank Scale importance

B5_min 1 1.293
B8_mean 2 1.205

PSRI 3 0.574
zmin1r 4 0.459

Cov 5 −0.710
CRI 6 −0.739

B4_max 7 −0.796
binc60m 8 −1.285

LAI Rank Scale importance

B5_min 1 1.482
B3_min 2 0.366
B5_max 3 −0.051

CRI 4 −0.742
B4_min 5 −1.055

Defoliation Rank Scale importance

binc40 1 1.281
porclast 2 0.467
B2_max 3 0.248
GNDVI 4 −0.787

B2_mean 5 −1.209
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Figure 4. Bivariate relationships between imputed and observed chlorophyll content (Chla and Chlb), carotenoids (Car),
and LAI estimated by the k-NN imputation using Random Forest distance for regression modeling in Pinus sylvestris
plantations at Sierra de los Filabres (Almería, Spain). In all figures, the linear 1:1 line has been fitted. For these equations,
the R2 and RMSE values are included.

The cross-validated confusion matrix and the confusion matrix of the external evalua-
tion outcoming from the RF classification for the defoliation model achieved a high overall
classification accuracy (84.05% and 80.77%, respectively) and Kappa index (0.76 and 0.69,
respectively) (Table 6) for the selected predictor dataset. Table 6 shows that the producer’s
accuracies were very high for the three defoliation classes in the cross-validated confusion
matrix (from 83.23% in healthy trees to 83.3% for defoliated individuals). The user’s accu-
racies were quite steady across the defoliation levels (from 85.42% for the healthy trees to
80% for the affected trees). In the confusion matrix with the evaluation data, the producer’s
and user’s accuracy did not perform so evenly as in the cross-validated confusion matrix
but still gave high values.
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Table 6. 10-fold 5-times-repeated cross-validated confusion matrix of random forest classification of defoliation. SLD: Slight
level of defoliation; MLD: Moderate level of defoliation; SVD: Severe level of defoliation.

Reference

Prediction
Cross-Validated Data User’s

Accuracy
Evaluation Data User’s

AccuracySLD MLD SVD Σ SLD MLD SVD Σ

SLD 129 16 10 155 83.23 51 9 5 65 78.46
MLD 14 84 0 98 85.71 5 38 6 49 77.55
SVD 7 0 40 47 85.11 0 0 16 16 100

Σ 150 100 50 56 47 27
Prod.’s

Accuracy 86 84 80 91.07 80.85 59.26

Overall
Accuracy 84.05 80.77

Kappa 0.76 0.69

3.4. Stand Delineation and Stand Maps Based on Biophysical Variables

Figure 5 shows the behavior of the range radius and minimum region size parameters
in the validation score of the segmentations and the number of resulting segments. It
can be observed that as the minimum size of the region (measured in pixel units, which
have the same area as the sample plots, 500 m2) increases, the number of segments drops,
following an inverted exponential function. When a minimum region size of 20 is applied,
the resulting segmentations have around 500 stands. On the other side of the curve, when
a minimum region size of 200 is used, 50 stands are obtained.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 24 
 

 

  

  

Figure 5. Behavior of the range radius and minimum region size parameters in the validation score of the segmentations 

and the number of resulting segments. 

  

 

Figure 6. Behavior of the Global Score according to the number of segments for (a) Moran’s Index and Weighted Variance, 

(b) chlorophyll a, chlorophyll b, carotenes, LAI and defoliation, and (c) Gini index (GI), Lorenz asymmetry curve (LAC), 

maximum (Max), mean (Mean) and minimum (Min) index parameters in the segmentation process. 

Figure 5. Behavior of the range radius and minimum region size parameters in the validation score of the segmentations
and the number of resulting segments.

However, the global score observed a positive correlation. The maximum global score
was achieved with a minimum region size of 150. For higher values of this parameter, the
segmentation results became worse. The range radius (expressed in normalized values
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between 0 and 1 for the whole set of layers that compounds the raster for segmentation)
presented a flat response, both in the number of segments and in the global score, for the
resulting segmentation.

