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ABSTRACT
Colorectal cancer is one of the most common cancers and is a leading cause of

death worldwide. It starts in the colon or the rectum, and they are often grouped
together because they have many features in common. It has been noticed that
colorectal cancer attacks young-onset patients who are less than 50 years of age in
increasing rates lately. Rapid developments in omics technologies have led them to be
highly regarded in the field of biomedical research for the early detection of cancer.
Omics data revealed how different molecules and clinical features work together in the
disease progression. However, Omics data sources are variants in nature and require
careful preprocessing to be integrated. A convolutional neural network is a class of
deep neural networks, commonly applied to analyze visual imagery. In this thesis,
we propose a model that converts one-dimensional vectors of omics into RGB images
to be integrated into the hidden layers of the convolutional neural network. The
prediction model will allow all different omics to contribute to the decision making
based on extracting the hidden interactions among these omics. These subsets of
interacted omics can serve as potential biomarkers for young-onset colorectal cancer.

Keywords: Colorectal Cancer, Deep Learning, Omics, Convolutional Neural Net-

work.
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CHAPTER 1

Introduction

The hot point in the medical research sector is cancer with a high economic and social

burden. Some remarkable achievements have been made; the precise mechanisms of

tumor initiation and growth, however, remain unclear. Cancer is a complex disease

of the entire body that includes many defects in the DNA, RNA, protein, metabolite

and medical imaging levels. Biological omics, including genomics, transcriptomics,

proteomics, metabolomics and radiomics, attempt to systematically explain carcino-

genesis at various biological levels, driving the shift of the paradigm of cancer research

from a single parameter model to a systemic multi-parameter model (M. Lu & Zhan,

2018). How we view the cancer genome has been reshaped by the incredible scien-

tific breakthroughs of the last decade; thus, our approach to the translation of this

information must also be.

Cancer genomics refers to the analysis of tumor genomes using different pro-

filing techniques, including (but not limited to) DNA methylation, copy number,

transcriptome and whole-genome sequencing, technologies that can be described as

omics collectively (Vucic et al., 2012). How we view the cancer genome has been

reshaped by the incredible scientific breakthroughs of the last decade; thus, our ap-

proach to the translation of this information must also be. For patients, each type of

omics data reflects a single view and it is difficult to use only a single omic to obtain

precise prediction. Many experiments have sequenced several forms of omics from

the same patient in order to obtain a holistic view of patients in genomics. Using

the Cancer Genome Atlas (TCGA), which offers more than ten thousand samples

of 33 cancer types, systematic studies have been carried out (Tomczak et al., 2015).
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1. INTRODUCTION

The useful data makes an integrated analysis for systematic cancer prognosis analysis

based on multiple omics data (Chai et al., 2019). We consider the problem of classi-

fying cancer patients in this thesis; framed as a image-based supervised classification.

Our research aims to work on integrating images from multiomics data to classify

cancer patients.

We present a novel supervised model that consists of three convolutional neural

networks to handle multiple inputs (omics). The output of those three convolutional

neural networks will be discriminant features (from each input/omic) where they will

be flattened then fed into the last CNN to predict the young-onset colorectal cancer

patients.

In this chapter, we first discuss cancer and one of its types, colorectal cancer. We

then describe mutliomics, and their use in research, and biomarkers. In later sections

of this chapter, we will describe the problem at hand, followed by thesis objective &

organization.

1.1 Cancer

Cancer is a global epidemic. It is the first or second leading cause of death before

the age of 70 in ninety-one countries as of 2015, and is predicted to be the "leading

cause of death in the 21st century in all countries of the world" (Bray et al., 2018).

Over the past half century, epidemiology has not only helped researchers to ferret

out many of the non-inherited environmental causes of cancer, but also to estimate

how many annual cancer deaths can be attributed to each person. Although the

research can not be used to predict what will happen to any single individual, it

nevertheless offers widely useful data for people seeking to reduce their exposure to

known cancer-causing agents or carcinogens. It seems that cancer develops from the

effects of two distinct forms of carcinogens agents that damage genes involved in the

regulation of cell proliferation and migration are part of one of these groups. Cancer

occurs when a single cell, usually over several years, accumulates a number of these

mutations and eventually escapes from most proliferation restraints. The mutations

2



1. INTRODUCTION

cause additional alterations to be produced by the cell and its descendants and to

accumulate in increasingly large numbers, forming a tumor composed entirely of these

abnormal cells. Another group contains agents that do not damage genes, but instead

improve the growth of tumor cells or their precursors selectively. The biggest risk of

malignancies is that they can metastasize, causing some cells to spread and thereby

infect other areas of the body (Trichopoulos et al., 1996). Among the differences

between normal cells and cancerous cells in the human body are:

• Cancerous cells are basically many cells that continue to grow and divide.

• Cancerous cells differ from normal cells in size and shapes.

• Cancerous cells’ nuclei are larger and darker than normal cells’ nuclei.

• Cancerous cells have abnormal number of chromosomes that are arranged in a

disorganized fashion.

• Cancerous cells are shaped like a cluster of cells with no boundary.

1.1.1 Colorectal Cancer

Colorectal cancer (CRC) is one of the world’s most common cancers, with between

one and two million new cases diagnosed annually, making CRC the third most com-

mon cancer and the fourth most common cause of cancer-related death, trailing only

lung, liver and stomach cancers with 700,000 deaths each year. "By gender, CRC

is the second most common cancer in women (9.2%) and the third in men (10%)"

(Stewart & Wild, 2014). From 1990 to 2012, the incidence of CRC increased by over

200,000 new cases per year with 55% of them detected in western countries. But this

pattern is shifting due to some of those countries’ rapid growth over the past few years

(Brody, 2015). Figure 1 shows the four areas of a human colon (Ascending, Traverse,

Descending and Sigmoid) and the human rectum with a cross-sectional image of a

colon caner taken during colonoscopy.

3



1. INTRODUCTION

Figure 1: Human colon and rectum.

