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ABSTRACT

In this thesis, we focus on supervised learning methods for pattern categorization.

In this context, it remains a major challenge to establish efficient relationships between

the discriminant properties of the extracted features and the inter-class sparsity

structure.

Our first attempt to address this problem was to develop a method called "Robust

Discriminant Analysis with Feature Selection and Inter-class Sparsity" (RDA_FSIS).

This method performs feature selection and extraction simultaneously. The targeted

projection transformation focuses on the most discriminative original features while

guaranteeing that the extracted (or transformed) features belonging to the same class

share a common sparse structure, which contributes to small intra-class distances.

In a further study on this approach, some improvements have been introduced

in terms of the optimization criterion and the applied optimization process. In fact,

we proposed an improved version of the original RDA_FSIS called "Enhanced Dis-

criminant Analysis with Class Sparsity using Gradient Method" (EDA_CS). The basic

improvement is twofold: on the first hand, in the alternating optimization, we update

the linear transformation and tune it with the gradient descent method, resulting in a

more efficient and less complex solution than the closed form adopted in RDA_FSIS.

On the other hand, the method could be used as a fine-tuning technique for many

feature extraction methods. The main feature of this approach lies in the fact that

it is a gradient descent based refinement applied to a closed form solution. This

makes it suitable for combining several extraction methods and can thus improve the

performance of the classification process.

In accordance with the above methods, we proposed a hybrid linear feature extrac-

tion scheme called "feature extraction using gradient descent with hybrid initialization"

(FE_GD_HI). This method, based on a unified criterion, was able to take advantage of

several powerful linear discriminant methods. The linear transformation is computed
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using a descent gradient method. The strength of this approach is that it is generic in

the sense that it allows fine tuning of the hybrid solution provided by different methods.

Finally, we proposed a new efficient ensemble learning approach that aims to

estimate an improved data representation. The proposed method is called "ICS

Based Ensemble Learning for Image Classification" (EM_ICS). Instead of using

multiple classifiers on the transformed features, we aim to estimate multiple extracted

feature subsets. These were obtained by multiple learned linear embeddings. Multiple

feature subsets were used to estimate the transformations, which were ranked using

multiple feature selection techniques. The derived extracted feature subsets were

concatenated into a single data representation vector with strong discriminative

properties.

Experiments conducted on various benchmark datasets ranging from face images,

handwritten digit images, object images to text datasets showed promising results

that outperformed the existing state-of-the-art and competing methods.

Keywords: Machine Learning, Pattern Classification, Discriminant Embedding,

Manifold learning, Linear Embedding, Image Categorization, Supervised Learning,

Hybrid Embedding, Hybrid Initialization, Computer Vision, Ensemble Learning, Fine

Tuning, Gradient Descent Optimization.
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RESUMEN
La presente tesis está enfocado en los métodos de aprendizaje supervisado para la

categorización de patrones. En este contexto, sigue siendo un gran desafío establecer

relaciones eficientes entre las propiedades discriminantes de las características o

atributos extraídos y la estructura de escasez entre clases .

El primer intento para abordar este problema fue desarrollar un método lla-

mado "Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity

(RDA_FSIS)”. Este método realiza la selección y extracción de características si-

multáneamente. La transformación de proyección perseguida se centra en identificar

las características originales más discriminativas al tiempo que garantiza que las

características extraídas (o transformadas) que pertenecen a la misma clase com-

partan una estructura dispersa común, lo que contribuye a reducir la distancia entre

objetos de la misma clase. Al hilo de lo anterior, se han introducido algunas mejoras

relacionadas con el criterio de optimización o función objetivo así como el proceso

de optimización aplicado. En efecto, propusimos una versión mejorada del algoritmo

original RDA_FSIS llamada "Enhanced Discriminant Analysis with Class Sparsity

using Gradient Method (EDA_CS) ". Las mejoras destacadas son: por un lado, incor-

porar el método de descenso de gradiente en el proceso de adaptación y y ajuste de

la transformación lineal, resultando en una solución más eficiente y menos compleja

que la forma cerrada adoptada en RDA_FSIS. Por otro lado, el método propuesto

podría usarse como una técnica de sintonización precisa para muchos métodos

de extracción de características. El rasgo principal de este enfoque radica en el

hecho de que es un refinamiento basado en el descenso de gradiente aplicado a una

solución en forma cerrada. Esto lo hace adecuado para combinar varios métodos de

extracción y, por lo tanto, puede mejorar el rendimiento del proceso de clasificación.

De acuerdo con los métodos anteriores, se ha propuesto un esquema lineal

híbrido de extracción de características llamado "feature extraction using gradient

descent with hybrid initialization (FE_GD_HI)”. Este método, basado en un criterio
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de optimización unificado, fue capaz de aprovechar las ventajas de varios métodos

de análisis discriminante lineal. La clave radica en que se trata de un esquema

genérico que permite un ajuste fino de la solución híbrida proporcionada por diferentes

métodos.

Por último, se ha presentado un nuevo enfoque de aprendizaje por conjuntos

eficiente que tiene como objetivo estimar una representación de datos mejorada. El

método propuesto se denomina ""ICS Based Ensemble Learning for Image Clas-

sification (EM_ICS)”. En lugar de aprender múltiples clasificadores usando las

características transformadas, nuestro objetivo consistia en estimar varios subcon-

juntos de características usando múltiples variedades de aprendizaje lineal. Éstos

subconjuntos de características han servido para estimar las transformaciones que

posteriormente se han ordenado utilizando múltiples técnicas de selección de carac-

terísticas. Finalmente, los distintos subconjuntos de características extraídos se han

concatenado para dar lugar a un solo vector de representación de datos con fuertes

propiedades discriminatorias.

Los experimentos realizados en distintos conjuntos de datos de referencia in-

cluyendo imágenes faciales, imágenes de dígitos escritos a mano, imágenes de

objetos, y conjuntos de datos de texto han mostrado resultados prometedores que

han registrado mejoras significativas en comparación con los métodos existentes.

Palabras clave: Aprendizaje automático, Clasificación de patrones, Incrustación

discriminante, Aprendizaje múltiple, Incrustación lineal, Categorización de imágenes,

Aprendizaje supervisado, Incrustación híbrida, Inicialización híbrida, Visión por com-

putador.
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CHAPTER 1

General Introduction

Nowadays, the evolution of modern technologies has led to an exponential increase in

the amount of data generated in a variety of fields, such as medicine, manufacturing,

finance, banking, public services, e-commerce, and business intelligence and strategy,

to name a few.

For most of these areas, data analysis is a crucial step in enabling decision-making

systems to respond efficiently to the actual current demands of the world. Efforts

in this area have proven that it is not only the quantity of data that allows better

evaluations, but also the quality of the data, its relevance, adequacy and reliability.

Therefore, there is a genuine need to generate and process high quality data using

less computational and storage resources.

For this purpose, the use of machine learning techniques (ML) has become a

necessity. ML techniques aim to exploit data structures to achieve optimized data

processing. In general, these methods provide better data representation by revealing

hidden data patterns that help to extract relevant information. Basically, there exist

three settings for machine learning approaches, namely: supervised, semi-supervised

and unsupervised learning. These three settings are mainly differentiated by the

availability and use of data labels in the learning process. Data labels are specific

information that categorizes the data samples, in other words, the labels assign each

data sample to the appropriate class or group. In supervised learning, the framework

exploits the data labels in the learning process, for this type of learning all data

labels should be available. Unsupervised learning frameworks do not require the

data labels in the learning process, so the availability of the label information is not

1
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necessary at all. The third and last type is semi-supervised learning, which in fact

can be considered as a compromise between supervised and unsupervised learning.

The latter methods use all the training samples (labeled and unlabeled) to obtain the

intrinsic geometric structure of the entire training data.

Depending on the context knowledge, the approaches of ML are traditionally

divided into classification, regression and clustering. The first two are considered

as supervised learning techniques, while the latter is considered as unsupervised

learning approach. Classification aims to categorize the data according to certain

criteria (e.g., image classification, objects, etc.) under different labels (classes). On

the other hand, regression predicts continuous valued outputs. Clustering refers to

the partitioning of the data set into multiple groups called clusters. The goal is to

partition the data so that points within a cluster are very similar and points in different

clusters are different. It determines the grouping among the unlabeled data.

Classification approaches are widely used in machine learning, computer vision

and various other fields as they can model many real-world applications. In general,

datasets are represented by two-dimensional (2-D) matrices, with columns corre-

sponding to data samples and rows corresponding to their characterizing features.

The number of features that represent the data samples is referred to as the "dimen-

sionality" of the data. A feature can be identified as one of the following: relevant,

irrelevant or redundant. Relevant features are mainly the features that contribute

to a better predictive model and hence higher classification performance. These

features provide useful information and are the ones that the model should extract

and select among all other candidates. Irrelevant features do not contribute in any

way to the improvement of the predictive model. They do not provide useful informa-

tion and sometimes can even worsen the classification process, they express noise

with respect to a particular relevance evaluation criterion. Redundant features are

those that can be correlated, they also do not contribute to the improvement of the

model. On the contrary, these features can lead to a more complex, ineffective and

computationally expensive learning process.

1. CHAPTER 1. GENERAL INTRODUCTION 2
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Motivated by the desire to obtain optimized, relevant and tighter data represen-

tations, dimensionality reduction techniques are proposed and implemented. Di-

mensionality reduction techniques mainly aim at reducing the number of features

representing the data samples in order to achieve better data interpretation. Dimen-

sionality reduction can be performed using two approaches, namely feature selection

and feature extraction. The former simply identifies the most relevant features of the

data and selects the subset that contains these features without applying any core

changes to the meaning of the original features. The selected features are candidates

from the larger original set, so feature selection techniques subsequently produce a

lower-dimensional space. On the other hand, a feature extraction technique provides

a new lower-dimensional space created from a new set of features. Feature extraction

can be performed using linear or nonlinear methods. Most feature extraction methods

focus on estimating a linear transformation that maps the original features to another

space from which latent variables can be obtained. The need to design efficient

and discriminative low-dimensional embedding spaces for data representation is a

key challenge that has long been pursued by researchers. Learning appropriate

representations of data that allow extracting and organizing discriminative information

is an important step in machine learning. It can reduce memory and computational

requirements and, more importantly, improve the performance of subsequent classi-

fiers or other machine learning techniques. This explains why representation learning

is increasingly becoming a major research topic [113, 144, 180, 222, 213]. Although

there has been tremendous progress in achieving some of the goals of such feature

engineering, there is still much work to be done. In fact, most data representation

learning methods suffer from a number of drawbacks related to the quality of the

extracted data.

This work contributes to data representation learning by employing several linear

projection models capable of performing feature ranking and extraction simultane-

ously. We focused on studying different learning representation algorithms and their

applications to image categorization tasks. More specifically, we focused on "super-

vised learning" for image categorization. All the data representations provided by the

1. CHAPTER 1. GENERAL INTRODUCTION 3
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proposed approaches have demonstrated their superiority over a wide list of powerful

competing methods. Most of our proposed methods integrate the concept of implicit

feature ranking along with class sparsity, which allowed these methods to gain many

powerful discriminative capabilities.

Contributions

Throughout this thesis report, we have proposed several supervised linear feature

extraction methods that have shown promising results outperforming many existing

methods. The main findings are summarized as follows:

• We have provided a comprehensive and concise literature review on machine

learning types and dimensionality reduction. We have provided several exam-

ples that allow a proper comprehension about these topics by highlighting their

strengths, limitations and variants.

• We proposed a supervised feature extraction algorithm targeting image cate-

gorization applications. This method exploited multiple types of sparsity in a

joint framework and delivered high-end performance. Specifically, our proposed

framework integrates two types of sparsity, the first is achieved by imposing

the `2,1 norm constraint on the transformation matrix to ensure that our models

implicitly perform feature selection. The second type is achieved by imposing the

inter-class sparsity constraint on the projected samples, which helped to ensure

a common sparsity structure for the samples sharing the same class. The pro-

posed framework has retrieved the Linear Discriminant Analysis transformation

considering the aforementioned types of sparsity. An orthogonal reconstruction

matrix was also introduced to improve the proposed approach’s robustness to

noise.

• We have proposed an enhanced feature extraction approach that further im-

proves the discriminative capabilities provided by our first contribution. The

improved criterion differs in two ways: the global criterion and the optimization
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process. We have used the gradient algorithm to compute and update the trans-

formation matrix instead of the closed form solution. The proposed framework is

considered as a fine-tuning tool that allows tuning the embeddings provided by

existing linear approaches. In general, it is possible to improve the performance

of other feature extraction methods using our proposed method.

• We have introduced a hybrid initialization scheme for the transformation matrix,

which has assured very useful properties. To compute the transformation matrix

(embedding) we used the steepest descent gradient algorithm. It is well known

that the gradient algorithm requires a good initial guess to perform well. We

set the initial guess of the sought embedding as a combination of the solutions

provided by multiple linear feature extraction methods. Then, we start applying

our proposed algorithm iteratively until a more discriminative transformation is

obtained. Through this introduced hybrid scheme, our proposed approaches

were able to inherit the powerful discriminant properties provided by the linear

methods used in the hybrid construction of the transformation matrix.

• We proposed an ensemble learning based approach that exploits the utilization

of multiple feature subsets to construct enhanced and more discriminative data

representations. Our scheme uses multiple feature selection algorithms to

construct different feature subsets. Each of these subsets is then separately fed

to a learner and a prediction is obtained to form a single model. The main idea

of our proposed algorithm is to combine the projections provided by multiple

models in order to construct a single, more powerful data representation.

• Our proposed methods can be applied to other types of data, not just images. It

is true that most of our contributions emphasized working with image datasets,

however our proposed methods can be applied to different types of data. To

prove that, we extended our experiments by applying our method on synthetic

and text datasets. The original motivation for this extension that is presented

in section 4.5 is to highlight the discriminative power of the proposed method

using non-image datasets.
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Thesis Organization and Research Outline

The content of this thesis is divided into two main parts. The first part provides an

overview and discussion of general machine learning concepts. More specifically, Part

I comprises six chapters. The current chapter presents a general introduction to my

dissertation and highlights the main findings of the thesis, including the organization

of the PhD dissertation and the research outline. Chapter 2 presents the background

as well as the state of the art relevant to my work, which includes a general overview

of machine learning algorithms, dimensionality reduction techniques, graph-based

and deep learning approaches, and finally some preliminaries and tools. Chapter 3

describes the experimental setups used in the experiments conducted in this thesis.

This chapter provides a detailed description of the datasets and descriptors used in

various experiments. Chapter 4 provides a brief summary of the contributions made

in this thesis. Each contribution is presented in detail in a separate chapter in the

second part of the report. Chapter 5 presents conclusions derived from this thesis

and highlights some limitations and future work. The final chapter serves to list our

publications and contributions with a brief summary for each contribution.

Part II presents the main articles written while working on the thesis, including those

published and those submitted and in the revision phase.
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During my PhD, I have investigated several machine learning paradigms, from

basic and classical supervised and unsupervised learning methods to more general

and recent semi-supervised techniques. In addition to that, I have explored various

feature extraction and selection algorithms. In this chapter, I will present a general

description of all these techniques and discuss some related works and preliminaries.

2.1 Machine Learning Types
The learning problems we consider can be roughly categorized into supervised, semi-

supervised, and unsupervised. In supervised learning, the goal is to predict the

value of an outcome measure (or label), usually quantitative or categorical, based on

several input features. In contrast, outcome measure do not exist in unsupervised

learning, the goal is to describe how the data is organized or clustered using only the

set of input features. In semi-supervised learning we are concerned with the design

of models in the presence of both labeled and unlabeled data, that is we only have

outcome measures for a subset of the data.

2.1.1 Supervised Learning
In machine learning, the distinction in the nature of the output variables has led to a

naming convention for the prediction tasks: Regression, when we predict quantitative

outputs, and Classification, when we predict qualitative outputs.

In both tasks, the main objective is extracting the specific structures of the input

data that lead to the derivation of correct output data.

Supervised learning methods require both the training data alongside with the

corresponding labels in the training process. Suppose our data matrix is given by

X = [x1,x2, ...,xN ] ∈ RD×N where D and N denote the dimensionality and the total

number of samples, respectively, supervised learning approaches require the label

matrix F ∈ RN×C to learn and extract the targeted features. N and C represent the

total number of samples and the number of classes, respectively.

It is well-known that supervised learning approaches outperform both semi-supervised

2. CHAPTER 2. BACKGROUND AND STATE OF THE ART 11



AK

and unsupervised techniques at classification or regression tasks. This is normal

due to the fact that the supervised learning models take advantage of the available

label information of the data samples used to train the model. Therefore, learning the

data structure will be more efficient, leading to better discrimination properties, hence

better classification and regression.

Common supervised learning algorithms include logistic regression, naive bayes,

support vector machines, artificial neural networks, and others. Supervised learning

methods are widely investigated and gained much attention in the machine learning

and computer vision fields. A vast number of methods have been and are being

proposed for various tasks including (image categorization, classification, medical

images, feature extraction, feature selection, graph-based embedding, and many

more tasks) [88, 89, 44, 188, 186, 36, 146, 106, 80, 218, 211, 106, 125].

2.1.2 Unsupervised Learning
In general, unsupervised learning is used for various tasks, such as clustering,

dimensionality reduction, representation learning, and others. In all these tasks,

knowledge about the inherent structure of the data is pursued without any label

availability. We state some examples about famous unsupervised algorithms, the well-

known principal component analysis [81], k-means clustering and some extensions

[114, 160, 82], and autoencoders [26, 153]. Unsupervised learning is very useful in

exploratory analysis as it can automatically identify the data structure.

Another task where unsupervised learning can be important is dimensionality

reduction. Dimensionality reduction techniques, as explained earlier, aim to reduce

the dimensionality of the data and thus provide an efficient representation of the

original data using a smaller number of features. Usually, in representation learning,

capturing the relationships between features, allow us to represent original data using

the latent features that interrelate the original features. This sparse latent structure

is often represented using far fewer features than the original ones. This allows for

less intensive and computationally expensive data processing. In other contexts,

dimensionality reduction can be used to convert data from one modality to another.
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Similar to other tasks, unsupervised learning has its advantages and drawbacks.

Since unsupervised learning works without the data labels, no prior knowledge about

the instances is required. Moreover, this setting is simple, requires fewer computations

and is faster than other learning settings. The most obvious drawback is that this

setting does not have access to the data labels. Many current studies are still

conducted on unsupervised feature extraction or selection techniques [78, 118, 133,

166, 122, 214].

2.1.3 Semi-Supervised Learning
In real-world applications, the data labeling process is very challenging. In other

words, collecting the data labels is a very demanding and time-consuming process, in

the sense that it might be unrealistic to collect the labels of all the data. Another reason

that makes the labeling process infeasible is the use of applications where there is a

constant stream of data (e.g., social networks). Collecting a portion of the data labels

is favorable, since it is cheaper and relatively require less processing. In general, only

a very small portion of the data is required to be labeled, so semi-supervised learning

techniques can perform efficiently. For all these reasons, many researchers have

adopted the semi-supervised settings and proposed novel algorithms targeting this

type of learning. Semi-supervised learning can be regarded as a compromise between

supervised and unsupervised learning. Semi-supervised models take advantage of a

small amount of labeled training data along with a large amount of unlabeled training

data to derive the best embedding spaces, since the former is less expensive and

easier to obtain. This is how semi-supervised learning works:

Suppose that we have a data matrix X ∈ RD×N . In reality, semi-supervised

learning sees the data matrix as X = [x1,x2, ...,xl,xl+1, ...,xl+u] ∈ RD×(l+u), where

D represents the dimensionality of the data (number of features) and N = l + u

represents the total number of data samples. Semi-supervised learning algorithms

uses both labeled xi|li=1 and unlabeled samples xi|l+ui=l+1, where l and u denote the

number of labeled and unlabeled data samples, respectively. Thus, the original

data matrix in the semi-supervised learning algorithms is divided into two parts,

2. CHAPTER 2. BACKGROUND AND STATE OF THE ART 13



AK

XL = [x1,x2, ..., ...xl] ∈ RD×l and XU = [xl+1,xl+2, ..., ...xl+u] ∈ RD×u, these are

the data matrix associated with labeled and unlabeled samples, respectively. In

many cases, the main goal of semi-supervised methods is to derive the labels of

the unlabeled data samples, the soft label matrix is usually denoted by F ∈ RN×C

where C denotes the total number of classes of the data. In a semi-supervised

context, F =
(

FL
FU

)
, where FL consists of the labels of the labeled data samples. The

strengths of semi-supervised approaches are many, these methods are stable, simple,

efficient, and do not require a large number of labeled data samples, thus requiring

less learning time, which makes them very fast. The disadvantages of this setting

are that they are mostly not applicable to network level data, also they provide lower

classification performance than the supervised methods. This is normal due to the

lack of label information that the supervised methods use in the learning process. In

general, semi-supervised methods must follow a number of assumptions about the

data to justify using a small set of labeled data to make inferences about the unlabeled

data points. The first is the continuity assumption, which refers to the assumption that

data points that are "close" to each other are more likely to share a common label. In

addition, the second assumption is that data naturally form discrete clusters and that

points in the same cluster are more likely to have a common label. Semi-supervised

learning methods also assume that the data lies roughly in a lower-dimensional space

(or manifold) than the original space.

Some common semi-supervised methods are transductive support vector machines

and graph-based methods such as label propagation, feature extraction, and feature

selection [119, 169, 215, 137, 158, 42].

Table 1 contains the notation and symbols used in this section. Table 2 illustrates a

brief summary on the three discussed learning types in this section.

2.2 Overview on Dimensionality Reduction
In real-world applications and with the advent of so-called Big Data, the problem of

dealing with high-dimensional data always arises [61]. Normally, real data is repre-
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Table 1: Brief description of the main notations used in the machine learning
types section.

Symbol Description
X Data matrix
N Number of samples
D Dimension of data
F Matrix of data labels
l Number of labeled samples
u Number of unlabeled samples
C Number of classes
Y Projected data matrix
Q Transformation matrix

Table 2: Machine learning types comparison.

Le
ar

ni
ng

Ty
pe

s

Description

Unsupervised

No available information about data labels
Do not use data labels in the training process
Very fast
Used for exploratory purposes, dimensionality reduction, feature extraction,...

Semi-supervised

Information about part of the data labels (More realistic in real world applications)
Use of both labeled and (part) unlabeled samples in the training process
Relatively fast
Used for label propagation and feature extraction (data projection)
Lower performance than that of supervised techniques

Supervised

All data labels are available
Use only labeled samples in the training process
Normally slower than unsupervised and semi-supervised learning
Used for feature extraction, feature selection, classification, and other tasks
High performance

sented through a large number of features, which makes it very challenging to deal

with these data. Applications used in various fields such as gaming, photography,

image processing, machine learning, classification and data storage are very chal-

lenging due to the high dimensionality of the data. In most cases, processing this

data requires enormous memory and computational resources. In addition, high

dimensional data is prone to be affected by noise.

Figure 1 shows a graphical illustration of the curse of dimensionality concept. In this

example, in the case of the 1-dimensional space shown in Figure 1c, there are only 10
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possible positions, therefore 10 datum are required to create a representative sample

that covers the problem space. In the case of a two-dimensional (2-D)space, there

exist 102 possible positions, so 100 datum are required to create a representative

sample for the problem space. This is illustrated in Figure 1b. In the case of a

three-dimensional (3-D) space, there are 103 possible positions, so the number of

required datum to create a representative sample covering the problem space would

be 1000. The number of needed datum continues to grow exponentially.

(a) Visualization of random data samples
in the 3-Dimensional space.

(b) Visualization of the same data in the 2-
Dimensional space.

(c) Visualization of the same data pro-
jected on 1-Dimensional space.

Figure. 1: Overview about the curse of Dimensionality [1].

In order to address this problem, dimensionality reduction techniques have been
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proposed. These reduction techniques have recently come into prominence due to

their high efficiency [83, 138]. Dimensionality reduction works by reducing the number

of features (referred to as the dimension of the data) while preserving the intrinsic

data structure. Decreasing the dimensionality of the data helps in several ways, it

helps in data compression, achieving efficient learning and inference, overcoming the

"curse of dimensionality", data de-noising in addition to achieving better visualization

[177, 154, 199, 219].

In the pattern recognition and machine learning fields, dimensionality reduction

can be achieved using two approaches, namely: (i) feature extraction or (ii) feature

selection. Until our current date, Linear Discriminant Analysis (LDA) [171] along with

Principal Component Analysis (PCA) [161] hold the places for two of the most popu-

lar dimensionality reduction feature extraction approaches that have demonstrated

efficiency over linear structured data. However, the reality is that various real-world

applications deal with non-linear structured data, where PCA and LDA may fail. This

is where the importance of manifold learning methods targeting feature extraction

becomes apparent.

2.2.1 Overview on Feature Selection
Usually, a feature can be classified as relevant, irrelevant, or redundant. An irrelevant

feature is the one that does not contribute to the predictive model’s enhancement,

moreover, it may even degrade the classification performance if it is considered during

the classification process. In contrast, relevant features contribute to the achievement

of a discriminative prediction model, hence leading to a more efficient classification

performance. These are the targeted features that the model aims to select among

all others. A redundant feature does not lead to better performance of the model in

the classification process. Many researches concluded that the use of the original

data features does not guarantee the best performance in learning tasks [59, 196].

Feature selection refers to selecting subsets of the most relevant features that

represent the data in the most efficient way. These features are selected from the

original data features after being ranked by their importance according to certain
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mathematical operations. Many works have investigated various feature selection

techniques in the field of pattern recognition [99, 113, 144, 180, 222].

(a) General feature selection.

(b) General feature extraction.

Figure. 2: Feature selection vs feature extraction illustration. Feature selec-
tion: Selects features from the original data features and discard others. Fea-
ture extraction: Extracts a new set of features from the original data.

Figure 2 illustrates the main difference between feature selection and feature

extraction techniques.

As stated earlier, feature selection approaches aim to select the most relevant and

representative features of the data according to different criteria. Several approaches
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have been proposed in recent years. Of these, we mention: Fisher score [45],

Relief [92], Relief-F [147, 94], mutual information [11], Hilbert Schmidt Independence

Criterion (HSIC) [163], Laplacian score [65], in addition to Trace Ratio criterion [132].

These mentioned methods have contributed greatly in feature selection applications

and achieved very good performances.

In general, feature selection techniques work as follows. Suppose we have a set

of "d" features, this set of features is denoted by R, the main objective of feature

selection techniques is to select a subset S of m features with m < d, that maximizes

the criterion F .

S∗ = arg max
S⊆R

F (S) s.t. |S| = m (2.1)

|S| in equation 2.1 represents the cardinality of the set S.

Some of the most popular feature selection techniques used in the pattern recogni-

tion field are Fisher score, Relief, Relief-F and many more.

2.2.1.1 Fisher Score
Fisher score works by computing the score of each data feature and then selecting

each feature accordingly. Fisher algorithm computes the score of the i-th feature Si

using:

Si =
∑C
j=1 nj (µij − µi)2∑C

j=1 nj ρ
2
ij

(2.2)

where ρij and µij represent the variance and mean of the i-th feature associated with

the j-th class. nj denotes the number of instances in the j-th class and µi is the mean

of the i-th feature. C denotes the number of classes.

Most original feature selection methods work by computing the score features

individually while ignoring the combination of features. This may lead to non-optimal

results, hence we obtain incorrect feature importance estimations. For simplicity, we
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consider working with two features f1 and f2. In some cases, the scores of both

features may be low, however, the score of the combination of these two features is

high. In this case, these algorithms discard the two features f1 and f2, although they

should be selected. The same can happen in the case of using redundant features,

the algorithm can select both of them although neither of them should be selected.

2.2.1.2 Relief Algorithm
Most methods used to approximate feature reliability presume conditional indepen-

dence of features and are therefore less suitable for problems that might involve more

feature interaction. Relief-based algorithms (Relief, Relief-F, and RRelief-F) do not

simply make this assumption.

These algorithms have been shown to be reliable, conscious of contextual informa-

tion, and can effectively estimate the quality and relevance of features or attributes

in problems with high attribute dependency. Relief algorithms are based on the

concept of local margins for each feature. These margins should be large enough for

relevant features. These algorithms are widely considered as feature subset selection

methods used in the pre-processing phase before training the model [92]. They

are still one of the most popular pre-processing algorithms to date [37]. They are

actually general feature estimators that have been successfully used in a multitude

of environments. Inspired by instance-based learning, the authors in [92] proposed

the classical Relief algorithm. Relief is optimized for two-class problems. The basic

principle of the algorithm is to consider not only the disparity of feature values and

variance in classes, but also the distance between instances.

Consider the feature vector v and the feature vectors of the instance closest to v

from each class. The closest instance belonging to the same class is referred to as

near-hit (NH), and the closest instance with a different class is denoted as near-miss

(NM).
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Relief algorithm [94] iteratively computes the weight for the i-th feature by:

Wi = Wi − (Vi − NHi)2 + (Vi − NMi)2 (2.3)

2.2.1.3 Relief-F Algorithm
Authors in [94] improved the Relief algorithm. They developed an extension of the

original Relief, called Relief-F, which improves the original algorithm by estimating

margins more reliably. Irrelevant attributes, either the redundant or noisy ones,

can influence and affect the selection of the nearest neighbors. This makes the

estimation of the margins unreliable. To address this issue, Relief-F searches for the

"k" nearest (NH’s) and (NM’s) rather than a single (NH and NM) and averages the

contribution of all k nearest (NH’s) and (NM’s). The nearest neighbors’ selection is

very important in Relief-F. The purpose is to find the nearest neighbors with respect to

important attributes. In all our experiments, "k" was set to 10, which, empirically, gives

satisfactory results. For some problems, significantly better results can be obtained by

tuning "k" (as is typical for the majority of machine learning algorithms). Many studies

have been conducted to explore the feature selection ability using Relief-F algorithm

[147]. More details on Relief variants can be found in [71].

Figure. 3: Feature Ranking General Methodology.

Let us consider a simple example where we have the original data matrix X ∈ R4×3,

s is a 4-vector containing the computed score associated with each feature, and
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Xs represents the data matrix after feature ranking. Figure 3 illustrates the general

feature ranking methodology.

2.2.1.4 Robust multi-label feature selection with dual-graph reg-

ularization
Feature selection remains a heavily studied topic to this day, with many recent ap-

proaches being proposed. One of the recently proposed feature selection approaches

is the Robust Multi-label Feature Selection based on Dual-graph (DRMFS) [74]. The

authors proposed a novel method based on dual-graph regularization. The two used

graphs are namely: (i) feature graph regularization, in addition to (ii) label graph

regularization. The former was adopted in order to preserve the geometric structure

of the features. The latter was used to explore the correlations of the data labels.

Furthermore, the authors have imposed the `2,1 norm constraint on the loss function

in order to ensure more robustness to their approach.

The main objective of this proposed scheme is to compute the feature weight matrix

W. The authors imposed the `2,1 norm in addition to a non-negative constraint onto

the feature weight matrix to enhance the row sparsity property.

The (DRMFS) algorithm minimizes the following objective function:

min
W

= ||XTW− Y||2,1 + αTr(WTLXW) + βTr(WLY WT ) + γ||W||2,1 s.t.W ≥ 0 (2.4)

where W ∈ Rd×c, X ∈ Rd×n and Y ∈ Rn×c denote the feature weight matrix, the feature

matrix and the label matrix, respectively. d, c and n represent the dimensionality, the

number of classes and the number of samples, respectively. LX and LY represent

the feature and label graph Laplacian matrices, respectively. Detailed information

on the computation of Laplacian graphs can be found in [8]. α, β and γ are three

balance parameters to their corresponding terms. Once the solution for problem 2.4

is obtained, it is possible to evaluate the most important top k−features by computing

||Wi∗||2 (1 ≤ i ≤ d) and selecting the features corresponding to the k highest scores.
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2.2.2 Overview on Feature extraction
As we mentioned in section 2.2, dimensionality reduction can be achieved using

two approaches, namely: feature extraction or feature selection. Feature extraction

methods are those that create a set of new features based on certain transformations

and/or combinations of the original features. An overview about the feature extraction

methodology was illustrated in figure 2b. There are a huge number of feature ex-

traction methods in the literature due to the high importance and large investigations

and contributions in this field. Section 2.4 presents some typical feature extraction

methods related to our contribution in this thesis.

Manifold learning can be classified as a type of feature extraction. In the case of

dealing with non-linear structured data, manifold learning approaches are the solution

to obtain efficient data representations. Generally, a manifold is a surface without a

particular form. It does not necessarily have to be a plane, it can have any shape.

Manifold learning methods attempt to understand and learn the underlying data

structure. These methods aim to reduce the dimensionality of the data while main-

taining the high- dimensional data distribution, they allow each data sample to be

described as a function of only a few underlying parameters. Manifold learning or fea-

ture extraction methods aim to uncover these parameters to derive a low-dimensional

data representation. These methods assume that the data points are samples from a

low-dimensional manifold (latent space) embedded in a high-dimensional dimensional

space (ambient space).

Manifold learning approaches can often be regarded as a non-linear version of

PCA. In PCA, the data is projected onto a low-dimensional space. This is restrictive

in the sense that those surfaces are all linear. We know that PCA usually searches

for a plane surface to describe the data, which may not exist. This may lead to an

inappropriate data representation. Manifold learning solves this problem in a very

efficient manner. The main concept of manifold learning clearly states that any pair

of data samples that are close in the original space should also be close in the

low-dimensional space. An example of the manifold smoothness is depicted in figure
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4, which presents the famous swiss roll example. Manifold transformation from figure

(4a) to (4b) was conducted using the Manifold Sculpting method [52].

(a) Original data

(b) Transformed data using Manifold Sculpting

Figure. 4: Synthetic Swiss Roll example. The left part of this figure depicts the
original data in a 3D space. The right part depicts the non-linear embedding of
the same data in the low dimensional 2D space [52].

By looking at Figure 4, we can notice that the classification process of the data in

the original space is challenging (left part of the figure), while the classification of the

data in the transformed space is much more efficient (right part of the figure).

Working with feature extraction techniques has many advantages. It allows work-

ing with lower-dimensional data, which is less computationally expensive to handle.

Feature extraction methods also lead to obtaining more discriminant data repre-

sentations, that can boost the classification performance while allowing the use of

simpler classifiers. For these reasons, feature extraction techniques are nowadays

intensively studied in the pattern recognition, machine learning and computer vision

fields. Many recent studies have been conducted in order to obtain discriminant data

representations [186, 188, 44, 89, 88].

To illustrate the concept of latent and ambient spaces, an additional example was

presented through Figures 5 and 6. Both of these figures are intended to visualize the

distribution of the Tetra synthetic dataset samples in both the original space and the

embedded space. The Tetra dataset was defined in [175, 176], it consists of 400 data

points belonging to four classes and lying in R3. This dataset presents the challenge

associated with low inter-cluster distances. In other words, one can observe how the

clusters represented by spheres are very close to each other by looking at Figure 5,
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which makes the classification process hard to implement. On the other hand, better

class discrimination is provided by projecting the original data into the embedding

spaces delivered by the feature extraction methods Robust sparse Linear Discriminant

Analysis RSLDA [186], Linear Discriminant Analysis LDA [171] and Feature Extraction

using Gradient Descent FE_GD [88]. The distribution of samples in the latent space

(2D space) is shown in Figure 6.
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Figure. 5: Visualization of the Tetra dataset points in the original space. These
3D points belong to four large full spheres close to each other.

2.3 Graph-Based Learning
In recent years, graph-based learning has attracted much interest in the pattern recog-

nition and computer vision fields. Graph theory has been introduced and merged with

the manifold learning concept. This has led to promising results. Many graph-based

Manifold Learning techniques have been proposed in recent years for the purpose

of extracting relevant features from original data [8, 148, 170]. Some examples of

graph-based manifold algorithms are the famous Locally Linear Embedding (LLE)

[148], ISOMAP [170] and Laplacian Eigenmap (LE) [8]. These algorithms are based

on ideas from both manifold space and graph theory.

2.3.1 Graph Construction
Generally speaking, graph structure encodes inter-dependencies among constituents

and provides a convenient representation of high-dimensional data, which is the

main reason that graph construction has become an important research topic in
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(a) Visualization of the projected sam-
ples of the Tetra dataset using Original
LDA.
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(b) Visualization of the projected sam-
ples of the Tetra dataset using RSLDA.
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(c) Visualization of the projected sam-
ples of the Tetra dataset using FE_GD.

Figure. 6: TSNE visualization of the projected samples of the Tetra dataset
using LDA, RSLDA, and the first proposed variant FE_GD.

manifold learning field. Researchers in graph theory field mainly focus on analyzing

and mining information patterns from graphs. In this section, we will briefly enumerate

and discuss some classical and widely used graph construction methods.

Two of the most famous classical graph construction approaches are the K-nearest

neighbors (KNN) graph in addition to the ε-neighborhoods graph [170]. These two

methods aim to compute the edge weight matrix, also called the affinity matrix W

based on the distance d(xi, xj) or the similarity sim(xi, xj) between the two points xi

and xj .
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Wij =


sim(xi, xj) if xi and xj are nearest neighbors.

0 if xi and xj are not nearest neighbors.
(2.5)

The constructed affinity matrix W is a symmetrical matrix due to the fact that the

similarity between the two entries xi and xj is equal no matter what the starting point

is. In other words, the expression sim(xi, xj) = sim(xj , xi) always holds true.

Generally speaking, the edge matrix W is subject to the following constraints:

• Wij = 0 indicates the absence of an edge connecting the two nodes i and j.

• Wii = 0 , i = 1, ..., N where N denotes the total number of data samples (nodes).

• All weight edges are non-negative, Wij ≥ 0.

• Wij = Wji.

In the ε-neighborhoods graphs, the base criteria depends on the Euclidean norm

between xi and xj. In this method, the connection between xi and xj is only estab-

lished in the case when ||xi − xj ||2 < ε, where ||.|| denotes the Euclidean norm. One

common problem that can occur using this strategy is the possibility of getting some

disconnected nodes, this can happen in the cases where the value of ε is not carefully

defined.

To overcome the above limitation, K-nearest neighbors (KNN) graphs were used.

For each node, KNN method searches for the set of the nearest neighbors of that node

and establishes a link between the node and the "K" nearest nodes in that set. The

choice of "K" is usually important and affects the performance. KNN-based graphs

were found to perform reasonably well and resulted in decent data representations.

The downside of these graphs arises when dealing with large datasets and when the

number of neighbors required to construct the graph is large. In this particular case,

large computational resources are required to construct the graph.

Figure 7a illustrates a typical example of graph construction using the K-nearest
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neighbors algorithm in the case where the value assumed for K is 2, while figure 7b

shows the obtained graph using the ε-neighborhoods algorithms.

(a) Typical K-nearest neighbors graph with
K=2. (b) Typical ε-neighborhoods graph.

Figure. 7: Typical graph construction examples using KNN and ε-
neighborhoods algorithms.

Usually, subsequent to computing the graph, the weights are updated using the

heat kernel function as follows: Let t ∈ R

Wij =


e−
||xi−xj ||

2

t if nodes i and j are connected.

0 if nodes i and j are not connected.
(2.6)

We described above the criteria used for graph construction using both (KNN)

and ε-neighborhoods algorithms. The general concept of graph-based algorithms is

as follows. Each data sample is represented as a node. Let G(P,E) be the graph

where P = {p1,p2,p3, ...,pN} is the set of nodes, N denotes the total number of data

samples, and E is the set of edges. Wij denotes the edge weight between the two

nodes pi and pj. The value of Wij may depend on several factors (e.g., labels of

samples i and j or the distance separating these two samples in the original space).

In general, the real interpretation of Wij is a measure of the similarity between

the two nodes pi and pj, so usually a high value of Wij indicates high similarity

between the two samples pi and pj and vice versa. A graph can be either weighted

or unweighted. In a weighted directed graph, each connection between two particular

nodes is given a specific weight.
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In recent years, multiple researches aimed at incorporating adjacency graphs into

the manifold learning dimensionality reduction frameworks. The main goal has been

to derive a low-dimensional space that represents the local structure of the data

[9, 67, 69, 148]. First, an adjacency graph is constructed to model the underlying

geometry of the data. Then, a mapping is constructed to preserve the local or global

structure of the graph in the embedding space.

An example of a classical adjacency graph containing 7 nodes is shown in Figure

8, the similarity scores in this example are set to binary weights.

Figure. 8: Adjacency graph and its corresponding similarity matrix.

An example of a weighted graph is illustrated in figure 9. The similarity scores in

this example are computed using equation (2.7), where EW (i,j) represents the edge

weight between nodes pi and pj .

Wij =


EW (i,j) if pi and pj are connected.

0 if pi and pj are not connected.
(2.7)
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Figure. 9: Weighted graph alongside with the corresponding similarity matrix.

2.3.2 Graph-Based embedding
Graph-based learning demonstrated remarkable superiority in the pattern recognition

and machine learning areas, which is why it has gained so much importance and is

focused on by many researchers in these fields [54, 66, 73, 76, 79, 100]. Numerous

methods serving different purposes have made use of graph theory. Some of them

have merged the idea of manifold space with the graph theory to develop and produce

powerful discrimination methods. Graphs have proven to be powerful tools for data

analysis applications. Moreover, graphs can represent data in a simple yet effective

manner. For these reasons, graph-based algorithms are nowadays studied in various

domains such as: semi-supervised learning for label propagation and regression

[93, 181, 43], feature selection [226, 111, 223, 179], graph-based embedding [199,

200, 149], community discovery, spectral clustering [149, 184] and many more.

Various classical graph-based manifold algorithms ushered a new era of graph-

based learning for the Pattern Recognition field. Locally Linear Embedding (LLE)

[148], ISOMAP [170], Laplacian Eigenmap (LE) [8], Linear Neighborhood Propagation

(LNP) [181], Locality Preserving Projections (LPP), and Graph-optimized Locality
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Preserving Projections (GoLPP) [217]. These algorithms are based on ideas from

both manifold space and graph theory.

Lets consider the mathematical model of the graph as defined in section 2.3.1,

where the graph is represented by G(P,E) with nodes P and edges E. In some cases,

a graph can also be represented with three tuples as G(P,E,W), where Wij represents

the edge weight between samples xi and xj. N denotes the total number of data

samples.

2.3.2.1 Locally Linear Embedding
Locally Linear Embedding (LLE) is a classical unsupervised manifold learning ap-

proach. In other words, it does not require data labels to operate. LLE determines

the non-linear global data structure by exploiting the local linear reconstructions. It

formulates its learning problem as a neighborhood-preserving embedding. The main

goal of the method is minimizing the reconstruction error of all local neighborhoods in

the entire dataset.

First, the adjacency matrix used in LLE is computed through either the K-nearest

neighbors (KNN) or the ε- neighborhoods method. After that, all non-zero entries of

the weight matrix W are computed by the reconstruction of the sample xi from its K

neighboring points.

LLE computes the weighted matrix W of G(P,E) by the following formula:

φ (W) =
N∑
i=1
||xi −

N∑
j=1

Wijxj ||2 s.t.
N∑
j=1

Wij = 1. (2.8)

After obtaining W the embedding matrix Z = (z1, z2, z3, ..., zN ) ∈ Rm×N can be

obtained by minimizing the following criterion: (The following problem can be solved

by eigen decomposition)

φ (Z) =
N∑
i=1
|| zi −

N∑
j=1

Wijzj ||2 s.t.
1
N

ZTZ = I,
∑
i

zi = 0. (2.9)
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Authors in [84] extended the work on graph-based embedding related to LLE by

proposing a manifold-based similarity adaptation for label propagation technique. In

their proposed method, the authors used a Gaussian Kernel function with a different

parameter for each dimension of the data to define the weight matrix. Their method

performed well and was able to enhance the performance of the classical LLE, but

the convergence of the solution to a global minimum was not guaranteed because

the proposed objective function is not convex.

2.3.2.2 A Global Geometric Framework for Nonlinear Dimension-

ality Reduction ISOMAP
Authors in [170] proposed a nonlinear manifold learning method that was able to

recover the underlying structure of data under certain assumptions, namely: (i)

isometry and (ii) convexity.

Suppose we have the original parameter space Θ, the mapping Ψ. xi and xj denote

two points on the manifold, and dG(xi,xj) denotes the shortest distance between xi

and xj travelled along the manifold. The vector θ denotes the control parameters

underlying a measuring device and the manifold as the enumeration x = Ψ(θ) of all

possible measurements as the parameters vary.

The two assumptions are the following:

• Isometry: The mapping Ψ preserves the geodesic distances.

dG(xi,xj) = |θ − θ′| ∀xi ↔ θ, xj ↔ θ′

where |.| denotes Euclidean distance.

• Convexity: The parameter space Θ is a convex subset of Rd. If (θ,θ′) is a pair of

parameters points in Θ, then {(1− t) θ + t θ′ : t ∈ (0, 1)} should lie in Θ.

Under these conditions, ISOMAP was able to recover Θ up to rigid motion. ISOMAP

can perform manifold feature learning as follows. In the first step, ISOMAP uses the

famous k-nearest neighbors graph and ε-neighborhoods, and sets the edge lengths
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equal to d(xi,xj). Assuming that the graph is denoted by G(P,E), ISOPMAP then

defines the shortest path between xi and xj over G as dG(xi,xj).

Finally, the low-dimensional embedding Z can be computed by minimizing the

following problem:

Φ (Z) =
∑
i,j

(d (zi, zj)− dG (xi,xj))2 (2.10)

This solution for this minimization problem can be obtained using the multidimen-

sional scaling algorithm [170].

(a) Visualization of the Swiss-roll
original data. (b) LLE embedding

(c) ISOMAP embedding

Figure. 10: Visualization of (a) Original Swiss-roll data. (b) LLE embedding
with K = 12. (c) ISOMAP with K = 7. Detailed information about the Swiss-roll
dataset and this illustration can be found in [39].

Figure 10 illustrates a visualization of a Swiss-roll data [39], LLE embedding with K

= 12, and ISOMAP embedding with K = 7. Detailed information about this illustration

can be found in [39].
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2.3.2.3 Laplacian Eigenmap
Laplacian Eigenmap (LE) [8] is another graph-based method aimed at tracing high-

dimensional data. This method has been used in several applications, it can be used

either to reduce the high dimensional data or to derive a powerful data representation

[9]. It is a joint method built on the correspondence between the graph Laplacian, the

Laplace Beltrami operator on the manifold and the connections to the heat equation.

The main strong-point of LE is that it works to keep the mapping of nodes i and j

which have large weight value Wij as close as possible. LE also uses the k-nearest

neighbors and the ε-neighborhoods methods to set the edges between the nodes,

and then utilizes either simple or heat kernel methods to estimate the edge weights.

Assume that L denotes the Laplacian matrix, LE minimizes the following:

Φ (Z) =1
2

N∑
i,j=1
||zi − zj ||2Wij

=trace
(
ZTLZ

)
s.t.ZTDZ = I

(2.11)

Solution can be obtained using eigen decomposition.

2.3.2.4 Linear Neighborhood Propagation
Authors in [181] proposed the Linear Neighborhood Propagation (LNP) method, this

scheme explored neighborhood properties. The method relies on the assumption

that there is a possibility to linearly reconstruct each data sample based on its

neighborhood. The graph computed by this method is used in label propagation. The

adjacency matrix is constructed using the K nearest neighbors of each sample and

the weights are computed by minimizing the following problem:

W (i, :) = min ||xi −
N∑
j=1

Wijxj ||2 s.t.
N∑
j=1

Wij = 1, Wij ≥ 0. (2.12)

Where W (i, :) denotes the i−th row of the matrix W.
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2.3.2.5 Locality Preserving Projections and Extensions
Most of the embedding methods mentioned above are non-linear, these methods

provide good data representations, however, these methods cannot be applied when

dealing with out of samples data. For this purpose, the need for the linearization

of these embedding approaches arises. Many studies targeting linear embedding

frameworks were conducted. We mention among these, Locality Preserving Projection

(LPP) [68, 198, 217] and Neighborhood Preserving Embedding (NPE) [66]. These

two are respectively considered as the linear versions of Laplacian Eigenmap (LE)

and Locally Linear Embedding (LLE). LPP is an unsupervised method with basic

graph construction properties. Let us adopt the notations shown in Table 3

Table 3: Some notations.