Figure 6 describes the performance of the set of segmentations in terms of the number
of segments versus the score obtained. Figure 6b shows that defoliation and Chla were the
layers with the best results in the validation of the segmentations and, therefore, in the
generation of the stand delineation. Nevertheless, when the number of resulting segments
was less than 100, the second most important variable was carotenoids. In Figure 6c, it
is apparent that when the segments were large but few in number, the influence of the
biophysical and biochemical variables (mean or mode, minimum, maximum, GI, and LAC
value per pixel) was very similar. However, when the number of segments increased and
the resulting stands were smaller, and the layer of mean values gained more relevance in
the segmentation process, followed by GI and LAC.
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Figure 7 shows the best mapping results for the stand segmentation based on the indi-
vidual tree defoliation, LAI, and pigments content (Chla, Chlb, Car, and defoliation). A total
of 104 stands were delineated, ranging from 6.96 to 54.62 ha (average stand area = 16.26 ha)
(Figure 7a). The distribution map of the predicted severity values in the P. sylvestris forested
area showed a mosaic of severity patterns at the stand and individual scales (Figure 7a).
The results confirm the high severity levels of the P. sylvestris plantations in the study area.
In addition, some vertical sections of the stands were mapped using a combination of
the tree crown condition and the ALS approach (Figure 7b), to show the individual tree
crown condition.
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Figure 7. (a) Stand delineation map obtained using best semi-automatic mean-shift segmentation (Orpheo ToolBox software,
OTB) Spatial ratio: 2, range ratio: 0.34, y minimum size: 100. Global Score: 31.83; and (b) Subsets of tree vertical profiles of
some transect of stand segmentation area. The map shows the spatial distribution of similar values of severity damages
in stands.
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4. Discussion

High-resolution canopy defoliation maps are a critical tool for assessing the impacts
of forest decline dynamics, particularly under increasing forest decline related to drier
and warmer climate scenarios [21,64]. This paper reports the feasibility of combining high-
resolution multispectral WV-2 and ALS-derived structural signatures of Pinus plantations to
detect and map tree health status and defoliation severity patterns in P. sylvestris plantations
at the stand scale in southern Spain. We found that the combined use of WV-2 high-
resolution multispectral images and ALS metrics is sensitive to stand delineation based
on defoliation severity from the individual-tree to the stand levels. The present study also
highlights the relevance of biophysical (LAI and defoliation) and biochemical (pigments
contents) maps at the tree-stand scale in adaptive forest management, which has been
considered less in prior studies (but see [23]). Therefore, this work is a new contribution
to stand delineation in areas affected by forest decline processes, building on previous
work [23,32].

4.1. Tree Crown Biochemical Variables at the Plot Level

One critical issue for defoliation assessment is the selection of biophysical and bio-
chemical variables sensitive enough to detect the level of defoliation. Our results for the
tree crown show that LAI and pigments (chlorophyll and carotenoids) were sensitive to
variations in the tree defoliation severity. Forest decline causes significant disturbance
because of substantial changes in leaf area [65]; thus, accurate LAI estimation is key in the
assessment of forest health. LAI showed significant differences among the defoliation levels
in the P. sylvestris plantations, with mean values ranging from 1.99 m·m−2, for healthy trees,
to 0.64 m·m−2, in highly defoliated ones. In homogeneous canopies such as those of pine
plantations, higher LAI values are expected for healthy vegetation. These results are con-
sistent with other studies in P. sylvestris plantations under Mediterranean conditions [66];
although, a significant reduction in leaf area may be expected due to defoliation [20].

Earlier studies in the same location pointed out the influence of forest decline on the
pigment content [32,34], showing its decrease in P. sylvestris in areas affected by drought-
driven decline processes. In this study, the chlorophyll a and b (Chla and Chlb) contents were
significantly higher in non-defoliated and moderately defoliated trees than in severely defo-
liated trees. Chla had a mean value of 1.65 mg g−1, with a maximum value of 2.38 mg·g−1

(healthy trees) and a minimum value of 0.53 mg g−1 (very damaged trees), while Chlb had
an overall mean value of 0.69 mg g−1, with a maximum of 0.72 mg g−1 (healthy trees)
and a minimum of 0.22 mg g−1 (very damaged trees). These values are consistent with
previous values for this species (Chla, 1.4 to 2.4 mg g−1 and Chlb, 0.5 to 0.8 mg g−1, [67],
but lower than in other studies [68]. A reduction in the chlorophyll content in conifers
represents a typical photoprotection mechanism under stress conditions (e.g., drought, and
high temperatures and radiation in our case [67,69].