Colonoscopy is an exam used to diagnose changes or irregularities in the large intestine

(colon) and rectum, during which a long and flexible tube (colonoscope) is inserted

into the rectum. A small video camera at the tip of the tube helps the doctor to see the

inside of the entire colon. Polyps or other forms of irregular tissue may be removed (if

possible) during a colonoscopy via the lens. Also, during the same procedure, tissue

samples (biopsies) may be taken as well (?).

1.2 Multiomics

Multiomics is a modern approach during which the data sets of various omic groups

are combined. Genome, proteome, transcriptome, epigenome and microbiome are

the various omic strategies employed during multiomics. The addition of "omics" to

a molecular term implies a detailed evaluation of a group of molecules. The first

discipline of omics to emerge, genomics, concentrated on the study of whole genomes

as opposed to "genetics" that challenged human variants or single genes. A very

useful mechanism for mapping and analyzing particular genetic variants that lead to

both mendelian and complex diseases was provided by genomic studies. The omics

field was primarily driven by technological advances that made biological molecules

possible for cost-effective, high-throughput analysis (Hasin et al., 2017). The number

4



1. INTRODUCTION

of citations of articles containing the term "multiomics", found on Pubmed (a search

engine that accesses primarily MEDLINE (a bibliographic database of life sciences

and biomedical information) references and abstracts on life sciences and biomedical

topics), has gone up by almost 400% from 2010 until the year 2018.

Each type of omics data, on its own, usually provides a list of differences pertaining

to the disease. The data can be used as markers of the disease phase and to pro-

vide insight into which biological mechanisms or processes vary between the disease

and control groups. One major variance between the disease and control groups is

that cancer cells (in disease groups) are less specialized than normal cells (in control

groups). Meaning the latter mature with specific functions into very distinct cell

types, but cancer cells do not. This is one reason why cancer cells begin to divide

without stopping. Furthermore, cancer cells may ignore signals that typically tell cells

to stop dividing or to start a process known as programmed cell death, or apoptosis,

used by the body to get rid of unneeded cells.

Analysis of only one data form, however, is restricted to associations which often

represent reactive rather than causative processes. Integration of multiple forms of

omics data is also used to elucidate possible causative changes that contribute to

illness, or treatments’ objectives, which can then be evaluated in further molecular

studies (Hasin et al., 2017).

5



1. INTRODUCTION

1.3 Biomarkers

A biomarker is defined as a measurable indicator of a biological process. There are

various types of cancer biomarkers. Some of which include:

• Prognostic biomarkers: those that predict the growth of cancer (Hahn &

MacLean, 1955).

• Diagnostic biomarkers: those that predict the existence of a disease or con-

dition of interest or a cancer subtype (Milioli et al., 2015).

• Predictive biomarkers: those that predict the chances of survival a patient

who is being treated with a specific drug (Dao et al., 2011).

• Progression biomarkers: those that predict whether the cancer is spreading

or not.

• Recurrence biomarkers: those that predict whether cancer will recur later

in a patient’s life (Umetani et al., 2006).

1.4 Problem Statement

Recent research has shown that CRC rates continue to increase in younger Canadians.

According to the government of Canada’s website, CRC is Canada’s second most

common cancer, with a man out of 14 and a woman out of 18 to be diagnosed

with it in their lifetimes. It has been estimated that 93% of CRCs occur in adults

who are 50 years or older. Multiomics data integration for Computer-aided diagnosis

(CAD) systems has been applied in cancer research. The main challenge faced by that

research is how to incorporate different resources of data, which may have different

characteristics, in one prediction model. The advances of deep neural networks helped

in integrating the multiomics data sets in different levels of the network layers. What

needs to be done is the extraction of the most discriminant features from each omic

and omitting the non relevant data, which includes noise and redundant features.

6



1. INTRODUCTION

1.5 Research Objective

In this thesis, we construct a multi-input classification system that can classify the

young-onset CRC patients from the older patients. The main objectives of this re-

search are:

• Building a CAD system to diagnose young-onset CRC patients with high perfor-

mance measurements for detecting them. This system can extract discriminant

features from each omic then integrate these features in the prediction system

using a dedicated convolutional neural network for each omic. The extracted

discriminant features will then get flattened, concatenated and fed to a merging

convolutional neural network for a collective prediction process.

• Finding a set of biomarkers for young-onset CRC patients. These biomarkers

can be clinical or genomic features.

1.6 Thesis Organization

The organization of the thesis is as follows. In Chapter 2, we present background in-

formation about the pillar concepts of our project. We also summarize the literature

review of some existing works in images classification using deep learning. In Chapter

3, we talk about the data used in this project and we describe our proposed method-

ology in detail. In Chapter 4, we provide the results we obtained from conducting

several experiments on the data sets that we collected from a publicly provided web

portal. We also present a comprehensive analysis and some insights of those acquired

results. In Chapter 5, we provide our conclusions from this project as well as discuss

some future research directions.

7



CHAPTER 2

Literature Review

This chapter discusses some background information about the main concepts that

are considered fundamental in our project. It also discusses previous work that was

done in regards to solving the problem stated in the previous chapter.

2.1 Artificial Intelligence

Artificial Intelligence (AI) refers to the intelligence shown by machines and that tries

to mimic human’s intelligence. Leading AI textbooks refer to AI as the study of

intelligent agents; agents refer to any system that perceives its environment and acts

in a way that maximizes how it successfully achieves its goals (Poole et al., 1998).

2.2 Machine Learning

Machine Learning (ML) is a branch of AI that aims to find patterns in vast quantities

of data. ML algorithms use statistics on data, which can include numbers, words,

pictures, clicks, etc. This data can be fed into an ML algorithm if it can be processed

digitally. These algorithms are categorized into three main areas which are supervised,

unsupervised, and semi-supervised ML algorithms. Supervised ML learning basically

happens when an ML algorithm tries to learn a function based on example input-

output pairs that maps an input to an output (Russell & Norvig, 2010). A function

is inferred, by the ML algorithm, that consists of a group of training examples from

the labeled training data (Mohri et al., 2012). In this type of learning, each example

8



2. LITERATURE REVIEW

is a pair made up of an input object (typically a vector) and a desired output value.

