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ABSTRACT

The rate of progress in improving survival of patients with solid tumors is slow due to late

stage diagnosis and poor tumor characterization processes that fail to effectively reflect

the nature of tumor before treatment or the subsequent change in its dynamics because of

treatment. Further advancement of targeted therapies relies on advancements in biomarker

research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the

main source of biomarkers used in the treatment and monitoring of cancer, even though

biopsy samples are susceptible to sampling error and more importantly, are local and offer a

narrow temporal scope.

Because of its established role in cancer care and its non-invasive nature imaging offers the

potential to complement the findings of cancer biology. Over the past decade, a compelling

body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis,

prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging

practice known as Radiomics: the extraction and analysis of large numbers of quantitative

features from medical images to improve disease characterization and prediction of outcome.

It has been suggested that radiomics can contribute to biomarker discovery by detecting

imaging traits that are complementary or interchangeable with other markers.

This thesis seeks further advancement of imaging biomarker discovery. This research

unfolds over two aims: I) developing a comprehensive methodological pipeline for converting

diagnostic imaging data into mineable sources of information, and II) investigating the utility

of imaging data in clinical diagnostic applications. Four validation studies were conducted

using the radiomics pipeline developed in aim I. These studies had the following goals: (1

distinguishing between benign and malignant head and neck lesions (2) differentiating benign

and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head

and neck cancers, and (4) predicting neuropsychological performances as they relate to

Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient
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outcome and survival by facilitating incorporation of routine care imaging data into decision

making processes.
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Chapter 1

MOTIVATION & PROBLEM STATEMENT

Cancer is the second leading cause of death in the United States after heart disease and

is the leading cause of death in 22 states, and in Hispanic and Asian Americans [3]. Each

year, the American Cancer Society estimates the number of new cancer cases and deaths for

the current year. For 2017, 1,688,780 new cases and 600,920 cancer deaths are projected

to occur in the United States. These estimates are the equivalents of more than 4,600 new

cancer diagnoses and about 1,650 cancer deaths per day [3].

Over the past 3 decades, the 5-year relative survival rate for all cancers combined has

increased >20% as a result of advances in early detections and improved treatments [3].

However, the progress in cancer care including the decline in number of incidences and

increase in survival rate, has had almost no effect on cost of care. Cost of cancer care

increases annually by a 2% rise of cost in the initial and last phases of care, for a total of

174$ billion for projected cost in 2020. This estimate represents a 39% increase from 2010 [4].

The rate of progress in improving patient survival for some cancers has been remarkable.

Hematopoietic and lymphoid malignancies for instance have experienced an improvement of 5-

year relative survival rate of 71% for acute lymphocytic leukemia and 66% for chronic myeloid

leukemia [3]. For solid tumors, the steady increase in survival rate for most cancers has been

much slower (i.e. 18% and 8% for lung and pancreatic cancer). The slower rate of progress

for solid tumors has been linked to late stage diagnosis and poor tumor characterization

processes that do not characterize the nature of these tumors effectively or do not reflect the

aggressive behavior of these cancers [3].

Cancer care of solid tumors involves the detection, diagnosis, characterization, treatment,

and monitoring of the disease. Detection begins when, upon an initial indication, a radiology
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exam is requested for a patient. A radiologist then prompts an exam by determining

the content of the order based on the clinical context for the initial request including

the appropriate imaging modality (Computed Tomography or CT, Magnetic Resonance

Imaging or MRI, etc.), body part (breast, lung, brain, etc.), and image acquisition protocol

(with/without injection of contrast agent) [5]. Upon receiving the exam request, a radiology

session is scheduled and the images are acquired. A radiologist then reviews the images

and prepares a report containing the image findings. Image findings typically contain

detailed information regarding the key attributes of the lesion(s) including anatomic location,

qualitative and quantitative description of the lesion. The reported qualitative attributes of

the lesion(s) include the radiologist’s subjective visual description of the lesion such as lesion

shape, margin, and border or density.

Quantitative attributes of lesions are measures of tumor burden estimation and are rarely

reported in standard of care practice at initial detection [5] and are only presented during the

treatment planning phase as part of the treatment response assessment process. The content

of a radiology report at these stages includes the above-mentioned attributes, as well as an

estimation of comparison of lesion attributes (qualitative and quantitative) over time. The

criteria for measuring the lesion’s quantitative attributes are defined in Response Evaluation

criteria In Solid Tumors (RECIST), and/or Wold Health Organization (WHO). As shown in

Figure 1.1, estimation of tumor burden in clinical practice relies on human measurement of

one- or two-dimensional descriptors of tumor size [6, 7].

Following the initial diagnosis, the next step is characterization of the detected lesion.

The gold standard for characterizing lesions is the histopathologic analysis of tissue samples

acquired through surgical biopsy or resection [8]. Initial diagnosis (benign or malignant,

as well as grading) and genetic status of solid tumors are determined from tissue samples

obtained via a biopsy. Treatment of solid tumors may involve combination of tumor resection

through surgery, radiation therapy, and chemotherapy. Radiotherapy is a major part of the
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(a)

(b)

Figure 1.1: Measurement of tumor burden via RECIST and WHO response assessment
criteria. Measurements rely on (a) sum of longest diameters of target lesion in RECIST, and
(b) sum of products of the two longest axes in WHO criteria. In both criteria, measurements
are repeated over time, leading to an estimation of disease status into four categories:
complete response, partial response, stable disease, and progressive disease.
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treatment process for roughly half of cancer patients and is particularly useful for cancers of

the head and neck, lung, bladder and prostate. Radiotherapy is also used as a pre-surgery

treatment to shrink the size of tumor in an attempt to control the spread of the disease

(i.e. in breast cancer) [9]. Radiotherapy is the only treatment option for locally advanced

cancers where the location of the lesion renders surgery an unsuitable option (i.e. cancer of

the larynx) [9]. The prescribed radiation dose depends on the type of cancer, the tolerance

of the surrounding normal tissue, and the amount of radiotherapy toxicity up to five years

past treatment [9].

Treatment of cancer via chemotherapy heavily depends on the information provided via

the acquired tissue samples. For decades, chemotherapy treatments of malignant lesions have

involved targeting rapidly dividing cancer cells using intravenous cytotoxic chemotherapy.

Due to the blind nature of this type of treatment many rapidly dividing normal cells (e.g.,

hair, gastrointestinal epithelium, bone marrow) are also affected leading to classic toxicities

for the patients (i.e. alopecia, gastrointestinal symptoms, and myelosuppression) [10]. Cancer

treatment has experienced a dramatic change as a result of the new advances towards

targeted therapies. In the age of targeted therapies particular monoclonal antibodies and

small molecule inhibitors are targeted to disrupt distinct mechanisms of tumor cells. Elements

such as the lesion cellular environment, including presence/absence of certain enzymes and

protein expression, cell type, presence/absence of gene alterations, level of oxygenation within

the cell, and growth factors all affect the course of treatment [11].

1.1 Motivation

Invasive biopsy or surgery procedures are the sole means for the provision of bio-specimen

samples that provide insight into tumor composition and molecular context. These invasive

procedures cannot be performed with an aggressive frequency; in fact, oncologists normally

rely on the information provided via two or three biopsies for their decisions during the

whole course of treatment.
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An important factor to consider is that intra-tumor heterogeneity can vary among

cancer types and subtypes [12]. Because biopsy samples are extracted from a single (or two)

location(s) within the lesion, they can be narrow in scope and therefore fail to reflect the

variability of molecular structure of tumors [13]. In fact, they can only serve as a snapshot

of the tumor’s molecular structure at the time and location of biopsy sampling. This sets

a limitation on the utility of biopsy samples given that the heterogeneity of solid tumors

has been established at the phenotypic, physiologic, and genomics levels [14–16]. Another

drawback of biopsies is the narrow temporal scope of the information that they can provide.

Given that cancer is a phenotypically and molecularly progressive disease, the molecular

context of the disease changes over time. Hence, a single biopsy at a single time point may

not be able to convey the changes in the molecular context of the lesion [17].

Biopsy procedures are also susceptible to sampling error. Closed biopsies (with a needle,

endoscopy, the preferred biopsy procedure in complicated cases) have been shown to have a

lower rate of accuracy compared to open biopsies (with an incision), especially for soft-tissue

tumors [18]. The histopathology reports may contain errors as well. Nguyen et al. [19]

found an error rate of 44% in prostate pathology reports. The authors found that in 10% of

the pathology reports the errors were significant enough to change the course of treatment.

Another study [20] found that 7.8% of the breast cancer pathology reports included errors

significant enough to affect the choice between a lumpectomy and mastectomy for the

patients.

The high prevalence of cancer has prompted significant promotion in biomarker (defined

in Table 1.1) research, even though the utility of biomarkers in clinical domain doesn’t

start or end with cancer. This promotion is due to the fact that further advancement of

targeted therapies goes hand in hand with advancements of biomarker research. Biomarkers

are introduced at various stages of cancer to help identify cancer type and stage, forecast

the effect of treatment, monitor progress of the disease, and predict outcome (e.g. time to

relapse, survival) [21]. Thus, biomarkers offer many benefits for cancer care including faster,
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cheaper, more efficient diagnosis and treatment processes [8, 22], as well as smaller sample

sizes for clinical trials [21].

Table 1.1: Biomarker terminology (courtesy of [23])

Term Definition

Biological
Marker
(Biomarker)

A characteristic that is objectively measured and evaluated as an indica-
tor of normal biologic processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention.

Clinical
endpoint

A characteristic or variable that reflects how a patient feels or functions, or
how long a patient survives.

Surrogate
endpoint

A biomarker intended to substitute for a clinical endpoint. A clinical inves-
tigator uses epidemiologic, therapeutic, pathophysiologic or other scientific
evidence to select a surrogate endpoint that is expected to predict clinical
benefit, harm or lack of benefit.

Useful
Biomarker

(1) Informs risk/benefit ratio when decisions are to be made.
(2) Does so in a better/safer/faster/earlier/cheaper way than existing ap-
proaches.
(3) Generally applicable: sample and technology must be available/accessible.
(4) Has a known identity.

An ideal cancer biomarker should follow the changes of the molecular context in which

they find themselves. Most new potential treatments fail to obtain regulatory approval

partly due to clinical trial biomarkers that are poor predictors of treatment effectiveness.