A similar response was observed for carotenoids (Car): the values were significantly
lower for the severely defoliated trees, ranging from a mean value of 0.49 mg g−1 for
healthy individuals to a mean value of 0.16 mg g−1 for damaged trees. The Car content is
more stable in stressed plants, to protect Chl and other components of the photosynthetic
apparatus from photodestruction [70]. In contrast, Chlb is more sensitive to plant stress
than Chla and Car [70].

4.2. Individual Tree Crown Delineation Performance

Individual tree detection has an important role when precise forest management is
required. Successful tree identification is a key part of precision silviculture [43]. Several
studies have shown that ALS data permit tree crown delineation in high-density forests [71],
including pine plantations [72]. In this study, high-density ALS data (10 points m−2)
were used for P. sylvestris tree crown delineation using a relatively simple segmentation
algorithm. The pit-free canopy height model (CHM) segmentation method exhibited
a strong performance in the delineation of P. sylvestris tree crowns (>80%). This result
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agrees with those obtained by Barnes et al. [73], which improved complete tree delineation
accuracy for pit-free CHM inputs. Compared to natural forests, pine plantations host a low
diversity of trees with respect to size and shape, which enables accurate tree delineation [74].
The use of high-density ALS data improved crown delineation, although low-density ALS
data has also been successfully applied for individual tree crown delineation [14,43].

4.3. LAI and Pigments Modeling

Once individual tree crowns had been identified using the canopy segmentation pro-
cess based on ALS data, segmented tree crowns were used to define homogeneous regions
for the extraction of spectral and metric information. Most assessments of biophysical vari-
ables have used vegetation indices which are easy to use and show sufficient reliability [75].
Here, we selected relevant vegetation indices related to LAI, pigments, and defoliation,
based on a literature search [76]. Based on the well-known relationship between these
biophysical leaf parameters and green and red-edge bands, vegetation indices that include
these bands have been extensively used in studies for damaged forest detection [76,77]. RF
algorithm for k-NN distance calculation was applied to estimate P. sylvestris biophysical
variables according to previous studies which have shown the ability of the RF method for
the prediction of tree health status [78,79].

The LAI model included a set of metrics related to green, yellow, and red bands,
as well as the CRI vegetation index, based on green and red-edge bands. Though the
inclusion of green and yellow bands may seem unexpected, it is not unique [80]. As
Fang et al. [81] stated, there is no universal relationship between LAI and any wavelength
or vegetation index, as there are many influential factors such as vegetation type, sun-
surface-sensor geometry, leaf chlorophyll content, background distance, and atmospheric
quality. On the other hand, we found that visible and red-edge spectral indices, such as
CRI, showed a high correlation with biophysical variables (i.e., LAI and defoliation) due to
the better relationship with the physiological status of vegetation [75]. It can be inferred
that the resulting model uses small color differences in tree crowns as well as the red-edge
wavelength to predict LAI.

Regarding pigment models, CRI is an index that functions well in the prediction of
the chlorophyll a, chlorophyll b, and carotenoids contents in tree crowns. Additionally,
PSRI operates well for biochemical variables as it utilizes a combination of blue, red, and
red-edge bands [82], which have been found to be sensitive to various stress factors at the
leaf level [83]. PSRI has been proposed for the determination of the stage of leaf senescence
because of its sensitivity to carotenoid accumulation [84]. Similar studies of chlorophyll
at the leaf and canopy scales in pine forests have shown its relationship with visible and
near-infrared single spectral indices [45,51]. Both vegetation indices specifically incorporate
the red edge feature and have been recommended for chlorophyll prediction [77] as well
as for their low sensitivity to the ground cover, biomass, and background [76]. These
results are in concordance with previous studies showing the sensitivity of the red edge
band to vegetation stress induced by insect pests [85]. However, concerning the role
of WV-2 bands in pigment models, the yellow, red, and second infrared bands make
relevant contributions.