A supervised ML algorithms analyzes the training data then an inferred function is

generated, which can be used for mapping new examples. For unseen instances, an

optimal scenario would allow the algorithm to correctly determine the class labels.

This allows the learning algorithm to reasonably generalize from the training data to

unseen circumstances. After implementing an ML algorithm, it needs to be evalu-

ated for efficiency. There are many metrics for evaluating the performance of a ML

algorithm, some of these measurements are based on the confusion matrix. Figure

2 shows an illustration of a confusion matrix.

Figure 2: An illustration of a confusion matrix.

A confusion matrix, also know as an error matrix (Stehman, 1997), is a unique table

structure that allows for the visualization of a machine learn algorithm, usually a

supervised one, where the instances in a predicted class are expressed in each ma-

trix row and each column represents the instances present in an actual class (or vice

versa) (Powers, 2008). Some of the measurements used for evaluating ML algoritms’

9



2. LITERATURE REVIEW

performances -that are based on the confusion matrix- include accuracy, sensitivity

(or recall), and specificity. Unsupervised machine learning is a type of machine learn-

ing that looks for previously undetected patterns in a data set that doesn’t have

preexisting labels and with a minimum of human supervision. This type of machine

learning, also known as self-organization, allows for modeling of probability densities

over inputs, in contrast to supervised learning that typically uses human-labeled data

(Hinton & Sejnowski, 1999). Principal component and cluster analysis are two of the

key methods used in unsupervised learning.

In unsupervised learning, cluster analysis is used to group or segment data sets

with common attributes to extrapolate algorithmic relationships. Principal compo-

nents are, basically, the directions of the data that explain a maximal amount of

variance, i.e., the lines that capture most information of the data. The correlation

between variance and data here is that the greater the variance held by a line, the

greater the variance of the data points along it, and the greater the variance along

a line, the greater the information it has. In cluster analysis, data that hasn’t been

labeled will be grouped, classified or categorized. Cluster analysis identifies common-

alities in the data and reacts based on the presence or absence of such commonalities

in each new piece of data. This approach helps detect anomalous data points that do

not fit into either group.

In semi-supervised learning approaches, during training, a small amount of labeled

data is combined with a large amount of unlabeled data. This type of ML falls between

unsupervised learning (with no labeled training data) and supervised learning (with

only labeled training data). When used in combination with a small amount of

labeled data, unlabeled data can yield significant changes in the learning accuracy.

The acquisition of labeled data for a learning problem often requires a skilled human

agent or a physical experiment. The cost associated with the labeling process may

become large. Also, acquiring fully labeled training sets is an infeasible process,

while acquiring unlabeled data is relatively inexpensive. So, in such situations, semi-

supervised learning can be of great practical value.

10



2. LITERATURE REVIEW

Machine learning approaches were proposed to predict the outcomes of cancer.

Examples of such approaches inlcude the work of Hamzeh et al. (Hamzeh et al.,

2019) who proposed a supervised learning model to predict prostate cancer Gleason

score and the work of Abou Tabl et al. (Tabl et al., 2018) who proposed a semi-

supervised learning to predict the survivability of breast cancer treatments.

2.2.1 Feature Selection

Feature selection is a mechanism in ML in which a subset of relevant features are

selected to be used in constructing a model. Feature selection is used to simplify

models so that researchers and analysis can better understand them (James et al.,

2013). This process also shortens training time and reinforce generalization by re-

ducing overfitting. The core concept behind using feature selection is that the data

includes some features that are either redundant or irrelevant, and can thus be omit-

ted without much information loss (Spiliopoulou et al., 2015). Figure 3 shows an

overview of feature selection techniques.

Figure 3: Overview of feature selection techniques.

11



2. LITERATURE REVIEW

2.2.2 Overfitting and Underfitting

Overfitting (in statistics) is the production of an analysis which corresponds too

closely or exactly to a particular set of data and may therefore fail to fit additional

data or predict future observations reliably. It refers to a model that models the

training data too well. This phenomenon arises when a model learns the detail and

noise of the training data so well that that it negatively impacts the performance of

the model on new data. This means that the noise or spontaneous variations in the

training data is picked up and learned as concepts by the model. The problem is that

these concepts do not extend to new data; thus, have a negative effect on the ability

of the model to generalize.

Underfitting refers to a model that can neither model the training data nor gener-

alize to new data. An underfit machine learning model is not a suitable model and

will be obvious as it will have poor performance on the training data. Underfitting

is often not discussed as it is easy to detect given a good performance metric. The

remedy is try alternate machine learning algorithms. Nevertheless, it does provide a

good contrast to the problem of overfitting.

2.2.3 Handling Class Imbalance

An imbalanced classification problem is an example of a classification problem where

the distribution of examples across the known classes is biased or skewed. The distri-

bution can vary from a slight bias to a severe imbalance where there is one example

in the minority class for hundreds, thousands, or millions of examples in the majority

class or classes. Imbalanced classifications pose a challenge for predictive modeling as

most of the machine learning algorithms used for classification were designed around

the assumption of an equal number of examples for each class. This results in models

with a poor predictive performance, specifically for the minority class. This is a prob-

lem because typically, the minority class is more important and therefore the problem

is more sensitive to classification errors for the minority class than the majority class.
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To handle this problem, there are two main techniques:

• Upsampling the majority class using (for example) the SMOTE method.

SMOTE (Synthetic Minority Over-Sampling Technique) performs the basic task

of basic resampling (creating new data points for the minority class) not by

duplicating observations, but by creating new observations along the lines of a

randomly chosen point and its nearest neighbors.

