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ABSTRACT

JIANYU LIU: Flexible Graph-based Learning with Applications to Genetic Data Analysis
(Under the direction of Yufeng Liu)

With the abundance of increasingly complex and high dimensional data in many scientific disci-
plines, graphical models have become an extremely useful statistical tool to explore data structures.
In this dissertation, we study graphical models from two perspectives: i) to enhance supervised
learning, classification in particular, and ii) graphical model estimation for specific data types.
For classification, the optimal classifier is often connected with the feature structure within each
class. In the first project, starting from the Gaussian population scenario, we aim to find an ap-
proach to utilize the graphical structure information of the features in classification. With respect
to graphical models, many existing graphical estimation methods have been proposed based on a
homogeneous Gaussian population. Due to the Gaussian assumption, these methods may not be
suitable for many typical genetic data. For instance, the gene expression data may come from indi-
viduals of multiple populations with possibly distinct graphical structures. Another instance would
be the single cell RNA-sequencing data, which are featured by substantial sample dependence and
zero-inflation. In the second and the third project, we propose multiple graphical model estima-
tion methods for these scenarios respectively. In particular, two dependent count-data graphical
models are introduced for the latter case. Both numerical and theoretical studies are performed to

demonstrate the effectiveness of these methods.
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CHAPTER 1

Introduction

Machine learning is a very important area for scientific research. Many machine learning
techniques are shown to be very powerful for various applications. In this dissertation, we investigate
several new graph-based machine learning methods. In our first project, we propose a new graph-
based classification technique. For our second and third projects, we study new approaches for
graph estimation.

In this chapter, we provide some background knowledge and literature review on machine
learning techniques. In Section 1.1, we introduce the linear discriminant analysis and its extensions
in high dimensions. In Section 1.2, we briefly review graphical models, including Gaussian graphical

models, count-data graphical models, and directed acyclic graphs (DAGs), and their estimation.

1.1 Linear Discriminant Analysis and Its High Dimensional Extensions

Classification is a typical supervised learning problem with categorical response variables. Clas-
sification problems are commonly seen in practice. There are many existing classification techniques
in the literature; see Bishop (2006); Hastie et al. (2009) for a comprehensive review. Among various
existing methods, linear discriminant analysis (LDA) has a long history and remains an important
tool in the standard classification toolbox. LDA can be viewed as a rule for a classification problem
of two Gaussian populations with a common covariance matrix. Despite its seemingly strong as-
sumptions, LDA often works well in practice, especially for low-dimensional problems (Hand et al.,
2006). It mimics the Bayes’ rule and has a simple closed form which only involves the within-
class sample covariance matrix and group averages. Given these estimates, the original formulation
for the discriminant vector of LDA is computed as the product of the inverse within-class sample
covariance matrix and the mean difference vector. Thus, standard LDA can be computed and

implemented easily in the traditional low-dimensional setting. LDA also has interpretations be-



yond the Gaussian model. In particular, the same formulation can be obtained from the Fisher’s
discriminant analysis problem (Fisher, 1936), the optimal scoring problem (Hastie et al., 1994),
and linear regression (Hastie et al., 2009).

Despite the usefulness of LDA, it needs to be adapted when the dimension of features is high.
For example, the form of standard LDA is only valid when the sample covariance matrix is invertible.
Moreover, as the dimension grows, the errors in the sample covariance and group means accumulate
and consequently LDA can become increasingly unstable (Fan and Fan, 2008; Shao et al., 2011).
To address this problem, a number of LDA extensions have been proposed for high-dimensional
scenarios.

Existing high-dimensional LDA methods in the literature can be roughly divided into two
categories, plug-in approaches and direct approaches. A plug-in approach tackles high-dimensional
problems by using regularized estimates for the within-class covariance matrix and group means.
For example, the naive Bayes method, or the independence rule, treats the covariance matrix as
diagonal. Bickel and Levina (2004) showed that it outperforms LDA with the Moore-Penrose
pseudoinverse covariance matrix when the dimension grows faster than the sample size. To further
reduce the instability of LDA, Tibshirani et al. (2002) additionally used shrunken estimates of group
means. Fan and Fan (2008) showed that, even under the independence feature assumption, naive
Bayes can be as bad as random guessing due to error accumulation in group means. They resolved
this issue by reducing the dimension via feature screening. In contrast to these independence rules,
Shao et al. (2011) assumed sparsity of the covariance matrix and the mean difference vector, and
used thresholded estimates to construct a sparse LDA classifier. It was shown to be asymptotically
optimal under certain conditions. All of these methods adopt the original formulation of LDA by
calculating some improved estimates of the covariance matrix and group means. Thus, some strong
assumptions on the covariance matrix and the group means need to be imposed for the resulting
LDA rule.

In contrast to the plug-in methods, direct approaches aim at estimating the discriminant vec-
tor 3 directly. Since LDA can also be obtained from some risk minimization problems, it can be
extended to high-dimensional scenarios via these formulations with regularization on 3. For exam-
ple, Wu et al. (2009) considered the Fisher’s discriminant analysis and proposed an ¢;-penalized

version for dimension reduction. The corresponding problem has a piece-wise linear solution path



which can be computed efficiently. Witten and Tibshirani (2011) also used Fisher’s discriminant
analysis formulation for a general K-class problem with a general regularization term. Clemmensen
et al. (2011) proposed the optimal scoring formulation with the ¢;-penalty. Following the idea of
minimizing the misclassification rates, Fan et al. (2012) proposed a method closely related to the
method by Wu et al. (2009) and directly computed the misclassification rate of the classifier. Mai
et al. (2012) took advantage of the regression formulation and estimated the discriminant vector
of LDA by solving a Lasso-type problem, which was shown to have the same solution path as the
method of Wu et al. (2009) and the method of Clemmensen et al. (2011) when K = 2; see Mai and
Zou (2013). Using a different idea for direct estimation, Cai and Liu (2011) formulated a linear
programming problem to estimate 3 and showed that the error rate of the estimated classifier is
close to the Bayes rule under certain conditions. Compared to plug-in approaches, these methods
estimate LDA directly and the assumptions can be less stringent since only the sparsity of the
discriminant vector of LDA is assumed (Cai and Liu, 2011).

Both plug-in and direct methods can work well for certain practical problems. However, these
methods do not utilize the feature structure information when available. In practice, features are
often correlated with some structure. Such structure can usually be represented by an undirected
graph G. Connected features may work together and thus be effective or not effective simultaneously
for classification. For instance, in the diagnosis of a disease using genetic information, genes are
naturally grouped by their functions or gene pathways. Relevant genes tend to contribute or not
contribute to the disease together. Moreover, when the population in consideration is Gaussian,
the conditional independence graph, or the Gaussian graphical model, often represents a natural
structure. By considering such structure information, we are likely to be able to construct a better

classifier.

1.2 Graphical Models and Their Estimation

Generally, a graph consists of nodes and edges, directed or undirected, between nodes. In
graphical models, a node often represents a random variable, while an edge between two nodes
indicates the (conditional) dependence or correlation between the corresponding variables. By con-

structing a graphical model, researchers can investigate the feature structure in data and visualize



the graph. In the following subsections, we consider Gaussian graphical models and directed acyclic

graphs respectively.

1.2.1 The Gaussian Graphical Model and Its Extensions

Among various graphical models, the Gaussian graphical model is possibly the most popular
one for its simplicity and easy interpretation. For a multivariate Gaussian population, denoted as
N(p,X), the Gaussian graphical model is defined as the conditional independence graph, that is,
each node represents a variable and two nodes are connected if they are conditionally dependent
given the remaining nodes. It has been shown that the Gaussian graphical estimation is equivalent
to finding the nonzero elements of the precision matrix, namely the inverse covariance matrix (Yuan
and Lin, 2007). Moreover, in this scenario two variables are conditionally dependent if and only if
one is in the partial regression model of the other with a nonzero coefficient.

Based on the above observations, many methods have been proposed for Gaussian graphical
model estimation. For example, Meinshausen and Biithlmann (2006) proposed to estimate the
graph by nodewise Lasso regression and showed the selection consistency. Similar works include
Yuan (2010); Luo and Chen (2014a). Yuan and Lin (2007) and Friedman et al. (2008) proposed
graphical Lasso that estimates the precision matrix via penalized likelihood. Cai et al. (2011) took
advantage of the inversion relationship between the precision matrix and the covariance matrix
and estimated a sparse precision matrix directly. Liu et al. (2009) and Liu et al. (2012) further

generalized Gaussian graphical models for non-Gaussian data by non-paranormal transformation.

1.2.2 Count Data Graphical Models

Gaussian and non-paranormal graphical models often work well when the random variables
or their continuous transformation are approximately Gaussian distributed. However, there are
increasingly more scenarios in which this assumption is not true. For example, the Gaussian
graphical model is typically not suitable for count data.

There is a rich literature on general count-data graphical models. For count data with binary
values, Ravikumar et al. (2010) proposed to estimate Ising models by nodewise ¢;-penalized logistic

regression. Yang et al. (2012a) and Chen et al. (2014) proposed a class of exponential family



graphical models, of which the Poisson graphical model is a special case. But the model only
allows negative dependence among the features. A number of approaches have been proposed to
address this issue. Yang et al. (2013) proposed to remove such a restriction by modifying the base
measure of the multivariate Poisson distribution. Allen et al. (2013) proposed a neighborhood
selection approach that estimates the neighborhood of each node via penalized Poisson regression.
See Inouye et al. (2017) for a comprehensive review. Recently, the Poisson-logNormal model has
attracted a lot of attention for count-data graphical modeling. A variety of methods have been
proposed for model estimation (Choi et al., 2017; Wu et al., 2018a; Sinclair and Hooker, 2017;
Chiquet et al., 2018). However, none of them is feasible for high-dimensional modeling due to
computational burdens.

Despite progresses on count-data graphical models, these existing models may not be appro-
priate for some new data applications. In particular, the single cell RNA sequencing (scRNA-seq)
techniques provide a way to study the gene expressions of each cell in a biological sample. However,
there often exists substantial dependence among the cells and inflated zeros in the data. Thus new

graphical models are needed to fit scRNA-seq data.

1.2.3 Directed Acyclic Graphs and Skeleton Estimation

There are many different types of graphical models. Besides undirected graphs, there is another
type of graphs, namely the directed graph. One can tell from the name that they differ in the edge
type: edges in a directed graph usually have directions. These directions sometimes may imply
causal relationships, which makes directed graphs particularly suitable for causal inference.

A directed acyclic graph (DAG) is a directed graph of which the edges do not form any directed
cycle. Statistically, a DAG is a model that describes conditional dependence of random variables.
A directed edge I — j indicates that j is dependent on [ given any subset of the remaining nodes.
On the other hand, the absence of an edge indicates that the two nodes are marginally independent,
or conditionally independent given some subset of the remaining nodes. By removing the direction
of each edge in a DAG, the resulting undirected graph is the skeleton of the DAG. Estimation of
a DAG is often infeasible due to lack of interventional data. Instead, the DAG skeleton can be

estimated using observational data. Given the DAG skeleton, one can orient as many edges as



possible to form a completed partially directed graph (CPDAG) using a set of deterministic rules
(Pearl, 2009). We will focus on skeleton estimation in Chapter 3.

There are various approaches to estimate a DAG or its skeleton. A typical search-and-score
approach searches for a skeleton that maximizes the regularized likelihood or the posterior prob-
ability (Heckerman et al., 1995; Friedman and Koller, 2003). These methods can quickly become
computationally infeasible for problems with thousands of variables. An alternative solution for
skeleton estimation is constraint-based approaches, which are often more efficient computation-
ally. Among these constraint-based methods, the PC algorithm (Spirtes et al., 2000; Kalisch and
Biithlmann, 2007; Colombo and Maathuis, 2014), which is based on conditional independence tests,
has been shown to be consistent in high dimension. There are also hybrid methods that combine the
search-and-score and constraint-based approaches (Tsamardinos et al., 2006; Schmidt et al., 2007;
Han et al., 2016). Nandy et al. (2015) showed that some hybrid methods with greedy search over
the constrained DAG space are consistent under high dimensional settings. In a recent paper, Ha
et al. (2016) proposed a two-stage skeleton estimation method called PenPC, which first estimates
a conditional independence graph by neighborhood selection, and then estimates the skeleton by a
modified PC algorithm.

In genetic study, the biological samples are often collected from individuals of multiple popula-
tions. Each population can have a unique DAG structure while these DAGs may have a significant
overlap. Since the population labels are often unknown, typical approaches for DAG (skeleton)
estimation are to cluster or classify the samples into several groups and estimate a common DAG
for all populations or a unique DAG for each population. However, these approaches either neglect

the differences or do not take advantage of the similarities among the DAGs.

1.3 New Contributions and Outline

In Sections 1.1 and 1.2, we discuss the possibility of enhancing supervised learning with graphi-
cal structure information of features as well as scenarios in which existing graph estimation methods
may not be appropriate. Motivated by these problems, in this dissertation, we propose several new
approaches involving graphical models. In particular, the following chapters of the dissertation are

organized as follows.



e In Chapter 2, we introduce a new high-dimensional LDA technique, namely graph-based
sparse LDA (GSLDA), that utilizes the graph structure among the features. In particular,
we use the regularized regression formulation for penalized LDA techniques, and propose to
impose a structure-based sparse penalty on the discriminant vector 3. The graph structure
can be either given or estimated from the training data. Moreover, we explore the relationship
between the within-class feature structure and the overall feature structure. Based on this
relationship, we further propose a variant of our proposed GSLDA to utilize unlabeled data
effectively, which can be abundant in the semi-supervised learning setting. With the new
regularization, we can obtain a sparse estimate of 8 and more accurate and interpretable
classifiers than many existing methods. Both the selection consistency of 3 estimation and the
convergence rate of the classifier are established, and the resulting classifier has an asymptotic
Bayes error rate. Finally, we demonstrate the competitive performance of the proposed

GSLDA on both simulated and real data studies.

e In Chapter 3, we consider the high-dimensional skeleton estimation with heterogeneous ob-
servational data. A two-step approach is proposed to jointly estimate the DAG skeletons
of multiple populations while the population origin of each sample may or may not be la-
beled. In particular, our method allows a probabilistic soft label for each sample, which can
be easily computed and often leads to more accurate skeleton estimation than hard labels.
Compared with separate estimation of skeletons for each population, our method is more
accurate and robust to labeling errors. We study the estimation consistency for our method,
and demonstrate its performance using simulation studies in different settings. Finally, we
apply our method to analyze gene expression data from breast cancer patients of multiple

cancer subtypes.

e In Chapter 4, we focus on the graphical modeling for single cell RNA-sequencing (scRNA-seq)
data. We investigate the characteristics of scRNA-seq data, especially the zero-inflation of
data and the dependence among cells. By taking these features into account, we propose a
Poisson-logNormal graphical model to capture gene interactions. To handle excessive zeros in
scRNA-seq data, we further extend our model to a Hurdle-logNormal graphical model. The

two graphical models account for the unique characteristics of scRNA-seq data and are shown



to produce better graph estimation for scRNA-seq data. Both models are computationally
efficient so that they work for datasets with thousands of genes. We demonstrate the advan-
tages of our proposed models against existing methods using both simulated examples and

real data applications.



CHAPTER 2

Graph-based Sparse Linear Discriminant Analysis for High Dimensional Data

2.1 Introduction

Linear discriminant analysis often has good performance in low dimensional classification prob-
lems. Though it has difficulties when directly applied to high dimensional problems, its extensions
as mentioned in Section 1.1.1 can work well for certain practical problems. However, these meth-
ods do not utilize the feature structure information when available. In practice, features are often
correlated with some structure. Such structure can usually be represented by an undirected graph
G. Connected features may work together and thus be effective or not effective simultaneously
for classification. For instance, in the diagnosis of a disease using genetic information, genes are
naturally grouped by their functions or gene pathways. Relevant genes tend to contribute or not
contribute to the disease together. Moreover, when the population in consideration is Gaussian, the
conditional independence graph, or Gaussian graphical model, often represents a natural structure.
By considering such structure information, we are likely to be able to construct a better classifier.
For regression problems, there are some methods that utilize the graph structure in the literature;
see, e.g., Bondell and Reich (2008); Pan et al. (2010); Zhu et al. (2013); Kim et al. (2013). For
example, Li and Li (2008) proposed a penalty on the coefficient difference of each pair of connected
features. Yang et al. (2012b) used pairwise £, penalties on relevant features to encourage simulta-
neous inclusion and exclusion. Based on the decomposition of the regression coeflicient vector, Yu
and Liu (2016) proposed a node-wise penalty. In particular, the regularization term is the summa-
tion of penalties over all nodes rather than all edges. Compared to pairwise penalties, the node-wise
penalty is better motivated and computationally efficient. More recently, Zhao and Shojaie (2016)
proposed new inference methods for such graph-constrained estimation.

Despite great progress for regression problems, much less research has been done for classifica-

tion problems. Structured penalties such as group Lasso and fused Lasso have been employed in



classification methods (Meier et al., 2008; Witten and Tibshirani, 2011), but they are not applica-
ble to a general sparse graph structure among predictors. Zhang et al. (2013) considered logistic
regression with a combination of ¢; penalty and pairwise {9 difference penalty. Min et al. (2018)
generalized the regularization and provided a unified algorithm. However, both methods may also
suffer from too much computational burden in high dimensions. Very recently, Wu et al. (2018b)
proposed an unsupervised graph-based variable screening method for general problems.

In this chapter, we propose a new method, called graph-based sparse LDA (GSLDA), that
exploits the graphical structure of features. GSLDA estimates LDA in high dimensions directly
by solving a convex optimization problem. Similar to the sparse regression method in Yu and
Liu (2016), we incorporate the graph structure through a node-wise penalty. In the presence of an
underlying feature structure, the new method outperforms existing high-dimensional LDA methods
by utilizing the structure directly. As a key component, the graphical structure can be either given
or estimated from the training data. In addition, we investigate the relationship between the within-
class inverse covariance matrix and overall inverse covariance matrix. Based on these findings, we
propose a variant of GSLDA that can utilize unlabeled data, which are often much more accessible
than labeled data. We name this variant as the semi-supervised GSLDA. Selection consistency is
shown for the estimated discriminant vector. Moreover, we show that the misclassification rate of
our classifier converges to the Bayes error rate at a fast rate under certain conditions. Numerical
studies are used to demonstrate the performance of this method. In particular, the semi-supervised
GSLDA enjoys higher classification accuracy than the original GSLDA method in most cases. This
reveals the potential advantages of using unlabeled data in classification problems.

The rest of the chapter is organized as follows. In Section 2.1, we review some existing high-
dimensional LDA methods, and introduce our motivations and formulations of our proposed meth-
ods. Section 2.3 focuses on graph estimation and the implementation of GSLDA. In particular,
graph estimation methods are discussed for both GSLDA and its variant. In Section 2.4, theoreti-
cal justification is provided for our method. Sections 2.5 and 2.6 demonstrate the performance of
GSLDA by simulated examples and real data studies respectively. We conclude this chapter with

some discussion in Section 2.7. Proofs of the theoretical results are provided in the Appendix A.
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2.2 Methodology

In this section, we first review LDA and construct a relationship between 8 and the graph
structure of features in Section 2.2.1, based on which GSLDA is proposed. We also explain how
to estimate the graph structure when it is not directly available and discuss the connections of our
methods with several existing classification methods. In Section 2.2.2, we investigate the overall
graph structure of the features and consider a variant of GSLDA which can efficiently utilize

unlabeled data.

2.2.1 Motivation and formulation of GSLDA

We first discuss the problem setting and introduce some notations. Given the training dataset
{(x1,91)s- -+, (Xn,gn)} where for each i € {1,...,n}, x; € RP is the feature vector and g; € {1,2}
is the class label. A linear classifier gg, g is defined as follows. For any x € R?, gg g(x) = 1 if
Bo+x"B > 0 and 2 otherwise. In particular, we consider the standard setting of the two-class
LDA. That is, the binary label G takes 1 with probability 7y and 2 with probability me = 1 — my
and the feature vector X has a conditional Gaussian distribution, i.e., X|(G = k) ~ N'(u®, 3) for

k € {1,2}. Under this setting, the Bayes classifier gg;,8+ 1s specified by

B =575 and # = —(uO +p®)TB/2 4 In(m/m), (2.1)

where 6 = p — ;3. By replacing ¥ and é in (2.1) with their sample estimates, we have the LDA
classifier with 8 = £714. Typically, we take 3 = (1;SM + nyS@)/(n — 2) and § = xV) — %@,
where ng, x*), and S*) denote respectively the sample size, mean, and covariance matrix for group
k. Note that this formulation is valid only when n > p. In high-dimensional problems or when
n < p, there are various extensions of LDA that either use the formulation with shrunken estimates
of X and ¢ or find a direct estimation of 3; see (Tibshirani et al., 2002; Shao et al., 2011; Cai et al.,

2011; Mai et al., 2012; Fan et al., 2012). Here we focus on the direct estimation approach.
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Inspired by the regression formulation of LDA (Hastie et al., 2009), Mai et al. (2012) proposed

the direct sparse discriminant analysis (DSDA) method to estimate 3 by solving the Lasso problem

3 romin S0 T 3)2
B—arg;mnnZ(yz Bo —x; B) + I8l

i=1

where y; = n/ny if g; = 1 and —n/ng if g; = 2. It was shown that DSDA gives the same solution
path as the method in Mai and Zou (2013); Wu et al. (2009). Compared to plug-in approaches, the
DSDA estimates B directly in high dimensions and the assumptions are less stringent. However, it
is unclear how we can utilize any structure information among features with the method or other
high-dimensional LDA methods.