X Data matrix
Wij Coefficient noting the similarity between the two samples xi and xj
yi and yj 1-dimensional projection of xi and xj in the new space.
D Diagonal matrix
L Laplacian matrix
a Projection vector
A Projection matrix

Let the diagonal entries of Dii = ∑
jWij and L = D−W. For 1D projection case

(data samples are projected on a single axis), LPP can be written as:

min
∑
i,j

(yi − yj)2Wij (2.13)

Since a linear embedding is targeted, the mapping can be applied on all data

samples using the derived projection matrix (this a vector in the case of 1D projection).

We have yi = aTxi. Equation 2.13 can be transformed to:

min
1
2
∑
i,j

(
aTxi − aTxj

)2
Wi,j = min aTX (D−W) XTa

= min aTXLXTa

(2.14)
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Although LPP provides good performance, it has some drawbacks that need to be

addressed. The most obvious of these drawbacks is the need for a separate process

in order to compute the graph. To address this problem, authors proposed the

Graph-optimized Locality Preserving Projections (GoLPP) [217] which minimizes the

classical LPP objective function over the linear transformation and the affinity matrix

jointly in a single criterion. The optimized graph criterion showed more discriminative

power than the original criterion. GoLPP minimizes the following:

min
A,W

trace
(
ATXL̂XTA

)
trace

(
ATXXTA

) + µ
N∑
i=1

N∑
j=1

Wij ln (Wij)

s.t.Wij ≥ 0,
N∑
j=1

Wij = 1
(2.15)

Assuming that Ŵ = W+WT , L̂ denotes the Laplacian matrix defined as L̂ = D̂−Ŵ.

D̂ is actually a diagonal matrix whose diagonal elements are the sum of rows sums of

Ŵ.

Many recent studies have been conducted to either achieve more discriminative

embeddings, or for dimensionality reduction goals [216, 227]. Researchers are now

focusing on joint methods that exploit both the transformation matrix and graphs in a

single criterion. Authors in [209] proposed the "Joint graph optimization and projection

learning for dimensionality reduction" (JGOPL). The authors in [209] adopted the `2,1

norm to measure the distance for the loss function, which provides a more robust

method against outliers. Moreover, the same approach demonstrated very good

local structure preserving properties. A locality constraint is introduced into the

(JGOPL) criterion to prevent a sample from joining the distant samples during graph

optimization. Other recent approaches have been proposed to extend graph-based

embedding to the semi-supervised setting, where a small fraction of the data labels

is required and can lead to better learning [227, 131]. An example of one work

addressing the semi-supervised setting is the work proposed in [131], where the
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structured graph achieves the ideal neighbors assignment, based on which an optimal

low-dimensional subspace can be learned.

2.3.2.6 Exponential Local discriminant embedding
Local Discriminant Embedding (LDE) [22] is a powerful discriminant analysis method.

It was originally proposed to overcome a few of the classical Linear Discriminant

Analysis limitations. LDE extends the main concept of LDA with the aim of performing

local discrimination. The main goal of LDE is to estimate a linear mapping that

simultaneously maximizes the local margin between heterogeneous samples and

brings the homogeneous samples closer to each other.

Assuming that the data matrix is denoted by X = (x1,x2, ...,xN ), where N repre-

sents the total number of data samples, Ww,ij denotes the similarity between two

homogeneous samples xi and xj , Wb,ij denotes the similarity between two heteroge-

neous ones.

Dw and Db denote two diagonal matrices whose entries are the column sums of

Ww and Wb, respectively. Lw = Dw −Ww and Lb = Db −Wb show the corresponding

Laplacian matrices.

LDE computes the sought linear transformation matrix A by maximizing the follow-

ing criterion:

trace
(
ATXLbXTA

)
trace

(
ATXLwXTA

) =
trace

(
AT ŜbA

)
trace

(
AT ŜwA

) (2.16)

where the symmetric matrices Ŝw = XLwX and Ŝb = XLbX denote the locality-

preserving within-class and the locality-preserving between-class scatter matrix,

respectively.

Although LDE usually provides a good representation, this algorithm is affected by

the small simple size problem. The Small Simple Size (SSS) problem occurs when

the number of images used in the training set is significantly smaller than the number

of pixels (or features) in each instance. The same problem also occurs in the cases

2. CHAPTER 2. BACKGROUND AND STATE OF THE ART 37



AK

where the rank of Lw ≤ N − 1. LDE can be affected by the SSS problem in the same

way as LDA and many other linear embedding techniques. Many algorithms try to

solve this issue, one of them is Exponential local discriminant embedding (ELDE)

[41]. The main idea of ELDE was to replace the scatter matrices Ŝb and Ŝw with

their exponential versions, in this way, if the (SSS) problem occurs, in other words in

the case when Ŝw is singular (has zero eigenvalues and thus cannot be inverted),

SSS would not occur. In this way, instead of solving equation 2.16, ELDE solves the

following:

max
A

trace
(
AT exp

(
Ŝb
)

A
)

trace
(
AT exp

(
Ŝw
)

A
) (2.17)

Figure. 11: Projection direction of ELDE together with that of four linear meth-
ods (LDE, LDA, LPP and PCA) [41].

Figure 11 illustrates an example of the multi-modal datasets representing two

classes of 2D samples. Each class is distributed as three separated Gaussians

having different parameters. The projection direction of ELDE together with that

of four linear methods are plotted. We can see that every method has provided a

different direction according to its objective function.
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Many recent research is still being conducted based on local embedding whether

for image classification or dimensionality reduction purposes [77, 136, 203, 64].

2.4 Typical Linear Feature Extraction Methods
The contributions provided through this thesis report have been influenced by several

works and investigations. In this section, we will give a brief description of some

typical linear feature extraction methods related to the realized contributions of this

thesis.

2.4.1 Principal Component Analysis
We discussed dimensionality reduction and its importance in section 2.2, Principal

Component Analysis (PCA) is one of the most well-known unsupervised approaches

used for dimensionality reduction purposes. In general, PCA is most useful when the

data lies on or close to a linear sub-space of the data set. For this type of data, PCA

finds a basis for the linear subspace and allows to disregard the irrelevant features.

Let us briefly describe how (PCA) works.

Given a dataset where each data sample has a dimensionality D, i.e., each point

consists of D features, the main goal of PCA is to compute a set of D-dimensional

vectors aligned with the directions of maximum variance of the data. The number of

computed vectors is D, they are referred to as Principal Components and denoted as

(PCs). The computed Principal Components have the following properties:

• The computed PCs are uncorrelated. This is due to the fact that these principal

components form an orthonormal basis, they are described by being not only

perpendicular to each other, but also having unit lengths.

• Principal components are associated with data variance. In particular, the first

component (PC) is aligned with the direction of maximum variance, the second

with the direction representing the second highest variance, the third with the

next direction, etc...

These PCs have several uses, the most important of which are: (i) projecting the
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original data onto these PC’s, and (ii) using these PCs to synthesize new points. The

former can be implemented by applying the dot product of an input data point with

the principal component, which returns a scalar value that is the projection of that

point onto this PC. In principle, D-dimensional input data can be projected onto its D

Principal Components, however, it is usually only interesting to select the PCs that

represent a high data variance to project onto, this can be chosen manually or based

on a set threshold. For example, by selecting the first m PCs describing the highest

data variance where m << D to project onto these, this is where dimensionality

reduction is achieved.

We give some details about the computational process of the orthonormal transfor-

mation matrix P ∈ RD×D, which consists of the PCs: P is computed according to the

following constraints:

Y = PTX, where X ∈ RN×D denotes the original data matrix consisting of N

samples of dimensionality D, and the columns of Y contain the projection onto the

principal components PPT = I. Moreover, YYT = U, where U denotes the covariance

(diagonal) matrix of the projected points Y which are uncorrelated.

Mathematically, the covariance matrix U = YYT can be expressed by:

YYT = (PTX)(PTX)T = PT (XXT )P.

We want the obtained quantity in the above equation to be a diagonal matrix U in

which:

PT (XXT )P = U.

If we multiply the left side of the equation by P and the right side by PT we obtain:

XXT = PUPT
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We know that PPT = I, and the Singular Value Decomposition of the quantity XXT

give us the following:

XXT = VSWT

where V and W contain the left and right eigenvectors of the quantity XXT and S

is a diagonal matrix containing the corresponding eigenvalues. By combining the

last two equations obtained above, we derive that PUPT = VSWT and since XXT is

constructed as a symmetric matrix, the left and right eigenvectors W and V will be

equal. This leads to PUPT = VSVT . We know that P and V are orthonormal, this

concludes that P = V and U = S. Thus, U is a diagonal matrix and the projected data

Y are uncorrelated. This also proves that the PCs corresponding to the data matrix X

are given by the eigenvectors of the covariance matrix XXT of the original (centered)

data.

In short, PCA can be used as a feature extraction or dimensionality reduction

approach, it uses the eigenvectors of the data’s covariance to perform dimensionality

reduction. PCA focuses on finding mutually orthogonal basis functions to obtain the

directions of maximum variance in the data. It will preserve pairwise Euclidean dis-

tances. Figure 12 illustrates the dimensionality reduction process using the principal

component analysis method, sub-figure (12a) presents a random original data lying in

a 3-dimensional space, sub-figure (12b) shows the computed principal components

of the data driven by the direction of the maximum variance of the data, and finally

sub-figure (12c) shows the projection of the original data onto the first and second

PCs, while ignoring the third one.

2.4.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is one of the most commonly used feature ex-

traction methods in supervised learning. Till date, LDA [171] is still considered as a

favored tool for supervised classification tasks due to its simplicity and robustness [60].

Similar to any other method, Linear Discriminant Analysis has its own advantages

and limitations. One strength is that LDA performs efficiently in low-dimensional
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(a) Original data in a 3-
dimensional space.

(b) Principal components illustra-
tion

(c) Data projection onto the first
two Principal components

Figure. 12: Principal Component Analysis illustration [2].

environments. However, LDA fails in the case where the number of predictor variables

is very large compared to the number of observations. In this particular case, the

within-class matrix will be singular, hence it will not be possible to apply LDA. Another

scenario where LDA also fails is when the linear boundaries do not provide good

separation of classes in the data. Many methods have been proposed to overcome

the limitations of classical Linear Discriminant Analysis and have proved to be very

efficient in the image classification field. This has resulted in classical LDA being

one of the most successful bases for novel algorithms. In other words, LDA-based

approaches have shown outstanding performances in the image classification field.

LDA [171] requires the labeling information of the training data in order to compute
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the best projection subspace in which the test samples will be then projected onto in

order to be classified. Let C denote the number of classes in the data and n denote

the number of samples in class c. LDA estimates a transformation matrix where the

desired space maximizes the between-class variance and minimizes the within-class

variance. In other words, LDA aims to find a linear projection that increases the

distance between samples belonging to different classes and, conversely, decreases

the distance between samples belonging to the same class.

Suppose µ, µi are the mean of all data samples and the mean of samples belonging

to the i-th class, respectively. These means can be calculated as µ = 1
n

∑C
i=1

∑ni
j=1 xji

and µi = 1
ni

∑ni
j=1 xji.

First, LDA computes the between-class scatter matrix Sb using the following for-

mula:

Sb = 1
n

C∑
i=1

ni (µi − µ) (µi − µ)T (2.18)

then the within-class scatter matrix Sw is calculated as follows

Sw = 1
n

C∑
i=1

ni∑
j=1

(xji − µi) (xji − µi)T (2.19)

LDA aims to estimate a projection space that maximizes the between-class variance

and minimizes the within-class variance. In the case where only one projection axis is

needed, the projection axis p can be obtained by solving the following Fisher criterion:

[46]

p = arg max
p

pT Sb p
pT Sw p

(2.20)

The above problem (2.20) can be transformed to a difference form that is given by

[207, 98]:

p = arg min
pT p=1

pT (Sw − µSb) p (2.21)
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where µ is a small positive constant. By solving Eq. (2.21), we can observe that the

optimal projection vector p is the eigenvector associated with the smallest eigenvalue

of Sw−λSb. Finally, for more than one projection axis, the projection matrix P ∈ Rd×k

consists of the k eigenvectors associated with the k smallest eigenvalues of Sw−λSb.

Figure. 13: Illustration of the LDA projection axis [3].

Figure 13 illustrates random data points where the data consists of two classes.

Usually the Linear Discriminant Analysis projection is of dimension (C − 1), where C

denotes the total number of classes. Figure 13 presents the LDA projection axis that

provides good class separation (horizontal axis), therefore, better discrimination.

2.4.3 Robust Sparse Linear Discriminant Analysis
The original LDA method suffers from several problems. First, LDA may suffer from

the small sample size (SSS) problem, which makes the LDA algorithm infeasible in

certain cases. Another problem of LDA is that it is very sensitive to noise. The third

problem is that classical LDA is also sensitive to the number of projection directions.

Many LDA based techniques have been proposed to overcome some of the classical

LDA problems and provide better performance and efficiency, namely: orthogonal LDA
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(OLDA) [208], uncorrelated LDA (ULDA) [206] and many others. The main motivation

of OLDA and ULDA was addressing the small sample size problem that may occur in

classical LDA. Also, two-dimensional linear discriminant analysis (2DLDA) [202] has

been proposed for the same purpose, 2DLDA can be directly applied to the image

matrix, which can use the structural information of the image for feature extraction.

Another issue is that LDA fails to represent non-Gaussian distributed data. For this

reason, authors in [225] proposed Manifold Partition Discriminant Analysis (MPDA)

to solve the latter problem. MPDA jointly uses the neighbour information in addition

to the label information in order to construct a discriminative embedding space.

Sparse LDA (SLDA) [143] was proposed to overcome the issue of the presence of

redundant features in the data. SLDA imposed the sparse constraint and was able

to learn a sparse discriminant space. It is true that SLDA performs well on most

classification tasks, but it still lacks the ability to implicitly perform feature selection.

Recently, with the advent of deep learning methods, authors in [40] extended the

original LDA criterion into a deep neural network framework and called it deep linear

discriminant analysis (DeepLDA). The main goal of DeepLDA is to learn a model that

can concentrate as much discriminative power as possible on the C − 1 directions,

with C denoting the class number. Similar to other deep architectures, DeepLDA

provided efficient performance on large-scale image datasets. However, it requires a

large amount of training samples to train the feature extraction network. Moreover, it

is too difficult to interpret the model with the complex network structures.

All the above methods have contributed significantly to image and object classifica-

tion, however, these approaches still have many shortcomings. These methods are

still not able to provide the best features assessment, they are not robust to noise, and

these methods cannot preserve discriminant information according to the selected

number of projection directions and dimensions.

In order to address these issues and seek for an embedding space that provides

better discrimination properties, authors in [186] proposed the Robust Sparse Discrim-

inant Analysis (RSLDA) method, where the authors imposed the `2,1 norm over the
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targeted transformation matrix to ensure that their method performs feature selection

and extraction simultaneously. In addition, the authors introduced a sparse error term

to fit noise during the learning process. They adopted the `1 norm for the error term

to give the model the ability to handle the sparse noise. RSLDA is designed to be

considered as a joint framework that integrates PCA and LDA into a single model.

Moreover, the authors introduced an orthogonal matrix to connect the data in the

original and transformed space and keep the main energy of the original data in the

discriminant subspace.

RSLDA is a supervised LDA-based method used for feature extraction. Aiming to

overcome some drawbacks of LDA technique and extract the features while keeping

the main energy of the data and improving the robustness to noise, RSLDA solves

the following optimization problem:

min
P,Q,E

Tr
(
QT (Sw − µSb) Q

)
+ λ1 ‖Q‖2,1 + λ2 ‖E‖1 s.t. X = P QT X + E,PT P = I

(2.22)

where Q ∈ Rd×m and P ∈ Rd×m denote the projection matrix and orthogonal recon-

struction matrix, respectively, with (m < d). λ1 and λ2 are trade-off parameters used

to determine the importance of the different terms. Sw and Sb are the within-class and

between-class scatter matrices respectively. E is the error matrix and µ is a constant

used to balance the two scatter matrices.

The `2,1 norm of the transformation matrix Q used in the optimization problem

(2.22) can be calculated using equation (2.23).

‖Q‖2,1 =
d∑
i=1

√√√√√ d∑
j=1

q2
ij (2.23)

According to [186], RSLDA learns a discriminant subspace and has less information

loss than other LDA-based algorithms. Besides, RSLDA addresses the issue of model

sensibility to reduced dimensions and can therefore provide very good performance

even in cases where the projected space has very few dimensions. Figure 14
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illustrates the projection matrices derived from both the original LDA in addition to the

RSLDA algorithms. By looking at sub-figure 14b, it is obvious that RSLDA can identify

and select the most discriminative features from the original data. One can see that

many rows in the projection matrix associated with RSLDA have zero values, which

represent irrelevant features that the model can discard.

(a) Transformation matrix ob-
tained by LDA.

(b) Transformation matrix ob-
tained by RSLDA.

Figure. 14: Comparison of the transformation matrices provided by the origi-
nal LDA and RSLDA on the Extended Yale B face database using 15 training
samples from each class randomly selected. Note: only the first 50 rows of the
projection matrices are visualized for comparison [186].

More information on Robust Sparse Linear Discriminant Analysis can be found in

[186].

2.4.4 Inter-Class Sparsity based Discriminative Least Square Re-

gression
Least squares regression (LSR) has proven its effectiveness in classification tasks in

the pattern classification and computer vision fields. LSR provided promising results

especially in face recognition [197], microarray gene classification [112], cancer

classification [58] and image retrieval tasks [50]. The main objective of LSR is to learn
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an embedding space that links the source and target data with minimal regression

errors.

Several LSR-based methods were proposed and contributed to enhance the orig-

inal (LSR) framework [6, 152, 151, 51, 20, 25], each of these methods provided

significant improvement over the original (LSR). LSR-based methods have always

been found to be very efficient as they possess several problem solving properties. In

particular, these methods are known to overcome the small sample size (SSS) prob-

lem that LDA may also face. At the same time they greatly improve the computational

performance compared to other type-based methods [49, 173]. In addition to being

robust to the SSS problem, LSR-based approaches have proven to be more flexible to

the introduction of novel regularization parameters than other conventional methods.

This fact enabled these methods to achieve better data interpretability, resulting in

superior performance. The supervised approach Linear Regression (LR) is arguably

one of the most popular LSR-based methods. It has proven to be particularly powerful

in classification applications. Under certain conditions, LR can be considered as an

equivalent for LDA. This was discussed in the paper entitled Least Squared Linear

Discriminant Analysis [205].

Generally, LR operates as follows: First LR approach defines a label matrix linked

to the class labels. Next, LR seeks for a transformation matrix that can perfectly

transform the samples into their corresponding labels. However, many issues still

exist in the above LR based methods. The first of them is that the target matrix is

too strict and inappropriate for classification [182, 110]. Strict binary label matrices

usually lead to constant regression response distances for different class samples,

which leads to a disturbance in the learning process. This is contradicting the reality

which states that samples belonging to different classes should be as far apart as

possible after transformation. This targeted labeled matrix needs to be relaxed in

order to achieve superior performance. Another major problem with the LR based

methods is that these methods can lead to overfitting the system. This can happen
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because sometimes these methods ignore the relationships among samples, in other

words, they only focus on fitting the samples to the corresponding labels [194, 17].

Suppose X ∈ RD×N is a training fata matrix and Y ∈ RC×N denotes the corre-

sponding label matrix, where D, N and C denote the feature dimension, the number

of training samples and the number of classes, respectively. The standard LR (StLR)

aims to learn a projection that transforms the given training samples into their respec-

tive class labels by minimizing:

min
Q

= ||Y−QX||2F + λ||Q||2F (2.24)

where Q ∈ RC×D is the projection matrix and λ is a regularization parameter to set

the importance of the regularization term. ||.||F is the Frobenius norm.

Several methods have been proposed to address the problems associated with LR

based methods [183, 221]. In order to address these major issues, authors in [193]

proposed the discriminative LSR (DLSR) that provided several innovations. First,

the proposed method introduced a relaxed label matrix instead of the strict binary

one. Moreover, DLSR presented the ε-dragging approach which aims to enlarge the

distances of regression targets of different classes. DLSR demonstrated promising

classification potentials, however, the adopted approach to relax the label matrix

resulted in enlarging the regression responses distances between same class data

samples. This disrupts the learning process.

To address this problem and further achieve better discriminative properties, au-

thors in [188] proposed a new relaxed label regression method called Inter-Class

Sparsity based Discriminative Least Square Regression (ICS_DLSR). The proposed

approach generates a linear embedding of the unknown label space, where the space

dimension is equal to the number of classes. This approach was able to produce a

model in which the margins of data samples of the common class are significantly

reduced, as opposed to those of samples of different classes, which were ampli-

fied. This was achieved by inserting a class-based row sparsity on the projected
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features. Unlike the previously mentioned LSR-based approaches, ICS_DLSR aims

to preserve the row-sparsity consistency property of samples belonging to the same

class. ICS_DLSR ensures that the regression responses distance between shared

class samples will be significantly reduced, which can result in better performance.

ICS_DLSR was able to achieve its goals by imposing a novel inter-class sparsity

regularization term on the transformation. In addition, a sparsity error term was

introduced into the LSR model to relax the strict label matrix for regression.

Overall, the main goal of ICS_DLSR is to provide an embedding space in which the

same class transformed samples share a common sparse structure. In this sense, an

inter-class sparsity constraint was introduced into the original least square regression

model, such that the margins of samples belonging to the same class are greatly

reduced, while the margins of samples belonging to different classes are enlarged.

Specifically, the authors of ICS_DLSR introduced two additional terms into the

StLR framework. First, a novel inter-class sparsity constraint was introduced to ensure

that the transformed samples share a common class structure. Second, a sparsity

error term was also introduced to relax the strict label matrix Y. After this introduction,

the proposed global criterion becomes as follows:

min
Q

= ||Y + E−QX||2F + λ1
2 ||Q||

2
F + λ2

C∑
i=1
||QXi||2,1 + λ3||E||2,1 (2.25)

where Q is the projection matrix, λ1, λ2 and λ3 are three regularization parameters to

determine the importance of the corresponding terms. ||.||F is the Frobenius norm. C

denotes the total number of classes. The authors of ICS_DLSR used the alternating

direction method (ADM) [115, 116, 201] to derive the solution for the unknowns.

ICS_DLSR was able to achieve outstanding results on classification tasks.

2.5 Overview on Deep Learning
In recent years, Deep Learning [101] has gained much attention in various fields.

These methods provided outstanding performance breakthroughs in several areas,

namely: speech recognition, natural language processing and computer vision [96,
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103]. With the principle objective being implicitly capturing intricate structures of big

data, deep learning techniques allowed multiple processing layers models to represent

data with multiple levels of abstraction. Deep learning consists of several methods, the

best known of which are neural networks, hierarchical probabilistic models, in addition

to a large number of supervised and unsupervised feature learning approaches. The

main impetus came from the desire to construct a model that mimics how the brain

perceives and understands multi-model information. This has inspired much research

in recent years. The initial development of a neural network was proposed by authors

in [126], where the main objective of the authors was to understand how the human

brain can develop complex patterns using interconnected cells called neurons. These

authors proposed the McCulloch-Pitts (MCP) model, which is a basic neuron model

that was a pioneering contribution to the field. Many methods were then proposed

leading to the current "deep learning era". One of the most important contributions

that led to the " deep learning era" is the work done in [72]. Authors in [72] introduced

the multi layers (Deep Belief Network). Based on the Boltzmann Machines, the

Deep Belief Network trains one layer at a time, guiding the training of intermediate

levels of representation using unsupervised learning performed locally at each level.

Deep Belief Networks based methods have demonstrated very efficient properties

and are still being developed until our current date. These networks have been

used by researchers for many tasks (e.g., medical image analysis [85, 87], cancer

classification [5], hyperspectral image classification [224], electroencephalography

[128]).

Some of the deep learning approaches were found to be significantly superior to

the regular state-of-the-art techniques in various tasks (e.g., visual, audio, medical,

social, and sensory). These techniques were able to process complex data in a more

efficient manner. As time progressed, several factors contributed to the wide adoption

of Deep Learning, the first of which would be the emergence of high-quality, labeled,

and large datasets. Another reason that encourages more researchers to explore

and investigate Deep Learning-based approaches is the rise of powerful parallel GPU

computing, which has led to a significant acceleration in deep models’ training. The
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wide availability of open source toolboxes specifically designed for Deep Learning

has also helped.

2.5.1 Deep Convolutional Neural Networks
In general, the concept of convolutional neural networks is composed of two elements

known as "Artificial Neural Networks" in addition to a set of operations known as

"convolutions". If we recall the concept of neural networks, it is a system composed

of artificial neurons that simulates the biological neurons for a specific task. Figure

15 illustrates a simple view over an artificial neuron, where f(.) corresponds to the

activation function. The inputs represented in the input set X = (x1, x2, ..., xN ) are

connected to f via the set of weights Ω = (ω1, ω2, ..., ωN ) and the bias b, the output is

finally represented by Z. The convolution operation mainly consists of applying some

filters to an input signal.

Figure. 15: Simple artificial neuron illustration.

Convolution Neural Networks (CNNs) are considered the most representative

supervised deep learning models. CNNs proved to be very competitive and powerful

in computer vision and image processing tasks (e.g., Image Classification, Image

Segmentation, Object Detection, Video Processing, in addition to Natural Language

Processing.) [27, 117]. A typical CNN architecture generally consists of alternating

layers of convolution and pooling. These are succeeded by single or multiple fully
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connected layers. In some works, a fully connected layer is replaced by a global

average pooling layer. An example of a simple CNN architecture is illustrated in Figure

16.

Figure. 16: Simple Artificial Neural Network architecture.

Convolutional Neural Networks acquire their efficient learning strength due to

the multiple feature extraction stages they employ. In recent years, CNNs based

approaches attracted much interest in the image processing and computer vision

fields. Many methods with different architectures have been proposed and showed

very optimistic performance, where the significant improvement achieved from one

method to another is mostly related to novel architectural innovations (e.g., depth of

the network, width, etc...).

Historically, several contributions targeting (CNNs) have been proposed. It all

started in 1989 when a CNN was first proposed by the authors of [102]. Authors

of [102] utilized the backpropagation method in the training process, the proposed

framework sets the weights according to the target. Authors in [104] presented the

Convolutional Neural Network as a feedforward multilayered hierarchical network,

where each layer performs several transformations. The output of the convolutional

kernels is then assigned to the nonlinear processing unit (activation function). The

proposal of AlexNet by the authors in [96] was a breakthrough in the field, where the

authors achieved a remarkable classification performance using the ImageNet dataset.

Knowing that deep CNN methods require significant computational power, Alexnet

has used parallel computing in the training process to overcome the shortcomings

of the hardware. The network depth of AlexNet was extended from 5 (LeNet) to 8

layers to ensure that the network is applicable to multiple image categories. Since the
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authors of [96] knew that increasing the network depth generally leads to overfitting,

they ensure that their algorithm skips some transformational units during the training

process. This idea was inspired by the work in [29, 164], which presents a simple

way to prevent neural networks from overfitting. Figure 17 illustrates the architecture

of Alexnet. The success of AlexNet have pushed a lot of other researchers to adopt

CNNs, resulting in many innovations. Much work was then implemented by altering

the structure of the networks and designing new blocks.

Figure. 17: AlexNet architecture showing its 8 layers [86].

Another major work that made a huge impression was the authors’ work in [159].

They proposed the very deep convolutional neural network (VGG), which demon-

strated efficient performance in large-scale image classification and localization prob-

lems. VGG is characterized by its simplicity, homogeneous topology and increased

depth. VGG is regarded as an innovative object recognition model that supports up to

19 layers, it has the ability of outperforming baselines on many tasks and datasets

outside of ImageNet. The main drawback of VGG is that it is computationally intensive

and requires high computational resources due to the use of 138 million param-

eters. Authors in [168] introduced the (GoogleNet) network, where the proposed

network architecture allows achieving high performance with reduced computational

cost. GoogleNet is even deeper than the above mentioned networks, it consists of

a total of 22 layers. The architecture of GoogleNet is where the inventive idea of

split, transform and merge with the corresponding block known as inception block

was initially introduced. The proposed Inception Block introduced the concept of

branching within a layer, which allowed the abstraction of features at different spatial
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scales. GoogleNet applied parameter tuning, which resulted in a huge reduction in the

number of parameters, which significantly reduced the computational requirements.

Another strength of GoogleNet is its fast convergence rate, which was achieved by

introducing the auxiliary learners concept. GoogleNet showed very good characteris-

tics both computationally and in terms of performance, however, its heterogeneous

topology that needs to be customized from one module to another is its main limitation.

Moreover, the use of GoogleNet may lead to the loss of relevant information at some

points. This is due to the representation bottleneck that drastically reduces the feature

space in the next layer.

Another widely used and well-known deep network is ResNet [62]. ResNet has

greatly influenced the deep neural networks architectural innovations by introducing

the concept of residual learning. Despite of having an architecture 8 and 20 times

deeper than VGG and AlexNet, respectively, ResNet showed lower computational

complexity than the two aforementioned networks. The authors in [62] empirically

showed that ResNet, which consists of 50, 101, and 152 layers, leads to higher

performance in image classification tasks than a simple network with 34 layers. Figure

18 illustrates the architecture of the residual block used by ResNet.

The concept of residual learning then inspired subsequent networks, such as

Inception-ResNet, Wide ResNet, ResNeXt and others [167, 195, 212].

Similar to other tasks, Deep Learning using CNNs has both advantages and

disadvantages. It is proven that the hierarchical structure of deep CNNs provides

the ability to extract low, med and high-level features. Deep architectures usually

have an advantage over the conventional architectures when it comes to complex

learning problems. CNN based methods have shown performance enhancement

over the conventional methods [134, 174]. However, deep learning approaches

require enormous amounts of computational resources compared to conventional

feature extraction and manifold learning approaches. Deep learning methods require

expensive GPUs and hundreds of machines, which is very costly. Moreover, deep

architectures are significantly slower than the conventional machine learning feature
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Figure. 18: ResNet architecture of the residual block [86].

extraction approaches. Another drawback is the fact that Deep Learning methods

require very large amounts of data to demonstrate superiority over other feature

extraction techniques.

These above factors have kept the focus on conventional machine learning algo-

rithms. In particular, conventional supervised learning is very promising due to its

high performance and learning ability. Additionally, conventional supervised learning

approaches are noticeably simpler to implement and require far less computational

resources and processing time. At the same time, most of the recent supervised

learning approaches have demonstrated very efficient performance in various do-

mains, especially in computer vision, image and object classification, and many others.

Compared to Deep Learning based methods, conventional methods are better suited

for tasks with small databases. For these purposes, we decided to propose several
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novel supervised learning algorithms for image categorization. Our proposed methods

were able to demonstrate their efficiency and ensure high discrimination capabilities.

2.5.2 Graph-based Deep Learning
Deep Learning has experienced a breakthrough in recent years. Throughout his-

tory, the majority of Deep Learning studies have focused on different dimensional

Euclidean- structured data (e.g., acoustic signals, images, and videos).

In general, 2008 was the year that the most important work exploiting Deep

Learning using manifolds and graphs was introduced. Authors in [155] proposed the

"graph neural network model", which became a breakthrough in the field.

Various techniques such as convolutional neural networks (CNN), recurrent neural

networks and others, led to a breakthrough in the machine learning community. These

techniques led to a surge in performance that could not have been imagined just a

few years ago. The major success of learning techniques, particularly those related to

convolutional neural networks, has merely came by working in the euclidean domain.

However, in a multitude of other fields, we need to deal with various types of data

that are best represented by manifolds and graphs (e.g., social networks, regulatory

networks, 3D shapes). Much research and experimentation is being conducted for

the purpose of generalizing deep learning frameworks to non-Euclidean structured

data such as graphs and manifolds [15, 34, 70, 91].

As we have mentioned earlier, many researchers were fueled by the need to

investigate how deep learning can be applied to non-euclidean data. Therefore, the

first thing they thought of was to generalize convolution through spectral approaches,

in this case the main idea was basically to generalize the Fourier convolution theorem

to graph and manifold structured data. In other words, applying convolution in the

spectral domain rather than the spatial one. To accomplish this, researchers began

by considering the eigenfunctions of the Laplacian graph as a generalized version

of the typical Fourier basis. One can obtain the graph convolution as follows: First,

one projects the original signal over the Laplacian eigenfunctions, thus realizing a
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graph Fourier transform. Second, one multiplies the obtained spectrum by a set of

spectral coefficients and third, one projects everything back to the original domain.

An illustration of the steps used in spectral approaches is shown in Figure 19. The

Laplacian has an eigenvalue decomposition ∆ = ΦΛΦT , where Φ = (φ1, ..., φn) are

the orthonormal eigenvectors and Λ = diag(λ1, ..., λn) is the diagonal matrix of the

corresponding eigenvalues. Given a signal f = (f1, ..., fn)T on the vertices of the

graph G, its graph Fourier transform is given by f̂ = ΦT f .

Figure. 19: Illustration of spectral approaches steps.

The authors in [70] worked on Convolutional Neural Networks (CNN)s on graphs

in spectral domain. Another important contribution is the work of authors in [34],

authors implemented the CNNs on spectral graphs with the goal of designing fast

localized convolutional filters on graphs. Authors in [91] proposed the famous Graph

Convolutional Networks (GCN) algorithm aiming at a semi-supervised approach for

learning the soft label in a transductive setting with graph-structured data. Another

approach with semi-supervised setting is the method proposed by the authors in [108].

After that, many other algorithms related to the originally proposed one (GCN) have

been proposed. The most famous of them are Graph Attention Networks [178], Graph

Spatial-temporal networks [157], Graph Auto -encoders [18] , and Graph Generative

Networks [210]. Other methods for improving spectral graph convolutional networks

were later proposed [105, 109, 191, 204, 123, 124, 23, 24].

Despite the efficient performance provided by the spectral methods, there is a
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problem, namely that the eigenfunctions of the Laplacian are inconsistent across

different domains. In other words, when using the same input signal and coefficients,

the result is different from one case to another. This comes from the fact that graph

Laplacian eigenfunctions exhibit different behavior across different domains. To

solve this problem and to extend the convolution in a consistent way across different

domains, the researchers proposed a second family of approaches, namely spatial

approaches [127]. The main idea of spatial approaches is to apply a template to

a neighborhood representation obtained by mapping the neighbors to a finite fixed

structure.

The authors in [127] extended the Fourier operation to the non-Euclidean domain

and generalized CNNs to graph- and manifold-structured data as well.

Here is a brief overview of how Deep Learning has been mathematically deployed

on graphs. First, let’s start with some notations. The assumed notations used in this

section are summarized in the Table 4

Table 4: Notations used in the current section.

Symbol Description Constraint/Formula

W Adjacency Matrix
wij = wji
wij = 0 if(i, j) /∈ ε
wij > 0 if(i, j) ∈ ε

G Undirected weighted graph G = ({1, ..., n}, ε,W)

∆ Unnormalized Graph Laplacian ∆ = D−W
D = Diag(∑j wij , i = 1, ..., n)

∆ = ΦΛΦT Laplacian eigendecomposition –
Φ Orthonormal eigenvectors Φ = (Φ1, ...,Φn)

Λ Diagonal matrix of corresponding Λ = Diag(λ1, ..., λn)eigenvalues

In harmonic analysis, the eigenvectors play the role of Fourier atoms, thus the

eigenvalues can be interpreted as frequencies. First, given a signal f = (f1, ..., fn)T

on the vertices of the graph G, its graph Fourier transform is given by f̂ = ΦT f . The

spectral convolution in the Euclidean case of two signals f and g can be defined as

the element-wise product of their Fourier transforms as follows:
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f ? g = Φ (ΦT f) ◦ (ΦT g) = Φ diag(ĝ1, ..., ĝn)f̂ (2.26)

Authors in [16] used the spectral convolution presented in equation 2.26 to gener-

alize CNNs on graphs as follows:

foutl = ξ

 p∑
l′=1

ΦkĜl,l′ΦT
k f

in
l′

 (2.27)

where F in = (f in1 , ..., f inp ) and F out = (fout1 , ..., foutq ) denote the p and q-dimensional

input and output signals on the vertices of the graph, respectively. F in ∈ Rn×p and

F out ∈ Rn×q. Φ = (Φ1, ...,Φk) is an n× k eigenvectors-matrix and finally Ĝl,l′ ∈ Rk×k

is a diagonal matrix of spectral multipliers corresponding to a particular filter in the

frequency domain, and ξ is a nonlinearity applied to the vertex-wise function values.

This method proved very good contributions, however it has several drawbacks. One

of these drawbacks is the high computational cost required for the process.

In order to address this issue and alleviate (reduce) the computational cost, authors

in [34] used the Chebyshev polynomial basis. In that case, the spectral filters are

represented as follows:

gα(∆) =
r−1∑
j=0

αjTj(∆̂) =
r−1∑
j=0

αjΦTj(Λ̂)ΦT (2.28)

where Tj(λ) = 2λTj−1(λ)− Tj−2(λ) represents the Chebyshev polynomial of degree j,

when T1(λ) = λ and T0(λ) = 1.

∆̂ = 2λ−1
n ∆− I is a rescaled Laplacian such that its eigenvalues Λ̂ = 2λ−1

n Λ− I

lie in the interval [-1, 1], and α denotes an r-dimensional polynomial coefficients

vector for parameterizing the filter. By using this approach, the authors were able to

address several drawbacks that arise in classical spectral convolution. Moreover, the

computational complexity was alleviated from O(n2) to O(rn), where r indicates how

many times the Laplacian was applied.
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Authors in [91] proposed the Graph Convolutional Network algorithm (GCN), which

also contributed in a decent way in the graph-based networks area. The proposed

algorithm is related to the work in [34] with additional assumptions. Assuming that

r = 2, α = α0 = −α1 and λn is approximately equal to 2 (λn ≈ 2), the filter is

expressed as:

gα(f) = α(I +D−
1
2WD−

1
2 )f (2.29)

By analyzing the constructed filter, we can realize the fact that the maximum

eigenvalue of I +D−
1
2WD−

1
2 can be 2, therefore the filter is numerically unstable. In

order to solve this problem, the authors renormalized the filter from equation 2.29,

which is then expressed as follows:

gα(f) = αD̂−
1
2 Ŵ D̂−

1
2f (2.30)

where Ŵ = W + I and D̂ = diag(∑j 6=i ŵij).

2.5.3 Deep Metric Learning
Lately, Convolutional Neural Networks has achieved remarkable success in the fields

of pattern recognition and computer vision. Metric learning is directly based on a

distance metric that aims to assemble the similarity between different images. Re-

cently, many researchers in the computer vision community are exploring deep metric

learning approaches. These methods combine the idea of deep neural networks

with the main objective of manifold learning. Deep metric learning uses neural net-

works to automatically learn discriminative features from images by optimizing a

given objective function. These methods can show their superiority over conventional

methods in many cases (e.g., faces of the same person when presented in different

poses, expressions, illuminations). While metric learning has limited ability to capture

nonlinearity in the data, deep metric learning helps in capturing the non-linear feature

structure by learning a nonlinear transformation of the feature space. Building efficient
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classification models is strongly related to the design of appropriate loss functions

that enable optimal class discrimination. In recent years, deep metric learning has

been shown to deliver satisfactory results for various tasks such as face recognition,

image classification, pattern recognition, anomaly detection, etc. Several methods

have exploited deep metric learning, designed several loss functions and provided

very good discrimination capabilities [185, 142, 190, 162, 90] .

2.6 Other Tools
Throughout the presented contributions in this thesis, we have used several well-

known schemes in order to achieve our objectives. We have used these general

schemes as tools that have helped us to accomplish our work. Whether they are

considered mathematical tools or general ideas related to machine learning, these

methods have contributed in enhancing the performance of our proposed approaches

and achieving the desired optimal results. We have used several approaches, the

most important of which are: (i) gradient descent algorithm and (ii) ensemble learning.

In this section, we will briefly introduce these schemes, and describe how we used

them to achieve our goals.

2.6.1 Gradient Descent
Gradient descent (GD) is an iterative optimization scheme used to minimize the

function by moving toward the steepest descent direction in each iteration. The way

the gradient method is applied differs through various fields. In machine learning

and classification, gradient is used to iteratively update the parameter values of the

desired model.

In general, the solution of optimization problems can be found using two ap-

proaches, the first is the "closed-form solution" and the second is the "gradient

descent" method.

Throughout our multiple contributions, we have used both approaches to solve

our proposed optimization problems, we have a adopted the closed-form solution

for some of our suggested schemes and the gradient method for the others. The
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gradient algorithm has demonstrated excellent characteristics in solving unconstrained

optimization problems. Besides its ability to provide accurate solutions, it is also

characterized by its simplicity and low computational complexity.

Knowing that the general idea of gradient descent is mathematically related to the

derivative of a function, one should first know the exact role of the derivative in the

procedure. Understanding the real interpretation of the derivative is as important

as being able to calculate it. Andrew Trask has given a very nice explanation about

derivatives and how they work in his book "Grokking Deep Learning".

Gradient descent has always been used in machine learning and optimization to

find the minimum of a convex function. This algorithm relies on properties of the first

derivative to figure out in which direction and with what magnitude coefficients of the

function should be modified. One of the most important constraints to work with the

gradient descent algorithm is that the cost function should be differentiable, otherwise

it is not possible to apply the gradient descent algorithm. One of the most commonly

used cost functions for regression models is undoubtedly the mean squared error

(MSE) function. Given that i, m, y and ŷ denote the index of samples, the number of

samples, the expected and predicted values, respectively, the MSE can be calculated

as follows:

MSE = 1
2m

m∑
i=1

(ŷ(i) − y(i))2 (2.31)

It is usually very common for the cost function to be represented by the letter J .

The number of derivatives that need to be calculated are related to the number of

parameters in the desired function.

Figure 20 illustrates the general methodology of the gradient descent algorithm,

showing the direction of gradient descent and the cost function value according to the

weight.

If we want to interpret the gradient geometrically, it is possible to think of the

derivative as the slope of the tangent line to the graph at the given point. Synonymous

with the word "gradient" is the word "slope". The values of the model parameters are
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Figure. 20: Gradient descent algorithm general methodology [4].
.

usually randomized at the beginning. Their values determine the location of the point

on the error curve (for a model with one parameter), the error surface (for a model

with two parameters), or the error function (for more than two parameters). The goal

of the Gradient Descent algorithm is to identify the parameter values for which the

error is minimal. Figure 21 illustrates an error surface for a random function, where

the minimum error value is represented by a white dot on the figure (Image Source:

https://towardsdatascience.com/improving-vanilla-gradient-descent-f9d91031ab1d).

Let us suppose that w, w′, b, b′ and α denote the current weight value, the new

weight value, the current bias value, the new bias value, and the learning rate,

respectively. In order to achieve convergence, the parameters are generally updated

iteratively as follows:

w′ = w0 − α ∗
∂J(w0, b)
∂w0

(2.32)

b′ = b0 − α ∗
∂J(w0, b)
∂b0

(2.33)
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Figure. 21: Error surface illustration.
.

where ∂J(w0,b)
∂w0

, and ∂J(w0,b)
∂b0

denote the derivative of the cost function J with respect

to w0 and b, respectively.

The parameters should be updated until the value of the cost function stops

decreasing, and the whole process can be terminated if the current model state is

already satisfactory.

In the machine learning field, the gradient algorithms have been used in a vast

number of applications to solve the optimization problems associated with the learning

models. (GDs) have demonstrated excellent properties in solving unconstrained

optimization problems. They are characterized by their simplicity and low complexity.

Many variations of the gradient approach have been proposed, tested and have shown

their effectiveness. Some similar ones are "Adaptive Gradient Techniques" (AGT)

which are very effective when working with sparse data. Adaptive gradients boost

data’s robustness [33]. AGT algorithms have been found to have certain limitations.

It has been proved that the utilization of AGT eliminates the need to manually tune

the learning rate. However, they reach a stage where they are unable to acquire new

information due to the accumulation of square gradients in the denominator. As each

additional term is positive, the cumulative sum tends to increase during training. This

in essence, decreases the learning rate and ultimately makes it very poor. Many
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novel methods implement the gradient descent techniques in neural networks, these

methods achieved very promising performance [38, 165]. Authors in [48] proposed

a novel fast gradient approach for image classification using neural networks, which

showed very promising performance.

2.6.2 Ensemble Learning
In the machine learning field, especially when talking about the methods where

the main target is to provide a discriminative embedding space, a single model is

usually sought. A model is usually constructed by specific mathematical operations

guided by the global criterion of the corresponding algorithm. Once the model is

obtained, it is used for the desired task (e.g., classification or some other performance

evaluation protocol). Working with single models provided by powerful algorithms

has always been an efficient approach in classification tasks. However, one may

ask some questions such as: "Is it necessary that the performance obtained using a

single model is the optimal performance that a given algorithm can provide?", and

"Does working with a single model always reflect the full potential and discriminative

properties of the algorithm?".

In reality, it is not necessary that learning with a single model always leads to the

optimal performance provided by a proposed method. To address this problem and

investigate how to improve the performance of different methods, some research

investigated ensemble learning methods. An ensemble learning combines the pre-

dictions from multiple machine learning models into a single model that can reduce

the generalization error. They offer increased flexibility and can scale in proportion to

the amount of training data available. A few widely used ensemble approaches are

bagging [14] and boosting [120].

The main idea of ensemble learning is to blend and combine the predictions from

multiple models. These models are usually very good models and each of them

provides a good discrimination property on its own. By combining these models,

one obtains a single model that is characterized by improved discrimination ability.

This leads to better classification. So the hypothesis is that in the case where
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the models are correctly combined, this can lead to more accurate and/or robust

models. Ensemble learning consists of several methodologies (e.g. stacking, boosting,

bagging, etc...). Figure 22 presents an overview of one general structure of ensemble

learning methodology, where multiple subsets of the training data are used to create

multiple models. The obtained models are then fed to a model combiner, resulting in

a final model. The obtained final model can then be used for the desired tasks (e.g.,

classification).

Figure. 22: Ensemble Learning Overview. Note: the presented overview is a
general structure, many components can be realized in several different ways.

A variety of ensemble learning methods have been applied to classification tasks,

mostly using deep convolutional neural networks (CNNs) for image classification. The

reason is that ensemble learning has shown promising and excellent contribution to

improve the performance of neural networks [35].

The performance of a single model is usually measured by its ability to determine

the best predictor for the data. This can only be inferred after the classification process

is complete. There is no way to realize this information beforehand by exploiting only

the treated data and the optimization problem [97]. This was addressed in [141, 97].
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This research focused on using a cross-validation strategy to evaluate the performance

of each model. This strategy is referred to as the "discrete Super Learner selector".

Another view to ensure improved performance may be to estimate the optimal

combination of models that leads to the best predictor. This has been well studied

in the literature. Brieman addressed several related works regarding the theoretical

properties of ensemble learning in [14] where he summarized the works of [12, 47, 55,

145, 150]. Another well-known strategy used in ensemble learning is called "stacking"

[189], it involves combining the predictions of multiple models on the same data

set. Many researchers have proposed linear combination approaches that introduce

stacking into the ensemble of models [189, 14].