• Downsampling the majority class, which can be achieved by omitting samples

from the majority class and assembling balanced bags of samples from both the

majority and minority classes then averaging the results. Example of this work

has been done by Elkarami (Elkarami et al., 2016).

2.3 Deep Learning

Deep Learning (DL) is a function of AI that mimics the functions of the human brain

in how it processes data and how it builds patterns to use them for the decision-making

process. DL is a subset of ML that has networks capable of unsupervised learning

from unstructured or unlabeled data. Also known as deep neural learning or deep

neural network. DL architectures such as deep neural networks, and Convolutional

Neural Networks (CNNs) have been applied to many fields such as bioinformatics,

drug design, medical image analysis and board game programs, where they have

achieved outcomes comparable to and in some cases exceeding the performance of

human experts (Krizhevsky et al., 2012).
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2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), mostly referred to as Neural Networks (NNs),

are computing systems that were loosely inspired by the animals brains’ neural net-

works (Chen et al., 2019). An ANN is based on a collection of connected nodes

called artificial neurons, which vaguely resemble a biological brain’s neurons. Each

connection between the nodes can transmit a signal to other neurons. An artificial

neuron receives a signal, processes it and then signal neurons connected to it. This

signal is a real number, and the output of each neuron is computed by a non-linear

function of the sum of its inputs. The connections between the neurons are called

edges. Neurons and edges typically have a weight that adjusts as learning proceeds.

The weight increases or decreases the strength of the signal at a connection. Neurons

can have a threshold such that a signal is sent only if that threshold is crossed by

the aggregate signal. Typically, neurons are aggregated into layers. Different layers

may perform different transformations on their inputs. Signals travel from the first

layer (the input layer), to the last layer (the output layer), possibly after traversing

the layers multiple times. Figure 4 shows an illustration of an ANN. Each circle in

the figure represents an artificial neuron and each arrow represents a connection from

the input of one artificial neuron to the output of another.
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Figure 4: A shallow ANN with one hidden layer.

2.3.2 Self-Organizing Maps

A Self-Organizing Map (SOM) is type of ANN that is trained (using unsupervised

learning) to generate a low-dimensional (typically two-dimensional), discretized rep-

resentation of the input space of the training samples called a map. SOMs differ from

other ANNs in that they apply competitive learning as opposed to error-correction

learning which means that only a single node is activated at each iteration in which

the features of an instance of the input vector are presented to the neural network. A

node is chosen according to the similarity, between the current input values and all

the nodes in the grid. The node with the smallest Euclidean difference between the

input vector and all nodes is chosen. By going through all the nodes present on the

grid, the entire grid will eventually match the complete input data set, with similar

nodes grouped together towards one area, and dissimilar ones separated.
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2.3.3 Convolutional Neural Networks

The use of Convolutional Neural Networks (CNNs) for image processing was pro-

posed in 1990 (Cun et al., 1990). The computing capacity revolution has promoted

the advancement of deep learning; deep learning with a CNN has shown outstanding

success in image classification in particular (Krizhevsky et al., 2012). A CNN is a

class of deep neural networks that is applied most often to analyze visual imagery

(Valueva et al., 2020). CNNs have applications in image and video recognition, im-

age classification, medical image analysis, natural language processing, and financial

time series. CNNs are regularized versions of multilayer perceptrons, which means

they are fully connected networks, i.e., each neuron in one layer is connected to all

neurons in the next layer. The fact that those networks are fully-connected makes

their data prone to be overfitted. Typical ways of regularization include adding some

form of magnitude measurement of weights to the loss function. CNNs regularize the

data by taking advantage of the hierarchical pattern in data and assembling more

complex patterns using smaller and simpler patterns. Therefore, on the scale of con-

nectedness and complexity, CNNs are on the lower extreme. CNNs vary from other

pattern recognition algorithms in that they combine feature selection with classifica-

tion (Hertel et al., 2015). Figure 5 shows an illustration of the basic architecture of

a CNN.
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Figure 5: A schematic diagram of a basic convolutional neural network (CNN)
architecture.

A CNN consists of an input and an output layer, as well as multiple hidden layers.

The hidden layers of a CNN typically consist of a series of convolutional layers that

convolve with a multiplication or other dot product. The activation function is usually

ReLU, and is subsequently followed by additional convolutions such as pooling layers,

fully connected layers and normalization layers, referred to as hidden layers because

their inputs and outputs are masked by the activation function and final convolution.

CNNs’ layers can be summarized as:

• Input Layer: the input layer in CNNs contain image data which are repre-

sented by a three dimensional matrix. These need to be reshaped into a single

column. For example, if we have an image of dimension 28 x 28 (which equals

784), we need to convert it into 784 x 1 before feeding into the input. If we

have m training examples, then input’s dimension will be 784 X m.
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• Convolution Layer: in this layer (sometimes called feature extractor layer)

features of the image get extracted. First, a part of image is connected to

this layer to perform convolution operation and to calculate the dot product

between receptive field (a local region of the image that has the same size as

that of the filter) and the filter. Result of the operation is a single integer of

the output volume. Then we slide the filter over the next receptive field of the

same input image by a Stride and repeat the same operation. We will repeat

the same process until we go through the whole image. The output will be the

input for the next layer. Convo layer also contains ReLU activation to make all

negative value to zero.

• Pooling Layer: this layer is used to reduce the spatial volume of input image

after convolution. It is used between two convolution layer. Max pooling is

used to reduce the spatial volume of input image.

• Fully connected layer: this layer involves weights, biases, and neurons. It

connects neurons in one layer to neurons in another layer.

• Softmax layer: this layer performs classification.

• Output layer: this layer contains the class label.

2.3.3.1 Activation Functions

In a neural network, inputs are fed into the neurons in the input layer. Each neuron

has a weight, and multiplying the input number with the weight gives the output

of the neuron, which is transferred to the next layer. The activation function is a

mathematical gate in between the input feeding the current neuron and its output

going to the next layer. The most common activation functions can be divided into

three groups: ridge functions, radial functions and fold functions.
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• Ridge activation functions: these functions are made up of univariate func-

tions acting on a linear combination of the input variables. Often used examples

of these activation functions include: Linear activation, ReLU activation, Heav-

iside activation, and Logistic activation.