Assume that there is some structure among the features. In particular, we consider the case
where the structure can be represented by a graph, denoted as G. There are methods that effectively

use the graph structure in regression problems. For example, Li and Li (2008) used the penalty

2
> (ﬁj/\/ dj = Be/ v/ dz) ;
(7,0)€g
where d; denotes the neighborhood size of feature j, to encourage close coefficients for con-
nected features. Yang et al. (2012b) employed pairwise ¢, penalty for connected features, i.e.,
> (.0eg max{|Bj], |Be[}, so their coefficients can be estimated zero or nonzero simultaneously. Re-

cently, Yu and Liu (2016) proposed a node-wise penalty

/4

min ZT]»HV@')HQ

Z?:l V(j):ﬂ7 supp(v(j))g_/\/<j) =1

PQ,T(B)

based on the decomposition of regression coefficient vector B3 = (X) 'cov(X,Y). In contrast to

these developments for regression problems, little work has been done for classification problems.
We propose our method formulation based on a decomposition of 8*, the discriminant vector

of Bayes’ rule. Denote © = X! the within-class precision matrix and § = p™®) — p® the group

mean difference. We can decompose the discriminant vector 8* in (2.1) as

p
B =0Q6=) bwj, (2.2)
J=1
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where wj is the jth column of £2. Recall that the support of 2 in fact forms a conditional correlation
graph of features X. In this way, the optimal discriminant vector is linked to the Gaussian graph
structure of the features. We use a toy example for demonstration. In a 3-dimensional LDA setting,
assume wo3 = w3z = 0, then B* = Q8 = (S1w11 + dawa1 + d3ws1, G1wi2 + Gawas, d1wis + d3wsz) | . See
Figure A.1 in the Appendix for a graphical demonstration of the decomposition.

Denote the graph corresponding to Q as G, and the neighborhood of feature j € {1,...,p} as
NG, Replacing §;w; by vU), then B* = v() + ... + v(P) where v() is either 0 (when &; = 0) or
with a support supp(v(j)) = N when d; # 0. Instead of estimating B3* itself, we can estimate
v(i)’s. Moreover, the decomposition (2.2) motivates a natural regularization on {V(l), . ,v(p)},

viz.

p .
> 7 v,
j=1

in which supp(v\?)) € NU) = supp(w;) and the ;s are positive weights. Note that the group ¢,
penalty on v encourages a group sparsity effect, i.e., v(¥) is estimated as O or a sparse vector
with support A¥), which matches the decomposition (2.2). In this formulation, the 7;s are weights
for the group regularization. In particular, the larger 7; is, the more likely v is estimated as 0.

Similar to the group Lasso (Yuan and Lin, 2006), we can take

75 =\ IN@|/15;,

where 5]- = 5:5-1) - i§2).

We need to apply this regularization to a risk minimization framework of LDA to formulate our

method. The regression formulation is an appropriate one due to its simplicity and convenience for

theoretical analysis. By combining the formulation with the group regularization, we can estimate
{vi,...,vp} by

2
n

. R 1 o p .
(Bo,¥1,...,Vp) = argmin EZ yi—ﬁo—x;rz;vm +Az;Tj|]v(J)||2, (2.3)
j= i=

507V17"'7vp Z:1
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where supp(v)) € NU) for all j € {1,...,p}. Then 3 is estimated as v; + - - - + V. Furthermore,

from the perspective of 3 estimation, the formulation is equivalent to

n

L 1
(Bo, B) = argmin — > (i — Bo — x{ 8)” + Al|Bllg.+» (2.4)
IBO»B n i=1
where
% 4)
= min 75|V 2.5
18167 =y g e 2V (25)

can be viewed as a structured regularization on 3; see Obozinski et al. (2011). Since the reg-
ularization is specified by the graph G, we call the method graph-based sparse LDA (GSLDA).
Although we use the same squared loss function as in Mai et al. (2012), our method focuses on
utilizing the graph structure of features in 8* estimation. We use the estimator B from (2.4) for
the discriminant vector 3. With respect to [y, the estimator from (2.4) may not be a good choice
for the classification problem due to the regression formulation. To solve this problem, we adopt a

similar approach by Mai et al. (2012) and estimate it by

~

bo = —(xV +x#)T8/2 + In(n1/n2)BT£B/(67 B).

While the GSLDA method is motivated from the discriminant vector decomposition (2.2),
the decomposition of B* is not restricted to this form only. Therefore, the graph structure G
used in our method is not restricted to the conditional independence graph. We will present
another decomposition of 8* in Section 2.2. In fact, any graph structure of features satisfying our
assumptions in Section 2.4.1 can be possibly used. When the structure information is available,
e.g., the gene pathways in genetic studies, we can construct a graph G using the gene pathway
information. If the graph is not available, we can estimate it based on the training data. There are
many methods for estimation of Gaussian graphical models, including the neighborhood selection
(Meinshausen and Biithlmann, 2006), the graphical Lasso (Yuan and Lin, 2007; Friedman et al.,
2008), and the CLIME (Cai et al., 2011). We will discuss them further in Section 2.3. In summary,
GSLDA can be implemented in two steps: (i) graph construction and (ii) direct estimation of 3

via solving formulation (2.4).
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The formulation (2.4) is closely related to the regression method proposed in Yu and Liu (2016).
However, both the problem setting and the motivation of our methods are different. In our problem,
the response y is a binary variable and the features are from a mixed population. Although our
formulation also uses the squared loss as in regression, the “error” y; — XZT B has a very different
interpretation and distribution. In particular, the distribution of y; — X;-r,@ depends on x;. These
issues bring unique challenges for the theoretical analysis of GSLDA. Although there are some
classification methods that also utilize predictor structure, such as logistic regression with group
Lasso penalty (Meier et al., 2008) and LDA with fused Lasso penalty (Witten and Tibshirani,
2011), these methods do not utilize a general graph structure.

Depending on the feature structure, there are special cases in which GSLDA is closely connected
with existing sparse LDA methods. For example, if we use an empty graph G with no edge at all, the
regularization (2.5) simplifies to 71|51|+ - - - 4+ 7| Bp|. Then, formulation (2.4) becomes an adaptive

Lasso type problem, viz.

n

P
argminl Z(yl —Bo—x,B8)% + )\ZTj|Bj|.

Bo, B M i=1 j=1

When all penalty weights 7; take value 1, the GSLDA is equivalent to the DSDA method in Mai et al.
(2012). When the graph G consists of K disjoint complete subgraphs, denoted as HORNNNHCIR
then the regularization (2.5) simplifies to 70 ||Bga) [Ja++ - 475 ||Bx) |2 where 7 = min; o 7
and G® is the index set of predictors involved in the subgraph G). In this case, GSLDA becomes
a variant of DSDA with the group Lasso penalty, i.e.,
1 n K
argmin — > "(yi — fo — x{ B8)* + A Y 7®||Bgw [2-

Bo, B T i=1 k=1
For a general graph G, our method is different from the existing ones.
Remark 1. While we are mainly concerned with binary classification in this chapter, there are
many scenarios with more than two classes (Liu and Yuan, 2011; Zhang and Liu, 2013; Zhang et al.,

2016). Our GSLDA method can also be extended to the multi-class case. For example, consider a
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formulation of K-class sparse LDA proposed in Mai et al. (2015), viz.

K P
(B2,...,0k) = argmin Y {626, /2 — (M —x1) 70,1 + 21D (16,2,
02a~~~76K k=2 j=1
where 6y, .. ., O are discriminant vectors and 0.; = (6yj, . .. ,HKj)T for j € {1,...,p}. Theresulting

discriminant rule is § = argmaxk{é,;r(x — %) /2) 4+ In#;} where 6; = 0 and #y, is the proportion
of class k in the sample. We can take advantage of a similar formulation with the graph-based

regularization A (|62, . .., Okl ; groupea: Where

P
: T NTN\T
H02""’0KHQ,T,grouped: argmin ZT]‘ ||(v2j) ,...,v% ) l2-
L v}(j):@k,supp(v,(j))g./\/(j) j=1
This formulation can be solved in a way similar to the binary GSLDA. Nevertheless, we do not

pursue this direction in the thesis so we can focus on core ideas of the GSLDA.

2.2.2 Semi-supervised GSLDA

With recent advances in graphical estimation (Meinshausen and Biithlmann, 2006; Yuan and
Lin, 2007; Cai et al., 2011), we can estimate G for the GSLDA based on the training data when
the graph structure is unknown. However, as the dimension p increases, we expect the selec-
tion error to accumulate. When the dimension is much larger than the sample size, the graph
estimate of GSLDA can be almost random. We use a toy example in Figure 2.1 to illustrate
this phenomenon. In the setting of standard LDA, we set weights m; = me = 0.5, and group
means p() = (0.5,...,0.5,0,...,0)" and u® = (=0.5,...,-0.5,0,...,0)", which only differ in
the first 10 features. To specify the graph structure, € is generated from an AR(5) model, i.e.,
Qj; = ¢,Q = —-05if 1 < |j— ¢ <5 and 0 otherwise, where ¢ > 0 is a scalar such that the
eigenvalues of €2 are between 0 and 1. We standardize €2 so that diag(€2) = 1 and define in-class
covariance matrix ¥ = Q1. Let the sample size n be 50 and p vary from 10 to 200. We estimate
the graph by SR-SLasso (Luo and Chen, 2014a) with extended BIC for tuning. For each setting, we
repeat the procedure 100 times and evaluate the accuracy of graph estimation by false positive rate
(FPR) and false negative rate (FNR). Figure 2.1 summarizes the performance of graph estimation

for varying dimensions.
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Figure 2.1: Performance evaluation of graph estimation for varying dimensions. The black solid lines are
for graph estimation based on a labeled dataset of size 50; the red dashed lines are for graph estimation
based on an unlabeled dataset of size 1000; vertical segments indicate the standard deviations of FPR or
FNR of 100 repetitions.

As shown in Figure 2.1, the graph estimation using only labeled data deteriorates quickly as
the dimension increases. Note that the structured penalty in (2.5) encourages the coefficients of all
features in a neighborhood to be nonzero together as long as some of them is useful for classification.
Inaccurate graph estimation can reduce the accuracy and the interpretability of GSLDA.

Compared to labeled data, unlabeled data can be more accessible in many applications. For
example, in the handwritten digit recognition problem discussed in Section 2.6.2, we can easily
obtain a large number of images of different digits. However, it can be expensive to label these
images by corresponding digits. As a result, many semi-supervised methods try to utilize the
unlabeled data to improve the classification accuracy (Pan and Shen, 2007; Cai et al., 2007). In
this thesis, we focus on using unlabeled data for the graph construction when available. The
following proposition studies the relationship between the within-class inverse covariance matrix

and the overall one.

Proposition 1. Assume X comes from a mizture of two populations with a common covariance
matriz 3. The weight and the expectation of population k € {1,2} is m and 1®) . Denote the mean
difference of the two populations p™ — p? as §. We denote 3= (X) the overall covariance matric
of the population mizture and Q = X1 the overall precision matriz. Then ¥ = X + m 88 and

Q=Q— 86", where B* = Q8 and ¢ = 1/{(mm) " + &' Qd}.
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As a remark, we do not require any specific distribution for the populations in Proposition 1,
while 3* is the optimal discriminant vector if both classes are Gaussian populations. The overall
precision matrix € is sparse if both € and B* are sparse, and its support forms the conditional
correlation graph of the mixed population. Moreover, we have Q8 = (1 — ¢8*'§)38* &< 8*. In our
problem, a decomposition of the optimal discriminant vector analogous to (2.2) using Q can be

written as

p
B =¢> 5w,
j=1

where ¢ is a positive scalar and w; is the jth column of Q. Therefore, the Bayes classifier can be
connected to the graph structure of the mixed population through the new decomposition. Define
the graph corresponding to the support of © as G. Following the same rationale of GSLDA, we

can formulate another estimator of 3 based on the overall graph structure, viz.

n

(Bo.B) = argmin — 3" (i — o —x/ B + N[Bllg (26)
Bo.B T

where [|8||g - is defined in (2.5) and 7 adapts to G as in (2.4). The only difference between (2.6)
and (2.4) is which graph structure we use. When unlabeled data are abundant, the estimated
graph G can be more accurate and thus the new formulation may provide better classification.
We name the formulation (2.6) as semi-supervised GSLDA. Similar to the original GSLDA, the
semi-supervised variant also has two steps: (i) graph estimation based on all available data and (ii)
direct estimation of 3 by solving formulation (2.6).

Both versions of GSLDA need to estimate a graph when no prior graph structure is given. But
there is a major difference: unlike G in (2.4), the graph G in (2.6) is not for a Gaussian population
but a Gaussian mixture. As we will see in Section 2.3, likelihood-based estimation such as graphical
Lasso would be too complicated to implement. Instead, we can still use neighborhood selection.
In fact, in regressing the feature X; on the other features X_;, the coefficient vector corresponds
to the conditional correlations between X; and other features regardless of the distribution of the

features, as stated by the following lemma.
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Lemma 1. For any random vector X = (X, ..., Xp)T ~ F, assume we have finite second-order

moments and denote i = Ep(X), ¥ = Ep{(X — @)(X — )"} and Q@ = X~ Then for any

jte{l,...,p},

(i) @je, the (j,€)th element of Q, is 0 if and only if X; and Xy are conditionally uncorrelated,

i.e., cov(Xj, X¢| X_gjy) = 0, where X_g; sy denotes all features other than X; and X;

(it) @je is 0 if and only if %ﬁj) = 0, where 'yéj) is the coefficient of X, in the regression of X; on

X5,

This lemma is closely related to the results in Meinshausen and Biithlmann (2006). According to
Lemma 1, the graph based on the inverse covariance matrix always corresponds to the conditional
correlation structure. As long as variable selection consistency of the regression is guaranteed,
neighborhood selection methods are valid for graph estimation. Figure 2.1 also shows the perfor-
mance of graph estimation based on a large unlabeled dataset under the same settings. We can

observe that the estimation still performs well when the dimension increases.

Remark 2. In practice, we generally use all available data, including both unlabeled and labeled
data, in the first step of semi-supervised GSLDA. Note that even without unlabeled data, the
method is still applicable. If we use neighborhood selection for graph estimation, then the error
variance of the jth node-wise regression is (X;|X_;) = 1/@j; = 1/(wj; — CB;‘Q) by Proposition 1.
In contrast, when using the labels as in the original GSLDA, the error variance is (X;|X_;,G) =
1jwj; < 1/(wjj — cﬁ}d). Therefore, the semi-supervised GSLDA has better graph estimation only
when unlabeled data are abundant. When there are relatively little unlabeled data, the original

GSLDA is more advantageous.

2.3 Graph estimation and method implementation

If the feature structure is given from prior knowledge, the graph can be directly constructed
by assigning edges between related features. Otherwise, we need to estimate the graph based on
training data. In particular, when unlabeled data are available, we can also use that to estimate

the graph and implement semi-supervised GSLDA. In this section, we first discuss specific graph
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estimation methods for GSLDA. Then we introduce algorithms to solve formulation (2.4) as well

as some strategies for efficient implementation.

2.3.1 Graph estimation

There have been extensive studies on graphical model estimation (Yuan and Lin, 2007; Friedman
et al., 2008; Meinshausen and Biithlmann, 2006; Cai et al., 2011; Voorman et al., 2013; Chen et al.,
2014). As we discussed in Section 2.2.2, the graph estimation based on labeled and unlabeled data
are different to some extent. Next we discuss them separately. Given labeled data, the likelihood

conditional on the labels becomes

1 1
(2m) PRI exp § =5 D (i = ) Q0 — D) = 5 (ki - ) 0 — )

9i=1 9i=2
Similar to the graphical Lasso, we can estimate €2 by minimizing ¢; penalized log-likelihood, i.e.,

1

1
argmin |0 23 (i p) TR0 - p0) - 2 3 (- w®) 00— 6?) + AL,
H(l),M(Q)’ QeS44 2 2 gi=1 2 gi=2

where S, denotes the set of p-dimensional positive definite matrices and [|Q[|1 = >_, . |wjel. It

results in g =xM, 4@ = %@ and

n

- 1
Q = argmin = In|Q| — - Y (¢ — x9)) T (x; — x9)) + A9 1. (2.7)
QeSy 4 2 2 i=1
This is equivalent to the graphical Lasso for the centered data x; — xl9) %, — %),

Instead of solving (2.7), we can also estimate the graph by neighborhood selection as proposed
by Meinshausen and Bithlmann (2006). This method solves p node-wise regularized regressions,
Viz.

1

1 15 ; 1 2 2j 2)_( ;
15 =" = XU+ 21X = = XD 3+ Ay,

argmin by

A5 AP A1) 2n
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(k) represents the other features.

where X§k) denotes the jth feature of sample from group k£ and X ;

One can verify that

40) = axgmin - [|X; — 90 ~ X703 + M@, (28)
~@ 4T
where X denotes the data centered by subtracting corresponding group means. We can also use
sequential Lasso (Luo and Chen, 2014b) for computational efficiency. The graph G is constructed
by connecting nodes j and £ if %j ) # 0 and/or %('z) £ 0.

Both approaches for estimating G have been justified theoretically (Meinshausen and Bithlmann,
2006; Yuan and Lin, 2007). We recommend to use neighborhood selection approaches for GSLDA.
The main reason is that the former approaches, such as graphical Lasso, usually run through
many iterations and can be slow for high-dimensional data (p > 1000). In contrast, neighborhood
selection approaches only require p penalized regressions. Moreover, our direct interest is not 2 but
the graph G on which neighborhood selection focuses. We use the extended BIC (EBIC) (Chen and
Chen, 2008) to select A in (2.8). As suggested in Chen and Chen (2008), we choose 1 —1/(2log,, p)
as the EBIC tuning parameter.

When we have an extra unlabeled dataset, denoted as x,,41, ..., Xn4+m, the likelihood becomes
complicated because of the Gaussian mixture distribution of the unlabeled data. Thus it is difficult
to estimate the parameters via likelihood. Moreover, the graph we need is directly related to
Q= (X)~! rather than €. Thus, a penalized likelihood approach is not suitable. Nevertheless,
the neighborhood selection approaches are still valid by Lemma 1, because we are concerned with
conditional correlation. In particular, we estimate the neighborhoods by

4V = argmin X5 =0 = X531 + ATV,

26 2(n+m)

where X = (X1,...,Xp,Xnt1,--->Xntm)  denotes the combined feature matrix. Similarly, we use

EBIC to select the tuning parameter A.
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2.3.2 Parameter estimation and tuning parameter selection

Given the graph G, formulation (2.4) is a latent group Lasso problem (Obozinski et al., 2011). It
can be transformed to an ordinary group Lasso problem as stated in Problem (2.3). There are many
efficient algorithms to solve group Lasso problems, for example, groupwise majorization descent
(Yang and Zou, 2015). For very high-dimensional data, we use an iterative proximal algorithm as

in Yu and Liu (2016). For implementation, we use cross validation for tuning parameter selection.

2.3.3 Pre-screening

Suppose that there are some entries of § being zero. Then 8* can be a linear combination of

only a few column vectors,

B = Z%‘Wj,

Jje€J
where J = {j : §; # 0}. Using two-sample ¢ tests for screening, we can specify J' C {1,...,p},

which is a superset of J with a large probability. In particular, we have the following lemma.

Lemma 2. Define the t-statistic T = Sj/{sg-lp/nl+s§2)2/n2}1/2, where sgkﬂ is the sample variance
of feature j € {1,...,p} in group k € {1,2}. Assume Inp = o(n?), In|J| = o(n'/*"7B,), and
minje s [0;]/1/2%X;; = Bp/n" for some v € (0,1/3) and B,, — co. Then there exists C > 0 such
that

lim Pr {m1n|TJ| > Cn/?, max |T}| < C’n”’/g} = 1.
n—o00 jedJ j¢]

The result in Lemma 2 was previously obtained by Fan and Fan (2008) and the corresponding
proof is omitted. Lemma 2 guarantees the accuracy of our pre-screening procedure.

After feature screening, the proposed regularization can be simplified as follows:

> 7l (2.9)

jeJ

/’ = . min . .
HIBHgJ T ZjEJ/ v(J):ﬁ’ supp(v(]))gN(J)
Compared with the original regularization (2.5), the new one in (2.9) is often simpler and enjoys
computational advantages. Moreover, the new regularization (2.9) only requires part of the graph,
i.e., the part corresponding to the support of {w; : j € J'}. Graph estimation methods based on

neighborhood selection fit into this idea naturally. When § is approximately sparse and |J/| < p,
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the computational cost can be reduced substantially. Unlike the feature screening in Fan and Fan
(2008), features outside J' are not necessarily excluded. Instead, they can be introduced into the

model via connection with other features in J'.

2.4 Theoretical properties

In this section, we study the theoretical properties of GSLDA. In particular, the original GSLDA
in (2.4) with a known graph G is considered. Since the semi-supervised GSLDA only differs from
GSLDA in the graph used, we do not consider it separately. In Section 2.4.1, we show the selection
consistency of GSLDA. In Section 2.4.2, we study the misclassification rate of the GSLDA and
compare it with the Bayes error.

Before diving into the theoretical analysis, we first introduce some notations for our setting. We
define, for an n-dimensional vector a, ||a||s = max(|ai],...,|as|); for an n x m matrix A, [|Al|cc =
max;{|A;1| + -+ |Aim|} and [||A]||cc = max; ;|A;i;|. We consider the problem setting of standard
LDA, in which both within-class populations are Gaussian, i.e., N'(u), ) and N (u(?,X). The
discriminant vector of the Bayes rule, denoted as (3%, is given in (2.1). Denote A = {j : B # 0}
the active set, and s = |A|. Define B = Q4, then 31 is proportional to 3* (Proposition 1) and

thus defines an equivalent classifier.

2.4.1 Selection consistency

Assume that the feature vectors are centralized, thus 8 = argming |ly — X8|3/n + A||8]|g,r-
Denote S = XX /n, and x = ||Z ;¢ ,Z 14 /|cc- Define

7i=min{r:j e NO}, 7* =max7j, 7 = minnNO)|TY2
¢ JEA je AL

We present several assumptions to be used as follows.
(A1) p = O{exp(n")}, s = o(n?), for some vy € (0,1),a € (0,(1 —~)/2).
(A2) For every j € {1,...,p}, either N C A or N C AL,

(A3) [|=7}]loo is bounded by ¢ < oo.
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(Ad) I 1041k oo < /7.

(A5) b=minjeq |B]| > /Inp/n.

Here (A1) specifies the order of feature dimension as well as the number of discriminating
features. By Assumption (A2), a discriminative feature can only be connected with other dis-
criminative features. This is a reasonable condition in reality since a feature is often relevant
for classification if it is related to another useful feature. Condition (A3) ensures that there is
no extreme collinearity among discriminative features. Assumption (A4) is an irrepresentability
condition that is often employed in showing the selection consistency of regularized estimators
(Meinshausen and Biithlmann, 2006; Zhao and Yu, 2006).