To derive the most efficient combination of models, the work described in [14]

examined stacked regression using cross-validation. The cross-validation based work

was extended with the aim of finding the best combination of predictors by proposing

the "Super Learner" approach [97]. This framework showed superiority and very good

contributions in several domains, namely: online learning [10], medicine [121, 192],

spatial prediction applications [32] in addition to mortality prediction [19, 140].
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To carry out the various experiments reported in this thesis, we used several

datasets of different types and scales. Image datasets depicting faces (with lighting,

pose, and expression variations), objects, scenes, handwritten digits, and others

were used to measure the performance of our proposed methods. In addition, a

synthetic non-image dataset and an artificial pattern dataset were used to achieve

more reliability. In this thesis, we focus on image classification tasks, so we used a

wide range of image descriptors in our experiments. In this chapter, we give a brief

description of the datasets and image descriptors used in this thesis, while explaining

the experimental setups and the pre-processing techniques used (if applied).

3.1 Experimental Setup
To ensure a fair comparison between the proposed and competing approaches, the

different experiments were conducted using the same experimental setup (datasets,

percentage of training/test samples, dimensionality reduction techniques, etc.).

There are a variety of competing methods that we selected for comparison with our

methods, these methods were selected based on the convenience of the experiments

in each paper. In other words, the competing approaches sometimes differ from one

paper to another. However, most of our works share these following methods as basic

competing methods: K-nearest neighbors (KNN) [95], Support Vector Machines (SVM)

[21], Linear Discriminant Analysis (LDA) [171], Local Discriminant Embedding (LDE)

[22], Principal Coefficients Embedding (PCE) [139], Inter-class sparsity based least

square regression (ICS_DLSR) [188] and Robust sparse LDA (RSLDA) [186]. Some

additional methods including Linear Regression Based Classification (LRC) [129],

Low-rank Linear Regression (LRLR) [17], Low-rank Ridge Regression (LRRR) [17],

Sparse Low-rank Regression (SLRR) [17], Low-rank Preserving Projection via Graph

Regularized Reconstruction (LRPP_ GRR ) [187], Manifold Partition Discriminant

Analysis (MPDA) [225], Sparse Uncorrelated Linear Discriminant Analysis SULDA

[220], and Exponential Local Discriminant Embedding ELDE [41] are added to enrich

the comparison for the Extended Yale B and the large PubFig83 dataset.
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In addition to the previous ones, some deep learning methods were also included

in our evaluations to measure the performance of our proposed methods against

deep approaches. The derived results are presented in the corresponding tables in

the contribution chapters.

For most of our experimental findings, the classifications were performed with 10

randomly selected splits for each dataset. In other words, the classification rates

presented in the tables of our experiments are reported as the average classification

accuracy over the 10 splits, unless otherwise stated in the results section for each

experiment. We note that the SVM used in the experiments is the Linear SVM. It was

implemented using LIBSVM library1.

In our experiments, different training/testing percentages are used for each dataset.

For each method, an embedding is first computed using the training portion of the

data. The training and test data are then projected using the estimated embedding.

Classification of the test data is then performed using either the Nearest Neighbor

classifier (NN) [28] or the Support Vector Machines (SVM) classifier [57].

Most experiments invoked a dimensionality reduction of the raw features before

feeding them to the learning models and classifiers. In most of our experiments, the

data was pre-processed by using Principal Component Analysis (PCA), which was

used as a dimensionality reduction technique while preserving 100% of the data’s

energy. We note that in some experiments performed, PCA was not used at all to

illustrate the ability of the method in selecting the most relevant original features.

The reported classification rates were selected from the combination of the best

parameter configurations and correspond to the average over 10 randomly selected

splits, as mentioned earlier. In case a specific method required some kind of tuning

or has a specific parameter, information can be found in the relevant chapters in Part

II of this report.

1https : //www.csie.ntu.edu.tw/ cjlin/libsvm/
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3.2 Datasets
Several real and synthetic sample datasets are used in our work. These datasets

include face images, object images, handwritten digit datasets, and scene datasets.

Despite the fact that most of our work focuses on image classification, a synthetic non-

image dataset as well as a text dataset have also been used for broader evaluation.

3.2.1 Face Datasets
• Extended Yale B Face Dataset2: This dataset [53] is constructed from images

of faces taken at different illuminations and facial expressions for each subject.

The used dataset is a cropped version which contains between (58 and 64)

images for each of the 38 individuals. It contains a total number of 2414 images,

each of which is rescaled to 32× 32 pixels and represented through gray scale

representation. Raw brightness images of dimension 1024 are used in the

experiments. The reported results were obtained after we used 10, 15, 20 and

25 samples from each class as training samples and the remaining as test

samples.

• LFW-a Dataset 3: The Labeled Faces in the Wild-a (LFW-a) [75] dataset. While

maintaining the structure of the original LFW dataset, LFW-a contains the

images from the LFW dataset after alignment with commercial face alignment

software. The used dataset contains images from 141 different classes with a

total number of 3,408 gray-scale images, each rescaled to 32×32 pixels. Raw

brightness images of dimension 1024 are used in the experiments. The reported

results were obtained after we used 5, 6, 7, and 8 image samples from each

class as training samples and the rest as test samples.

• Georgia Face dataset 4: The Georgia face dataset contains a total of 750

images representing 50 individuals. Each individual is represented by 15 im-

ages showing frontal and tilted faces with different facial expressions, lighting

2http : //vision.ucsd.edu/ leekc/ExtY aleDatabase/ExtY aleB.html
3https : //talhassner.github.io/home/projects/lfwa/index.html
4http : //www.anefian.com/research/face_reco.htm
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conditions, and scales. The images used are cropped and resized to 32×32

pixels for each image. Raw-brightness images (dimension 1024) are used in

the experiments. The reported results were obtained after we used 3, 5, 7 and

9 image samples from each class as training samples and the remaining as test

samples.

• Honda dataset 5: The Honda face dataset contains a total number of 2,277

face images. It consists of 22 classes with approximately 97 images per class.

The images represent faces subjected to different conditions. Raw brightness

images are used in the experiments. The reported results were obtained after

we used 10, 20, 30 and 50 image samples from each class as training samples

and the rest as test samples.

• FEI dataset 6: The FEI face dataset contains images of students and staff from

FEI. It is a face dataset that contains a set of colored face images taken against

a white background. The images are in an upright frontal position with a profile

rotation of up to approximately 180 degrees. This dataset contains a total of 700

images, 14 images for each of the 50 subjects. The images are resized to 32 ×

32 pixels. Raw brightness images of dimension 1024 are used. The reported

results were obtained after we used 5, 6, 7, and 8 image samples from each

class as training samples and the rest as test samples.

• PubFig83 dataset 7: The PubFig83 dataset is a large scaled and challenging

dataset that contains 13,002 images representing faces, collected in different

situations (e.g., facial expressions, illuminations, backgrounds, and different

poses). The images in this dataset represent 83 different individuals, each of

which has between 46 and 231 images. We used 8720 images for training and

the remaining 4282 for testing. HOG , LBP and Gabor wavelet features are

extracted and concatenated from the aligned face images, then finally reduced

5http : //vision.ucsd.edu/ leekc/HondaUCSDV ideoDatabase/HondaUCSD.html
6https : //fei.edu.br/ cet/facedatabase.html
7http : //www.briancbecker.com/blog/research/pubfig83− lfw − dataset/
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to 2048 dimensions using PCA. The methods are compared with respect to the

experimental settings presented in [7].

3.2.2 Objects Datasets
• COIL20 Object Dataset 8: The Columbia Object Image Library (COIL20) [130]

dataset is constructed from images of different objects, with each object rotated

around a vertical axis. The dataset used in our works contains images of 20

objects, each with 72 images, resulting in a total number of 1,440 images. The

image descriptor used is the Local Binary Patterns (LBP) [107]. The uniform

LBP histogram (59 values) was used. Three LBP descriptors are constructed

from the image using 8 points and three values for the radius (R=1, 2 and 3

pixels). Thus, the final concatenated descriptor has 177 values. The results are

obtained after we use 20, 25, 30 and 35 image samples from each class as

training samples and the remaining as test samples.

• Caltech101 Dataset 9: The used Caltech101 dataset contains images of ob-

jects belonging to 101 classes. The full Caltech dataset, consisting of 256

classes, can be found at [56]. It is a well-known, challenging set that contains a

set of images with complicated backgrounds. We used a cropped version of the

original Caltech dataset, which consists of 3,030 images, 30 images for each

of the 101 classes. The reported results were obtained after we used 5 image

samples from each class as training samples and the rest as test samples.

The image descriptor used is the block-based LBP [107] representation. We

have used 100 blocks. For each block, we extract the uniform LBP histogram

(59 values). Thus, the length of the image descriptor is 5900.

Moreover, we use the deep features provided by the ResNet-50 [63] convolu-

tional neural network. This is a 50 layer convolutional neural network that is

trained on the ImageNet database. By using this network, we are able to extract

8http : //www.cs.columbia.edu/CAV E/software/softlib/coil − 20.php
9http : //www.vision.caltech.edu/ImageDatasets/Caltech101/

3. CHAPTER 3. EXPERIMENTAL SETUP AND DATASETS 76

http://www.cs.columbia.edu/ CAVE /software/softlib/coil-20.php
http://www.vision.caltech.edu/Image_Datasets/Caltech101/


AK

the image representation in the Average Pooling layer. The latter is considered

as an image descriptor with a 2048-dimensional vector.

3.2.3 Handwritten digits
• USPS Digits Dataset 10: The US Postal Service or abbreviated (USPS) [156]

is a handwritten digits dataset used for digit recognition. This dataset contains

110 images for each digit from 0 to 9, thus, it consists of 10 classes, each of

which contains 110 images, so a total of 1100 images are used in this dataset,

the dimension of the images is 16×16. Raw-brightness images are used. The

reported results were obtained after we used 30, 40, 55 and 65 image samples

from each class as training samples and the remaining as test samples.

• MNIST dataset 11: The Modified National Institute Of Standards and Technol-

ogy dataset, abbreviated as (MNIST), is a challenging and large dataset that

contains images of handwritten digits. The dataset used in the experiments

contains a total number of 60,000 images representing 10 classes. The image

descriptor used for the MNIST dataset has a length of 2048 and is obtained

from the ResNet-50 convolutional neural network. The results are obtained after

we use 1000 image samples from each class as training samples and the rest

as test samples.

3.2.4 Scene Datasets
• Outdoor Scene dataset 12: This scene dataset contains 2,688 images belong-

ing to 8 groups. The descriptor used consists of 256 HOG features.

3.2.5 Text Datasets
• 20 News text dataset 13: Originally, the data in this dataset is organized into

20 different newsgroups, each corresponding to a different topic. Some of

the newsgroups are very closely related (e.g. comp.sys.ibm.pc.hardware /

10https : //www.kaggle.com/bistaumanga/usps− dataset
11http : //yann.lecun.com/exdb/mnist/
12https : //github.com/sudalvxin/SMSC/tree/master/data
13http : //qwone.com/ jason/20Newsgroups/
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comp.sys.mac.hardware), while others are highly unrelated (e.g. misc.forsale /

soc.religion.christian). For our analyzes, we adopted a cropped version of the

20 newsgroups dataset with binary occurrence data for 100 words over 16,242

postings. The selected dataset contains a total of 2000 samples belonging to 4

classes.

3.2.6 Synhetic Datasets
• Tetra synthetic dataset: The Tetra dataset was defined in [175, 176]. This

dataset consists of 400 data points belonging to four classes. The data points

are in R3, this dataset presents the challenge associated with small inter-cluster

distances.

Figure 23 presents some typical images associated with some of the datasets used

in our evaluations.

Table 5 illustrates a brief description over the used datasets in this report.

Table 5: Datasets brief description.

Dataset Type # Samples # Features # Classes Descriptor

Extended Yale B Face (images) 2414 1024 38 RAW-brightness images
LFW-a Face (images) 3,408 1024 141 RAW-brightness images
Georgia Face (images) 750 1024 50 RAW-brightness images
Honda Face (images) 2277 1024 22 RAW-brightness images
FEI Face (images) 700 1024 50 RAW-brightness images
PubFig83 Face (images) 13,002 2048 83 Concatenation of HOG,LBP and Gabor wavelet
COIL20 Object (images) 1440 177 20 3 concatenated Local Binary Pattern histograms
Caltech101 Object (images) 3,030 5900 101 3 Block-based LBP (100 blocks * 59)

2048 Deep features (ResNet-50)
USPS Digits (images) 1100 256 10 RAW-brightness images
MNIST Digits (images) 60,000 2048 10 ResNet-50
20 News Text 2,000 100 4 Term Frequency times Inverse Document Frequency
Outdoor Scene Scene (images) 2,688 256 8 HOG features
Tetra Synthetic 400 3 4 Coordinates

3.3 Descriptors
In the computer vision field, image descriptors are descriptions of the content in

images. In general, descriptors provide elementary characteristics of images (e.g.,

the shape, the color, the texture, etc. ). These descriptors have a good knowledge of

the objects represented in the images and allow efficient interpretation of the image
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(a) Images of the Extended Yale B
dataset.

(b) Typical images of the COIL20
dataset.

(c) Typical images of the LFW-a
dataset.

(d) Typical images of the Cal-
tech101 dataset.

(e) Typical images of the USPS
dataset.

(f) Typical images of the Georgia
dataset.

(g) Typical images of the Honda
dataset.

(h) Typical images of the FEI
dataset.

(i) Typical images of the MNIST
dataset.

(j) Typical images of the PubFig83
dataset.
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(k) Visualization of the Tetra
dataset.

Figure. 23: Typical images of different datasets.
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contents. There are various types of descriptors, those that represent the raw images

and others that can be extracted and learned through a special process for better

data representation. In this thesis, we have worked with several descriptors and used

all the latter in classification tasks. The descriptors used can be found in the last

column of Table 5.
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Our dissertation is mainly concerned with the development of novel supervised

learning feature extraction techniques intended for image categorization applications.

During the PhD study, we were able to provide several algorithms that ensured the

delivery of discriminative and efficient embedding spaces for the data. We provided
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powerful and efficient data representations that we used in classification tasks. In

addition to learning methods, we also exploited ensemble learning approaches and

proposed a novel supervised scheme based on the ensemble learning concept. The

proposed scheme was able to provide significantly superior performance compared

to the single model. Moreover, based on the idea that the data usually consists of

class-shared and class-specific information, we developed a criterion that captures

the discriminative capabilities that can be provided by exploiting the class-specific

information of the data. We made this possible by extracting the useful information

from each class of the data separately. This last contribution is still under investigation

and up to this point only preliminary results have been obtained, thus is presented as

future work in the perspectives section 5.2.

Indeed, there exist some connections between most of our contributions. Multiple

contributions in this thesis share the same overall modeling, however, these contribu-

tions differ on many levels. The main differences between the first three contributions

are: the chosen optimization approach, the initialization of the embedding matrix, and

the exploitation of the hybrid initialization scheme for the sough linear embedding.

The fourth contribution is the only one that is not linked to the others in this report.

It is an ensemble learning based approach that exploits the use of multiple feature

subsets and multiple feature selection methods to provide more discriminant data

representations. The remaining papers extend the experimental results.

In this chapter, we will present a brief summary of the contributions presented in

this thesis. Detailed information and the complete methodology for each proposed

method can be found in the corresponding chapter presented in the second part (Part

II) of this report.

4.1 Linear embedding by joint Robust Discriminant Analysis and

Inter-class Sparsity
The classical Linear Discriminant Analysis (LDA) and its variants are one of the

best known and most widely used supervised feature extraction approaches. These
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methods have been used for various classification tasks. However, they have some

limitations that need to be overcome. The main limitation is that the projection obtained

by LDA does not provide good interpretability of the features. In addition, most LDA-

based approaches do not provide feature ranking, hence they lack the ability of

selecting the most relevant data features. In order to enhance the discrimination

ability and provide better feature extraction, we propose a novel supervised method for

multi-class classification that performs feature selection and extraction simultaneously.

The targeted transformation focuses on the most discriminative original features

while ensuring that the transformed features (extracted features) belonging to each

class share a common sparse structure. Our proposed method is entitled Robust

Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS).

The corresponding model integrates two types of sparsity. The first type is achieved by

imposing the `2,1norm constraint on the projection matrix to ensure that the suggested

scheme implicitly performs feature selection. The second type of sparsity is achieved

by imposing the inter-class sparsity constraint on the projected samples to ensure

a common sparsity structure in each class. An orthogonal matrix is also introduced

in our model to guarantee that the extracted features can retain the main variance

of the original data, thus improving the robustness to noise. The proposed method

retrieves the LDA transformation by considering the two introduced types of sparsity.

We solved the proposed criterion as a non-convex optimization problem using the

alternating direction method of multipliers [13]. Through our optimization, we used

the closed form solution in order to compute the sought transformation matrix in each

iteration.

Various experiments are conducted on multiple image datasets with different

types and scales. The projected features are used for multi-class classification.

The obtained results show that the proposed method outperforms other competing

methods by learning a more compact and discriminative transformation.

Figure 24 illustrates the principle of the proposed model, exploiting original features

and inter-class sparsity. Yellow dots, red triangles, and blue squares represent
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samples from the first, second, and C-th class, respectively. The left part of the figure

illustrates the input data (as a cloud of points and as a data matrix). The right part

illustrates the expected projection of the cloud and the data matrix. Given [X= X1,X2, ...,

XC ] denote the samples from the first class to the C-th class. [QT X1,QT X2,...,QT XC ]

are the projected samples. Q is the sought transformation matrix.

Figure. 24: Illustration of the RDA_FSIS method where the original features
and inter-class sparsity are exploited.

Table 6: Mean classification performance (%) of the RDA_FSIS method using
the Extended Yale B dataset.

No KNN SVM LDA LDE ELDE PCE SULDA MPDA ICS_DLSR RSLDA RDA_FSIS
10 69.8 73.85 82.32 79.92 85.85 86.39 84.61 83.67 86.56 86.79 88.27
15 75.2 80.02 86.76 83.77 89.30 89.23 88.72 86.82 89.53 89.93 91.73
20 80.24 85.79 90.7 88.44 93.07 92.19 91.66 90.38 93.14 93.59 95.11
25 82.24 89.03 92.17 90.43 94.09 93.35 92.14 91.79 94.50 94.92 96.23

Tables 6-7 illustrate the mean classification rates of the RDA_FSIS among other
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Table 7: Mean classification performance (%) of the RDA_FSIS method on the
tested datasets.

Dataset \Method Training Samples KNN SVM LDA LDE PCE ICS_DLSR RSLDA RDA_FSIS

COIL20

20 94.58 97.65 96.19 95.00 94.87 98.04 96.73 97.85
25 95.79 98.22 97.07 96.12 95.99 98.22 97.74 98.60
30 96.65 98.70 97.81 97.01 97.49 98.75 98.26 99.10
35 97.14 98.81 98.15 97.42 98.11 99.12 98.68 99.36

Georgia

3 52.57 56.22 48.18 52.77 46.43 59.73 62.32 62.67
5 61.28 66.98 59.20 62.14 56.18 71.12 73.48 74.28
7 66.73 72.83 67.83 67.10 62.15 78.38 78.82 79.98
9 71.40 77.53 72.57 72.13 66.37 82.57 82.77 83.30

Honda

10 64.12 71.32 65.95 65.74 61.86 70.79 69.90 72.48
20 77.69 83.60 79.39 79.25 75.33 82.95 83.03 84.19
30 84.78 89.09 85.84 86.24 82.55 88.20 89.04 89.44
50 91.36 94.15 92.28 92.34 90.03 93.53 94.13 94.54

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 93.19 94.01
6 90.35 92.93 94.18 92.15 88.73 93.65 94.25 94.63
7 92.60 94.31 95.60 94.26 91.09 95.20 95.66 96.09
8 94.27 95.23 96.03 95.57 93.20 96.17 96.43 96.67

USPS

30 87.01 88.21 84.91 83.54 72.01 88.46 89.45 90.05
40 88.56 90.40 86.19 85.3 72.30 90.16 91.11 91.27
55 90.51 92.09 88.64 87.16 73.32 91.25 92.65 92.56
65 91.76 93.16 89.29 88.58 74.11 91.53 92.89 93.33

LFWA-a

5 9.90 12.72 20.51 9.98 9.44 22.56 24.70 28.07
6 10.57 13.61 25.28 10.49 10.26 25.72 28.42 30.98
7 11.06 14.70 28.62 11.24 10.98 29.04 31.50 33.28
8 11.35 15.72 32.42 11.71 11.73 31.92 32.48 35.80

Table 8: Mean classification accuracies (%) of different methods on the Cal-
tech101 dataset using LBP and deep features.

Caltech101 5 training samples
Method LBP features Deep features
ICS_DLSR 17.20 84.86
RSLDA 16.00 85.34
RDA_FSIS 17.81 85.69

competing methods using a part of the tested datasets. The classifier used for

classification is the Nearest Neighbors (NN) classifier with the number of neighbors

set to one (1-NN classifier). The depicted rates are the average over 10 random splits

and each corresponds to a different number of training samples.

Table 8 presents the classification performance of the RDA_FSIS method along

with other competing methods using the Caltech101 dataset in the cases where the

descriptor varies between LBP and deep features. For the case of deep features,

we did not use the PCA preprocessing. The bold numbers denote the best results

obtained in each experiment. Table 9 illustrates the classification performance of the
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Table 9: Mean classification performance (%) of the RDA_FSIS method on the
PubFig83 dataset.

Method Classification accuracy
KNN 63.35
SVM 82.60
LDA 77.95
LDE 62.89
ELDE 65.88
PCE 50.40
SULDA 81.26
MPDA 67.89
ICS_DLSR 85.19
RSLDA 84.78
DeepLDA 44.35
Alexnet 64.00
Resnet50 90.40
RDA_FSIS 84.84

RDA_FSIS method using a single split for the large-scale PubFig83 dataset. The

classifier used to obtain these results is the Nearest Neighbor (NN) classifier.

Figure 25 illustrates the parameter sensitivity of the proposed RDA_FSIS approach.

In this figure, we explored how the classification performance varies depending on

the use of different parameter combinations for the proposed approach.

Detailed information about this contribution are presented in Part II, Chapter 1.

4.2 An enhanced approach to the robust discriminant analysis

and class sparsity based embedding
The main goal of this approach is to improve linear feature extraction used for su-

pervised multi-class classification problems. Inspired by our proposed RDA_FSIS

framework, we propose a unifying criterion that is able to retain the advantages of our

powerful linear discriminant method by exploiting several types of sparsity. The pro-

posed approach differs from the first contribution in two ways, namely: (i) The global

criterion and (ii) the optimization process. In this proposed method, we have adopted

the gradient descent approach to estimate the sought linear transformation instead of
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Figure. 25: Classification Performance (%) of the RDA_FSIS method accord-
ing to the parameters combinations using the Extended Yale B and Georgia
datasets in which 10 and 9 samples from each class are used for training, re-
spectively. In subfigures (a) and (c), λ3 is fixed, while in subfigures (b) and (d),
λ1 and λ2 are fixed.

using the closed form solution. Considering that the projection matrix requires a good

initial estimate (since it is estimated by a steepest gradient descent scheme), we have

used two initialization procedures leading to two variants of the proposed algorithm.

The first variant is entitled Robust Discriminant Analysis using Gradient Descent

(RDA_GD). In this variant, the initial estimate of the linear transformation matrix is

set to the solution of the RSLDA method, which makes the transformation inherit

the feature selection capability provided by RSLDA. The second variant, referred

to as Enhanced Discriminant Analysis with Class Sparsity EDA_CS, sets the initial

guess to the solution provided by our previously proposed RDA_FSIS. This allowed

the second proposed variant to inherit the feature ranking along with the inter-class

sparsity advantages exploited by the RDA_FSIS method. Although the main goal of

the current work is to refine the solution provided by the "Robust Discriminant Analysis
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with Feature Selection and Inter-class Sparsity" (RDA_FSIS) method, the proposed

learning model can be used to refine the solution of many other linear methods.

The proposed framework can be considered as a fine-tuning technique that can be

applied to various linear feature extraction methods.

Experiments have been conducted on several public image datasets of differ-

ent types, including objects, faces and digits. The proposed framework compared

favorably with several competing methods.

The derived findings are summarized in Table 10. This table depicts the classifi-

cation rates as well as the standard deviations of the two proposed variants and the

competing methods using multiple datasets. The results are obtained using different

training and testing percentages of the data and are the average rate obtained over

10 random splits.

The last row in Table 10 illustrates the classification accuracy using the large scale

MNIST dataset (60,000 images). The results for the MNIST dataset were obtained

using a single split adopting 1000 samples from each class for training.

For detailed information about this contribution, please refer to Part II, Chapter 2.

4.3 A hybrid discriminant embedding with feature selection: ap-

plication to image categorization
In this contribution, we have presented a unified and hybrid discriminant embedding

method that minimizes the loss of discriminative information. This method is the first

work that introduces the hybrid initialization process in the field, which allows the pro-

posed approach to inherit the discriminative capabilities provided by various schemes

simoultaneously. The proposed method differs from the existing related methods

at many levels in terms of criterion design, optimization technique and initialization

process. As for the criterion design, the proposed method integrates LDA and a

variant of PCA into a joint learning framework. It inherits the excellent discrimination

capability of LDA while enabling the reconstruction of the original data with minimal
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Table 10: Mean classification performance (%) of the two variants of the en-
hanced discriminant approach using gradient descent technique on the tested
datasets.

Dataset \Method Train. / class KNN SVM LDA LDE PCE ICS_DLSR RSLDA RDA_FSIS RDA_GD EDA_CS

USPS

30 87.01±1.5 88.21±1.2 84.91±1.7 83.54±1.3 72.01±1.1 88.46±0.8 89.45±1.2 90.05±0.8 89.50±1.2 90.40±0.8
40 88.56±1.6 90.40±0.9 86.19±0.9 85.3±1.2 72.30±1.7 90.16±0.7 91.11±1.0 91.27±0.9 91.81±1.1 91.76±0.5
55 90.51±1.4 92.09±0.8 88.64±1.0 87.16±1.7 73.32±2.2 91.25±1.2 92.65±1.1 92.56±1.2 93.07±1.0 93.40±1.0
65 91.76±1.3 93.16±0.9 89.29±1.5 88.58±1.1 74.11±1.9 91.53±1.3 92.89±1.0 93.33±1.0 93.71±0.9 93.73±0.6

Honda

10 64.12±2.1 71.32±2.1 65.95±2.2 65.74±2.2 61.86±2.2 70.79±2.5 69.90±2.1 72.48±2.0 70.16±1.9 72.73±2.0
20 77.69±1.2 83.60±1.0 79.39±1.4 79.25±1.7 75.33±1.4 82.95±1.2 83.03±1.3 84.19±1.4 83.60±1.2 84.40±1.4
30 84.78±1.3 89.09±1.0 85.84±1.1 86.24±1.1 82.55±1.8 88.20±1.0 89.04±1.2 89.44±1.0 89.41±1.1 89.66±1.1
50 91.36±0.9 94.15±1.2 92.28±1.1 92.34±0.8 90.03±0.7 93.53±0.6 94.13±0.8 94.54±1.0 94.53±0.8 94.45±0.9

FEI

5 88.98±2.5 91.18±2.3 92.60±3.6 90.67±2.6 86.04±3.2 92.16±2.7 93.19±2.5 94.01±2.3 93.81±2.6 94.24±2.7
6 90.35±2.7 92.93±2.8 94.18±3.9 92.15±2.7 88.73±3.7 93.65±2.7 94.25±2.3 94.63±2.3 94.75±2.5 94.80±1.9
7 92.60±3.6 94.31±2.5 95.60±3.5 94.26±3.0 91.09±4.2 95.20±2.2 95.66±1.5 96.09±1.5 96.20±1.5 96.26±1.8
8 94.27±2.9 95.23±2.2 96.03±3.5 95.57±2.4 93.20±4.4 96.17±1.9 96.43±1.6 96.67±1.7 96.97±1.7 96.87±2.0

COIL20

20 94.58±0.9 97.65±1.3 96.19±0.8 95.00±0.7 94.87±1.6 98.04±0.5 96.73±0.6 97.85±0.6 96.89±0.6 98.05±0.6
25 95.79±0.8 98.22±0.7 97.07±0.8 96.12±0.7 95.99±1.3 98.22±0.6 97.74±0.7 98.60±0.5 97.89±0.5 98.74±0.5
30 96.65±0.6 98.70±0.8 97.81±0.5 97.01±0.6 97.49±0.7 98.75±0.1 98.26±0.7 99.10±0.4 98.52±0.6 99.15±0.5
35 97.14±0.7 98.81±0.8 98.15±0.3 97.42±0.6 98.11±0.6 99.12±0.4 98.68±0.6 99.36±0.4 98.80±0.6 99.55±0.2

Georgia

3 52.57±1.4 56.22±2.3 48.18±2.8 52.77±2.3 46.43±2.3 59.73±2.1 62.32±2.2 62.67±2.0 62.35±2.2 63.05±1.6
5 61.28±1.5 66.98±1.9 59.20±1.9 62.14±1.6 56.18±1.9 71.12±1.3 73.48±1.6 74.28±1.1 73.54±1.5 74.68±1.2
7 66.73±1.5 72.83±1.2 67.83±2.4 67.10±2.0 62.15±1.8 78.38±1.4 78.82±1.1 79.98±1.7 79.42±1.7 80.30±1.3
9 71.40±1.0 77.53±2.0 72.57±3.0 72.13±2.3 66.37±2.9 82.57±2.1 82.77±2.2 83.30±2.1 82.80±2.2 83.33±2.1

Extended Yale B

10 69.80±4.5 73.85±5.6 82.32±5.1 79.92±4.3 86.39±3.1 86.56±4.5 86.79±4.8 88.27±4.5 87.10±4.4 88.59±4.1
15 75.20±4.5 80.02±4.6 86.76±4.7 83.77±4.9 89.23±3.4 89.53±3.8 89.93±3.8 91.73±3.6 90.04±3.8 91.89±3.6
20 80.24±2.5 85.79±2.8 90.70±2.4 88.44±2.2 92.19±1.4 93.14±2.2 93.59±2.5 95.11±1.8 93.75±2.5 95.22±1.8
25 82.24±3.3 89.03±1.5 92.17±1.3 90.43±2.1 93.35±1.0 94.50±1.1 94.92±1.2 96.23±0.8 95.02±1.2 96.33±0.7

MNIST 1000 91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.25 98.21 98.30

information loss. The proposed method integrates the inter-class sparsity constraint

into an LDA framework which pursued the transformed samples belonging to the

same classes to have the same row-sparsity structure. The proposed method offers

many advantages due to its hybrid initialization capability. Our framework is generic

in the sense that it allows the combination and tuning of other linear discriminant

embedding methods, thus the method automatically inherits the advantages of these

methods. We used the gradient descent algorithm to find the solution to our proposed

criterion, rather than the closed-form solution used in ICS_DLSR and RSLDA, for

example. The gradient algorithm provides faster, less complex and more accurate

solutions than the closed form solutions. Moreover, the proposed linear transformation

is generic and can be used for many types of objects (signals, images and texts)

and many types of descriptors (including both regular and stable image features). In

our work, we have used and tested different types of image descriptors. Image raw
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brightness, Local Binary patterns and deep features (provided by Deep Convolutional

Neural Networks) were used as image descriptors for the tested datasets.

We proposed two initialization procedures for the linear transformation, resulting in

two variants of the proposed algorithm. The first procedure refines the RSLDA solution

using the proposed model’s objective function, this variant is denoted as Feature

Extraction Using Gradient Descent FE_GD. The second procedure sets the initial

transformation matrix to a hybrid combination of transformation matrices obtained

from two methods: Inter-class sparsity based discriminative least square regression,

denoted as ICS_DLSR [188] and RSLDA [186]. The second variant is referred to as

Feature Extraction Using Gradient Descent With Hybrid initialization FE_GD_HI. The

suggested approach inherits the advantages of two powerful discriminant methods at

two levels: (1) the hybrid transformation initialization and (2) the refinement via the

proposed single new criterion.

The proposed method is also capable of obtaining a well-constructed projection

space that ensures high classification performance; it can additionally be used in

tuning an already obtained projection matrix. The proposed method can be generic in

the sense that any hybrid initial transformation matrix can be fed into our algorithm

and then a more discriminative solution for the transformation matrix is obtained,

resulting in higher classification performance.

The conducted experiments proved the efficiency of the proposed method in

classification tasks using multiple scaled datasets.

Tables 11 and 12 illustrates the achieved classification performance of the two

proposed variants. The results presented in Table 11 are the average classification

rate obtained over 10 random training splits, where in each split a random portion

of the data is used for training. On the other hand, the results illustrated in Table 12

correspond to the recognition rate obtained with a single split.

Figures 26 and 27 present the classification performance behaviour according to

the chosen dimension for the FE_GD and FE_GD_HI methods using the Extended
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Table 11: Mean classification performance (%) of FE_GD and FE_GD_HI meth-
ods on the tested datasets.

Dataset \Method Training Samples KNN SVM LDA LDE PCE ICS_DLSR RSLDA FE_GD FE_GD_HI

USPS

30 87.01 88.21 84.91 83.54 72.01 88.46 89.45 89.50 90.29
40 88.56 90.40 86.19 85.3 72.30 90.16 91.11 91.81 91.46
55 90.51 92.09 88.64 87.16 73.32 91.25 92.65 93.07 92.87
65 91.76 93.16 89.29 88.58 74.11 91.53 92.89 93.71 93.49

Honda

10 64.12 71.32 65.95 65.74 61.86 70.79 69.90 70.16 72.14
20 77.69 83.60 79.39 79.25 75.33 82.95 83.03 83.60 84.64
30 84.78 89.09 85.84 86.24 82.55 88.20 89.04 89.41 90.12
50 91.36 94.15 92.28 92.34 90.03 93.53 94.13 94.53 95.10

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 93.19 93.81 94.58
6 90.35 92.93 94.18 92.15 88.73 93.65 94.25 94.75 95.08
7 92.60 94.31 95.60 94.26 91.09 95.20 95.66 96.20 96.29
8 94.27 95.23 96.03 95.57 93.20 96.17 96.43 96.97 96.40

COIL20

20 94.58 97.65 96.19 95.00 94.87 98.04 96.73 96.89 97.66
25 95.79 98.22 97.07 96.12 95.99 98.22 97.74 97.89 98.59
30 96.65 98.70 97.81 97.01 97.49 98.75 98.26 98.52 99.08
35 97.14 98.81 98.15 97.42 98.11 99.12 98.68 98.80 99.39

Table 12: Mean classification performance (%) of FE_GD and FE_GD_HI meth-
ods on the MNIST dataset.

Dataset \Method Training Samples KNN SVM LDA LDE PCE ICS_DLSR RSLDA FE_GD FE_GD_HI

MNIST 1000 91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.21 98.33

Yale B and Honda datasets, respectively, were 10 samples per class are used for

training. By analyzing the latter figures, we can observe that our proposed approach

provides a very stable performance on lower dimensions, from which we can deduce

that the information loss is minimized.
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Figure. 26: Classification performance (%) vs. dimension for the FE_GD and
FE_GD_HI methods using the Extended Yale B dataset.
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Figure. 27: Classification performance (%) vs. dimension for the FE_GD and
FE_GD_HI methods using the Honda dataset.

Figure 28 visualizes the first 50 rows of the transformation matrix computed by the

first variant of our proposed method. The plotted transformation matrix corresponds

to the USPS digits dataset where 30 samples from each class were used for training.
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(a) Transformation matrix computed by
FE_GD.
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(b) Row norms of the transformation ma-
trix derived from FE_GD.

Figure. 28: Visualization of the first 50 rows of the transformation matrix com-
puted by FE_GD using the USPS dataset.

Detailed information about this contribution can be found in the corresponding

paper presented in Part II, Chapter 3.
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4.4 Ensemble Learning via Feature Selection and Multiple Trans-

formed Subsets: Application to Image Classification
Constructing the model via a limited set of features or via a single transformation can

sometimes limit classification performance and lead to non-optimal results that some

algorithms are capable of delivering. For this purpose, ensemble learning methods

have been investigated. The main goal of these methods is to learn a set of models

that provide features or predictions whose joint use could lead to better performance

than that obtained by the single model.

In this contribution, we propose a new efficient ensemble learning approach that

is able to enhance the classification performance of linear discriminant embedding

methods. The main idea of our proposed algorithm is to blend and combine the

projected data from multiple models. These models are usually very good models and

each of them, considered individually, provides a good discriminant characteristic. By

combining these models, we have derived a single model described by its improved

discriminant ability. This leads to better classification. So the hypothesis is that in

the case where the models are correctly combined, this can lead to more accurate

and/or robust models. As a case study, we consider the efficient "Inter-class sparsity

discriminative least square regression" [188] method in our work. Our proposed

approach has succeeded in estimating an improved data representation. Instead of

deploying multiple classifiers on the transformed features, we aim to estimate multiple

extracted feature subsets obtained by multiple learned linear embeddings. These

are associated with subsets of ranked original features. Multiple feature subsets

were used to estimate the transformations. The derived extracted feature subsets

were concatenated into a single data representation vector used in the classification

process. Our scheme exploited multiple feature selection algorithms, namely: (i)

Fisher score, (ii) Relief-F [94], in addition to (iii) Robust multi-label feature selection

with dual-graph regularization" (DRMFS) algorithm [74]. We proposed three variants

for our ensemble learning approach, where each variant differs from the others in

the adopted feature selection techniques used for feature ranking. Multiple ranked
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feature subsets were used in the training process with the ICS_DLSR algorithm and

their corresponding outputs were used to construct multiple models. The output of

these models are concatenated to form a single data representation used in the

classification process. The targeted models were constructed using different subsets

of the original data. The design of the proposed approach ensures that each created

model contains the most relevant features that efficiently describe the data. Relevant

features are considered each time such that even if less relevant features are found,

they do not harm the classification performance. The original data features were

ranked using different and combined feature selection techniques.

The delivered outcomes have proven that the proposed approach may offer sig-

nificant enhancement and is able to outperform competing methods. Our proposed

approach was benchmarked on various datasets of different sizes and types and

achieved competitive results.

Figure 29 depicts a graphical illustration of the main steps of our contribution. For

the sake of simplicity, in the example of the latter figure, the case of three models

creation was assumed. The presented figure shown demonstrates the complete

process, which includes the following: Ranking of the original features of the data,

construction of subgroups, model creation, concatenation and classification.

Tables 13 - 16 present some of the classification results obtained by applying our

proposed ensemble scheme (three variants) over several datasets of different scale

and complexity.

The paper containing detailed information about this ensemble of models based

method along with the complete experiments is presented at Part II, Chapter 4.
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Figure. 29: Proposed Ensemble Learning Methodology.
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Table 13: Mean classification performance (%) of the first proposed ensemble
learning approach EM_ICS_FS on the Extended Yale B dataset. The perfor-
mance of some competing methods is also depicted.

Ext. Yale B
Training Samples Method KNN SVM LDA LDE PCE SULDA RSLDA RDA_GD

10 69.80 73.85 82.32 79.92 86.39 84.61 86.79 87.10
15 75.20 80.02 86.76 83.77 89.23 88.72 89.93 90.04
20 80.24 85.79 90.7 88.44 92.19 91.66 93.59 93.75
25 82.24 89.03 92.17 90.43 93.35 92.14 94.92 95.02

Method LRC LRLR LRRR SLRR LRPP_GRR MPDA ICS_DLSR EM_ICS_FS
10 81.65 84.63 87.76 87.95 84.82 83.67 86.56 88.46
15 88.92 86.31 91.09 89.75 89.07 86.82 89.53 91.43
20 91.74 88.93 93.19 92.58 91.42 90.38 93.14 94.49
25 93.78 90.98 95.51 94.24 92.25 91.79 94.50 95.88

Table 14: Mean classification performance (%) of the first proposed ensem-
ble learning approach EM_ICS_FS on the LFW-a dataset. The performance of
some competing methods is also depicted.

Dataset \Method Training Samples KNN SVM LDA LDE PCE RSLDA RDA_GD ICS_DLSR EM_ICS_FS

LFW-a

5 9.90 12.72 20.51 9.98 9.44 24.70 25.11 22.56 27.38
6 10.57 13.61 25.28 10.49 10.26 28.42 28.61 25.72 31.75
7 11.06 14.70 28.62 11.24 10.98 31.50 31.82 29.04 36.07
8 11.35 15.72 32.42 11.71 11.73 32.48 32.69 31.92 39.71

Table 15: Mean classification performance (%) of the second proposed ensem-
ble learning approach EM_ICS_HS on the FEI dataset. The performance of the
ICS_DLSR method is also depicted.

Dataset \Method Training Samples KNN SVM LDA LDE PCE ICS_DLSR EM_ICS_FS EM_ICS_HS

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 92.20 92.56
6 90.35 92.93 94.18 92.15 88.73 93.65 93.88 94.20
7 92.60 94.31 95.60 94.26 91.09 95.20 95.14 95.43
8 94.27 95.23 96.03 95.57 93.20 96.17 96.00 96.27

Table 16: Comparison of the mean classification performance of our three pro-
posed variants (Ensemble of models) using the Outdoor Scene dataset. The
performance of some competing methods is also depicted.

Outdoor Scene

Training Samples Methods
ICS_DLSR EM_ICS_FS EM_ICS_HS EM_ICS_DRMFS

50 68.19 68.75 68.84 68.80
70 69.41 70.51 70.15 70.11
90 69.64 70.60 70.41 70.45
110 70.21 71.03 71.05 70.78
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4.5 A Supervised Discriminant Data Representation: Applica-

tion to Pattern Classification
This contribution is mainly an extension of the work presented in section 4.3. In

this work, we proposed a discriminant feature extraction method that inherits the

advantages of two recent powerful discriminant methods. The obtained transformation

encapsulates two different types of discrimination, namely inter-class sparsity in

addition to robust LDA. Similar to the work presented in section 4.3, we exploited

the hybrid initialization process for the transformation matrix in order to obtain a

more powerful discrimination. We used the gradient descent algorithm instead of the

closed form approach to derive a solution for the proposed criterion. In this work,

we have extended the experiments to include more datasets. The initial motivation

for this extension was highlighting our proposed variants discrimination power using

non-image datasets. Knowing that the original experiments only included studies on

image datasets, in this contribution we conducted a study on a synthetic dataset as

well as on a document dataset.

One of the added experiments was conducted on the synthetic Tetra dataset [172].

This dataset consists of 400 data points belonging to four classes. The original

data points of this dataset are in R3, but in our experiments the dimension was

augmented to 100 so that each data sample is represented by 100 features. The

3-dimensional dataset is transformed into a high-dimensional dataset ∈ R100 using a

random projection matrix.

This dataset was chosen because it presents the challenge associated with small

inter-cluster distances. The distance between clusters is minimal. Tetra’s data points

are visualized in Figure 30. One can see that the clusters are almost touching.

Figure 31 illustrates the T-SNE visualization of the projected samples of the Tetra

dataset using the original linear discriminant analysis LDA, RSLDA as well as the first

variant of our proposed method SDA_G_1. By observing this figure, it is noticeable

that our method provides very good class separation properties and leads to the
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best intra-class compactness among the competing methods. The proposed method

ensures superior performance when applied to datasets with small inter-cluster

distances.
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Figure. 30: Visualization of the Tetra dataset points in the original space.
These 3D points belong to four large full spheres close to each other.

In addition, we investigated the classification performance of our proposed ap-

proach over the News20 text dataset. Our findings were obtained using 10 splits,

where 20% and 30% of the data samples from each class were used for training

and the remaining samples were used for testing. Table 17 depicts the average

classification performance obtained using the News20 text dataset.

Table 17: Classification performance (%) on the News20 text dataset.

News20
Training Percentage

20% 30%

Method Classification accuracy Method Classification accuracy
LDA 68.04 LDA 68.70
RSLDA 68.11 RSLDA 68.88
SDA_G_1 68.38 SDA_G_1 69.10
SDA_G_2 68.87 SDA_G_2 69.58
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(a) Visualization of the projected samples
of the Tetra dataset using Original LDA.
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(b) Visualization of the projected samples
of the Tetra dataset using RSLDA.
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(c) Visualization of the projected samples
of the Tetra dataset using SDA_G_1.

Figure. 31: TSNE visualization of the projected samples of the Tetra dataset
using LDA, RSLDA, and the first proposed variant SDA_G_1.
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Conclusions and Perspectives

Contents
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5.2 Limitations and future work . . . . . . . . . . . . . . . . . . 105

5.1 Conclusions
The main objective of this thesis is to propose and develop multiple linear super-

vised learning methods for pattern recognition, specifically for image categorization.

The proposed methods have contributed significantly in the computer vision and

classification field. The proposed approaches are classified as supervised learning

methods since our methods require the data labels in the learning process. Extensive

experiments have been carried out to test the efficiency of the proposed algorithms

on various benchmark datasets of different types and scales. Satisfactory results

were obtained, all the proposed approaches were able to outperform the competing

methods, whether they are recent or state-of-the-art methods. This dissertation is

divided into two parts, the former presents a general introduction in addition to the
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background of our work, and the latter presents our contributions, each in its own

chapter. In part II chapter 1, we proposed a novel discriminant supervised method

that aims to learn an informative and discriminative projection space for the data.

The first proposed approach is referred to as (RDA_FSIS), it involves two types of

sparsity in a unifying criterion, the former comes from imposing the `2,1 norm over

the transformation matrix, which allows the proposed method to implicitly perform

feature ranking. The latter comes from imposing the inter-class sparsity constraint

over the transformed features, which allows the transformed features in each class to

share a common sparse structure. This resulted in better discriminative properties

and thus more efficient classification. Second, in part II chapter 2, we also proposed

an enhanced version of the (RDA_FSIS) method. The proposed method differs from

the original method in both the optimization process and the global criterion. We have

used the gradient descent approach to derive the solution of the sought linear trans-

formation instead of the closed form solution. The second proposed method consists

of two variants called (EDA_CS) and (RDA_GD). These were used to improve the

efficiency of (RSLDA) in addition to our proposed (RDA_FSIS) method. Third, we

introduced the idea of hybrid initialization for the embedding space in part II chapter 3.

We proposed a hybrid discriminant embedding method that ensures feature selection.

The two proposed variants of this method mainly differ in the initialization process,

with the second proposed variant being the most efficient. This method can inherit the

discrimination power from other linear methods. It can be considered as a fine-tuning

technique that can improve the embedding of existing linear methods. Fourth, in part

II chapter 4, we also aimed at estimating a more discriminative data representation

that increases classification efficiency, which we could achieve with an ensemble of

models learning technique. In this proposed method, the embedding was computed

using different subsets of the data through different scenarios where the original data

features were classified using multiple and hybrid feature selection techniques. Three

variants of this procedure were proposed and tested and yielded satisfactory results

(EM_ICS_FS), (EM_ICS_HS) and (EM_ICS_DRMFS). The difference between the
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first three variants of the proposed approach is mainly that the data are ordered using

different feature selection techniques.

5.2 Limitations and future work
In the course of working on this thesis, we have found that many extensions and

improvements can be made at various points. This would lead to better versions of

the proposed approaches. In this section, we will suggest several future avenues.

Future work may envisage the following six tracks:

• All the approaches proposed in this dissertation are supervised learning meth-

ods. Therefore, these methods require the data labels to work. Since collecting

the data labels is a significant challenge, it can be computationally intensive and

time consuming at the same time in real applications. The proposed frameworks

will be extended to the semi-supervised setting, where the training process uses

both labeled and unlabeled samples.

• As a second track, it is possible to improve some of the solutions of our methods

by using other mathematical approaches for the optimization process. For

example, for the methods where we computed the reconstruction matrix using a

closed form solution, we can propose an alternative that uses other numerical

approaches (e.g., gradient descent and others).

Moreover, since we know that gradient descent based approaches require

a good initial estimate for the solution, it is possible to further increase the

efficiency of our methods by using novel initialization schemes for the linear

transformation matrices we are looking for.