Within the context of solid tumors, bio-specimen samples such as biopsies serve as the

main source of biomarkers used in the treatment and monitoring of cancer. However, bio-

specimen biomarkers inherit the limitations of their source: biopsy samples. They offer limited

longitudinal granularity : A quality that is critical for assessing the impact of therapeutic

interventions on the molecular context of the disease [24]. To address this shortcoming

imaging biomarkers have been investigated. An imaging biomarker refers to “an imaged

characteristic that is objectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes or a response to a therapeutic intervention” [25]. Lesion

size remains the only recognized imaging biomarker extracted from routine care imaging
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to evaluate the response to treatment. This is despite that lesion size doesn’t reflect the

complexity of lesion context and changes in its behavior [26]. Changes in tumor dynamics

are known to start much earlier than the any change in lesion size [26], meaning current

measurement criteria rely on a rather distal indicator of treatment effectiveness. Another

limitation of using lesion size as the primary imaging biomarker is that lesion size does not

predict patient prognosis such as overall or progression-free survival [5, 27]. Inter-reader and

intra-reader size measurement variability [28] along with inconsistency between readers in

selection of target and non-target lesions are among other limitations of this process [5]. These

issues are so widely known that the pharmaceutical companies often employ “independent

review panels” to standardize tumor response measurements in clinical trials [7]. Based on a

report by Thiesse and colleagues [29] on a large multicenter trial in oncology, the independent

review panels and the case radiologists were found to have major disagreement in 40% of the

cases and minor disagreements in a further 10.5% of cases. Qualitative descriptions are also

reported in radiology reports of cancers. To name a few, characteristics such as lesion margin,

shape, border, and intensity patterns (enhancement pattern, vascularity in breast lesions)

are among parameters that are reported qualitatively and therefore suffer from subjectivity

and measurement variability across readers.

1.2 Objective & Aims

The rise of high-throughput tools capable of massive processing of genomics data has

led to exciting advances in the field of computational biology. The ability to translocate

gene expression profiles of various tissues has provided us with an unprecedented snapshot

of disease signatures on a molecular and cellular level [30]. These advances are slowly

influencing how we view other data sources in health care. Imaging has traditionally been

viewed as a largely qualitative diagnostic tool; a means to provide important anatomical and

morphological information about the clinical question at hand. The vast amount of available

high quality imaging data is an excellent candidate for the analytical high-throughput
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approach. Recently, an emerging practice known as “radiomics” has been introduced to

investigate this opportunity. Radiomics refers to extraction and analysis of large numbers

of quantitative features from diagnostic images to improve disease characterization and

prediction of outcome [13, 26, 30, 31]. The findings of recent radiomics studies suggest the

potential for imaging data in quantification of tumor phenotypic characteristics to improve

biomarker research.

Radiomics research falls directly in the field of biomedical imaging informatics by pursuing

the effective use of imaging data, information, and knowledge for scientific inquiry, problem

solving and decision making. It also investigates how to reason on these data in order to effect

beneficial change in the healthcare enterprise. This thesis, therefore, focuses on contributing

to the body of research in the field of radiomics. The ultimate goal of this thesis is to improve

integration of imaging data in clinical decision making processes to improve patient outcome.

The intermediate goal is providing evidence of the utility of imaging data in the context of

other sources of knowledge such as clinical data to promote imaging biomarker discovery.

The research, therefore, unfolds over the following two aims.

AIM I Making imaging-derived information accessible:

The usefulness of images in developing decision support systems in dependent on

the availability of quantitative imaging data. To this end, an analytical informatics

pipeline is implemented for characterization of multiscale imaging data. This tool

is a comprehensive methodological pipeline for conversion of diagnostic images to

quantitative and mineable data. When pointed to an anatomical region with clinical

relevance, it extracts large numbers of quantitative features to objectively describe

the spatial and spectral appearance of the region on a pixel-by-pixel level. Images

from several modalities (Computed Tomography (CT), Magnetic Resonance Imaging

(MRI), Contrast Enhanced Spectral Mammography (CESM)) can be processed with

the pipeline.
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AIM II Bridging the gap of imaging-derived information and other biomedical

data:

The integration of quantitative features from biomedical images with other clinical

and genomic data is an ongoing area of research. Image-drived data can be used for

integration and construction of models that yield new insight about diseases, or can be

used for development of decision support tools to improve clinical practice. For this

aim, I focused on linking the imaging features with the context of diseases in which

imaging biomarkers have an established presence: cancer and Alzheimer’s disease. Four

retrospective validation studies were conducted to assess the utility of imaging data in

diagnostic applications, and if possible and relevant, to assess if using this data can

lead to improved diagnostic accuracy compared with that of clinical practice.

1.3 Overview of Chapters

Chapter 2 describes the background of the radiomics approach, focusing on the motivations

of radiomics, the literature in this field, and summary of a generic radiomics workflow. Chapter

3 presents technical details of the theoretical and methodological pipeline proposed in AIM I.

This chapter provides a description of preprocessing steps including image normalization

and segmentation of regions of interest. Analysis methods used for extraction of quantitative

features are described next followed by the summary of the analysis processes used for

assessing clinical utility of imaging-derived features.

Chapter 4 to 7 presents the validation studies conducted for fulfillment of AIM II. In

respective order, these chapters review studies related to sinonasal cancer (chapter 4), breast

cancer (chapter 5), human papillomavirus (chapter 6) and finally, the Alzheimer’s disease

(chapter 7). These chapters begin by a summary section in which the goal of the study,

details of the publication, and my contributions to the study are highlighted. Each chapter

follows the format required for publication: abstract, introduction, material and method,

results, discussion and conclusion.
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Some of the challenge in imaging biomarker discovery is resolving the technical and

standardization barriers to providing actionable evidence of imaging data. Chapter 8

highlights the challenges related to feature extraction, selection, and analysis processes and

their respective impact on the result. This chapter also discusses the future of radiomics

research and its impact in advancement of image-based diagnosis and biomedical imaging

informatics. The limitations of the pipeline presented in this thesis are discussed next.

Chapter 9 presents the conclusion of this research.
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Chapter 2

BACKGROUND LITERATURE

2.1 Introduction

In this chapter, I describe a recent paradigm for quantitative image analysis known as

radiomics. My aim for this chapter is to clarify what radiomics is and where it stands in the

spectrum of cancer research. First, the motivations and potential impacts of radiomics is

discussed particularly in relation to advancement of solid tumor cancer research. This section

is followed by a review of the findings of the latest literature. Next, high-level workflow of

radiomics is described including the input imaging data, feature extraction methods, and

challenges of data analysis.

2.2 Radiomics

Quantitative image analysis has a well-established footprint in cancer research. Imaging

traits have been used for characterization of healthy and pathologic tissues, for differentiation

of tumor regions, as well as for tumor grading. Some examples in this regard are the imaging

studies in brain [32–35], breast [36–41], lung [42, 43], and prostate [44] cancers. Imaging

qualities have also been used to predict prognosis markers such as time to progression and

survival rate of brain tumors [45], non-small cell lung cancer [46], colorectal cancer [47–49],

and renal cell cancer [50].

There are similarities between the radiomics approach and conventional quantitative

image analysis. They both explore imaging data for potential utility in treatment, monitoring,

outcome prediction, or biomarker discovery. However, radiomics differs from quantitative

image analysis in the high throughput approach to quantification of tumor phenotypes. By

facilitating extraction of large quantities of information from diagnostic imaging radiomics
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not only leads to comprehensive assessment of the clinical utility of the imaging features,

but also serves as a bench mark to standardize feature extraction and analysis processes.

Radiomics data has shown potential in reflecting the complexity of tumor composition

and behavior. By promptly detecting small and early focal responses this data can lead

to enhanced tumor characterization and response assessment. Advocates of radiomics are

motivated by the fact that imaging is nearly non-invasive (completely when no contrast agent

is injected) and can shed light on the lesion state in its entirety even in complicated cases

where biopsy procedures are risky. Moreover, the extracted imaging information may prove to

be complementary or interchangeable with other sources, i.e. demographics, pathology, blood

biomarkers, genomics [13]. Hence, radiomics can lead to earlier termination of ineffective

treatment plans leading to lower cost of treatment and enhanced quality of life during

treatment for the patient.

Growth of radiomics research can potentially lead to the progress of imaging biomarker

research. Alizadeh and colleagues [51] identify blood-borne biomarkers as the main non-

invasive physical source for gaining insight into the molecular composition of tumors. Cell-free

DNA and circulating tumor cells can be accessed through blood samples to provide insight

into the molecular composition of tumors. However, blood samples have a fundamental

limitation, as they discuss: “It is unclear whether primary tumors or metastases contribute

more to the pool of circulating cancer material. It seems clear, however, that even if

circulating material is found to faithfully reflect the tumor itself, there is still a need for more

efficient ways of isolating the cells and nucleic acids from the blood and for data analysis tools

that can more faithfully reconstruct the parent tumor”. Upon validation, radiomics imaging

traits can breed non-invasive biomarkers that can be identified as surrogates for important

clinical outcomes [52]. These biomarkers can be utilized in various stages of cancer care such

as detection, diagnosis, assessment of prognosis, prediction of response to treatment, and

monitoring [31].
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2.2.1 Radiogenomics

One of the emerging areas in this area of study is known as Radiogenomics. This term

has been used in the literature to describe two quite different concepts: (1) the practice of

analyzing whole genome to enhance our understanding of molecular pathogenesis and risk

factors of variation in radiotherapy toxicity [9, 53, 54], (2) establishing association maps

between radiomics data and genomics (or other -omics) data. To clarify, here we refer to the

latter definition which has also been described as ’Imagenomics’ in the literature [55].

Radiogenomics focuses on mapping the quantitative imaging input to the findings of

computational biology. A major motivation behind radiogenomics studies is that imaging

is already part of routine diagnostics, an advantage that gene expression profiling is only

beginning to develop [13, 30]. In contrast to genomics profiling, virtually all patients go

through imaging multiple times during their treatment [31] and, given the non-invasive nature

of the procedure, imaging can theoretically be repeated as often as required. Therefore, by

establishing association maps between imaging traits and previously determined treatment

response or gene-expression findings, radiogenomics can lead to non-invasive imaging sig-

natures for the genomics pathways and a shift towards individualized medicine in routine

care.

Given that genomics profiling is not available for all the patients who go through cancer

treatment, radiogenomics can potentially offer two services for advancing targeted therapies

towards a more genetically informed paradigm. Firstly, radiogenomics offers the possibility of

mapping the distribution of genomics markers across the entirety of lesion. Genomics markers

are detected from local and temporal tissue samples. By building association maps between

these markers and imaging traits, radiogenomics can introduce radiophenotypes, specific

image phenotypes that associate with presence/absence of genes [52]. These characteristics

can serve as surrogates for gene expression signatures [30]. If such association maps are

established and validated, radiogenomics can detect where in other parts of the lesion those
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imaging traits are present and therefore prompt biopsy procedures to target more specific

areas of tumors [56]. Secondly, radiogenomics can serve as an independent source of additional

information to inform on how a biological process is reflected in images [52]. Such information

could be merged with genomics data leading to enhanced diagnostic and prognostic power

[31].

2.3 Examples of Radiomics Literature

Aerts and colleagues [27] showed that it is possible to identify imaging traits that are

consistent across multiple datasets and associate them with tumor prognosis. They conducted

a study in which 440 features were extracted to quantify tumor intensity, shape and texture

on the CT images of patients with lung or head-and-neck cancer. Features were found to

have significant association with tumor histology, and to have prognostic power in seven

independent datasets. The authors also found associations between radiomics features and the

gene-expression profiles of lung cancer patients in one dataset. Along these lines, Parmar and

colleagues [57] investigated cancer-specific radiomic feature clusters in four independent Lung

and head-and-neck cancer cohorts. Several feature clusters, extracted from the pre-treatment

CT images, exhibited stability across the datasets. The authors found strong associations of

these features with lung prognosis and staging of head and neck lesions.