It may not be immediately clear why we impose the irrepresentability condition (A4) on Q
rather than €. Note that the more similarity between predictive and non-predictive features,
the more difficult it is to achieve selection consistency. While €2 encodes the within-class feature
dependence, the relationship among features in the whole dataset is determined by the overall
covariance. Thus we impose the condition on €. The main theoretical result on the selection

consistency of the GSLDA is given in the following theorem.

Theorem 1 (Selection consistency). Under conditions (A1)-(A5), let \/Inp/n < At* < O(b) and
n be sufficiently large, then the GSLDA recovers the active set A and ||Ba — ,BLHOO = O(y/Inp/n)

with probability at least 1 — O(p~©1) for some Cy > 0.

When we use an empty graph G and set 7; = 1 for all j, our GSLDA is equivalent to the DSDA
method. In this special case, 7* = 7, = 1, and the selection consistency conditions are similar to

those for DSDA (Mai et al., 2012).

2.4.2 Convergence rate

With respect to a classifier, the error rate is one of the most important performance measures.
In this section, we investigate the misclassification rate of GSLDA. We first present some basic
results on the classification problem. For a linear classifier gg, g, denote its classification error
under our settings as Qg, 8 = Pr{gs, 3(X) # G}. Then we have the following results from Cai and
Liu (2011).
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Lemma 3 (Classification error rate in LDA setting). Under our setting,

0 _ls —6o— B p L Bo+ B u®
e\ vEss )2\ VETes )

where ® denotes the cumulative distribution function of N'(0,1). The misclassification rate of the

Bayes classifier gs: g is Qps g+ = O(—AY2/2), where A = 5T Q4.

Since (@ is a continuous function of 8y and 3, the misclassification rate of the GSLDA classifier
is asymptotically the same as the Bayes error rate, i.e., QBo,ﬁ LN Qggﬁ*, as long as B 2 B*. A
more interesting problem is the order of the misclassification rate of the GSLDA when Qg: g« — 0.
To investigate this, we first introduce a new condition, under which we can construct an ¢s error

bound for the GSLDA estimator.

(A6) Denote C(A) = {A € RP : ||A ;¢

gr < SHAAHQJ'}? where Ay = (Ajl(j € A))pxl and
Ao = (Aj1(j ¢ A))px1. For all A € C(A), ATSA/ATA >0 > 0.

This is actually a restricted eigenvalue condition, which is often used in showing the error bound
for regularized estimators (Negahban et al., 2010). Compared to the irrepresentability condition
(A4), this is much less stringent. With the new condition, we have the following ¢2 error bound for

the GSLDA estimator.

Theorem 2 ({s-error bound). Under conditions (A1)-(A2) and (A6), let X > 4Cy(1 +
18T11)\/Inp/n for some Cy > 0 and n be sufficiently large, then ||3 — B3 < 9IN2s7*2 /02 with

probability at least 1 — sp~©3 for some Cs > 0.

Based on Theorem 2 above, we can establish the asymptotic error rate of the GSLDA classifier

as follows.

Theorem 3 (Convergence rate). Under conditions (A1)-(A2) and (A6), as n,p — oo, if A — oo,

we have

Qggﬂ* —0 and QBO,B/Qﬁéﬂ* 2 1,

given A7* = o[min{ Apax () TA72s712|181|5 1, AT sT2)16] |51 Y] and [|8T]|1 = o(n'TTATY), where

A is defined as in Lemma 8 and Apax(X) denotes the largest eigenvalue of 3.
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That is, under mild conditions, the misclassification rate of the GSLDA classifier is of the same

order as the Bayes error rate in this case.

2.5 Simulation study

To demonstrate the performance of the GSLDA methods, we compare them with several ex-
isting high-dimensional LDA extensions and other classification methods. The methods in com-
parison include the naive Bayes rule (NB), nearest shrunken centroids (NSC), sparse LDA (SLDA)
(Shao et al., 2011), ¢; penalized Logistic regression (PLR), penalized Fisher’s discriminant analysis
(PLDA) (Witten and Tibshirani, 2011), direct sparse discriminant analysis (DSDA) (Mai et al.,
2012), linear programming discriminant (LPD) (Cai and Liu, 2011), and the ROAD (Fan et al.,
2012). In particular, the methods NSC, PLR, PLDA and DSDA are implemented with R pack-
ages pamr, glmnet, penalizedLDA and dsda, respectively. We implement the LPD method via the
parametric simplex algorithm (Vanderbei et al., 2015) as suggested in Pang et al. (2014).

Besides the above supervised methods, there are many semi-supervised clustering (or classifi-
cation) methods; see, e.g., Pan and Shen (2007); Zhou et al. (2009); Liu et al. (2013). We have
implemented the semi-supervised spectral clustering (SSSC) method proposed in Liu et al. (2013).
Both the original and the semi-supervised GSLDA are implemented, and the latter is denoted as
GSLDA-S. We also include the GSLDA methods with the true graph, denoted as GSLDA-O (with
G) and GSLDA-SO (with 5), in the comparison. To make a fair comparison, pre-screening is not
employed in the numerical studies. The Bayes rule, denoted as Oracle, is used as a benchmark.

In the simulation, we fix the dimension p = 200 and the sample size n = 200. The labels
g1,--.,9n are generated with m = m9 = 1/2 and the features are sampled from N(u(gi),ﬂ_l)
based on the labels. Moreover, we generate an independent dataset of sample size 2000 and remove
the labels, for the semi-supervised methods. All tuning parameters are selected by 10-fold cross

validation. We consider four different feature structures as follows.

Example 1. Blockwise sparse model. In this example, £ is a 5 x 5 matrix with 1 for the
diagonal and 0.7 for off-diagonal elements. We use 20 such blocks for the diagonal of the covariance
matrix 3 and 0 for the rest, and let 2 = X. The group means are generated such that u§-1) = 0.5

for j € {5,10,...,25} and Mg-l) = 0 otherwise; and p(® = —p).
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Figure 2.2: The graph structures used in the simulation study. From left to right: the blockwise sparse
model, the AR(3) model, the random sparse model, the scale-free model. The last two plots use one
realization for demonstration, and the graphs may vary among different realizations.

Example 2. AR(3) model. The precision matrix € is generated such that wj; = 1, and
wje = —2/3if 1 < |j—¢| < 3 and 0 otherwise. The group means are generated such that ,u§-1) =0.75

for j € {5,10,...,25} and ugl) = 0 otherwise; and p(® = —p®).

Example 3. Random sparse model. The graph G is generated in such a way that any two
nodes are connected with probability 0.05. Based on G, we generate the precision matrix Q by
setting w;y = —0.5 for all connected j and / in the graph and 0 otherwise. We add cI,,, where ¢ > 0
and I, is an identity matrix, to £ such that the eigenvalues are between 0 and 1. We standardize
Q so that its diagonal elements are all 1. The group means are generated in such a way that

Mg.l) = 0.75 for all j € S and 0 otherwise; and u(z) = —u(l).

Example 4. Scale-free random graph. The graph is generated in a way similar to the Barabasi—
Albert (BA) model. Starting from an identity matrix L € RP*P at step i we randomly assign —0.5
to min{|0.05p|,% — 1} entries in row 4 with probability Pr(i, j) oc #{L¢; # 0:1 < £ < p},j < i.
Repeat the procedure until i = p. Then we get a lower triangular matrix. We construct Q@ = LTL
and standardize it such that the eigenvalues are between 0 and 1. Denote the 6th to 10th most
connected nodes as J. The group means are generated such that ugl) = 0.75 for all j € J and 0
otherwise; and p® = —p).

All four graph structures are displayed in Figure 2.2. The first two examples are fixed while the

last two produce random graphs. Compared with the random sparse model, the scale-free random

graphs are featured with hubs. For each graph structure, we repeat the simulation for 100 times
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Table 2.1: Performance comparisons of different classification methods for Example 1.

Error FP FN Size
NB 27.01 (0.18) —
NSC 14.17 (0.11)  0.71 (0.54) 20.27 (0 13)  5.44 (0.62)
SLDA 10.28 (0.16)  5.71 (1.29) 12.53 (0.31) 18.18 (1.61)
PLR 7.17 (0.13)  14.73 (0.56) 8.1 (0.24)  31.63 (0.69)
DSDA 6.76 (0.13) 23.26 (1.53) 6.79 (0.27) 41.47 (1.71)
LPD 7.80 (0.38) 37.20 (1.97) 5.73 (0.29) 56.47 (2.17)
ROAD 6.54 (0.12) 23.45 (1.24) 6.01 (0.24) 42.44 (1 37)
PLDA 14.16 (0.10) 3.62 (1.16) 19.53 (0.16)  9.09 (1.29)
SSSC 8.11 (0.10) — —
GSLDA 5.57 (0.07) 20.48 (2.17) 7.31 (0.25) 38.17 (2.33)
GSLDA-S 4.53 (0.06) 18.79 (2.26) 0.74 (0.11)  43.05 (2.29)
GSLDA-O 4.86 (0.08) 18.55 (2.63) 0 (0) 43.55 (2.63)
GSLDA-SO  4.52 (0.07) 16.43 (1.93) 0 (0) 41.43 (1.93)
Oracle 3.27 (0.01) 0 (0) 0 (0) 25 (0)

and evaluate the performance, both prediction and selection accuracy, of all classification methods.
Table A.1 in the Appendix displays the graph estimation accuracy for all examples.

Tables 2.1-2.4 give a summary of the performance comparison of all methods in Examples 1
and 4. In particular, misclassification rates in percentage (Error), false positives (FP) and false
negatives (FN) of 3 estimation are computed. The misclassification rate is evaluated based on
an independent test dataset of size 20,000. All metrics are averaged over 100 simulations and the
numbers within parentheses are the standard errors. Both the NB and the SSSC are not considered
in the comparison of variable selection, since these methods do not perform variable selection.

From Tables 2.1-2.4, we observe that the two plug-in extensions of LDA, namely the naive
Bayes and the NSC, perform worse than ¢; penalized logistic regression and other direct LDA
methods under these settings. This is expected because there is substantial correlation among the
features while both the plug-in extensions of LDA use diagonal estimates of 3. In contrast, the
performance of the direct LDA methods varies across the settings. For example, the DSDA has
lower misclassification rates than the ROAD in most cases, while ROAD has better classification
accuracy in Example 1. Utilizing the graph structures, high-dimensional LDA is further improved
in GSLDA. As we can see from the results, GSLDA methods have the best performance among all
methods in these four settings. In particular, the GSLDA method has lower misclassification rates

than all other methods except its semi-supervised variant. Since the DSDA is the special case of
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Table 2.2: Performance comparisons of different classification methods for Example 2.

Error FP FN Size
NB 36.59 (0.43) —
NSC 17.46 (0.14) 42.75 (2.16) 25.96 (0 45)  55.79 (2 43)
SLDA 14.39 (0.12) 19.28 (1.72) 17.59 (0.43) 40.69 (2.17)
PLR 7.86 (0.11) 15.83 (0.42) 20.58 (0.29) 34.25 (0.54)
DSDA 6.96 (0.09) 25.13 (1.22) 17.21 (0.38) 46.92 (1.46)
LPD 8.84 (0.69) 34.48 (1. 56) 17.98 (0.48) 55.50 (1. 97)
ROAD 7.42 (0.12)  25.16 (0.98) 17.36 (0.35) 46.80 (1.17)
PLDA 16.48 (0.12)  2.26 (0 8) 32.69 (0 14)  8.57 (O 7)
SSSC 9.27 (0.17)
GSLDA 6.60 (0.10) 25.48 (1.83) 15.41 (0.43) 49.07 (2.19)
GSLDA-S 5.56 (0.07) 34.43 (2.52) 3.33 (0.41) 70.1 (2. 77)
GSLDA-O 6.19 (0.09) 27.26 (1.72) 7.37 (0.47) 58.89 (2.08)
GSLDA-SO  5.79 (0.07) 30.78 (1.94) 2.16 (0.39) 67. 62 (2.31)
Oracle 3.32 (0.01) 0 (0) 0 (0) 39 (0)

Table 2.3: Performance comparisons of different classification methods for Example 3.

Error FP FN Size
NB 36.86 (0.80)
NSC 24.16 (0.84) 29.15 ( 5) 44.78 (1 62) 50.37 (4 93)
SLDA 13.28 (0.72) 21.07 (2.29) 40.59 (1.57) 46.48 (3.87)
PLR 11.09 (0.12) 21.44 (0.56) 42.08 (0.39) 45.36 (0.75)
DSDA 10.94 (0.15) 30.32 (1.49) 38.12 (0.63) 58.20 (2.01)
LPD 13.19 (0.73) 41.67 (1.52) 39.84 (0.82) 67.83 (2.25)
ROAD 11.25 (0.15) 33.14 (1.46) 37.53 (0.55) 61.61 (1.92)
PLDA 26.31 (0.68) 22.34 (2 33) 50.89 (1 12) 37.45 (3 41)
SSSC 13.57 (0.91)
GSLDA 10.53 (0.10) 27.34 (1.91) 36.67 (0.85) 56.67 (2.67)
GSLDA-S 8.77 (0.08) 34.08 (2.77) 18.2 (0.72) 81.88 (3.37)
GSLDA-O 9.77 (0.08) 36.87 (2.54) 26.22 (0.78) 76.65 (3.27)
GSLDA-SO  8.91 (0.08) 35.17 (2.37) 16.31 (0.63) &4. 86 (3.01)
Oracle 5.36 (0.02) 0 (0) 0 (0) 66 (0)

the GSLDA with an empty graph, it is a good benchmark to quantify the benefit of using graph
structures. In most cases, the GSLDA provides better model selection than the DSDA. Therefore,
utilizing the graph structure does help us to improve the LDA classifier in high dimensions.

With respect to the semi-supervised GSLDA, due to the large amount of unlabeled data, it
often has better graph estimation and yields more accurate classifiers. In fact, the semi-supervised

GSLDA has the lowest misclassification rates among all methods in all cases. Furthermore, the
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Table 2.4: Performance comparisons of different classification methods for Example 4.

Error FP FN Size
NB 32.84 (0.28) —
NSC 22.78 (0.12) 8.62 (1.76) 48.87 (O 76) 18.75 ( 9)
SLDA 17.53 (0.27) 19.83 (1.29) 38.23 (0.67) 40.60 (1.98)
PLR 14.60 (0.21) 16.51 (0.66)  35.5 (0.5)  40.01 (1.06)
DSDA 13.48 (0.17)  33.71 (1.9) 28.18 (0.65) 64.53 (2.47)
LPD 16.87 (0.36) 46.86 (1.66) 29.17 (0.71) 76.69 (2.31)
ROAD 13.95 (0.19) 36.9 (2.01) 27.71 (0.77) 68.19 (2.69)
PLDA 22.64 (0.12) 6.6 (1.06) 51.58 (0 45) 14.02 (1 48)
SSSC 12.08 (0.21) —
GSLDA 10.46 (0.11) 21.53 (1.7)  15.69 (0.55) 64.84 (2.14)
GSLDA-S 9.15 (0.12) 12.87 (1.29) 5.03 (0.54) 66.84 (1.57)
GSLDA-O 10.39 (0.18) 28.29 (1.73) 19.44 (0.8) 67.85 (2.43)
GSLDA-SO  9.36 (0.17)  19.87 (1.69) 5.47 (0.71)  73.05 (2.31)
Oracle 4.62 (0.02) 0 (0) 0 (0) 59 (0)

semi-supervised GSLDA has superior model selection over the original GSLDA in most cases. This
demonstrates the advantages of using unlabeled data.

We notice that models estimated by the semi-supervised GSLDA often have larger sizes, some-
times more false positives in coefficient vectors, than the original GSLDA classifiers. This is prob-
ably because the graph used in the semi-supervised GSLDA often has more edges. There are two
possible reasons: (i) the true graph G corresponding to € has more edges than G, and (ii) graph
estimation based on unlabeled data uses a much larger training dataset which often leads to denser
graphs estimate. While a denser graph estimate may recover more connections among the features,
it can also result in more false edges. This effect is enhanced by the difficulty of graph estima-
tion with unlabeled data. As a consequence, the semi-supervised GSLDA may suffer from more

false positives, as shown in Examples 2 and 3. To resolve this issue, we may consider to use more

conservative graph estimation for the semi-supervised GSLDA.

2.6 Real data analysis

In this section, we implement our methods and several other existing classifiers on two real
datasets. The first dataset is a genetic dataset with very high dimensions, and the second one

consists of images of handwritten digits. We estimate the graphs from labeled training data and
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unlabeled data. We find that GSLDA methods have a good performance in both datasets and

utilizing the feature structure is beneficial.

2.6.1 Arcene cancer data

Nowadays, genetic diagnosis is an important tool in the clinical study and medical practice.
By using the genetic information, we can estimate the potential risk of cancer for healthy people or
determine cancer subtypes for patients. The Arcene dataset is a gene dataset of 88 cancer patients
and 112 healthy individuals. The dataset contains 10,000 features and was originally used in the
NIPS 2003 feature selection challenge (https://archive.ics.uci.edu/ml/data\-sets/Arcene).
Out of the 10,000 features, 7000 are real genes while the other 3000 are noise features that have no
predictive power and make the prediction harder. Besides the labeled data, there is an unlabeled
dataset of 700 individuals, which is used to construct a graph for GSLDA-S. As in the previous
simulation studies, we apply the GSLDA and other methods on the dataset.

The labeled data are randomly split into a training set and a test set, of sizes 150 and 50,
respectively. All methods except the naive Bayes are tuned by 10-fold cross validation. The
experiment is repeated 100 times and the results are summarized in Table 2.5.

Table 2.5: Comparison of GSLDA and other methods on the Arcene dataset.

Error Size
NB 35.50 (0.62) —
NSC 36.05 (0.61)  9934.46 (9.06)
SLDA 34.64 (0.73) 297 (4.17)
PLR 28.36 (0.65) 16.57 (0.90)
DSDA 28.29 (0.72) 30.96 (2.69)
LPD 31.59 (1.33) 10.95 (3.58)
ROAD 29.29 (0.64) 31.86 (3.43)
PLDA 34.36 (0.61) 9.39 (1.63)
SSSC 27.93 (0.83) —

GSLDA  22.57 (0.70) 229.36 (6.39)
GSLDA-S  24.50 (0.68)  319.57 (8.37)

From Table 2.5, we can see that both GSLDA and semi-supervised GSLDA outperform other
methods in prediction. Although semi-supervised GSLDA uses more data for graph estimation, its
performance is inferior to GSLDA for this application, possibly due to the difficulty of graph esti-

mation based on unlabeled data. In addition, the size of the unlabeled dataset is not substantially
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Table 2.6: Comparison of GSLDA and other methods on the Semeion dataset.

Error Size
NB 13.81 (0.34) —
NSC 15.21 (0.44)  84.74 (11.31)
SLDA 14.43 (0.67) 20.23 (2.80)
PLR 18.69 (0.88) 9.46 (0.40)
DSDA 13.76 (0.66) 16.76 (1.01)
LPD 17.15 (0.86) 15.32 (0.91)
ROAD 19.73 (0.98) 15.38 (1.25)
SSSC 13.97 (0.75)

GSLDA  12.65 (0.61)  28.46 (1.45)
GSLDA-S 11.23 (0.56) 33.28 (1.32)

larger than that of the labeled dataset. Compared with PLR, DSDA and ROAD, our methods have
significantly larger model sizes. This may indicate that many genes are related to each other. It
is likely that those genes contribute to cancer together, and including all of them in modeling can
potentially make the classifier more robust. This characteristic may also contribute to the good

performance of the proposed two GSLDA methods.

2.6.2 Semeion handwritten digits dataset

The Semeion dataset (https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+
Digit) consists of 1593 images of handwritten digits. Each digit is in the form of a 16 x 16 grayscale
image and saved as a vector of 256 features. We take a subset of the dataset that only contains
digits 1 and 7, which are generally difficult to distinguish. We randomly choose 40 images for
training, and 80 for graph estimation of the semi-supervised GSLDA after removing labels. The
remaining 200 images are used for testing. Other settings are the same as the cancer example.
Table 6 gives a summary of the results.

As shown in Table 2.6, the semi-supervised GSLDA has excellent performance for this problem.
It has the lowest misclassification rate among all methods in comparison. The original GSLDA
method also has good classification accuracy for this problem. Moreover, we can see that both
GSLDA methods have larger model sizes than other direct LDA methods, as in the previous

analysis in Section 2.6.1.

32


https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

2.7 Discussion

With many extensions in the literature, LDA can be readily applied to high-dimensional classi-
fication problems. In particular, the direct approaches of high-dimensional LDA are attractive due
to their simplicity and good performance. Under the standard setting of LDA problems, we explore
the relationship between the graph structure of features and the optimal discriminant vector 3*.
Our study shows that, by taking advantage of such structure, we can get better LDA classifiers
in high dimensions. Based on this idea, we propose the GSLDA method. After investigating the
overall graph structure of the Gaussian mixture population for unlabeled data, we further propose
the semi-supervised GSLDA that can utilize unlabeled data. Both GSLDA methods have been
evaluated on simulated and real data, which demonstrate the advantages of utilizing the graph
structures. Moreover, we conclude that the performance of semi-supervised GSLDA depends on
both the size of the unlabeled dataset and the graph complexity. When the graph structure is
very complex, it is better to consider a conservative graph estimate for GSLDA. Finally, our focus
in this chapter is on binary problems. It will be useful to extend the methods for multicategory

problems.
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CHAPTER 3

Joint Skeleton Estimation of Multiple Directed Acyclic Graphs for Heterogeneous
Population

3.1 Introduction

Our method development is motivated by the problem of analyzing genome-wide gene expres-
sion data. In a typical gene expression study at human population, the variables of interest are the
expression of 10,000 — 50,000 genes, and the sample size is around a few hundreds. Co-expression
of two genes implies a regulatory effect (one gene regulates the expression of the other gene) or
that the two genes share some regulatory components. The co-expression of all the genes can be
conveniently studied by a directed acyclic graph (DAG) in which a node represents a gene and
directed edges specify regulatory effects. These graphs can be very useful for understanding the
molecular basis of a disease or to prioritize drug target. For example, if disrupting a specific gene
helps treating a certain type of cancer but no drug is available to target this gene, one may use a
directed graph model to identify the immediate parent nodes of this gene as potential drug targets.