• Radial activation functions: these functions are used in RBF networks,

which are ANNs with an output that linear combination of radial basis functions

of the inputs and neuron parameters. These activation functions can take many

forms, but they are usually found as one of the following functions: Gaussian,

Multiquadratics, Inverse multiquadratics and Polyharmonic splines.

• Folding activation functions: these functions are exhaustively used in the

pooling layers in CNNs and in output layers of multi-class classification net-

works. They perform aggregation over the inputs. In multiclass classification

the softmax activation is often used.

2.4 Summary of Previous Work

In this section, we summarize the papers that were studied for conducting this

project’s literature review.

• In the paper titled: iSOM-GSN: an integrative approach for transform-

ing multi-omic data into gene similarity networks via self-organizing

maps the authors introduced a systematic, generalized method, called iSOM-

GSN, used to transform multi-omic data with higher dimensions onto a two-

dimensional grid. They applied a CNN to predict disease states of various types

and based on the idea of Kohonens SOM, they generated a two-dimensional grid

for each sample for a given set of genes that represents a gene similarity net-

work. Their model produced nearly perfect classification accuracy and provided

an enhanced scheme for representation learning, visualization, dimensionality

reduction and interpretation of multi-omic data (Fatima & Rueda, 2020).
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• In the paper titled: Deep Learning Approach for Breast Cancer InClust

5 Prediction based on Multiomics Data Integration the authors pre-

sented a deep learning model based on multiomics data integration to predict

the five-year interval survival of breast cancer InClust 5. Their method was an

expansion of the iSOM-GSN model, where they created a feature map for each

omic data set instead of only one. The model incorporated the prediction of

the three CNNs using an integration layer. Their model was able to learn from

all the omic data sets and was able to classify one-dimensional sample vectors

using CNNs (Alkhateeb et al., 2020).

• In the paper titled: CancerSiamese: one-shot learning for primary and

metastatic tumor classification the authors proposed CancerSiamese,

which is a new one-shot learning model, to predict the cancer type of a query

primary or metastatic tumor sample. CancerSiamese received pairs of gene

expression profiles and learned a representation of similar or dissimilar cancer

types through two parallel CNNs joined by a similarity function. Their work

demonstrated, for the first time, the feasibility of applying one-shot learning for

expression-based cancer type prediction when gene expression data of cancer

types are limited (Mostav et al., 2020).

• In the paper titled: Representation of features as images with neighbor-

hood dependencies for compatibility with convolutional neural net-

works the authors presented a feature representation approach termed RE-

FINED (REpresentation of Features as Images with NEighborhood Depen-

dencies) to arrange high-dimensional vectors in a compact image form. They

generated a concise feature map in the form of a two-dimensional image. They

illustrated the superior predictive capabilities of REFINED in drug sensitivity

prediction scenarios (Bazgir et al., 2020).

• In the paper titled: DeepInsight: A methodology to transform a non-

image data to an image for convolution neural network architecture

the authors proposed DeepInsight which converts non-image samples into a
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well-organized image-form. DeepInsight enabled feature extraction through the

application of CNN for non-image samples to seize imperative information and

had shown promising results. To their knowledge, this was the first work to

apply CNN simultaneously on different kinds of non-image data sets (Sharma

et al., 2019).

• In the paper titled: A principled machine learning framework improves

accuracy of stage II colorectal cancer prognosis the authors addressed

the inherent limitations of current pathological reporting systems, which made

patient outcomes vary considerably within similarly staged patient cohorts,

through the use of machine learning. They introduced a data driven frame-

work which makes use of a large number of diverse types of features. Their

framework had an outstanding performance in predicting mortality in stage

II patients (AUROC=0:94), which exceeded that of current clinical guidelines

(AUROC=0:65), and their work was demonstrated on a cohort of 173 colorectal

cancer patients (Dimitriou et al., 2018).

• In the paper titled: Development and validation of a deep-learning algo-

rithm for the detection of polyps during colonoscopy the authors devel-

oped a DL algorithm using data from 1,290 patients, and validated it on newly

collected 27,113 colonoscopy images from 1,138 patients with at least one de-

tected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area

under the receiver operating characteristic curve, 0.984), on a public database of

612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy

videos with histologically confirmed polyps (per-image-sensitivity of 91.64%;

per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos

without polyps (per-image-specificity, 95.40%) (Wang et al., 2018).
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• In the paper titled: Early Colorectal Cancer Detected by Machine Learn-

ing Model Using Gender, Age, and Complete Blood Count Data the

authors wanted to validate an ML CRC detection model on a US community-

based insured adult population. Their model achieved 99% specificity and had

the highest accuracy in identifying right-sided CRCs (Hornbrook et al., 2017).

• In the paper titled: Deep learning based tissue analysis predicts out-

come in colorectal cancer the authors combined convolutional and recurrent

architectures to train a deep network to predict CRC outcome based on images

of tumour tissue samples. The novelty of their approach is that they directly

predicted patient outcome, without any intermediate tissue classification. Their

results suggested that state-of-the-art DL techniques can extract more prognos-

tic information from the tissue morphology of CRC than an experienced human

observer (Bychkov et al., 2018).

• In the paper titled: Colorectal Cancer Detection Based on Deep Learn-

ing the authors introduced a DL-based method in CRC detection and segmen-

tation from digitized H&E (hematoxylin and eosin) - stained histology slides.

They demonstrated that their NN approach produced a median accuracy of

99.9% for normal slides and 94.8% for cancer slides compared to pathologist-

based diagnosis on HE-stained slides digitized from clinical samples (Xu et al.,

2020).

22



CHAPTER 3

Materials and Methodology

In this chapter, we discuss our methodology and the data used in out project. We

tried different models to improve the performance measurements and to select the

best subset of features that present the problem. For each method, we tried to

optimize the performance by utilizing different parameter values. We also relied on

the literature to select the best practice at each step.