Coroller and colleagues [58] extracted 635 radiomic features from pre-treatment CT-scans

of lung adenocarcinoma patients. 35 features were predictive of distant metastasis (DM),

and 12 features showed correlation with survival. The authors concluded that, given the

strong power of their radiomics signature in predicting DM, the result could be used as a

prognostic biomarker for factors such as distant metastasis.

Hu and colleagues [17] highlighted how radiomics can serve as a noninvasive means to

potentially predict histopathology. They extracted 900+ texture features from various MRI

contrasts of Glioblastoma Multiforme (GBM) lesions at the biopsy locations. The authors
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Figure 2.1: Prediction of tumor content in Glioblastoma Multiforme (GBM) using radiomics
data (courtesy of Hu et al. [17]). Authors generated a model to bridge the gap betweem
radiomics features extracted from MRI images and tumor content of biopsy samples. This
figure shows the success of their model on two previously unseen cases in the validation
set. (A, B, C, E) Biopsy locations within the non-enhancing (green dots, arrows) on T1+C
(A, D) and T2W (B, E) images corresponding with high-tumor (>80% tumor nuclei) and
low-tumor (<80% tumor nuclei) tissue samples on histologic analysis. Colormaps (C, F) with
manual tracings (green) show the probability (range 0-1) of tumor-rich (red) vs tumor-poor
(green/blue) content across the tumor for the two cases.
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generated a classification model that predicted the percentage of tumor content from the

texture features. Figure 2.1 shows the colormap overlay of their predictions across the entire

lesions in two validation cases. Hu and colleagues [56] also predicted local gene expression

data through multivariate analysis of copy number variant (CNV) status, multi-parametric

MRI, and texture analysis. This study proposed that a radiomics model with an acceptable

level of success in the prediction of the presence of a certain gene can provide invaluable

information to guide further biopsy procedures. Figure 2.2 shows the proposed tree model of

imaging features for prediction of PDGFRA amplification (Part A), along with colormap

overlay of prediction (Part C) on 2 stereotactic biopsies (Part B) for a validation case.

Figure 2.2: Radiogenomics model for GBM (Figure courtesy of [56]). (A) (P= isotropic
diffusion; EPI+C=T2*W signal loss; DOST=discrete orthonormal Stockwell transform; PC3,
PC2 derived from principal component analysis (PCA), AUC, area under curve). (B) the
locations of 2 stereotactic biopsies (Bx#1, Bx#2) on CE-MRI. DNA CNVs demonstrated
amplification (Amp, Bx#1) and diploid/wild-type status (WT, Bx#2). (C) regions (ROIs)
of predicted PDGFRA amplification (red voxels) using tree model classification.
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Zinn and others [59] identified and corroborated genomic correlates of edema/cellular

invasion in GBM with MRI phenotypes. Gevaert and others [60] extracted quantitative

image features from the enhancing necrotic part of GBM tumor and peritumoral edema on

MR images. Their radiogenomics map linked 56% of the 50+ imaging features with biologic

processes, while 3 and 7 imaging features were significantly correlated with survival and

molecular subgroups, respectively. Focusing on GBMs, Diehn et al. [61] showed initial proof

that a radiogenomics approach could potentially be used in selecting patients for targeted

therapies. They identified an imaging biomarker of EGFR expression from MR images; an

image trait termed “contrast necrosis” highly associated with EGFR gene expression. They

effectively utilized this image trait to select GBM patients with over-expressed EGFR protein.

In a clear cell renal cell carcinoma application, Karlo and others [62] found associations

between known genetic mutations and imaging traits describing the tumor margin, size,

vascularity, and enhancement on pretreatment CT images. Segal and colleagues [63] associated

distinctive imaging traits in CT scans with global gene expression profiles of liver cancer

related to angiogenesis (such as vascular endothelial growth factor, VEGF). Their results

showed association maps between 28 features and 78% of the global gene expression profiles.

In a preliminary breast cancer radiogenomics study, Yamamoto and colleagues [64] provided

an association map linking MR image phenotypes to underlying global gene expression

patterns. They found 21 (out of 26) imaging traits of breast MRI as globally correlated with

71% of the total genes measured in patients with breast cancer.

2.4 Workflow of Radiomics

Implementation of the radiomics approach (in the traditional learning scheme) involves the

following discrete processes: (a) image acquisition, (b) segmentation, (c) feature extraction,

(d) feature analysis and model generation. In this section, we briefly describe each of these

steps. Figure 2.3 shows the simplified workflow of the training and application of the radiomics

approach. Step 1 shows the training phase of the workflow in a conventional learning scheme

17



which is bound by preparation of feature sets. In this learning scheme, a high number of

features are extracted from diagnostic images via a radiomics engine (part a). These features

are then analyzed in the prediction engine (part b) using machine learning techniques. The

output of the prediction engine divides the high dimensional feature space of radiomics to

a much simpler classification space (part c) to assess the clinical hypothesis of the dataset.

Step 2 shows how this pipeline can be applied for prediction of the result in a previously

unseen case.

Figure 2.3: A simplified radiomics workflow. In training phase (Step 1) a high number of
features are extracted from diagnostic images via a radiomics engine and are used to generate
a low dimensional classification space from the training data. The classification model is
used on unknown cases in Step 2.
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2.5 Inputs of the Radiomics Engine

Just as cancer therapy research has advanced, so too has cancer imaging, resulting in

images with higher temporal resolution (number of frames per unit time), spatial resolution

(number of image pixels per spatial unit), and contrast resolution (number of bits per pixel).

Depending upon the cancerous organ, the location of metastasis, and patient tolerance to

the procedure, various imaging modalities are ordered. Some well-known image modalities

are Computed Tomography (CT), Magnetic Resonance Image (MRI), or Positron Emission

Tomography (PET).

CT scans can provide high resolution structural information about the location and shape

of lesions [65]. When combined with contrast injection, CT scans exhibit strong contrast

reflecting the presence of underlying disease or injury in the organs, blood vessels and/or

tissue types [27]. CT perfusion shows which areas are perfused adequately with blood and

provides detailed functional information on delivery of blood or blood flow to specific organs.

Figure 2.4: MRI images of brain with tumor viewed in axial plane. The arrows show the
location of glioblastoma multiforme (GBM) on (a) standard pre-contrast T1-weighted, (b)
post-contrast T1-weighted, and (c) pre-contrast T2-weighted sequences.

Tumor functional and molecular characteristics are assessed using Magnetic Resonance
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Imaging (MRI). The use of different spin-echo sequences for capturing MRI results in

exhibition of different functionalities of lesions. MRI contrast may be weighted to demonstrate

different anatomical structures or pathologies (Figure 2.4). For instance, T1-weighed MRI is

used for obtaining morphological information while MR diffusion weighted, Flair sequences

and T2-weighted are useful as measures of cellularity, edema and inflammation. MR diffusion

has been reported to detect early changes that correlate with tumor response [66, 67].

Lesion perfusion is captured using dynamic contrast enhanced-magnetic resonance imaging

or DCE-MRI, providing information on lesion blood flow, permeability, and angiogenesis [68].

Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response

biomarker as it is sensitive to macromolecular and micro structural changes which can occur

at the cellular level earlier than anatomical changes during therapy [69].

Tumor metabolism is assessed using a type of nuclear medicine imaging known as

Positron Emission Tomography (PET) imaging. PET imaging provides important information

regarding blood flow, oxygen use, and sugar metabolism of lesions. However, PET has limited

spatial resolution. More recent developments in imaging have resulted in devices that perform

imaging via dual sources such as PET/CT and PET/MR [70, 71]. However, the standard-of-

care imaging modalities such as CT and MRI are the most explored imaging modalities for

incorporation in radiomics workflows due to the potential impact in routine care [72–74].

Regardless of imaging modality, the next step prior to the extraction of radiomics features

is segmentation of the region(s) of interest. Lesion segmentation is performed to precisely

define the spatial extent of the lesion on the images. The validity of the segmentation result is

of utmost importance because of its direct impact on the radiomics features and the utility of

their content. Prior to segmentation, several image preprocessing steps are requisite, including

spatial registration of different image sequences and modalities, noise reduction, and intensity

calibration to account for the differences in the anatomical and intensity variations of the

images.
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Manual outlining by an expert is considered the ground truth in tumor segmentation.

However, the result of manual segmentation can be unreliable due to inter and intra reader

segmentation variability [75]. Moreover, outlining a 3D volumetric object manually is a

tedious and time consuming task rendering it impractical. In comparison, semi-automatic

methods involve a minimal amount of input from an expert user (e.g., a seed point to

initialize the segmentation or manual editing of the results). Region growing methods, level

set methods, graph cut methods, active contour algorithms and semi-automatic segmentations

such as livewires are among the most widely used segmentation approaches [26]. Automatic

and semi-automatic segmentation methods are the preferred method of segmentation in

radiomics worflows due to their robustness and significantly higher levels of reproducibility

[76].

2.6 Feature Extraction

Radiomics features cover a wide range of quantitative attributes including shape, margin,

boundary, intensity, texture, etc. Lesion shape, boundary, margin, and location are established

prognostic measures, and are already a part of the radiologists’ lexicons for description of

lesions [31]. In regard to this group of features, the goal of the radiomics approach is to

introduce quantitative measurements to reduce variations of image interpretation due to

human error and inter-observer variability [39, 77].

Biomedical texture information relates to the micro- and macro- structural properties

of biomedical tissue. Texture descriptors are generally divided into three major categories:

statistical, structural, and spectral. Statistical texture features are non-deterministic descrip-

tors of the distribution of gray-level intensities in a region of interest. First order statistical

features (i.e. mean, max, min, variance, kurtosis) are histogram-based descriptors of intensity

distribution and can only provide global information regarding the target region intensity

pattern. Second order statistical features describe inter-relationships of gray-level values

within a region and are the most widely used feature extraction method in medical pattern
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recognition tasks. gray level co-occurrence matrices (GLCM) [78] and gray level run length

matrices (GLRLM)[79] are two instances of this group. In GLCM, a variety of features are

used to describe a matrix generated from the observed frequency of gray-level combinations

within neighboring pixels, while in GLRLM the focus is on describing coarseness of texture

in predefined directions. The utility and efficacy of GLRLM in comparison with GLCM or

spectral methods were debated in the early stages [80, 81], however it has been increasingly

investigated for clinical applications in the last decade [82–84]. Grey-scale and rotationally

invariant Local Binary Patterns (LBP) [85] is another statistical descriptor of texture focusing

on the patterns of intensity transition within the sub regions of an area of interest. The

radius of the sub regions determines the scale of the texture described by the LBP features.

Structural descriptors view texture in terms of texture primitives such as micro and macro

textures. Model-based features describe the region of interest through mathematical models

such as fractals or stochastic models [86]. There are fewer reported radiomics applications for

structural and model-based methods (an example: [87]), as they are viewed as more suitable

for synthesis than analysis.