Despite the effectiveness of these aforementioned methods, they were originally developed for
skeleton estimation of a homogeneous population. In practice, the samples may come from a
heterogeneous population. For example, when we study gene expression data of patients with a
certain type of cancer, the patients may belong to different subtypes. The co-expression pattern of
genes, hence the DAG model, may vary across subtypes. Though we can estimate a DAG for each
subtype separately, joint estimation can be more efficient by exploiting DAG similarities across
subtypes. There have been extensive studies on the joint estimation of multiple Gaussian graphical
models (Guo et al., 2011; Danaher et al., 2014). In contrast, not much work has been done for
joint DAG or skeleton estimation (Oates et al., 2016). Furthermore, in practice, clustering and
classification methods are commonly used to label samples into different classes with potential

errors. However, these labels are often used as if they were true for multiple graph estimation. To
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the best of our knowledge, no previous work has considered clustering or classification errors in
graph estimation.

In this chapter, we propose a new method, MPenPC, to jointly estimate multiple skeletons for
high dimensional variables measured in a set of heterogeneous samples. The MPenPC is a two-step
method. It first jointly estimates the conditional independence graphs for multiple classes, and
then applies the PC-stable algorithm to construct the skeletons. The MPenPC can accommodate
both hard labels (i.e., discrete class assignment) or soft labels (i.e., posterior probability) for class
assignments. Specifically, to use soft labels, we first estimate probabilistic class labels by clustering
or classification, and then use them as weights in both steps of MPenPC. This approach benefits
skeleton estimation by mitigating the impact of mistaken hard labels, as we will demonstrate in
this chapter.

The rest of this chapter is organized as follows. In Section 3.2, we review some important prop-
erties of the DAG skeleton and existing estimation methods, then propose our method MPenPC.
In Section 3.3, we give some implementation details of MPenPC. In Section 3.4, we discuss some
theoretical properties of MPenPC. In Sections 3.5 and 3.6, we evaluate the performance of MPenPC
by simulations and real data analysis, respectively. We conclude this chapter with some discussions

on possible generalizations of MPenPC in Section 3.7.

3.2 Methodology

We first give an overview of DAG skeleton estimation methods under Gaussian settings in
Section 3.2.1. Then in Sections 3.2.2 and 3.2.3, we introduce our MPenPC methods using hard and

soft labels, respectively.

3.2.1 Review of DAG estimation

We first review some key concepts and properties of the DAG that will be used in this chapter.
A node [ is a parent of node j if there is an edge [ — j, and j is called a child of [. If two
unconnected nodes are parents of a common child (i — j < 1), then they form a v-structure. The
skeleton of a DAG is the undirected graph formed by removing directions of all the edges in the

DAG. For any DAG D, we denote its skeleton by D¥. There are often more than one DAGs that
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can describe the conditional dependence embedded in a probability distribution. These DAGs are
probabilistically equivalent, and they form a Markov equivalence class. It can be shown that two
DAGs belong to a Markov equivalence class if and only if they share the skeleton and v-structures
(Chickering, 2002).

We consider a DAG model, denoted by D, for p random variables X1, --- , X}, under Gaussian
settings. Given a sample {x;;7 = 1,--- ,n}, we assume x; i N(p, %), and denote the precision
matrix by @ = X7, Given the DAG, the data generating process can be specified by a set of

structure equations:

Xj =V + Z bj,le + Zj, (31)
l€pa;

for j =1,---,p, where pa, represents the set of parent nodes of j, and Z; ~ N (0, )\j2) independently
for all j. Let X = (X1,..., Xp)T, v = (v1, ..., )T, and Z = (Z1, ..., Z,)T. The p structure equations
can be rewritten in a concise form: X = v +BX +Z, where B;; = b;; for | € pa; and 0 otherwise.

The direct results of the model equivalence are p = (I - B)v, ¥ = (I-B) 'A(I-B) 7, and
Q=>1-B)'A(1I-B), (3.2)

where A = diag()\?, - - - ,)\12)). Let G be the conditional independence graph (CIG) for Xi,---, X,
then nodes j and [ are not connected if and only if Q;; = € ; = 0. Owing to equation (3.2), G is
also a sparse graph because of the sparsity of B. In fact, we can establish a relationship between

the DAG D and G as follows.
Lemma 4. For any two nodes j,l € {1,--- ,p},
1. there is an edge | — j in D only when there is an edge | — j in G;

2. if there is an edge j — 1 in G, then j and l are either connected in D, or they are parents of a

v-structure in D.

We refer readers to Chapter 3.7 of Spirtes et al. (2000) for a proof of Lemma 4. Ha et al.
(2016) took advantage of this relationship and proposed PenPC for skeleton estimation. It consists
of two steps: i) estimate G by neighborhood selection, denoted by G , and ii) estimate the skeleton

on the basis of G. The first step is a Gaussian graphical model estimation problem, which is well
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studied in the literature (Meinshausen and Bithlmann, 2006; Yuan and Lin, 2007). Given a sparse
G estimated by neighborhood selection, the skeleton can be efficiently estimated by a modified PC-
stable algorithm. In high dimensional cases, the PenPC method has shown significant advantages

over the PC-stable algorithm, both in terms of accuracy and computational efficiency.

3.2.2 Joint estimation of multiple skeletons with hard labels

Denote the observed data by {(x;,¢;);7 = 1,--- ,n}, where x; € RP and ¢g; € {1,---, K} are
respectively the feature vector and the population label of the sample i. We assume the feature
vector X is conditional Gaussian, i.e., X|(G = k) ~ N(u®), 2®)) for k = 1,..., K. For the k-th
population, we denote the DAG and its skeleton by D®*) and D( ) , the precision matrix by Q®*)
and the CIG by g

One can estimate a DAG skeleton for each population separately. However, a joint estimation
approach can be more efficient when there is certain similarity across the DAGs. We propose a two-
step method, the multi-PenPC (MPenPC), for multiple-skeleton estimation by extending the PenPC
method. At the first step, we use joint neighborhood selection to estimate the CIGs (Meinshausen

and Bithlmann, 2006). For any node j, the node-wise regression models of K populations are

(k k
XM = 3T WXW L ™ g =1, K, (3.3)
I#j

(%)

where X ](k) is the feature j of population k, and ¢ ;  is an error term. For each class k, we define the

coefficient vector 'y](. ) = (fy](ki), . ,7](.];) 1,7](.];)+1,~ . ,7](]2) € RP~1. Denote ’yf( ) = Q(fM/Q
the true coefficient vector, then fy 7é 0 if and only if the edge j — [ exists in G*). Thus we can
recover the graph G(*) by estimating {'y]* ;7=1,---,p}

Denote X*) the feature matrix of the sample from population k, X(-k) the j-th column of X*)

and X( ) the feature matrix without the j-th column. Then a joint neighborhood selection method

can be formulated as

argmm—ZHX — 10 = X591 + Ply), (3.4)
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where v; = (7§}()),7J(1)T, e ,7](.,[5),'7§K)T)T. If the penalty function is defined as a summation of

penalties across the K groups, i.e., P(v;) = Zszl pk) (*y(.k)

;), then (3.4) is equivalent to estimating

the neighborhood of node j separately for K populations. Thus P(+;) should possess a group
selection effect to induce similar sparsity patterns for wj(k)’s.

There are various group penalties that encourage certain parameters to be zero or non-zero
simultaneously. Some of them, including the group lasso (Yuan and Lin, 2006), are rigid in the
sense that parameters in one group usually are either all zero or all non-zero. Whereas some
others, such as group bridge and group exponential penalties (Huang et al., 2009; Breheny, 2015),
can achieve a bi-level selection effect, i.e., the parameters in one group can contain both zero and
non-zero values. In our case, the graphs are often only partially overlapped, so an edge may or
may not be shared by all DAGs, and thus a group penalty with the bi-level selection effect is more
appropriate. In this chapter, we employ the group exponential (GEL) penalty (Breheny, 2015) and

the regularization in (3.4) becomes

P(y;) = Prr () = 771> {1 —exp(=A""7lyll0)},
I#j

where v;; = (7](711), e ,'yj(fl())T. The tuning parameters A\ and 7 can be chosen by the extended

BIC (Chen and Chen, 2008). When there is only one class, the regularization becomes P(7;) =
Ny 21— exp(—A"!7]y;,])}, which is non-convex and the resulting estimator has oracle
properties (Fan and Li, 2001).

For the second step of our proposed MPenPC method, we apply the PC-stable algorithm
(Colombo and Maathuis, 2014) for skeleton estimation while using {G*);k = 1,--- , K} as initial
graphs. For completeness, we describe the implementation of the algorithm as follows. Assume
we are estimating a DAG skeleton of p nodes using G as the initial graph, and a p-value cutoff
a. Denote N (j) the neighborhood of node j in G. Given an ordering of the p nodes, denoted by
ORDER(p), the search of ordered node pairs will be based on ORDER(p). Starting with s = 0, we
search over all ordered node pairs (j,1) such that [ € N (j) and |N(j) \ I| > s. For each pair (j,1),
we search over all size-s subsets of N'(j) \ [ for a d-separation set S, i.e. (X; L X;)|Xg, by partial
correlation tests. If we can find such a d-separation set S(j,1), we record the separation set and

stop searching. After searching over all the node pairs, we update G by deleting all edges between
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node pairs with d-separation sets. Then we increase s by 1 and continue the procedure until each
pair of adjacent nodes (j,1) satisfies [N(j) \ | < s. The resulting G is our estimated skeleton. With

the d-separation sets {S(j,[)}, we can direct a subset of the edges by a set of deterministic rules.

3.2.3 Joint estimation of multiple skeletons with soft labels

In many real data analysis settings, the samples are labeled by experts or statistical methods
(e.g., clustering or classification) with non-ignorable error rates. For example, breast cancer patients
are typically classified into four major subtypes based on gene expression data, and some patients
cannot be confidently classified into any subtype (Dai et al., 2015). To address this challenge, we
propose to use soft labeling: instead of assigning a hard label to each observation, a probabilistic
label vector (w®), .- wFENT is computed such that w®) ~ Pr(G = k|X). We refer to the method
based on probabilistic labeling as Soft MPenPC.

Soft labels can be produced by either classification or clustering. When prior information or
labels are available, we can compute probabilistic labels by soft classifiers, such as naive Bayes or
quadratic discriminant analysis (QDA). Otherwise, we can estimate soft labels using probabilistic
clustering methods, or apply soft classifiers on the clustered sample. The following toy example
demonstrates that soft labels can provide more accurate estimates of class labels than hard labels.
Let {x1,- - ,x,} represents n samples collected from a mixture of three Gaussian populations with
equal weights. For any k € {1,2,3}, the feature vector in class k has a Gaussian distribution
N(u(k),I). Specifically, p(t) = (2,0)T,u(2) = (0,2)7, and p) = (V34 1,V/3+ 1)T. We create
hard labels by k-means clustering with £ = 3. Then we construct probabilistic labels using a naive
Bayes classifier based on the clustering labels. We measure the accuracy of the estimated class
labels by their average Manhattan distance from the true labels: Y7 STK wa’“) —1(gi = k)|/n,
where u?fk) = [(g; = k) for hard labels. The results show that soft labels often provide more
accurate estimates of class labels (see Figure 1 in the Supplementary Materials).

Soft labels can be naturally incorporated into both steps of the MPenPC. Denote the full feature
matrix X = (x1,---,x,)7, n#) = Yo wgk), wk) = (wgk), . ,wgg))T, W) = diag(w®), and

x(k) = XTw(k) / n). In the neighborhood selection step, we use soft labels for weighted nodewise
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regressions. That is, for node j we estimate its neighborhood by
argmm o0 Z 1% = 745 = X9 oy + Par(3)s (3.5)

where X; denotes the j-th column of X, and ||a||w = (a”’Wa)'/2. In the PC step, we can compute
a weighted covariance matrix with soft labels: 2*) = (X — 1x®TYTWE) (X — 1x®T) /nk) for
k=1,---, K. Based on the weighted covariance matrices, we can perform partial correlation tests
and apply the PC-stable algorithm. In the partial correlation tests for population k, we use n®) as

the sample size.

3.3 Computation of soft labels and tuning parameter selection

In this section, we discuss some implementation details of the MPenPC methods. The neigh-
borhood selection step is implemented based on the grpreg R package. The PC-stable algorithm

in the skeleton estimation step is implemented using the ParallelPC R package.

3.3.1 Computation of soft labels

Given hard labels, which are often estimated by clustering, we can compute soft labels by
probabilistic classification methods, for example, QDA and naive Bayes. Since we are interested
in high dimensional problems, dimension reduction has to be done prior to applying methods like
QDA. When hard labels are not available, we can either construct them by clustering, or estimate
the soft labels directly by probabilistic clustering methods, such as Gaussian mixture models. From
our experience, it is often better to perform dimension reduction before clustering, for example, by

principal component analysis.

3.3.2 Parameter tuning

In the neighborhood selection step of MPenPC, we use extended BIC (EBIC) (Chen and Chen,

2008) for parameter tuning of A and 7. For standard regression, EBIC is defined as
EBIC, = —2log L, (8) + slogn + 2¢ log < > 0<y <1,
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where L,, denotes the likelihood, and s = ||3||o. As suggested by Chen and Chen (2008), 1 can be
taken as 1 — (2logp/logn)~!. For the nodewise regression in our proposed MPenPC, we consider
the joint regression as a model with (p — 1)K parameters. Following the notations of (3.4), EBIC

for the nodewise regression can be defined as
- 1K
EBIC;, = nlog 62 + slogn + 2y log <(p ) >,
S

where s = Z(k) |!‘3’J(k)||0, and 62 =n~! Eszl Hng) - @](.7%) - X(k)ﬁyj(,k)H%. For the soft MPenPC, we
~ _ ~(k ~(k
define 6> = n™ T4 [1X; =450 = X4 3y

3.4 Theoretical properties

We first define some notations. For the k-th population, () denotes the precision matrix,
from which the CIG G®) can be deduced. We denote the neighborhood of node j in G*) by
Ag.k) ={l: ngl) # 0 and [ # j}, and its complement by Zg“ ={l: ngl) = 0}. Moreover, denote
Aj = UleAyc) and Zj = ﬂlegg-k). Then each node in A; is connected with node j in at least one
G*) and nodes in A, are not connected with the node j in any Gk,

We assume some regularity conditions (C1)-(C8) on the underlying model and tuning param-
eters. More details are provided in the Supplementary Materials. We have the following theorem

regarding the neighborhood selection (Stage I) of the MPenPC with hard labels.

Theorem 4 (Stage I Consistency). (i) Under (C1) - (C5), with a probability of 1 —O(1/p), for
all j € {1,--- ,p} there is a local minimizer 4; to problem (3.4) such that j —1 € Gk gf
te AM andj—1¢ G® ifte A;;

(i) Under (C1)-(C6), with a probability of 1 — O(1/p), for all j € {1,--- ,p} there is a local
minimizer 4; to problem (3.4) such that j —1 € Gk ifl e Ag-k), and j—1¢ G® ifl e flék).

Theorem 4 considers two different types of consistency for the neighborhood selection. In
particular, with (C1)-(C5), the estimation is guaranteed to recover all edges that appear in at least
one conditional independence graph G*). We call this group-union selection consistency. In this

case, we can recover the union of the undirected graphs asymptotically. With condition (C6), we
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can obtain stronger consistency that correctly identifies all edges for each graph. Similar results for
the soft MPenPC, with a condition on the soft labels, are included in the Supplementary Materials.

To the extent of our knowledge, this is the first theoretical result regarding the selection consis-
tency of GEL-penalized estimation. It can be extended to other bi-level group penalties. According
(?)

to the irrepresentability condition (C6), estimating ~;

i correctly as 0 becomes more difficult as

the edge j — [ being shared by more graphs. By replacing the GEL with another bi-level sparsity-
inducing penalty composed of concave penalties for both levels (Breheny and Huang, 2009; Chen
and Sun, 2017), condition (C6) can be greatly relaxed. We do not pursue that approach in this
work, however, due to the additional computational burden for tuning parameter selection. Even if
(C6) is not satisfied, the first part of Theorem 4 still guarantees consistent estimate of the union of
edges from G¥)’s, and the next theorem guarantees that the PC step of the MPenPC can produce

consistent skeleton estimates given the graph union.

Theorem 5 (Stage II Consistency). Assume we have perfect estimation of all the CIGs or their
union from the Stage I, under (C1)-(C2) and (C8), there exists a p-value cutoff o — 0 such that the
skeletons are recovered perfectly for all subpopulations with probability 1 — O(exp(—Cn'=242)) = 1,

for some dg > 0.

Therefore, by combining the results of Theorems 4 and 5, the MPenPC method produces a

consistent skeleton estimation with probability going to 1.

3.5 Simulation studies

In this section, we use simulated examples to study the performance of our MPenPC methods.
In particular, we justify the joint estimation and the usage of soft labeling by comparing the
MPenPC with the original PenPC method. When applying the PenPC method, we can either
estimate a single skeleton with all the samples, or estimate one skeleton for each class. We call the
first approach as PenPC without grouping (PenPC - No Grouping) and the second as group-specific
PenPC (Hard PenPC). For a comprehensive comparison, we also consider a group-specific PenPC
with soft labels (Soft PenPC), which performs weighted regression at Stage I and uses weighted
covariance for the PC-stable algorithm at Stage II. In this simulation, we implement the Hard and

Soft MPenPC. The exponential penalty, i.e. P(8) = \27~! >l —exp(—A~17]6;])}, is used in both

42



PenPC approaches. We first introduce the simulation settings and the implementation of methods

in Section 3.5.1. Then the methods are compared by stage in Sections 3.5.2 and 3.5.3.

3.5.1 Simulation settings

In the simulation, we consider Gaussian mixture settings under which the corresponding DAGs
share some common edges. To this end, we first generate K DAGs with certain similarity, based
on which we specify the Gaussian distributions. In particular, the k-th Gaussian component is

specified through the structure equation model,
X=v® +BWX 1 7, (3.6)

where Z ~ N(0,I). For convenience, the variables are ordered such that bﬁ»kl) = 0,Vl > j, where

b

jﬁ) is the (j,1)-th entry of B(*). The bias vector ) is set as I/](k) =Jif4(k—1)<j<4kand 0
otherwise, so we can adjust the group difference via J.

The DAGs are generated with two different models, the Erdos-Renyi (ER) and the Barabasi-
Albert (BA), respectively. Denote p the dimension of X, then {B®*);k =1,.-. | K} are p x p lower

triangular matrices. With the two models, we generate B*)’s as follows.

e (ER model) We generate K + 1 random p X p matrices, denoted by AO .. AE) inde-
pendently. Initialize each A®) with all 0’s. Randomly select [7f - p(p — 1)/2] entries in
the lower triangular matrix (excluding the diagonal), and fill them with random values from
Uniform([—1, —0.5] U[0.5,1]). Using A(®) = (ag?l))po as the basis matrix, we construct B®*)

by taking ') (?l) for |mop?| random entries and b

i i = a(i) for the rest, where 7y € [0, 1],

= Q .
J

and agﬁ) is the (j,1)-the entry of A®),

e (BA Model) The procedure is basically the same as above, except A®)s. For each A®),
we generate a random DAG with the BA model as follows. Starting from an empty DAG
with the node 1, we add the node 2 and the edge 1 — 2 to the DAG. Then at each step, we
add the node j and e random edges to the graph such that the probability of edge I — j is
proportional to the neighborhood size of node [ (I < j). Then we construct A®) by filling ail

with random values from Uniform([—1, —0.5] U [0.5, 1]) if the edge | — j exists in the DAG.
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Note that the graph sparsity is determined by 7 and e respectively in the two models, and 7 tunes
the similarity among the K DAGs. In particular, any two of the K DAGs have about 778 x 100%
overlapping in expectation. Examples of ER and BA models with the same sparsity are shown in
Figure 3.1. One may observe that the BA model has more variation on the degree of connections
per node, with both hubs (i.e. heavily connected nodes) as well as nodes with few connections.
This is due to the scale free property of the BA model. The different sparsity patterns of ER and

BA models can result in different challenges in skeleton estimation.

Figure 3.1: Examples of DAGs generated by the ER model (left) with 7z = 0.02 and the BA model (right)
with e = 2. In both models, we set K = 3, p = 50, and 79 = 0.4.

In the simulation, we assign equal weights to K classes, and generate n samples from the
Gaussian mixture distribution, denoted by {x;;1 < ¢ < n}. We perform principal component
analysis (PCA) on the whole data. Based on the first 20 principal components, the hard labels are
constructed by the k-means clustering, denoted by {g;;1 < i < n}. Soft labels are then computed
by QDA based on the hard labels, using the same 20 principal components. Let K = 4, p = 500,
and n = 400. For the ER model, we set 7 = 1/500, and for the BA model, we set ¢ = 1. For
both models, we consider a high overlapping (mg = 0.7) setting as well as a low-overlapping one
(mo = 0.3). In the latter case, any two graphs have only about 10% edges in common. For each

simulation setting, we run 100 repetitions and evaluate the performance of all the methods by stage.
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Evaluation criteria include true positive rate (TPR) and false positive rate (FPR) averaged over
classes for both stages. In particular, denote G and G as the true CIG or DAG skeleton and its

estimate. Then
909l ppp__ 16\G

TPR,: 5 )
G| (p? —p)/2 — G|

which are respectively 1 and 0 if G recovers G perfectly. For Stage II, we also include the estimation
accuracy results of the CPDAGs in terms of the average Structural Hamming Distance (SHD), which
is computed as the number of flipping, addition, and deletion operations to turn each estimated
CPDAG to the true CPDAG (the smaller the better).

Due to limited space, we only display the results for the BA example in the chapter. The results

for the ER example and additional scenarios are included in the Supplementary Materials.