• In our work, we have explored and studied the importance of the selected

features in the learning process. Usually, better data representations lead to

better classification performance, so the choice of data features to work with is

very important. As future work, we will explore more about the feature selection

techniques used in our ensemble learning based proposed approach. We will

use more powerful and diverse feature selection techniques that will allow better
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data importance analysis and allow our proposed approach to derive more

discriminative data representations.

• We have proposed several methods that can derive linear models for supervised

learning environments. These models have excellent properties, but they are still

shallow. Therefore, it would be very interesting to convert these shallow models

into deep neural network models that provide better data representations. Thus,

better performance can be achieved.

• It is known as a fact that image data can be represented by multiple views.

Data can be collected from different sources or represented by different types

of descriptors (e.g. HOG [30], Gabor [31], LBP [134], GIST [135], deep fea-

tures, etc...). These descriptors can capture different aspects of the data and

complement each other. Most of the work in this thesis deals with single image

data, where each data pattern is represented by a single descriptor type. The

only exception is the case of the PubFig83 dataset, where the descriptor used

was formed by concatenating HOG, LBP and Gabor. Therefore, it would be

very interesting to extend the developed methods to the case of multi-view

embedding.

In this case, an objective function would be designed for estimating either multi-

ple individual embeddings or a consensus embedding from the data matrices.

In this way, more optimal solutions can be expected.

• Another perspective is to exploit the idea that data usually consists of three

properties, namely: (i) cross-class information, (ii) class-specific Information,

in addition to some (iii) sparse perturbations. This is in contrast to traditional

projection learning methods that work with the assumption that the discriminative

data features share a common subspace. The criterion we are looking for aims

to decompose the original high-dimensional data into class-common and class-

specific subspaces using multiple learned projection matrices. By designing

such a feature extraction algorithm, it is possible to address the problem of multi-

class image classification with training data of small sample size and provide a
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criterion that significantly minimizes the information loss. It is expected that this

idea will provide promising classification performance.
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Our research and work has led to many outcomes, we have been able to publish

or submit several articles to international journals and conferences during the time of

completion of our thesis. Part II will contain the most important articles, each of them

as a separate chapter. This chapter will be a concise summary of our main articles.

6.1 Publication included in this thesis
Part II - Chapter 1: Linear embedding by joint Robust Discriminant Analysis

and Inter-class Sparsity

• In this journal paper, we introduced a novel supervised method that aims

to derive a competitive embedding space. Our method integrates two types
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of sparsity in a single criterion. The proposed approach is characterised by

implicitly performing feature selection and extraction simultaneously. The first

type of sparsity was achieved by imposing the `2,1 norm over the transformation

matrix in order to ensure the ability to perform feature selection. The second

type of sparsity was achieved by imposing an inter-class sparsity constraint on

the transformed features to ensure that samples within the same class share a

common sparse structure. Our method was compared with several competing

methods as well as with a number of state-of-the-art methods using different

types of datasets. The results show that the proposed approach was able to

outperform the competing methods.

Part II - Chapter 2: An enhanced approach to the robust discriminant analy-

sis and class sparsity based embedding

• This journal paper presents a work aimed at improving the discriminative power

of the proposed RDA_FSIS method. The developed approach differs from the

latter in many ways, where both the criterion and the optimization process are

different. While in the original RDA_FSIS method, the targeted transformation

matrix was updated via a closed form solution, in the method proposed in this

paper, we used the gradient descent method to find a solution for the linear

transformation. This guarantees a better and enhanced solution than the closed-

form solution used by most of competing methods. In this work, two variants of

our method have been proposed, which differ mainly in that they use the output

transformation matrix derived from a linear method as input to our algorithm. The

use of the proposed approach was able to improve the performance of several

linear projection methods and in particular the original RDA_FSIS algorithm.

This was demonstrated on several datasets of different types and sizes.

Part II - Chapter 3: A hybrid discriminant embedding with feature selection:

application to image categorization

• In this journal paper, we have proposed a unifying criterion that can retain

the advantages of linear discriminant embedding and inter-class sparsity. The
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proposed framework can be considered as a fine-tuning method and a fusing

method for linear discriminant embedding methods. The initial solution of the

transformation matrix sought by our method was set to a hybrid combination

of the solutions obtained by two embedding methods. Then, the sought trans-

formation matrix was effectively updated via a gradient descent method. The

introduction of the hybrid combination construction scheme for embedding al-

lows our proposed approach to be generic in the sense that it can be used to

improve the performance of different linear methods that have not been tested.

The experiments conducted have shown that the method proposed in this article

was able to outperform competing methods.

Part II - Chapter 4: Ensemble Learning via Feature Selection and Multiple

Transformed Subsets: Application to Image Classification

• In this journal paper, we have proposed an ensemble learning method based on

class sparsity-based regression. The proposed supervised method is used for

multi-class classification tasks. The proposed approach enabled the estimation

of an extended and improved data representation. Multi-ranked feature subsets

were used to estimate the predictors. With the derived predictors or projections,

we used the ensemble learning method to form a single data representation

vector to be used in the classification process. The proposed approach was

able to significantly improve the classification efficiency compared to learning

with a single model, which we demonstrated in our experiments with different

datasets.

Part II - Chapter 5: A Supervised Discriminant Data Representation: Appli-

cation to Pattern Classification

• In this journal paper, we proposed a novel supervised approach that can de-

rive a discriminative and efficient data representation that leads to excellent

classification performance. The proposed approach computes the projection

matrix via the gradient approach and simultaneously incorporates a PCA variant

reconstruction matrix, which is used to preserve the energy of the original data.
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The proposed approach takes advantages of the suggested initialization process

in a way that it inherits the advantages of multiple linear methods at once.

6.2 Publications not included in this thesis
Feature Extraction by Joint Robust Discriminant Analysis and Inter-class Spar-

sity

• This conference paper is a summary of the work in our paper "Linear embedding

by joint Robust Discriminant Analysis and Inter-class Sparsity". It contains

part of the experiments performed in the original paper and was accepted

and published at the conference "25th International Conference on Pattern

Recognition" ICPR2020 Milan - Italy.

Hybrid Feature Extraction Using Robust LDA and Inter-class Sparsity for Image

Categorization

• This conference paper consists of a summarized version of our work "A hybrid

discriminant embedding with feature selection: application to image categoriza-

tion". It contains part of the experiments conducted in the original paper and

was published in the "Electronic Imaging 2021, Image Processing: Algorithms

and Systems XIX." conference.

Feature Extraction and Selection via Robust Discriminant Analysis and Class

Sparsity

• In this conference paper, we summarized our work "A hybrid discriminant em-

bedding with feature selection: application to image categorization" presented

in part II - chapter 3. We took part of the experiments conducted and wrote a

conference paper that was published at the ICPR2021 conference in Milan -

Italy.
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6.3 List of publications
In this section, we will present the complete list of our publications during the thesis

time. Entries presented in bold represent the publications included in this thesis

report.

International Journals:

• Dornaika, F., and A. Khoder. "Linear embedding by joint Robust Discrimi-

nant Analysis and Inter-class Sparsity." Neural Networks 127 (2020): 141-

159.

• Khoder, A., and F. Dornaika. "An enhanced approach to the robust dis-

criminant analysis and class sparsity based embedding." Neural Networks

136 (2021): 11-16.

• Khoder, A., and F. Dornaika. "A hybrid discriminant embedding with fea-

ture selection: Application to image categorization." Applied Intelligence

(2020): 1-17.

• Khoder, A., and F. Dornaika. "Ensemble Learning via Feature Selection

and Multiple Transformed Subsets: Application to Image Classification".

Currently submitted to Applied Soft Computing.

• Khoder, A., F. Dornaika, and Moujahid, A. "A Supervised Discriminant

Data Representation: Application to Pattern Classification." Revised ver-

sion submitted to the International Journal of Machine Learning and Cy-

bernetics.

International Conferences:

• Dornaika. F., and A. Khoder. ” Feature extraction by joint Robust Discriminant

Analysis and Inter-class Sparsity.”, IEEE International Conference on Pattern

Recognition 2021.

• Khoder. A., and F. Dornaika. ” Feature extraction and Selection via Robust
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Discriminant Analysis and Class Sparsity.”, IEEE International Conference on

Pattern Recognition 2021.

• Khoder. A., and F. Dornaika. ” Hybrid feature extraction using robust LDA and

inter-class sparsity for image categorization.”, SPIE Electronic Imaging - Image

Processing: Algorithms and Systems XIX, 2021.
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a b s t r a c t

Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods.
They have been used for different classification tasks. However, these methods have some limitations
that need to be overcome. The main limitation is that the projection obtained by LDA does not provide
a good interpretability for the features. In this paper, we propose a novel supervised method used for
multi-class classification that simultaneously performs feature selection and extraction. The targeted
projection transformation focuses on the most discriminant original features, and at the same time,
makes sure that the transformed features (extracted features) belonging to each class have common
sparsity. Our proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-
class Sparsity (RDA_FSIS). The corresponding model integrates two types of sparsity. The first type is
obtained by imposing the ℓ2,1 constraint on the projection matrix in order to perform feature selection.
The second type of sparsity is obtained by imposing the inter-class sparsity constraint used for ensuring
a common sparsity structure in each class. An orthogonal matrix is also introduced in our model
in order to guarantee that the extracted features can retain the main variance of the original data
and thus improve the robustness to noise. The proposed method retrieves the LDA transformation by
taking into account the two types of sparsity. Various experiments are conducted on several image
datasets including faces, objects and digits. The projected features are used for multi-class classification.
Obtained results show that the proposed method outperforms other competing methods by learning
a more compact and discriminative transformation.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In reality, most of the data are represented through a large
number of features. Various types of data including high quality
images, videos and many others have most of the time a large
dimensionality which makes these data hard and challenging to
be handled. Several applications in many fields, e.g. gaming, pho-
tography, image processing, machine learning, classification and
data storage, are very demanding due to the high dimensionality
of the data that needs to be handled and thus require a large
amount of memory for storage as well as a lot of processing
power. In general, few relevant features can represent the orig-
inal data in a more efficient way than other features. Besides,
original high dimensional data contain redundant features or
noises which can lead to the disturbance of the learning pro-
cess that exploits these data. Using these high dimensional data
will generally lead to an increase in the processing complexity

∗ Correspondence to: University of the Basque Country UPV/EHU. Manuel
Lardizabal, 1, 20018 San Sebastian, Spain.

E-mail address: fdornaika@gmail.com (F. Dornaika).

and time which is a problem that needs to be addressed. It is
well known that the use of the original data will not guaran-
tee the best performance in learning tasks as many researches
concluded (Han et al., 2018; Xu, Tang, He, & Man, 2016). Thus,
the best way to solve this problem is to select and extract the
most representative features from the data. Data can be then
handled via these extracted features. Many researchers focused
on tackling the problem of high dimensionality by proposing two
main approaches: (i) feature selection, and (ii) feature extraction.
Nowadays, these two approaches are highly investigated and play
an important role in learning systems (Kwak & Choi, 2002). Many
methods have proved to be effective in selecting and extract-
ing the most discriminative features to represent original data.
One of these methods is the well-known Principal Component
Analysis (PCA) (Smith, 2002) which is mainly used as a pre-
processing technique for the data since it is able to learn a
low-dimensional projection while preserving the energy of the
original data. Another well-known feature extraction method is
the Linear Discriminant Analysis (LDA) (Martínez & Kak, 2001).
LDA aims to learn a projection that minimizes the distance among
samples belonging to the same class and increases the distance

https://doi.org/10.1016/j.neunet.2020.04.018
0893-6080/© 2020 Elsevier Ltd. All rights reserved.
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among samples belonging to different classes. LDA is a supervised
method which uses the label information of the samples to learn
the linear transformation. LDA showed very good performance
in classification tasks where the datasets are linearly separable.
In recent times, several methods were proposed for the purpose
of obtaining a linear projection. Most of these methods have
shown a superior performance in real-world applications. How-
ever, these methods are not able to perform feature selection of
the original data while computing the projection.

In Tao, Hou, Nie, Jiao, and Yi (2015), the authors have proposed
a method capable of extracting and selecting the most discrimi-
native features of the original data. This was done by applying
an ℓ2,1 norm row-sparsity constraint on the projection matrix
associated with the linear discriminant analysis.

In this paper, we introduce a new supervised method that
simultaneously performs feature selection and extraction. Thus,
the proposed method provides a data representation scheme in
which the provided features are relevant for classification tasks.

The main contributions are as follows. First, the paper intro-
duces a novel method for linear data projection in which the
transformed features have a common structure in each class and
satisfy the Linear Discriminant Analysis criterion. In addition,
the proposed method is able to perform feature selection and
extraction simultaneously. It also includes a simple auto-encoder
model in order to get a robust linear transform. Second, the
paper presents extensive and various experiments showing that
the proposed linear method outperforms other competing linear
methods in almost all of the tested cases using similar setups for
fair comparison and using several image datasets.

The proposed method has the following features:

• It performs a sparse and robust LDA. The imposed row
sparsity of the linear transformation implicitly performs a
weighting of the original features. The robustness is ob-
tained by making sure that the data can be well recovered
from the low dimensional representation.
• The linear projection of the data provides a common struc-

ture for the features of each class by imposing the trans-
formed features to have a common sparsity in each class.
This constraint on the projected data can enhance the class
separation.
• Since the explicit ranking of the original features is a by-

product of the proposed method, it can efficiently provide
feature selection of the original features without running
any expensive computation.

The remainder of the paper is structured as follows. Section 2
describes some related works and presents the main notations
used in this paper. Section 3 describes the problem formulation
and detailed solution to the proposed method. Section 4 gives the
experimental setup and presents the obtained results. Section 5
concludes the paper.

2. Preliminaries and related work

In this section, we will briefly describe some methods related
to our work. Then we review the Linear Discriminant Analysis
(LDA) and focus on how it can be used as a method for ranking
the original features (Fan, Xu, & Zhang, 2011; Martínez & Kak,
2001). In addition, we will review the Robust and Sparse Linear
Discriminant Analysis (RSLDA) (Wen et al., 2018) method and we
will show how introducing the l2,1 norm constraint can be used
for feature selection (Tao et al., 2015).

Table 1
Main notations used in the paper.
Notation Description

d Dimensionality of original data
N Number of data samples
C Number of classes
nc Number of samples in the cth class
xi The ith data sample ∈ Rd

X Training data samples ∈ Rd×N

Q Projection matrix ∈ Rd×d

D, U Diagonal matrix
I Identity matrix

2.1. Notations

This subsection will be dedicated to the introduction of some
notations that will be used in our paper. Matrices are represented
by bold capital letters and vectors are represented by small bold
letters.

Let X = [x1, x2, . . . , xN ] ∈ Rd×N be the training set with N
training samples from C classes, and d the dimension of each
sample; each sample xi is a column vector with d features ∈ Rd.

The l2,1 norm of a matrix A ∈ Rd×N is calculated by ∥A∥2,1 =∑d
i=1

√∑N
j=1 a

2
ij, the l1 norm of a matrix A is calculated as fol-

lows ∥A∥1 =
∑N

j=1
∑d

i=1

⏐⏐aij⏐⏐, the l2 norm of a vector b =

[b1, b2, . . . , bd] is calculated as ∥b∥2 =
√∑d

i=1 b
2
i .

Table 1 shows the main notations used in our paper.

2.2. Related work

In recent times, various classification methods in the machine
learning field have been proposed. Many techniques and meth-
ods have been proposed and implemented. They are constantly
evolving with a goal of having the best performance (prediction
and classification tasks) on various datasets. Very often, data
lie in a high-dimensional space, i.e. they are represented by a
large number of features. Some features represent the data better
than others and the data contain either redundant features or
noises. The key to solving this problem is applying dimensionality
reduction that can filter out some noise and redundant infor-
mation by reducing the original high-dimensional space to the
low-dimensional intrinsic space. Hence comes the importance of
feature selection and extraction.

Feature selection aims to select and extract the most relevant
features from the data to efficiently represent them prior to
the classification (Stanczyk, Zielosko, & Jain, 2018; Xue, Zhang,
Wang, Zhang, & Li, 2018; Yang & Ong, 2012). On the other hand,
feature extraction methods are generally based on feature trans-
formation, essentially high-dimensional data projection into low-
dimensional subspace (Dornaika & El Traboulsi, 2016; Zhu, Dor-
naika, & Ruichek, 2019a, 2019b). This type of dimensionality
reduction methods can provide a data representation on which
a learning task can have a high performance. This latter can be a
classification, a clustering, or a regression.

A learning method is supervised whenever label information
is available for all training data. It is semi-supervised if part of the
data is labeled and the remaining data do not have label informa-
tion. For the unsupervised methods there is no label information
at all. The remaining of the section will describe some related
work about data projection (i.e., feature extraction).

One of the most known unsupervised methods is Principal
Component Analysis (PCA) (Smith, 2002) which learns a pro-
jection for the data while preserving its main energy. PCA is
normally used as a pre-processing technique prior to the many
learning algorithms (Yang, Chu, Zhang, Xu, & Yang, 2013; Zhang,
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Xu, Shao, & Yang, 2017). Although PCA helps in feature extrac-
tion purposes, most of the time the extracted features are not
discriminant.

In Peng, Lu, Yi, and Yan (2016), the authors proposed an
unsupervised projection method called Principal Component Em-
bedding (PCE) that can automatically determine the feature di-
mension in addition to being robust to non-Gaussian noise.

LDA (Tharwat, Gaber, Ibrahim, & Hassanien, 2017) remains as
a favored tool for data projection and for supervised classifica-
tion in many applications because of its simplicity and robust-
ness (Hand, 2006). However, despite that LDA performs quite well
in simple, low-dimensional settings, it is known to fail in some
cases, e.g. when the number of predictor variables is very large
compared to that of observations. In this case, LDA would not
be directly applicable because the within-class matrix would be
singular. LDA may also fail when the linear boundaries cannot
ensure good separation between classes. Many extensions of the
original LDA have been proposed to overcome its limitations and
enhance its performance. The work described in Huang, Liu, Lu,
and Ma (2002) deals with the small sample size (SSS) problem
in LDA and proposes a method to solve it making use of the
null space of within class scatter matrix. The Manifold Partition
Discriminant Analysis (MPDA) method (Zhou & Sun, 2016) uses
both neighbor and label information to learn the projection. This
method can overcome the limitation of original LDA that failed to
work with data of non-Gaussian distribution.

Local discriminant embedding (LDE) (Chen, Chang, & Liu, 2005)
has also been used in classification applications as an improve-
ment of LDA. The embedding of LDE ensures that data points
belonging to the same class maintain their intrinsic neighbor
relations, and neighboring points belonging to different classes
no longer stick to one another. However, LDE also suffers from
the small sample size (SSS) problem. To overcome the limita-
tions of the LDE method, the work described in Dornaika and
Bosaghzadeh (2013) introduced the Exponential LDE (ELDE). This
method can solve the sample size problem of LDE and enhance
the discrimination of the obtained projection. It is based on
replacing the within-in and between class scatter matrices by
their exponential ones.

In Nie, Wang, Wang, and Li (2019), the authors proposed a
variant of LDA in which the intra-class KNN graph is estimated.
The obtained embedding space can preserve the local neigh-
borhood structure by constructing a k-nearest neighbors (kNNs)
graph on data points. The embedding space and similarity matrix
are simultaneously estimated whereas the selection of neighbors
is automatically done in the projection subspace rather than in
the original space. In Zhang and Gao (2018), the authors intro-
duced a non-linear approach named supervised data-dependent
kernel sparsity preserving projection (SDKSPP) for dimensionality
reduction. This is a non-linear variant of the sparsity preserving
projection method. This deploys a data-dependent kernel in-
stead of standard kernels to achieve performance improvements.
In Gou et al. (2018), the authors proposed a discriminative di-
mensionality reduction technique entitled sparsity and geometry
preserving graph embedding (SGPGE). It captures the sparse
reconstructive relationships among training samples and discov-
ers the intrinsic geometry and latent discrimination in high-
dimensional data. The authors show that the graphs built with
discriminant and geometrical information are more informa-
tive in graph embedding. In Wen, Xu, Li, Ma and Xu (2018),
the authors introduced a supervised embedding method with
inter-class sparsity constraint. This method, called inter-class
sparsity based discriminative least square regression (ICS_DLSR),
can greatly reduce the margin of intra-class and simultaneously
enlarge the margin of inter-class so that a better performance
is guaranteed. The transformed samples have common sparsity
structure in each class.

Almost all proposed methods for feature extraction do not
have the ability to select the most discriminative and important
features from the original data. Indeed, the main purpose is to get
new features by recombining the original ones.

In order to take into account the relevance of the original
features, a sparse constraint has been added in Sparse discrim-
inant analysis (SDA) method (Clemmensen, Hastie, Witten, &
Ersboll, 2011) which is a sparse version of LDA. SDA uses the
ℓ1 (Tibshirani, 1996) or the lasso penalty to achieve sparsity in
the regression framework (Efron, Hastie, Johnstone, Tibshirani,
et al., 2004; Tibshirani, 1996; Zou & Hastie, 2005; Zou, Hastie, &
Tibshirani, 2006). Sparse uncorrelated LDA (SULDA) (Zhang, Chu,
& Tan, 2015) and sparse LDA (SLDA) (Qiao, Zhou, & Huang, 2009)
have also been proposed in order to obtain a sparse subspace for
feature extraction.

For the linear projection, several methods used the ℓ2,1 norm
as regularization term in order to ensure row-sparsity of the
linear transform. A typical method is described in Tao et al. (2015)
where the ℓ2,1 norm is applied on the transformation of original
linear discriminant analysis.

Another method built on the ℓ2,1 norm constraint is the Robust
Sparse Linear Discriminant analysis (RSLDA) (Wen, Fang et al.,
2018). Using the ℓ2,1 norm, RSLDA adaptively performs feature
weighting. It also includes a robust PCA term that ensures low
dimensional information to be accurately recovered. It has been
shown that the RSLDA method is robust to noisy data.

2.3. Review of linear discriminant analysis (LDA) and robust sparse
LDA (RSLDA)

LDA:
Linear discriminant analysis (LDA) (Tharwat et al., 2017) is a

well-known algorithm used for supervised classification tasks. It
requires the label information of the training data in order to
estimate the best projection subspace in which test samples can
be easily classified. Let C denote the number of classes in the data
and ni denote the number of samples in the ith class. LDA aims
to find a linear projection which increases the distance between
samples belonging to different classes, and in contrary decreases
the distance between samples belonging to the same class.

Let µ, µi be the mean of all data samples and the mean
of samples of the ith class respectively. These means can be
calculated as follows µ = 1

N

∑C
i=1

∑ni
j=1 xj

i and µi =
1
ni

∑ni
j=1 xj

i.
First, LDA calculates the between-class scatter matrix Sb by the

following formula:

Sb =
1
N

C∑
i=1

ni (µi − µ) (µi − µ)T (1)

then the within-class scatter matrix Sw is calculated as follows

Sw =
1
N

C∑
i=1

ni∑
j=1

(xji − µi) (xji − µi)T (2)

LDA aims to estimate a projection space which maximizes the
between-class variance and minimizes the within-class variance.
In the case where only one projected axis is needed, the pro-
jection axis p can be obtained by solving the following Fisher
criterion: (Duda, Hart, & Stork, 2012)

p = argmax
p

pT Sb p
pT Sw p

(3)

The above problem (3) can be transformed to a difference form
that is given by (Lai, Xu, Jin, & Zhang, 2014; Ye & Xiong, 2006):

p = arg min
pT p=1

pT (Sw − µ Sb) p (4)
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where µ is a small positive constant. By solving Eq. (4), we can
observe that the optimal projection vector p is nothing but the
eigenvector associated with the smallest eigenvalue of Sw − λ Sb.
Finally, for more than one projection axis, the projection matrix
P ∈ Rd×k will consist of the k eigenvectors associated with the k
smallest eigenvalues of Sw − λ Sb.
Introducing the ℓ2,1 norm constraint:

In real world applications, the dimension of data could often
be very high. This makes the classification and learning tasks
computationally expensive.

Hence comes the importance of feature selection (FS). Indeed,
we know that the data contain a large number of features that
could be either redundant or in some cases irrelevant. Elimi-
nating these features or reducing their effect can lead to some
improvements and advantages like fast processing and a better
classification accuracy. More importantly, FS can help in the al-
leviation of the curse of dimensionality in the data. Let Q ∈
Rd×d denote a projection matrix that operates on data samples
of dimension d. The projection of a sample x is given by QTx. The
ℓ2,1 norm of Q is given by

∥Q∥2,1 =
d∑

i=1

√ d∑
j=1

q2ij (5)

This norm is equal to the sum of ℓ2 norms of all rows of the
matrix.

A good feature selection/weighting can be obtained by min-
imizing the ℓ2,1 norm of the projection matrix as it was de-
scribed in Xiang, Nie, Meng, Pan, and Zhang (2012). In this work,
the authors utilized this constraint in their framework as an FS
tool for classification. Whenever the rows of the matrix Q are
equal to zero (or their ℓ2 norms are very small), the features
corresponding to these rows are irrelevant and could be removed.
Robust Sparse LDA (RSLDA):

The work described in Wen, Fang et al. (2018) introduced an
LDA-based method for feature extraction. The proposed method
is entitled Robust Sparse Linear Discriminant Analysis (RSLDA). It
deploys the minimization of the ℓ2,1 norm of the linear transform.
It also incorporates the ability to recover the original data from
the low dimensional projected data.

Aiming to overcome some drawbacks of the LDA (Tharwat
et al., 2017) technique, and to extract the features while holding
the main energy of the data and enhancing the robustness to
noise, RSLDA solves the following optimization problem:

min
P,Q,E

Tr
(
QT (Sw − µ Sb)Q

)
+ λ1 ∥Q∥2,1 + λ2 ∥E∥1

s.t. X = PQT X+ E, PT P = I
(6)

where Q ∈ Rd×m is the projection matrix in which (m < d), λ1 and
λ2 are trade-off parameters used to determine the importance of
the different terms. Sw and Sb are the within-class and between-
class scatter matrices respectively. E is the error matrix and µ is
a constant used to balance the two scatter matrices.

The ℓ2,1 norm of the transformation matrix Q used in the
optimization problem (6) can be calculated using Eq. (5).
According to Wen, Fang et al. (2018), RSLDA learns a discrim-
inative subspace and has reduced information loss than other
LDA-based algorithms. Besides, RSLDA addresses the issue of
model sensibility to reduced dimensions, and can thus provide a
very good performance even in cases where the projected space
has very few dimensions. More information on Robust Sparse
Linear Discriminant Analysis can be found in Wen, Fang et al.
(2018).

3. Proposed method

In this section, we will present the motivation of our method.
Then we will introduce the proposed learning model and the
approach used for finding the solution to the proposed learning
method.

In Section 2.3, we have briefly described how the Linear Dis-
criminant Analysis (LDA) algorithm works. However, LDA has
many limitations that need to be overcome. First, LDA (Thar-
wat et al., 2017) can be very sensitive to the selection of the
reduced dimensions, which affects the classification rate when
very few dimensions are used. This is mainly due to the fact
that the associated projection matrix is obtained by solving an
Eigen decomposition problem that uses global scatter matrices. In
addition, LDA lacks the ability of selecting and ranking the most
discriminative features from the original data. This can be seen
from the estimated projection matrix that does not allow to have
a good interpretability for feature relevance.

We will introduce an approach that aims to fix these draw-
backs. The proposed method inherits the advantages of the meth-
ods stated in the related works section. Indeed, the proposed
method aims at learning a better transformation matrix that leads
to better classification performance via introducing two types of
sparsity. The first type is imposed via the minimization of the ℓ2,1
norm of the projection matrix. This explicitly provides a ranking
for the original data features. The second type is given by the
inter-class sparsity of the projected data in which each class is
forced to have common sparsity structure in the projected space.
Furthermore, our introduced criterion includes a robust LDA in
order to be robust in presence of noisy observation.

3.1. Problem formulation and learning model

Motivated by overcoming some of the LDA drawbacks, and
inspired by the RSLDA model, we propose a novel method that
can lead to a more discriminant transformation. Unlike the RSLDA
model that imposes the row sparsity of the transformation ma-
trix, our model will integrate the inter-class sparsity too.

Our proposed learning model is to learn two matrices by
minimizing the following functional:

f (Q, P) = Tr
(
QT SQ

)
+ λ1 ∥Q∥2,1 + λ2 ∥X− PQT X∥1

+ λ3

C∑
i=1

∥QT Xi∥2,1 (7)

where the unknown matrices are: the sought projection matrix
Q ∈ Rd×d, and the PCA orthogonal matrix P ∈ Rd×d. λ1, λ2, and λ3
are the three trade-off parameters that determine the importance
of their corresponding terms. S = Sw − µ Sb is the LDA scatter
matrix, with Sw and Sb being the within-class and between-class
scatters matrices, respectively. Sw and Sb can be calculated using
Eqs. (1) and (2) respectively, while µ is a constant used to balance
the two scatter matrices. Xi ∈ Rd×ni is the data matrix associated
with the ith class.

The proposed learning model estimated by the minimization
of the objective (7) has the following theoretical justification.
Minimizing the first term tends to provide a projection matrix
associated with the classic Linear Discriminant Analysis. Mini-
mizing the second term (sum of the ℓ2 norms of the rows of
the projection matrix) reduces the over-fitting and produces an
implicit ranking of the original features. The third term is a
variant of the PCA constraint (Fang et al., 2017) X = P QT X.
It has been introduced in our model using the ℓ1 norm of the
error matrix in order to retain the energy preserving property of
PCA (Smith, 2002). It guarantees that the original data will be well
recovered (Zou et al., 2006). Real data are normally corrupted by
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many kinds of noises. Therefore, the use of the ℓ1 norm of the
error matrix, ∥E∥1, can compensate the random and sparse noise.
Thus, the third term can be seen as a simple auto-encoder model
in which the encoder is given by the matrix QT and the decoder
is given by the matrix P. The fourth term is a sum of row sparsity
over the projection of each class. By minimizing this term, it is
expected that each class in the projection space will have the
same common sparse structure (see Fig. 1).

By introducing the variables F = QT X, E = X − PQT X, and
Fi = QT Xi (i = 1, . . . , C), problem (7) can be written as:

f (Q, E, P, F) = Tr
(
QT SQ

)
+ λ1 ∥Q∥2,1 + λ2 ∥E∥1 + λ3

C∑
i=1

∥Fi∥2,1

(8)

min
Q,E,P,F

f (Q, E, P, F) s.t. F = QT X, X = PQT X+E, and PT P = I

Minimizing
∑C

i=1 ∥Fi∥2,1 aims to ensure the common sparsity
of the transformed features of samples belonging to the same
classes. By joining these constraints with the ℓ2,1 norm con-
straint on the transformation matrix Q, it is expected that the
transformation obtained by solving problem (8) will simulta-
neously select the most important features, provide a robust
discrimination, and generate an inter-class sparsity.

Fig. 1 illustrates the principle of the proposed model in which
original features and inter-class sparsity are exploited. Yellow
dots, red triangles and blue squares represent samples from the
first, second and Cth class, respectively. The left part of the figure
illustrates the input data (as a cloud of points and as a data
matrix). The right part illustrates the expected projection of the
cloud and of the data matrix.

It is well known that the ℓ2,1 norm of the matrix Q can be
written in the form of a trace. Thus, we have:

∥Q∥2,1 = Tr
(
QT UQ

)
(9)

where U is a diagonal matrix given by:

U =

⎛⎜⎝
1
∥q1∥2

· · · 0

0
. . . 0

0 0 1
∥qd∥2

⎞⎟⎠ (10)

qi denotes the ith row vector of the matrix Q.

3.2. Optimization of proposed method

Our optimization problem (8) does not have an analytical
solution. Thus, we adopted an iterative scheme to obtain the
solution, in which matrices are first, initialized then updated in
an alternating process by fixing some unknowns and computing
others.

Using the alternating direction method of multipliers (ADMM)
(Boyd, Parikh, Chu, Peleato, Eckstein, et al., 2011), we have solved
our optimization problem as follows. We first reformulate our
problem (8) into the following augmented Lagrangian function
(Courcoubetis & Weber, 2003):

L (Q, P, E, F,Y1,Y2) = Tr
(
QT SQ

)
+ λ1Tr

(
QT UQ

)
+ λ2 ∥E∥1

+ λ3

C∑
i=1

∥Fi∥2,1 +
β

2

X− PQT X− E+
Y1

β

2

2

+
β ′

2

F− QT X+
Y2

β ′

2

2

(11)

where Y1 and Y2 are two Lagrange matrices, β and β ′ are two
small positive numbers associated with the ADMM. If we fix all
variables except one, we can alternately solve each variable by
minimizing the Lagrangian at a time. We proceed as follows:

• Update Q:
Q can be obtained by fixing the variables P, E and F, and
minimizing the resulting problem:

L(Q) = Tr
(
QT SQ

)
+ λ1Tr

(
QT UQ

)
+

β

2

X− PQT X− E+
Y1

β

2

2

+
β ′

2

F− QT X+
Y2

β ′

2

2
(12)

The optimal Q can be obtained by vanishing the derivative
of the Lagrangian with respect to Q. Since the matrix U is
given by Eq. (10), the derivative of Tr

(
QTUQ

)
= ∥Q∥2,1 is

UQ. From ∂L(Q)
∂Q = 0, we can obtain:

Q =
(
2 S+ λ1 U+ β XXT

+ β ′ XXT )−1 (
β XMT P+ β ′ XM′T

)
(13)

where M = X− E+ Y1
β
, M′ = F+ Y2

β
′ . It is worthy noting

that the matrix U depends on the elements of the matrix Q.
In order to get a tractable solution for Q, the diagonal matrix
U is supposed to have an initial guess that is fixed at the first
iteration. This trick is also used in many iterative algorithms
dealing with the minimization of the ℓ2,1 norm of a matrix.
Once Q is updated, we update the associated diagonal matrix
U using Eq. (10).
• Update P:

The orthogonal matrix P can be obtained by fixing the
variables Q, E and F and minimizing the resulting problem:

min
PT P=I

X− PQT X− E+
Y
β

2

2
(14)

Suppose M = X− E+ Y1
β
, problem (14) becomes:

min
PT P=I

M− PQT X
2
2

= min
PT P=I

Tr (MT M− 2MT PQT X)

= max
PT P=I

Tr (PT MXT Q)

(15)

Problem (15) can be solved by performing a singular value
decomposition of the matrix MXT Q. Let the SVD decompo-
sition be given by SVD (MXT Q) = BΣ VT . We can have a
solution of P by (Zou et al., 2006):

P = BVT (16)

• Update E:
E can be obtained by fixing Q, P, and F and minimizing:

min
E

λ2 ∥E∥1 +
β

2

X− PQT X− E+
Y1

β

2

2
(17)

We can have the solution to Problem (17) as follows:

E = shrinke(E0) (18)

where e = λ2
β
, E0 = X − PQT X + Y1

β
, and shrinke(.) is the

element-wise shrinkage operator with parameter e (Can-
dès, Li, Ma, & Wright, 2011). This is given by shrinke(x) =
sign(x)max(|x| − e, 0).
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Fig. 1. Illustration of the proposed method. [X1 , X2 , . . . , XC ] denote the samples from the first class to the Cth class. [QT X1 , QT X2 , . . . , QT XC ] are the projected
samples. Q is the sought transformation matrix. Yellow dots, red triangles and blue squares represent samples from the first, second and Cth class, respectively. The
left part of the figure illustrates the input data (as a cloud of points and as a data matrix. The right part illustrates the expected projection of the cloud and of the
data matrix.

• Update F:
F can be obtained by fixing variables Q, P, E and minimizing:

min
F

λ3

C∑
i=1

∥Fi∥2,1 +
β ′

2

F− QT X+
Y2

β ′

2

2
(19)

Let

H = QT X−
Y2

β ′
(20)

Here, we will refer to the fact that minimizing
∑C

i=1 ∥Fi∥2,1
is the same as minimizing ∥Fi∥2,1, separately with (i =
1, . . . , C) and C is the number of classes. F is the hor-
izontal concatenation of the Fi matrices. We have F =
[F1, F2, . . . , FC ]. Similarly, QT X and H are the horizontal
concatenation of C matrices, i.e., QTX = [QT X1,QT X2, . . . ,

QT XC ], and H = [H1,H2, . . . ,HC ].
By plugging Eq. (20) into Eq. (19), the latter becomes:

min
F

λ3

C∑
i=1

∥Fi∥2,1 +
β ′

2
∥F− H∥22

= min
F

C∑
i=1

(
λ3 ∥Fi∥2,1 +

β ′

2
∥Fi − Hi∥

2
2

) (21)

Referring to the above stated fact which states that solving
the summation of F is the same as solving for each subset

Fi separately we obtain the following:

min
F

C∑
i=1

(
λ3∥Fi∥2,1 +

β ′

2
∥Fi − Hi∥

2
2

)

⇔

C∑
i=1

min
Fi

(
λ3 ∥Fi∥2,1 +

β ′

2
∥Fi − Hi∥

2
2

)
(22)

Thus, every matrix Fi is solved by:

min
Fi

(
λ3 ∥Fi∥2,1 +

β ′

2
∥Fi − Hi∥

2
2

)
(23)

According to Liu, Ji, and Ye (2009), Fi is given by:

[Fi]j =

⎧⎪⎨⎪⎩
[Hi]j


2 − λ3/β

′[Hi]j

2

· [Hi]j if
[Hi]j


2 > λ3/β

′

0, otherwise

(24)

where [Hi]j and [Fi]j are the jth row vectors of Hi and Fi,
respectively.
• Update Y1, Y2, β and β ′:

The Lagrange multipliers Y1 and Y2, and the penalty terms
β and β ′ are updated as follows:

Y1 = Y1 + β (X− PQT X− E) (25)
Y2 = Y2 + β ′ (F− QT X) (26)
β = min (ρ β, βmax) (27)
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β ′ = min (ρ β ′, β ′max) (28)

Note that βmax and β ′max are constant.

Algorithm 1 summarizes our proposed method and describes
the main steps for solving the problem (8).

Algorithm. 1. Robust Discriminant Analysis with Feature
Selection and Inter-class Sparsity (RDA_FSIS)

Input: Data samples X ∈ Rd×N , Parameters λ1, λ2, λ3
Output: P, Q and E
Initialization: Y1 = Y2 = 0

Q = 0 or Random matrix.
F = QT X
E = 0
β and β ′ = 10−8

µ = 10−4

βmax and β ′max = 108

ρ = 10
P = argmin

P
Tr (PT S P)

Process: ADMM (alternating direction method of
multipliers):
Repeat

Fix all, Update Q using (13), and update U
using (10).
Fix all, Update P using (16).
Fix all, Update E using (18).
Fix all, Update F using (24).
Update Y1, Y2, β and β ′ using (25), (26), (27),
and (28), respectively.

Until convergence

The projection of the training and test samples is carried out
using the estimated projection matrix Q. This is given by Z = QT X
and z = QT t where X is the training data and t is a test sample.

3.3. Computational complexity

In this section, we analyze the computational complexity of
the proposed algorithm (see Algorithm 1). This algorithm consists
of five main steps that we have described above for calculat-
ing the unknown matrices Q, P, E, F, and finally updating the
multipliers Y1 and Y2. Regarding the steps of the algorithm, the
last step has clearly the least computational cost since it consists
of simple matrix additions and multiplications. Other steps also
have no obvious effect on the computational cost of the algorithm
like steps three and four which came from Eqs. (18) and (24).
These steps only consist of simple matrix operations and thus
their computational cost can be ignored. The main computational
complexity of the proposed algorithm takes place in the first two
steps. The first step requires a matrix inversion (or equivalently
solving a linear system whose square matrix size is d × d) with
a complexity of O (d3) for a d × d matrix. The second step is
the singular value decomposition of a d × d matrix (MXTQ).
Thus, the computational cost of the second step is O (d3). Let τ
represent the number of iterations of the proposed algorithm. The
overall computational complexity of the proposed method will be
O (τ (d3 + d3)) = O (τ (2 d3)). The computational complexities of
different learning methods are presented in Table 2. The perfor-
mance of these methods will be quantified in the next section.
In the conducted evaluation, we will show that the best learning
methods in terms of classification accuracy are ICS_DLSR, RSLDA
and the proposed RDA_FSIS. From Table 2, we can see clearly
that the computational complexity of the proposed method is
comparable to that of ICS_DLSR and RSLDA methods.

Table 2
Complexity of different learning methods.
Method Complexity for training

NN –

SVM O
(
N2d+ N3

)
LDA O

(
d3

)
LDE O

(
N2
+ d3

)
PCE O

(
N d+ N2 d

)
ICS_DLSR O

(
τ d3

)
RSLDA O

(
τ

(
d2N + 4d3

))
RDA_FSIS O

(
τ (2 d3)

)

3.4. Convergence analysis

Since the overall model in (8) is nonconvex, it is difficult to
guarantee its convergence to a local minimum. However, empir-
ical evidence suggests that the proposed algorithm has a good
convergence behavior (see Figs. 15 and 16). Appendix presents
a proof of weak convergence of the proposed algorithm show-
ing that under mild conditions, any limit point of the iteration
sequence generated by Algorithm 1 is a stationary point that
satisfies the Karush–Kuhn–Tucker (KKT) conditions.

4. Performance study

In this section, we will present the experimental results ob-
tained by the proposed method. The experiments are conducted
on different face and object datasets in addition to handwritten
digits databases.

In a given conducted experiment, the number of training im-
ages per class is fixed, making sure that balanced classes are
considered during training. Training images are randomly se-
lected from the datasets and used for training while the rest are
used for testing. For a better comparison, we adopted several
amounts of training in order to study the performance of the
methods when supervision information (the number of training
images) is increased. The number of training samples per class
can vary between 1 and (Nc−1) where Nc represents the number
of images per each class. Inspired by many published works,
we adopted several (training percentages) numbers of training
samples per class in our experiments.

The method is evaluated according to its classification perfor-
mance on ten different datasets that are described and summa-
rized in the following section.

4.1. Datasets

This section is dedicated to state and give detailed information
about image datasets used in this paper, different types and dif-
ferent sizes of datasets are introduced including two large-scale
ones (see Fig. 2).

• Extended Yale B Face Dataset1: This dataset (Georghiades,
Belhumeur, & Kriegman, 2001) is constructed from images
of faces taken in different illuminations and facial expres-
sions for each subject. The dataset used in this paper in
the cropped version which contains between (58 and 64)
images for each one of the 38 individuals. It contains a
total number of 2414 images each is rescaled to 32 × 32
pixels and represented through gray scale representation.
Raw brightness images of dimension 1024 are used in the

1 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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Fig. 2. Typical images in different datasets.

experiments. The reported results are obtained after we
used 10, 15, 20, and 25 samples from each class as training
samples and the remaining are used as test samples.
• COIL20 Object Dataset2: The Columbia Object Image Li-

brary (COIL20) (Nene, Nayar, Murase, et al., 1996) dataset
is constructed from images of different objects, in which
each object is rotated around a vertical axis. The dataset
used in this paper contains images of 20 objects with 72
images for each, thus leading to a total number of 1440 im-
ages. The image descriptor used is the Local Binary Patterns
(LBP) (Li, Fieguth, & Kuang, 2011). We used the uniform LBP
histogram (59 values). Three LBP descriptors are constructed
from the image using 8 points and three values for the
radius (R = 1, 2, and 3 pixels). Thus, the final concatenated
descriptor has 177 values. The results are obtained after we
used 20, 25, 30, and 35 image samples from each class as
training samples and the remaining are used as test samples.

2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

• LFW-a Dataset3: The Labeled Faces in the Wild-a (LFW-
a) (Huang, Mattar, Berg, & Learned-Miller, 2008) dataset.
While maintaining the same structure as in the original
LFW dataset, LFW-a contains the images of the LFW dataset
after alignment using a commercial face alignment software.
The dataset used in this paper contains images from 141
different classes with a total number of 3408 gray-scale
images each rescaled to 32 × 32 pixels. Raw brightness
images of dimension 1024 are used in the experiments. The
reported results are obtained after we used 5,6,7, and 8
image samples from each class as training samples and the
remaining are used as test samples.
• Caltech101 Dataset4: The Caltech101 dataset used in this

paper is the one that contains images of objects belonging
to 101 classes. The full Caltech dataset which consists of 256
classes can be found at Griffin, Holub, and Perona (2007).
It is a well-known challenging set which contains a set of

3 https://talhassner.github.io/home/projects/lfwa/index.html.
4 http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
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images of complicated backgrounds. We used a cropped
version of the original Caltech dataset which consists of
3030 images, 30 images for each one of the 101 classes. The
reported results are obtained after we used 5 image samples
from each class as training samples and the remaining are
used as test samples.
The image descriptor used is the bock-based LBP (Li et al.,
2011) representation. We used 100 blocks. For each block,
we extract the uniform LBP histogram (59 values). Thus, the
length of the image descriptor is 5900.
Moreover, we adopt the deep features provided by the
ResNet-50 (He, Zhang, Ren, & Sun, 2016) convolutional neu-
ral network. This is a 50 layer convolutional neural network
that is trained on the ImageNet database. By using this
network, we are able to extract the image representation
in the Average Pooling layer. The latter is considered as the
image descriptor that has 2048 dimensional vector.
• USPS Digits Dataset5: The US Postal Service or abbreviated

as (USPS) (Seewald, 2005) is a handwritten digits dataset
used for digits recognition, this dataset contains 110 images
for each digit from 0 to 9, thus it consists of 10 classes, each
one contains 110 images, so a total number of 1100 images
is used in this dataset, the dimension of images is 16 × 16.
Raw-brightness images are used. The reported results are
obtained after we used 30, 40, 55, and 65 image samples
from each class as training samples and the remaining are
used as test samples.
• Georgia Face dataset6: The Georgia face dataset contains a

total number of 750 images that represent 50 individuals.
Each individual is represented by 15 images which show
frontal and tilted faces with different facial expressions,
lighting conditions and scale. The images used are cropped
and resized to 32 × 32 pixel for each image. Raw-brightness
images (dimension 1024) are used in the experiments. The
reported results are obtained after we used 3, 5, 7, and 9
image samples from each class as training samples and the
remaining are used as test samples.
• Honda dataset7: The Honda face dataset contains a total

number of 2277 face images. It consists of 22 classes with
approximately 97 images per class. The images represent
faces submitted to different conditions. Raw brightness im-
ages are used in the experiments. The reported results are
obtained after we used 10, 20, 30, and 50 image samples
from each class as training samples and the remaining are
used as test samples.
• FEI dataset8: The FEI face dataset contains pictures of stu-

dents and staff at FEI. It is a face dataset that contains a set
of colorful face images taken against a white background.
The images are in an upright frontal position with profile
rotation of up to about 180 degrees. This dataset contains a
total number of 700 images, 14 images for each one of the 50
people. Images are resized to 32× 32 pixels. Raw brightness
images of dimension 1024 are used. The reported results are
obtained after we used 5, 6, 7, and 8 image samples from
each class as training samples and the remaining are used
as test samples.
• MNIST dataset9: The Modified National Institute Of Stan-

dards and Technology abbreviated as (MNIST) dataset is a
challenging big dataset containing images of handwritten
digits. The dataset used in the experiments contains a total

5 https://www.kaggle.com/bistaumanga/usps-dataset.
6 http://www.anefian.com/research/face_reco.htm.
7 http://vision.ucsd.edu/~leekc/HondaUCSDVideoDatabase/HondaUCSD.html.
8 https://fei.edu.br/~cet/facedatabase.html.
9 http://yann.lecun.com/exdb/mnist/.

number of 60,000 images representing 10 classes. The image
descriptor used for the MNIST dataset is of length 2048
and is obtained from the ResNet-50 convolutional neural
network. The results are obtained after we have used 1000
images samples from each class as training samples and the
remaining are used as test samples.
• PubFig83 dataset10: The PubFig83 dataset is a large scale

and challenging dataset that contains 13,002 images rep-
resenting faces, collected with different situations (e.g. face
expressions, illuminations, background and different poses).
The images in this dataset represent 83 different persons
where each has from 46 to 231 images. We have used 8720
images for training and the remaining 4282 were used for
testing. HOG, LBP, and Gabor wavelet features are extracted
from the aligned face images and concatenated, then fi-
nally reduced to 2048 dimensions with PCA. The methods
are compared with respect to the experimental settings
presented in Becker and Ortiz (2013).