Spectral descriptors rely on the frequency or scale domain representation of the region

of interest for calculation of texture features. By adjusting the window/filter expansion in

space or frequency, these transform-based methods allow for multi-resolution, multi-scale

representation of texture. The wavelet transform (WT) [88], the Riesz transform [89], the

Stockwell transform (ST) [90], the Discrete Orthonormal Stockwell Transform (DOST) [91]

and the Polar Stockwell Transform (PST) [92], Gabor filter banks (GFB) [93], and Laplacian

of Gaussian Histograms (LoGHist) [94] are only some examples of this group.

2.7 Predictive Engine

The predictive engine is in charge of extracting clinically relevant information from the

large amount of data generated using the radiomics approach. Dimensionality reduction and
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feature selection are two of the fundamental building blocks of this engine and are responsible

for selecting and/or generating valuable features from the large number of often-redundant

radiomics features. Selected features can be used to build predictive models of clinical

endpoints such as patient survival and tumor progress or models that predict diagnostic

information such as tumor stage and tumor diagnosis. Predictive modeling generally involves

a type of supervised learning scheme in which the labels of samples (i.e. tumor stage,

diagnosis, or pathology) are presented to the classifier for a subset of the available data

known as training set. The model is later tested by predicting the label of previously unseen

data (2.3).

A certain classification approach might be better suited for a type of data based on the

characteristics of the data and the manner in which the classification approach is utilized [95].

Designing the best classification approach that can lead to stable and reproducible models

requires a substantial amount of knowledge in machine-learning and statistical inference.

The interested reader is referred to [96–98] for more information.
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Chapter 3

METHODOLOGICAL PIPELINE: A RADIOMICS APPROACH TO IMAGE ANALYSIS

3.1 Summary

This chapter describes the methodological pipeline that has been proposed in fulfillment

of specific AIM I. Beginning with the overall description of the platform, this chapter provides

the steps involved in preprocessing of biomedical images and extraction of region of interest.

Next, feature descriptors are explained in detail including intensity-based, statistical, and

spectral texture features. To finalize, machine learning techniques and statistical analysis

used along with this pipeline are presented.

3.2 Proposed Platform

The pipeline presented here follows the genreric radiomics workflow described in chapter

2. This pipeline provides a path for quantitative analysis of image texture and intensity along

with a selected number of morphological features (shape descriptors). Although a universally

agreed-upon definition of texture does not exist among the experts, it is often described as the

patterns perceived by humans that reflect the spatial organization or repeated sub-patterns

of the image. Several feature extraction algorithms are included in this pipeline that examine

brightness distributions or spectral representation within the region, searching for spatial

relations between pixels that have particular gray levels. The pipeline computes numerical

values that correspond to intrinsic properties of texture and intensity.

Texture can not be detected in a single pixel (or voxel). These patterns can only be

characterized within sufficiently large regions that can contain several repeated patterns or

a texture fragment which is representative for a whole texture. Similarly, the whole image

cannot be the input for texture feature computation because the features won’t correctly
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reflect characteristics of particular objects or meaningful areas. A region of interest therefore

is required to limit the area from which the features are computed. These regions are

provided to the pipeline as input files.

There are two modes for feature computation in this package. The first mode computes

features from a user defined region of interest to provide a numeric representation of the

region as a whole. In this mode, the pipeline provides a close-to-optimal description of the

region by computing features that describe incremental degrees of texture scales. The second

mode computes features from a sliding small window placed around every image pixel within

a large region of interest, capturing the variability of small scale texture features across a

large region.

The inputs of the pipeline are 2D images or slices and a file that provides the coordinates

of the region of interest boundary (with ’.txt’ or ’.roi’ extensions). Features extraction

algorithms included in the pipeline are listed in Table 3.1. The output of the pipeline is

a spreadsheet in which columns are image modality, patient Identification number, slice

number, size of the region of interest, and the name of the numeric features. The rows

represent the values of columns for each patient. The script for this pipeline is written in the

platform-independent and open source Python[99] programming language.

3.2.1 Preprocessing

Figure 3.1 shows the steps involved in preprocessing of images. Inputs to the pipeline are

the address of a root folder where images and the region of interest (ROI) files physically exist,

as well as the format of images (DICOM, or generic image formats such as PNG/JPEG/TIFF)

and the format of ROI files. To ensure similarity of images, several image properties are

assessed and matched across the cohort including image dimensions (image size), image pixel

spacings (physical size of a pixel in x and y directions), and dynamic range of images (range

of intensity levels). Image resampling is performed when inconsistencies are observed in pixel
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spacings and image dimensions of images. These preprocessing steps are necessary to ensure

that the difference among subsequent texture features are not the result of imaging protocol

or image acquisition settings.

Table 3.1: Texture Descriptors Included in the Platform

default # features for a region
Algo. Description Category size: 8x8 size:16x16 size:32x32

- Raw Intensity Statistical 3 3 3
Descriptors

Gray Level
GLCM Co-occurence Statistical 26 26 26

Matrices

LBP Local Binary Statistical 12 12 12
Patterns

GFB Gabor Filter Spectral 8 8 8
Banks

DOST Discrete Orthonormal Spectral 6 10 15
Stockwell Transform

LoGH Laplacian of Spectral 18 18 18
Gaussian Histograms

Segmentation of the ROIs is the next preprocessing step, in which the pipeline loads the

ROI files and select the regions of interest from the images. The ROI files provide image

coordinates of the boundary of a selected region with a clinical relevance. The ROIs are

the result of manual outlining by an expert and can include either coordinates of a selected

rectangular area or coordinates of a closed free-form boundary. Given that a larger area

can result in a larger number of features, at this step the pipeline compares the sizes of

the regions of interest and calculates the size of the largest square-shaped region that can

be extracted from all cases, while remaining within the boundaries of the ROI file. This

leads to extraction of sub-images which are input of feature extraction engine. One last step

before feature extraction is intensity normalization of sub-images to a common dynamic

range to ensure that the subsequent features characterize the sub-image texture exclusively
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and do not depend on any global imaging characteristics such as the overall brightness or

illumination of images.

Figure 3.1: Image Preprocessing Steps. Provided with a the address of a root folder, images
and ROI files are processed to select a common size of region of interest for analysis.

3.2.2 Feature Extraction

The Feature extraction module is the heart of the pipeline that generates two categories

of features: texture descriptors, and shape descriptors. Texture descriptors can be further

divided into three categories: Intensity-based, statistics-based, and transform-based measures.

Intensity-based features are first-order statistics of the histogram of pixel intensities

(Figure 3.2). Features computed in this method are simply statistical descriptors of the

histogram distribution (pdf) such as: mean brightness, variance, skewness, kurtosis and

percentiles. Because these features disregard the spatial relations between the pixels within
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Figure 3.2: Intensity-based features are first-order statistics of the histogram of pixel
intensities. Examples are mean brightness, variance, skewness, kurtosis and percentiles.

the image some disagreement exists in the literature about whether or not they should be

considered texture features. Nonetheless, they are descriptors of the visual appearance of the

image as a whole and are generally reported along with established texture features. This

pipeline includes mean, range, and standard deviation of the gray-level intensities from this

category. These features are computed before the final preprocessing step (dynamic range

normalization) to report the visual appearance of the original image.

The Next group is statistical texture descriptors which attempt to provide insight into

local intensity distributions within the region. The module includes two statistical texture

descriptors: Gray Level Cooccurrence Matrices (GLCM) and Local Binary Patterns (LBP).

The gray-level co-occurrence matrix (GLCM) [78] is a second-order histogram, computed from

the intensities of pairs of pixels. The popularity of GLCM lies in its simplicity. Each element

in the co-occurrence matrix shows how often a pair of intensity levels is seen in a neighborhood

defined with a certain angle and distance (Figure 3.3). A GLCM matrix is computed per

one direction/angle at a time. In order to produce unidirectional and rotationally-invariant

features, several matrices are computed and merged by either regrouping the counts of

operators over all directions in a shared matrix, or by averaging scalar texture measurements
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Figure 3.3: GLCM matrices are calculated per a distance and an angle. The matrix in right
is calculated for the image in the left for distance of 1 and the horizontal direction. The
element (1, 1) in the matrix contains the value of 2 because there are two instance in the
input image where two horizontally adjacent pixels have the values 1 and 1. The element
(5, 2) in the matrix contains the value of 1 because there is only one instance where two
horizontally adjacent pixels have the values 5 and 2. This process is continued, scanning the
image for other pixel pairs (i, j) for remaining directions (and potentially radii).

from the matrices obtained with different directions. In this pipeline 4 directions are

accounted for 0◦, 45◦, 90◦, and 135◦ to produce isotropic texture features. The radius of 1

is used as default to describe spatial relationships between immediately neighboring pixels.

The radius can be adjusted to capture these relationships across larger neighboring regions.

A set of 13 features are calculated using this method, examples of which are presented in

Table 3.2. This pipeline computes the mean and range of the set of features for a total of 26

features.

Rotationally-invariant local binary patterns (LBP) [85] focus on intensity distributions

of neighboring areas inside the region. Given a radius, this method places a patch with that

radius around every pixel in the region. The choice of the neighborhood radius defines the

scale of features described by this method. In each round, the intensities of the pixels around

a patch are converted to binary values based on whether intensities are greater or lesser

than that of the center point (Figure 3.4). The binary levels for each patch are aggregated
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Table 3.2: Texture Features from GLCM. The reader is referred to [78] for the complete list
of features.

Feature Formula Description

Angular Also known as uniformity and homogeneity,

Second
N−1∑
i,j=0

(
Pij
)2 ASM is high when image is homogeneous.

Moment

Contrast

√√√√N−1∑
i,j=0

(
Pij
)2 Square root of ASM.

measure of randomness of matrices.

Entropy
N−1∑
i,j=0

−ln
(
Pij
)
Pij Inhomogeneous scenes have low first order

entropy.

Variance Variance or sum of squares. This feature puts
N−1∑
i,j=0

Pij (i− µ)
2 relatively high weights on the elements that

differ from the average intensity value.

Correlation
N−1∑
i,j=0

(i− µi) (j − µj)Pij
σiσj

Measure of gray-tone linear dependencies.

Inverse IDM is the local homogeneity. It is high

Difference
N−1∑
i,j=0

Pij

1 + |i− j|2
when local gray level is uniform.

Moment

Pij = Element i,j of the normalized symmetrical GLCM

µi =

N−1∑
i=0

iPij , µj =
N−1∑
j=0

jPij , σ
2
i =

N−1∑
i,j=0

Pij (i− µ)
2 , σ2j =

N−1∑
i,j=0

Pij (j − µ)
2

and converted to a binary code which corresponds to a decimal value. Aggregated decimal

values for the whole region are organized into a histogram from which the LBP features are

extracted. These features can be either normalized counts of histogram bins or descriptors

of histogram shape such as mean, variance, skewness and kurtosis. Default setting calculates

local binary patterns for the radius of 3. Normalized bin counts of a 12-bin histogram are

reported as the set of LBP features.

Transform-based texture descriptors are computed using 3 methods: Discrete Orthonormal

Stockwell Transform (DOST), Gabor Filter Banks (GFB), and Laplacian of Gaussian
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Figure 3.4: The circularly symmetric neighbor set of eight pixels in a 3x3 neighborhood. A)
The gray-level intensity of the center pixel (g0) is compared with the gray values of the eight
surrounding pixels of the circularly symmetric neighborhood. The result is a binary code
that defines the transition of pixel intensities across the neighborhood. B) Two examples of
a 3x3 region along with the LBP binary codes and the final digits.