3.5.2 Stage I: neighborhood selection

In this subsection, we compare the CIG estimation (Stage I) of all methods under different
settings. We select the tuning parameters of all methods (A for PenPC, 7 and A for MPenPC) by
EBIC. As we can see from Table 3.1 (upper panel), all four methods, except the PenPC without
grouping, recover most of the edges effectively. Both the group-specific PenPC and the MPenPC
benefit from using soft labels (Soft PenPC vs. Hard PenPC, Soft MPenPC vs. Hard MPenPC)
— with slightly higher FPR, they have substantially higher TPR. We also notice that while the
MPenPC methods can take advantage of the graph overlaps, they appear to be less effective than
the group-specific PenPC under the low overlapping setting at this stage. However, the sparsity
level of estimated graphs vary dramatically across methods, which poses challenges to our analysis.
In particular, the estimates of the PenPC without grouping have far fewer edges than those of other
methods, thus we do not include it in later comparisons.

For a more thorough comparison of the methods, we evaluate the estimation of all the methods
at different sparsity levels by changing the tuning parameter A in nodewise regressions. Figure 3.2
displays the results for BA model. In the high overlapping setting, the MPenPC methods always
have higher TPRs than the PenPC methods at the same FPR level. Even in the low-overlapping

setting, the Soft MPenPC has a better accuracy than the group-specific PenPC methods. Moreover,
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both the group-specific PenPC and the MPenPC with soft labels outperform their counterparts with

hard labels, which justifies the usage of soft labeling.

(a) BA - High Overlapping (b) BA - Low Overlapping
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Figure 3.2: Neighborhood selection performance of different methods at Stage I in BA scenario: K = 4,
p =500, e =1, 62 = 0.05, 9 = 0.7 for (a) and 0.3 for (b). The z-axes and y-axes represent FPR and TPR
respectively. The graph sparsity at the neighborhood selection stage varies for different tuning parameter A.
The tuning parameter v for MPenPC methods is preselected by EBIC.

3.5.3 Stage II: skeleton estimation

At Stage II, we apply the PC-stable algorithm to obtain skeleton estimation based on the
CIGs estimated in Stage I (selected by EBIC). For each of the K classes, the input of the PC-
stable algorithm includes an initial graph and a correlation matrix. The procedure is similar for
all methods, except that the soft PenPC and the soft MPenPC use weighted correlation, and
the PenPC without grouping uses the overall correlation of all samples. Table 3.1 (lower panel)
summarizes the performance evaluation of all the methods at Stage II for the BA model with the
p-value cutoff a = 0.02.

From Table 3.1, we observe that all methods except the PenPC without grouping produce
much sparser skeletons compared to the undirected graphs at Stage 1. The sparsity of group-specific
PenPC and MPenPC estimates becomes comparable. In the high overlapping setting, the MPenPC

with soft labels has a clear edge over the group-specific PenPC with soft labels, with higher TPR
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and lower FPR. The comparison is the same for their counterparts with hard labels. Under the low
overlapping setting, the differences between the group-specific PenPC and the MPenPC become
smaller compared with the results at Stage I. The results of CPDAG estimation also confirm the
advantages of the proposed method in terms of lower SHD.

With a fixed initial graph, the sparsity of skeleton estimation can be tuned by « for each of
the methods. For a complete comparison among the methods, we also present the results for a
range of significance levels, namely 0.005,0.01,---,0.3, in Figure 3.3. As « increases, the skeleton
estimation becomes less sparse and both FPR and TPR increase. With respect to the BA example,
the relative performance of different methods is relatively stable at each significance level. The
comparisons mostly conform to our earlier observations. In the high overlapping setting, both
MPenPC variants have significant advantages over their group-specific PenPC counterpart. The
PenPC and the MPenPC with soft labels are more accurate than those with hard labels. In the
low overlapping setting, the performance of MPenPC methods and their group-specific PenPC
counterpart are similar. The group-specific PenPC estimates have slightly higher TPRs than the
MPenPC, but also with higher FPRs.

The simulation results for the ER model show similar patterns of relative performance of all
the methods (Supplementary Table 1, Figures 2-3). We have also conducted simulations with
non-overlapping DAGs. In this scenario, the group-specific PenPC methods have slightly better
performance than the MPenPC methods, but soft-label-based methods still have better perfor-
mance than hard-label-based methods (Supplementary Figures 4-7). In summary, our simulation
study shows that our joint estimation methods, including both Hard and Soft MPenPC, often pro-
duce more accurate skeleton estimates than separate estimation, when the multiple DAGs have
reasonable similarities. Moreover, for either the PenPC or the MPenPC method, the soft labels

always benefit the estimation.

3.6 Cancer genomic applications

Breast cancer is the most commonly diagnosed cancer type in females and second leading
cancer death in females (Siegel et al., 2016). Gene expression data collected from cancer samples

are very informative to study the molecular characteristics of breast cancer. For example, based
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Figure 3.3: Skeleton estimation performance of different methods at Stage II in BA scenario. The high
overlapping scenarios have my = 0.7, and the low overlapping scenarios have my = 0.3. The z-axes represent
the significance level « of the PC-stable algorithm. The y-axes represent TPR (the left panel) and FPR (the
right panel) respectively.

on the gene expression pattern, breast cancer can be divided into five subtypes: basal, HER2 over-
expression (HER2), luminal A (lumA), luminal B (lumB), and normal-like (The Cancer Genome
Atlas Network, 2012). We seek to use DAG skeleton to study gene co-expression patterns in breast

cancer. To account for the similarity and differences across subtypes, we apply our MPenPC method

to jointly estimate DAG skeletons of multiple subtypes.
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We obtain level 3 gene expression data (UNC IlluminaHiSeq-RNASeqV2 pipline) of TCGA
breast cancer patients (The Cancer Genome Atlas Network, 2012) from TCGA data portal. The
gene expression dataset is in the format of raw counts of sequencing reads for more than 20,000
genes. We limit our analysis on 405 Caucasian patients and filter out genes with low expression in
the majority of the patients. Specifically, we require the raw counts to be > 20 for at least 25% of
the individuals and 15,816 genes pass this filtering. The distribution of these 405 patients in the 5
breast cancer subtypes are: basal (n = 64), HER2 (n = 21), lumA (n = 222), lumB (n = 91), and
normal-like (n = 8). In the following analysis, we remove the 8 individuals of normal-like subtype
due to its small sample size.

To focus on genes that are more relevant to cancer biology, we select 3,466 genes that belong
to at least one of 17 cancer-relevant gene sets (the Molecular Signatures Database C6 oncogenic
signatures gene sets (Subramanian et al., 2005)). See the Supplementary Materials for a complete
list of specific gene sets. For each of these 3,466 genes, we regress it against all other genes by
penalized regression using the log-penalty (Sun et al., 2010) and select tuning parameters by EBIC.
Two genes are connected if each of them is selected in the regression model for the other gene.
Then we remove the genes that are not connected with any other gene of the same gene set, and
use the remaining 1,528 genes in the following analysis.

As in the simulation study, we use different methods to estimate the skeletons for four subtypes.
We use a PathwayCommons dataset (Cerami et al., 2010), which is based on multiple databases,
as the benchmark. In this case, we have a single benchmark graph for all groups/subtypes. It is
created by connecting any two genes that interact with or are in complex with each other. Since
the subtypes have already been specified, we only need to create soft labels by classification. Naive
Bayes is used to compute the soft labels. At the second stage of skeleton estimation (removing
edges by conditional dependence testing), we use a significant level of o = 0.02 for all methods.

We compare the performance of different methods at two stages. During Stage I, by vary-
ing tuning parameters, each method produces undirected graphs of varying sparsity level for each
subtype. The MPenPC method with soft labels generally recover more edges defined in Pathway-
Commons than other methods, including the MPenPC with hard labels, at the same sparsity level
(Figure 3.4). Since the EBIC-selected graph estimates of the four methods have very different

sparsity levels, we compare the performances of these methods across sparsity levels of Stage I,
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after applying the PC-stable algorithm with a fixed significance level & = 0.02 during Stage II
(Figure 3.5). We can see that the soft MPenPC again produces the best skeleton estimates among

all methods. Therefore, joint estimation and soft labels can benefit the skeleton estimation in this

application.
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Figure 3.4: Performance comparison of all methods at Stage 1 by cancer subtype. The z-axes represent
the total number of edges in estimated graphs corresponding to different A values; the y-axes represent the
number of overlapping edges in estimated graphs.
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Figure 3.5: Performance comparison of all methods at Stage II by cancer subtype. The z-axes represent
the significance level « of the PC-stable algorithm. The y-axes represent the number of overlapping edges
(left panel) and total number of edges (right panel) in estimated skeletons.

To further explore the DAG skeleton within each gene set. We rerun our analysis using MPenPC
for each gene set separately for three subtypes: basal, lumA or lumB. The HER2 subtype is not
included due to its relatively small sample size. Since subtypes lumA and lumB are more similar,

we expect more similarity between their skeleton estimates and less similarity between the skeleton
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estimates for lumA /lumB and basal. This is indeed the case, as shown in Supplementary Figure 8
in the Supplementary Materials.

We further illustrate the skeleton estimates for these three cancer subtypes for a gene set related
with TP53. TP53 is a tumor suppressor gene that induces cell cycle arrest and apoptosis in abnor-
mal cells. TP53 pathway activity is among the major differences between basal and lumA /lumB
cancers. TP53 mutation rate is 12%, 32%, and 84% for lumA, lumB, and basal, respectively.
Integrative analysis of multiple types of -omic data from TCGA samples suggest TP53 pathway re-
mains largely functional in luminal A samples, is often inactivated in a subset of luminal B samples,
and is inactivated in most basal samples (The Cancer Genome Atlas Network, 2012). The gene
set we analyzed related with TP53 is the union of two gene sets of MSigDB: P53_DN.V1_UP and
P53_DN.V1_DN, which corresponds to genes that are up-regulated or down-regulated in NCI-60
panel of cell lines with mutated TP53. The DAG skeleton estimated by either soft MPenPC or soft
PenPC show that genes involved in negative regulation of apoptosis are enriched among the genes
with 4 or more connections in basal subtype, but less so for lumA /lumB, suggesting both methods
identify biologically interesting subtype-specific features. In addition, soft MPenPC identify more
edges shared between basal and lumA /lumB subtypes than soft PenPC (112 edges by MPenPC vs.
66 edges by PenPC, Chi-squared test p-value 1.4 x 10~%), suggesting the advantage of joint analysis

of multiple subtypes.

3.7 Conclusion

In this chapter, we propose the MPenPC method to estimate the DAG skeletons with hetero-
geneous samples. By taking advantage of the similarity among the DAGs, the MPenPC method
can produce more accurate estimates than separate estimation. In particular, we take into account
possible labeling errors in this scenario, and propose a remedy with soft labels. The effectiveness
of our method is demonstrated with numerical examples.

The ideas of joint estimation and soft labels can also be combined with other DAG estimation
methods. For example, Nandy et al. (2015) has demonstrated how to appropriately combine the
CIG estimation and the greedy equivalence search for single-DAG estimation. Similar hybrid

approaches may be used for heterogeneous populations.
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Table 3.1: Performance of different methods at both stages for the BA-model examples (K = 4, p = 500,
e =1, mp = 0.7 (High Overlapping) or 0.3 (Low Overlapping), and §2 = 0.05).
FPR = |G\ G|/[(p*> — p)/2 — |G|], where G and G denote the true and the estimated graphs respectively.
The numbers outside and inside parentheses are averages and standard errors respectively based on 100

repetitions.

TPR =

Stage 1. Neighborhood Selection

High Overlapping

TPR

FPR

PenPC (No Grouping)

Hard PenPC
Soft PenPC
Hard MPenPC
Soft MPenPC

0.6469(0.0022)
0.8176(0.0022
0.8474(0.0022
(
(

~— —

0.8451(0.0019
0.8675(0.0019

~— —

0.0017(0.0000)
0.0353(0.0000)
0.0390(0.0002)
0.0446(0.0002)
0.0473(0.0002)

Low Overlapping TPR FPR
PenPC (No Grouping) 0.4515(0.0020) 0.0024(0.0000)
Hard PenPC 0.7991(0.0044)  0.0359(0.0000)
Soft PenPC 0.8338(0.0029)  0.0391(0.0000)
Hard MPenPC 0.7884(0.0048)  0.0452(0.0000)
Soft MPenPC 0.8178(0.0039) 0.0472(0.0000)

Stage II. Skeleton Estimation

High Overlapping

TPR

FPR

PenPC (No Grouping)

Hard PenPC
Soft PenPC
Hard MPenPC
Soft MPenPC

0.6348(0.0025)
0.8375(0.0030)
0.8553(0.0030)
0.8629(0.0030)
0.8785(0.0030)

0.0016(0.0000)
0.0055(0.0000)
0.0054(0.0000)
0.0052(0.0000)
0.0052(0.0000)

Low Overlapping

TPR

FPR

PenPC (No Grouping)

Hard PenPC
Soft PenPC
Hard MPenPC
Soft MPenPC

0.4548(0.0017)
0.8369(0.0060)
0.8615(0. 0046)
0.8321(0.0066)
0.8574(0.0051)

0.0022(0.0000)
0.0055(0.0000)
0.0054(0.0000)
0.0053(0.0000)
0.0052(0.0000)

Stage II. CPDAG Estimation

High Overlapping SHD
PenPC (No Grouping) 612.99(3.57)
Hard PenPC 565.46(2.94)
Soft PenPC 550.22(2.27)
Hard MPenPC 498.87(2.54)
Soft MPenPC 492.61(2.28)
Low Overlapping SHD
PenPC (No Grouping) 784.79(2.94)
Hard PenPC 580.61(2.22)
Soft PenPC 558.45(2.45)
Hard MPenPC 511.22(2.55)
Soft MPenPC 496.84(2.45)
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CHAPTER 4
Graphical Model Estimation for Single Cell RNA-seq Data

4.1 Introduction

In recent years, the single cell RNA sequencing (scRNA-seq) techniques are becoming increas-
ingly popular in gene expression studies. While bulk RNA sequencing data measure the aggregated
gene expression of a tissue sample that is composed of millions of cells, scRNA-seq data provide
the gene expression quantification in each single cell. This helps researchers to study the biological
heterogeneity at the cell level. For example, scRNA-seq revealed intratumoral heterogeneity in
primary glioblastoma (Patel et al., 2014). Moreover, with scRNA-seq data, it is now feasible to
study the unique gene interaction pattern of each person, which may provide valuable information
for personalized treatment for diseases. In contrast, bulk RNA-seq data can only study gene inter-
actions at a population level and require gene expression data from hundreds or even thousands of
individuals.

While scRNA-seq techniques have shown significant advantages over traditional RNA-seq tech-
niques in many aspects, particular features of scRNA-seq data pose great challenges for data anal-
ysis. For example, there are often many zero values in scRNA-seq data. They may be either due to
the under-detection of mRNA below a certain level or simply because the gene is not expressed in
those cells. Moreover, the gene expression of different cells are usually not independent. In partic-
ular, cells in the same cell lineage tend to be more alike than others. In this paper, we focus on the
graphical model estimation based on scRNA-seq data and we design our method to accommodate
such particular features of scRNA-seq data.

Traditionally, Gaussian graphical models are often employed to model the gene expression
dependence across genes. Many methods have been proposed for the estimation of high-dimensional
Gaussian graphical models (Meinshausen and Bithlmann, 2006; Yuan and Lin, 2007; Friedman et al.,

2008; Cai et al., 2011). However, Gaussian graphical models assume that the features are Gaussian-
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distributed. While this assumption is approximately true for traditional bulk RNA-seq data after
certain transformations, it may not be appropriate for scRNA-seq data. Liu et al. (2009) and
Liu et al. (2012) generalized Gaussian graphical models to non-Gaussian data by non-paranormal
transformation, but it is valid only when the transformation is continuous.

There is a rich literature on count-data graphical models. For example, Yang et al. (2012a)
and Chen et al. (2014) proposed a class of exponential family graphical models, of which the
Poisson graphical model is a special case. But the model only allows negative dependence among
the features. A number of approaches have been proposed to address this issue. Yang et al.
(2013) proposed to remove such a restriction by modifying the base measure of the multivariate
Poisson distribution. Allen et al. (2013) proposed a neighborhood selection approach that estimates
the neighborhood of each node via penalized Poisson regression. See Inouye et al. (2017) for a
comprehensive review. Recently, the Poisson-logNormal model has attracted a lot of attention for
count-data graphical modeling. A variety of methods have been proposed for model estimation
(Choi et al., 2017; Wu et al., 2018a; Sinclair and Hooker, 2017; Chiquet et al., 2018). However,
none of them is feasible for high-dimensional modeling due to computational burdens.

In addition to the count feature of scRNA-seq data, the abundance of zero values and sample
dependence pose additional challenges to the estimation of graphical models. While we can remove
many rarely expressed genes, the modality at zero can still be an issue (McDavid et al., 2014).
McDavid et al. (2016) proposed to model scRNA-seq data with a multivariate Hurdle distribution.
Their Hurdle model consists of two parts: the first part determines whether a feature is zero or not
and the second part determines the value of nonzero expression. Compared to a Gaussian graphical
model, the number of parameters to be estimated is tripled, which makes the estimation difficult
in high dimensions. For dependent continuous data, Zhou et al. (2014) proposed a matrix-variate
Gaussian graphical model whose covariance matrix is the outer product of the feature covariance
matrix and the sample covariance matrix. However, it is difficult to generalize this approach to
non-Gaussian scenarios.

In this chapter, we propose two new neighborhood selection approaches for the graphical mod-
eling of scRNA-seq data. The new methods account for the count nature and other characteristics
of scRNA-seq data. The rest of this chapter is organized as follows. In Section 4.2, we briefly

review existing graphical models in the literature and then propose our new graphical models. The
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implementation and parameter tuning of the methods are detailed in Section 4.3. In Section 4.4,
we examine the new methods with simulated examples and compare them with other methods. In
Section 4.5, we investigate the characteristics of scRNA-seq data in depth with two real scRNA-seq
datasets and evaluate the graph estimation of different methods. In Section 4.6, we conclude this

chapter with a brief summary on our findings.

4.2 Graphical Models based on scRNA-seq Data

In this section, we first review existing count-data graphical models in Section 4.2.1. Then we
introduce our Poisson-logNormal graphical model for scRNA-seq data and its estimation in Section
4.2.2. In Section 4.2.3, a Hurdle-logNormal graphical model is introduced to account for excessive
zero values in scRNA-seq data.

Before diving into the model part, we first introduce some notations for later use. For any
matrix A, A;. denotes its i-th row vector and A, denotes its j-th column vector; A_; denotes
the matrix after removing the j-th column. For any vector a, a, denotes its k-th element and a_g
represents the vector after removing the k-th element. For any square matrix A, diag(A) denotes
its diagonal vector; conversely, for any vector a, diag(a) represents a diagonal matrix with a as
its diagonal. For vectors a = {a;} and b = {b;} of the same length, we denote their elementwise
product by aob = {a;b;}. The logit function is defined as logit(r) = log[n/(1 — m)],Vm € (0, 1),

and its inverse function logit™!(z) = €*/(1 4 €®),Vz € R.

4.2.1 Existing count-data graphical models

Poisson distributions are often used to model count data. A straightforward generalization of

Poisson to the multivariate scenario is
P
P(Y1,-+,Y,) =expq > (6;Y; —log(YV;)) + > 0;,Y;Y, — A(6) ¢, (4.1)
Jj=1 Jhl

where 6;; = 0;;,Vj,l and @ = {6; : 1 < j <p}U{fj; : 1 < 4,1 < p}. Similar to the multivariate
Gaussian distribution, Y; and Y; are conditionally independent given the rest if and only if 0;; =

0); = 0. However, it can be shown that €; must be non-positive to make the distribution valid
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(Yang et al., 2012a; Chen et al., 2014). Yang et al. (2013) proposed to remove such a restriction
via modification of the base measure log(Y;!) in (4.1).

Allen et al. (2013) proposed to only specify the conditional distributions, i.e.
v ; ) L yT g0
Y;[Y_j ~ Poisson(exp(8y” +Y_,;8Y)), (4.2)

where Y is the log-transformed Y. In the corresponding graphical model, Y; and Y} are connected
if Bl(j ) % 0 or B](-l) # 0. While (4.2) does not correspond to any valid joint distribution, it enjoys
great flexibility.

The multivariate Poisson-logNormal model is another common choice in modeling count data.

It assumes that

X NN(H’: 9_1)7 (4 3)

Y| X; "% Poisson(eX9),j =1, ,p
The corresponding graph is derived from the underlying Gaussian distribution, i.e. j and [ are
connected if 2 # 0. Although many different algorithms have been proposed (Choi et al., 2017;
Wu et al., 2018a; Sinclair and Hooker, 2017; Chiquet et al., 2018), the estimation of Poisson-
logNormal becomes infeasible for data with moderately high dimensions.
Recently, McDavid et al. (2016) proposed to model zero values in scRNA-seq datasets with a

multivariate Hurdle model,
T T I
log f(y) =Vy Gvy + Vy Hy - iy Ky - C(G7 H’ K)7y € Rpa (44)

where vy = (I(y; # 0),...,I(y, # 0))" and G, H, and K are interaction matrices. Assume G,
H, and K are symmetric, then gene j and gene [ are conditionally independent if and only if

Gj=Hj=Kj=0.

4.2.2 Dependent Poisson graphical models

Let {Y;;j e N:i=1,--- ,m;j=1,---,p} denote expression levels of p genes in n cells from a
biological specimen. Then y; = YZT represents the expression levels of all genes in the cell ¢, and

Y ; denotes the expression of gene j in all cells. To model the dependence among genes, we assume
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that

Y;|Yi j ~ Poisson(exp(85 + 77,89 +v;)), 1<i<n1<j<p, (4.5)
where y; = (9i1, - - ,z]ip)T denotes the log-transformed gene expression and v;; is a random effect

term. The graph is defined as G = (V, E), where the vertex set V = {1,--- ,p} and the edge set
E={(1): ﬁl(j) # 0 or 65»1) # 0}. We call Model (4.5) the dependent Poisson model.

With the random effect term v;; in (4.5), we can model the dependence among samples in
scRNA-seq data. In particular, we assume that V; = (vij, -+, vn;) nd N(0,¢;X) forj=1,---,p,
where X represents the sample dependence and c;’s are gene-specific factors. Both ¥ and ¢;’s can
be estimated from the data. Unlike existing methods for dependent-data graphical modeling,
e.g. GEMENTI (Zhou et al., 2014), by modeling the sample dependence with random effects, our
dependent graphical model can be applied to non-Gaussian data.