4.2. Experimental setup

For fair comparison, experiments are performed using the
same experimental setup (datasets, percentage of training/test
samples, dimensionality reduction techniques, etc.) The proposed
method is compared with the following methods: K-nearest
neighbors (KNN) (Kozma, 2008), Support Vector Machines (SVM)
(Chang & Lin, 2011), Linear Discriminant Analysis (LDA) (Thar-
wat et al., 2017), Local Discriminant Embedding (LDE) (Chen
et al., 2005), PCE (Peng et al., 2016), ICS_DLSR (Wen, Xu et al.,
2018) and Robust sparse LDA (RSLDA) (Wen, Fang et al., 2018).
Some additional methods including SULDA (Zhang et al., 2015),
MPDA (Zhou & Sun, 2016) and ELDE (Dornaika & Bosaghzadeh,
2013) are added to enrich the comparison for the Extended Yale
B and the PubFig83 large dataset. For the PubFig83 large scale
dataset, some deep learning methods are also tested. The results
are shown in the corresponding tables. All results are obtained
on 10 randomly selected splits for each dataset, unless specified
otherwise in the result figure caption. We report the average
classification accuracy over the 10 splits. We note that the SVM
used in the experiments is the Linear SVM. It was implemented
using LIBSVM library.11

In our experiments, different training and test percentages
are used for each dataset as mentioned in Section 4.1. For each
dataset and for each method, an embedding is first computed
using the training part of the data. The training and test data
are then projected using the estimated embedding. Classifica-
tion of the test data is then performed using either the Nearest
Neighbor classifier (NN) (Cunningham & Delany, 2007) or the
Support Vector Machines (SVM) classifier (Gunn et al., 1998).
Most of the experiments invoked a dimensionality reduction of
the raw features before feeding them to the learning models and
classifiers. In our experiments, PCA is used as a dimensionality
reduction technique and used to preserve 100% energy. We note
that, in some conducted experiments, PCA was not used at all in
order to illustrate the ability of the method in selecting the most
relevant original features.

Moreover, we adopted a simple normalization for the pro-
jected data. We proceeded as follows. Let X be the training data
matrix and Q be the learned projection matrix. The projected data
matrix is Z = QTX. Each element of the matrix Z is normalized
using the following formula:

Zij ←−
Zij −min(Z)

max(Z)−min(Z)

10 http://www.briancbecker.com/blog/research/pubfig83-lfw-dataset/.
11 https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 3
Mean classification accuracies (%) of different methods on the Extended Yale B dataset.
No KNN SVM LDA LDE ELDE PCE SULDA MPDA ICS_DLSR RSLDA RDA_FSIS

10 69.8 73.85 82.32 79.92 85.85 86.39 84.61 83.67 86.56 86.79 88.27
15 75.2 80.02 86.76 83.77 89.30 89.23 88.72 86.82 89.53 89.93 91.73
20 80.24 85.79 90.7 88.44 93.07 92.19 91.66 90.38 93.14 93.59 95.11
25 82.24 89.03 92.17 90.43 94.09 93.35 92.14 91.79 94.50 94.92 96.23

Table 4
Mean classification accuracies (%) of different methods on the tested datasets.
Dataset Method

Training samples KNN SVM LDA LDE PCE ICS_DLSR RSLDA RDA_FSIS

COIL20

20 94.58 97.65 96.19 95.00 94.87 98.04 96.73 97.85
25 95.79 98.22 97.07 96.12 95.99 98.22 97.74 98.60
30 96.65 98.70 97.81 97.01 97.49 98.75 98.26 99.10
35 97.14 98.81 98.15 97.42 98.11 99.12 98.68 99.36

Georgia

3 52.57 56.22 48.18 52.77 46.43 59.73 62.32 62.67
5 61.28 66.98 59.20 62.14 56.18 71.12 73.48 74.28
7 66.73 72.83 67.83 67.10 62.15 78.38 78.82 79.98
9 71.40 77.53 72.57 72.13 66.37 82.57 82.77 83.30

Honda

10 64.12 71.32 65.95 65.74 61.86 70.79 69.90 72.48
20 77.69 83.60 79.39 79.25 75.33 82.95 83.03 84.19
30 84.78 89.09 85.84 86.24 82.55 88.20 89.04 89.44
50 91.36 94.15 92.28 92.34 90.03 93.53 94.13 94.54

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 93.19 94.01
6 90.35 92.93 94.18 92.15 88.73 93.65 94.25 94.63
7 92.60 94.31 95.60 94.26 91.09 95.20 95.66 96.09
8 94.27 95.23 96.03 95.57 93.20 96.17 96.43 96.67

USPS

30 87.01 88.21 84.91 83.54 72.01 88.46 89.45 90.05
40 88.56 90.40 86.19 85.3 72.30 90.16 91.11 91.27
55 90.51 92.09 88.64 87.16 73.32 91.25 92.65 92.56
65 91.76 93.16 89.29 88.58 74.11 91.53 92.89 93.33

LFWA-a

5 9.90 12.72 20.51 9.98 9.44 22.56 24.70 28.07
6 10.57 13.61 25.28 10.49 10.26 25.72 28.42 30.98
7 11.06 14.70 28.62 11.24 10.98 29.04 31.50 33.28
8 11.35 15.72 32.42 11.71 11.73 31.92 32.48 35.80

Table 5
Mean classification accuracies (%) of different methods on the Caltech101 dataset
using original and Deep features.
Caltech101 5 training samples

Method LBP features Deep features

ICS_DLSR 17.20 84.86
RSLDA 16.00 85.34
RDA_FSIS 17.81 85.69

Table 6
Mean classification accuracies (%) of different methods on the MNIST dataset.
KNN SVM LDA LDE PCE ICS_DLSR RSLDA RDA_FSIS

91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.25

where min(Z) and max(Z) denote the minimum and maximum
values in the Z matrix respectively. These two values are stored in
order to perform the same normalization (shifting and rescaling)
on the projected test data.

The reported classification rates of the methods are chosen
from the best parameter configurations and correspond to the
average over 10 randomly selected splits as mentioned before.

4.3. Experimental results

In this section, we will present the results obtained in our
experiments. We will compare our proposed method with the
other methods mentioned in Section 4.2.

Tables 3–4 present the mean classification rates of the pro-
posed and competing methods on the Extended Yale B, COIL20,
Georgia, Honda, FEI, USPS and LFW-a, respectively. The classifier

Table 7
Mean classification accuracies (%) of different methods on the PubFig83
dataset.
Method Classification accuracy

KNN 63.35
SVM 82.60
LDA 77.95
LDE 62.89
ELDE 65.88
PCE 50.40
SULDA 81.26
MPDA 67.89
ICS_DLSR 85.19
RSLDA 84.78
DeepLDA 44.35
Alexnet 64.00
Resnet50 90.40
RDA_FSIS 84.84

used in the projection space was the NN classifier. The depicted
rates are the average over 10 random splits, and correspond
to different numbers of training samples in each case. The left
column in every table depicts the number of training images per
class.

Table 5 presents the mean classification rate of the proposed
and competing methods on the Caltech101 dataset in both cases
using the LBP features and the deep features. We emphasize that,
for the classification results using the deep features, we did not
perform any preprocessing using PCA. Bold numbers denote the
best results obtained in each experiment.

Experimental results using large-scale datasets: Tables 6
and 7 present the mean classification accuracy of our proposed
method alongside with competing methods for a single split and
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Fig. 3. Classification rates (%) vs. dimension on (a) Extended Yale B, (b) COIL20
and (c) Honda datasets, in which 10,30 and 10 samples from each class are used
for training respectively and the rest for testing using Nearest neighbor classifier
(NN).

using the experimental settings stated in Section 4.1 for the
MNIST and PubFig83 datasets, respectively. The classifier used to
obtain these results is the Nearest Neighbor (NN) classifier.

Besides the compared methods mentioned above, three typ-
ical deep learning methods, i.e., DeepLDA (Dorfer, Kelz, & Wid-
mer, 2015), Alexnet (Krizhevsky, Sutskever, & Hinton, 2012), and
Resnet50 (He et al., 2016) were also evaluated on the PubFig83
database. For DeepLDA and Alexnet, the 8720 training images of
PubFig83 are used for training without any pre-trained models.
For Resnet50, we use a pre-trained net that is fine-tuned on the
8720 training images of PubFig83. The experimental results are
shown in Table 7. As can be seen, the obtained results compete
with deep learning paradigms. Although deep learning paradigms
may provide more discriminant features, they require a good
pre-trained network as well as a large training dataset.

Fig. 3 illustrates the obtained classification performance (%) of
the LDE (Chen et al., 2005), LDA (Tharwat et al., 2017), RSLDA

Fig. 4. Classification rates (%) of the proposed and competing methods on the
Extended Yale B dataset (a) and on the COIL20 dataset (b). 10 and 30 training
samples from each class were used respectively. The classifier used was the SVM
Classifier.

Fig. 5. Classification rates (%) vs. the number of dimensions of our proposed
method on the Caltech101 database in which 5 samples from each class are
used for training and using the KNN Classifier.

(Wen, Fang et al., 2018) and our proposed method vs. the di-
mension of the projected features for the (a) Extended Yale B (10
training samples used), (b) COIL20 (30 training samples used) and
(c) HONDA (10 training samples used) datasets respectively. The
results were obtained using the Nearest Neighbor (NN) Classifier.

Fig. 4 illustrates the average performance on 10 splits of the
proposed method and competing methods vs. the number of
dimensions for the Extended Yale B and COIL20 datasets in which
10 and 30 samples from each class are used as training and the
rest as test samples. The results were obtained using the SVM
Classifier.

Effect of projected data normalization. Fig. 5 illustrates the perfor-
mance enhancement obtained by our proposed method when the
projected features are normalized before the classification pro-
cess. This figure shows the results obtained with the Caltech101
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Fig. 6. t-SNE visualization of (a) the original feature space and (b) the features obtained after a projection by our method, on the Extended Yale B dataset with 25
training samples.

Fig. 7. CD diagram of different methods.

dataset using 5 samples from each class as training samples and
the rest as test samples. The results correspond to three randomly
selected splits. The red curve shows the performance obtained
when the projected data are not normalized. The blue curve
depicts the performance when the projected data are normalized.

t-SNE visualization. Fig. 6 shows the distribution of the 2414
images of the Extended Yale B dataset (training and test samples)
using the t-SNE (Maaten & Hinton, 2008) technique. In this case,
25 images from each class are used for training (i.e., learning the
projection). Fig. 6a shows the distribution of the images of the
dataset when the t-SNE uses the original features, while Fig. 6b
shows the distribution of the same images when t-SNE uses the
projected features obtained by our proposed method.

4.4. Statistical analysis

Statistical analysis of the results can be obtained by per-
forming the Friedman test (Dems̆ar, 2006). This test is used to
compare the average ranks of different algorithms. The null hy-
pothesis states that all the algorithms are equivalent, and thus,
their ranks should be equal. If the null hypothesis is rejected,

one can perform a post-hoc test (the Nemenyi test) to find out
which algorithms significantly differ. The Friedman test (run on
the average rank of the 8 methods) stated that the performance
of all 8 methods is not the same. The Critical Distance CD is
computed (Dems̆ar, 2006). In our case, we have a total of 8
methods with 30 evaluations.

Fig. 7 shows the CD diagram for the 8 methods, where the
average rank of each is marked along the axis. The CD diagram
allows to have groups of methods that are significantly different.

Experimental results have shown that it is more meaningful to
apply the Friedman test on the proposed method in addition to
the two most competing methods RSLDA (Wen, Fang et al., 2018)
and ICS_DLSR (Wen, Xu et al., 2018). The diagram resulting from
the test is shown in Fig. 8.

4.5. Parameter sensitivity analysis

In this section, we will study the effect of the algorithm pa-
rameters on the final performance. We will also study the effect
of removing the term

∑C
i=1 ∥Fi∥2,1 in the objective criterion of our

method (8).
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Fig. 8. Statistical Analysis diagram of the proposed method and two most
competing methods.

Our proposed method has mainly three balance parameters
λ1, λ2, and λ3. λ1 controls the row sparsity of the sought linear
transform Q, λ2 enforces the robust PCA and λ3 imposes the
inter-class sparsity of the projected data.

We will quantify the classification rates over the test data
when these parameters vary. Again, we will adopt ten random
splits in order to compute these rates.

Figs. 9–11 study the influence of the parameters of our pro-
posed method in terms of recognition rate (%) using the Extended
Yale B, Georgia and USPS datasets, respectively. The number of
training images taken from each class was fixed to 10, 9 and 40
for the Extended Yale B, Georgia and USPS datasets, respectively.
Sub-figures (a) of the three figures show the recognition rates
when the parameters λ1 and λ2 vary while λ3 is fixed. Subfigures
(b) show the recognition rates when the parameter λ3 varies
while λ1 and λ2 are kept fixed for the best combination.

From the above results that depict the performance using a
grid search, we can have a rough idea about the optimal domains
for each parameter and for each dataset.

Therefore, Fig. 9a shows that a satisfactory performance can
be obtained on the Extended Yale dataset when λ1 and λ2 are
chosen in the ranges [105, 107] and [10−12, 10−10], respectively.
On the other hand, according to Fig. 9b, any value for λ3 will
almost result in the same performance for this dataset.

Fig. 10a (Georgia dataset) shows that satisfactory performance
can be obtained for λ1 in [106, 108] and λ2 in [10−13, 10−11]. In
addition, Fig. 10b shows that values of λ3 have a noticeable effect
on the classification and should be less than 105 for the Georgia
dataset.

Fig. 11a (USPS dataset) shows that satisfactory performance
can be obtained for λ1 in [106, 108] and for λ2 in [10−9, 10−7].
Fig. 11b shows that the chosen values of λ3 have no effect on the
recognition in the case of the USPS dataset.

By combining the quantitative results of the sensitivity of
the three parameters, we can deduce that λ1 should be large
(e.g., 106), λ2 should be very small (e.g., 10−7) and λ3 should be
greater than one.

In a second group of experiments, we study the effect of inter-
class sparsity on the final performance. To this end, we remove
the term

∑C
i=1 ∥Fi∥2,1 in the objective criterion of our method

(8). This implies the removal of the constraints that ensure the
common sparsity of the transformed features of samples in each
class from the global criterion.

Fig. 9. Classification accuracy (%) according to parameters combinations using
the Extended Yale B dataset in which 10 samples from each class are used as
training. (a) λ3 is fixed, (b) λ1 and λ2 are fixed.

Fig. 10. Classification accuracy (%) according to parameters combinations using
the Georgia dataset in which 9 samples from each class are used as training. (a)
λ3 is fixed, (b) λ1 and λ2 are fixed.
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Fig. 11. Classification accuracy (%) according to parameters combinations using
the USPS digits dataset in which 40 samples from each class are used as training.
(a) λ3 is fixed, (b) λ1 and λ2 are fixed.

Table 8
Mean classification accuracy (%) of the proposed method on some datasets with
and without the presence of the inter-class sparsity constraint F.
Dataset Training Without With

samples inter-class sparsity inter-class sparsity

Extended Yale 10 86.36 88.27
COIL20 20 97.01 97.85
Georgia 9 82.94 83.30
Honda 20 83.63 84.19

Table 8 shows the recognition rate (%) obtained by our method
with and without the presence of the inter-class constraint in
the global criterion. We can clearly see that the introduction of
these constraints yields a better classification in general and is
important in the formulation of our algorithm.

4.6. Explicit feature selection and their effect

This section investigates the effect of feature ranking and
selection in the original data matrix X and the projection data
Q obtained by our method. We recall that our learning model
provides a ranking of the original features. Indeed, the score of
the ith original feature is given by the ℓ2 norm of the ith row of
the linear transform Q.

The purpose is to provide another linear projection space that
exploits the explicit ranking of the original features. Let Xs and Qs
denote the selected data matrix and projection matrix using the
computed scores ∥Qi∗∥

d
i=1 where Qi∗ is the ith row of the matrix

Q. To compute Xs and Qs, we proceed as follows (see Fig. 12).
Process: After applying our proposed method, we obtain the

projection matrix Q. First, we calculate the score corresponding
to each row of the matrix Q by calculating its ℓ2 norm. Thus, we
have score(i) = ∥Qi∗∥2 where i = 1, . . . , d.

Second, we sort the obtained scores in a descending order so
that the most important features are in the top. Third, we rank
the original d features of the data X and the projection matrix Q
according to the sorted scores.

Let s be the number of selected features in the original space
(s ≤ d). The obtained ranked X and Q are then cropped (only the
s top rows in these two matrices are kept. The resulting matrices
are denoted by Xs ∈ Rs×N and Qs ∈ Rs×d, respectively. Finally,
we obtain the projected data Z = Qs

TXs. We emphasize that the
dimensionality of the projection space is the same if we use either
Z = QTX or Qs

TXs. However, these two projections are different.
Furthermore, by varying the number s of selected features, we can
obtain several projection spaces.

More importantly, we notice that these new projection spaces
do not need to solve the objective function (8). Indeed, the com-
putation of matrices Xs and Qs is very efficient since it only
requires norms computation followed by a ranking and selection
of their rows.

Fig. 13 illustrates the recognition rate of the proposed method
as a function of the original features, s, selected from the data
matrix X and the projection matrix Q.

Fig. 13a shows the recognition accuracy of the
proposed method vs. the number of original features for the
Extended Yale B dataset in which 5 samples per class are used
for training and the rest for testing. The experiment is conducted
on a single split, and the studied features are the original ones
(not processed by PCA).

Fig. 13b shows the recognition accuracy of the proposed
method for the USPS dataset in which 30 samples per class are
used for training and working on 10 splits without PCA.

Fig. 13c denotes the recognition accuracy of the proposed
method for the Caltech101 dataset in which 5 samples per class
are used for training and the rest for testing. Here, the deep
features (2048 features) of Caltech101 dataset are used and the
results shown in Fig. 13c correspond to the average of 3 splits. In
this case no PCA was applied on the data.

In Fig. 13, the blue plot depicts the recognition accuracy of
the test data after computing a projection space based on a
subset of the original features in the raw data matrix X and in
the Q without any ranking. The red plot shows the recognition
accuracy vs. the dimension of ranked Xs and Qs as explained
above.

Fig. 13 (see the red curves) shows that the use of selected
original features yields better performance for the same number
of original features (see the blue curves).

The same figure (see the red curves) shows that the proposed
method can achieve and guarantees superiority over other meth-
ods, when selecting 73% of the original features (750 features out
of 1024) for the Extended Yale B dataset and 66% of the original
features (170 features out of 256) for the USPS dataset. For the
Caltech101 dataset selecting around 1400 features from a total
of 2048 (69%) is enough to ensure that the proposed method
achieves superiority over the compared methods in this paper.

Fig. 14 illustrates the most relevant pixels in the USPS im-
ages. Pixels in yellow color denote the best 66% (170 features)
of the original pixels. These former are found by the estimated
projection matrix as being the most important features used
in classification process. Pixels in dark blue correspond to the
least important features. In general, we can see that the pixels
on borders of the image are not useful. In contrary, the pixels
belonging to the center of the image are the most important in
classification.

In general, s can have any value above 75% of the original
features in order to guarantee our method’s superiority over com-
peting methods. It is worthy noticing that our proposed method
is superior to other competing methods in this paper even when
all original features are used.
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Fig. 12. Illustration of features selection and ranking, the example given and described shows the ranked features (3,2,1,4), the scores are sorted in a descending
order which indicates in this example that row number 3 has the highest score and row number 4 has the lowest one.

Fig. 13. Recognition rates (%) vs. the number of selected features from X and
Q for (a) the Extended Yale B database, (b) the USPS digits dataset, and (c)
the Caltech101 dataset, in which 5 and 30 and 5 samples from each class
respectively are used for training and the remaining samples for testing, (NN)
classifier is used.

Fig. 14. Map of selected pixels (66%) associated with USPS images.

4.7. Convergence analysis

We have solved the proposed method as an optimization non-
convex problem (8) using the alternating direction method of
multipliers (Boyd et al., 2011). We plotted the objective function
of our problem with respect to the number of iterations.

The objective function is calculated through:

f = Tr (QT SQ)+ λ1 ∥Q∥2,1 + λ2 ∥E∥1 + λ3

C∑
i=1

∥Fi∥2,1

Figs. 15 and 16 show the objective function of the proposed
method for the Extended Yale and COIL20 datasets, respectively.
These figures illustrate the recognition rates as a function of
the number of iterations. As can be seen, the objective function
decreases with the increase of the number of iterations and
gets close to a stable value within a limited number of itera-
tions, which demonstrates a good convergence of the proposed
method. These two figures illustrate also the recognition rates as
a function of the number of iterations.

4.8. Analysis of the results and method comparison

The experimental results presented in the figures and ta-
bles of this paper demonstrate the superiority of the proposed
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Fig. 15. Objective function value and classification accuracy of the proposed
method with respect to the number of iterations. The objective function
corresponds to the Extended Yale B dataset in which 10 samples from each
class are randomly selected and used as training samples.

Fig. 16. Objective function value and the classification accuracy of the proposed
method with respect to the number of iterations. The objective function
corresponds to the COIL20 dataset in which 30 samples from each class are
randomly selected and used as training samples.

method compared to other competing methods. However, many
observations can be made.

In most of cases, the proposed method provided superior
recognition accuracy (%) than other competing methods in the
tested cases depicted in Tables 3–7. Nevertheless, the proposed
method was outperformed by the RSLDA method while using the
USPS digits dataset in only the case in where 55 training samples
from each class were used for training. However, for the same
dataset (USPS), in the remaining cases related to other training
percentages, the proposed method led to better performance and
again outperformed its competing methods.

It is important to emphasize that the proposed method pro-
vided a superior performance over the competing methods when
the SVM classifier was used (Gunn et al., 1998) as depicted in
Fig. 4. Both KNN and SVM classifiers can be used to achieve
superior classification using the proposed projection method.

In addition, the proposed method achieved high classification
accuracy without using a lot of features. Fig. 3 demonstrates that
the proposed method performs well on low dimensions with few
features in the projected space.

The t-SNE visualization presented in Fig. 6 to illustrate the
distribution of images for the Extended Yale dataset demonstrates
that the projected data are better discriminated. Indeed, the im-
ages belonging to the same class are grouped close to each other
while the ones belonging to different classes are pushed away,
leading to a good classification property.

Also, it is worthy to note that the normalization of the data
after performing the projection using the proposed method and
before the classification process could lead to an enhancement in
the classification process for some datasets.

We have noticed that the recognition rates of all methods
for the images of some datasets like LFW-a and Caltech10 are
noticeably low if classic hand-crafted image descriptors are used.

These datasets are challenging with complicated backgrounds
and highly variable appearances. However, with the use of deep
features as image descriptors, the recognition rates of the pro-
posed method as well as other competing methods increase in a
noticeable way (see the Caltech101 dataset results).

We should notice that the objective of this paper is the com-
parison of projection methods in the same context and not choos-
ing the best image descriptor.

From the above results, we can conclude that the proposed
method was, in general, superior to its closest competitors (i.e.,
the RSLDA and ICS_DLSR methods). This observed superiority
is due to the following reasons. First, the RSLDA method does
not impose a common sparse structure of the projected data of
each class; whereas our proposed method imposes such property.
Second, the ICS_DLSR method is only concerned with mapping
the original space to the label space and imposes common sparse
structure for the projected data of each class. It neglects the
discrimination information that can be gained by integrating the
robust LDA criterion with feature ranking. In a nutshell, the pro-
posed method simultaneously integrated all desired properties
into one single objective function.

5. Conclusion

In this paper, we have presented a novel discriminant su-
pervised method which aims to learn an informative and dis-
criminative projection space for the data. The proposed model
was solved in an iterative way and showed good convergence
property. It can simultaneously select and use the most discrimi-
native features from the data by minimizing the ℓ2,1 norm of the
projection matrix. More discriminant and representative features
were obtained by combining classical Linear Discriminant Analy-
sis alongside with the inter-class sparsity constraint that ensures
common sparsity of the transformed features in each class.

Through this combination, the proposed method achieved
higher classification rates than many competing methods.

Future work may address many updates and could be divided
into four tracks. First, the proposed framework can be extended
to the semi-supervised setting in which the training data have
labeled and unlabeled samples. Second, since the proposed crite-
rion is nonlinear, we may propose a refinement of the obtained
solution of the projection matrix using some gradient-based ap-
proaches. The third track is to transform the current shallow
model into a deep model that exploits several linear transfor-
mations which can lead to better data representation. Since the
proposed learning model is built upon the Linear Discriminant
Analysis criterion (first term in the proposed objective function),
the fourth track can be the trial of other discriminant criteria that
can be merged with it or replace it.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix

Proposition. Let θ ≜ (Q, P, F, E,Y1,Y2) and
{
θ t

}∞
t=1 be the se-

quence generated by Algorithm 1 and suppose that {θ}∞t=1 is bounded
at limt→∞

[
θ t+1
− θ t

]
= 0. Then every limit point of

{
θ t

}∞
t=1

satisfies the KKT conditions. Thus, whenever {θ}∞t=1 converges, it
converges to a KKT point.
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Proof. Let us assume that the proposed algorithm reaches a
stationary point. The Karush–Kuhn–Tucker (KKT) conditions are
derived as follows (we note that the procedure of solving P does
not involve in the Lagrange multipliers, and thus, we do not prove
the KKT condition for it):

1. X− PQTX = E (29)
2. F = QTX (30)

3.
∂L
∂Q
= 2 SQ+ λ1UQ+ β [XXTQ− XMTP] + β ′[XXTQ− XM′T ]

= 0 (31)

4. E = shrink λ2
β

(X− PQTX+
Y1

β
) (32)

5.
∂L

∂ |Fi|j
= [Y2(i)]j + λ3

∂
[Fi]j2

∂[Fi]j
= 0

∀i = 1, . . . , C, j = 1, . . . , d (33)

where Fi and Y2(i) are the ith submatrices of F and Y2 correspond-
ing to the samples of the ith class, respectively. [Fi]j and [Y2(i)]j
denote the jth row vectors of Fi and Y2(i), respectively.

• Let (Q+, P+, F+, E+,Y1
+,Y2

+) be the solution at the next
iteration (i.e. at iteration t + 1). The Lagrange multipliers Y1
and Y2 from Algorithm 1 are given by:

Y1
+
= Y1 + β (X− PQTX− E) (34)

Y2
+
= Y2 + β ′(F− QTX) (35)

If the sequences of variables
{
Y1

t} and
{
Y2

t} converge to a
stationary point as (Y+1 − Y1)→ 0 and (Y+2 − Y2)→ 0, then
we have:

X− PQTX− E → 0 (36)
F− QTX → 0 (37)

Thus, the first two KKT conditions are satisfied.
• According to Algorithm 1, the expression of Q+ is given by:

Q+ = A−1(BXMTP+ β ′XM
′T ) (38)

where

A = (2 S+ λ1U+ βXXT
+ β ′XXT ) (39)

Q+ − Q→ 0 ⇒ A−1(BXMTP+ β ′XM
′T )− Q = 0

⇒ 2SQ+ λ1UQ+ β[XXTQ− XMTP] + β ′XM′T

= 0

(40)

Thus, the third KKT condition is satisfied.
• We have:

Y1 = λ2
∂

∂E
∥E∥1 (41)

This yields:

X− PQTX+
Y1

β
= X− PQTX+

λ2

β

∂

∂E
∥X− PQTX∥1

= Γ λ2
β

(X− PQTX)
(42)

where Γ λ2
β

(x) denotes element-wise scalar function that is

given by Γ λ2
β

(x) = x+ λ2
β

∂|x|.

By using the inverse function of Γ λ2
β

(x) in the above equa-
tion, we get the expression of E as:

E+ = Γ −1λ2
β

(X− PQTX+
Y1

β
) (43)

From Shen, Wen, and Zhang (2014), the inverse of the func-
tion Γ λ2

β

(x) is approximated by the element-wise shrinkage

operator with parameter equal to λ2
β

(defined in Eq. (18)):

E+ ∼= shrink λ2
β

(X− PQTX+
Y1

β
) (44)

E+ − E = shrink λ2
β

(X− PQTX+
Y1

β
)− E (45)

When E+−E→ 0, then E = shrink λ2
β

(X−PQTX+ Y1
β
). Thus,

the fourth KKT condition is satisfied.
• Since F = QTX (second KKT condition) and H = QT X − Y2

β ′

(definition of the matrix H in Eq. (20)), we have:

Y2

β ′
= F− H (46)

From Eq. (24), when {F}∞t=1 converges, we have:

[Fi]+j − [Fi]j

=

⎧⎪⎪⎨⎪⎪⎩
[Hi]j −

λ3 [Hi]j
β ′

⏐⏐⏐⏐[Hi]j
⏐⏐⏐⏐

2

− [Fi]j = 0 if
[Hi]j


2 >

λ3

β ′

− [Fi]j = 0, if ∥ [Hi]j ∥2 ≤
λ3

β ′

(47)

where Hi is the ith submatrix of H corresponding to the
samples of the ith class and [Hi]j denotes the jth row vector
of Hi.
From Liu et al. (2009), we have:

∂
(⏐⏐⏐⏐[Fi]j⏐⏐⏐⏐2)
∂ [Fi]j

=

⎧⎪⎪⎨⎪⎪⎩
[Fi]j⏐⏐⏐⏐[Fi]j⏐⏐⏐⏐2 , if [Fi]j ̸= 0 (∥ [Hi]j ∥2 >

λ3

β ′
)

β ′

λ3
[Hi]j , if [Fi]j = 0 (∥ [Hi]j ∥2 ≤

λ3

β ′
)

(48)

– If ∥ [Hi]j ∥2 >
λ3
β ′
, then from Eq. (47), we have:

[Hi]j −
λ3

β ′

[Hi]j⏐⏐⏐⏐[Hi]j
⏐⏐⏐⏐

2

− |Fi|j = 0 (49)

Since [Hi]j − [Fi]j = −
[Y2(i)]j

β ′
(from Eq. (46)) and

[Hi]j
||[Hi]j||2

=

[Fi]j
||[Fi]j||2

( [Hi]j and [Fi]j are collinear vectors having the same
unit vector), we have:

− [Y2(i)]j
β ′

−
λ3

β ′

[Fi]j⏐⏐⏐⏐[Fi]j⏐⏐⏐⏐2 = 0

By using Eq. (48), the above equation can yield the last KKT
condition:

[Y2(i)]j+λ3
∂
[Fi]j2

∂[Fi]j
= 0 ∀i = 1, . . . , C, j = 1, . . . , d

(50)
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– If
⏐⏐⏐⏐[Hi]j

⏐⏐⏐⏐
2 <

λ3
β ′
, then the equation [Y2(i)]j+λ3

∂||[Fi]j||2
∂[Fi]j

=

0 still holds as shown below.
From Eq. (46), we have [Fi]j = [Hi]j+

[Y2(i)]j
β ′

. In the case when
∥ [Hi]j ∥2 <

λ3
β ′
, from Eqs. (47) and (48), we have respectively

[Fi]j = 0 and β ′

λ3
[Hi]j =

∂||[Fi]j||2
∂[Fi]j

. By substituting these

expressions in [Fi]j = [Hi]j +
[Y2(i)]j

β ′
, the latter becomes:

0 =
[Y2(i)]j

β ′
+

λ3

β ′

∂
⏐⏐⏐⏐[Fi]j⏐⏐⏐⏐2
∂ [Fi]j

⇒ [Y2(i)]j + λ3
∂

⏐⏐⏐⏐[Fi]j⏐⏐⏐⏐2
∂ [Fi]j

= 0 ∀i = 1, . . . , C, j = 1, . . . , d

(51)

Thus the final KKT condition is also proved.

Thus, the value of the sequence
{
θ t

}∞
t=1 asymptotically satisfies

the KKT condition for the objective function (7). □
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a b s t r a c t

In recent times, feature extraction attracted much attention in machine learning and pattern recogni-
tion fields. This paper extends and improves a scheme for linear feature extraction that can be used
in supervised multi-class classification problems. Inspired by recent frameworks for robust sparse LDA
and Inter-class sparsity, we propose a unifying criterion able to retain the advantages of these two
powerful linear discriminant methods. We introduce an iterative alternating minimization scheme in
order to estimate the linear transformation and the orthogonal matrix. The linear transformation is
efficiently updated via the steepest descent gradient technique. The proposed framework is generic in
the sense that it allows the combination and tuning of other linear discriminant embedding methods.
We used our proposed method to fine tune the linear solutions delivered by two recent linear
methods: RSLDA and RDA_FSIS. Experiments have been conducted on public image datasets of different
types including objects, faces, and digits. The proposed framework compared favorably with several
competing methods.

© 2020 Published by Elsevier Ltd.

1. Introduction

Achieving a good representation of high dimensional data was
the focus of many researches. This can be carried out using dif-
ferent strategies. The most known ones are feature selection and
feature extraction. A good data representation should also lead to
better classification performance. Thus, Representation Learning
(which includes feature extraction and selection) becomes a hot
research topic (e.g., Langley (1994), Li, Liu, Yang, Zhou, and Lu
(2013), Quinlan (2014), Raileanu and Stoffel (2004), Wang, Nie,
and Huang (2015), Zang, Cheng, Wang, and Ma (2019), Zhao et al.
(2015)). Feature extraction can be obtained by linear or nonlinear
methods. Some of these methods have the ability to extract
directly the targeted projection vectors from 2D image matrices
while taking into consideration the inter-class and margin separa-
bility alongside with the intra-class compactness simultaneously.
For instance, the two-dimensional maximum embedding differ-
ence (2D MED) (Wan, Li, Yang, Gai, & Jin, 2014) method proved
to be efficient in feature extraction. Image data may be affected by
many sorts of variations; namely: illumination conditions, poses,
in addition to dealing with different facial expressions and others.
In Wan et al. (2017), the authors addressed this problem. They

∗ Corresponding author at: University of the Basque Country UPV/EHU, San
Sebastian, Spain.

E-mail address: fadi.dornaika@ehu.eus (F. Dornaika).

proposed the ‘‘Local graph embedding based on maximummargin
criterion via Fuzzy Set’’. This method has the ability of addressing
and dealing with the above-mentioned problems. It proved to be
very efficient when the data are affected by different types of
variations.

Most of the methods focus on the estimation of a linear
transformation that maps the original features to another space
where latent variables can be obtained. For these methods, fea-
ture ranking or selection can be imposed by adding an ℓ2,1 norm
constraint on the transformation matrix in the global criterion
(e.g., Dornaika and Khoder (2020), Wen, Fang et al. (2018), Zhu,
Dornaika, and Ruichek (2019)).

In this paper, we present a discriminant embedding method
that retains the strengths of two recent discriminant methods,
namely: (i) RSLDA (Wen, Fang et al., 2018) and (ii) ICS_DLSR
(Wen, Xu, Li, Ma & Xu, 2018). The former promotes Linear Dis-
criminant Analysis that implicitly performs feature weighting.
The latter promotes inter-class sparsity which means that pro-
jected features of each class will share a common sparse struc-
ture. While the current work’s goal is similar to that of our
previous work (Dornaika & Khoder, 2020), the current proposed
criterion as well as the deployed optimization are different.

The paper has the following main contributions. First, inspired
by Dornaika and Khoder (2020), we provide a new simplified

https://doi.org/10.1016/j.neunet.2020.12.025
0893-6080/© 2020 Published by Elsevier Ltd.
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objective function that allows the estimation of the linear trans-
formation. It promotes class sparsity structure and robust dis-
criminant analysis. Second, we provide an optimization algorithm
in which the linear transformation is estimated by the gradient
descent method. This has the advantage of providing more accu-
rate solution than the closed-form one as will be demonstrated
by the experiments. Although the main goal of the current work
is to refine the solution provided by our recent ‘‘Robust Discrim-
inant Analysis with Feature Selection and Inter-class Sparsity’’
(RDA_FSIS) method, our proposed learning model can be used for
refining the solution of many linear methods.

The main characteristics of the proposed model are as follows:

• The sought transformation encapsulates two different types
of discrimination, namely: inter-class sparsity and robust
LDA.
• The method could be adopted as a fine-tuning technique

that can be used by many feature extraction methods.
• We used the gradient descent method to find a solution for

the proposed criterion which guaranteed a better and less
complex solution than the closed form one.

The paper is organized as follows. Section 2 presents some
related researches and presents the main notations. Section 3
presents the proposed criterion as well as the associated op-
timization procedure. The experiments are described and pre-
sented in Section 4. Section 5 concludes the paper.

2. Related work and notations

2.1. Notations

We will refer for the training set by X = [x1, x2, . . . , xN ] ∈
Rd×N . d is the dimension of the data samples, N denotes the
number of training samples, ni denotes the number of samples
corresponding to the ith class, and C is the number of classes.
Every data sample xi is represented by a column vector ∈ Rd. P
and Q denote the orthogonal and the desired projection matrix,
respectively. Sb and Sw represent the between-class and within-
class scatter matrices, given by Sb = 1

N

∑C
i=1 ni (µi−µ) (µi−µ)T ,

and Sw =
1
N

∑C
i=1

∑ni
j=1(xj

i
− µi) (xji − µi)T where µ, µi are the

mean of all data samples and the mean of samples of the ith class,
respectively.

The ℓ2,1 norm of a matrix Z ∈ Rd×N is given by ∥Z∥2,1 =∑d
i=1

√∑N
j=1 Z

2
ij . Its ℓ1 norm is given by ∥Z∥1 =

∑d
i=1

∑N
j=1 |Zij|.

The ℓ2 norm of a vector z = [z1, z2, . . . , zd] is obtained as follows
∥z∥2 =

√∑d
i=1 z

2
i .

2.2. Related work

In recent times, researchers proposed many linear projec-
tion approaches. Some of these methods have integrated const-
raints that implement feature weighting/selection. Feature
selection can efficiently discover the most relevant features of
the data that describe the data in the best way and enhance
discrimination (Stańczyk, Zielosko, & Jain, 2018; Xue, Zhang,
Wang, Zhang, & Li, 2018; Yang & Ong, 2012).

The Linear Discriminant Analysis (LDA) method (Duda, Hart, &
Stork, 2012) and its associated variants (e.g., Clemmensen, Hastie,
Witten, and Ersbøll (2011), Zou and Hastie (2005), Zou, Hastie,
and Tibshirani (2006)) are ones of the most used algorithms in the
machine learning field. LDA estimates a transformation matrix in
which the desired space minimizes the within-class variance and
maximizes the between-class variance. Tao, Hou, Nie, Jiao, and Yi
(2015) utilizes the ℓ2,1 norm of the LDA transformation.

Robust Sparse Linear Discriminant Analysis (RSLDA):
RSLDA (Wen, Fang et al., 2018) was proposed to tackle many

limitations of the classical LDA (Tharwat, Gaber, Ibrahim, & Has-
sanien, 2017), RSLDA mainly adds the ℓ2,1 regularization of the
projection matrix. This regularization ensures that the method
performs feature ranking and weighting.

Inter Class Sparsity Least Square Regression:
In Wen, Xu et al. (2018), the authors propose the Inter-class

sparsity based discriminative least square regression ICS_DLSR
(Wen, Xu et al., 2018). The latter provides a linear mapping to the
space of soft labels. It constructs a subspace in which the features
obtained for each class have a common sparse structure.

Robust Discriminant Analysis with Feature Selection and
Inter-class Sparsity (RDA_FSIS):

In Dornaika and Khoder (2020), we proposed a method that
imposes two kinds of sparsity: the row sparsity of the linear
transformation matrix, and the inter-class sparsity. The ℓ2,1 norm
constraint was imposed on the corresponding matrices. The
method also employed an orthogonal matrix whose role is to
ensure that the projected features can preserve the main variance
of the original data. Thus, it can improve the robustness to
possible data noise. RDA_FSIS minimizes the following criterion:

f (Q, E, P) = Tr
(
QT SQ

)
+ λ1 ∥Q∥2,1 + λ2 ∥E∥1

+ λ3

C∑
i=1

∥QTXi∥2,1 s.t. X = PQTX+ E (1)

where S = Sw − µ Sb denotes the LDA scatter matrices differ-
ence, Sw and Sb are the within-class and between-class matrices,
respectively.E is an error matrix given by E = X − PQTX. Q ∈
Rd×d is the projection matrix and P ∈ Rd×d is the orthogonal
matrix. µ is a constant used to balance the two scatter matrices.
Xi represents the data matrix corresponding to the ith class. The
optimization of (1) was carried out using the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011). In each step, a
closed-form solution was adopted for the linear transformation.

3. Proposed method

In this section, we will introduce our problem formulation and
show the steps applied to find a solution to our problem. Our
method is mainly considered as a linear projection method used
for feature extraction and targeting a more discriminative trans-
formation matrix. It is intended to enhance our previous method
(RDA_FSIS) (Dornaika & Khoder, 2020). While the goal is similar
to that of Dornaika and Khoder (2020), the current proposed
criterion as well as the deployed optimization are different. In ad-
dition to the criterion, the current work has two main differences.
First, the alternating method deployed in Dornaika and Khoder
(2020) heavily utilizes closed-form solutions in its iterations for
recovering the unknown linear transformation. However, in the
current work, the linear transformation is updated using a gra-
dient descent step. Second, the initialization used by the new
proposed criterion utilizes an initial guess that is provided by
either RSLDA or RDA_FSIS methods. Thus, two variants of the
method are proposed.

Our proposed method has inherited feature ranking by ex-
ploiting the solution of RSLDA and RDA_FSIS methods as an initial
guess for the sought transformation. This initial guess is then
refined by a gradient descent method that is inserted in the
ADMM. The latter aims to minimize the proposed criterion.
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3.1. Formulation

We propose a method for the joint estimation of the projection
matrix Q ∈ Rd×d and the orthogonal matrix P ∈ Rd×d. Since
our goal is to perform a fine tuning of an available solution, we
consider minimizing a simplified form of Eq. (1). Our proposed
scheme minimizes the following criterion:

f (Q, P) = Tr
(
QT SQ

)
+ λ1

C∑
i=1

∥QT Xi∥2,1

+ λ2 ∥X− PQT X∥22 s.t. PTP = I (2)

where Xi ∈ Rd×ni is the data matrix associated with the ith class,
ni is the number of training samples belonging to the ith class,
and C is the number of classes.

The first term in Eq. (2) is the LDA criterion where S represents
the LDA scatter matrices difference. Thus, S = Sw − µ Sb in
which Sw is the within-class matrix and Sb is the between-class
matrix. In our experiments, µ is set to 10−4. The second term
of the criterion is imposed to ensure that transformed features
of the same class, in the projected space, obtain common sparse
structure. In addition, the third term introduces a variant of
Principal Component Analysis (PCA) constraint which ensures
that original data would be recovered as well as possible. This is
equivalent to the use of a reconstruction error term used in auto-
encoders. This reconstruction term leads to a more relevant linear
transformation, and hence a higher performance can be obtained.
Our empirical results showed that the model obtained with this
term was superior than the one obtained without it. λ1 and λ2
are two regularization parameters that control the significance of
the different terms. The ℓ2,1 norm of a matrix Z can be given by:

∥Z∥2,1 = Tr
(
ZT DZ

)
(3)

where D is a diagonal matrix that is given by:

D =

⎛⎜⎝
1

∥z(1)∥2+ϵ
· · · 0

0
. . . 0

0 0 1
∥z(d)∥2+ϵ

⎞⎟⎠ (4)

Z (j) represents the jth row of Z, and ϵ is a small positive scalar.
By substituting the second term of the criterion by its trace

form, problem (2) becomes:

f (Q, P) = Tr
(
QT SQ

)
+ λ1

C∑
i=1

Tr ( (QTXi)T Di QTXi)

+ λ2 ∥X− PQT X∥22 (5)

min
Q,P

f (Q, P) s.t. PT P = I

Eq. (5) presents the criterion of the proposed method. Thus,
by looking for the minimum of this criterion, we are targeting
a transformation matrix which jointly ensures: (i) class discrim-
ination using Linear Discriminant Analysis (LDA), (ii) class-wise
common sparsity, and (iii) energy preserving property of PCA. To
find a solution for the proposed method, we used the alternating
minimization method since we have two unknown matrices.
The step that updates the linear transformation Q will deploy
a gradient descent step. This deployment has two advantages:
(1) It has a lower computational complexity compared to other
methods. (2) It leads to accurate solutions. In case of dealing with
small-sized datasets, where computing a costly matrix inversion
is not targeted, closed-form approaches can be a good option
for obtaining the solution of a minimization problem. When
working with medium- to very large-sized datasets, the Gradient
Descent approach is preferred. Furthermore, in such approaches,
the unknowns are updated incrementally and smoothly at each
iteration, which leads to more accurate solutions.

3.2. Solution steps to the proposed method

To solve the formulated problem, we have adopted the al-
ternating direction method of multipliers (ADMM) (Boyd et al.,
2011). We calculated each variable while other variables are
fixed. We proceed as follows:

• Calculate the orthogonal matrix P: This matrix can be
calculated by fixing the matrix Q and solving the following
problem:

min
PT P=I

X− PQT X
2
2 (6)

Using PTP = I and the fact that the squared norm of matrix
A is given by ∥A∥22 = Tr(ATA) = Tr(AAT ), problem (6) is
equivalent to the following maximization problem:

min
PT P=I

X− PQT X
2
2 −→ max

PT P=I
Tr (PT XXT Q) (7)

We can find a solution for problem (7) by performing the
singular value decomposition (SVD) of XXT Q. Suppose that
the SVD factorization is given by SVD (XXT Q) = UΣ VT .
Then P is obtained by Zou et al. (2006):

P = UVT (8)

• Calculate the Projection matrix Q: We have adopted a
gradient descent scheme to calculate Q in each iteration of
the proposed method. The orthogonal matrix P is fixed. We
consider the trace form of the resulting criterion:

f (Q, P) = Tr
(
QT SQ

)
+λ1

C∑
i=1

Tr ( XT
i Q Di QTXi)+λ2 ∥X−PQT X∥22

We calculate the gradient of the objective function w.r.t. Q
as follows:

G =
∂ f
∂ Q
= 2 S Q+λ1

C∑
i=1

2 Xi XT
i Q Di+2λ2 [X XT Q−X XT P]

(9)

Using the computed gradient matrix, we can update Q by:

Qt+1 = Qt − α G (10)

where Qt+1 and Qt denote the projection matrix Q in itera-
tion t + 1 and iteration t respectively. α is the step length
(learning rate).
• Update the matrices Di: We update Di, (i = 1, . . . , C) by:

Di =

⎛⎜⎜⎝
1

∥QTXi(1)∥2+ϵ
· · · 0

0
. . . 0

0 0 1
∥QTXi(d)∥2+ϵ

⎞⎟⎟⎠ (11)

where ϵ is a small positive scalar and QTXi (j) represents the jth
row vector of QTXi.

Algorithm 1 summarizes the proposed scheme and presents
the main stages for optimizing problem (2).
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Algorithm 1. Enhanced Discriminant Analysis with Class
Sparsity using Gradient Method RDA_GD, EDA_CS
Input: 1. Data samples X ∈ Rd×N

2. Labels of the training samples
3. The step length of the gradient descent α

4. Parameters λ1, λ2
Output: P, Q

Initialization: Q(0) obtained from RSLDA or RDA_FSIS (see
Section 3.3).

