1,976 research outputs found

    Optoelectronic Circuits for Control of Lightwaves and Microwaves

    Get PDF

    XUV Frequency Combs via Femtosecond Enhancement Cavities

    Full text link
    We review the current state of tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). Recent developments have enabled generation of high photon flux (1014 photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the spectral region from 40 nm - 120 nm. This level of performance has enabled precision spectroscopy with XUV frequency combs and promises further applications in XUV spectroscopic and photoemission studies. We discuss the theory of operation and experimental details of the fsEC and XUV generation based on HHG, including current technical challenges to increasing the photon flux and maximum photon energy produced by this type of system. Current and future applications for these sources are also discussed.Comment: invited review article, 38 page

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Comb-Based Radio-Frequency Photonic Filters with Rapid Tunability and High Selectivity

    Get PDF
    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for RF photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability, and bandwidth reconfiguration. In one configuration tuning of the RF passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes comb spectra, resulting in Gaussian RF filter lineshapes exhibiting extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.Comment: Updated the submission with the most recent version of the pape

    Controlling, storing and manipulating light using on-chip Brillouin scattering

    Get PDF
    The importance of optical signal processing techniques is growing rapidly in recent years due to the exponentially increasing demand for bandwidth, capacity and power efficiency in communications and computing. However, due to their bosonic nature photons do not interact with each other, unless there is a nonlinear medium mediating the interaction. One of the strongest nonlinear effects is the interaction of light waves, photons, with sound-waves, acoustic phonons, which is known as stimulated Brillouin scattering (SBS). This thesis experimentally investigates SBS in photonic chips. It is shown in this thesis that the fundamental interaction strength between light and sound waves can be tailored by using one-dimensional photonic bandgap structures, completely suppressing the effect or alternatively enhancing the interaction to form phase-locked Brillouin frequency combs. It was shown furthermore that efficiently generating SBS on-chip enables the generation of stable RF signals that are widely tunable in frequency. Finally, it is shown in this thesis that SBS enables the storage of light signals on a chip, one of the holy grails of all-optical signal processing. Delaying optical signals is of key importance in optical networks to enable synchronization, buffering, and rerouting. SBS enables large delays by resonantly transferring an optical signal to an acoustic wave, that travels five orders of magnitude slower and retrieving it after a certain storage time. It is demonstrated in this thesis that a Brillouin-based memory (BBM) technique allows storing amplitude and phase of optical data pulses and operate at multiple wavelengths with minimal cross-talk. Replenishing of the acoustic wave to overcome storage time limitations imposed by the lifetime of the acoustic wave as well as non-reciprocal light storage is also shown
    • …
    corecore