While Model (4.5) does not model inflated zeros directly, the over-dispersion brought by the
random effect can largely account for the issue of many zeros in the data. This matches our
observations with many scRNA-seq data (see Figure 4.3, the bottom row). In practice, we find
that it works well for different types of scRNA-seq data, even if some of them have excessive zeros
that cannot be completely explained by over-dispersion. We will further discuss this in Sections

4.2.3 and 4.4.1.

Parameter estimation

We can estimate 8U)’s through penalized conditional log-likelihood. For simplicity of presen-
tation, we use 3, ¢, X, and y instead of (Béj),ﬁ(j)T)T, ¢, (1p, Y_j), and Y in the following when
they would not cause misinterpretation. Denote x; the i-th row vector of X. Then the penalized

conditional log-likelihood is

wrgmin 105 L,(8) + PA(8), (16)

where P)(3) is a sparsity-inducing penalty. In particular, the conditional likelihood of Y; given
Y_j is
L;(B) =/ (2m) 2|1 Q| 2 exp[—S;(v; B)] dv, (4.7)
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where @ = 21 and

55(v:B) = gV — yT(XB V) + Y exp(] B+ vi).
=1

The optimization problem (4.6) can be very difficult to solve due to its integral part. Therefore,
we propose to solve this problem via least square approximation (Wang and Leng, 2007). In
particular, given a reasonable estimate of 3 and a representative value of v, denoted by b and v,

we approximate Sj(v; ) in the integrand of (4.7) by:

1 _ _ 1
S(v;B) =-[|v—(c '+ A) 1A(e - XIB)HElejLA + Slle — XIBH?\—A c1Q+A) LAY
9 2 ( )

where A = diag(§1,....Ga), € = (1 — 91)/91 + X1 b+ D1veee, (U — G) /G + X[ b +0,) T, and

. Thos .
i = €% P10 for 1 <4 < n. Thus we have

_ _ 1
Li(B) ~ [c ' 2 /|7 4+ A2 - exp {_2”3 - Xﬂ”i—A(canrA)lA} ,

and (4.6) is approximated by a Lasso problem:

o1
argmin o fle - XBIA-a@-10+a)-1a + PAB), (4.8)

which can be solved easily. The details of the least square approximation are provided in the

Appendix C.1.1.

Comparison with existing Poisson-loglNormal graphical models

As we can see, our dependent Poisson graphical model (4.5) resembles the Poisson-logNormal
graphical model (4.3) in that both of them are based on Poisson-logNormal distributions. Thus
the two graphical models share some properties. For example, both of them can model the over-
dispersion effect of scRNA-seq data and thus account for zero-inflation to certain extent.

Despite these similarities, the two graphical models have some key differences. A major dis-
tinction between them is the modeling of sample dependence. In particular, the Poisson-logNormal

graphical model assumes that the samples are independent, while our model models the sample
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dependence by taking advantage of the random effects. Moreover, the Poisson-logNormal graphical
model specifies the joint distribution of all nodes through a latent Normal random vector, while our
model assumes the conditional distribution of each node. The latent variables in the former model
can cause great difficulties in the graph estimation and make it even impossible in high dimensions.
In contrast, our model can be easily applied to scRNA-seq data of more than 1,000 dimensions as

in the case studies of Section 4.5.

4.2.3 Dependent Hurdle graphical model

The dependent Poisson graphical model accounts for the cell dependence in scRNA-seq data
and often works well in practice. However, there are still cases in which the data have excessive zeros
that cannot be completely explained by the over-dispersion of the Poisson-logNormal distribution.

To tackle with these cases, we propose a Hurdle-logNormal model as follows.

}/ij|Yi,fj ~ B(l, logit_l('yoj + ’Yljnij)) X SPoisson(emj), (49)
where 70, and v1; are unknown constants, 7;; = (()j ) + S’iT, _ ]ﬂ(j ) + v;j, and v;; is the random effect
term. Here B(1,7) denotes a Bernoulli random variable with success probability 7, and SPoisson

denotes a shifted Poisson distribution, namely, for X ~ SPoisson(u)

lukfl

PIX =k = 0,

e k=12, (4.10)

The corresponding graph is defined as G = (V, E), where the vertex set V = {1,--- ,p} and the
edge set E = {(j,1) : Bl(j) # 0 or B](-l) # 0}. We call Model (4.9) the dependent Hurdle model.

We choose the shifted Poisson distribution, instead of the more often used zero-truncated
Poisson, for the positive part of the Hurdle model because the former is computationally much
more efficient to evaluate. Moreover, the Bernoulli and the shifted Poisson models in (4.9) share
the linear component 7;; instead of having two separate sets of parameters. This reduces the
number of parameters and is also a reasonable assumption for scRNA-seq data with ~;; > 0.

The graph can be estimated via neighborhood selection in a similar way as for dependent

Poisson-logNormal models. For simplicity of presentation, we use 3, ¢, 70, 71, X, and y instead
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of (Béj),ﬁ(j)T)T, Ciy Y0js Yijs (1n,Y,j), and Y, in the following when they would not cause
misinterpretation. Given a reasonable estimate of 3, denoted as b, we can first estimate ~y and
1. In particular, we can perform logistic regression of z = (I(y; # 0),--- ,I(y, # 0))" on & = Xb,
then the coefficient estimates are our estimates of vy and 7.

With respect to the integral form of likelihood, we can again take advantage of the least square

approximation and estimate 3 by
o1
argmin o e = XPlls 5 xc e+ PA() (4.11)

where e, A, A, and K are defined in the Appendix C.1.2.

Both our dependent Hurdle-logNormal model and the multivariate Hurdle model (4.4) model
the zero-inflation of scRNA-seq data. However, our model also considers the important dependence
among cells in single cell profiling. In contrast, it is difficult to generalize Model (4.4) to account
for the sample dependence. Moreover, we model the nonzero count data directly with the shifted

Poisson distribution, while (4.4) treat them as logNormal random variables.

4.3 Implementation

In this section, we explain some implementation details of our methods. Specifically, we first
discuss the estimation of sample dependence in Section 4.3.1, then illustrate how to get an initial
estimates for the use of least squares approximation of the two dependent graphical models in

Section 4.3.2.

4.3.1 Estimation of the sample dependence

For both dependent graphical models (4.5) and (4.9), it is necessary to pre-specify the sample
dependence. This is equivalent to specifying the covariance matrix 3 and the variance factors c;’s.

Under Model (4.5), we have approximately

YiY MNP+ Y89, 053, (4.12)

61



for j = 1,---,p. Thus we can estimate X and c¢;’s based on the regression residuals e; = YN'j —
(()j)l — ?,jﬁ(j). Specifically, we i) standardize e; so that é;—éj/n = 1 and ii) estimate ¥ by the
sample covariance of {€;;j = 1,---,p} and ¢; by the sample variance of e;.

Note that due to the large number of cells, the sample covariance matrix may not be a good
estimate of 3, which may undermine the estimation of our dependent graphical models. Thus we
use a regularized estimation of 3 instead. In particular, we estimate a regularized 2 = X! by
graphical Lasso with {€1,--- ,€,} as input, then we estimate 3 by Q1. In the rare case of singular

Q. we can estimate X by (Q + 0I,)~! where ¢ is a small positive number.

4.3.2 Least squares approximation

For both the dependent Poisson and the dependent Hurdle graphical models, the model esti-
mation is typically difficult due to the integral form of the likelihood function. We proposed to use
least squares approximation to solve the problem in Section 4.2.2. To apply the least squares ap-
proximation, we first need a reasonable initial estimate of 8 (and cgj, ¢1; for the dependent Hurdle
model).

Specifically, we can get an initial estimate of 8U) by ¢;-penalized Poisson regression of Y; on
Y_j. While this may not be the best estimate of BUY) | it is a reasonable one under the dependent
Poisson model. Under the dependent Hurdle model, it is also reliable as long as c¢1; > 0, which is
generally true for scRNA-seq data. We can select the tuning parameter of the penalized Poisson

regression by AIC.

4.3.3 Tuning Parameter Selection

As discussed in Sections 4.2.2 and 4.2.3, both the dependent Poisson and the dependent Hurdle
graphical models can be estimated via neighborhood selection. The tuning parameter A in (4.8)
and (4.11) determines the sparsity of the estimated graphs. In practice, we often need to select an
appropriate A and produce the graph estimation. We suggest to choose the tuning parameter by

extended BIC (EBIC) (Chen and Chen, 2008). For the neighborhood selection of the node j, the
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EBIC is defined as
EBICE\j) = —2log L;j(BY)) + slogn + 2¢ log <p>,0 <y <1,
s

where the likelihood L;(8) can be computed via least square approximation, and s = || Bl )|o. As

suggested by Chen and Chen (2008), ¢ can be taken as 1 — (2logp/logn)~ 1.

4.4 Simulation Studies

In this section, we use simulated examples to examine the performance of our new models in a
variety of settings. Our methods, namely the dependent Poisson (dep.poisson) and the dependent
Hurdle (dep.hurdle) models, are compared with other existing graph estimation methods, includ-
ing the graphical Lasso (glasso), nonparanormal graphical Lasso (glasso.npn), the local Poisson
graphical model (poisson), and the multivariate Hurdle graphical model (hurdle) (McDavid et al.,
2016). In particular, with respect to the glasso and the hurdle, we estimate the graph based on
log-transformed data, i.e. log(1+Y'). For the glasso.npn, we use graphical Lasso to estimate the
graph after performing Normal quantile transformation on the data. For poisson, the graph is
estimated based on nodewise /1-penalized Poisson regression of Y; on log-transformed Y _;.

In the following, we first introduce the simulations settings, including a non-zero-inflated setting
and a zero-inflated one, in Section 4.4.1. Then we present the graph estimation results under

different settings in Sections 4.4.2 and 4.4.3 respectively.

4.4.1 Simulation settings

For the simulations, we consider two different models, namely, the hierarchical Poisson-
logNormal (HPLN) and the hierarchical Hurdle-logNormal (HHLN), for data generation. In par-

ticular, the HPLN model generates data as follows:

Yij ind Poisson(eZi7);1 <i<n,1<j <p, (4.13)
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where Z;; ~ N(uj,7%). The HHLN model generates data as follows:
Yi;j ~ B(1,logit(vo + 71 Zi;)}) x SPoisson(eis). (4.14)

where Z;; ~ N(u;,72) and SPoisson denotes the shifted Poisson in (4.10). For both the HPLN and
the HHLN models, we simulate Z = (Z;;)nxp by

AR (zgl)T, e ,z(l)T)T7 where zgl)T i N(p, @),
73 = (zgz)7 . ,z](f)), where Z§2) i N(0,%), (4.15)

7 =270 + 73,

(1)

where z; s the j-th row vector of matrix Z(%), z§2) is the j-th column vector of matrix Z®, and
the covariance matrices ® and ¥ encode the gene interactions and the cell dependence respectively.
Define the precision matrices ¥ = &~ ! and Q = X~!. The true graph G = (V, E) is defined as
V= {L--,p} and B = {(j.0): ¥ # 0},

It can be seen that the HPLN model (4.13) is closer to our dependent Poisson model (4.5)
and produces moderate amount of zero values. The HHLN model (4.14) is closer to the dependent
Hurdle model (4.9) and can produce excessive amount of zero values. With respect to the sample
dependence, we set X as a blockwise sparse matrix, which resembles the cell dependence in real
scRNA-seq data. Specifically, the diagonal of 3 consists of four square matrices (1), ... @) of
dimensions p/10, p/5, 3p/10, and 2p/5. For k =1,--- 4,

ZE?E 1, if 41 = i9;
0.8, if iy # is.
With respect to the underlying gene-gene interaction graph, we consider three different graph

types and generate the corresponding precision matrix ¥ as follows.

e Banded Graph. The precision matrix ¥ is generated such that ¢;; = 1, and v¢; = —0.6 if
|7 =1 =1, —0.3if |[j — ] = 2, and 0 otherwise. Then we add 0 > 0 to its diagonal such that

the minimal eigenvalue is greater than or equal to 0.05.
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e Hub Graph. The nodes are divided into 10 equal-size groups: {(k —1)p/10+1,--- ,kp/10}
for k=1,...,10. Set p;; = —0.5 for all j = (k—1)p/10+1,(k—1)p/10+1 < I < kp/10, and
0 otherwise. Then we add § > 0 to its diagonal such that the minimal eigenvalue is greater

than or equal to 0.05.

e Random Graph. The graph is generated in a way similar to the Barabasi-Albert (BA)
model. Starting from an p-dimensional null matrix L = O, at step ¢ we randomly select
min{[0.05p],7 — 1} entries in row ¢ with probability Pr(i,j) oc #{L¢j #0:1 < < p},j <1
and assign their values by sampling from Uniform(—0.8,—0.4). Repeat the procedure until
i = p. Then we get a lower triangular matrix. We construct ¥ = L + LT and add § > 0 to

its diagonal such that the minimal eigenvalue is greater than or equal to 0.05.

We compare the graph estimation methods under the above settings with n = 100 and p = 80. For
each simulation setting, we run 50 experiments and take their average accuracy evaluation. The
evaluation criteria we use include the false positive ratio (FPR), the true positive ratio (TPR),

which are defined as follows. Denote the true graph G and an estimated graph G, then

GNg| G\ G|
TPR = , FPR = )
9 (P* —p)/2 19l
where | - | denotes the number of edges in graph.

4.4.2 Non-zero-inflated data

Under the simulation model (4.13), we estimate the graph with all aforementioned methods and
evaluate their accuracy. The results for three different graph type settings are shown in Figure 4.1.
We evaluate the whole solution paths of all methods, whose sparsity levels vary by their specific
tuning parameters.

It can be seen that our dependent Poisson model has the best performance among all under this
non-zero-inflated setting. Compared with the local Poisson model, our dependent Poisson model is
significantly improved. This can be due to i) the consideration of sample dependence through the
random effect v;; in (4.5) and ii) the inclusion of the random effects that models the over-dispersion

effect. The dependent Hurdle model has a similar performance as the Hurdle model (hurdle) in
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Figure 4.1: Performance of different graph estimation methods under the non-zero-inflated setting (4.13).
(a) Banded graph: p1 = -+ = p, =0, ¢ = 1/3; (b) Hub graph: py =--- = p, = -1, ¢ = 0.5 ; (¢c) Random
graph: puy = --- =y, = 1, ¢ = 0.5. The z-axes and y-axes represent FPR and TPR respectively. The
sparsity of estimated graphs by each method varies by its specific tuning parameter.

estimating the banded graph while surpassing it in estimating the hub and the random graphs.
This is probably because the latter has almost two times more parameters than the former. While
there is a substantial proportion of zeros in the simulated data, it is completely caused by the
over-dispersion of the Poisson-logNormal distribution (4.13). Therefore, it does not help to model

the zero part specifically, either with hurdle or dep.hurdle.

4.4.3 Zero-inflated data

Compared to the HPLN model (4.13), the HHLN model (4.14) produces “actual” zero-inflation
that cannot be explained by the over-dispersion. It may lead to non-ignorable bias if we fit a
model without considering the zero-inflation. We estimate graphs using different methods under
this setting and evaluate their performance. The results are shown in Figure 4.2.

According to the results in Figure 4.2, both our dependent Hurdle model and the multivariate
Hurdle model capture the zero-inflation of the simulated data. While they have very close perfor-
mance in estimating the random graphs, our model outperforms the multivariate Hurdle model in
other cases. This again verifies the advantages of parameter sharing between the linear parts of the

logistic and the Poisson models of our dependent Hurdle model.
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Figure 4.2: Performance of different graph estimation methods under the zero-inflated setting (4.14). (a)
Banded graph: pu; =---=p, =0,c=1, v = —0.5, 1 = 0.5; (b) Hub graph: p; =--- = p, = -1, c =1,
v = —0.5, 1 = 0.3; (¢) Random graph: pu; = -+ = p, =2, ¢ = 0.5, 79 = 0, 71 = 0.5. The z-axes and
y-axes represent FPR and TPR respectively. The sparsity of estimated graphs by each method varies by its
specific tuning parameter.

We also find that the dependent Poisson model still have a very good performance, despite the
data are actually from a model with zero-inflation. A possible reason is that under the Hurdle
model (4.14) with 1 > 0, Y}; is more likely to be 0 when Z;; is small, in which case the shifted
Poisson distribution also has a low center. Thus a Hurdle model with a positive y; may not be too
different from a Poisson model in some cases, and the random effect Poisson regression can still be
a reasonable approximation to the data. This is also the case for many scRNA-seq data, so we can

always try out the dependent Poisson model in practice.

4.5 Real Data Analysis

In this section, we illustrate the characteristics of scRNA-seq data with two real scRNA-seq
datasets. Then we examine the performance of different graphical models on these data. There
are several sScRNA-seq techniques (Ziegenhain et al., 2017; Svensson et al., 2017) and they can be
roughly divided into two groups based on characteristics of resulting scRNA-seq data. The first
group, with Smart-seq2 as a typical example, sequence full length RNA and capture more genes per
cell. The second group, with droplet based techniques as typical examples, quantify gene expression

using unique molecular identifiers (UMIs) and capture less genes per cell but usually with higher
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through put to process large number of cells. An UMI is a randomly generated barcode (4-10bp) to
label each transcript molecule before amplification. Therefore, by counting UMIs instead of actual
reads, one can remove most noise and bias due to amplification. However, UMI is only available
for techniques that sequence 5 or 3’ ends of the transcript molecule, and thus cannot sequence full
length RNA. Since both groups of scRNA-seq techniques are popular in practice, we evaluate our
method using two real datasets, one from each group of scRNA-seq techniques.

For the first dataset, Tirosh et al. (2016) disaggregated the melanoma tumors and profiled the
single cells by Smart-seq2 technique. The expression of 23,682 genes were measured in 4,645 tumor
cells. There are multiple cell types within the dataset, including T cell, B Bell, macrophages,
endothelial cell, CAF (cancer associated fibroblast), and tumor (malignant) cells. The second
dataset (Gierahn et al., 2017) measures the expression of 24,187 genes in 1,453 human macrophages
cells of HEK293 cell line. The cells are profiled with the Seq-Well technique, which is similar to
droplet technique. We call them Tirosh and Gierahn datasets respectively.

For the robustness of our analysis, we drop genes that are rarely expressed in the datasets. In
particular, genes that are expressed in less than 30% cells of either dataset are removed from both

datasets. After the screening, 1,960 genes remain in the two datasets.

4.5.1 Exploratory data analysis

The abundance of zero values is probably the most significant feature of scRNA-seq data.
Figure 4.3 displays the expression proportion of 1,960 genes in the two datasets. Even after the
screening, the proportions of zero values are still as high as around 50% in both datasets.

Since excessive zeros in the data can also be caused by over-dispersion, we fit the genes with
the Poisson-logNormal (PLN) distribution. By comparing the expected zero proportions under
the fitted PLN model with the actual zero proportions (Figure 4.3, right), we observe that it is
approximately the case for the Gierahn data but very unlikely for the Tirosh one.

The dependence among samples is another characteristic of scRNA-seq data. With the two
datasets, we first centralize the expression of each gene, then compute the correlation among cells.
As we can see from Figure 4.4, there is substantial dependence among cells in the two datasets. In

particular, 25.74% of the cell pairs in the Tirosh dataset have an absolute correlation coefficient
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Figure 4.3: Left: Histogram of the expression proportions of 1,960 genes in the Tirosh and the Gierahn
datasets. For example, more than 200 genes are expressed in only 30% — 35% of the cells in the Tirosh
dataset. Right: The actual zero proportions versus the expected zero proportions for 1,960 genes under
fitted PLN model.
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Figure 4.4: Left: Histogram of the sample correlation between cell pairs in the Tirosh and the Gierahn
datasets. Right: Histogram of the P-values of Pearson correlation tests for all cell pairs.
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greater than 0.1, and about 4% of the pairs have absolute correlation greater than 0.2. The Pearson
test of correlation is rejected (significance level 1%) for 69.26% of the cell pairs in the Tirosh dataset

and 20.60% of the cell pairs in the Gierahn dataset.

4.5.2 Graph estimation

To examine the performance of our models in practice, we estimate the gene interactions with
the two datasets and evaluate their accuracy. As in Section 4.4, we estimate the graph with different
models and compare them with the benchmark graph. Since the true gene interaction relationship is
unknown, we construct a benchmark graph based on the PathwayCommons database (Cerami et al.,
2010), which aggregates gene relationship findings from existing research literature. Specifically, we
construct the benchmark graph by connecting all gene pairs that are annotated as “interacts-with”
in the database.

The results are displayed in Figure 4.5. For the Tirosh data, the dependent Hurdle graphical
model discovers significantly more true gene interactions than other methods at the same sparsity
level. This matches our observation in Section 4.5.1 that the data are likely zero-inflated even
taking into account of the over-dispersion effect. While the Poisson-logNormal distribution does
not suit the Tirosh data well, the dependent Poisson model is greatly improved over the local
Poisson graphical model and outperforms all methods except the dependent Hurdle model. At the
same time, we observe that the multivariate Hurdle model also produces improved graph estimation
compared to the graphical Lasso by modeling the zero-inflation.

For the Gierahn data, our dependent Poisson and dependent Hurdle graphical models have the
best performance among all. As we mentioned in Section 4.5.1, the zero values in the data can
be largely explained by the over-dispersion effect. While the dependent Hurdle model considers
possible zero-inflation effect, it does not bring significant advantages over the dependent Poisson
model. This coincides our observations in the simulation studies in Section 4.4.2. By comparing the
local Poisson graphical model and our dependent Poisson model, the latter is improved by taking
into account the sample dependence. In fact, there is not much difference among all other methods,

including the multivariate Hurdle model.
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Figure 4.5: Accuracy evaluation of graph estimation with real scRNA-seq datasets (left: with dataset from
Tirosh et al. (2016); right: with dataset from Gierahn et al. (2017))

4.6 Summary

As scRNA-seq data accumulate with the evolving sequencing techniques, statistical methods
adapted to scRNA-seq data are in demand for accurate analysis. In this paper, we have explored
the characteristics of scRNA-seq data, then proposed two graphical models, namely, the dependent
Poisson and the dependent Hurdle models, that accommodates such characteristics. Particularly,
we have also developed an efficient algorithm for model estimation.