3.1 Data

The data set used in our project has been downloaded from the website cBioPrtal.

The source of the data is GDAC Firehose (with reference number 20160128) (cBio-

Portal for cancer genomics, n.d.). The data is made up of 3 omics, which are clini-

cal features, CNA (Copy Number Alteration) and gene expression, for each patient.

There are 162 patients, 81 of them are younger than 50 years of age, the rest are older

than 50. Figure 6 shows he block diagram of the proposed methodology.
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Figure 6: The block diagram of the proposed methodology.

3.2 Feature Selection

The first step in our project is utilizing a hybrid feature selection technique. In this

step we combine ranking and wrapping methods. More about this hybrid approach

in the following subsections.

3.2.1 Ranking

In this sub-step we rank the features that are correlated with the class using chi-

square to remove non-relevant features. The chi-square technique measures the de-

gree of independence of each feature in relation to the class. The following formula

explains how the measurement is done:
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χ2(Y,X) =
N × (AD − CB)

(A+ C)× (B +D)× (A+B)× (C +D)
(1)

Where A is the number of times feature X occurs and Y denotes the classes (less

than 50 or greater than 50). B is the number of times the feature X occurs without

class Y . C is the number of times class Y occurs without X. D is the number of

times neither X nor Y occurs. N is the total number of samples (In our project, the

total number of samples is 162).

The number of features in the omics gene expression and CNA is very high, which

will complicate the classification model and and which will lead to the problem of

Curse of Dimensionality, which means that the number of features is way larger

than the number of samples. The other reason (behind us performing ranking) is

that many features do not show the discriminant behavior required to identify the

classes of the CRC patients. To overcome those complications, we reduce the number

of features using chi-square.

3.2.2 Wrapping

On the resulting relevant features (that resulted from the ranking process), a wrap-

per method is utilized to extract a potential subset of features that can represent

the problem (that is the class). The wrapper method incorporates a random for-

est classifier with the Minimum Redundancy Maximum Relevance (mRMR)

technique.

The mRMR feature selection is performed at this stage to infer the interactions among

the features in each omic so that we are able to select the features with higher rel-

evance. mRMR also reduces the redundancy among the features by not considering

the correlated features. mRMR minimizes redundancy using the following formula:
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min WI =
1

|S|2
∑
i,jϵS

I(i, j) (2)

Where S is the set of features and I(i, j) is the mutual information between

features i and j. A high value of WI indicates that the feature is redundant.

The mRMR finds the relevant features by considering the class labels. It maximizes

relevance using the following formula:

max VI =
1

|S|
∑
iϵS

I(h, i) (3)

where h is the class label.

Lastly, the algorithm maximizes the mutual information difference to select the fea-

tures using the following formula:

max(VI −WI) (4)

If the difference of mutual information has a high value, then it indicates that the

features can effectively separate our classes. We also use random forest with mRMR

feature selection that uses forward search to further reduce the number of selected

features. The following two tables show the results of performing our hybrid feature

selection process on the two omics: CNA and gene expression.

Note: We did not apply our hybrid feature selection approach on the clinical features

omic because this particular omic has few features.
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3.3 Creating Images Templates using SOM

We applied SOM on each omic data set to represent the data in a two-dimensional

space. We created a template image for the features in each of the three omics which

is then used to present the feature map (image) for each sample in that omic. We

obtained three omics templates, one for each of the used omic in this study. These

templates are depicted in Figures 9, 10 and 11.

Figure 7: Images template of the clinical features omic.

Figure 8: Images template of the CNA omic.
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Figure 9: Images template of the gene expression omic.

For the clinical features omic, eight features (genes) resulted in its image template.

They were (TUMOR57SUE, WESCORE, SEX, PATHM, PATHN, PATHT, PATH-

WAYS, WEIGHT). For the CNA omic, twelve features (genes) resulted in its im-

age template. They were (MR30E, SNORD45O, SNORD38B, SERBP1, TTLL10,

SLC35E2, AURKAIP1, MR1262, GNAT2, TINAGL1, UBR4, RNF186). For the gene

expression omic, fourteen features (genes) resulted in its image template. They were

(IQCG, POBEC3B, NUDT19, AOX2P, FAM153B, A4GNT, C10orf50, PLEKHG2,

KCNG4, UGT3A2, QRFPR, HBM, SSTR4, GUCY2E).

3.4 Omics’ Images Creation

Using the templates (which we mentioned in the previous section), SOM scans the

values of each feature. Then the values are converted into a color and the nodes in

each template are filled with that color. As an example for that, Figures 12, 13 and

14 show the resulting images for one of the young-onset CRC patients for the three

omics.
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Figure 10: Image of a patient sample clinical features omic.

Figure 11: Image of a patient sample CNA omic.
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Figure 12: Image of a patient sample gene expression omic.

For the clinical features omic, a patient’s sample’s features (genes) were assigned

purple, blue, orange, light brown and light green colors. For the CNA omic, a patient’s

sample’s features (genes) were assigned different shades of the colors purple and green.

For the gene expression omic, a patient’s sample’s features (genes) were assigned

different shades of the colors green, red and brown.

3.5 Designing a Multi-Input CNN

We have created a model that consists of three CNNs, each of those CNNs takes an

individual omic as an input then extracts the discriminant features from each omic.

These "extracted" features are then merged to be fed into the main CNN after

flattening these features. Figure 13 depicts the our model’s flow diagram.
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Figure 13: Design of multi-input CNNs.

For each omic we have a CNN that consists of:

• A convolutional layer that is called Convolution2D. This layer has 32 filters

and a kernel of size 3 X 3.

• An activation function called LeakyReLU, which is a leaky version of a Rec-

tified Linear Unit (ReLU), which allows a small gradient when the unit is not

active. This layer is the input layer that expects images.
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• A pooling layer called MaxPooling2D that takes the maximum and is config-

ured with a pool size of 2 X 2 (it halves the input in both spatial dimensions).