Histograms (LoGHist). The methods use convolution as the type of linear operation used to

apply the texture operator to the image. A convolution in the spatial domain corresponds to

a multiplication in the Fourier domain.

Discrete Orthonormal Stockwell Transform (DOST) [91] provides a multi-resolution

spatial-frequency representation of an image. The process of calculating DOST features for a

2D image begins with defining the forward 2D Fourier Transform (FT) of a discrete function

f (x, y) which is assumed to have sampling interval of one in the x- and y- directions:

H [m,n] =
M−1∑
x=0

N−1∑
y=0

h [x, y] e−2πi(
mx
M

+ny
N )

And the inverse 2D-FT:

h [x, y] = 1
MN

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

H [m,n] e2πi(
mx
M

+ny
N )

Next a dyadic sampling scheme (orders 0, 1, 2, ..., Log N-1) is used to partition the 2D

FT space into non-overlapping sections. The 2D-DOST of a NxN image h[x, y] is therefore
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calculated by partitioning the 2D-FT of the image, H[m,n], multiplying by the square root

of the number of points in the partition and performing an inverse 2D-FT,

S [x′, y′, νx, νy] = 1√
2px+py−2

2px−2−1∑
m=−2px−2

2py−2−1∑
n=−2py−2

H [m+ νx, n+ νy] e
2πi

(
mx′

2px−1+
ny′

2py−1

)

where vx = 2px−1 + 2px−2 and vy = 2py−1 + 2py−2 are the horizontal and vertical “voice

frequencies”. The spectrum is partitioned such that the wave numbers (νx0, νy0) are shifted

to the zero wave number point, a 2px−1 x 2py−1 inverse FFT is performed, resulting in a

rectangular (in general) voice image of 2px−1 x 2py−1 points. In this package rotationally

invariant features are calculated from the DOST image by averaging the magnitude of the

horizontal and vertical frequency values for each order.

Gabor filter banks [93] is another spectral method included in this pipeline. This methods

captures frequency content of the ROI through filtering the ROI with 2D Gabor filters.

Gabor filters are described by their orientation (θ), central frequency (f) and bandwidths in

horizontal and vertical directions (σx, σy). The equation of Gabor filter in the frequency

domain is:

G(u, ν, f, θ) = 1
2πσuσν

[
exp(−1

2

(
(uθ−u0)2

σ2
u

+ (νθ−ν0)2
σ2
ν

)
+ exp(−1

2

(
(uθ+u0)

2

σ2
u

+ (νθ+ν0)
2

σ2
ν

)
)
]


uθ = ucosθ + νsinθ νθ = −usinθ + νcosθ

u0 =
2πcosθ
f ν0 =

2πsinθ
f

σu,ν = 1
2πσx,y

Gabor filters are handcrafted and reflect upon only a section of the frequency representa-

tion of the ROI. Therefore, their success in capturing the true frequency content of the ROI

depends on the choice of filter shape, frequency, and bandwidths. In our experience with

these filters, σx = σy = (1.0, 3.0) and f = (0.6, 1.0) showed successful for small ROIs of sizes

8x8 - 16x16. For larger ROIs, the pipeline computes features for a wide range of Gabor filter
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shapes and sizes (as reported in chapter 4). Mean and standard deviation of each filtered

image are reported as Gabor features.

Laplacian of Gaussian [94] or LoG is the last convolutional texture processing approach

included in the pipeline. LoG uses a radial second-order derivative of a 2-dimensional

Gaussian filter as:

gσi(x) = − 1
πσ2

i

(
1− ‖x‖

2

2σ2
i

)
e
− ‖x‖

2

2σ2
i

where σi defines the scale of the Gaussian filter. All structures at scales much smaller than

a particular σ are blurred leaving only textural information of a particular scale. Isotropic

multi-scale texture measures can be obtained by reporting the absolute values or the energies

of the band-pass filtered maps. Default setting for computation of LoGhist features in this

pipeline is set for Gaussian filters of σ = (2.0, 4.0, 6.0) to cover a range of fine to medium scale

textures. The pipeline then calculates statistical features (i.e. kurtosis, skewness, standard

deviation, mean, entropy, and uniformity) for the normalized histogram of the LoGs. The

said features are reported for each level of σ, counting up to a total of 18 LogHist features.

Four shape features are also included in the package. These features are extracted from

cases where the region outline has clinical relevance, for instance breast cancer in which

irregular shape of the lesion is an indication of malignancy. There are currently 4 shape

irregularity descriptors, described in [100], included in the pipeline. These features quantify

the similarity of the lesion boundary to a circle.

3.2.3 Feature Analysis

The number of features computed by this pipeline is large, reaching 73 features for an 8x8

region. Consequently an analysis engine is required to provide meaningful information related

to the clinical utility of these features. However, the choice of the analysis approach depends

highly on the data at hand and the question of the study. Therefore the analysis engine of
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this pipeline is not hard-coded. Nonetheless, a number of frequently-used techniques for

statistical analysis, dimensionality reduction, feature selection, and classification have been

scripted in the pipeline. These scripts borrow from python-based open source libraries such

as Scipy[101] and Scikit-Learn[102].

Hypothesis testing is implemented using 2-sided tests with statistical significance level

defined as P < 0.05. 2-sample t test are performed for univariate comparison of features

between different groups before the application of machine-learning methodology. P-values

are corrected for multiple comparisons using the false discovery rate [103].

Given that high number of features can cause classifier overfitting, dimensionality re-

duction is an important pre-classification step. In this step the original feature space is

transformed into a new space of lower dimensionality to increases the chance of capturing

underlying relationships presumably present in the data and increase predictive performance

of the models on unseen data. This pipeline includes dimensionality reduction technique

using Principle Component Analysis (PCA) [104]. PCs are linear combinations of features

and are uncorrelated and ordered accordingly to their standard deviations. PCA is performed

separately for each texture algorithm and imaging source. Imaging source in this context

refers to any factor that affect the content of the image, examples are image modality (CT,

MRI, or Mammography), Imaging sequence (T1, T2, or post-contrast T1 for MRI), and

image view (i.e. two common views of image acquisition in mammography imaging). The

PCs can contain a certain level of the variability within a feature set (i.e. 80% - 95%). These

PCs are used for further processing. PCs are computed on features of all patients regardless

of diagnosis.

A critical step in modeling and analysis is feature selection. Feature selection is performed

to avoid overfitting to noise and to remove redundant features. Given that in the radiomics

approach the focus is on being thorough, it often computes a large number of features, many

of which are either highly correlated with each other or are redundant. There are two
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general strategies to feature selection. Filter strategy estimates the value of each attribute

individually, resulting in low computational complexity. These methods can be applied

prior to classification, possibly in conjunction with a random sampling approach, to serve as

another dimensionality reduction technique. However, filter-based feature selection strategy

may not be able to reveal the actual discriminative power as it views each feature independent

of the others. An alternative is the wrapper approach in which utilizes a search method to

search through the whole feature space and identify a relevant and non-redundant feature

subset [105].

This pipeline includes Sequential Forward Feature Selection (SFFS)[104] method. SFFS

starts with an empty set of features estimating discriminative power of individual features.

Features are gradually added to the feature with highest power so that all combinations of

feature pairs are examined. This method offers minimal redundancy but maximal relevance of

features. SFFS can also or be wrapped in model generation and classification. The criterion

that we used for adding features in SFFS is accuracy of the feature set, meaning features

were added to the set as long as they contributed to the accuracy of leave one out cross

validation beyond 1% or 5%. Threshold of 5% was used when the available data sample size

didn’t allow for separate train and test sets to reduce the possibility of overfitting.

Several classification (individual and ensemble algorithms) approaches have also been

scripted in the pipeline and are available for use with minimal modification. Examples are

Support Vector Machines (SVM), random forests, and Diagonal Quadratic Discriminant

Analysis (DQDA). These methods were particularly selected since they are among supervised

classification methods that have elicited good performance for high dimensional data with

small sample sizes. Leave one out cross validation and splitting samples are implemented

to assess the model performance on trainset. ROC curves statistics such as sensitivity,

specificity, accuracy, area under the ROC curve, confidence intervals of the area under the

ROC curve, and model significane are reported as the metrics of model evaluation. The
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classification models is also stored for future validation studies where generalizability of the

models can be assessed by testing them against previously unseen data.
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Chapter 4

VALIDATION STUDY I: MRI-BASED TEXTURE ANALYSIS TO DISTINGUISH

SINONASAL SQUAMOUS CELL CARCINOMA FROM INVERTED PAPILLOMA

4.1 Summary

This chapter reports on a retrospective pilot study to bridge between imaging-derived

features and pathology results. In this study we evaluated the utility of imaging-derived

features extracted from MRI images in detecting signature appearance of sinonasal tumors

on MRI images. This work was published in American Journal of Neuroradiology in 2017

[1] and was presented at the Annual Meeting of the North American Skull Base Society,

February 12-14, 2016, Scottsdale, Arizona. My contributions to this manuscript are: 1)

devising technical design of the study, 2) implementing the the image analysis process, 3)

implementing the machine learning process, 4) writing and editing the manuscript.

4.2 Abstract

Background and Purpose: Because sinonasal inverted papilloma can harbor squamous

cell carcinoma, differentiating these tumors is relevant. The objectives of this study were

to determine whether MR imaging-based texture analysis can accurately classify cases

of noncoexistent squamous cell carcinoma and inverted papilloma and to compare this

classification performance with neuroradiologists’ review.

Materials and Methods: Adult patients who had inverted papilloma or squamous cell

carcinoma resected were eligible (coexistent inverted papilloma and squamous cell carcinoma

were excluded). Inclusion required tumor size of >1.5 cm and a preoperative MR imaging

with axial T1, axial T2, and axial T1 postcontrast sequences. Five well-established texture

analysis algorithms were applied to an ROI from the largest tumor cross-section. For a
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training dataset, machine-learning algorithms were used to identify the most accurate model,

and performance was also evaluated in a validation dataset. On the basis of 3 separate

blinded reviews of the ROI, isolated tumor, and entire images, 2 neuroradiologists predicted

tumor type in consensus.

Results: The inverted papilloma (n = 24) and squamous cell carcinoma (n = 22)

cohorts were matched for age and sex, while squamouscell carcinoma tumor volume was

larger (P = .001). The best classification model achieved similar accuracies for training

(17S squamous cell carcinomas, 16 inverted papillomas) and validation (7 squamous cell

carcinomas, 6 inverted papillomas) datasets of 90.9% and 84.6%, respectively (P = .537).

The machine-learning accuracy for the entire cohort (89.1%) was better than that of the

neuroradiologists’ ROI review (56.5%, P = .0004) but not significantly different from the

neuroradiologists’ review of the tumors (73.9%, P = .060) or entire images (87.0%, P = .748).

Conclusion: MR imaging-based texture analysis has the potential to differentiate

squamous cell carcinoma from inverted papilloma and may, in the future, provide incremental

information to the neuroradiologist.