With simulation and real case studies, we find that the dependent Poisson model works generally
well for different types of data by taking into account the cell dependence and the over-dispersion
effects of scRNA-seq data. For some scRNA-seq data with excessive zeros that cannot be accounted
by the over-dispersion effect, the dependent Hurdle model can work better than the dependent

Poisson one.
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APPENDIX A
SUPPLEMENTARY MATERIALS FOR THE GSLDA METHOD

A.1 Some comments on the GSLDA method

A.1.1 A graphical display of the discriminant vector decomposition

S1wi1

wi2 w13 o1 S1wi1 + dawa1 + 3wz

wi1 d3w31
B" = w21 w22 0 da | = d1wiz + dawaa
w31 0 w33 o3 d1w13 + d3wss
Sjwiz  S1wig

d3w33

Figure A.1: A 3-dimensional LDA example demonstrating how marginal differences of the three features
(61, 02,03) contribute to the predictive power of all features. Here was = wsa = 0. The terms around each
node represent a decomposition of the corresponding coefficient. The gray scale of each term and the edge
direction together indicate the source of the marginal differences.

A.1.2 Connection between GSLDA and existing methods

We first consider the case when G is a complete graph. Without loss of generality, we assume
that there is a unique minimum weight, i.e., there exists an ¢ such 7, < 7; for all j # ¢. In this

case, for any 8 € R? and v(V) ... + v(P) = 3, we have
S orilvOlle =7 IvDla > 7 |1Bll2.
7=1 7j=1

By taking v(¥) = 8 and v(9) = 0 for all j # ¢, the regularization (2.5) becomes ||3|

g+ = 7l|Bl]2-
Similarly, we can show the equivalence in the case where G consists of K disjoint complete sub-

graphs.
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A.2 Numerical results

A.2.1 Graph estimation results

To better understand the performance of our proposed GSLDA methods, we also present the
graph estimation results for the methods. In particular, we compare the graph estimation based
on both labeled data (for supervised GSLDA) and unlabeled data (for semi-supervised GSLDA)
with the true graphs, within-class graph G and overall graph G. The accuracy metrics include false
positives (TP) and false positives (FP).

Table A.1: Graph estimation accuracy for all examples in the simulations. The graphs are estimated with
labeled data (L) after centering, or with unlabeled data (U). The former estimation is compared with G, and
the latter is compared with both G and G. The results are averaged over 100 repetitions and the standard
errors are provided in the parentheses.

Graph Type Data TP FP Size True Size
L 51.54 (0.25)  6.86 (0.48) 58.4 (0.55)  G: 100 (0)
Block Sparse U 100 (0) 82.96 (0.66)  182.96 (0.66)  G: 100 (0)
U 176.48 (0.46)  6.48 (0.38)  182.96 (0.66)  G: 600 (0)
L 468.02 (1.31) 69.64 (1.24)  537.66 (1.34) G: 1188 (0)
AR(3) U 1178.04 (0.38) 76. 72 (0.87) 1254.76 (1.01) G: 1188 (0)
U 1235.76 (0.75) 9 (0.61) 1254.76 (1.01) G: 2508 (0)
L 353.14 (2.02) 69. 34 (1.25) 42248 (1.73)  G: 818 (0)
Random Sparse | U 814.52 (0.18) 72.74 (1.04)  887.26 (1.12)  G: 818 (0)
U 866.14 (0.87) 21.12 (0.70)  887.26 (1.12) G: 2426 (0)
L 374.92 (1.37) 32.44 (0.92)  407.36 (1.48) G: 776 (0)
Scale-Free U 709.88 (0.73) 103.5 (1.00)  813.38 (1.18)  G: 776 (0)
U 799.08 (1.05)  14.3 (0.53)  813.38 (1.18) G: 3564 (0)

A.2.2 Additional simulation results

The misclassification rates may not reflect the comprehensive performance of classification
models, especially when the classes are unbalanced. Thus we present the receiver operating charac-
teristic (ROC) curve for the classification models. Besides the balanced class setting as in the main
text, we also consider an unbalanced class setting in which Class-0 accounts for 80% of the whole
dataset. As we can see from Figures A.2 and A.3, our methods still outperforms other methods in

terms of higher sensitivities at each specificity level.
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Figure A.2: ROC Curve under the balanced setting for the four examples. The proportion of Class-0
sample is 50%. The ROC curve is computed based on 100 repetitions.
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Figure A.3: ROC Curve under the unbalanced setting for the four examples. In particular, the proportion
of Class-0 sample is 80%. The ROC curve is computed based on 100 repetitions.
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A.3 Proofs to the theoretical results

A.3.1 Proof of Proposition 1

The random variable X can be represented as X = {Z; + (1 —&)Za, where (i) £ ~ Bin(1,7m) is a
Bernoulli random variable and (ii) Z; and Zsy are from the two population components, respectively.
Moreover, &, Z1, and Zy are mutually independent. We have (Z;) = (Z3) = %, EZ; = pu), and
EZy; = p®. Then E(X) = mpu® 4 mop® and

E(XX") =B{€2Z1Z] + (1 — 6)*ZyZg + (1 — 6)Z1Zg +E(1 —€)ZoZ] }

=mE(Z1Z] ) + mE(ZoZy ).

Thus the overall covariance matrix is (X) = X 4 m1m88 |, where § = (1) — p(?),
Now we verify the inverse matrix of (X), i.e., the overall precision matrix of the mixture

distribution. By setting ¢ = mym/(1 4 w178 X715), we have
(200 ) (B mmdd ) =TI+ mmE 100 — 27100 —mmeE 106188 = 1.
Denote B* = £71§. Then we have (X)™! = X! — ¢g*3*T. ]

A.3.2 Proof of Theorem 1

Before the proof, we introduce a lemma from Cai et al. (2011). The proof is omitted.

Lemma 5. Let &,...,&, be independent random wvariables with mean zero. Suppose that there
exists some t > 0 and B,, such that > p_, E(f,%eﬂgk‘) < B2. Set Cy =t +t~Y. Then uniformly for

x € (0, By,

Pr <Z §p > Ctan> < exp(—z?).

k=1
Denote & = ||Saa — Zaalloo, &2 = [|1S1 — Zahllco, and € = [|S ;e 4S 714 — Z e 4= 1] loo- With

simple calculations, one can show that for all 3 € RP,
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where X; = x; — (x1+- - -+Xp,)/n is the centralized feature vector. Thus the loss function of GSLDA
in (2.4) is equivalent to >, (y; — %;' 3)2/n + A||B|g+ In the rest of our proof, we assume the

sample X has been centralized. Then the GSLDA formulation (2.4) becomes

B = argmin||Y = XB|[3/n + A|[Bllg.r- (A1)
BERP
Under the assumption (A1), we can define
y = argmin||Y — X713/ + MY/lgara, (A.2)

vER®

where G4 denotes the subgraph of G corresponding to A. If we can show that (i) all elements of 4
are non-zero; and (ii) B with B4 = 4 and B ¢ = 0 solves (A.1); then, GSLDA estimation recovers
all significant features accurately.

We first show statement (i). By Section 4.6 of Obozinski et al. (2011), the formulation (A.2) is

equivalent to ¥ =3, 4 1) where

{a":je A} = argmin 1Y = > Xau?[3/n+ 2> 7l [a?]],.
ul@ €Rs:supp(ul)CNUINA, ;€A jeA jeA

Since this is a convex optimization problem, any solution {u(j ) j € A} satisfies the KKT conditions

(Boyd and Vandenberghe, 2004), which are for all j € A, either
ul?) %0 and QXXM)(Y —Xuv)/n = )\Tjuﬁ\]/)(j)/ﬂu(j)”g,

or

u(]) =0 and 2|’X;\r/'(j) (Y - XA’Y)HQ/TL < )‘Tja
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where v = > . u¥). Thus we have ||X} (Y — Xad)|lo/n < A*/2, and we can write 4 as

v = g;&(&; + AT*t4/2), where t 4 € R® satisfies ||t 4]|co < 1. We have

14 = Bllloo = 11(S3h — 22484 — S34(84 — 84) + STAAT 6 4/2] |
< [18allocz + (0 + E)164 — S allos + AT (0 + &) /2
< &([164lce + 1164 — 8allso + AT/2) + ©(]|64 — 84]loo + AT/2)

80251

= 1_¢£1 (HaAHoo"i‘ HSA _5AH00+)\T*/2) +(10(HSA_6AH00+>\T*/2) = L.,

in which the second inequality holds for sufficiently large n because ¢&; < 1 and & < (1 —
&) L2, I & < e and ||64 — 84llee < € then Ly = O(e) + A\m*p/2 > 0, which proves (i). By
Lemma 5, the statement (i) is true with probability at least 1—2s? exp(—ajne?/s?)—2s exp(—agne?),

for some positive a; and ao.

Now we prove statement (ii). The formulation (A.1) is equivalent to 3 = Z?:l v, where

1 p N P ,
W, v®) = argmin - HY_ZXVmH A (VO (A.3)
v():supp(v))CNG), 1<<p T = 2 O

This is also a convex optimization problem and the KKT conditions of formulation (A.3) are for

all j € {1,...,p}, either

v 20 and 2X [, (Y —XB)/n = Arvii /v, (A.4)
or
v =0 and 2|IX},) (Y — XB)ll2/n < Ay, (A-5)

where B8 = v ... 4+ v Let v =0 for all j € AC, and VEL{) = ul), vgg = 0 for all j € A.

Then B4 =4 and B¢ = 0.
For j € A, (A.4) holds owing to the definition of 4. For j € AL, 2|]X]\—/(j)(Y — XB)|l2/n <
2/INON[||X ) (Y = XB)[|oo/n. Denote n = 1[0 = 8|oo- If [|6—8]|oc < € and [|S 404 — X 4o 4lloc < €,
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then
1X e (Y = Xad)[loo/n = 1S ac 4S54 (04 + AT"84/2) — 8 4¢]|oo

<(|I0alloc + 14+ €+ K+ AT"/2)e+ AT /2
<O(€) + A1 /2.

By Lemma 5, the statement (ii) is true with probability at least 1 — 2psexp(—ajne?/s?) —

2p exp(—agne?). By taking € = \/Inp/n, the active set is recovered and ||34 —ﬂLHOO < O(y/Inp/n)
with probability at least 1 — 2s? exp(—aine?/s?) — 2psexp(—aine?/s?) — 2pexp(—agne?) = 1 —

O(p~©1) for some Cy > 0. 0

A.3.3 Proof of Theorem 2

The proof uses the following lemma from Negahban et al. (2010).

Lemma 6. Denote M a subspace of RP and M* its orthogonal complement. For a regularized

estimation problem

0 = arg geuRr; () + AR(0),

where

(i) R is a norm and is decomposable with respect to (M, ML), i.e., R(@+n) = R(8) + R(n) for
all@ € M,n € M*;

(ii) L is convex and differentiable, and satisfies restricted strong convex condition with curvature
K, i.e., 6L(0*,A) = L(0* + A) — L(0*) — VL(0*)T A > k||A||2 for some 0%, for all A
such that R(A 1) < 3R(Am) +4R(0},.)-

Let A\ > 2R*{VL(0*)}, where R* denote the dual norm of R, then any solution 6 to the problem
satisfies
16 — 6%||2 < IN*¢(M) /K], + 4ANR* (031 /L,

where (M) = supye /0y B(u)/[|ull2-

Proof. In the GSLDA formulation, the loss function is L(8o,3) = ||y — Bol — X3||3/n, and the

regularization is R(3) = ||B||g,~. It has been shown in Obozinski et al. (2011) that R is a norm
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and its dual norm is R*(u) = maxi<j<p Tj_lHuN(j)HQ. When we take 7, = /|NU)|, R*(u) <
max; |[uy ) |loo = [|uffoo-
For some ¢ > 0, denote the event x = {||6 —8||oo < €, ]||S..4— 3. 4|||co < €}. Then by Lemma 4,

Pr(x) > 1 — 2pexp(—agne?) — 2psexp(—aine?). Under the event ¥,

VLBl = lI2n7' X (y = X8|
= 112(8 = S8")|loc = 112(8 = 8) = 2(S = £)B[|oc < 2(|8 — 8|0 +2/[(S = ). 4810

< 2/[6 = 8|oo +2[|(S = ). allol 1811 < 2¢ + 2|8 [lre.

We take € = Coy/Inp/n where Cy > (a3 A ag)™'. Then A\ > 2R*(VL(B")). Under the event x
with e < co for some ¢ > 0, for sufficiently large n, we have ATSA > ATZA — [AT(S-X)A| >
o||A||3/2 for A € C(A). Thus 6L(B*, A) > 2ATSA > o||A|3 for all A € C(A).
We take M = {8 € RP: B,c = 0}. Then Bt € M and 'Bj\/li = 0. Moreover,
R(B) mins=)—g > 7|V |2 < w > jeaTilBil

P(M) = sup = sup <
gem IBll2 B =0 |18]]2 Bo=0 |IBall2

< 7*\s.

Therefore, by Lemma 5, we have

18 = B3 < 9N s 7% /02,

with probability at least 1 — 2psexp(—aine?) — 2pexp(—agne?) > 1 — sp~© where C3 = Cy(ay V

CL2)—1>0. ]
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A.3.4 Proof of Theorem 3

We use the same notations as in the proof above. Without loss of generality, we assume

p + p® =0, then pM = §/2, u® = —§/2, and B(T) = 0. According to Proposition 2, we have
(/607 )/Q(ﬁo:ﬂT) -1
N e - M ( —B"p ) L[ Lot BT ( B )
\/BT=8 VBT 3T VBIT=at
Ao (BIY N L (BT 1
VBT VBITEa1
o - B9/ Bo—BT6/2 / ( —B175/2 )
<max{ | ———— | , ¢ | ———— o
{ ( VAT=8 ) ( VBTE8 ) } VAIEs!
= max{RM, R?}.

We will use the following property of standard Gaussian distribution function (Cai and Liu,
2011):

[®(x0 + 1) /B(20) — 1] < ealrl(fao] + 1) explezleor]). (A.6)

For k € {1,2}, let
r0) = |(Bo + BTu®)/\/BTEB — BT //BITESI].

Since B176//BTEBT = A/2 it suffices to verify the orders of r*) and A.
According to Theorem 2, HB — B2 < 3\7*\/s /o with probability going to 1. Moreover, by
the definition of 3T, we have BT = 4/(4 + A)B*, and BTE3" = 16A/(4 + A)?. Since

18728 -8 < |(B-8")2(8-8")+2/(3- 8" =8
< Amax(D)1B — B3 + 2 max(2)[18 — 8712118712
< BAmax(2)]18 = BT(12]18||2 < Mmax(Z)AT*V5 [|87]2/0,
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for sufficiently large n, we have

(B'2p)' — (B1T=p1)!/
(BT=B)1/2(BITEAH)1/2
B’ - piTspt
(BTEB)Y2. (BITEANL2[(BTER)Y2 + (BITEA1)1/2]
BTER - pITEp|  (4+A)
3/A(BITEB1)3/2 | = 4N3/2

(BT=B)"1/2 — (BT=ph) /2| =

IN

)\max(E)AT*\/gHﬂT”Z/O-’

in which the first inequality holds because BTy > giTsat /2 for sufficiently large n. Moreover,

under x we have,

(Bo+B"6/2) - (B176/2)| <|(B-B")6l/2+ | -x"B]
<118 = B'l12l18]l2/2 + [x" 87| + %" (B — BY)]
<307 V5 16112/(20) + 1187 ve.

Therefore,

rD < |(Bo +BT8/2){(B"=8)~1/2 — (8T=phH~1/2}

+1(Bo+B"6/2) — B1T8/2|/(BTmB")!/2
PECERAYs 4+ A

= oA Tai AT Vs [[8lla/o + (18T}

/\7'*)‘rr1ax(2)\/g | ‘/BT‘ |2/‘7 +
Using the property (A.6), then we have

(1) _ @(—A1/2/2 + T(l))

i d(—A1/2/2)

-1l < C1|7“(1)‘(A1/2/2 +1) eXp(CQT(l)A1/2/2>

= O{rMAY2 exp(corM A2 /2)}.

Since A2AT*Anax(Z)V5 [|18||2/0 — 0, ANT*/5||8]|2/c — 0, and An?~1|BT]|; — 0, we have

rMAY/2 -5 0 and thus RV & 0. Similarly, we can show R LN 0, which proves the theorem.
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APPENDIX B
SUPPLEMENTARY MATERIALS FOR THE MPENPC METHOD

B.1 Soft Label Demonstration
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Figure B.1: Accuracy of the estimated hard and soft labels for the toy example with varying sample sizes.
The y-axis denotes the Manhattan distance between the estimated labels and true labels. Each boxplot is
produced based on 100 repetitions.

B.2 Simulation Results

B.2.1 Results of the ER Model Scenario

B.2.2 Additional Settings

In addition to the simulations in the main text, we also perform simulation studies for i) a
scenario with non-overlapping skeletons and ii) a scenario with common group means. The goal
of these simulation settings is to study the robustness of the MPenPC. We present the estimation

results of all methods as follows.

Non-Overlapping DAGs

Figure B.4 shows the graph estimation accuracy of all methods in Stage I with varying A, and

Figure B.5 displays the skeleton estimation accuracy with different significance levels. Table B.2
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(a) ER - High Overlapping (b) ER - Low Overlapping
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Figure B.2: Neighborhood selection performance of different methods at Stage I in the ER-model example:
K =4, p = 500, g = 1/500, % = 0.05, my = 0.7 for (a) and 79 = 0.3 for (b). The z-axes and y-axes
represent FPR and TPR respectively. The graph sparsity at the neighborhood selection stage varies for
different choices of the tuning parameter A. The tuning parameter v for MPenPC methods is preselected by
EBIC.

summarizes the performance of all methods with EBIC-selected tuning parameters by stage. We

can see from the results that, even when the DAGs are not overlapping, our methods still have

reasonable performance. The Soft MPenPC is only slightly worse than the Soft PenPC in this case.

B.2.3 Common Group Mean

In this scenario, we use the BA model with K =4, p = 500, e = 1, mp = 0.7, and 6> = 0. The
soft labels are estimated with QDA based on the first 20 principal components. The simulation
results are presented in Figures B.6 and B.7. We can see from the results that the methods based on
soft labels (Soft MPenPC, Soft PenPC) still outperform those based on hard labels (Hard MPenPC,
Hard PenPC). Based on the simulation results, we can see that as long as the classification method

is chosen appropriately, it is typically beneficial to use the soft labels.
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Figure B.3: Skeleton estimation performance of different methods at Stage II in the ER-model example.
The high overlapping scenarios have 7y = 0.7, and the low overlapping scenarios have g = 0.3. The z-axes
represent the significance level « of the PC-stable algorithm. The y-axes represent TPR, (the left panel) and
FPR (the right panel) respectively.

B.3 Assumptions and Proofs of the Theoretical Results

B.3.1 Regularity Conditions

Given a random sample X from the heterogeneous population, denote 7% = Pr(G = k|X),

(k)
1

5}1;) = w(k)Xle and Cﬁ) = w(k)Xjnl(k), where nl(k) =X+ XTZQQ?Z/QZ(I’;). Denote Pills the partial
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Table B.1: Performance of different methods at both stages for the ER-model example (K = 4, p = 500,
g = 1/500, e = 1, 62 = 0.05, 79 = 0.7 for high overlapping and 7y = 0.3 for low overlapping). The numbers
outside and inside parentheses are averages and standard errors respectively based on 100 repetitions.

Stage 1. Neighborhood Selection

|

High Overlapping

TPR

FPR

PenPC (No Grouping)

Hard PenPC
Soft PenPC
Hard MPenPC
Soft MPenPC

0.6232(0.0021)
0.8076(0.0024)
0.8176(0.0021)
0.8368(0.0020)
0.8450(0.0019)

0.0019(0.0000)
0.0352(0.0002)
0.0384(0.0001)
0.0642(0.0002)
0.0666(0.0002)

Low Overlapping

TPR

FPR

PenPC (No Grouping)

Hard PenPC
Soft PenPC
Hard MPenPC
Soft MPenPC

0.4234(0.0018
0.8007(0.0030
0.8129(0.0022
(
(

~— — — ~—

0.7921(0.0025
0.8033(0.0019)

0.0024(0.0000)
0.0355(0.0000)
0.0380(0.0000)
0.0641(0.0000)
0.0656(0.0000)

Stage II. Skeleton Estimation

High Overlapping TPR FPR
PenPC (No Grouping) 0.464(0.0027)  0.0058(0)
Hard PenPC 0.6595(0.0046)  0.0075(0)
Soft PenPC 0.6994(0.0045)  0.007(0)
Hard MPenPC 0.6668(0.0045)  0.007(0)
Soft MPenPC 0.7034(0.0045)  0.0065(0)
Low Overlapping TPR FPR
PenPC (No Grouping) 0.3076(0.0026) 0.0077(0)
Hard PenPC 0.6365(0.0034)  0.0079(0)
Soft PenPC 0.6952(0.0023)  0.007(0)
Hard MPenPC 0.6329(0.0035)  0.0074(0)
Soft MPenPC 0.6923(0.0023)  0.0065(0)

Stage II. CPDAG Estimation

High Overlapping

SHD

PenPC (No Grouping) 1141.27(4.97)
Hard PenPC 1297.33(5.21)
Soft PenPC 1232.73(4.62)

Hard MPenPC
Soft MPenPC

1236.6(7.22)
1164.74(4.19)

Low Overlapping

SHD

PenPC (No Grouping) 1164.74(4.19)
Hard PenPC 1344.86(5.27)
Soft PenPC 1226.09(5.03)
Hard MPenPC 1291.52(5.19)
Soft MPenPC 1173.37(4.79)

87

correlation between the X; and X; given {X; : i € S} in class k. For each class k, let Agl;

)

denote



Table B.2: Performance of different methods in the non-overlapping example (BA model, K = 4, p = 500,
e =1, 62 = 0.05, mp = 0). The numbers outside and inside parentheses are averages and standard errors
respectively based on 100 repetitions.