• A regularization layer (using dropout) called Dropout which is configured to

randomly exclude 25% of the neurons in the layer to reduce overfitting.

The output of the convolutional layers for the three inputs goes through a concate-

nation layer, and the result is converted from a two-dimensional matrix to a vector

by the flatten layer. This step allows standard fully connected layers to process the

output. Next we have a fully connected layer with 512 neurons, a Leaky rectifier

activation function followed by another Dropout layer configured to exclude 50% of

neurons, this integrated entire unit randomly processes the output from the flatten

layer. Finally, the output layer has neurons and a softmax activation function to

output probability-like predictions for each class.

For the optimization algorithm, we chose Adam (Adaptive Moment Estimation)

and for the loss function, we chose categorical_crossentropy. The optimization

algorithm minimizes the loss function. For the implementation, we used the default

setting of Google Colab. The structure of the model was built using Keras 2.3.1 on

TensorFlow1.15.2. We run the code on Google Colab utilizing TPU with 8 cores.
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CHAPTER 4

Results

In this chapter we present the results of our research in terms of determining set of

features (genes) that are associated with CRC as well as some performance measure-

ments for ML algorithms in general and how well our model performed in accordance

to those measurements.

4.1 9-Fold Cross Validation

Cross validation is any of many model validation techniques for estimating how the

results of a statistical analysis will generalize to an independent data set. It is mainly

used in settings where the model is predicting and the model’s creator wants to assess

how accurately that model can predict. In a prediction problem, a model is usually

given a data set of known data on which training is run called training data set, and

a data set of unknown data against which the model is tested called the testing data

set. The goal of cross-validation is to test the model’s ability to predict new data in

order to point out problems like overfitting or selection bias (Cawley & Talbot, 2010)

and to give an insight on how the model will generalize to an independent data set.

In k-fold cross-validation, the original sample is randomly partitioned into k equal

sized sub-samples. Of which, a single sub-sample is retained as the validation data

for testing the model, and the remaining sub-samples are used as training data. The

cross-validation process is then repeated k times, with each of the k sub-samples used

exactly once as the validation data. The k results can then be averaged to produce a

single estimation.
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One advantage of k-fold cross validation is that all observations are used for both

training and validation, and each observation is used for validation exactly once. For

our model, We split the data set into nine equal sections with each section containing

sixteen samples. Then we perform a loop for nine times. Each time, we take one of the

sections for the testing, and the remaining are used for the training. Then, we return

the testing section and take the next section and use it for testing and the remaining

sections for training and so on. This technique maximizes the training phase to learn

from 88.88% of the samples each time, and, overall, tests all the samples. In other

words, 100% of the samples are tested.

Tables 1 and 2 show the results of performing our hybrid feature selection process on

the two omics: CNA and gene expression.

Table 1: Selected features from CNA omic.

Omic Selected Features Count

CNA
MR30E, SNORD45O, SNORD38B, SERBP1, TTLL10, SLC35E2,

AURKAIP1, MR1262, GNAT2, TINAGL1, UBR4, RNF186

12

Table 2: Selected features from gene expression omic.

Omic Selected Features Count

gene expression

IQCG, POBEC3B, NUDT19, AOX2P,

FAM153B, A4GNT, C10orf50, PLEKHG2, KCNG4,

UGT3A2, QRFPR, HBM, SSTR4, GUCY2E

14
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4.2 Performance Measurements

To evaluate our model, we are using the following performance measurements:

• Sensitivity: (also called Recall) is a measure of the proportion of actual pos-

itive cases that got predicted correctly (also called true positive (TP) cases).

The existence of true positives implies that there will be another proportion of

actual positive cases, which would get predicted incorrectly as negative (also

described as false negative (FN) cases). This can also be represented in the

form of a false negative rate. The sum of sensitivity and false negative rate

would be 1. Sensitivity is calculated using the following equation:

Sensitivity =
TP

TP + FN
(1)

• Specificity: is the proportion of actual negatives which were predicted cor-

rectly (also called true negative (TN) cases). The existence of true negatives

implies that there will be another proportion of actual negative cases, which

got predicted falsely as positive; thus, termed as false positives (FP) cases.

This proportion could also be called a false positive rate. The sum of specificity

and false positive rate would always be 1. Specificity is calculated using the

following equation:

Specificity =
TN

TN + FP
(2)

• Precision: this measure is calculated as the number of TPs divided by the

summation of total number of TPs and FPs. Precision is calculated using the

following equation:

Precision =
TP

TP + FP
(3)
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• F-score: this measure is calculated from the precision and sensitivity of the

model. F-score is calculated using the following equation:

F − score = 2 · Precision · Sensitivity
Precision+ Sensitivity

(4)

• Accuracy: is the most intuitive performance measure and it is simply a ratio

of correctly predicted observation (TP & TN) to the total observations. A

high accuracy may suggest that our model is the among the best, but only when

we have symmetric data sets where values of false positive and false negatives

are almost same. Otherwise, we need to use other performance measurements

to evaluate the performance of our model. Accuracy is calculated using the

following equation:

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

Next table is the confusion matrix that resulted from our experiments.

Table 3: Resulting confusion matrix.

.

True Positive True Negative

Predicted Positive 73 8

Predicted Negative 7 74
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• Sensitivity was calculated as 91.25%

• Specificity was calculated as 90.24%

• Precision was calculated as 90.12%

• F-score was calculated as 90.68%

• Accuracy was calculated as 90.74%

Comparing our model’s performance measures with another model that was built

for predicting the (FOLFOX) treatment response in metastatic or recurrent CRC

patients via machine learning algorithms (W. Lu et al., 2020), we establish that

our model achieved higher sensitivity and specificity that the latter. The treatment

response prediction model produced an average of 85% in the sensitivity measure and

an average of 64% in the specificity measure.