Among the ALS metrics, we found binc60m to be a significant variable for three
biochemical models. That may mean that trees with higher values of pigments have more
returns around the middle parts of the crown, which might also be related to higher LAI
values. Furthermore, for chlorophyll and carotenoids predictions, zmin1r and cov are
decisive since they depend on the thickness of the canopy. Thus, our analysis shows that
simple ALS metrics contributed to the model for pigments estimation (e.g., Chla and Car).

Finally, in the defoliation model, there can be seen an integration of GNDVI, a vegeta-
tion index combining the green band and the first infrared band together with metrics of the
blue band and binc40 and porclast from the ALS metrics. These results are consistent with
those of Meng et al. [21], who showed the sensitivity of the ALS metrics in the mapping
of canopy defoliation. This can be explained by the fact that defoliation increases the
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“penetrability” of ALS pulses within the tree crown, leading to notable variations in the
vertical profiles of the return points and providing a distinctive structural signature [14,86].

Previous studies have explored the use of ALS data to determine the defoliation of
pine forests [20,87], but few have examined the integration of WV-2 vegetation indices
and ALS metrics to measure biophysical and biochemical features at the individual tree
level in Pinus plantations (however, see [14]). In this study, we explored the sensitivity of
various ALS metrics with the intention of improving the mapping of LAI and pigments
at the tree-crown scale. The integration of ALS metrics yielded good results for LAI and
pigment estimation, suggesting accuracy and robustness in biophysical and biochemical
parameter estimation [14,88]. Additionally, accurate selection of ALS metrics reduces the
sensitivity to ground cover, biomass, and the backward scattering effect [89].

Limitations of the LAI and pigments models are related to the removal of all soil and
under-crown vegetation effects from Pinus plantations and the overlaps of the spectral ab-
sorption characteristics of carotenoids and chlorophylls in the visible bands [90]. Using the
tree segmentation procedure, some of the background effects (e.g., the distinction between
the soil, grass, and tree spectra) were removed [91]. The use of crown delineation improved
the generalized use of the defoliation severity model derived here. Additionally, differences
in the forest understory on P. sylvestris plantations cannot explain differences in spectral
changes due to the reduction in shrub cover [92]. However, the complete elimination of
background signals from the tree spectra would ideally require signal unmixing [93]. Our
results are consistent with many studies focused on the utility of remote sensing in the
determination of the sensitivity of LAI and pigments to the defoliation [94]. They also
show the potential of optimized vegetation indices in the assessment and mapping of vege-
tation defoliation and LAI. The integration of visible-NIR/IR/red-edge wavelengths and
ALS metrics is a unique tool for improving the mapping of different defoliation/damage
disturbances based on their structural fingerprint [95]. With the generalized availability in
Europe of low-density ALS data, there is great potential for improving the monitoring of
forest health [96].

The detection precision and kappa coefficient of the testing set suggest that RF has
a strong modeling ability concerning the defoliation level assessment (overall accuracy
84.05%, κ = 0.76). This high accuracy could be related to the combined use of vegetation
indices with an ALS segmentation. Misclassification mostly occurred between the low and
medium defoliation levels, due to the overlapping of the lower range of defoliation in the
latter with the higher range in the former. Despite this, the accuracies of the values were
similar to or even better than those achieved in previous tree defoliation classifications.
Navarro-Cerrillo et al. [14], using the same sensors, found an overall accuracy of 0.77, with
a Kappa index of 0.69, for the discrimination between damage levels in savanna-like forests
(e.g., dehesas).