Stage 1. Neighborhood Selection
Non-Overlapping TPR FPR
PenPC (No Grouping) 0.4002(0.0018) 0.0027(0.0000)
Hard PenPC 0.7946(0.0023)  0.0352(0.0001)
Soft PenPC 0.8247(0.0018)  0.0378(0.0001)
( )
( )

Hard MPenPC 0.771(0.0021)  0.0641(0.0002
Soft MPenPC 0.801(0.0015)  0.0653(0.0003
Stage II. Skeleton Estimation

Non-Overlapping TPR FPR
PenPC (No Grouping) 0.4072(0.0018) 0.0026(0.0000
Hard PenPC 0.8354(0.0026)  0.0054(0.0000
Soft PenPC )

)

Hard MPenPC
Soft MPenPC

0.8288(0.0026
0.8523(0.002)

0.0052(0.0000

(

(
0.8588(0.0019
(

( 0.0051(0.0000

( )
( )
0.0053(0.0000)
( )
( )

Table B.3: Performance of different methods in the common group mean example (BA model, K = 4,
p =500, e =1, mo = 0.7, 62 = 0). The numbers outside and inside parentheses are averages and standard
errors respectively based on 100 repetitions.

Stage 1. Neighborhood Selection
Non-Overlapping TPR FPR

PenPC (No Grouping) 0.6404(0.0039) 0.0019(1e-04)
Hard PenPC 0.8167(0.0035)  0.0352(1e-04)
Soft PenPC 0.8288(0.0036)  0.0387(3¢-04)
Hard MPenPC 0.8421(0.0037) 0.0641(3e-04)
Soft MPenPC 0.8552(0.0028)  0.0671(5¢-04)

Stage II. Skeleton Estimation
Non-Overlapping TPR FPR

PenPC (No Grouping) 0.6317(0.0073) 0.0017(0)
Hard PenPC 0.8442(0.0047)  0.0055(0)
Soft PenPC 0.8562(0.0048)  0.0054(0)
Hard MPenPC 0.8486(0.0054)  0.0052(0)
Soft MPenPC 0.8606(0.0056)  0.0052(0)

the Markov blanket of j and [, after excluding their common children and descendants, and Cj(f)
denote the set of nodes that can be common children or descendants.

Moreover, for a matrix A, let A\pin(A) denote its minimum eigenvalue. Denote [|A]|, the
spectral norm, ||A||; the max column absolute summation, ||A||_, the max row absolute summation,
|A|s the max absolute value of its elements.

The following assumptions will be used in the theoretical analysis of our MPenPC method:
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Graph Estimation in Non—Overlapping Scenario
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Figure B.4: Neighborhood selection performance of different methods at Stage I in the non-overlapping
example (BA model, K = 4, p = 500, e = 1, 6> = 0.05, mp = 0). The z-axis and y-axis represent FPR and
TPR respectively. The graph sparsity at the neighborhood selection stage varies with the tuning parameter
A. The other tuning parameter v for MPenPC methods is preselected by EBIC.

(C1) Yk, n®) = O(n);
(C2) p= O(exp(n?)), q := max; |A;] = O(n®), where a € [0,1) and b € [0, (1 — a)/2);

(C3) 6> O(n~4), where § = & min ‘Qg.f? /Qf}‘ and di € (0,(1— a —b)/2);

k)
ke, 102 0

(C4) For any A with |A4| < g, /\mm(Ziﬁ) )>C1>0,Vk e {l,---,K}. Moreover, max;y ZS-Z-) < Cy

for some Cy > 0;
(C5) A =0(78), A>> n~ 1797 Xexp(—718/\) = o(q~/268), and 7 exp(—76/(2)\)) < C1/2;

(C6) For any j € {1,---,p}, if ;; is partially zero for some [, then

-1
(k) (k)
<2A“%ﬂ“> EAfM

I+ (vl = Do)}

‘ <exp {7 [|lvj
1
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Figure B.5: Skeleton estimation performance of different methods at Stage II in the non-overlapping
example (BA model, K = 4, p = 500, e = 1, §2 = 0.05, myp = 0). The z-axes represent the significance
level « of the PC-stable algorithm. The y-axes represent TPR, (the left panel) and FPR (the right panel)
respectively.

forall k€ {1,--- K} s.t. 41 = 0.

(C7) For each k, wgk)’s are independent for ¢ = 1,--- ,n and Ew,}k) = ng) = Pr(G = k|X;) with
bounded Var(wz(i)). In addition, foralli € {1,--- ,n} and 5,1 € {1,--- ,p}, E(fl(];)l) = wgk)Zgﬁ),
k k k k k
E(¢") = 0, BIe®) exp(t|e™) )] < €5 < o0, and B¢ exp(tcY)))] < 5 < o0,

(C8) Vj,l,k,S € Hy;) such that pﬁ?s # 0, we have
k
c< |p§.’l)‘s| <M <1,

where ¢ = O(n=%) for some dp € (0, (1 —a V b)/2). Here Hg{fl) = {AE.];)\D](.?) : D](.f) C C](.f)}.

Condition (C1) requires each class to have a non-vanishing weight, and one of its direct implications
is K = O(1). (C2)-(C4) are common conditions for selection consistency of penalized estimation. In
particular, (C2) specifies the sparsity level of the conditional independence graph G*). (C3) gives
a lower bound on the minimal size of nonzero regression coefficients. (C4) ensures the correlations
among the neighbor nodes are not too strong. (C5) specifies the orders of tuning parameters, A

and 7. (C6) is an irrepresentability condition for the GEL penalty and it guarantees the bi-level
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Figure B.6: Neighborhood selection performance of different methods at Stage I in the common group
mean example (BA model, K = 4, p = 500, e = 1, mp = 0.7, §2 = 0). The z-axis and y-axis represent
FPR and TPR respectively. The graph sparsity at the neighborhood selection stage varies with the tuning
parameter A. The other tuning parameter v for MPenPC methods is preselected by EBIC.

selection consistency. Through (C7) we make certain assumptions on the accuracy of the soft
labels. Condition (C8) is commonly used in proving the consistency of the PC algorithm and other

skeleton estimation methods (Nandy et al., 2015).

B.3.2 Theorem 4

Before we prove the theorem, we introduce the following lemma.

Lemma 2. Define the events
x =1{X: \2“‘0 - E(k)loo < Csy/logp/n,k=1,--- | K},
= {Irﬁx|Xl(k)Tej]/n(k) < Cy/n7llogp, k=1,--- |K}.
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Figure B.7: Skeleton estimation performance of different methods at Stage II in the common group mean
example (BA model, K = 4, p = 500, ¢ = 1, mg = 0.7, 6> = 0). The x-axes represent the significance
level « of the PC-stable algorithm. The y-axes represent TPR, (the left panel) and FPR (the right panel)
respectively.

Then
(a) Under (C1), (C2), (C4), and (C5), P(x) =1—0(p~!) and P(§) =1—-0(p~1);

(b) Under x, we have
BT - (k)\—
1XG X ]2 < 2/(nC),

J
k)T < (k) \ —
XY XE) oo = O(¢"/2/n®),
k)T < (k E)T <7 (k) —
X XPEXPTXE) oo = O(¢').
This is the Lemma 7 in Ha et al. (2016) and thus we skip the proof. We will use this lemma in

proving the selection consistency.

Proof. We prove the two parts of Theorem 1 respectively. Without loss of generality, we assume

the dataset has been centered by group.
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(i) According to the KKT conditions, «; with

](Z) = 0,Vk is a strict local minimizer of (4) if

k)T k KT (k k
XX - xOTy ) =npf (7)), (B.1)
(k)T /~y (F) (k)T (k:
IXPT X = X BTy <, (B.2)
kYT k)N — k
IXETXE) e < 1/, (B.3)

(k) _

for all k, where & ; (k)2

= maxjea, —0* Py, () /07"

(k)
Define N; = {"/j € RPK H’Yj714j - 7;541

< Cn <629 ) - O,Vk:}. We will show

that under x N & there exists a 4; € N that satisfies the KKT conditions above.

Define a function ¢* (%(71«:) ) = *yj(l?‘ - 'y]*(:j - ug.k), where ugk) = (XX?T ) 1{X(k 5 )

k
”Pl('Yg(‘,,ij)}' For any v; € N,

o]l < loc e x5 - nr)]
S Lonb Sl (S R LGRS,

—O(\/a/n(k)){czm(k)\/logp/n +niexp(—=A"176)}
<O(V/glogp/n) + O(y/arexp(~A~17)).
Thus, by (C1)-(C2) and (C5), \/qlogp/n = o(n=%) and ,/gAexp(—A"178) = o(n~%). Thus

Hu(k) Hoo = o(n~%) for 4; € Nj. By the continuity of ¢(*) and Miranda’s Existence Theorem,

there exists a4; € N; such that ¢(*) ('ij(ljj) = 0,Vk. Therefore, the condition (B.1) is satisfied.

Given the 4; defined as above, for any k and j,

BT (x ) _ x84 8
x® (xP —xP5H)

j .

)|

_|[x®T (k) (F)T 5 (k) (4 (k) *(k)
- XZJ' € _XZJ' XAJ’ < 7,Aj _ﬂyj’AJ')Hoo
_ ||x®T (k) (BT (k) (5 )T )\ ™ (5 (k) (k) 5, (k)
= |[x$T e - xPrXE (XAj XAj> <XAjej —nP'(4 ’J)>Hoo
(R)T (k) (KT (k) (5 ()T 5 (k)) ! (k) (k)
=[x+ ’X SRS IR W] LCvh
<0(Cyn™\/log p/n) + {C’4n )\/log p/n + nXexp(—A"'76)}.
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By (C1)-(C2) and (C5) HX(k)T (X(k) x5 )H = o(\), for all k and j. That is, 4;

o)

satisfies (B.2).

Because ¥, € Nj,

2
Py .
K ):max g A(kg;yj)
l€A Oy

_ _ 1 : 2.
_Texp{ A 7'1121141]1_ H’yj,lHl}
<Texp {—)\_17'(5/2} < C1/2.

By combining (C5) and Lemma 2, 4; satisfies (B.3), which completes the proof.

(ii) The proof is quite similar to that of part (i), except that the KKT conditions become

k k k k
X7 - XE) = nB ("), (B.4)
J A
H (,(>k) x) X(‘k")T%('k))H < na, (B.5)
BT~ (k) \ k
|| <XE4()k> X(A()k)) <1/(ns), (B.6)
2

for all k, where /€§~k) = maxleAg_k) —32PA,T(7j)/8’Y§f)2
(k) *(k)
’YJ}AyC) - 7j7A§k) .

fices to show that there exists a 4; € ./\fj* that satisfies the KKT Condltlons above. We will

Define N = {’yj € RPK .

<Cn~%h <§/2, '7 )(k) =0 Vk:}. Then it suf-

show that these conditions are always satisfied under x N €.

. k .
JvAE‘ ey ]7Aj J

: k k «(k k k BT~ (k) )
Define a function ¢*) (»7( ) ) = 7; ,i(’” — ( ()k) —ul® where ug. ) — (X;gm qu(?k)>
J J
X {X( <),3;e(k) nP'(y' k )(k>)}. Similar to part (i), we can show that Hu(k)Hoo = o(n~%). By
the continuity of ¢(*) and Miranda’s Existence Theorem, ¢*) (7;2(k>) = 0,Vk, has a root

within N, which is denoted as 4; and satisfies (B.4).

Given the <, defined as above, under x N &, we have that for any [ € Zj ,

~1
(F)T ( (k) (k) 4 (k) _ BT (k) (k) (k)T (k) o (k)
X (Xj B XA(.’“)’Y]' A(,k)) = m (") +n 2A(k)l <EA(?“> A(.k)> Pl(’yj A(,’“) +
J g J 7 g
—1
nnl(k)TXEf()k) (Xf()kT) Xff()k)> P (¥ (j(k)) where nl(k) is the regression error of Xl(k) on Xff()k)
j J J D2y J
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(thus n; *) and X™

-1
e are independent) and H(k)( ) = {I - X(k)k> <X(k(),§X(k) > ngg} %

computes the difference between v and its projection on X(:R,C). By (C6), we have

-1
s (®T <2<k) > PE"

(k) (k) 4(k) (k)
Aj N Aj ,Aj ],Aj
k) ) 7 (k)
<n (z ) > HP(')/ )
(k) (k) (k) ()
5 A A JA; o

-1
(k)T 77(k) o (k) (k)T <7 (k) (k)T <7 (k) + (k) _
n Hj (ej ) + nm, XA§k) (XA;k) XAgk)> P,('Vj’A;k)) =o(A).
Therefore )T (X(k) X(k 5 (k) ) H ), for all k and j. Thus, (B.5) is satisfied
A v A(k) 5,40 J- : :

Lastly, (B.6) is always satisfied for any 4; € N, which completes the proof.

B.3.3 Theorem 1’ (Soft MPEN)

We can prove the same consistency results as in Theorem 1 for the Soft MPenPC.
Theorem 1°. (i) Under (C1) - (C5) and (C7), with a probability of 1 — O(1/p), for all j €
{1,---,p} there is a local minimizer 4; to problem (5) such that j — 1 € G¥) if [ € Ag.k), and
j—1¢GWifle Ay

(ii) Under (C1)-(C7), with a probability of 1 — O(1/p), for all j € {1,---,p} there is a local
minimizer 4; to problem (5) such that j — 1 € Gk if | e Agk), and j — [ ¢ Gk ifl e flg-k).

Before the proof, we introduce a lemma from Cai et al. (2011).
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Lemma 3. Let &, ,&, be independent random variables with mean zero. Suppose that there

exists some t > 0 and B,, such that
E(ghe") < B

Then uniformly for z € (0, B,],

Pr (Z = CtBn:c> < exp(—a?),

k=1

where Cp =t +t~1.

This is the Lemma 1 of Cai et al. (2011) and we omit its proof here.

Proof. The proof of Theorem 1’ is similar to that of Theorem 1. It suffices to show Lemma 2 for

weighted estimation of X(*) and Xg.k)Tel. Particularly, x and £ are now defined as
x = {X: (20 - =W < C3\/logp/n, Yk},

&= {m%x ]Xl(k)TW(k)nj(k)]/n(k) < Cy/n~tlogp, Yk},
-]7

where 3¢*) = (XTW®X) /17w ®) and n®*) = 17wk,
Since f]gkl) =3, 5” l/n and Xl(k)TW(k)n](-k) =3, (k) by Lemma 3, we have

,5,0°
n
Pr

k k:
(65— mT))
i=1

[

Moreover, by the Strong Law of Large Number, n=1 Y"1 | w 3 pt Yo Z . By taking A =

> +/nCsCi A ) < exp(—A?),

and

z]l

> /nCsCrA ) < exp(—A?).

{C3/(C:C5)(logp)/?} and {Cy/(C;Cs)(logp)'/?}, we have Pr(x) = 1 — O(p~ ') and Pr(£) = 1 —

O(p~!), which is the counterpart of Lemma 2 for Soft MPenPC. O
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B.3.4 Theorem 5

We use a similar technique as in Ha et al. (2016) to show Theorem 4.

Proof. Given the CIG estimates from Stage I, the PC algorithm starts with a sparse initial graph
G for each class k. Based on our assumption, G*) contains all edges in the skeleton D**) plus at
most g(K — 1) false edges for each node. Denote the union graph of all CIGs as G, then the edges
of Q (%) form a subset of edges of G.

For each edge i — j in G, define K to be any set in II; with |K| < n*) —3. Let v; = |4, for
all j. By Lemma 3 of Kalisch and Bithlmann (2007),

sup Pr(|z Kk~ J('f;\)/d >5) < 0™ — v; — 1) exp{=Cr(n™ — v; — v;)7*},
J77

k k k ~(k
where zj(.J')K = +log{(1 + p;,l)uc)/(l - p]ll’C )} and z](”),c = 1 log{(1 + p;l)“c)/(l §l|lc)} for some
v € (0,2) and C7 > 0.

Denote E! K = = {Falsely reject z(”,C 0} and EI I = = {Falsely accept z;;x = 0}. Choose

a = 2{1 — ®(Vn®¢/2)}, then

SIZJE Pr( JWC) = Stlp Pr <|Z]lIC ]l|IC| > \/n(k)/(n(k) — K| - 3)6/2)
Js Js

SO(n(k) —v;— 1) exp{—C;(n(k) —vj — 1/1)02},

and

sup Pr(E!1 ) = sup Pr <\5§f§);<| < \/n<k>/(n<k> — K| - 3)c/2>
7,LK 7,LK
<O(n® — vj — ) exp{—C';(n(k) —vj — )},

for some Cy, C7 > 0.
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Therefore,

Pr(An error occurs in the PC step of MPenPC)

<D D 02 exp{—~Cy(n™ — 29)c?}

<O(n)pgexp{2q — Cs(n™ — 2¢)c*} = O(exp(—Cn'~2%)),

for some C' and dy > 0. The last equation holds because of (C1) and (C2). O

B.4 Datasets for the Real Data Analysis

B.4.1 Cancer-Relevant Gene Sets

We use 17 cancer-relevant gene sets in the Molecular Signatures Database (MSigDB) C6
oncogenic signatures gene sets (http://software.broadinstitute.org/gsea/msigdb) in Section
5. These gene sets are: RB_.DN.V1, RB_P107_DN.V1, RB_P130_.DN.V1, P53_DN.V1, P53_DN.V2,
PTEN_DN.V1, PTEN_DN.V2, JNK_DN.V1, MYC_UP.V1, AKT_UP.V1,
AKT_UP_.MTOR_DN.V1, EGFR_UP.V1, ERB2_UP.V1, CYCLIN_D1_KE_V1, CY-
CLIN_D1.UP.V1l, BRCA1.DN.V1l, and KRAS.BREAST_UP.V1. Particularly, each of them
is created by combining two corresponding gene sets (UP/DN). For instance, the RB_LDN.V1 gene
set we use is the union of two gene sets of MSigDB: RB_.DN.V1_UP and RB_DN.V1_DN,

B.4.2 PathwayCommons Dataset for Benchmark Graph

We use the PathwayCommons datasets (http://www.pathwaycommons.org/archives/PC2/

v9/) that are annotated by “interact with each other” and “are in complex with each other”.
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Figure B.8: The similarity, measured by lift(G1,G2) = (p*> — p)/2 - |G1 N G2|/(|G1| - |G2|), between the
LumA /LumB skeleton estimates and that between the Basal/Lum skeleton estimates. Both the z-axes repre-
sent lift values of the LumA /LumB skeleton comparison. The y-axes represent lift values of the Basal/LumA
(left panel) and the Basal/LumB (right panel) skeleton comparisons. The similarities are computed based
on skeleton estimation for each gene set by all methods. Different methods are in different colors, and the
numbers annotate the 17 cancer-relevant gene sets.
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APPENDIX C
SUPPLEMENTARY MATERIALS FOR DEPENDENT GRAPHICAL MODELS

C.1 Least Square Approximation

C.1.1 Dependent Poisson Model

For the dependent Poisson-logNormal model, the conditional likelihood of the j-th node is
L(8) = [ (n) el expl-S,(vi )] dv. (@)

where
1 n
Si(v;8) = %VTQV —y (XB+v)+ Z exp(XZﬂ + v;).
i=1
With Taylor’s expansion about (3,v) = (b, 0), where b is a reasonable estimation of 3, we have

1 1 ¢
Si(v;B) = %VTQV + 3 Z eij(ei —x, B —v)?

=1

_ %VT(C—ln + AWV — (e —XB) Av + %(e _X3)TAle — X3)

1 _ _ 1
=5llv=(e '+ A) T A(e — XB)|[Z1g4a + Slle— XBIA_A-101a)-1a;

where A = diag(eX1 P, ... eP) and e = ((y; — eX1 ) /eXI P +x{b, ..., (y1 — eXnP) /exnP L x )T,

Thus we have,

—n/2| — 1 _ _
Lj(B) ~ /Rn(%) 2l exp [—QHV—(C 'Q+A) 1A(9—X5)H3—19+A] dv
1
X exp (—2“9 - XIBH2A—A(019+A)1A) (C.2)

- - _ 1
=12 + A2 exp (—2||e—XB|]i_A(Cm+A)1A>,

and we can perform neighborhood selection by solving (4.2.2).
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C.1.2 Dependent Hurdle Model

For the dependent Hurdle-logNormal model, the conditional likelihood of the j-th node is
L(8) = [ (m) el expl-S(vi )] dv. (©3)

where

(Vi) = ooy + 3 log(1 + €T B4) 3V Cy 4 (g — 1+ Cr) ] B+ i) — ¥ 5]
=1 yi>0
Let z; = I(y; > 0), 2; = eco*'clij/(l + eCOJrClxin), gi = e P for i = 1,--- ,n. With Taylor’s

expansion about (3,v) = (b, 0), we have the following approximation up to a constant:

2 n
T 1 5 5\ (,(0) T 9 1 Lo (1) T 2
Si(v;B) —v Qv+ — El zZi(1—Z)(e; ' —x; B—v)° + B E gi(e;” —x; B—v;)

y; >0

1 1 1
=5V v+ olle® —XB —viA + gllel) - XB - vI[3
C

= VIR A A [ - XB)T A+ (e - XB)TAlv + e — XBlIA

1
+ 5lle® - X8I
1 _ _
=5llv=(c'2+ A+ M)A -XB) + A = XB)|Z10,a1a

1 1
— S 1AE0 —X8) + Al ~XB)IE 1 ara): + 5 lle® — X8I

1
+ 5lle® — XA,

where A = diag(C?21(1 — %1),...,C%2,(1 — 2,)), A = diag(iil(ys > 0),...,9.0(yn >
0), €@ = (x{b — (4 — 21)/[C15H1(1 — 51)],...,x;b — (0 — 20)/[C122(1 — %,)]), and
e = x/b - (1 — v + D/G,...,x b — (Gn — yn + 1)/Gn). Thus we have
Li(B) o exp (—%\!(AM—K—KU*(Ae( )+ Ael) —Ke® —KTe™) ~ X 4 1 or )
where A = A—A(cIQ4+A+A)TA A =A-A(cTQ+A+A) A K = A(c1Q4+A+A) A
Definee = (A+A-K-K") 1(Ae® +AeM —Ke® —KTel)), then we can perform neighborhood

selection by solving (4.11).
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