Resulting features from our hybrid feature selection approach on the two omics (CNA

and gene expression) were checked if they are associated with the CRC disease.

Tables 4 and 5 specify which of the resulting genes are associated with CRC and

which are not. Both tables indicate that five genes in the CNA omic and five genes

in the gene expression omic are associated with CRC.
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Table 4: Association of genes (resulting from hybrid feature selection on CNA omic)
with CRC.

Gene
Associated with CRC

(Yes or No)

MR30E No

SNORD45O No

SNORD38B No

SERBP1 No

TTLL10 No

SLC35E2 Yes

AURKAIP1 Yes

MR1262 No

GNAT2 Yes

TINAGL1 No

UBR4 Yes

RNF186 Yes
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4. RESULTS

Table 5: Association of genes (resulting from hybrid feature selection on gene
expression omic) with CRC.

Gene
Associated with CRC

(Yes or No)

IQCG No

POBEC3B No

NUDT19 No

AOX2P No

FAM153B Yes

A4GNT No

C10orf50 No

PLEKHG2 Yes

KCNG4 No

UGT3A2 Yes

QRFPR Yes

HBM No

SSTR4 Yes

GUCY2E No
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We used the literature to verify the associations between the findings (resulting genes)

and CRC. The verification of whether a gene is associated with CRC or not, was done

by finding a peer-reviewed paper that mentioned how a certain gene contributes in the

advancement of CRC, or if it (the specific gene) is found to be significantly expressed

in the CRC tissue. The expression of the gene can be in terms of gene expression,

DNA methylation or DNA gene copy. These verifications are summarized below:

• For the gene SLC35E2, it was found to be associated with lymphovascular

invasion in CRC. Also, DNA copy number was decreased for this gene in CRC

(Nakao et al., 2011).

• For the gene AURKAIP1, it was found to be negatively correlated to irinote-

can sensitivity for irinotecan sensitivity/resistance in CRC cell lines (X.-X. Li

et al., 2014).

• For the gene GNAT2, it was among a list of 524 genes for panel sequencing

found to be associated with CRC (Ge et al., 2019).

• For the gene UBR4, (Protein name: Retinoblastoma-associated factor 600),

it was found differentially-expressed in CRC metastatic cells (Luque-Garcia et

al., 2010).

• For the gene RNF186, it was found that the expression of RNF186 was

decreased in CRC tissues compared to corresponding normal tissues. It was

also demonstrated that upregulation of RNF186 suppressed CRC cell growth

and migration in vitro and in vivo (Ji et al., 2020).

• For the gene FAM153B, it was among a list of 524 genes for panel sequencing

found to be associated with CRC (Ge et al., 2019).

• For the gene PLEKHG2, it was found to be a part of a lncRNA-miRNA-

mRNA ceRNA network and ceRNAs suggest the transformation from IBD to

CRC. Also it was found to be responsible of positive regulation of the apoptotic

process(Sun et al., 2019).
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• For the gene UGT3A2, it was among a list of 524 genes for panel sequencing

found to be associated with CRC (Ge et al., 2019).

• For the gene QRFPR, it was among a list of 524 genes for panel sequencing

found to be associated with CRC (Ge et al., 2019).

• For the gene SSTR4, the hypermethylation of this gene is frequently observed

in CRC (J. Li et al., 2017).

We analyzed the protein expression of some of the the resulting genes. Chen-Chu

et al. (Chu et al., 2018) reported that gene SLC35E2 was among another 27 genes

that were found to be differentially expressed in CRC. Using GO and KEGG pathway

analyses, the researchers performed a comprehensive analysis to discover the biologi-

cal functions of differentially expressed circular RNAs. They found that SLC35A2

created 9 protein interactions with the rest of the 27 reported genes. For the gene

AURKAIP1 (AUrora Kinase A-Interacting Protein), it was found among other mi-

tochondrial ribosomal proteins that perform synthesis in many human diseases (in-

cluding CRC) (Gopal & Rajkumar, 2016). The gene PLEKHG2 was found among

other Rho family guanine nucleotide exchange factors (RhoGEFs) genes and those

are found to be over-expressed and responsible for the the protein synthesis in the

CRC tissue in comparison to adjacent normal tissues. This set of genes facilitates the

progression of CRC (Lee, 2016). The SSTR4 protein expression has an association

with the clinico-pathological factors, cell proliferation, Bcl-2 and p53 expression in

CRC cells (Qiu et al., 2006).
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CHAPTER 5

Conclusion and Future Work

In this chapter we present what we concluded from this project and suggest directions

for future work.

5.1 Conclusion

Our supervised learning model was able to consider all omics with no bias or directive

from a specific omic. We were able to achive this thesis’s objective of taking data from

a publicly available web portal, pre-process that data, create SOM features images

which were fed into individual CNNs and then we were able to (eventually) classify

the cancer data sets into specific labels (classes). The main advantages that we were

able to achieve in this project are handling multiple input data sets and the ability to

select discriminant features that best represent the data set. We examined scientific

papers about how those discriminant features (genes) participate in the biological

process of advancing or suppressing cancer.
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5.2 Future Work

This work can be further extended by:

• Verifying the findings of the gene expression and CNA omics using wet lab

experiments (Tabl et al., 2018) and pathway analysis. Pathway analysis can

be done from the literature and using KEGG database (Ogata et al., 1998).

KEGG database "is a collection of manually drawn pathway maps represent-

ing our knowledge of the molecular interaction, reaction and relation networks

for metabolism, genetic information processing, cellular processes, organismal

systems, human diseases and drug development" (KEGG PATHWAY Database,

n.d.).

• Trying a different dimensionality reduction technique for mapping, other than

SOM, like Principal Component Analysis (PCA), Fisher Linear Discriminant

or Multiple Discriminant Analysis (MDA).

• Applying the proposed methodology on multi-input data sets (more than three)

to verify the prediction strength of the model. Then, comparing the results with

state-of-the-art methods for multi-input data sets.
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