2,247 research outputs found

    Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications

    Get PDF
    Food authenticity studies are concerned with determining if food samples have been correctly labelled or not. Discriminant analysis methods are an integral part of the methodology for food authentication. Motivated by food authenticity applications, a model-based discriminant analysis method that includes variable selection is presented. The discriminant analysis model is fitted in a semi-supervised manner using both labeled and unlabeled data. The method is shown to give excellent classification performance on several high-dimensional multiclass food authenticity datasets with more variables than observations. The variables selected by the proposed method provide information about which variables are meaningful for classification purposes. A headlong search strategy for variable selection is shown to be efficient in terms of computation and achieves excellent classification performance. In applications to several food authenticity datasets, our proposed method outperformed default implementations of Random Forests, AdaBoost, transductive SVMs and Bayesian Multinomial Regression by substantial margins

    Contribution to supervised representation learning: algorithms and applications.

    Get PDF
    278 p.In this thesis, we focus on supervised learning methods for pattern categorization. In this context, itremains a major challenge to establish efficient relationships between the discriminant properties of theextracted features and the inter-class sparsity structure.Our first attempt to address this problem was to develop a method called "Robust Discriminant Analysiswith Feature Selection and Inter-class Sparsity" (RDA_FSIS). This method performs feature selectionand extraction simultaneously. The targeted projection transformation focuses on the most discriminativeoriginal features while guaranteeing that the extracted (or transformed) features belonging to the sameclass share a common sparse structure, which contributes to small intra-class distances.In a further study on this approach, some improvements have been introduced in terms of theoptimization criterion and the applied optimization process. In fact, we proposed an improved version ofthe original RDA_FSIS called "Enhanced Discriminant Analysis with Class Sparsity using GradientMethod" (EDA_CS). The basic improvement is twofold: on the first hand, in the alternatingoptimization, we update the linear transformation and tune it with the gradient descent method, resultingin a more efficient and less complex solution than the closed form adopted in RDA_FSIS.On the other hand, the method could be used as a fine-tuning technique for many feature extractionmethods. The main feature of this approach lies in the fact that it is a gradient descent based refinementapplied to a closed form solution. This makes it suitable for combining several extraction methods andcan thus improve the performance of the classification process.In accordance with the above methods, we proposed a hybrid linear feature extraction scheme called"feature extraction using gradient descent with hybrid initialization" (FE_GD_HI). This method, basedon a unified criterion, was able to take advantage of several powerful linear discriminant methods. Thelinear transformation is computed using a descent gradient method. The strength of this approach is thatit is generic in the sense that it allows fine tuning of the hybrid solution provided by different methods.Finally, we proposed a new efficient ensemble learning approach that aims to estimate an improved datarepresentation. The proposed method is called "ICS Based Ensemble Learning for Image Classification"(EM_ICS). Instead of using multiple classifiers on the transformed features, we aim to estimate multipleextracted feature subsets. These were obtained by multiple learned linear embeddings. Multiple featuresubsets were used to estimate the transformations, which were ranked using multiple feature selectiontechniques. The derived extracted feature subsets were concatenated into a single data representationvector with strong discriminative properties.Experiments conducted on various benchmark datasets ranging from face images, handwritten digitimages, object images to text datasets showed promising results that outperformed the existing state-ofthe-art and competing methods

    Flexible Graph-based Learning with Applications to Genetic Data Analysis

    Get PDF
    With the abundance of increasingly complex and high dimensional data in many scientific disciplines, graphical models have become an extremely useful statistical tool to explore data structures. In this dissertation, we study graphical models from two perspectives: i) to enhance supervised learning, classification in particular, and ii) graphical model estimation for specific data types. For classification, the optimal classifier is often connected with the feature structure within each class. In the first project, starting from the Gaussian population scenario, we aim to find an approach to utilize the graphical structure information of the features in classification. With respect to graphical models, many existing graphical estimation methods have been proposed based on a homogeneous Gaussian population. Due to the Gaussian assumption, these methods may not be suitable for many typical genetic data. For instance, the gene expression data may come from individuals of multiple populations with possibly distinct graphical structures. Another instance would be the single cell RNA-sequencing data, which are featured by substantial sample dependence and zero-inflation. In the second and the third project, we propose multiple graphical model estimation methods for these scenarios respectively. In particular, two dependent count-data graphical models are introduced for the latter case. Both numerical and theoretical studies are performed to demonstrate the effectiveness of these methods.Doctor of Philosoph

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    ENSEMBLE CLASSIFICATION BASED MICROARRAY GENE RETRIEVAL SYSTEM

    Get PDF
    Data mining plays an important role in the process of classifying between the normal and the cancerous samples by utilizing microarray gene data. As this classification process is related to the human lives, greater sensitivity and specificity rates are mandatory. Taking this challenge into account, this work presents a technique to classify between the normal and cancerous samples by means of efficient feature selection and classification. The process of feature selection is achieved by Information Gain Ratio (IGR) and the selected features are forwarded to the classification process, which is achieved by ensemble classification. The classifiers being employed to attain ensemble classification are k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Extreme Learning Machine (ELM). The performance of the proposed approach is analysed with respect to three different datasets such as Leukemia, Colon and Breast cancer in terms of accuracy, sensitivity and specificity. The experimental results prove that the proposed work shows better results, when compared to the existing techniques

    A Deep Learning Approach for Multi-Omics Data Integration to Diagnose Early-Onset Colorectal Cancer

    Get PDF
    Colorectal cancer is one of the most common cancers and is a leading cause of death worldwide. It starts in the colon or the rectum, and they are often grouped together because they have many features in common. It has been noticed that colorectal cancer attacks young-onset patients who are less than 50 years of age in increasing rates lately. Rapid developments in omics technologies have led them to be highly regarded in the field of biomedical research for the early detection of cancer. Omics data revealed how different molecules and clinical features work together in the disease progression. However, Omics data sources are variants in nature and require careful preprocessing to be integrated. A convolutional neural network is a class of deep neural networks, commonly applied to analyze visual imagery. In this thesis, we propose a model that converts one-dimensional vectors of omics into RGB images to be integrated into the hidden layers of the convolutional neural network. The prediction model will allow all different omics to contribute to the decision making based on extracting the hidden interactions among these omics. These subsets of interacted omics can serve as potential biomarkers for young-onset colorectal cancer

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    The DDG^G-classifier in the functional setting

    Get PDF
    The Maximum Depth was the first attempt to use data depths instead of multivariate raw data to construct a classification rule. Recently, the DD-classifier has solved several serious limitations of the Maximum Depth classifier but some issues still remain. This paper is devoted to extending the DD-classifier in the following ways: first, to surpass the limitation of the DD-classifier when more than two groups are involved. Second to apply regular classification methods (like kkNN, linear or quadratic classifiers, recursive partitioning,...) to DD-plots to obtain useful insights through the diagnostics of these methods. And third, to integrate different sources of information (data depths or multivariate functional data) in a unified way in the classification procedure. Besides, as the DD-classifier trick is especially useful in the functional framework, an enhanced revision of several functional data depths is done in the paper. A simulation study and applications to some classical real datasets are also provided showing the power of the new proposal.Comment: 29 pages, 6 figures, 6 tables, Supplemental R Code and Dat

    Optimizing Alzheimer's disease prediction using the nomadic people algorithm

    Get PDF
    The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods
    corecore