Process: set t = 0 and Q = Q(0)

Repeat
Fix Q, update P(t+1) using Eq. (8).
Calculate the gradient matrix G using Eq. (9)
Fix P, update Q(t+1) using Eq. (10).
Update Di using Eq. (11)
set t = t + 1
Until convergence

Once the transformation matrix, Q, is estimated by Algorithm
1, the training and test samples are projected to the new sub-
space. This is carried out by ztrain = QT xtrain and ztest = QT xtest
where xtrain is a training data sample, and xtest is a test data
sample.

3.3. Initialization of projection matrix Q

The linear transformation Q requires a good initial guess since
it is estimated by a gradient descent scheme. We used two
initialization procedures leading to two variants of the proposed
algorithm. The first variant is called Robust Discriminant Analysis
using Gradient Descent RDA_GD. In this variant, the initial guess
Q(0) for the linear transformation matrix Q is set to the solution
of the RSLDA (Wen, Fang et al., 2018) method (solved using
its own ADMM optimization). This initial transformation inher-
its the feature ranking delivered by RSLDA. The second variant,
denoted as Enhanced Discriminant Analysis with Class Sparsity
EDA_CS, sets the initial guess Q(0) to the solution provided by
RDA_FSIS (Dornaika & Khoder, 2020). This variant inherits the
feature ranking and inter-class sparsity advantages exploited by
RDA_FSIS method.

3.4. Computational complexity

This section is intended to analyze the computational com-
plexity of the proposed method (see Algorithm 1).

Cost of Algorithm 1: This algorithm iteratively estimates the
matrices Q and P. The orthogonal matrix P requires a singular
value decomposition. The computational cost of an SVD decom-
position of a d× d matrix is O

(
d3

)
. Q is calculated in the second

step of Algorithm 1. This step requires the calculation of the
corresponding gradient matrix. Since these two steps consist of
simple matrix operations, they have small computational cost and
thus can be ignored. Also the step intended to update Di (Eq. (11))
is a simple matrix operation that has a very small cost and can
also be ignored. Hereby, the total computational cost of Algorithm
1 is O

(
τ ′ (d3)

)
where τ ′ denotes the number of iterations of

Algorithm 1.
Cost of RDA_GD: In the first variant of our proposed method,

we used the RSLDA (Wen, Fang et al., 2018) method for the
initialization of the transformation matrix Q before feeding to
our algorithm. Thus, the complexity of RSLDA method should
be added to the complexity of Algorithm 1. Let τ represent
the number of iterations of RSLDA. The latter has a complexity
of O

(
τ (d2N + 4d3)

)
. In summary, the overall cost of the first

proposed variant (RDA_GD) would be the sum of the RSLDA cost
and the cost of Algorithm 1 which is equal to O

(
τ (d2N + 4d3)

)
+ O

(
τ ′ (d3)

)
where τ ′ denotes the number of iterations of Algo-

rithm 1.
Cost of EDA_CS: For the second proposed variant EDA_CS, we

have constructed the initial guess of the transformation matrix
from the RDA_FSIS (Dornaika & Khoder, 2020) method. Know-
ing that the latter has a complexity of O (τ (2d3)), the second
proposed variant has an overall complexity of O

(
τ (2d3)

)
+

O
(
τ ′ (d3)

)
where τ and τ ′ represent the number of iterations of

RDA_FSIS and Algorithm 1 respectively.

4. Performance evaluation

To test the two proposed variants, we have conducted ex-
periments on several datasets including faces, objects and hand-
written datasets. In our work we have used the following six
public datasets in addition to a large-scale dataset: USPS1 digits
dataset, Honda2 dataset, COIL203 object dataset, Extended Yale
B4 face dataset, FEI5 dataset, Georgia,6 and the large scale MNIST
dataset consisting of 60,000 images. Details about these datasets
are summarized in Table 1.

In this section, we will present the classification performance
when the projected spaces are obtained by the proposed scheme
and the competing methods. The proposed method has two vari-
ants: RDA_GD and EDA_CS (see above text).

The two proposed variants were compared with the following
approaches: K-nearest neighbors (KNN) (Kozma, 2008), Support
Vector Machines (SVM) (Chang & Lin, 2011) (the Linear SVM
was implemented using the LIBSVM library7), Linear Discriminant
Analysis (LDA) (Tharwat et al., 2017), PCE (Peng, Lu, Yi, & Yan,
2016) (unsupervised method), ICS_DLSR (Wen, Xu et al., 2018),
Robust sparse LDA (RSLDA) (Wen, Fang et al., 2018), Joint Robust
Discriminant Analysis and Inter-class Sparsity (RDA_FSIS) (Dor-
naika & Khoder, 2020) and Local Discriminant Embedding (LDE)
(Chen, Chang, & Liu, 2005). To construct the graph required by the
LDE method, three main parameters are required. These are the
number of homogeneous neighbors (K1), the number of hetero-
geneous neighbors (K2), and the regularization parameter in the
LDE criterion denoted as β . In our experiments, we have adopted
the values of 3, 5 and 0.02 for K1, K2, and β , respectively.

The proposed method alongside with the compared ones were
tested under the same conditions in order to guarantee a fair
comparison. Datasets were randomly split into a training part and
a test part. First, for each compared embedding method, a trans-
formation matrix was estimated from the training part. Then,
training and test data were projected onto the new space using
the computed transformation. Finally, the Nearest Neighbor clas-
sifier (NN) (Cunningham & Delany, 2007) was used to classify the
test data, the value of K was set to 1 (K=1). Different percentages
of training were tried. Moreover, for a given percentage of train-
ing data, the whole evaluation was repeated ten times. Indeed,
we adopted ten random splits for every configuration and re-
ported the average recognition rate (rate of correct classification
of test part) over these ten random splits. We used PCA as a pre-
processing technique with an energy preservation rate of 100%.
The value for α was chosen from the set {10−7, 10−6, 10−5, 10−4}.

1 https://www.kaggle.com/bistaumanga/usps-dataset.
2 http://vision.ucsd.edu/~leekc/HondaUCSDVideoDatabase/HondaUCSD.html.
3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
4 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
5 https://fei.edu.br/~cet/facedatabase.html.
6 http://www.anefian.com/research/face_reco.htm.
7 https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 1
Brief datasets description.
Dataset Type # Samples # Features # Classes Descriptor

USPS Digits 1100 256 10 RAW-brightness images
Honda Face 2277 1024 22 RAW-brightness images
COIL20 Object 1440 177 20 Local Binary Patterns
Extended Yale B Face 2414 1024 38 RAW-brightness images
FEI Face 700 1024 50 RAW-brightness images
Georgia Face 750 1024 50 RAW-brightness images
MNIST Digits 60,000 2048 10 Deep features (ResNet-50)

Table 2
Mean classification accuracies (%) of different methods on the tested datasets.
Dataset Method

Train./class KNN SVM LDA LDE PCE ICS_DLSR RSLDA RDA_FSIS RDA_GD EDA_CS

USPS
30 87.01±1.5 88.21±1.2 84.91±1.7 83.54±1.3 72.01±1.1 88.46±0.8 89.45±1.2 90.05±0.8 89.50±1.2 90.40±0.8
40 88.56±1.6 90.40±0.9 86.19±0.9 85.3±1.2 72.30±1.7 90.16±0.7 91.11±1.0 91.27±0.9 91.81±1.1 91.76±0.5
55 90.51±1.4 92.09±0.8 88.64±1.0 87.16±1.7 73.32±2.2 91.25±1.2 92.65±1.1 92.56±1.2 93.07±1.0 93.40±1.0
65 91.76±1.3 93.16±0.9 89.29±1.5 88.58±1.1 74.11±1.9 91.53±1.3 92.89±1.0 93.33±1.0 93.71±0.9 93.73±0.6

Honda
10 64.12±2.1 71.32±2.1 65.95±2.2 65.74±2.2 61.86±2.2 70.79±2.5 69.90±2.1 72.48±2.0 70.16±1.9 72.73±2.0
20 77.69±1.2 83.60±1.0 79.39±1.4 79.25±1.7 75.33±1.4 82.95±1.2 83.03±1.3 84.19±1.4 83.60±1.2 84.40±1.4
30 84.78±1.3 89.09±1.0 85.84±1.1 86.24±1.1 82.55±1.8 88.20±1.0 89.04±1.2 89.44±1.0 89.41±1.1 89.66±1.1
50 91.36±0.9 94.15±1.2 92.28±1.1 92.34±0.8 90.03±0.7 93.53±0.6 94.13±0.8 94.54±1.0 94.53±0.8 94.45±0.9

FEI
5 88.98±2.5 91.18±2.3 92.60±3.6 90.67±2.6 86.04±3.2 92.16±2.7 93.19±2.5 94.01±2.3 93.81±2.6 94.24±2.7
6 90.35±2.7 92.93±2.8 94.18±3.9 92.15±2.7 88.73±3.7 93.65±2.7 94.25±2.3 94.63±2.3 94.75±2.5 94.80±1.9
7 92.60±3.6 94.31±2.5 95.60±3.5 94.26±3.0 91.09±4.2 95.20±2.2 95.66±1.5 96.09±1.5 96.20±1.5 96.26±1.8
8 94.27±2.9 95.23±2.2 96.03±3.5 95.57±2.4 93.20±4.4 96.17±1.9 96.43±1.6 96.67±1.7 96.97±1.7 96.87±2.0

COIL20
20 94.58±0.9 97.65±1.3 96.19±0.8 95.00±0.7 94.87±1.6 98.04±0.5 96.73±0.6 97.85±0.6 96.89±0.6 98.05±0.6
25 95.79±0.8 98.22±0.7 97.07±0.8 96.12±0.7 95.99±1.3 98.22±0.6 97.74±0.7 98.60±0.5 97.89±0.5 98.74±0.5
30 96.65±0.6 98.70±0.8 97.81±0.5 97.01±0.6 97.49±0.7 98.75±0.1 98.26±0.7 99.10±0.4 98.52±0.6 99.15±0.5
35 97.14±0.7 98.81±0.8 98.15±0.3 97.42±0.6 98.11±0.6 99.12±0.4 98.68±0.6 99.36±0.4 98.80±0.6 99.55±0.2

Georgia
3 52.57±1.4 56.22±2.3 48.18±2.8 52.77±2.3 46.43±2.3 59.73±2.1 62.32±2.2 62.67±2.0 62.35±2.2 63.05±1.6
5 61.28±1.5 66.98±1.9 59.20±1.9 62.14±1.6 56.18±1.9 71.12±1.3 73.48±1.6 74.28±1.1 73.54±1.5 74.68±1.2
7 66.73±1.5 72.83±1.2 67.83±2.4 67.10±2.0 62.15±1.8 78.38±1.4 78.82±1.1 79.98±1.7 79.42±1.7 80.30±1.3
9 71.40±1.0 77.53±2.0 72.57±3.0 72.13±2.3 66.37±2.9 82.57±2.1 82.77±2.2 83.30±2.1 82.80±2.2 83.33±2.1

Extended Yale B
10 69.80±4.5 73.85±5.6 82.32±5.1 79.92±4.3 86.39±3.1 86.56±4.5 86.79±4.8 88.27±4.5 87.10±4.4 88.59±4.1
15 75.20±4.5 80.02±4.6 86.76±4.7 83.77±4.9 89.23±3.4 89.53±3.8 89.93±3.8 91.73±3.6 90.04±3.8 91.89±3.6
20 80.24±2.5 85.79±2.8 90.70±2.4 88.44±2.2 92.19±1.4 93.14±2.2 93.59±2.5 95.11±1.8 93.75±2.5 95.22±1.8
25 82.24±3.3 89.03±1.5 92.17±1.3 90.43±2.1 93.35±1.0 94.50±1.1 94.92±1.2 96.23±0.8 95.02±1.2 96.33±0.7

MNIST 1000 91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.25 98.21 98.30

The results are summarized in Table 2. This table depicts the
classification rates as well as the standard deviations of the two
proposed variants and the competing methods using the USPS,
Honda, FEI, COIL20, Georgia and Extended Yale B datasets. The
results are obtained using different training and testing percent-
ages from the data and over 10 random splits. The last row in
Table 2 illustrates the classification accuracy using the large scale
MNIST dataset (60,000 images), results for the MNIST dataset
are obtained using a single split when using 1000 samples from
each class for training. Fig. 1 illustrates the obtained confusion
matrix associated with the test part of the MNIST dataset using
the second variant of our proposed method EDA_CS, this figure
shows the distribution of the predicted samples over different
classes.

Analysis of results: The first proposed variant of our method
has slightly outperformed the RSLDA method. This is realistic
since the first proposed method mainly provides a fine-tuning
of the RSLDA transformation. The second variant outperformed
the first variant and other competing methods, and gave the best
performance in classification. This is because this variant was
initialized through the solution of RDA_FSIS method and hence
inherited its advantages. We have noticed that satisfactory per-
formance can be achieved while choosing the values of λ1 and λ2
from the sets {10−3, 10−2, 10−1, 1, 10} and {10−3, 10−2, 10−1, 1,
10, 102

} accordingly. Generally, a value of 0.1 for both λ1 and λ2
seems to be a good choice for the two variants.

5. Conclusion

We introduced a novel criterion in order to obtain a discrim-
inant linear transformation. Our proposed approach differs from

competing methods where both the criterion and the optimiza-
tion were different. We used the gradient descent method to find
a solution for the proposed criterion which guaranteed a better
and enhanced solution than the closed form one used by most of
the stated competing methods.

Two different types of discrimination were imposed; namely,
(i) inter-class sparsity and (ii) robust LDA. We deployed an it-
erative alternating minimization scheme to estimate the linear
transformation and the orthogonal matrix associated with the
robust LDA. The linear transformation was efficiently updated
via the steepest descent gradient technique. We proposed two
initialization schemes for the linear transformation. Our proposed
method has been able to achieve higher performance and con-
tributed in delivering a more discriminant transformation than
the existing competing methods. Our method’s strong point is
that it could be used as a fine-tuning technique that is usable
by many other feature extraction methods. The general aspect
comes from the fact that our proposal is a gradient descent based
refinement which is applied on a closed-form solution. The pro-
posed framework can retain the advantages of multiple methods
and lead to enhanced performances. Experiments conducted on
several public image datasets have shown that the proposed
scheme can outperform many discriminant methods as well as
the iterative optimization based on closed-form solutions.
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Fig. 1. Confusion Matrix for the MNIST dataset.
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Abstract
In recent times, feature extraction was the focus of many researches due to its usefulness in the machine learning and pattern
recognition fields. Feature extraction mainly aims to extract informative representations from the original set of features.
This can be carried out using various ways. The proposed method is targeting a hybrid linear feature extraction scheme for
supervised multi-class classification problems. Inspired by recent robust sparse LDA and Inter-class sparsity frameworks,
we will propose a unifying criterion that is able to retain these two powerful linear discriminant method’s advantages. Thus,
the obtained transformation encapsulates two different types of discrimination, the inter-class sparsity and robust Linear
Discriminant Analysis with feature selection. We will introduce an iterative alternating minimization scheme in order to
estimate the linear transform and the orthogonal matrix. The linear transform is efficiently updated via the steepest descent
gradient technique. We will also introduce two initialization schemes for the linear transform. The proposed framework is
generic in the sense that it allows the combination and tuning of other linear discriminant embedding methods. According
to the experiments which have been carried out on several datasets including faces, objects and digits, the proposed method
was able to outperform the competing methods in most cases.

Keywords Supervised learning · discriminant analysis · feature extraction · linear embedding · class sparsity ·
dimensionality reduction · image classification

1 Introduction

Different data types in various fields like images, videos,
gaming and others are represented through a large number
of features. Achieving a good representation of these
data was thus the focus of many researchers. Deriving a
representation can be carried out using different strategies,
the most known of which being feature extraction.

Discovering the most relevant and informative features
is very important. It can reduce the storage and computing
requirements. More importantly, good data representation
will lead to better classification performance. This explains
why Representation Learning became a hot research topic
(e.g., [23, 24, 32, 33, 45, 57, 61]). Feature extraction can
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be obtained via linear or nonlinear methods. Most feature
extraction methods focus on the estimation of a linear
transformation that maps the original features to another
space where latent variables can be obtained.

A feature can be identified as one of the following:
relevant, irrelevant or redundant. A feature is called irrele-
vant when it does not contribute to the predictive model’s
enhancement, in other words, it can sometimes worsen the
classification accuracy when taken in consideration during
the classification process. Relevant features contribute in
achieving a more predictive model hence leading to a higher
classification accuracy. Those are the ones that the model
aims to extract and select among all others. A redundant
feature does not lead the model to perform better in the
classification process.

Many methods were proposed earlier in the purpose of
extracting image features; these methods are referred to as
image retrieval methods. An example of a novel Kernel
based retrieval method is the method proposed in [40],
where the authors proposed a novel approach to extract
visual and textual features, and fuse them using a kernel
based method. Using the same method, visual features were
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extracted using the SURF descriptor, then the embedded text
within the images was detected using the Maximally Stable
Extremal Region (MSER) [28] algorithm and by applying
step filters. Another method was proposed based on multi-
factors correlation [46]. In this method, three correlations
have been used to extract the image feature, structure ele-
ment correlation (SEC), gradient value correlation (GVC)
and gradient direction correlation (GDC). Moreover, ano-
ther text based imaged retrieval method was proposed, in
[41], where the authors proposed a novel approach to detect
the text in an image and exploit it as keywords and tags for
automatic text-based image retrieval. The Method proposed
by [39] have also drawn attention.

Another proposed method is the tensor local discriminant
embedding (TLDE) [16] used for the Hyperspectral image
(HSI)’s classification [15]. TLDE takes advantage of
the spatial structure and spectral information. It maps
a high dimensional space into a low dimensional space
by three projection matrices. It can ensure a good data
discrimination. However, its main limitation is that (HSI)’s
classification is a small sample problem. Authors in [20]
proposed a supervised method called double discriminant
embedding (DDE), which uses two transformations for
extracting features from the data. (DDE) performs very well
using limited training samples.

Many linear techniques have been used in the pattern
recognition community (e.g., LDA, LDE and LSR). All
these techniques aim to obtain a discriminative projection
space. The least square regression (LSR) method proved
to be effective in the pattern recognition field [52]. This
method’s objective is to connect source and target data
with minimal error. LSR frameworks are known to be very
flexible; they allow the introduction of new regularization
terms. One example of an LSR-based method is the
Linear Regression (LR) which demonstrated a very good
classification performance, as well as a good flexibility.
However, LR-based methods are prone to have some
issues [56], the most famous of which being that the
(LR)-Based method’s label matrices are too strict and
inappropriate for classification. (LR)-based methods also
ignore the relationship between samples. In order to solve
this problem, authors in [50] proposed the discriminative
LSR (DLSR) where a more relaxed label matrix was
introduced instead of the strict (zero-one) label matrix.
DLSR’s performance is superior to that of LSR. However,
the introduction of constraints that target the label matrix’s
relaxation have enlarged the distances of the regression
responses between samples belonging to the same class. In
order to fix that problem, authors in [48] have proposed
ICS DLSR, solving the addressed problem by introducing
an inter-class sparsity constraint in the criterion.

Many extensions to the principal component analysis
(PCA) have also been proposed, namely the locality

preserving projections (LPPs) [18] and the neighborhood
preserving embedding (NPE) [17]. The stated methods
were proposed to solve the principal component analysis
problem, namely being sensitive to outliers. Sparse coding
or Representation extraction methods [49, 54, 58], and low-
rank representation (LRR) [4, 60] have also performed
well at pattern recognition. LRR works on the data’s
global structure but overlooks local structure. This issue
was tackled by proposing latent low-rank representation
(LatLRR) [25] where low-rank matrices were proposed
to recover the data’s space information. Despite its good
discrimination ability, LatLRR is restricted by fixed feature
dimensionality. The problem facing LatLRR was addressed
with approximate low-rank projection learning (ALPL)
[13]. Authors in [26] further proposed a low-rank 2-D
preserving projection method which is more robust to
noise and can reduce the computation complexity. It is
true that all of the above mentioned methods provide
good discrimination; however, none of them took advantage
of both class-shared and class-specific information which
limit their performance, a matter which was addressed by
the authors in [1]. DSDPL serves to decompose original
high dimensional training data via learned projection
matrices into class-shared and class-specific subspaces.
DSDPL ensured more freedom to capture the data’s main
energy which reduces information loss and provides better
reconstruction properties. It is known that LDA can suffer
from the small sample size (SSS) problem. Many LDA-
based techniques were proposed to overcome this problem,
namely: OLDA, ULDA and many others. Another issue
is that LDA fail to deal with non-Gaussian distribution
data. Sparse LDA (SLDA) [31] was proposed to overcome
the issue of redundant features’ presence in the data.
SLDA imposed the sparse constraint and was able to
learn a sparse discriminant space. It is true that SLDA
performed well at most of the classification tasks, but it
still lacks the ability to implicitly perform feature selection.
This was addressed in the proposed RSLDA method [47]
where the authors imposed the �2,1 norm over the sought
transformation matrix to ensure that their method performs
feature selection. �1 norm is aso included in the purpose of
dealing with the sparse noise.

Another method that has imposed the �2,1 norm regu-
larization over the sought linear transformation (for feature
ranking) was the method proposed in [64]. The authors pro-
posed a nonlinear method (FDEFS) and tested it for semi-
supervised learning. It incorporated the Manifold Smooth-
ness, Margin Discriminant Embedding and the Sparse
Regression for feature selection. Nowadays, researches
focus on deploying linear projection models that simultane-
ously perform feature extraction and ranking [47, 63].

Solving the optimization problems proposed in these
methods could be implemented using different strategies.
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One of the many used techniques is the gradient descent
algorithm, which has been used for a long time in the
optimization field and showed very good characteristics
in solving unconstrained optimization problems due to its
simplicity and low complexity. Variants for the gradient
technique were proposed and referred to as ”Adaptive
Gradient techniques (AGT) which are very good at dealing
with sparse data.

Authors in [9] have founded that Adaptive gradients
improve the data’s robustness. Although using (AGT)
eliminates the need to manually tune the learning rate,
these algorithms were shown to have a few weaknesses.
They will get to a point where they are no longer able to
acquire additional knowledge due to the squared gradients’
accumulation in the denominator. Since every added term
is positive, the accumulated sum keeps growing during
training. This in turn causes the learning rate to shrink and
eventually become very small.

In this paper, we will present a unified and hybrid
discriminant embedding method that minimizes the loss of
discriminative information. The proposed method differs
from the existing related methods at many levels in
terms of the criterion design, optimization technique and
initialization process. As for criterion design, the proposed
method integrates LDA and a variant of PCA into a
joint learning framework. It inherits LDA’s excellent
discriminative capability while at the same time allows the
reconstruction of original data with minimal information
loss. ICS DLSR was the first method to integrate the inter-
class sparsity constraint into LSR. In our proposed method,
we have integrated the inter-class sparsity constraint
into an LDA framework which pursued the transformed
samples belonging to same classes to have the same
row-sparsity structure. Our proposed method has many
advantages due to its hybrid initialization capability. The
proposed method differs from other methods as it can
inherit many existing methods’ advantages through its
initialization process. Our framework is generic in the sense
that it allows for the combination and tuning of other
linear discriminant embedding methods, which allows the
method to automatically inherit these methods’ advantages.
Unlike most of the other methods, we have used the
gradient descent algorithm to find the solution to our
proposed criterion rather than the closed-form solution
used in ICS DLSR and RSLDA for example. The gradient
algorithm offers faster, less complex and more accurate
solutions than the closed form solutions. Moreover, the
proposed linear transformation is generic and can be used
by many types of objects (signals, images and texts) and
many types of descriptors (including both regular and stable
image features). In our work, we have used and tested
different types of image descriptors. Image raw brightness,
Local Binary patterns and Deep features (provided by

deep Convolutional Neural Networks) were used as image
descriptors for the tested datasets. In addition to working
with regular image features, many other recent works are
focusing on working with stable image features. Image
moments are a kind of stable image feature that provides
a generic representation of objects with simple or complex
shapes. Moments are often described by their robustness
to noise and their good rotational invariant stability. An
example of an image-moment based method that proved
to be very efficient is the method proposed in [43] where
the authors proposed Polar Harmonic Fourier Moments
(PHMs). PHMs proved to be numerically stable and their
RBF to be noticeably simpler that of other methods. Authors
in [44] proposed the “Ternary Radial Harmonic Fourier
moments based robust stereo image zero-watermarking
algorithm” (TRHFM) in order to enhance the copyright
protection of stereo images that are known to be easy to
copy and modify. To be able to work with color images,
authors in [42] proposed the Quaternion Polar Harmonic
Fourier Moments (QPHFM), a method that proved to have
the best image reconstruction performance and performed
excellently in both noise-free and noisy conditions.

The proposed method retains the strengths of two recent
discriminant methods: (i) RSLDA [47] and (ii) ICS DLSR
[48]. The former promotes Linear Discriminant Analysis
with implicit feature selection, while the latter promotes
inter-class sparsity, which means that projected features
have a common sparse structure for the features in each
class.

The main contributions are thus as follows. First, we
will provide a novel objective function that allows the
estimation of the linear transform. Second, we will provide
an optimization algorithm where the linear transformation
is estimated by the gradient descent method. Third,
we will propose two initialization procedures for the
linear transformation which lead to two variants of the
proposed algorithm. The first procedure refines the RSLDA
(transformation matrix Q) solution using the proposed
model’s objective function. The second procedure sets the
initial transformation matrix to a hybrid combination of
transformation matrices obtained from two methods: Inter-
class sparsity based discriminative least square regression
denoted as ICS DLSR [48] and RSLDA [47].

Our proposed method inherits the advantages of two
powerful discriminant methods at two levels: (1) the hybrid
transformation initialization, and (2) the refinement via the
proposed single new criterion.

The proposed method is also able to obtain a well-
constructed projection space that ensures high classification
performance; it can be additionally used in tuning an already
obtained projection matrix. The proposed method can be
generic in the sense that any hybrid initial transformation
matrix could be fed into our algorithm and then a more
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discriminant solution for the transformation matrix will be
obtained, leading to a higher classification performance.

The paper’s main contributions could be seen as follows:

• The proposed method inherits the advantages of two
recent powerful discriminant methods. The obtained
transformation encapsulates two different types of dis-
crimination, namely the inter-class sparsity in addition
to robust LDA.

• Introducing a hybrid initialization for the transforma-
tion matrix, where the initial matrix is created by
combining two solutions of two different methods.

• Using the gradient descent method to find a solution for
the proposed criterion, where the sought transformation
matrix’s gradient is calculated in each iteration and the
unknowns are updated accordingly.

The conducted experiments show that the proposed me-
thod has led to an improvement in the classification accu-
racy and was able to outperform competing methods. The
remainder of the paper is structured as follows. Section 2
describes related work and presents the notations used in
our paper. Section 3 presents the proposed method’s crite-
rion and solution details. The obtained experimental results
are presented in Section 4. Finally, Section 5 concludes the
paper.

2 RelatedWork and notations

This section will describe methods that are relevant to our
proposed work. We are going to briefly talk about the gra-
dient descent method and how we used it to obtain a better
embedding space. We will also be showing how the intro-
duction of the �2,1 [51] norm and the inter-class sparsity
constraint were used for feature selection and helped in dis-
crimination [37]. Additionally, we will numerate various
recent methods that have used such a constraint by embed-
ding it into their global criterion to insure that the method
performs feature selection [12, 27].

2.1 Notations

We will start by introducing the notations that we will use
in our paper. We will refer for the training set by X =
[x1, x2, ..., xN ] ∈ R

d×N , with d the dimension of each
sample.

Each sample xi is a column vector with d features ∈ R
d

The number of training samples will be denoted by N , in
addition C will represent the total number of classes.

The �2,1 norm of a matrix Z ∈ R
d×N is obtained through

the following formula ‖Z‖2,1 =
d∑

i=1

√
N∑

j=1
z2
ij , and the �2

norm for the vector z = [z1, z2, ..., zd ] is obtained as follows

‖z‖2 =
√

d∑

i=1
z2
i .

Table 1 shows the main notations used in our paper.

2.2 RelatedWork

Many linear projection methods were recently proposed.
The methods mainly aims to extract a discriminant
embedding for the data. Some have integrated constraints
that implement feature selection within the method and
rank their projection matrices’ features. Feature selection
or ranking is becoming a trending problem in the machine
learning field. Using all data features will not lead very
often to a high classification performance. Feature selection
is intended to efficiently select the most relevant features of
the data that enhances discrimination [36, 53, 55].

One big problem for handling data is the high dimensio-
nality. The most famous method used to tackle the high
dimensionality curse is the Principle component analysis
(PCA) [35] method. PCA is an unsupervised feature extrac-
tion method that transforms the original data features and
projects them into a low dimensional space. Another well-
known supervised linear method that was able to ensure
good discrimination is the Linear Discriminant Analysis
(LDA) [11, 38] method, a supervised technique (meaning
that it requires label information for the data). LDA and
its variants are some of the most used and discriminating
algorithms in the machine learning field. LDA estimates a
transformation matrix where the desired space maximizes
the between-class variance and minimizes the within-class
variance. The projection axis w would be the solution for
the Fisher criterion [22]:

w = arg min
wT w=1

wT (Sw − μ Sb) w (1)

Table 1 Main notations used in the paper

Notation Description

X Training data samples ∈ R
d×N

P Orthogonal matrix ∈ R
d×d

Q Projection matrix ∈ R
d×d

D Diagonal matrix

Sw Within-class scatter matrix

Sb Between-class scatter matrix

d Dimensionality of data

N Number of data samples

ni Number of samples in the i-th class

C Number of classes

xi The i-th data sample ∈ R
d
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where μ is a small positive constant that balances the effect
of the two scatter matrices (Within-class scatter matrix
Sw and between-class scatter matrix Sb) which could be
calculated as:

Sb = 1

N

C∑

i=1

ni (μi − μ) (μi − μ)T (2)

Sw = 1

N

C∑

i=1

ni∑

j=1

(xj
i − μi) (xj

i − μi)
T (3)

where μ, μi are the mean of all data samples and the mean
of samples of the i-th class, respectively. Many variants
of LDA were proposed and still being proposed (e.g. [7,
65, 66]), as the linear discriminant analysis showed good
interpretability for the data.

Review of Robust Sparse Linear Discriminant Anal-
ysis (RSLDA): RSLDA [47] was proposed to tackle
many limitations of the classical LDA [38], RSLDA
mainly adds the �2,1 regularization of the projection
matrix. This regularization term is inserted in the global
criterion to insure that the method performs feature rank-
ing and weighting. RSLDA minimizes the following
criterion:

min
P,Q,E

T r (QT SQ) + λ1 ||Q||2,1 + λ2 ||E||1 (4)

s.t . X = P QT X + E, PT P = I

where S is the difference matrix Sw − μ Sb, λ1 and
λ2 are two parameters that balance the importance of
different terms. In the criterion of RSLDA the �2,1 norm
was imposed on the projection matrix to achieve feature
selection.
Review of Inter Class Sparsity Least Square Regres-
sion: In [48], the authors proposed the Inter-class sparsity
based discriminative least square regression ICS DLSR
[48]. This method provides a linear mapping to the soft
labels’ space where the latent space’s dimension is set to
the number of classes. This method was able to construct
a model where the margins of samples pertaining to the
same class is widely reduced while the one for the sam-
ples pertaining to different classes is enlarged. This was
done by adding a class-wise row sparsity constraint to the
transformed features.

Another similar method is the method described in [37]
where the �2,1 norm is applied on the original linear
discriminant analysis transformation.

3 ProposedMethod

In this section, we will present our problem formulation
and show the steps applied for finding a solution to our
problem. Our method is a linear projection method used
for feature extraction and targeting a more discriminative
transformation matrix. Two of the method’s variants are
proposed. These two variants differ in the initialization step.
Our proposed method has inherited feature ranking by using
the RSLDA solution as an initial guess for the sought
transformation. The next step is to fine-tune the trans-
formation matrix’s initial guess by minimizing the proposed
criterion with a gradient descent method aimed at finding
the required solution for the transformation matrix Q.

The gradient descent algorithm is one of the most
simple and efficient algorithms used to solve unconstrained
optimization problems. In our algorithm, We have used the
gradient descent approach to calculate the transformation
matrix Q and find the solution.

3.1 Formulation

We propose a novel method intended to obtain the two
matrices: Q ∈ R

d×d projection matrix, in addition to the
orthogonal matrix P ∈ R

d×d . Our proposed method aims to
minimize the following objective function:

f (Q, P) = T r
(

QT S Q
)
+λ1

C∑

i=1

||QT Xi ||2,1+λ2 ||X−P QT X||22
(5)

s.t . PT P = I

where Xi ∈ R
d×ni is the data matrix associated with the i-th

class, ni is the number of training samples in the i-th class,
C is the number of classes.

The first term in the (5) is the LDA criterion where S
represents the LDA scatter matrix which could be calculated
as S = Sw − μ Sb in which Sw being the within-class
matrix and Sb the between-class matrix. These two matrices
are given by (2) and (3). The second term of the criterion
is imposed to ensure that transformed features of the
same class, in the projected space, obtain common sparse
structure. Q is the sought projection matrix. In addition,
a variant of (PCA) constraint is introduced to guarantee
that original data would be recovered well, presented in the
third term of the proposed method criterion. λ1 and λ2 are
two trade-off parameters to control the importance of the
different terms. One knows that the �2,1 norm of a matrix
can be written as:

‖Z‖2,1 = T r
(

ZT D Z
)

(6)
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where D is a diagonal matrix that is given by:

D =

⎛

⎜
⎜
⎝

1
‖z(1)‖2+ε

· · · 0

0
. . . 0

0 0 1
‖z(d)‖2+ε

⎞

⎟
⎟
⎠ (7)

where Z (j) represents the j -th row of Z.
By substituting the second term of the criterion by its

trace form showed in (6), problem (5) can be viewed as:

f (Q, P) = T r
(

QT S Q
)

+λ1

C∑

i=1

T r ( (QT Xi )
T DiQT Xi )

+ λ2 ||X − PQT X||22 (8)

min
Q,P

f (Q, P) s.t . PT P = I (9)

Equation (8) presents the criterion for the proposed method.
The minimization of this criterion’s first term is targeting
a transformation matrix which ensures class discrimination
using Linear Discriminant Analysis (LDA). The criterion’s
second term is introduced to obtain class sparsity. By intro-
ducing this constraint, transformed features from each class
will obtain a common sparse structure. Finally, a vari-
ant of “Principle component analysis” constraint is intro-
duced in our proposed criterion [14]. This last constraint
was introduced for the purpose of retaining PCA’s energy
[35], this constraint will assure robustness for our data.

To find a solution for the proposed method, we have
used the descent gradient algorithm, a mathematical process
used for the minimization of a specific function. Using the
gradient algorithm, one should know the function called the
cost function in addition to the function’s derivative. The
gradient algorithm allows solving the optimization problem
in a way that, from a given point, one knows the gradient
and can move in that direction to obtain a solution. Using
the descent gradient algorithm has many advantages, from
which we shall state the most important, namely:

• Has a lower computational complexity compared to
other methods. Finding the solution through the des-
cent gradient algorithm is often less computationally
demanding. Using the descent gradient to find a
solution will lead to a faster model.

• Leads to accurate solutions. Not only is the descent
gradient algorithm known to be fast, but it will also
lead to a more accurate solution for the minimization
problem than the closed form solution.

3.2 Solution steps to the proposedmethod

To solve the formulated problem above, we have adopted
the alternating direction method of multipliers (ADMM) [2]

and calculated each variable while other variables are fixed
as follows:

• Calculate the orthogonal matrix P:
P can be calculated by fixing the variable Q and

through solving the following problem:

min
PT P=I

∥
∥
∥X − P QT X

∥
∥
∥

2

2
(10)

Using PT P = I the fact the squared norm of a matrix A
is given by ‖A‖2

2 = T r(AT A) = T r(A AT ), problem
(10) is equivalent to the following maximization
problem:

min
PT P=I

∥
∥
∥X − P QT X

∥
∥
∥

2

2
−→ max

PT P=I
T r (PT X XT Q)

(11)

One can find a solution for problem (11) by performing
singular value decomposition of X XT Q. Suppose the
SVD decomposition is given by SV D (X XT Q) =
U � VT . Then P is obtained as [66]:

P = U VT (12)

• Calculate the Projection matrix Q:
Gradient descent is an iterative optimization scheme

used to minimize function by moving in the direction of
steepest descent in each iteration. How to use gradient
method differs through different fields, in machine
learning and classification, the gradient is used to
iteratively update the parameters of the desired model.
We have adopted gradient descent method to calculate
Q in each iteration of the proposed method like follows:

The orthogonal matrix P is fixed. Let us consider the
trace form of the criterion of our problem:

f (Q, P) = T r
(

QT SQ
)

+ λ1

C∑

i=1

T r(XT
i QDiQ

T Xi )

+ λ2 ||X − P QT X||22 (13)

We calculate the gradient of the objective function w.r.t.
Q as follows:

G = ∂ f

∂ Q
= 2 S Q+λ1

C∑

i=1

2 Xi XT
i Q Di+2λ2 [X XT Q−X XT P]

(14)

Using the gradient matrix, we can update Q by:

Qt+1 = Qt − α G (15)

where Qt+1 and Qt denotes the projection matrix Q in
iteration t + 1 and iteration t respectively. α is the step
length (learning rate).
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• Update Variable Di: We update Di , (i = 1, ..., C) by:

Di =

⎛

⎜
⎜
⎜
⎜
⎝

1∥
∥
∥QT Xi (1)

∥
∥
∥

2
+ε

· · · 0

0
. . . 0

0 0 1∥
∥
∥QT Xi (d)

∥
∥
∥

2
+ε

⎞

⎟
⎟
⎟
⎟
⎠

(16)

where ε is a small positive scalar and QT Xi (j) represents
the j -th row vector of QT Xi .

Algorithm 1 summarizes our proposed method and
describes the main steps for solving the problem (5).

The projection of the training and test samples is carried
out using the estimated projection matrix Q. This is given
by ztrain = QT xtrain and ztest = QT xtest where
xtrain is a training data sample, and xtest is a test data
sample.

3.3 Initialization of ProjectionMatrix Q

The linear transformation Q needs a good initial guess since
it is estimated by a gradient descent update rule. In this
section, we provide two initialization procedures leading to
two variants of the proposed algorithm.

3.3.1 Using RSLDA [47] algorithm

In this variant, the initial guess Q(0) for the linear transfor-
mation matrix Q is given by the solution of the RSLDA
method (solved using its own ADMM optimization). We
can note that this initial transformation inherits the feature
ranking of RSLDA.

3.3.2 Hybrid combination of projection matrices obtained
from the two embeddingmethods RSLDA and ICS DLSR [48]

In our proposed algorithm’s second variant, the initial
transformation matrix Q(0) is set to a hybrid combination of
the transformation matrices obtained by the two embedding
methods RSLDA [47] and ICS DLSR [48].

The number of the hybrid transformation’s rows Q(0)

should be d . On the other hand, the number of columns
(projection axes) can be set to any arbitrary value. Without
losing generality, in order to be consistent with the linear
methods, we will assume that the total number of Q(0)

columns is d . Thus, Q(0) ∈ R
d×d . According to [48],

the linear transformation QICS DLSR obtained by the
ICS DLSR algorithm is ∈ R

d×C where d and C represent
the dimension of features and the number of classes,
respectively. On the other hand, the RSLDA method [47]
provides its own linear transformation QRSLDA ∈ R

d×d .
The sought initial hybrid projection matrix Q(0) used in
our algorithm is denoted by QHybrid . It is constructed by
taking all the C columns of QICS DLSR to which the first
d − C columns of QRSLDA are appended. The resulting
transformation matrix QHybrid is ∈ R

d×d . The strategy
for hybrid initialization methodology is illustrated in
Fig. 1.

In the above construction of the hybrid matrix QHybrid ,
featured within our work the number of projection axes for
each type of projection was respectively fixed to C and
d − C for ICS DLSR and RSLDA. We emphasize the fact
that these dimensions can be changed.

In our experiments, according to Table 2, we can see that
the value of C that represents the number of classes varies
between 10 and 50 for the datasets used. d represents the
number of features for each dataset is also shown in the
same table.

3.4 Computational complexity

This section is intended to analyze the proposed method’s
computational complexity (see Algorithm 1). Matrices Q,
P, are sought to be calculated. The orthogonal matrix P
requires singular value decomposition. The computational
cost for a decomposition of a d × N matrix would be
O

(
N3

)
. Q is calculated in the second step of the method,

it requires the calculation of the corresponding gradient
matrix, but since these two steps only consist of simple
matrix operations, they have small computational costs,
thus could be ignored. Also the step intended to update Di

coming from the (16) is a simple matrix operation that have
a very small cost.

On the other hand, in our proposed method’s first variant,
we have used the RSLDA method for the transformation
matrix Q initialization before it is fed to our algorithm.
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Fig. 1 Hybrid initialisation using the linear transformations associated with ICS DLSR and RSLDA

Thus, the complexity of RSLDA method should be added
to the complexity of our proposed method. Supposing τ

represents the number of iterations of RSLDA. The latter
has a complexity of O

(
τ(d2N + 4d3)

)
. The proposed

algorithm’s main computational complexity takes place in
the updating P step. The the proposed method’s (first
variant) complete cost is mainly O

(
τ (N3)

)
. In summary,

the overall cost would be the sum of RSLDA cost added
to the cost of our proposed method which would be equal
to O

(
τ(d2N + 4d3)

)
+ O

(
τ ′ (N3)

)
where τ ′ denotes the

number of iterations of Algorithm 1.
For the second proposed variant, we have constructed

the initial guess of the transformation matrix through a
combination of the two solutions obtained from the two
methods RSLDA[47] and ICS DLSR[48] method. Knowing
that ICS DLSR algorithm has a complexity of O (τ (d3)),
the second proposed variant have a total complexity of
O

(
τ (d3)

) + O
(
τ(d2N + 4d3)

)
+ O

(
τ ′ (N3)

)

4 Performance Study

To test the two variants of our proposed method, we
conducted experiments on several datasets including faces,
object and handwritten datasets. Detailed information on
these datasets are presented in this section, Next we are
going to present the setups for the experiments and the
results obtained.

4.1 Datasets

In our work we have conducted our experiments over the
following five public datasets in addition to a large-scale

dataset: USPS1 digits dataset, Honda2 dataset, COIL203

object dataset, Extended Yale B4 face dataset, FEI5

dataset, and the large scale MNIST dataset consisting of
60,000 images.

Table 2 presents a summary for all the information
concerning the datasets used in our paper.

4.2 Results

In this section, we will present the classification perfor-
mance when the projected spaces are obtained by the pro-
posed schemes and some competing methods. The proposed
method has two variants, namely:

• Feature Extraction Using Gradient Descent FE GD :
In this variant, our proposed method is implemented
while the initial transformation matrix Q(0) used in our
proposed method’s first iteration is set to the output of
RSLDA [47] algorithm as presented in Section 3.3.1.

• Feature Extraction Using Gradient Descent With Hy-
brid initialization FE GD HI: The second variant of
the proposed method consists of initializing the trans-
formation matrix Q(0) used in our proposed method’s
first iteration as a hybrid combination of two trans-
formation matrices obtained from the two methods
RSLDA [47] and ICS DLSR [48] as shown in Fig. 1
and detailed in Section 3.3.2.

1https://www.kaggle.com/bistaumanga/usps-dataset
2http://vision.ucsd.edu/∼leekc/HondaUCSDVideoDatabase/HondaUCSD.
html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
5https://fei.edu.br/∼cet/facedatabase.html
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Table 2 Brief datasets description

Dataset Type Number of Number of Number of Descriptor

samples features classes

USPS Digits 1100 256 10 RAW-brightness images

Honda Face 2277 1024 22 RAW-brightness images

COIL20 Object 1440 177 20 Local Binary Patterns

Extended yale B Face 2414 1024 38 RAW-brightness images

FEI Face 700 1024 50 RAW-brightness images

MNIST Digits 60,000 2048 10 Deep features (ResNet-50)

Table 3 Mean classification accuracies (%) of different methods on the tested datasets. The best performance is bolded

Dataset \ Training KNN SVM LDA LDE PCE ICS DLSR RSLDA FE GD FE GD HI

Method samples

USPS 30 87.01 88.21 84.91 83.54 72.01 88.46 89.45 89.50 90.29

40 88.56 90.40 86.19 85.3 72.30 90.16 91.11 91.81 91.46

55 90.51 92.09 88.64 87.16 73.32 91.25 92.65 93.07 92.87

65 91.76 93.16 89.29 88.58 74.11 91.53 92.89 93.71 93.49

Honda 10 64.12 71.32 65.95 65.74 61.86 70.79 69.90 70.16 72.14

20 77.69 83.60 79.39 79.25 75.33 82.95 83.03 83.60 84.64

30 84.78 89.09 85.84 86.24 82.55 88.20 89.04 89.41 90.12

50 91.36 94.15 92.28 92.34 90.03 93.53 94.13 94.53 95.10

FEI 5 88.98 91.18 92.60 90.67 86.04 92.16 93.19 93.81 94.58

6 90.35 92.93 94.18 92.15 88.73 93.65 94.25 94.75 95.08

7 92.60 94.31 95.60 94.26 91.09 95.20 95.66 96.20 96.29

8 94.27 95.23 96.03 95.57 93.20 96.17 96.43 96.97 96.40

COIL20 20 94.58 97.65 96.19 95.00 94.87 98.04 96.73 96.89 97.66

25 95.79 98.22 97.07 96.12 95.99 98.22 97.74 97.89 98.59

30 96.65 98.70 97.81 97.01 97.49 98.75 98.26 98.52 99.08

35 97.14 98.81 98.15 97.42 98.11 99.12 98.68 98.80 99.39

Table 4 Mean classification accuracies (%) on the Extended Yale B dataset. The best performance is bolded

Dataset \ Training KNN SVM LDA LDE ELDE PCE SULDA MPDA ICS DLSR RSLDA FE GD FE GD HI

Method samples

Ext. Yale B 10 69.80 73.85 82.32 79.92 85.85 86.39 84.61 83.67 86.56 86.79 87.10 88.42

15 75.20 80.02 86.76 83.77 89.30 89.23 88.72 86.82 89.53 89.93 90.04 91.21

20 80.24 85.79 90.7 88.44 93.07 92.19 91.66 90.38 93.14 93.59 93.75 93.81

25 82.24 89.03 92.17 90.43 94.09 93.35 92.14 91.79 94.50 94.92 95.02 95.09
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Table 5 Mean classification accuracies (%) of different methods on the MNIST dataset. The best performance is bolded

Dataset \Method Training samples KNN SVM LDA LDE PCE ICS DLSR RSLDA FE GD FE GD HI

MNIST 1000 91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.21 98.33

The two proposed variants have been compared with the
following methods: K-nearest neighbors (KNN) [21], Sup-
port Vector Machines (SVM) [3] (the Linear SVM was
implemented suing the LIBSVM library6 Linear Discrimi-
nant Analysis (LDA) [38], Local Discriminant Embedding
(LDE) [5], PCE [30] (unsupervised method) ICS DLSR
[48] and Robust sparse LDA (RSLDA) [47].

All experiments and compared methods used the same
conditions in order to guarantee a fair comparison. For
each compared embedding method, the whole dataset is
randomly split into a training part and a test part.

First, for each compared embedding method, a trans-
formation matrix is estimated from the training part, then,
training and test data are projected onto the new space using
the already computed transformation. Finally, the test data
classification is performed using the Nearest Neighbour
classifier (NN) [8].

Different percentages of training are used. Moreover, for
a given percentage of training data, the whole evaluation is
repeated ten times. That means we adopt ten random splits
for every configuration and report the average recognition
rate (correct classification rate for test part) over these ten
random splits.