4.3 Introduction

Inverted papilloma (IP) is an uncommon sinonasal tumor of ectodermal origin that

most commonly arises from the lateral nasal wall [106, 107]. In addition to its pattern of

locally aggressive behavior and propensity for post-operative recurrence, there is a tangible

association with malignancy, mostly squamous cell carcinoma (SCC). Although reports vary

widely in frequency, the rate of carcinoma is on the order of 10-15% and approximately

60-70% of these are synchronous [108, 109]. Although office-based endoscopic incisional

biopsy is safe, the sensitivity for the diagnosis of malignancy has been called into question

due to sampling error [110].

It can be useful to preoperatively identify SCC when coexistent with IP to guide biopsy,
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expedite surgery, and plan an oncologically sound resection. Although bone thinning and

remodeling without large areas of erosion on CT are more characteristic of IP than SCC,

this finding is imperfect because IP may also aggressively destroy bone, particularly when

contacting the walls of the sphenoid sinuses and floor of the anterior cranial fossa [111, 112].

Not surprising, FDG-PET has shown a higher mean standard uptake value for SCC compared

with IP, but significant overlap limits the clinical utility of PET [113]. To date, MR imaging

has the most promise in differentiating SCC from IP. Although early work initially found

no signature appearance on MR imaging for IP, alternating hypointense and hyperintense

bands on T2-weighted and contrast-enhanced T1-weighted sequences have become recognized

as a distinctive feature of IP and have been described as a convoluted cerebriform pattern

[111, 114–116]. As with any subjective finding, interpretive errors can occur, especially when

tumors are small or incompletely express the convoluted cerebriform pattern. Hence, a more

objective form of image analysis is desirable.

Texture analysis is a form of image processing that seeks to characterize complex visual

patterns by quantitatively identifying simpler but characteristic subpatterns. Within the

field of head and neck radiology, texture analysis has shown applicability in predicting the

p53 status of SCC, classifying SCC as human papilloma virus-related, predicting treatment

response in head and neck cancer, differentiating benign from malignant thyroid nodules,

and characterizing parotid tumors and structural changes after radiation therapy [117–125].

Because a large volume of data is generated when multiple texture analysis algorithms are

applied to MR imaging sequences, the statistical comparison of individual texture features

is of limited practical value; instead, a multifactorial data-driven analysis is necessary (ie,

“radiomics”). Therefore, the objective of this study was to determine whether MR imaging-

based texture analysis can differentiate sinonasal SCC from IP by using a multiparametric

machine-learning model. Model performance was additionally compared against qualitative

neuroradiologists’ interpretation to determine its potential for added clinical value.
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4.4 Methods

Figure 4.1: ROI placement. A 51-year-old man with an IP involving the right maxillary sinus.
Axial T2-weighted fat-suppressed MR imaging pulse sequence demonstrates the manual
placement of the largest rectangular ROI that would fit within the tumor margins on the
axial image with the greatest tumor cross-sectional area. The inset image in the lower right
corner is representative of the final 16x16 matrix that was derived from the ROI isocenter
and served as the input for texture analysis.

4.4.1 Subject Enrollment

The institutional review board at the authors’ institution approved this retrospective

study, and the need for informed con- sent was waived. The pathology data base was queried

to identify adult patients (18 years of age or older) who underwent resection of sinonasal IP

or SCC. Subjects enrolled from January 1, 2009, to December 31, 2014, were included in

the training dataset for model development, while those enrolled between January 1, 2015,

and July 1, 2016, composed the validation dataset. To ensure that only a single histologic

tumor type would be used for texture analysis, we excluded cases of coexistent IP and SCC.

Potential subjects were screened to determine which of them had a preoperative face MR

imaging available for review. The MRIs, which were performed on numerous scanners within
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the authors’ institution and at external facilities, had to be of diagnostic image quality. At

a minimum, the imaging had to include an axial T1-weighted MRI pulse sequence (T1),

an axial T2-weighted with frequency-selective fat suppression sequence (T2), and an axial

T1-weighted postcontrast MRI pulse sequence with frequency-selective fat suppression (T1C)

for texture analysis, with a section thickness of ≤ 5mm, an FOV ≤ 22cm, and a matrix

size of at least 256x192. No restrictions on additional MR imaging technical parameters

or type of gadolinium-based intravenous contrast were imposed, and studies were included

whether they were performed at 1.5T or 3T field strength. The electronic medical record

was reviewed for each potential case, and subjects were excluded if they had an intervention

for the sinonasal tumor, including biopsy, surgery, chemotherapy, or radiation therapy before

imaging. Subjects were further eliminated if the tumor did not have orthogonal transaxial

dimensions greater than 1.5x1.5 cm on at least 1 axial image.

4.4.2 Image Preparation and Texture Analysis

DICOM files containing the T1, T2, and T1C pulse sequences (also referred to as

“contrasts” for the purpose of texture analysis) were anonymized and encoded so that all

subsequent image analysis was blinded. To ensure uniformity for texture analysis, we

performed resampling and/or zero padding to generate images with an 18-cm FOV and a

256x256 pixel array and normalized image intensities to a dynamic range of 0-255. The

studies were then reviewed by a board-certified neuroradiologist with OsiriX (Version 6.5;

http://www.osirix-viewer.com). The borders of the tumor were manually traced on all

T1C images on which tumor was visible to generate an ROI-based cross-sectional area for

each image and an estimated tumor size by using the ROI volume function in OsiriX. On the

axial image with the greatest tumor cross-sectional area, the neuroradiologist inserted the

largest possible rectangular ROI that would fit within the tumor for all 3 sequences (Figure

4.1). To prevent the 2D texture analysis from being biased by tumor size, a computer script

determined the maximal square ROI that could fit within all manually drawn rectangular
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ROIs across all subjects and automatically positioned this smallest common square ROI at

the isocenter of each of the rectangular ROIs. The contents of this square ROI, with 16x16

pixels, served as the input for texture analysis.

Texture analysis of each ROI consisted of 3 first-order intensity-based features (mean,

standard deviation, and range of gray-level intensities) and features computed by using 5

widely available texture algorithms (all implemented in Python 2.7 programming language

[99], by using either custom-written code based on publications or open-source libraries as

noted):

1. Gray-Level co-occurrence Matrices (GLCM) is a widely applied method that uses

second-order statistics to assess the arrangement of similar gray-scale intensities within

an ROI [126]. GLCM evaluates how frequently a pair of intensity levels is identified

in an orientation based on a specified angle and radius. In the current study, the

co-occurrence matrix was determined for a distance of 1 pixel over 4 angular directions

(0◦, 45◦, 90◦, and 135◦). The mean and range for 13 rotationally invariant features

(including measures of homogeneity, entropy, angular/s moment, correlation, and

dissimilarity) were computed at each ROI for each MR imaging contrast [126].

2. Local Binary Patterns [127] evaluates the set of points within a fixed radius of a

specified voxel to determine in a binary fashion whether they are higher or lower in

intensity than neighboring voxels. Depending on the number of bitwise transitions

across this interrogated region, the local binary patterns can be classified as uniform

or nonuniform, and histograms of these data provide a measure of ROI uniformity. A

3-pixel radius was selected to complement the smaller scale patterns already assessed

by GLCM. A 12-bin histogram was used, resulting in 12 local binary pattern texture

features being calculated at each ROI for each MR imaging contrast.

3. Discrete Orthonormal Stockwell Transform (DOST) provides a rotationally invariant

multiresolution spatial-frequency representation of an image based on dyadic sampling
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of the Fourier representation of the image [91]. Ten DOST features were calculated at

each ROI for each MR imaging contrast.

4. Laplacian of Gaussian Histogram (LoGHist) is a convolution-based method to capture

the spectral composition of an image in intermediate scales not achievable with first-

and second-order statistics. Through the use of varying sizes of bandpass filters,

different scales of texture ranging from fine to coarse are highlighted [94].Gaussians

with 3 different values of (2.0, 4.0, and 6.0) were used to cover the range of fine-to-

medium-scale textures, and 18 LoGHist features were generated at each ROI for each

MR imaging contrast.

5. The Gabor filter banks (GFB) technique uses localized and linear filters to capture

details in various frequency resolutions [93]. Four different Gabor filters were rendered

by using 2 sigma levels (1.0 and 3.0) and 2 frequency levels (0.6 and 1.0). By calculating

the mean and standard deviation of the filtered ROI, we computed 8 GFB features at

each ROI for each MR imaging contrast.

Table 4.1: Patient demographic characteristics and tumor features

Sample Sex Tumor Volume Tumor Stagea

Study Group Size (Female/Male) Age (yr) (cm3) T1 T2 T3 T4

IP training 16 4:12 58.0 ± 12.1 21.2 ± 17.7 1 3 10 2
IP validation 6 1:5 58.2 ± 15.3 22.0 ± 6.9 1 1 3 1
IP combined 22 5:17c 58.1 ± 13.1d 21.4 ± 15.5e 2 4 13 3
SCC training 17 4:13 54.0 ± 13.5 55.8 ± 40.5 0 1 4 12
SCC validation 7 1:6 54.6 ± 9.4 43.5 ± 27.9 0 1 2 4
SCC combined 24 5:19c 54.2 ± 12.5d 52.2 ± 37.7e 0 2 6 16
a Data are presented separately for the training and validation sets and also as a single combined cohort
for each tumor.
b Tumor stage represents the Krouse staging system [128] for IP and the American Joint Committee on
Cancer staging [129] for SCC.
c Fisher’s exact test, P = .578.
d Two-sample t test, P = .317.
e Two-sample t test, P = .001.
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4.4.3 Neuroradiologists’ Review

Using OsiriX, 2 neuroradiologists with 25 and 28 years of experience, respectively,

performed a blinded review to reach a consensus diagnosis of IP or SCC for each case. This

was performed during 3 separate rounds of image review, each of which was randomized and

completed in the following order:

1. ROI: For the T1, T2, and T1C series, the neuroradiologists exclusively reviewed the

16x16 square ROIs that had been used for texture analysis.

2. Tumor: On all images in the T1, T2, and T1C series, the data outside the tumor

margins were zero-filled so that the neuroradiologists could only base their assessment

on the intrinsic appearance of the tumor without information regarding tumor location

and invasive behavior.

3. Image: The neuroradiologists were able to review the unaltered T1, T2, and T1C

imaging datasets in their entirety.

4.4.4 Machine Learning and Statistical Analysis

Open-source R statistical and computing software (http://www.r- project.org) was

used to perform the analyses and classification. Hypothesis tests were 2-sided, and statistical

significance was defined as P < 05. The comparison of subject demographics and tumor

size between IP and SCC was performed by using a 2-sample t test for subject age and

tumor volume and a Fisher exact test for sex. The 2-sample t test was used for a univariate

comparison of texture features between IP and SCC before the application of machine-

learning methodology, and P values were corrected for multiple comparisons by using the

false discovery rate [103].

A total of 231 texture features were calculated for each case (77 texture features per MR

imaging contrast). To reduce the dimensionality of the texture features and increase the
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generalizability of the predictive model for the training dataset, we used principle component

(PC) analysis [130–132]. PCs, which are linear combinations of features, were identified

separately for each texture algorithm and MR imaging contrast. Those PCs that sufficiently

accounted for 90% of the texture feature variability were selected for further processing.