4.4. Stand Delineation Based on Biophysical Variables

From the performance of the set of segmentations at different range radii and different
minimum region sizes, shown in Figure 5, it can be inferred that variations in the range
radius of the normalized biophysical and biochemical variables used in segmentation do
not interfere with the ability to get the best results. This indicates that changes in the
minimum, maximum, mean, GI, and LAC values of the variables between neighboring
pixels are not large and so these values could be undergoing a gradual transition in the
study area. Nevertheless, the variables can be segmented successfully when using relatively
large areas for the minimum region size.

In view of the results in Figure 6a, due to the behavior of the algorithms, selection
of the segmentation with the highest global score would give delineations with a very
high internal variability (weighted variance) and little heterogeneity among stands (low
Moran’s index). Moving to the opposite side of the curves, very internally homogeneous
segments, very different from each other, were obtained, but at the cost of requiring a very
high number of stands. Consequently, it is in the area where the curves intersect where
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better segmentation values were achieved because both the internal homogeneity and
the external heterogeneity of the segments were compensated, making it easy to number
and size the stands, from the forester’s point of view. A similar finding was reported in
Varo-Martinez et al. [23].

Figure 6b leads us to conclude that when the stands were large, defoliation and Chla
take on a more important role in the segmentation process; while, when the stands were
smaller, Car became more important. This may be explained by the spatial distribution
of Chla and Car in the study area. It can be inferred that the dispersion of Car in trees in
neighboring pixels describes more appropriately what occurs on a small scale, whereas in
extended areas the allocation of Chla in trees yields better-defined segmentations.

From Figure 6c, it can be inferred that the best summary parameters of the biophysical
and biochemical variables are the mean or mode values per pixel together with Lorenz
curves indices as indicators of the inequality inside the pixel. This means that the maximum
and minimum values are rather constant in the study area. A stand map based on the
defoliation and Chla values was finally produced for the P. sylvestris plantation (Figure 7).

4.5. Distribution Maps of Stands Based on Severity Classes

Severity-derived maps were obtained to describe the spatial patterns of forest decline,
to support forest managers in developing adaptative silvicultural practices. Our results
show that optimization of stand delineation based on biophysical and biochemical vari-
ables improves the accuracy of the representation of drought-induced defoliation. The
inclusion of the leaf pigment content (e.g., Chla and Car) and defoliation in damage classi-
fication expresses the relationship between canopy physiological processes and pigment
degradation and defoliation [97]. Highly damaged stands were more pervasive in the
western and central parts of the study area. The same areas were previously identified as
being more affected through the use of multispectral and hyperspectral sensors, areas with
high percentage defoliation showing low pigment contents [32,34]. The predominance of
defoliated stands in these areas could be because the western plantations were established
on low-quality soils and with more restricted climatic conditions [14,98].

4.6. Adaptive Silvicultural Applications of Tree Health Workflow

Integrated LiDAR and multispectral maps provide more accurate spatial-temporal
measurements of defoliation severity across multiple spatial scales, which are critical for
designing adaptive forest management strategies to reduce forest damage [64,65,75,99].
The study area is located in the south-eastern part of Spain, in a region that has been
severely affected by climate-driven defoliation and mortality of pine plantations since
2000 [32,98]. Application of the proposed P. sylvestris defoliation severity workflow based
on WV-derived vegetation indices and simple ALS metrics provides a rapid and accurate
approach to obtain spatially extensive tree damage maps at the individual tree level and
segmented stand scale. As decline is driven not solely by defoliation but also by leaf
pigment content changes (e.g., photodegradation of Chl and Car), the use of integrated
maps (e.g., defoliation severity classes integrating LAI and pigments) was found to be
more accurate compared to maps based only on defoliation. Moreover, if applied at the
stand scale, these maps could show relevant information related to the spatial variation
of tree health over large areas and could form the solid basis of a long-term forest health
monitoring program.