We used PCA as a pre-processing technique. In our
experiments, PCA [35] is used as a dimensionality reduction
technique to preserve (100%) entirety of the data’s energy.
As for the parameter α, we should set it to a small value. In
our experiments, this value was chosen in {10−7, 10−5}.

The obtained results are summarized in Table 3. This
table depicts the two proposed variants classification rates in
addition to those of the competing methods when used with
the USPS, Honda, FEI and COIL20 datasets. The results
are obtained using different training and testing percentages
from the data. Results shown in this table are obtained
using the Nearest Neighbor classifier. Table 4 contains data
about the obtained results for different competing methods
using the Extended Yale B dataset. In this table, various
training percentages corresponding to different numbers of
samples used in the training process are shown. We should
emphasize that more competing methods are presented in
Table 4. These additional methods are ELDE, SULDA [59]
and MPDA [62]. These are added to enrich the comparison
using more methods. The depicted rates are the average over
10 random splits and correspond to different numbers of

6https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

training samples. The first column inside the table depicts
the number of training images per class.

Table 5 illustrates the classification accuracy for the
competing methods alongside with the two proposed
variants using the large scaled MNIST dataset that contains
a total number of 60,000 images in total. Results shown
in this table are obtained using one split, while using 1000
samples from each class for training and the remaining
samples are used for testing(Fig. 2).

Figure 3 presents the obtained recognition rate (%)
associated with the LDA [38], LDE [5], RSLDA [47] and
our proposed method’s two variants. The recognition rate
is given as a function of the dimension of the projected
features. Results are shown for (a) the COIL20 dataset,
(b) the Extended Yale B and (c) the HONDA dataset. 30,
10 and 10 samples from each class are respectively used
for training. The depicted results were obtained using the
Nearest Neighbor (NN) Classifier.

We have used 21 evaluations using 6 different datasets
from the experiments in this paper to study the statistical
analysis of our proposed method’s two variants alongside
with those of the competing methods. We performed the
Friedman test [10] and computed the critical distance CD.
The obtained results of the conducted test lead to the
conclusion that the tested methods do not have the same
performance. Figure 2 shows the CD diagram for the 9
methods including our two proposed variants, where the
average rank of each is marked along the axis.

Visualization of transformation matrix Q: Figure 4 vi-
sualizes the first 50 rows of the transformation matrix Q
obtained from our proposed method’s two variants. The

Fig. 2 Statistical analysis - CD diagram
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Fig. 3 Classification accuracy
(%) vs. dimension for different
datasets
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dataset used to obtain this transformation matrix is the
USPS digits dataset while using 30 samples from each
class for training. Figure 4a and c depict the elements of
the transformation matrix Q obtained by the proposed
variants. Figure 4b and d show the features of the
transformation matrices obtained from the two proposed
variants according to the Q scores (row-norm) after
being normalized to have values between 0 and 1. We can
clearly see from this figure that most relevant features are
placed at the top.

Implicit vs explicit feature selection: This experiment is
intended to compare how the classification performance
will vary when the data is submitted to pure feature

selection and ranking techniques. Table 6 shows the
classification performance when original data was ranked
using the Fisher score, ReliefF score [34], Minimum
redundancy maximum relevance (MRMR) [29], and
Robust multi-label feature selection with dual-graph
regularization (DRMFS) algorithm [19] compared to our
proposed method (the Extended Yale B dataset is used).
The MRMR algorithm uses the mutual information [6]
as a proxy for computing relevance and redundancy
among variables (features). In [19], authors proposed a
criterion aimed to calculate the feature weight matrix.
Authors imposed both �2,1-norm and non-negative
constraints onto the feature weight matrix to enhance
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the property of row-sparsity. Once the weight matrix is
calculated, the scores of each row representing each
feature can be calculated, and one can evaluate the
desired top K-features.

The results show that our proposed method outperform
the competing feature selection methods compared in
Table 6. Despite the fact that our proposed method’s main
goal is to perform feature extraction and obtain a discrimi-
nant transformation, our method explicitly performs feature
selection by imposing the �2,1 norm over the transformation
matrix Q in our objective function.

A variant of Principle component analysis constraint is
introduced in our proposed criterion λ2 ||X−P QT X||22 . We
introduced this constraint to retain PCA’s energy preserving
property [35]. This constraint will assure robustness for the
obtained transformation. We studied the effect of removing
this constraint from our objective function and how the
PCA variant contributed to obtaining better outcomes. Table
7 presents the classification performance on the USPS,

Extended Yale B and Honda datasets using different training
percentages when the PCA constraint was removed from our
objective function.

In this table, we have evaluated the performance of
ICS DLSR, RSLDA, and our proposed method on three
datasets. Our proposed method’s two variants classification
performance are presented in the last two columns of
Table 7 (i.e., columns 6 and 7). Columns 4 and 5 depict
the performance of the proposed variants when the PCA
constraint is removed from the global criterion.

One can observe that the classification performance
obtained with the PCA variant constraint is better than that
obtained without this constraint. This proves the contri-
bution of the PCA variant in obtaining better outcomes.

4.3 Parameter sensitivity

In this section, we will investigate and demonstrate the
effect of changing the proposed method parameters on
the classification rates for different datasets. The proposed
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Fig. 4 Transformation matrix Q visualization (USPS dataset) (First 50 rows)



A hybrid discriminant embedding with feature selection: application to image categorization

Table 6 Feature selection
comparison. The extended Yale
B dataset is used. The best
performance is bolded

Method Selection scheme Training samples

10 15 20 25

KNN None 69.8 75.2 80.24 82.24

Fisher 72.17 76.93 81.93 84.10

ReliefF 70.79 76.85 82.00 83.63

MRMR 71.50 76.23 80.99 83.05

DRMFS 71.59 76.33 81.11 83.10

LDA None 82.32 86.76 90.70 92.17

Fisher 83.02 86.60 91.31 92.65

ReliefF 82.39 87.00 91.06 92.21

MRMR 82.43 86.63 90.99 92.28

DRMFS 82.65 87.02 91.16 92.68

LDE None 79.92 83.77 88.44 90.43

Fisher 80.32 84.13 88.89 90.59

ReliefF 80.09 84.58 89.17 90.50

MRMR 79.91 83.70 88.41 90.48

DRMFS 80.21 83.89 88.70 90.52

SVM None 73.85 80.02 85.79 89.03

Fisher 76.09 81.44 87.24 90.17

ReliefF 74.84 81.80 87.47 90.23

MRMR 76.14 81.57 86.91 89.53

DRMFS 75.15 80.86 87.14 89.89

Proposed FE GD 87.10 90.04 93.75 95.02

FE GD HI 88.42 91.21 93.81 95.09

Table 7 Classification performance (%) without and with the PCA variant constraint

Dataset Training samples ICS DLSR RSLDA Proposed method Proposed method

Without P With P

FE GD FE GD HI FE GD FE GD HI

USPS 30 88.46 89.45 89.50 90.24 89.50 90.29

40 90.16 91.11 91.11 91.31 91.81 91.46

55 91.25 92.65 92.49 92.69 93.07 92.87

65 91.53 92.89 93.51 93.36 93.71 93.49

Extended yale B 10 86.56 86.79 86.77 88.11 87.10 88.42

15 89.53 89.93 89.90 90.95 90.04 91.21

20 93.14 93.59 93.57 93.35 93.75 93.81

25 94.50 94.92 94.92 94.62 95.02 95.09

Honda 10 70.79 69.90 69.88 72.12 70.16 72.14

20 82.95 83.03 83.24 84.45 83.60 84.64

30 88.20 89.04 88.91 90.12 89.41 90.12

50 93.53 94.13 93.81 95.08 94.53 95.10
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method mainly has two parameters to be configured, λ1 and
λ2. Figure 5 shows the classification rates’ variation using
different parameter combinations of the proposed method.
In other words, the same figure shows how changing λ1 and
λ2’s values affects the gradient method using the Extended
Yale B, Honda and USPS datasets. Figure 5a, c and e show
the classification performance variation of the Extended

Yale B, Honda and USPS datasets when using 10, 20
and 40 samples for training from each class respectively
using the first variant of the proposed method FE GD. The
classification rate is also studied on the same datasets using
the same training percentages for the second variant of the
proposed method FE GD HI and results are depicted in
Fig. 5b, d and f.
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Fig. 5 Classification accuracy (%) according to parameters
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For the Extended Yale B dataset, we studied different
values for λ1 in the range of [10−5, 1] and values from
[10−3, 10] for λ2 in the two variants; we noticed that
satisfactory rates for the Extended Yale B dataset can be
obtained using λ1 in the range of [10−3, 10−1] and λ2 in the
range of [10−2, 10−1].

With regards to the Honda dataset, we studied different
values for λ1 in the range of [10−3, 103] and values from
[10−4, 103] for λ2; we noticed that satisfactory rates for this
dataset can be obtained using λ1 in the range of [10−1, 10]
and λ2 in the range of [10−3, 102].

For the USPS dataset, satisfactory rates can be obtained
when λ1 lies in the range of [10−5, 10−1] and λ2 ∈
[10−5, 102]. As a conclusion, we can say that in order to
obtain a satisfactory rate using the proposed method, the
parameters λ1 and λ2 should lie in the intervals shown in the
figures above. A value of 0.1 for both λ1 and λ2 seems to be
a good choice for the two variants.

Figure 5 shows the variation of the classification
accuracy rates (%) according to the different values of
the parameters λ1 and λ2 for the variants of the proposed
method, for the Extended Yale B, Honda and USPS datasets
using 10, 20 and 40 samples from each class for training
respectively and the rest for testing.

4.4 Analysis of results

From the results depicted in this paper’s tables and figures,
we can have the following observations:

1. The proposed and competing methods’ classification
accuracy demonstrates that our method has out-perfor-
med competing methods in most of the cases.

2. The first proposed method FE GD has slightly
outperformed the RSLDA method. This seems to be
very realistic since the proposed first method refines the
RSLDA solution.

3. In general, the second proposed method FE GD HI
is superior to the first proposed method FE GD. It
benefits from the hybrid combination of two different
embedding methods as well as from the refinement
provided by the gradient descent tool.

4. The proposed method has a superior performance when
used with several types of image datasets, including
faces, objects and digits (Tables 3 and 4).

5. From Fig. 5, we can see that the proposed method’s
optimal parameters, that gives the best classification
rates have large ranges. In other words, the best classi-
fication rate is often guaranteed by searching a small
number of parameter combinations.

6. From Fig. 4 and Table 6, we can clearly observe that
our proposed method outperformed other pure feature
selection methods. This is due to the fact that our

proposed method implicitly performs feature ranking
alongside its main objective, feature extraction.

7. Through the observation of the results presented in
Table 7, we can see that the classification performance
in the case of the PCA constraint’s removal from the
objective function is lower. Hence, we can conclude
that the PCA variant has contributed in enhancing
our proposed method’s discrimination leading to better
outcomes.

5 Conclusion

In this paper, we introduced a novel linear method aimed to
obtain a discriminant linear transform. The obtained
linear transformation encapsulates two different types of
discrimination, namely the inter-class sparsity and robust
LDA. We deployed an iterative alternating minimization
scheme to estimate the linear transform and the orthogonal
matrix associated with the robust LDA. The linear transform
is efficiently updated via the steepest descent gradient
technique.

We proposed two initialization scheme for the linear
transform. The first scheme sets the initial solution by the
linear transform obtained by the robust sparse LDA method
(RSLDA). The second variant initializes the solution via
the hybrid combination of the two transformations obtained
by the RSLDA and ICS DLSR methods. The proposed
method’s two variants have demonstrated superiority over
competing methods and have led to a more discriminative
transformation. The proposed framework is generic in the
sense that it allows the combination and tuning of other
linear discriminant embedding methods. Like any other
supervised learning technique, our method requires all of
the data labels to be collected in advance, which is hard
in some real life scenarios, this is our proposed method’s
main limitation. As a future work, the proposed method may
be transformed into a semi-supervised learning algorithm
where labeled and unlabeled data are used for training.
Another idea that can be implemented, is transferring our
proposed model to a deep model.
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Abstract6

In the machine learning field, especially in classification tasks, the model’s design and7

construction are very important. Constructing the model via a limited set of features may8

sometimes bound the classification performance and lead to non-optimal results that some9

algorithms can provide. To this end, Ensemble learning methods were proposed in the litera-10

ture. These methods’ main goal is to learn a set of models that provide features or predictions11

whose joint use could lead to a performance better than that obtained by the single model.12

In this paper, we propose a new efficient ensemble learning approach that was able to en-13

hance the classification performance of a linear discriminant embedding method. As a case14

study we consider the efficient ”Inter-class sparsity discriminative least square regression”15

method. We seek the estimation of an enhanced data representation. Instead of deploying16

multiple classifiers on top of the transformed features, we target the estimation of multiple ex-17

tracted feature subsets obtained by multiple learned linear embeddings. These are associated18

with subsets of ranked original features. Multiple feature subsets were used for estimating19

the transformations. The derived extracted feature subsets were concatenated to form a sin-20

gle data representation vector that is used in the classification process. Many factors were21

studied and investigated in this paper including (Parameter combinations, number of models,22

different training percentages, feature selection methods combinations, etc.). Our proposed23

approach has been benchmarked on different image datasets and achieved competitive results.24

The conducted experiments showed that the proposed approach can enhance the classification25

performance in an efficient manner compared to the single-model based learning and was able26

to outperform competing methods.27

Keywords: Ensemble learning, feature subsets, multi-models, machine learning, feature selec-28

tion, image classification, class sparsity least square regression.29
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1 Introduction30

Image classification is a widely investigated task in the machine learning and computer vision31

fields. Many researchers worked and focused on the implementation of both linear and non-linear32

models designed for classification tasks. Achieving reliable discriminative data representations is33

the objective in all the cases. It is a known fact that a more discriminative data representation will34

lead to enhanced classification performance. This is where the importance of engaging relevant35

data features in the model creation rises. Nowadays, representation learning is becoming more36

and more investigated [30, 33, 42, 43, 49, 57, 58]. Data features are usually separated into three37

categories, important (relevant), irrelevant or redundant. A good model should always target rel-38

evant features of the data and work on constructing the desired model using these features. This39

will ensure optimal classification performance.40

Generally, specific features will ensure better representation for the data rather than other ones.41

These are referred to as relevant features. Authors in [18, 39] has concluded that using the original42

data would not lead to the optimal classification performance in the learning applications. This43

should be addressed by extracting the most representative features from the original data. Data can44

then be analysed via the extracted features. In addition to the problem that original data are not45

the best to work with, there exist another problem namely: curse of dimensionality, referring to46

the large number of features in the data. In real life and in specific applications, the dimension of47

the data can be very large which makes their use very costly, both in time and computation wise.48

Various researchers focused on tackling this issue by using two main approaches namely: feature49

selection, and feature extraction. In these days, these schemes are highly targeted and play a major50

role in learning systems [28].51

Researchers seek representation approaches that guarantee the delivery of a discriminative52

transformation matrix that has certain specifications and good discrimination abilities [13, 21, 50,53

52]. After that, one can use this transformation matrix to project the training and test data to the54

new derived space in order to obtain a new and more representative set of features. These features55

will be used in the construction of the model that will be then used in the classification tasks.56

In the literature, one can notice that most of the time single model based classifications were57

targeted and investigated. In other words, researchers work on proposing and implementing an58
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algorithm in the purpose of achieving a good discriminative model that ensures good classification59

performance. Usually, in this process, what happens is that a model is created using the proposed60

algorithm, and then the output data is fed to a classifier for classification process to begin. In order61

to enhance the performance, one can use many known feature selection techniques (eg. Fisher62

score, ReliefF [26] and many more). Feature selection techniques have been widely used in the63

machine learning field [4]. In addition to that, one can perform a brutal search for the best features64

that are able to ensure the best classification performance provided by the proposed scheme, but65

still notice that the optimal performance was not achieved. In reality, it is not necessary that single66

model learning will always lead to the optimal performance provided by a proposed method.67

To address this issue, and investigate how to improve the performance of different methods,68

few researches talked about the ensemble learning methods. An Ensemble learning combines69

the predictions from multiple machine learning models into a single model which can reduce the70

generalization error. They offer increased flexibility and can scale in proportion to the amount71

of training data available. A couple of widely used ensemble approaches are bagging [3] and72

boosting [36].73

The main idea of ensemble learning is to blend and combine the predictions from multiple74

models. These models are usually very good models and each one of them, taken separately, pro-75

vides a good discriminant characteristic. By combining these models, one will obtain a single76

model that is described by its enhanced discrimination ability. Thus, leading to a better classifica-77

tion. So, the hypothesis is that in the case where the models are correctly combined, this can lead78

to more accurate and/or robust models. A variety of ensemble learning methods have been used79

in classification tasks mostly with deep convolutional neural networks (CNN’s) for image classi-80

fication. The reason is that ensemble learning has shown promising and excellent contribution in81

enhancing the performance of neural networks [11].82

The performance of one single model is usually measured by its ability of obtaining the best83

predictor for the data. This can only be derived after the classification process finishes. There84

is no way to realize this information prior to that by only exploiting the handled data and the85

optimization problem [29]. This has been addressed in [41, 29]. These researches focused on86

using a cross-validation strategy to evaluate the performance of each model individually. This87

strategy is referred to as the ”discrete Super Learner selector”.88
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One different view to ensure an enhanced performance can be the estimation of the optimal89

combination of the models that leads to the best predictor. This is well investigated in the literature.90

Brieman in [3] addressed and condensed several related works regarding the theoretical properties91

of ensemble learning [2, 14, 16, 44, 46]. Another well-known strategy used in ensemble learning92

is called ”stacking” [53], it involves combining the predictions from multiple models on the same93

dataset. Many researchers have proposed linear combination approaches that introduced stacking94

to the ensemble of models [53, 3].95

In order to derive the most efficient combination of models, the work described in [3] inves-96

tigated stacked regression by using cross-validation. The cross-validation based work has been97

expanded in the purpose of finding the best combination of predictors by proposing the ”Super98

Learner” approach [29]. This framework demonstrated superiority and very good contributions in99

multiple areas namely: online learning [1], medicine [37, 54], spatial prediction applications [10]100

in addition to mortality prediction [6, 40].101

In this paper, we propose a new framework used for supervised classification tasks. Instead102

of using an ensemble of classifiers, we propose the use of an ensemble of data representations.103

Our proposed approach is based on ensemble learning. The proposed approach creates multiple104

subsets of original features; these subsets are carefully chosen by using a single or multiple feature105

selection techniques. For each subset, a projection model (feature extraction) is built in order to106

get the transformed features. At the final stage, all transformed features are concatenated and used107

as a single large data representation that feed a classifier.108

We make sure that the features of the data are ranked according to their importance by sub-109

jecting them to multiple feature selection techniques. In the way we have chosen to construct the110

features subsets, the most relevant features of the data were taken into consideration every time.111

Every created subset that we have used contains the most relevant features of the data overlapped112

with different features every time. In this way, even in the case where the chosen feature subset113

contains less relevant features, these features are there alongside with the most relevant ones and114

not alone. Moreover, due to the adopted feature ranking, the most relevant features will be used in115

several projection models.116

The main idea of the proposed approach is generic and can be used by various methods. How-117

ever, we have chosen the ”Inter-class sparsity based discriminative least square regression” de-118
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noted as (ICS DLSR) [52] as a backbone projection algorithm. This is motivated by (1) its re-119

markable discriminating ability, (2) efficient projection model computation, and (3) economic size120

of transformed features. The use of several feature selection techniques led to multiple variants of121

the proposed scheme. In brief, the paper has the following contributions:122

• Proposing an ensemble of models based learning approach that improved the classification123

performance compared to single model learning.124

• Studying the effect of the introduction of hybrid combination of multiple feature selection125

techniques into one single model.126

The remainder of the paper is divided as follows: section 2 will show the preliminaries. Section127

3 is intended to describe the methodology of our proposed scheme. Section 4 will present the128

experimental results and method evaluation. Finally section 5 concludes the paper.129

2 Preliminaries130

In current times, achieving an efficient data representation is the focus of many researches. Many131

studies are conducted for this purpose, and good methods have been delivered by various re-132

searchers [50, 52, 13, 57, 58]. To be able to test our ensemble learning based approach, we have133

chosen to use the ” inter-class sparsity discriminative least square regression ” (ICS DLSR) [52]134

approach for multiple considerations. ICS DLSR is an efficient method for both training and test-135

ing. It is flexible and has good discrimination properties. In this section, we will briefly describe136

some preliminaries. We will review the ICS DLSR method and talk about the adopted feature137

selection techniques used for ranking the data features.138

2.1 Notations139

We will proceed with the presentation of the notations used in our article. The training set is140

denoted as X = [x1, x2, ..., xN] ∈ Rd×N , whith d being the dimension of the samples. Each sample141

xi is represented by a column vector consisting of ’d’ features ∈ Rd. N denotes the number of142

training samples. The total number of classes is denoted by C. The projection matrix is denoted as143

Q ∈ RC×d, and Y = [y1, y2, ..., yN] ∈ RC×d is the label matrix corresponding to the training set X,144
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where each column vector yi ∈ RC×1 is simply defined as follows: if training sample xi belongs to145

the k-th class, then the k-th element of column vector yi is 1 while the remaining elements are 0.146

Table 1 illustrates the `2,1 and Frobenius (`F) norm computation for a matrix Z ∈ RC×d, where147

Zi j denotes the (i, j)-th element of matrix Z.148

Table 1: Matrix norms.

Type Formula

`2,1 norm ‖Z‖2,1 =
C∑

i=1

√
d∑

j=1
Z2

i j.

`F norm ‖Z‖F =

√
C∑

i=1

d∑
j=1

Zi j
2.

2.2 Review of Inter-class sparsity discriminative least square regression (ICS DLSR)149

[52]:150

Original Least Square Regression (LSR) only focuses on fitting the input features to the corre-151

sponding output labels but still ignores the correlations among samples. LSR has been effective152

and proved very good contribution in many applications like gene classification [32], cancer clas-153

sification [17], face recognition [55], image retrieval [15] and speech recognition [23].154

Based on the LSR framework, the authors in [52] proposed the Inter-class sparsity discrimi-155

native least square regression (ICS DLSR) method in order to obtain a more discriminative and156

compact projection space. This proposed framework imposed an inter-class sparsity constraint157

on the projected data which ensures that the derived projected data obtain common class struc-158

ture. In addition, the authors introduced an error term with row-sparsity constraint to relax the159

strict zero–one label matrix. This allowed ICS DLSR to be more flexible in the learning process.160

ICS DLSR achieved superior performance and proved to be effective on many datasets. It aims to161

minimize the following problem:162

min
Q,E

1
2
||Y + E −QX||2F +

λ1

2
||Q||2F + λ2

C∑

i=1

||QXi||2,1 + λ3 ||E||2,1 (1)

In Eq. (1), Q, X E and Y represent the linear transformation matrix, the data samples matrix,163

the error matrix, and the label matrix, respectively. λ1, λ2 and λ3 are three parameters that de-164

termine the effect of the corresponding terms. C denotes the total number of classes. The matrix165
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`2,1 norm is used to promote the row-sparsity of a matrix. In this optimization problem, there are166

two unknown variables the linear transformation and the error matrix. To solve the problem, the167

authors adopted the alternating direction method of multipliers (ADMM) [34, 35, 56] to obtain the168

solution for Q and E.169

2.3 Feature Selection techniques170

In machine learning and computer vision, feature quality assessment is an important topic171

In most of the learning problems, there exist hundreds or thousands of features describing each172

object. These features can either enhance the learning, or at particular occasions worsen it. For173

the purpose of ensuring the optimal learning performance, we should select the subset containing174

the most relevant features of the data. By doing so, one can enhance the performance and decrease175

the computational cost at the same time. Therefore, the problem of feature (attribute) selection176

has received much attention in the literature. Selecting the most relevant features of the data can177

be implemented using what is known by feature selection techniques.178

• Feature selection using Fisher score:179

Generally, feature selection approaches main objective is selecting and highlighting the set180

of the relevant features of the original data. This selected subset of features is normally used181

to construct a more robust and compact model. Hence, leading to superior classification182

performance. Fisher score is one of the most famous algorithms used for feature selection, it183

works by computing the score of each data feature and then selects each feature accordingly.184

Fisher algorithm computes the score of the i-th feature S i by the following formula:185

S i =

∑C
j=1 n j (µi j − µi)2

∑C
j=1 n j ρ

2
i j

(2)

where ρi j and µi j represent the variance and the mean of the i-th feature associated with the186

j-th class. The number of instances in the j-th class is denoted by n j and µi is the mean of187

the i-th feature. C is the number of classes.188

• Feature selection using ReliefF score:189
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Original Relief Algorithm Another well-known algorithm that enables features ranking190

is the Relief algorithm. The majority of the approaches used for approximating the reliabil-191

ity of the attributes presume the conditional independence of the attributes and are thus less192

suitable for problems that might involve more feature interaction. Relief based algorithms193

(Relief, ReliefF and RReliefF) do not simply make this assumption [24, 26, 25].194

These algorithms are reliable, conscious of the contextual information, and can effectively195

estimate the quality and the relevance of attributes in problems with high attribute depen-196

dency. Relief algorithms are based on the concept of local margins for each feature. These197

margins should be large enough for relevant features. These algorithms are widely consid-198

ered as feature subset selection methods used in the pre-processing phase before the model199

is trained [24]. They are still one of the most popular pre-processing algorithms to date [12].200

They are actually general feature estimators which have been successfully used in a multi-201

tude of environments. Inspired by instance-based learning, the authors in [24] proposed the202

classical Relief algorithm. Relief is optimized for two-class problems. The basic principle203

of the algorithm is to consider not just the disparity in features values and the variance in204

the classes but also the distance between the instances.205

Let us consider the feature vector v and the feature vectors of the instance closest to v from206

each class. The closest instance belonging to the same group is referred to as near-hit (NH),207

and the closest instance with a different group is denoted as near-miss (NM).208

Relief Algorithm [26] iteratively computes the weight for the i-th feature by:209

Wi = Wi − (Vi − NHi)2 + (Vi − NMi)2 (3)

ReliefF Algorithm Authors in [26] improved the Relief algorithm. They developed an210

extension of the original Relief, called ReliefF, that improves the original algorithm by es-211

timating margins more reliably. Irrelevant attributes either the redundant or noisy ones may212

affect the selection of the nearest neighbors. Thus, the estimation of the margins becomes213

unreliable. To address this problem, ReliefF searches for the ”k” nearest (NH’s) and (NM’s)214

rather than a single (NH and NM) and averages the contribution of all k nearest (NH’s) and215

(NM’s). The selection of the nearest neighbors is very important in Relief-F. The purpose is216
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to find the nearest neighbors with respect to important attributes. In all our experiments, ”k”217

was set to 10 which, empirically, gives satisfactory results. In some problems significantly218

better results can be obtained in case of tuning ”k” (as is typical for the majority of machine219

learning algorithms). Many studies were conducted to explore the feature selection ability220

using ReliefF algorithm [45]. More deails about Relief variants can be found in [19].221

• Feature selection using Robust multi-label feature selection with dual-graph regular-222

ization:223

Authors in the [20] proposed a novel dual-graph regularization based feature selection224

method called ”Robust multi-label feature selection with dual-graph regularization” (DRMFS).225

The proposed algorithm differ from the existing methods by incorporating only a single un-226

known variable (feature weight matrix) in its global criterion. In addition, the designed227

approach is described by its capability of achieving a global optimal solution, compared to228

most of the competing methods with multiple unknown variables and their ability of only229

achieving local optimal solutions. DRMFS was designed based on feature graph regular-230

ization and label graph regularization, jointly. The former preserves the geometric structure231

of features, while the latter addresses the correlations of the data labels. Authors imposed232

the `2,1 norm constraint on both the loss function and the weight matrix to improve the ro-233

bustness of the method and ensure the row sparsity property. The objective function of the234

DRMFS algorithm is as follows:235

min
W
||XT W − Y||2,1 + αTr(WT LXW) + βTr(WLYWT ) + γ||W||2,1 s.t.W ≥ 0. (4)

where X, W, and Y denote the data, feature weight and label matrices, respectively. α, β236

and γ are three regularization parameters. LX and LY represent the feature graph and label237

graph Laplacian matrices, accordingly.238

Once the feature weight matrix W is computed, the score of each feature is given by ||Wi∗||2239

(1 ≤ i ≤ d), where d denotes the dimensionality. It is possible to retrieve the most relevant240

top-k features according to the highest scores (k ≤ d).241

Additional detailed information about this proposed method is presented at [20].242
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3 Proposed Ensemble Class Sparsity Discriminative Regression243

In this section, we will describe our ensemble learning based approach. We will present the dif-244

ferent phases of the process and the model construction.245

3.1 Steps and Methodology246

Let us consider the data matrix X ∈ Rd×N where d and N represents the dimension (number of247

features) of the original data and the total number of samples, respectively. First, we apply one of248

the feature selection techniques over the original data.249

• The score of each feature is computed (by one of the selection techniques stated above)250

and then features are ranked according to their scores. In this way, most relevant features,251

which are usually the ones with highest scores are placed at the top while the ones with252

lower scores are placed at the bottom. A graphical illustration of this weighting and ranking253

process is shown in Figure 1. We denote the ranked features data matrix by Xs ∈ Rd×N .254

• Subsequent to the feature ranking process, we start by constructing our subsets of features.255

We construct multiple feature subsets in a way that each one is unique (coming from taking256

different percentages of features from the data matrix with ranked features) as it is shown in257

the upper part of Figure 2. In its simplest implementation, the number of percentages defines258

the number of models, M. According to this scheme, the most relevant features of the data259

are taken into consideration in more than one subsets. Every created subset contains the260

most relevant features of the data overlapped with different features every time. Thus, even261

in the case where the chosen feature subset contains less relevant features, these features262

are there alongside with the most relevant ones and not alone. This ensures that no feature263

subset taken into consideration would harm the learning process.264
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Figure 1: Features Ranking General Methodology.

• Let us consider creating M models. After generating the M subsets, the ICS DLSR algo-265

rithm is applied on each subset that is fed as input data for the algorithm. In the ICS DLSR266

algorithm process, each input generates a linear transformation matrix Qn associated with267

this input. We have n = 1, ...,M.268

• After obtaining the projection matrices Qn delivered by ICS DLSR, we can create our tar-269

geted data representations. We proceed by projecting each feature subset using the cor-270

responding transformation Qn. Assuming that X represents the original data, after sorting271

according to the features scores this will be denoted as Xs. Let Sn represents the data formed272

by the n-th subset of features, Sn ⊂ Xs. It worth noting that the training and test data are273

submitted to the same procedure. Projecting training and test samples using Qn is imple-274

mented by An = Qn Sn and Bn = Qn Tn, where Sn corresponds to the training data formed275

by the n−th feature subset and Tn represents the test samples having the same subset of fea-276

tures. This leads to M models formed by the obtained descriptors (projected data vectors)277

with n = 1, ...,M.278

• In the final stage of the proposed approach, the obtained M models are concatenated to279

form a single data representation which is finally fed to a given classifier (e.g., the Nearest280

Neighbor classifier). Since ICS DLSR is used as a projection model, the dimension of the281

projection space provided by each model Qn is C, the dimension of the final representation282

is M ×C.283
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Algorithm. 1. ICS DLSR Based Ensemble Learning for Image Classification

Inputs: 1. Data samples X ∈ Rd×N

2. Labels vector
3. Number of models, M
4. Percentages of subsets
5. Parameters λ1, λ2, λ3
6. Feature selection technique

Steps: 1. Compute the scores and rank the features using one of
the feature selection techniques (Fisher score, ReliefF, DRMFS, or other).

2. Select subsets of features according to the pre-defined percentages.

3. Apply the ICS DLSR algorithm using each one of the extracted subsets of
features as an input and derive the corresponding transformation matrices.

4. Project the training and test data on the new space using the obtained projection
matrices associated with each input and construct the targeted models out of the.
transformed subsets.

5. Concatenate the obtained transformed subsets to form a single data representation vector.

Output: Data representation vector obtained by the concatenated models.

Figure 2 depicts a graphical illustration of the main steps of the proposed approach. For284

simplicity, the case of three models creation was adopted in the example provided by this285

figure. This figure demonstrates the full process which includes: ranking the original fea-286

tures of the data, subsets construction, model creation, concatenation, and classification.287

Algorithmic steps of the proposed approach are illustrated in Algorithm 1.288

3.2 Proposed Variants289

We have proposed three variants of our approach namely: (i) Ensemble of models Class sparsity290

based discrimination using Fisher score EM ICS FS, (ii) Ensemble of models Class sparsity based291

discrimination using Combined score EM ICS HS and (iii) Ensemble of models Class sparsity292

based discrimination using the ”Robust multi-label feature selection with dual-graph regulariza-293

tion” (DRMFS) algorithm [20] EM ICS DRMFS.294

• Ensemble of models Class sparsity based discrimination using Fisher score EM ICS FS:295
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Figure 2: Proposed Ensemble Learning Methodology.
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In this variant of the approach, we have constructed a total of 10 models in which the296

proportions of the data features taken from the original data are 10%, 20%, 30%,...,100%,297

respectively. The data contained in these models were obtained after original features are298

ranked via the Fisher Score feature selection technique only. The methodology of the model299

creation procedure is described in Figure 2.300

• Ensemble of models Class sparsity based discrimination using Combined score EM ICS HS:301

In this second variant, we have constructed a total of 10 models. The main difference of this302

variant comes from the fact that the created models were obtained when the subsets of fea-303

tures were ranked using multiple feature techniques. In our experiments, 5 models were304

created when the applied feature selection technique is the Fisher Score and the other 5305

models were constructed when we have applied ReliefF feature selection technique on the306

original data features. The proportions of the features taken from the data to construct the307

subsets for this variant are as follows [20%, 40%, 60%, 80%, 100%]. The methodology for308

the combined model creation is described in Figure 3.309

• Ensemble of models Class sparsity based discrimination using DRMFS algorithm EM ICS DRMFS:310

We have constructed a total of 10 models in which the proportions of the data features taken311

from the original data are 10%, 20%, 30%,...,100%, respectively. The data contained in312

these models were obtained after original features are ranked via the recently proposed313

DRMFS algorithm.314
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Figure 3: Combined Model Construction Methodology.

4 Experiments and Analysis315

4.1 Datasets316

This section will provide detailed information regarding the datasets used in the experiments pre-317

sented in this paper. Faces, objects and scene image datasets with different sizes were tested using318

our proposed approach.319

• Extended Yale B Face Dataset1: The database used in this paper in the condensed version320

of the original Extended yale B dataset. Images in this dataset represent the faces of 38 dif-321

ferent individuals while each one of these individuals has between 58 and 64 image. These322

face images were taken in various illuminations conditions and with different facial expres-323

sions for each person. A total number of 2414 images were used, each image is rescaled to324

32×32 pixels. Raw brightness images of dimension 1024 are used in the experiments for325

this dataset. Results were derived while using different training percentages. 10, 15, 20, and326

25 samples from each class were used as training samples and the remaining are used for327

testing.328

1http : //vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
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• LFW-a Dataset2: ”The Labeled Faces in the Wild-a (LFW-a)” is constructed from the im-329

ages of the original LFW database after alignment using a commercial face alignment soft-330

ware. Images in this dataset maintained the same structure as in the original LFW dataset.331

This dataset contains a total of 3,408 image samples representing 141 classes. Raw bright-332

ness images of dimension 1,024 are used in the experiments. The reported results were333

obtained after we had varied the training percentage while using 5,6,7 and 8 image samples334

from each class as training samples. Remaining samples were used as test samples.335

• COIL20 Object Dataset3: With the full name ”The Columbia Object Image Library”,336

COIL20 dataset contains images representing various objects. Each object is rotated around337

a vertical axis. It contains the images of 20 objects in which each object has 72 images,338

leading to a total number of 1,440 images. Local Binary Patterns (LBP) [31] are used as339

image descriptors in this dataset. We adopted the uniform LBP histogram (59 values). Three340

LBP descriptors are constructed from the image using 8 points and three values for the radius341

(R=1, 2, and 3 pixels). As a result, the final concatenated descriptor has 177 values. We342

varied the training samples percentage, in our experiments we took 20, 25, 30, and 35 image343

samples from each class for training and the remaining were used as testing portions.344

• Georgia Face dataset4: This dataset contains face images corresponding to 50 persons,345

each individual is represented by 15 images describing frontal and tilted faces with different346

facial expressions, lighting conditions and scale. The total number of images included in347

this dataset is 750 images. The images used are cropped and resized to 32×32 pixel for348

each image. Raw-brightness images of dimension 1024 are used in the experiments. The349

reported results are obtained after we used 3, 5, 7, and 9 image samples from each class as350

training samples and the remaining are used as test samples.351

• FEI dataset5: The stated dataset contains pictures of the students and staff members at352

FEI. It is a face dataset that contains a set of colorful face images taken against a white353

background. The images are in an upright frontal position with profile rotation of up to354

about 180 degrees. This dataset contains a total number of 700 images, 14 images for each355

2https://talhassner.github.io/home/projects/lfwa/index.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http : //www.ane f ian.com/research/ f acereco.htm
5https : // f ei.edu.br/ cet/ f acedatabase.html
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one of the 50 people. Raw brightness images of dimension 1024 are used. The reported356

results are obtained after we used 5, 6, 7, and 8 image samples from each class for training357

samples and the rest was used for testing.358

• Outdoor Scene dataset6: This scenes dataset contains 2,688 images belonging to 8 groups.359

The descriptor used consists of 256 HOG features.360

Table 2: Brief datasets description.

Dataset Type Number of Samples Number of features Number of classes Descriptor

Extended Yale B Face 2414 1024 38 RAW-brightness images
LFW-a Face 3408 1024 141 RAW-brightness images
COIL20 Object 1440 177 20 Local Binary Patterns
Georgia Face 750 1024 50 RAW-brightness images
FEI Face 700 1024 50 RAW-brightness images
Outdoor Scene Scene 2688 256 8 HOG features

(a) Images of the Extended Yale B dataset. (b) Typical images of the COIL20 dataset.

(c) Typical images of the LFW-a dataset. (d) Typical images of the Georgia dataset.

(e) Typical images of the FEI dataset.

Figure 4: Typical images of various datasets.

Table 2 presents a brief description of the datasets used in our paper, more information about361

these datasets can be found in the provided links presented in the footnotes. Figure 4 shows some362

of the typical images included in the tested datasets.363

6https : //github.com/sudalvxin/S MS C/tree/master/data
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4.2 Experimental Setup364

In the conducted experiments, the proposed approach is contrasted with many methods. We state365

from these: K-nearest neighbors (KNN) [27], Support Vector Machines (SVM) [7], Linear Dis-366

criminant Analysis (LDA) [48], Local Discriminant Embedding (LDE) [8], PCE [39], ICS DLSR367

[52] and Robust sparse LDA (RSLDA) [50]. We note that the SVM used in the experiments is the368

Linear SVM, it was implemented using LIBSVM library7. To further investigate the discrimina-369

tion ability of the suggested approach, we have added some additional compared methods to the370

table of the Extended Yale B results (6). Robust Discriminant Analysis using Gradient Descent371

RDA GD [22] , Linear Regression Based Classification (LRC) [38], Low-rank Linear Regression372

(LRLR) [5], Low-rank Ridge Regression (LRRR) [5], Sparse Low-rank Regression (SLRR) [5],373

Low-rank Preserving Projection via Graph Regularized Reconstruction (LRPP GRR) [51] and374

Manifold Partition Discriminant Analysis (MPDA) [59] were added to table 6 in the purpose of375

widening the comparison among competing methods.376

For a rational and accurate contrast, tests are carried out following the same experimental377

setup for all compared methods (eg, pre-processing and dimensionality reduction techniques).378

The classification performances presented in the tables are achieved using 10 splits which were379

chosen randomly for each dataset, unless specified otherwise in the table’s caption. We report the380

average classification accuracy over the 10 splits.381

In the conducted simulations, various training and test proportions were used for each dataset382

as detailed in section 4.1. For each dataset and each compared approach, the targeted embedding383

matrix is first computed using the training data components. After that, the training and test384

data are projected onto the new space using the predicted embedding. And for the final step,385

classification of the test data is then performed using the Nearest Neighbour classifier (NN) [9].386

The results presented in the tables were found with K=1 (1-NN).387

In our testing phase, we invoked dimensionality reduction of the raw features before feeding388

them to the learning models and classifiers most of the time. The Principal Component Analysis389

(PCA) was used as a pre-processing technique used for this purpose [47]. For the competing390

methods, PCA was used to preserve 100% of the data’s energy. We note that, in some conducted391

experiments and for some methods e.g. (ICS DLSR, in addition to the proposed approach), the392

7https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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original dimensionality was preserved and no pre-processing techniques were applied in order to393

highlight on the ability of the proposed approach in selecting the most relevant original features.394

The reported classification rates of the methods are chosen from the best parameter configura-395

tions and correspond to the average over 10 randomly selected splits as mentioned before.396

4.3 Experimental Results397

In this section, we will present the results derived through our experiments. We will compare our398

proposed method with the others mentioned in section 4.2.399

4.3.1 Feature selection techniques comparison400

In this section, we study the performance of the proposed ensemble approach in the case of using401

three different feature selection methods to select the subsets of features that we are going to work402

with. Adopting multiple selection techniques have led to multiple variants of the proposed scheme.403

The main goal is to enhance the classification performance obtained by the original ICS DLSR404

algorithm. In our experiments we have chosen the subsets of features that we are going to use405

after the original features have been ranked using Fisher score, a combination of ReliefF and406

Fisher score, in addition to ranking with the Robust multi-label feature selection with dual-graph407

regularization (DRMFS) [20] algorithm. The reason we have selected Fisher score and ReliefF408

feature selection techniques is that these algorithms have shown stability, very good performance409

and have been used widely in the machine learning field. We have also worked with the DRMFS410

algorithm in order to enrich the experiments.411

The proposed variants denoted as EM ICS FS and EM ICS DRMFS represent our method412

where the features were ranked via the Fisher score and the DRMFS algorithm, respectively. The413

third variant denoted as EM ICS HS represents the case where the features were ranked via a414

hybrid combination using both ReliefF and fisher score algorithms.415
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Table 3: Comparison of the mean classification performance (%) of different variants using LFW-a
dataset .

LFW-a

Training Samples Methods
ICS DLSR EM ICS FS EM ICS HS

5 22.56 27.38 25.92
6 25.72 31.75 30.12
7 29.04 36.07 34.60
8 31.92 39.71 38.57

Table 4: Comparison of the mean classification performance (%) of different variants using the
COIL20 dataset .

COIL20

Training Samples Methods
ICS DLSR EM ICS FS EM ICS DRMFS

20 98.04 98.36 98.51
25 98.22 98.61 98.63
30 98.75 98.92 99.11
35 99.12 99.21 99.39

Table 5: Comparison of the mean classification performance on the Outdoor Scene dataset.

Outdoor Scene

Training Samples Methods
ICS DLSR EM ICS FS EM ICS HS EM ICS DRMFS

50 68.19 68.75 68.84 68.80
70 69.41 70.51 70.15 70.11
90 69.64 70.60 70.41 70.45
110 70.21 71.03 71.05 70.78

Table 3 compares the classification performance of two variants of the proposed scheme along-416

side with the performance of the single model learning using the ICS DLSR algorithm. Results417

presented in this table were obtained using the LFW-a dataset.418

Table 4 presents the performance achieved by the proposed approach using two different fea-419

ture selection algorithms. Classification rates presented in this table are obtained in case of using420

10 models where the original data is ranked via the different algorithms. Results presented in this421

table were obtained using the COIL20 dataset.422

Table 5 presents the classification performance obtained by the proposed variants compared to423

the performance associated with the single model ICS DLSR algorithm over the Outdoor Scene424
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dataset.425

4.3.2 Method comparison426

Table 6: Mean classification accuracies (%) of compared methods on the Extended Yale B dataset.

Ext. Yale B
Training Samples Method KNN SVM LDA LDE PCE SULDA RSLDA RDA GD

10 69.80 73.85 82.32 79.92 86.39 84.61 86.79 87.10
15 75.20 80.02 86.76 83.77 89.23 88.72 89.93 90.04
20 80.24 85.79 90.7 88.44 92.19 91.66 93.59 93.75
25 82.24 89.03 92.17 90.43 93.35 92.14 94.92 95.02

Method LRC LRLR LRRR SLRR LRPP GRR MPDA ICS DLSR EM ICS FS
10 81.65 84.63 87.76 87.95 84.82 83.67 86.56 88.46
15 88.92 86.31 91.09 89.75 89.07 86.82 89.53 91.43
20 91.74 88.93 93.19 92.58 91.42 90.38 93.14 94.49
25 93.78 90.98 95.51 94.24 92.25 91.79 94.50 95.88

Table 7: Mean classification accuracies (%) of compared methods on the tested datasets using the
first proposed variant EM ICS FS.

Dataset\Method Training Samples KNN SVM LDA LDE PCE RSLDA RDA GD ICS DLSR EM ICS FS

LFW-a

5 9.90 12.72 20.51 9.98 9.44 24.70 25.11 22.56 27.38
6 10.57 13.61 25.28 10.49 10.26 28.42 28.61 25.72 31.75
7 11.06 14.70 28.62 11.24 10.98 31.50 31.82 29.04 36.07
8 11.35 15.72 32.42 11.71 11.73 32.48 32.69 31.92 39.71

COIL20

20 94.58 97.65 96.19 95.00 94.87 96.73 96.89 98.04 98.36
25 95.79 98.22 97.07 96.12 95.99 97.74 97.89 98.22 98.61
30 96.65 98.70 97.81 97.01 97.49 98.26 98.52 98.75 98.92
35 97.14 98.81 98.15 97.42 98.11 98.68 98.80 99.12 99.21

Table 8: Mean classification accuracies (%) of compared methods on the tested datasets using
EM ICS HS.