Three commonly described classification algorithms, Diagonal Linear Discriminate Analysis,

Support Vector Machines, and Diagonal Quadratic Discriminate Analysis, were conducted

on the basis of the selected PCs in an attempt to differentiate SCC from IP [35, 133, 134].

Support vector machine model was build using a radial basis function kernel with coefficient

value of 1 and gamma parameter equal to 1/numberoffeatures. The setting used for

quadratic discriminant analysis was no priors on classes and threshold of 0.0001 for rank

estimation. Sequential forward feature selection identified the image-based PCs that yielded

the greatest accuracy [130, 131]. In developing the classification model, we initially selected

the PC with the largest discriminatory power and incorporated additional PCs that improved

model accuracy in an iterative fashion until incremental gains in accuracy were 1%.

Classification accuracy was determined by using leave-one-out cross-validation, in which

all samples except for 1 were used, while the left-out sample served as the test case with

which to assess classification accuracy [45]. This process was repeated until all samples in

the training dataset had served as the test case, and the overall cross-validation accuracy

was the averaged accuracy. The most accurate classification model was applied in a blinded

fashion to the validation dataset, and the diagnostic performance of the model was assessed.

Model performance accuracies between the training and validation datasets and between the

best classification model and neuroradiologists’ review were compared by using a 2-tailed

test of population proportion.

45



Figure 4.2: Heat map showing MRI texture feature significance in distinguishing tumor type.
Univariate analysis compared pathology status (SCC vs. IP) with MRI-texture features.
Color maps show the false discovery rate-adjusted P-values of two-sample t test. MRI
contrasts (pulse sequences) are listed above the columns, and MRI-based texture features
are listed in rows. DOST features 0 to 9 correspond with low to high frequency patterns.
LBP 0 to 11 are the normalized bin counts in the LBP histogram. The reader is referred to
the Methods section for additional details about the features.
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4.5 Results

Thirty-three subjects were included in the training set, 16 IPs and 17 SCCs, while the

validation set consisted of 6 IPs and 7 SCCs (Table 4.1). The patients were similarly matched

for age and male-predominant sex. Mean tumor volume was larger for SCC than IP (P <

.001).

Individual features derived from the 5 different texture analyses across all 3 MR imaging

contrasts (T1, T2, T1C) were initially evaluated in a univariate fashion to look for significant

differences between the IP and SCC groups (Figure 4.2). The greatest number of texture

features showing statistically significant differences were derived from the DOST and GFB

texture analyses.

Model performance for the training and validation datasets is presented in Table 4.2.

Following PC analysis and machine-learning classification, the predictive classifier with the

best classification result was using support vector machine, yielding 90.9% accuracy for the

training dataset. The 84.6% accuracy of the validation dataset did not significantly differ

from that achieved in the training dataset (P = .537). When we combined the training

and validation cohorts (n = 46), the accuracy achieved by texture analysis (89.1%) was

significantly better than that of the ROI-based neuroradiologists’ review (Table 4.3, 56.5%,

P = .0004) and showed a trend toward improved accuracy over neuroradiologists’ review of

the entire tumor (73.9%, P = .060). Texture-analysis accuracy was not significantly different

from that of the neuroradiologists’ reviewing the entire unaltered images (87.0%, P = .748).

Relative contributions to model accuracy from each texture analysis algorithm and MR

imaging contrast are presented (Figure 4.3). The most significant texture features were

derived from T1C-GFB, T1-GLCM, and T1-DOST (Figure 4.4).
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Table 4.2: Diagnostic performance of machine-learning classification on training and validation
datasets

Tumor Type
Model Prediction (Pathologic Diagnosis)

for Training Dataset SCC IP
SCC 16 2 Accuracy 90.9%a

Sensitivity 94.1%
IP 1 14 Specificity 87.5%

PPV 88.9%
Total 24 22 NPV 93.3%

Model Prediction
for Validation Dataset

SCC 6 1 Accuracy 84.6%a

Sensitivity 85.7%
IP 1 5 Specificity 83.3%

PPV 85.7%
Total 7 6 NPV 83.3%

Model Prediction
for Entire Cohort

SCC 22 3 Accuracy 89.1%
Sensitivity 91.7%

IP 2 19 Specificity 86.4%
PPV 88.0%

Total 24 22 NPV 90.5%
Note:–NPV and PPV indicate negative and positive predictive values, respectively.
aWith a 2-tailed test of population proportion, the accuracies for the training
and validation datasets were not significantly different (P = .537).

4.6 Discussion

MR imaging has long been recognized as the most useful technique with which to

distinguish sinonasal SCC from IP. Most of the prior work focused on a qualitative imaging

appearance known as the “convoluted cerebriform pattern” [111, 114–116, 135, 136]. Although

this pattern has a high level of sensitivity for IP, it is not entirely specific. As an example,

Jeon et al. [113] evaluated the performance of the convoluted cerebriform pattern in 30

patients with IP relative to 128 patients with sinonasal malignancies and reported a sensitivity

of 100%, specificity of 87%, positive predictive value of 64%, negative predictive value of

100%, and accuracy of 89%.

48



Figure 4.3: Relative contributions to model accuracy. The bar graph demonstrates the
accuracy attributable to PCs derived from T1C-GFB, T1-DOST, and T1-GLCM (upper
pane) to the 90.91% overall model accuracy. Across all texture algorithms, the contribution
to total model accuracy was derived predominantly from T1C, with minor contributions
from T1 and no input from T2 (lower pane).

Texture analysis integrated into a machine-learning model was able to classify SCC and

IP with an accuracy on par with the previously published results based on the convoluted

cerebriform pattern. It is also similar to the best consensus neuroradiologists’ interpretation

in the current study. However, this technology is meant to supplement a neuroradiologist’s

interpretive skills rather than compete with them. In clinical practice, a diagnosis is rendered

by synthesizing all available data that include not only intrinsic tumor appearance but also

other imaging features such as site of origin, tumor size, ex-trasinonasal extension, and

tumor margins. Indeed, the current results support a neuroradiologist’s accuracy improving

for differentiating sinonasal IP and SCC as more imaging information is made available.

On the basis of a 16x16 ROI, the texture-based machine-learning model outperformed the

accuracy of the neuroradiologists (P = .0004). In terms of assessing the intrinsic tumor
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Table 4.3: Diagnostic performance of texture analysis with machine learning compared with
neuroradiologists’ review for the differentiation of SCC from IP a

Analysis Method Accuracyb Sensitivity Specificity PPV NPV

Texture analysis with 89.1% 91.7% 86.4% 88.0% 90.5%
machine learning

Neuroradiologist’s 56.5% 54.2% 59.1% 59.1% 54.2%
review, ROI (P = .0004)

Neuroradiologist’s 73.9% 75.0% 72.7% 75.0% 72.7%
review, tumor (P = .060)

Neuroradiologist’s 87.0% 91.7% 81.8% 84.6% 90.0
review, image (P = .748)
a Results are shown for the entire cohort (22 IPs, 24 SCCs) and reflect the best classification
model. The labels for the neuroradiologists’ assessment indicate whether they reviewed the
16x16 ROI (ROI), tumor alone (tumor), or entire images (image).
b P values represent comparison of texture analysis with machine learning against each
neuroradiologist’s review using a 2-tailed test of population proportion.

appearance, texture analysis stands to provide incremental benefit when human pattern

recognition becomes most limited, and this can occur with a small tumor. For example,

Maroldi et al. [111] found it more challenging to recognize the convoluted cerebriform pattern

on T2-weighted images for tumors of 2 cm. While tumors smaller than 1.5x1.5 cm were

excluded from enrollment in the current study, the final processed ROIs were only 1.125x1.125

cm.

Because small noninvasive sinonasal tumors are not universally imaged with MR imaging,

the greatest potential benefit for texture analysis might be in detecting a small focus of

SCC within a larger IP to expedite patient management. Accurately assessing small regions

would be a prerequisite for the detection of such tumor heterogeneity. The potential for

interpretive error is greatest when a small focus of SCC exists within a much larger IP and

goes unrecognized because a convoluted cerebriform pattern is still present. Indeed, this

pattern of a “partial” convoluted cerebriform pattern has been described [111, 114, 137].

Likewise, necrosis, recognized as nonenhancing tissue on contrast-enhanced MR imaging, is

associated with SCC but may not be apparent when a small focus of SCC coexists with an
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Figure 4.4: PC loading. The model with the greatest accuracy for discriminating SCC from
IP was derived from T1C-GFB, T1-GLCM, and T1-DOST texture features (right). For the
individually specified texture features (left), PC loadings are graphically represented, and
larger values in the PC loading indicate greater significance in the final model.

IP [114, 115, 137]. A future goal for texture analysis of a mixed tumor containing both IP

and SCC is to assist with interpretation by highlighting areas that are most suspicious for

SCC.

Texture analysis can also extract useful features from images that have been traditionally

neglected by the human eye. The convoluted cerebriform pattern has been historically

described on T1-weighted postcontrast and T2-weighted sequences [111, 114–116, 135–137].

However, noncontrast T1-weighted MR imaging has received no attention to date, to our

knowledge. The texture analysis in the current study found more significant features for
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T1 than T2 on a univariate basis (Figure 4.2). Although T1-DOST and T1-GLCM made a

minority contribution to the final model, no T2 features contributed to final model accuracy

(Figure 4.3).

For MR imaging, it has been suggested that texture analysis models may not effectively

translate across different imaging protocols and scanner platforms [138, 139]. Certainly,

this possibility would make such results clinically meaningless because a new model would

have to be created for each scanner running a unique protocol. Fruehwald-Pallamar et

al. [140] concluded that texture analysis is not practical for differentiating malignant and

benign tumors of the head and neck when using different protocols on different MR imaging

scanners. However, their cohort was very heterogeneous, containing numerous types of

benign and malignant lesions. The subjects for the current study were accrued during a long

period and were not imaged with a common scanner and protocol. Nevertheless, an accurate

texture-based model was achieved that performed similarly in the training and validation

datasets. At least for the context of sinonasal IP and SCC, this outcome holds promise for

reproducibility across scanner platforms.