Such stand maps may include other aspects besides tree health (silvicultural features,
environmental variables, etc.) that are fundamental to forest management planning based
on remote sensing data integration [14]. The development of spatially explicit maps might
help to delineate sensitive areas regarding tree health, thereby helping forest managers to
adapt silvicultural priorities to relieve or decrease the future impacts of decline damage in
large and heterogeneous forest areas [21,63,73]. Additionally, the integration of visual and
previsual approaches will be essential for anticipating the stress factor and the moment
when a tree becomes visually unhealthy (see [100]).
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5. Conclusions

In concordance with our previous studies, we have shown that the integration of
WV-2 indices and ALS data-based metrics at the tree and stand scale resolutions provides a
useful tool for the assessment of the tree and stand scale defoliation (LAI) and pigments
(Chl and Car) over large spatial scales in defoliated P. sylvestris plantations. Given that
this approach has a solid physical and biological basis, we recommend the use of ALS
integrated into high-resolution multispectral data to derive forest severity maps in future
work. After delineating each individual tree using ALS data, we successfully selected
spectral indices and ALS-metric-based RF models to retrieve the defoliation severity and
pigment contents. The enhanced performance of those indices achieved through the use of
WV-2 data and ALS data confirm the option of using broad spectral regions to calculate
chlorophyll indices. Additionally, the use of integrated severity categories (relying on
defoliation and pigments concentrations) could increase the chance of early detection of
tree stress. Finally, maps of individual tree defoliation severity at high spatial resolution
(2 m) were obtained for the study area, based on ALS and WV-2 data. This allowed
assessment of the spatial pattern of defoliation severity from the individual-tree level to the
inter-stand level across severity gradients in Pinus plantations ecosystems at large spatial
scales. Additionally, the integration of open access or low-price multispectral sensors
(e.g., Landsat-8, HyspIRI, EnMap, GEDI, WorldView-3, Sentinel-2) with public ALS data
can supply crucial information on canopy defoliation over large spatial-temporal scales,
thus improving forest management alternatives to reduce forest damage (e.g., reduced
growth and increased mortality). Research efforts should focus on early detection of tree
stress in high-risk areas (forest under “climatic risk”), integrating detailed quantification of
additional plant pigments (e.g., anthocyanins and carotenes), as well as hyperspectral and
thermal and/or fluorescence data.
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25. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

26. Valbuena, R.; Eerikäinen, K.; Packalen, P.; Maltamo, M. Gini coefficient predictions from airborne lidar remote sensing display the
effect of management intensity on forest structure. Ecol. Indic. 2016, 60, 574–585. [CrossRef]

27. Marx, A.; Kleinschmit, B. Sensitivity analysis of RapidEye spectral bands and derived vegetation indices for insect defoliation
detection in purê Scots pine stands. iForest 2017, 10, 659–668. [CrossRef]

28. Antonarakis, A.S.; Munger, J.W.; Moorcroft, P.R. Imaging spectroscopy-and lidar-derived estimates of canopy composition
and structure to improve predictions of forest carbon fluxes and ecosystem dynamics. Geophys. Res. Lett. 2014, 41, 2535–2542.
[CrossRef]

29. Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Strahler, A. On promoting the use of lidar systems in
forest ecosystem research. For. Ecol. Manag. 2019, 450. [CrossRef]

30. Eichhorn, J.; Roskams, P.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D. Visual Assessment of crown condition and damaging
agents. Manual Part IV. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the
Effects of Air Pollution on Forests; UNECE ICP Forests Programme Co-Ordinating Centre: Hamburg, Germany, 2010.

31. Ferretti, M.; König, N.; Granke, O. Quality Assurance within the ICP-Forests monitoring programme. Manual Part III. In Manual
on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE
ICP Forests Programme Co-Ordinating Centre: Hamburg, Germany, 2010; ISBN 978-3-926301-03-1.

32. Cerrillo, N.R.M.; Trujillo, J.; Orden, M.; Clemente, H.R. Hyperspectral and multispectral satellite sensors for mapping chlorophyll
content in a Mediterranean Pinus sylvestris L. plantation. Int. J. Appl. Earth Obs. 2014, 26, 88–96. [CrossRef]

33. Abadia, J.; Abadia, J. Iron and Plant Pigments; Academic Press: Cambridge, MA, USA, 1993.
34. Clemente, H.R.; Cerrillo, N.R.M.; Tejada, Z.P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band