Dataset\Method Training Samples KNN SVM LDA LDE PCE ICS DLSR EM ICS FS EM ICS HS

Georgia

3 52.57 56.22 48.18 52.77 46.43 59.73 59.37 59.95
5 61.28 66.98 59.20 62.14 56.18 71.12 71.40 72.02
7 66.73 72.83 67.83 67.10 62.15 78.38 77.83 79.03
9 71.40 77.53 72.57 72.13 66.37 82.57 81.93 82.67

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 92.20 92.56
6 90.35 92.93 94.18 92.15 88.73 93.65 93.88 94.20
7 92.60 94.31 95.60 94.26 91.09 95.20 95.14 95.43
8 94.27 95.23 96.03 95.57 93.20 96.17 96.00 96.27

Table 6 presents the classification performance of the proposed approach alongside with the com-427

peting methods using the first proposed variant over the Extended Yale B face dataset. Various428

training percentages were used. This table contains an extended number of compared methods,429

these methods were added to extend the comparison of the proposed method among other methods.430

Table 7 presents the obtained classification performance using the first proposed variant alongside431

with the competing methods over the LFW-a and COIL20 datasets.432
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Table 8 shows the obtained performance associated with two variants of the proposed scheme433

EM ICS FS and EM ICS HS next to the compared competing methods. Results presented in434

this table are noted over Georgia and FEI datasets.435

4.4 Parameters sensitivity analysis436

This section’s main objective is to describe and study the effect of the main parameters of our437

proposed approach. We will show how the variation of the proposed approach’s parameters affects438

the overall performance.439

Like we have stated above, the ICS DLSR algorithm minimizes the following objective func-440

tion:441

min
Q,E

1
2
||Y + E −QX||2F +

λ1

2
||Q||2F + λ2

C∑

i=1

||QXi||2,1 + λ3||E||2,1

where Q, X and E represent the transformation matrix, data samples and error matrix respectively.442

λ1, λ2 and λ3 are three parameters to measure the effect of the corresponding terms. We have443

used the ICS DLSR algorithm in our ensemble learning process. In our proposed approach, first444

we have selected multiple subsets of features using one or more feature selection techniques, then445

each subset of features was fed as an input to the ICS DLSR algorithm to derive the associated446

transformation. Finally, we create the model out of the projected features.447

Let us consider the subsets of features Z, where Zn ∈ Rm×N with m ≤ d represents the n−th448

features subset. Zi
n denotes the n−th features subset corresponding to the i−th class. d and N449

denote the dimensionality of the data samples and the total number of the training data samples,450

respectively. Each feature subset is fed to the algorithm, our proposed approach work on minimiz-451

ing the following problem:452

min
Q,E

1
2
||Y + E −Q Zn||2F +

λ1

2
||Q||2F + λ2

C∑

i=1

||Q Zi
n||2,1 + λ3||E||2,1 (5)

According to experimental evaluations which we have conducted, we found that most of the453

time the optimal performance is obtained when the value of λ3 is set to 1. Thus, we can set λ3 to454

1 and study the effect of changing the values of the two parameters λ1 and λ2 on the classification455

performance over different datasets. Figures 5 and 6 illustrate our findings, while using the first456
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proposed scheme EM ICS FS and the second proposed scheme EM ICS HS, respectively.457
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Figure 5: Classification performance vs Parameters sensitivity of the proposed method using
EM ICS FS
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Figure 6: Classification performance vs Parameters sensitivity of the proposed method using
EM ICS HS

Figures 5 and 6 illustrate the variation of the classification performance obtained as a function458

of different parameter combinations using EM ICS FS and EM ICS HS. In general, our proposed459

method achieved satisfactory classification performance using a wide range for the parameters460

used. For the tested dataset, the optimal performance was obtained when λ1 and λ2 are in the461

ranges [1, 103] and [1, 102], , respectively (incremental step is 10).462

Another important factor in the ensemble learning, is the chosen number of created models,463

M, used for training. We have investigated about how the variation of the number of the cre-464

ated models affects the overall performance of the proposed scheme over the Extended Yale B465
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dataset. Results presented in figure 7 are obtained while using 10 samples from each class from466

the Extended Yale B dataset for training and the remaining samples were used for testing.467
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Figure 7: Classification performance variation according to the number of models.

4.5 Analysis of the Results468

The experimental results illustrated in the previous figures and tables demonstrate the superiority469

of the suggested approach in comparison to other competing methods. Many observations can be470

made.471

• The Proposed approach proved the superiority that ensemble learning can provide over sin-472

gle models. Conducted experiments have shown that by training multiple subsets of ranked473

features of original data, we can achieve better classification performance.474

• We have proposed three variants for the proposed approach. All have shown very good dis-475

crimination properties and a remarkable enhancement over the baseline compared method,476

namely the ICS DLSR method.477

• For the datasets where the first variant of the proposed scheme failed to ensure an enhance-478

ment over the single model-based learning, other variants were able to enhance the classifi-479

cation performance and ensure the superiority of the proposed approach (e.g., the Georgia480

dataset using 3,7 and 9 training samples per class for training, and the FEI dataset when 7481

and 8 training samples were used).482
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• The proposed approach is flexible in the sense that many other linear embedding approaches483

and feature selection techniques can be used and mixed to construct the desired models484

which may lead to a further better result.485

• By analyzing the experimental results, we can observe that there is no specific feature selec-486

tion technique that always leads to the best performance. The best option is to test multiple487

combinations to reach the optimal result. This in line with the literature of feature selection488

paradigms where the performance highly depends on the dataset used.489

• Superior classification performance can be achieved if the parameters are accurately tuned.490

Very promising performance was obtained using a wide range for the used parameters, this491

is shown in Figures 5 and 6.492

• The studied ensemble learning approach can achieve noticeably better classification per-493

formance using a small number of models (refer to Figure7) and different training/testing494

portions of the data.495

• The performance improvement brought by the proposed scheme with respect to the single496

model highly depends on the dataset used and the adopted feature ranking technique. For497

instance, on the Extended Yale B and LFW-a datasets, we obtained significant performance498

enhancement compared to the single model while using Fisher score as the feature ranking499

scheme. Fair classification improvement was also noted when using the Outdoor Scene500

dataset with the second proposed variant. For other datasets, less enhancement was observed501

using the ensemble learning.502

5 Conclusion503

In this paper, we have proposed three variants of an ensemble learning approach that have been504

able to enhance the classification performance of the class-sparsity based least-square regres-505

sion (ICS DLSR) method. Multiple feature subsets were used in the training process with the506

ICS DLSR algorithm and their corresponding outputs were used to construct multiple models.507

These models are concatenated to form a single data representation which is used in the classifica-508

tion process. The targeted models were created by using various subsets of the original data. Our509
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proposed approach’s design ensures that each created model contains the most relevant features510

that describes the data efficiently. Relevant features are taken into consideration each time in a511

way that even if less relevant features are found they will not harm the classification performance.512

Original data features have been ranked using different and combined feature selection techniques.513

Many factors were studied and investigated in this paper including (parameter combinations, dif-514

ferent number of models, different training percentages, hybrid methods combinations, etc..). The515

obtained findings proved that the proposed approach enhanced the classification performance com-516

pared to the single-model and was able to outperform competing methods. Our proposed approach517

has been benchmarked on different datasets and achieved competitive results.518
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Abstract6

The performance of machine learning and pattern recognition algorithms generally7

depends on data representation. That is why, much of the current effort in performing8

machine learning algorithms goes into the design of preprocessing frameworks and9

data transformations able to support effective machine learning. The method proposed10

in this work consists of a hybrid linear feature extraction scheme to be used in super-11

vised multi-class classification problems. Inspired by two recent linear discriminant12

methods: robust sparse linear discriminant analysis (RSLDA) and inter-class sparsity13

based discriminative least square regression (ICS DLSR), we propose a unifying cri-14

terion that is able to retain the advantages of these two powerful methods. The result-15

ing transformation relies on sparsity-promoting techniques to both select the features16

that most accurately represent the data, and to preserve the row-sparsity consistency17

property of samples from the same class. The linear transformation and the orthogo-18

nal matrix are estimated using an iterative alternating minimization scheme based on19

steepest descent gradient method and different initialization schemes. The proposed20

framework is generic in the sense that it allows the combination and tuning of other21

linear discriminant embedding methods. According to the experiments conducted on22

several datasets including faces, objects and digits, the proposed method was able to23

outperform competing methods in most cases.24

Keywords: Supervised learning, discriminant analysis, feature extraction, linear embed-25

ding, class sparsity, dimensionality reduction, image classification.26
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1 Introduction27

Modern systems of interest based on computer vision, such as driver-assistance systems,28

healthcare or surveillance systems, may be characterized as high-dimensional systems gen-29

erally embedded onto low-dimensional manifolds that preserve the intrinsic properties of30

the original data. Learning good representations of the data able to extract and organize31

the discriminative information is of great interest. It may reduce the memory and computa-32

tional requirements, and more importantly, tends to improve the performance of classifiers33

or other predictors. This explains why Representation Learning is becoming a hot research34

topic (e.g. [14, 15, 20, 21, 30, 39, 37]).35

Among the various ways of learning representations, this work focuses on feature selec-36

tion and feature extraction. Feature extraction can be performed using linear or nonlinear37

methods. Most feature extraction methods look for a linear transformation that maps the38

original features to another space where latent variables can be obtained. In these methods,39

feature ranking or selection can be imposed by adding a `2,1-norm constraint on the transfor-40

mation matrix in the global criterion [31]. Nowadays, researches focus on deploying linear41

projection models that perform feature ranking and extraction simultaneously [31, 40]. An42

interesting approach recently reported by Zhang et al. [38] gives a more discriminating43

feature representation which consists in transforming tree-structured data into vectorial rep-44

resentations. They authors implemented a clustering technique in order to develop a node45

allocation process which aims at describing the global embedded information. They intro-46

duced an additional model to preserve the local information hidden among child nodes for47

a parent node, which led to very good discrimination characteristics. Other methods, use48

least square regression frameworks to achieve a discriminative feature extraction [33].49

A feature can be identified as one of the following: relevant, irrelevant or redundant.50

Usually, a feature is called irrelevant if it does not contribute in enhancing the prediction51

model, in other words, it degrades the classification accuracy when considered in the clas-52

sification process. Relevant features are the features that contribute to a better predictive53

model and thus to higher classification accuracy. These features are the ones that the model54

should extract and select among all others. A redundant feature does not make the model55

perform better in the classification process.56
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In this paper, we present a unified and hybrid discriminant embedding method that can57

retain the strengths of two recent discriminant methods: (i) RSLDA [31] and (ii) ICS DLSR58

[33]. The former promotes Linear Discriminant Analysis with implicit feature selection,59

and the latter promotes inter-class sparsity, which means that the projected features share a60

common sparse structure for the samples in each class.61

Thus, the main contributions are as follows. First, we deduce a novel objective function62

to estimate the linear transformation which has proven to refine the solution of RSLDA63

(transformation matrix Q).64

Second, we provide an optimization algorithm in which the linear transformation is65

estimated by a gradient descent method. This allow to sets the initial transformation matrix66

to a hybrid combination of transformation matrices obtained from both ICS DLSR [33] and67

RSLDA [31]) methods.68

Finally, we propose two initialization procedures for the linear transformation, which69

lead to two variants of the proposed algorithm.70

Indeed, our approach inherits the advantages of two powerful discriminant methods at71

two levels: (1) the initialization of the hybrid linear transformation, and (2) the refinement72

via the proposed single new criterion. The proposed method is also capable of obtaining a73

well-constructed projection space that ensures high classification accuracy, it can addition-74

ally be used in tuning an already obtained projection matrix. Our approach can be generic75

in the sense that any hybrid initial transformation matrix can be fed into our algorithm and76

then a more discriminative solution for the transformation matrix is obtained, resulting in77

higher classification performance.78

The main contributions of this work can be seen as follows:79

• The proposed method inherits the advantages of two recent powerful discriminant80

methods. The obtained transformation encapsulates two different types of discrimi-81

nation, namely inter-class sparsity in addition to robust LDA.82

• A hybrid initialization for the transformation matrix is introduced, where the initial83

matrix is created by combining two solutions of two different methods.84

• Using the gradient descent method to find a solution for the proposed criterion instead85

of the closed-form solution, where the gradient for the sought transformation matrix86
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is calculated in each iteration and the unknowns are updated accordingly.87

The experiments conducted show that the proposed method resulted in an improvement88

in classification accuracy in the majority of tested cases and was able to outperform sev-89

eral competing methods. The rest of the paper is organised as follows. Section 2 describes90

related work and presents the notations used. Section 3 presents the criterion and solu-91

tion details of the proposed method along with two initialization procedures. The obtained92

experimental results are presented in Section 4. Finally, Section 5 concludes the paper.93

2 Related Work and notations94

In this section we describe some related works, and briefly introduce the gradient descent95

method and how we used it to obtain a better embedding space by selecting the best and96

most relevant features of the data. In addition, we will show how the introduction of the97

`2,1 [34] norm and inter-class sparsity constraint was used for feature selection and helped98

in discrimination [25], and enumerate some recent methods that have used such a constraint99

by embedding it in their global criterion to ensure that the method performs feature selection100

[17, 9].101

2.1 Notations102

We will start by introducing the notations that we use in our paper. We will refer for the103

training set by X = [x1, x2, ..., xN] ∈ Rd×N , with d the dimension of each sample.104

Each sample xi is a column vector with d features ∈ Rd.105

The number of training samples will be denoted by N, in addition C will represent the total106

number of classes. The `2,1 norm of a matrix Z ∈ Rd×N is obtained through the following107

formula ‖Z‖2,1 =
d∑

i=1

√
N∑

j=1
z2

i j, and the `2 norm for the vector z = [z1, z2, ..., zd] is obtained108

as follows ‖z‖2 =

√
d∑

i=1
z2

i .109

Table 1 shows the main notations used in our paper.110
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Table 1: Main notations used in the paper.

Notation Description

X Training data samples ∈ Rd×N

P Orthogonal Matrix ∈ Rd×d

Q Projection Matrix ∈ Rd×d

D Diagonal Matrix
Sw Within-class scatter matrix
Sb Between-class scatter matrix
d Dimensionality of data
N Number of data samples
ni Number of samples in the i-th class
C Number of classes
xi The i-th data sample ∈ Rd

2.2 Related Work111

Recently, many feature extraction methods have been proposed. Some of these methods112

have built-in constraints that implement feature ranking/selection in the method and rank113

the features of their projection matrices. Feature selection or ranking is becoming more114

and more a trending problem in machine learning. Very often, using all data features does115

not lead to high classification performance. Feature selection aims to efficiently select the116

most relevant features of the data that best describe the data and improve discrimination.117

[24, 35, 36]. On the other hand, feature extraction aims to derive new sets of features from118

the original ones. The derived features are usually more discriminative than the original119

ones.120

The best known method to tackle the curse of high dimensionality is the principal com-121

ponent analysis (PCA) [23] method. PCA is an unsupervised feature extraction method that122

transforms the features of the original data and projects them into a low-dimensional space.123

In the well-known supervised Linear Discriminant Analysis (LDA) [26, 8] method, label124

information is required for the data. LDA and its variants are among the most widely used125

and discriminative algorithms in machine learning. LDA estimates a transformation ma-126

trix in which the desired space maximizes the variance between classes and minimizes the127

variance within classes. The projection axis w would be the solution to the Fisher criterion128
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[13]:129

w = arg min
wT w=1

wT (Sw − µSb) w (1)

where µ is a small positive constant that balances the effect of the two scatter matrices130

(Within-class scatter matrix Sw and between-class scatter matrix Sb) which could be calcu-131

lated as:132

Sb =
1
N

C∑

i=1

ni (µi − µ) (µi − µ)T (2)

Sw =
1
N

C∑

i=1

ni∑

j=1

(x j
i − µi) (x j

i − µi)T (3)

where µ, µi are the mean of all data samples and the mean of samples of the i-th class,133

respectively. Many variants of LDA were proposed and still being proposed (e.g.[42, 41, 5]),134

as the linear discriminant analysis showed good interpretability for the data.135

2.2.1 Review of Robust Sparse Linear Discriminant Analysis (RSLDA):136

RSLDA [31] was proposed to address many limitations of classical LDA[26], RSLDA137

mainly adds `2,1 regularization to the projection matrix. This regularization term is added138

to the global criterion to ensure that the method performs feature ranking and weighting.139

RSLDA minimizes the following criterion:140

min
P,Q,E

Tr (QT SQ) + λ1 ||Q||2,1 + λ2 ||E||1 (4)

s.t. X = P QT X + E, PT P = I141

where Q ∈ Rd×d and P ∈ Rd×d denote the projection matrix and the orthogonal matrix,142

respectively. E is an error matrix. S is the difference matrix Sw − µSb, λ1 and λ2 are two143

parameters that balance the importance of the different terms. In the criterion of RSLDA,144

the `2,1 norm was imposed on the projection matrix to achieve feature selection.145

146

147
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2.2.2 Review of Inter Class Sparsity Least Square Regression:148

In [33], the authors propose the Inter-class sparsity based discriminative least square regres-149

sion ICS DLSR [33]. This method provides a linear mapping to the soft label space, where150

the dimension of the latent space is set to the number of classes. This method was able to151

construct a model in which the margins of samples from the same class are greatly reduced,152

while the margins for samples from different classes are increased. This was achieved by153

adding a class-wise row sparsity constraint for the transformed features. ICS DLSR mini-154

mizes the following problem:155

min
Q,E

1
2
||Y + E −QX||2F +

λ1

2
||Q||2F + λ2

C∑

i=1

||QXi||2,1 + λ3||E||2,1 (5)

where X ∈ Rm×n is the training set with n samples from C classes, and m is the feature156

dimension for each sample. Y ∈ RC×n is a binary label matrix corresponding to the training157

set. Q is the transformation matrix and E denotes the errors. λ1, λ2 and λ3 are three158

regularization parameters.159

Another similar method is the one described in [25], where the `2,1-norm is applied to160

the transformation of the original linear discriminant analysis.161

3 Proposed Method162

In this section we present our problem formulation and show the steps applied to solve it.163

Our method is mainly considered as a linear projection method used for feature extraction,164

aiming at finding a more discriminative transformation matrix. Two variants of the method165

are proposed. These two variants differ in the initialization step. Our proposed method166

has adopted feature ranking by using the solution of RSLDA as the initial estimate for the167

sought transformation. The next step is to fine tune the initial guess for the transformation168

matrix by minimising the proposed criterion with a gradient descent method, which aims to169

find the required solution of the transformation matrix Q.170

The gradient descent algorithm is one of the simplest and most efficient algorithms for171

solving unconstrained optimization problems. In our algorithm, we have used the gradient172

descent approach to compute the transformation matrix Q and find the solution.173
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3.1 Formulation174

The main goal of our approach is to obtain both the projection matrix Q ∈ Rd×d and the175

orthogonal matrix P ∈ Rd×d using a unique criterion. In fact, the main contribution consists176

of the following objective function:177

f (Q,P) = Tr
(
QT S Q

)
+ λ1

C∑

i=1

||QT Xi||2,1 + λ2 ||X − P QT X||22 (6)

s.t. PT P = I178

Where Xi ∈ Rd×ni is the data matrix belonging to the ith class, ni is the number of training179

samples in the ith class, C is the number of classes.180

The first term in the equation (6) is the LDA criterion, where S represents the LDA181

scatter matrix, which can be calculated as S = Sw − µSb, where Sb being the between-class182

matrix and Sw is the within-class matrix. These two matrices are given by the equations (2)183

and (3) respectively. The second term of the criterion is imposed to ensure that transformed184

features of the same class in the projected space share a common sparse structure. Q is185

the projection matrix we are looking for. In addition, a variant of the (PCA) constraint is186

introduced to guarantee that the original data is well recovered, which is presented in the187

third term of the proposed procedure criterion. λ1 and λ2 are two trade-off parameters to188

control the importance of the different terms. It is known that the `2,1-norm of a matrix can189

be written as:190

‖Z‖2,1 = Tr
(
ZT D Z

)
(7)

where D is a diagonal matrix that is given by:191

D =



1
‖z(1)‖2+ε · · · 0

0
. . . 0

0 0 1
‖z(d)‖2+ε


(8)

where Z ( j) represents the j-th row of Z.192

By substituting the second term of the criterion by its trace form showed in equation193
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(7), problem (6) can be viewed as:194

f (Q,P) = Tr
(
QT S Q

)
+ λ1

C∑

i=1

Tr ( (QT Xi)T Di QT Xi) + λ2 ||X − P QT X||22 (9)

min
Q,P

f (Q,P) s.t. PT P = I195

Equation (9) represents the criterion for the proposed method. The minimization of the196

first term of this criterion is targeting a transformation matrix that ensures class discrimi-197

nation with Linear Discriminant Analysis (LDA). The second term of the criterion is intro-198

duced to obtain class sparsity. By introducing this condition, the transformed features from199

each class obtain a common sparse structure. Finally, a variant of the ”principal component200

analysis” constraint is introduced in our proposed criterion [10]. This last constraint was201

introduced to maintain the energy preserving property of PCA, and this constraint ensures202

the robustness of our data.203

To find a solution for the proposed method, we used the gradient descent algorithm. Gra-204

dient descent algorithm is a mathematical process used for minimising a particular function.205

When using the gradient algorithm, in addition to knowing the derivative of the function,206

we should also know the function, which is called the cost function. The gradient algorithm207

allows the person to solve the optimization problem in such a way that one knows the gra-208

dient from a particular point and can move in that direction to get a solution. The use of209

gradient algorithm has many advantages, we mention the most important of them as:210

• It has less computational complexity compared to other methods. Finding the solution211

by the descent gradient algorithm is usually less computationally expensive. Using212

the descent gradient to find a solution results in a faster model.213

• It leads to accurate solutions. The gradient algorithm leads to a more accurate solution214

to the minimization problem than the closed form solution.215

3.2 Solution steps to the proposed method216

To solve the problem formulated above, we adopted the alternating direction method of217

multipliers (ADMM) [1] and calculated each variable while other variables are fixed as218

follows:219
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• Calculate the orthogonal matrix P:220

P can be calculated by fixing the variable Q and through solving the following prob-221

lem:222

min
PT P=I

∥∥∥X − P QT X
∥∥∥2

2 (10)

Using PT P = I the fact the squared norm of a matrix A is given by ‖A‖22 = Tr(AT A) =223

Tr(A AT ), problem (10) is equivalent to the following maximization problem:224

min
PT P=I

∥∥∥X − P QT X
∥∥∥2

2 −→ max
PT P=I

Tr (PT X XT Q) (11)

One can find a solution for problem (11) by performing singular value decomposition225

of X XT Q. Suppose the SVD decomposition is given by S VD (X XT Q) = U Σ VT .226

Then P is obtained as [42]:227

P = U VT (12)

• Calculate the Projection matrix Q:228

Gradient descent is an iterative optimization technique used to minimize a function229

by moving in the direction of steepest descent in each iteration. The way the gradient230

method is used differs in different areas. In machine learning and classification, gra-231

dient is used to iteratively update the parameters of the desired model. We adopted232

the gradient descent method to compute Q in each iteration of the proposed method233

as follows:234

The orthogonal matrix P is fixed. Let us consider the trace form of the criterion of235

our problem:236

f (Q,P) = Tr
(
QT S Q

)
+ λ1

∑C
i=1 Tr ( XT

i Q Di QT Xi) + λ2 ||X − P QT X||22237

We calculate the gradient of the objective function w.r.t. Q as follows:238

G =
δ f
δ Q

= 2 S Q + λ1

C∑

i=1

2 Xi XT
i Q Di + 2λ2 [X XT Q − X XT P] (13)
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Using the gradient matrix, we can update Q by:239

Qt+1 = Qt − αG (14)

where Qt+1 and Qt denotes the projection matrix Q in iteration t + 1 and iteration t240

respectively. α is the step length (learning rate).241

• Update Variable Di: We update Di, (i = 1, ...,C) by:242

Di =



1∥∥∥∥QT Xi(1)
∥∥∥∥

2
+ε
· · · 0

0
. . . 0

0 0 1∥∥∥∥QT Xi(d)
∥∥∥∥

2
+ε



(15)

where ε is a small positive scalar and QT Xi ( j) represents the j-th row vector of QT Xi.243

Algorithm 1 summarizes our proposed method and describes the main steps for solving244

the problem (6).245

Algorithm. 1. Supervised discriminant analysis using gradient (SDA G 1)
Supervised discriminant analysis using gradient via combined initialization (SDA G 2)

Input: 1. Data samples X ∈ Rd×N

2. Labels of the training samples
3. The step length of the gradient descent α
4. Parameters λ1, λ2

Output: P, Q

Initialization: Q(0) obtained from RSLDA or using a hybrid combination (see section 3.3).

Process: set t = 0 and Q = Q(0)

Repeat
Fix Q, update P(t+1) using Eq. (12).
Calculate the gradient matrix G using Eq. (13)
Fix P, update Q(t+1) using Eq. (14).
Update Di using Eq. (15)
set t = t + 1
Until convergence

The projection of the training and test samples is carried out using the estimated pro-246

jection matrix Q. This is given by ztrain = QT xtrain and ztest = QT xtest where xtrain is a247

training data sample, and xtest is a test data sample.248
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3.3 Initialization of Projection Matrix Q249

The linear transformation Q needs a good initial estimate, since it is estimated by a gradient250

descent update rule. In this section, we present two initialization procedures that lead to two251

variants of the proposed algorithm.252

3.3.1 Using RSLDA algorithm253

In this variant, the initial estimate Q(0) for the linear transformation matrix Q is given by the254

solution of the RSLDA [31] method (solved by a separate ADMM optimization). RSLDA255

was able to provide implicit feature selection by imposing the `2,1 norm over the sought256

transformation matrix. Moreover, the introduction of the error matrix helped in tracking257

and modelling the random noise. These introduced terms have resulted in RSLDA obtain-258

ing a discriminative and efficient transformation. The solution of our proposed method is259

computed using the gradient approach, which requires a good initial estimate to ensure good260

performance. By adopting the solution derived from RSLDA method, our proposed variant261

could adopt the advantages of this method. Figure (1) describes the initialization process262

using the transformation matrix provided by RSLDA.263

Figure 1: The output transformation provided by RSLDA is fed as an input to our proposed
approach as an initial guess for the transformation matrix
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3.3.2 Hybrid combination of projection matrices obtained from the two embedding264

methods RSLDA and ICS DLSR265

In the second variant of our proposed algorithm, the initial transformation matrix Q(0) is266

set to a hybrid combination of the transformation matrices obtained by the two embedding267

methods RSLDA [31] and ICS DLSR [33].268

Let the number of rows of the hybrid transform Q(0) be d. The number of columns269

(projection axes), on the other hand, can be set to any arbitrary value. Without loss of270

generality, to be consistent with linear methods, we will assume that the total number of271

columns of Q(0) is d. Thus, Q(0) ∈ Rd×d. According to [33], the linear transformation272

QICS DLS R obtained by the ICS DLSR algorithm is ∈ Rd×C , where d and C represent the273

dimension of the features and the number of classes, respectively. On the other hand, the274

RSLDA method [31] its own linear transformation QRS LDA ∈ Rd×d. The sought initial275

hybrid projection matrix Q(0) used in our algorithm is denoted by QHybrid. It is constructed276

by taking all C columns of QICS DLS R to which the first d − C columns of QRS LDA are277

attached. The resulting transformation matrix QHybrid is ∈ Rd×d. The strategy for the hybrid278

initialization methodology is shown in Figure 2.279

In the above construction of the hybrid matrix QHybrid, our work fixed the number of280

projection axes for each projection type to C and d−C for ICS DLSR and RSLDA, respec-281

tively. We emphasize the fact that these dimensions can be changed.282

In our experiments, according to Table 2, we can see that the value of C that represents283

the number of classes varies between 10 and 50 for the datasets used. d represents the284

number of features for each dataset is also shown in the same table.285
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Figure 2: Combined initialisation using the linear embeddings derived from ICS DLSR and
RSLDA.

3.4 Computational complexity286

In this section, the computational complexity of the proposed method will be analyzed (see287

Algorithm 1). Matrices Q, P, are sought to be calculated. The orthogonal matrix P requires288

a singular value decomposition. The computational cost of a decomposition of a d × N289

matrix would be O
(
N3

)
. Q is computed in the second step of the procedure, it requires the290

computation of the corresponding gradient matrix, but since these two steps consist only of291

simple matrix operations, they have low computational cost and can therefore be ignored.292

Also, the step provided for updating Di from the equation (15) is a simple matrix operation293

which has very low cost.294

On the other hand, in the first variant of our proposed method, we have used the RSLDA295

method for the initialization of the transformation matrix Q before it is fed to our algorithm.296

Thus, the complexity of the RSLDA method should be added to the complexity of our pro-297

posed method. Supposing τ represents the number of iterations of RSLDA. The latter has a298

complexity of O
(
τ(d2N + 4d3)

)
. The main computational complexity of the proposed algo-299

rithm takes place in the step for updating P. The complete cost of the proposed method (first300

variant) is mainly O
(
τ (N3)

)
. In summary, the overall cost would be the sum of RSLDA301

cost added to the cost of our proposed method which would be equal to O
(
τ(d2N + 4d3)

)
+302

O
(
τ′ (N3)

)
where τ′ denotes the number of iterations of Algorithm 1.303

For the second proposed variant, we have constructed the initial guess of the trans-304
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formation matrix through the combination of solutions obtained by the RSLDA[31] and305

ICS DLSR[33] methods. Knowing that the ICS DLSR algorithm has a complexity of306

O (τ (d3)), the overall cost of the second suggested variant would become O
(
τ (d3)

)
+307

O
(
τ(d2N + 4d3)

)
+ O

(
τ′ (N3)

)
308

4 Performance Study309

To test both variants of our proposed method, we conducted experiments on several datasets310

including faces, objects, and handwritten datasets. Detailed information on these datasets311

is presented in this section. Next, we are going to present the experimental setup and the312

results obtained.313

4.1 Datasets314

In our work we have conducted our experiments over the following five public datasets in315

addition to a large-scale dataset: USPS 1 digits dataset, Honda 2 dataset, COIL20 3 object316

dataset, Extended Yale B 4 face dataset, FEI 5 dataset, and the large scale MNIST dataset317

consisting of 60,000 images.318

1. USPS Digits Dataset6: The US Postal Service or abbreviated as (USPS) [22] is a319

well-known handwritten digits dataset used for digit recognition. This dataset repre-320

sents 10 digits (from 0 to 9), it contains a total of 110 images for each digit, thus a total321

number of 1100 images in which the dimension of each one is 256. Raw-brightness322

images are used for classification. Popular training percentages for this dataset are323

used as we use 30, 40, 55, and 65 image samples from each class as training samples324

and set the rest as test samples.325

2. Honda dataset7: Honda dataset contains a total of 2277 face images that represent326

the faces of 22 different individuals in different conditions. Each class contains ap-327

proximately 97 images. Popular training percentages are used as we use 10, 20, 30,328

1https : //www.kaggle.com/bistaumanga/usps − dataset
2http : //vision.ucsd.edu/ leekc/HondaUCS DVideoDatabase/HondaUCS D.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http : //vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
5https : // f ei.edu.br/ cet/ f acedatabase.html
6https : //www.kaggle.com/bistaumanga/usps − dataset
7http : //vision.ucsd.edu/ leekc/HondaUCS DVideoDatabase/HondaUCS D.html
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and 50 image samples from each class as training samples and set the rest as test329

samples, Raw brightness images are used for the classification process.330

3. COIL20 Object Dataset8: Columbia Object Image Library (COIL20) [18] dataset331

used for evaluation in our experiments consists of a total of 1440 images represent-332

ing 20 different classes, each class has 72 images. Different images of this dataset333

represent various objects in which each object is rotated around a vertical axis. As a334

training set, we used 20, 25, 30, and 35 image samples from each class and set the rest335

for testing. The image descriptor used is the Local Binary Patterns (LBP) [16]. We336

used the uniform LBP histogram (59 values). Three LBP descriptors are constructed337

from the image using 8 points and three values for the radius (R=1, 2, and 3 pixels).338

Thus, the final concatenated descriptor has 177 values.339

4. Extended Yale B Face Dataset9: This dataset is a popular dataset used for image340

classification purposes [11]. The Extended Yale dataset is constructed from facial341

taken in different illuminations and facial expressions for each subject. The dataset we342

have used is the cropped version of the original Extended Yale B dataset, it contains343

between 58 and 64 images per class, each class contains images that represent one344

individual. The total number of classes in this dataset is 38 and the total number of345

image samples is 2414. An adequate percentage of the training data is adopted as we346

have used 10, 15, 20, and 25 samples from each class for training, and the remaining347

were used as test samples. Each image of this dataset is rescaled to 32×32 pixels and348

represented through grayscale representation. Raw brightness images of dimension349

1024 are used in the experiments.350

5. FEI dataset10: The FEI face dataset contains 700 images of 50 students and staff351

members of FEI (14 images for each person). It is a face dataset that contains a set352

of colorful face images (Images are resized to 32 × 32 pixels) taken against a white353

background, The images are in an upright frontal position with profile rotation of up354

to about 180 degrees. Raw brightness images of dimension 1024 are used. We used 5,355

6, 7, and 8 image samples from each class as training samples. We should emphasize356

8http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
9http : //vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html

10https : // f ei.edu.br/ cet/ f acedatabase.html
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that the choice for these training set sizes comes from the fact that the number of357

samples in each class of the FEI dataset is relatively low (only 14) compared to other358

datasets.359

6. MNIST dataset: The large-scale MNIST digits dataset is challenging. It contains a360

total number of 60,000 images representing 10 different classes. The length of the361

used image descriptor is 2048. The descriptor is obtained from the (ResNet-50) 11
362

convolutional neural network.363

7. 20 News text dataset: This is a cropped version of the 20 newsgroups dataset, with364

binary occurrence data for 100 words across 16,242 postings. This dataset contains a365

total of 2000 samples belonging to 4 classes.366

8. Tetra synthetic dataset: The terta dataset was defined in [28, 29]. This dataset367

consists of 400 data points belonging to four classes. The data points are in R3, this368

dataset presents the challenge associated with low inter-cluster distances.369

Table 2 presents a summary for all the information concerning the datasets used in our370

paper.371

Table 2: Brief datasets description.

Dataset Type Number of Samples Number of features Number of classes Descriptor

USPS Digits 1100 256 10 RAW-brightness images
Honda Face 2277 1024 22 RAW-brightness images
COIL20 Object 1440 177 20 Local Binary Patterns
Extended Yale B Face 2414 1024 38 RAW-brightness images
FEI Face 700 1024 50 RAW-brightness images
MNIST Digits 60,000 2048 10 Deep features (ResNet-50)
20 News Text 2,000 100 4 Term Frequency times Inverse Document Frequency

11https : //www.mathworks.com/help/deeplearning/re f /resnet50.html
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(a) Images of the Extended Yale B
dataset.

(b) Typical images of the COIL20
dataset.

(c) Typical images of the USPS dataset. (d) Typical images of the Honda dataset.

(e) Typical images of the FEI dataset. (f) Typical images of the MNIST
dataset.

Figure 3: Some Images of datasets

4.2 Results372

As already reported, the proposed method has two variants, namely:373

• Supervised discriminant analysis using gradient technique (SDA G 1): In this vari-374

ant, our proposed method is implemented in the case that the initial transformation375

matrix Q(0) is set to the output of the RSLDA [31] algorithm as presented in section376

3.3.1.377

• Supervised discriminant analysis using gradient via combined initialization (SDA G 2):378

The second variant of the proposed method consists of initializing the transformation379

matrix Q(0) as a hybrid combination of the solutions derived from the RSLDA [31]380

and ICS DLSR [33] methods. The initial transformation construction is shown in381

Figure 2 and detailed in section 3.3.2.382

The proposed variants have been compared with the following methods: K-nearest383

neighbors (KNN) [12], Support Vector Machines (SVM) [3] (the Linear SVM was im-384
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plemented suing the LIBSVM library12 Linear Discriminant Analysis (LDA) [26], Local385

Discriminant Embedding (LDE) [4], PCE [19] (unsupervised method) ICS DLSR [33] and386

Robust sparse LDA (RSLDA) [31].387

All experiments for all compared methods were conducted under the same conditions388

to guarantee a fair comparison. For each compared embedding method, the whole dataset389

is randomly split into a training part and a test part.390

First, for each compared method, a transformation matrix is estimated from the training391

part. Then, training and test data are projected onto the new space using the already com-392

puted transformation. Finally, the classification of the test data is then performed using the393

Nearest Neighbour classifier (NN) [6].394

Different sizes of training sets were used. Moreover, for a given percentage of training395

data, the whole evaluation is repeated ten times. That means that we adopt ten random splits396

for every configuration and report the average recognition rate (rate of correct classification397

of test part) over these ten random splits.398

We used PCA as a preprocessing technique. In our experiments, PCA [23] is used399

as a dimensionality reduction technique and used to preserve 100% of the data’s energy.400

Concerning the parameter α we should set it to a small value. In our experiments, this value401

was chosen in {10−7, 10−5}.402

12https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 3: Mean classification performance (%) of the competing methods on the tested
datasets.

Dataset\Method Training Samples KNN SVM LDA LDE PCE ICS DLSR RSLDA SDA G 1 SDA G 2

USPS

30 87.01 88.21 84.91 83.54 72.01 88.46 89.45 89.50 90.29
40 88.56 90.40 86.19 85.3 72.30 90.16 91.11 91.81 91.46
55 90.51 92.09 88.64 87.16 73.32 91.25 92.65 93.07 92.87
65 91.76 93.16 89.29 88.58 74.11 91.53 92.89 93.71 93.49

Honda

10 64.12 71.32 65.95 65.74 61.86 70.79 69.90 70.16 72.14
20 77.69 83.60 79.39 79.25 75.33 82.95 83.03 83.60 84.64
30 84.78 89.09 85.84 86.24 82.55 88.20 89.04 89.41 90.12
50 91.36 94.15 92.28 92.34 90.03 93.53 94.13 94.53 95.10

FEI

5 88.98 91.18 92.60 90.67 86.04 92.16 93.19 93.81 94.58
6 90.35 92.93 94.18 92.15 88.73 93.65 94.25 94.75 95.08
7 92.60 94.31 95.60 94.26 91.09 95.20 95.66 96.20 96.29
8 94.27 95.23 96.03 95.57 93.20 96.17 96.43 96.97 96.40

COIL20

20 94.58 97.65 96.19 95.00 94.87 98.04 96.73 96.89 97.66
25 95.79 98.22 97.07 96.12 95.99 98.22 97.74 97.89 98.59
30 96.65 98.70 97.81 97.01 97.49 98.75 98.26 98.52 99.08
35 97.14 98.81 98.15 97.42 98.11 99.12 98.68 98.80 99.39

Table 4: Mean classification performance (%) of using the Extended Yale B dataset.

Dataset\Method Training Samples KNN SVM LDA LDE ELDE PCE SULDA MPDA ICS DLSR RSLDA SDA G 1 SDA G 2

Ext. Yale B

10 69.80 73.85 82.32 79.92 85.85 86.39 84.61 83.67 86.56 86.79 87.10 88.42
15 75.20 80.02 86.76 83.77 89.30 89.23 88.72 86.82 89.53 89.93 90.04 91.21
20 80.24 85.79 90.7 88.44 93.07 92.19 91.66 90.38 93.14 93.59 93.75 93.81
25 82.24 89.03 92.17 90.43 94.09 93.35 92.14 91.79 94.50 94.92 95.02 95.09

LRLR SLRR LRPP GRR LRRR

10 84.63 87.95 84.82 87.76
15 86.31 89.75 89.07 91.09
20 88.93 92.58 91.42 93.19
25 90.98 94.24 92.25 95.51

The obtained results are summarized in Table 3. This table depicts the classification per-403

formance of the proposed variants in addition to the competing methods using the USPS,404

Honda, FEI, and COIL20 datasets. The results are obtained using different training and405

testing percentages from the data. Results shown in this table are obtained using the Near-406

est Neighbor classifier. Table 4 presents the obtained classification performance using the407

Extended Yale B dataset. In this table, various training percentages corresponding to a dif-408

ferent number of samples used in the training process are shown. We should emphasize that409

more competing methods are presented in table 4, these additional methods are ELDE, in410

addition to SULDA and MPDA. These methods were added to enrich the comparison using411

more methods. To further improve the comparison over the Extended Yale B dataset, we412
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have added more methods to the comparison table, based on low rank representations. The413

added methods are the Low-rank Linear Regression (LRLR) [2], Low-rank Ridge Regres-414

sion (LRRR) [2], Sparse Low-rank Regression (SLRR) [2], and the Low-rank Preserving415

Projection via Graph Regularized Reconstruction (LRPP GRR) [32]. Low rank based meth-416

ods findings can be found in the bottom part of table 4. The depicted rates are the average417

over 10 random splits and correspond to different numbers of training samples. The first418

column inside the table depicts the number of training images per class.419

Table 5: Mean classification accuracies (%) of different methods on the tested datasets.

Dataset\Method Training Samples KNN SVM LDA LDE PCE ICS DLSR RSLDA SDA G 1 SDA G 2

MNIST 1000 91.75 97.58 85.74 93.22 93.77 98.02 97.95 98.21 98.33

Table 5 illustrates the classification performance for the competing methods alongside420

the proposed variants using the large-scaled MNIST dataset that contains a total number of421

60,000 images in total. Results shown in this table are obtained using one split while using422

1000 samples from each class for training and the remaining samples were used for testing.423

Table 6: Classification Performance (%) on the News20 text dataset.

News20
Training Percentage

20% 30%

Method Classification accuracy Method Classification accuracy
LDA 68.04 LDA 68.70
RSLDA 68.11 RSLDA 68.88
SDA G 1 68.38 SDA G 1 69.10
SDA G 2 68.87 SDA G 2 69.58

Table 6 depicts the obtained the classification performance using the News20 text dataset.424

Results presented in this table are the mean classification obtained using 10 split while using425

20% and 30% of the data samples from each class for training and the remaining samples426

were used for testing.427
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Figure 4: Statistical Analysis - CD diagram.
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Figure 5: Classification accuracy (%) vs. dimension for different datasets.

Figure 5 presents the obtained recognition rate (%) associated with the LDA [26], LDE428

[4], RSLDA [31] in addition to the two proposed variants of our method. The recognition429

rate is plotted as a function of the dimension of the projected features. Results are shown for430

(a) the COIL20 dataset, (b) the Extended Yale B, and (c) the HONDA dataset. 30, 10, and431
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10 samples from each class are used for training, respectively. The depicted results were432

obtained using the Nearest Neighbor (NN) Classifier.433

We have used the results obtained from 21 evaluations and using 6 different datasets434

from the experiments conducted in this paper to study the statistical analysis of our proposed435

method. We performed the Friedman test [7] and computed the critical distance CD. The436

obtained results of the conducted test yield to the conclusion that the tested methods do not437

have the same performance. Figure 4 shows the CD diagram for the 9 methods including438

our two proposed variants, where the average rank of each is marked along the axis.439

Experiments using synthetic data:440

In addition to the image datasets, we also conducted some experiments on the synthetic441

Tetra dataset [27]. This dataset consists of 400 data points belonging to four classes. The442

original data points of this dataset are in R3, but in our experiments, the dimension was443

augmented to 100 so each data sample is represented by 100 features. The 3-dimensional444

dataset is transformed to a high dimensional dataset ∈ R100 using a random projection ma-445

trix.446

This dataset was chosen because it presents the challenge associated with low inter-447

cluster distances. The distance between the clusters is minimal. Data points of Tetra are448

visualized in Figure 6. One can see that the clusters nearly touch each other.449

Figure 7 illustrates the TSNE visualization of the projected samples of the Tetra dataset450

using the original Linear discriminant Analysis LDA, RSLDA in addition to the first vari-451

ant of our suggested method SDA G 1. By looking at that figure, it is noticeable that our452

method provides very good class separation properties and lead to the most compact repre-453

sentation among competing methods. The proposed method ensured superior performance454

when it is applied on datasets with low inter-cluster distances.455
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Figure 6: Visualization of the Tetra dataset points in the original space. These 3D points
belong to four large full spheres close to each other.
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(a) Visualization of the projected samples of the
Tetra dataset using Original LDA.
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(b) Visualization of the projected samples of the
Tetra dataset using RSLDA.
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(c) Visualization of the projected samples of the
Tetra dataset using SDA G 1.

Figure 7: TSNE Visualization of the projected samples of the Tetra dataset using LDA,
RSLDA, and the first proposed variant SDA G 1.
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4.3 Analysis of Parameter sensitivity456

In this section, we investigate the effect of changing the proposed method’s parameters on457

the classification performance using different datasets. The proposed method has mainly458

two parameters to be configured, λ1, and λ2.459

Figure 8 shows the variation of the classification performance when adopting different460

parameter combinations of the proposed method using the Extended Yale B and Honda461

datasets. Subfigures (8a) and (8c) shows the variation of the classification rates using the462

Extended Yale B and Honda datasets in the cases of using 10 and 20 training samples from463

each class, respectively, using the first variant of the proposed method SDA G 1. Also, the464

classification performance is studied on the same datasets with adopting the same training465

percentages using the second variant of the proposed method SDA G 2. Corresponding466

results are depicted in subfigures (8b) and (8d).467

For the Extended Yale B dataset, we monitored the classification performance obtained468

by both of our proposed variants using different values for λ1 and λ2. λ1 and λ2 were469

varied for the ranges from [10−5, 1] and [10−3, 10] respectively. We noticed that satisfactory470

rates for the Extended Yale B dataset can be obtained when λ1 was chosen from the range471

[10−3, 10−1] and λ2 whithin the range of [10−2, 10−1].472

Similar to the Extended Yale B experiment, we studied the classification performance473

of the proposed schemes over the honda dataset. We varied λ1 in the range of [10−3, 103]474

and λ2 in the range [10−4, 103]. We noticed that satisfactory rates using Honda dataset can475

be obtained by choosing the value λ1 from the range of [10−1, 10] and λ2 from the range476

of [10−3, 102]. We concluded that the values of the parameters λ1 and λ2 should lie in477

the intervals shown in the figures above to obtain satisfactory results using the proposed478

method. A value of 0.1 for both λ1 and λ2 seems to be a good choice for the two variants479

and the two datasets.480
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(a) Extended Yale B using SDA G 1.
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(b) Extended Yale B using SDA G 2
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(c) Honda using SDA G 1
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Figure 8: Classification accuracy (%) according to parameters

Figure 8 shows the variation of the classification performance according to the change481

of the parameters λ1 and λ2. This figure corresponds to the variants of the proposed method482

when applied on the Extended Yale B and Honda dataset using 10 and 20 samples from483

each class for training respectively and the rest for testing.484

4.4 Analysis of results485

From our analysis of the experiments conducted, we can make the following observations:486

1. The classification performance obtained by the proposed method alongside the com-487

peting methods demonstrates that our proposed approach has out-performed compet-488

ing methods in the majority of the cases.489

2. The first proposed variant SDA G 1 has slightly outperformed the RSLDA method.490

This seems to be very realistic since the first proposed method mainly provides a491

fine-tuning of the RSLDA transformation.492
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3. In general, the second proposed scheme SDA G 2 is superior to the first proposed493

one SDA G 1. This is explained by the fact that the second scheme benefits from the494

hybrid combination of two different powerful embedding methods as well as from the495

refinement provided by the gradient descent tool.496

4. The proposed method proved superior performance using several types of image497

datasets, including faces, objects, and digits. Also, our approach demonstrated su-498

perior performance using a text dataset.499

5. The proposed method showed superiority and lead to very good class separation prop-500

erties when it is applied on datasets with low inter-cluster distances.501

6. The optimal parameters of the proposed method, which gives the best classification502

performance, have large ranges. In other words, the best classification performance is503

guaranteed most of the time by searching a small number of parameter combinations.504

7. The competing method ICS DLSR has performed better than our proposed method505

in a particular case using the COIL20 dataset while using 20 images from each class506

as training samples. On the other hand, the proposed method generally outperformed507

it using all other training percentages for the same dataset.508

8. When the hybrid initialization was used in our algorithm, we adopted a combination509

of the two best-tuned transformation matrices obtained from the two methods RSLDA510

and ICS DLSR as the initial transformation. In the majority of the tested cases, this511

has led to a noticeable enhancement in classification performance. The two best-tuned512

transformation matrices refer to the transformation matrices computed by two meth-513

ods using the best parameter combination, which leads to the optimal performance of514

the method.515

It is worthy noting that the use of the combination of the two tuned transformation516

matrices is not necessarily the best option for a combination in our framework. Other517

combinations may lead to better discrimination. Thus, the obtained classification518

performance using the second variant of our suggested approach (Table 3) could be519

further enhanced if other combinations for the initialization are used.520
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5 Conclusion521

In this work, we introduced a novel criterion to obtain a discriminant linear transforma-522

tion. This transformation efficiently integrates two different mechanisms of discrimination523

which are the inter-class sparsity and robust discriminant analysis. We deployed an iterative524

alternating minimization scheme to estimate the linear transformation and the orthogonal525

matrix associated with the robust LDA. The linear transformation is efficiently updated via526

the steepest descent gradient technique.527

We proposed two initialization variants for the linear transformation. The first scheme528

sets the initial solution to the linear transformation obtained by robust sparse LDA method529

(RSLDA). The second variant initializes the solution to a hybrid combination of the two530

transformations obtained by RSLDA and ICS DLSR methods.531

The two variants of the proposed method have demonstrated superiority over competing532

methods and led to a more discriminative transformation matrix, hence better classification533

performance.534

The proposed framework is generic in the sense it allows the combination and tuning of535

other linear discriminant embedding methods.536
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