índices and PROSPECT+ DART simulations. Remote Sens. Environ. 2012, 127, 298–315. [CrossRef]
35. Dufrêne, E.; Bréda, N. Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 1995, 104,

156–162. [CrossRef] [PubMed]
36. Sokal, R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W. H. Freeman: New York, NY,

USA, 1995.
37. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2018.
38. Nouri, H.; Beecham, S.; Anderson, S.; Nagler, P. High spatial resolution WorldView-2 imagery for mapping NDVI and its

relationship to temporal urban landscape evapotranspiration factors. Remote Sens. 2014, 6, 580–602. [CrossRef]
39. Khosravipour, A.; Skidmore, A.; Isenburg, M.; Wang, T.; Hussin, Y. Generating pit-free canopy height models from airborne lidar.

Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [CrossRef]
40. Isenburg, M. LAStools–Efficient LiDAR Processing Software (Version 1.8, Licensed). Available online: http://rapidlasso.com/

LAStools (accessed on 17 October 2018).
41. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Böhner, J. System for automated geoscientific analyses

(SAGA) v. 2.1.4. Geosci. Model Dev. Dis. 2015, 8, 2271–2312.
42. QGIS Development Team. Geographic Information System; Open Source Geospatial Found: Chicago, IL, USA, 2018.
43. Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm.

Eng. Rem. S. 2012, 78, 75–84. [CrossRef]
44. Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of WorldView-2 data to classify tree species and different

levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [CrossRef]
45. Oumar, Z.; Mutanga, O. Integrating environmental variables and WorldView-2 image data to improve the prediction and

mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests. ISPRS J. Photogramm. Remote Sens. 2014, 87,
39–46. [CrossRef]

46. Kantola, T.; Vastaranta, M.; Yu, X.; Saarenmaa, L.P.; Holopainen, M.; Talvitie, M.; Hyyppa, J. Classification of defoliated trees
using tree-level airborne laser scanning data combined with aerial images. Remote Sens. 2010, 2, 2665–2679. [CrossRef]

47. Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Sánchez Meador, A.; Bourdon, J.F.; De Boissieu, F.; Achim, A.
lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens Environ. 2020, 251. [CrossRef]

48. Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017.
[CrossRef]

49. Breiman, L. Manual on Setting up, Using, and Understanding Random Forests v4.0. Available online: https://www.stat.berkeley.
edu/~{}breiman/Using_random_forests_v4.0 (accessed on 8 February 2011).

50. Waske, B.; Linden, S.; Oldenburg, C.; Jakimow, B.; Rabe, A.; Hostert, P. Image RF–A user-oriented implementation for remote
sensing image analysis with Random Forests. Environ. Model. Softw. 2012, 35, 192–193. [CrossRef]

http://doi.org/10.1016/j.jag.2016.12.002
http://doi.org/10.1111/nph.13477
http://www.ncbi.nlm.nih.gov/pubmed/26058406
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1016/j.ecolind.2015.08.001
http://doi.org/10.3832/ifor1727-010
http://doi.org/10.1002/2013GL058373
http://doi.org/10.1016/j.foreco.2019.117484
http://doi.org/10.1016/j.jag.2013.06.001
http://doi.org/10.1016/j.rse.2012.09.014
http://doi.org/10.1007/BF00328580
http://www.ncbi.nlm.nih.gov/pubmed/28307352
http://doi.org/10.3390/rs6010580
http://doi.org/10.14358/PERS.80.9.863
http://rapidlasso.com/LAStools
http://rapidlasso.com/LAStools
http://doi.org/10.14358/PERS.78.1.75
http://doi.org/10.3390/rs6054515
http://doi.org/10.1016/j.isprsjprs.2013.10.010
http://doi.org/10.3390/rs2122665
http://doi.org/10.1016/j.rse.2020.112061
http://doi.org/10.1155/2017/1353691
https://www.stat.berkeley.edu/~{}breiman/Using_random_forests_v4.0
https://www.stat.berkeley.edu/~{}breiman/Using_random_forests_v4.0
http://doi.org/10.1016/j.envsoft.2012.01.014


Remote Sens. 2021, 13, 436 23 of 24
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