The current study is limited, given its retrospective nature and small sample size. Hence,

the high accuracy for the differentiation of SCC from IP with texture analysis is not meant

to represent the performance of an established diagnostic imaging test. Instead, these results

merely confirm the feasibility of this technique for distinguishing these 2 tumor types. In

showing proof of concept, a 2D ROI-based analysis was used to confirm discriminatory ability

with a limited data sample. Moreover, because SCC tends to be a larger tumor than IP on

average, this approach eliminated the potential for falsely finding texture differences on the

basis of relative oversampling of a larger tumor. Future directions will include the refinement

of the texture analysis pipeline into a volumetric tool with the objective of highlighting foci

of SCC when it is coexistent with IP. This will need to be studied prospectively to ensure

that the histopathologic analysis can be accurately coregistered to MR imaging.
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4.7 Conclusion

With MR imaging-based texture analysis, a machine-learning model for the differentiation

of sinonasal SCC and IP achieved accuracy comparable with both neuroradiologists’ interpre-

tation and previously published reports on the convoluted cerebriform pattern. Because the

classification model was significantly more accurate than the neuroradiologists’ interpretation

for a small ROI, texture analysis has the potential to provide incremental benefit to the

neuroradiologists’ interpretation, particularly in cases of small or heterogeneous tumors.
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Chapter 5

VALIDATION STUDY II: COMPUTER-AIDED DIAGNOSIS OF

CONTRAST-ENHANCED SPECTRAL MAMMOGRAPHY – A FEASIBILITY STUDY

5.1 Summary

This chapter presents a retrospective study to investigate the utility of quantitative

analysis of contrast-enhanced spectral mammography images in improving the accuracy of

breast cancer screening. This work has been accepted for presentation at RSNA 2017. The

manuscript is currently in the second round of review by European Journal of Radiology. I

contributed to this manuscript in 1) devising technical design of the study, 2) conducting the
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5.2 Abstract

Objective: To evaluate whether the use of a computer-aided diagnosis contrast-enhanced

spectral mammography (CAD-CESM) tool can further increase the diagnostic performance

of CESM compared with that of experienced radiologists.

Materials and methods: This IRB-approved retrospective study analyzed 50 lesions

described on CESM from August 2014 to December 2015. Histopathologic analyses, used

as the criterion standard, revealed 24 benign and 26 malignant lesions. An expert breast

radiologist manually outlined lesion boundaries on the different views. A set of morphologic

and textural features were then extracted from the low-energy and recombined images.

Machine-learning algorithms with feature selection were used along with statistical analysis

to reduce, select, and combine features. Selected features were then used to construct a

predictive model using a support vector machine (SVM) classification method in a leave-

one-out cross-validation approach. The classification performance was compared against the

diagnostic predictions of 2 breast radiologists with access to the same CESM cases.

Results: Based on the SVM classification, CAD-CESM correctly identifies 45 of 50

studies in the cohort, resulting in overall accuracy of 90.0%. Detection rate for the malignant

group was 88.4% (3 FN cases) and 91.6% for the benign group (2 FP cases). Compared with

the model, radiologist 1 had an overall accuracy of 78.0% and detection rate of 92.3% (2 FN

cases) and 62.5% (9 FP cases) for the malignant and benign groups, respectively. Radiologist

2 had an overall accuracy of 86.0%, with detection rate of 100.0% and 70.8% (7 FP cases)

for the malignant and benign groups, respectively.

Conclusions: The results of our feasibility study suggest that a CAD-CESM tool

can provide complementary information to radiologists, mainly by reducing the number of

false-positive findings.

Keywords: breast cancer, contrast enhanced digital mammography (CEDM), contrast
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enhanced spectral mammography (CESM), quantitative image analysis (QIA), texture

analysis, computer aided diagnosis (CAD)

5.3 Introduction

The primary goal of breast cancer screening is to reduce subsequent breast cancer

mortality through early detection. However, FFDM’s overall sensitivity of 75% to 85%

[141] may be as low as 30% to 60% for dense-breasted women [142]. Additionally, many

women receive false-positive diagnoses because the positive-predictive value of FFDM is 18%

to 31% [143]. These women undergo unnecessary supplemental imaging and, occasionally,

invasive procedures to evaluate the suspicious findings. Patient stress, inconvenience, cost,

and potential for harm because of these additional procedures are concerning. Overall,

supplemental imaging and biopsy affect 3.2 million American women at an estimated cost of

$2.8 billion [144].

Dual-energy contrast-enhanced spectral mammography (DE-CESM or CESM) (also called

dual-energy contrast-enhanced digital mammography [DE-CEDM]) improves the accuracy of

breast cancer diagnosis [145]. CESM generates a low-energy mammographic image along

with a recombined contrast-enhanced image, reflecting contrast accumulation within a breast

(Figure 5.1). Breast regions with increased or leaky vasculature, two common characteristics

of neoplasms, can be identified using intravenously administered, iodinated-contrast material,

thus improving lesion detection and characterization [146]. Although studies have shown

that CESM is superior to FFDM, specificity is estimated to be 58% to 70% [147], leaving

room for further improvement in diagnostic accuracy, for example, by applying quantitative

image analyses.

Quantitative image analysis is a topic of active research that includes well-established

applications like computer-aided diagnosis (CAD) algorithms. CAD algorithms, when coupled

with traditional mammography, have shown promise for identifying suspicious breast lesions
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Figure 5.1: CESM images. A 64 year-old woman with a malignant appearing lesion on the
left breast. This was later shown via biopsy to be invasive ductal carcinoma (IDC). Each
lesion was captured in 2 views with 2 images per view, low-energy (LE) and recombined
image. The green contours are the lesion contours marked by the radiologist.

[148]. These algorithms have evolved and are improved by leveraging large datasets generated

from high-throughput sequencing experiments [149]. However, no studies thus far have

evaluated the use of CAD algorithms in CESM.

Recently, there has been some interest in the use of texture features to distinguish

benign and malignant lesions on magnetic resonance [150] and mammographic imaging

[151]. We hypothesized that lesion texture and shape features can often capture often-missed

information regarding the characteristics of a tumor and can provide details that have

prognostic or diagnostic value [13]. These texture features describe intensity distributions

within the lesion and capture spatial and spectral frequency patterns, as well as characterize

the relationships between different intensity levels within the lesion. Some of these features
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might not be visually apparent to the radiologists and therefore have the potential to

complement the diagnostic skillset of radiologists. The purpose of our current study was to

evaluate a prototype CAD-CESM tool, using texture and morphologic analysis to differentiate

benign and malignant breast lesions.

5.4 Material and Methods

5.4.1 Study Population

The study was considered exempt by the Institutional Review Board (IRB). We ret-

rospectively reviewed CESM examinations on a Selenia mammography system (Hologic,

Bedford, MA). The examinations were performed between August 1, 2014, and December 31,

2015. Informed consent was obtained from all patients having a BI-RADS (Breast Imaging

Reporting and Data Systems) [152] classification of 4 and 5 in a preexisting IRB-approved

study to determine if CESM could lower the false-positive biopsy rates in mammography.

As part of the aforementioned study, the radiologist counseled patients on the risks and

benefits of biopsy and CESM. CESM was offered as an adjunct, not as an alternative to

the recommended breast biopsy. The patient was informed that CESM might increase or

decrease the level of suspicion of a lesion and might show additional suspicious areas. CESM

was performed before the biopsy, typically on the diagnostic examination day or on the day

of the biopsy.

The cohort for the current study included examinations that met the following criteria:

(1) a diagnostic mammogram that received a BI-RADS rating of 4 or 5 and (2) studies that

corresponded with available pathologic results from a surgical or image-guided biopsy. We

limited the cohort to BI-RADS 4 and 5 lesions because the analysis required the criterion

standard of lesion pathology. We identified 50 studies that met the above inclusion criteria,

comprising 24 benign and 26 malignant, biopsy-proven lesions (Table 5.1). We analyzed 1

lesion per patient. If a patient had multiple enhancing lesions, the annotating radiologist
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selected the largest lesion to ensure the best feature section. Statistical analysis was performed

in Python 2.7.0 environment [99] using the open-source SciPy library [101].

5.4.2 CESM Image Acquisition Protocol

The patients were seated in the mammography suite to minimize vasovagal episodes.

They received contrast via a single-lumen power injector: 1.5 mL/kg of Omnipaque 350

(GE Healthcare, Inc, Princeton, NJ) at a rate of 3 mL/second. We waited 2 minutes

following the injection, compressing the breast and obtaining images exactly 2 minutes

after contrast administration. The examination began with the mediolateral oblique (MLO)

view of the affected breast because this view encompasses the most breast tissue. Next,

images on the craniocaudal (CC) view were acquired. Image acquisition was completed

within 7 minutes. The low-energy and recombined images were immediately available to an

interpreting radiologist after the study.

5.4.3 Segmentation of Lesions and the Regions of Interest

All DICOM (Digital Imaging and Communications in Medicine) images were transferred to

a database and loaded into the open source image processing tool OsiriX (OsiriX Foundation,

Geneva, Switzerland) [153]. DICOM images were anonymized and prepared for blinded

reading by a radiologist. A fellowship-trained breast radiologist with over 8 years of imaging

experience interpreted the mammogram blindly and used the OsiriX tool to outline lesion

contours. Contours were drawn on the CC and MLO recombined views for each patient.

These contours were then cloned onto low-energy images. All lesions were visible in both

views. For texture analysis, we required a fixed-sized rectangular area entirely contained

within each lesion contour. From each enclosed region, we selected a 32x32 pixel area at

the centroid of each rectangle as the region of interest (ROI) for feature extraction (Figure
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Table 5.1: Summary of the study population

Biopsied Lesion N (%)

All lesions 50

Benign cases 24 / 50 (48.0%)

- Fibroadenoma 6 / 24 (25.0%)
- Fibrosis 5 / 24 (20.8%)
- Intraductal papilloma 2 / 24 (8.3%)
- PASH 1 / 24 (4.2%)
- Fat necrosis 1 / 24 (4.2%)
- Sclerotic intraductal papilloma 1 / 24 (4.2%)
- Cyst 1 / 24 (4.2%)

Malignant cases 26 / 50 (52.0%)

- Ductal carcinoma in situ 6 / 26 (23.1%)
∗ Grade 1 1 / 26 (3.8%)
∗ Grade 2 1 / 26 (3.8%)
∗ Grade 3 4 / 26 (15.4%)

- Invasive ductal carcinoma 17 / 26 (65.4%)
∗ Grade 1 5 / 26 (19.2%)
∗ Grade 2 6 / 26 (23.1%)
∗ Grade 3 6 / 26 (23.1%)

- Invasive lobular carcinoma 3 / 26 (11.5%)
∗ Grade 1 1 / 26 (3.8%)
∗ Grade 2 2 / 26 (7.7%)

Abbreviation: PASH, PseudoAngiomatous Stromal Hyperplasia.

5.2). The size of the ROI was selected based on the size of the smallest lesion in the cohort,

excluding areas with post biopsy image change.

5.4.4 Feature Computation

A set of four shape features were extracted per lesion contour [100]: shape bending

energy, shape compactness, shape entropy, and shape radial-length ratio. Thus, 8 shape

features were extracted per lesion (4 features/contour, 2 contours per lesion). Next, we used

statistical and spectral methods [1, 17, 56] to measure texture at various spatial and spectral

scales of the lesions. Feature calculation was performed using an in-house pipeline written

in Python 2.7.0 [99]. A total of 236 texture features were computed from each subregion.

Texture features included 3 from raw-image intensity, 26 from Gray Level Co-occurrence
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Figure 5.2: Regions of interest for shape and texture analysis. 61 year-old woman with a
malignant appearing lesion on the right breast. (a) view: Mediolateral-Oblique or MLO,
low-energy image (LE) - (b) view: Cranial-Caudal or CC, Low Energy image (LE), (c) view:
MLO, recombined image and (d) view: CC, recombined image. ROIs are identical for the
low-energy and contrast-enhanced images on each view. Shape features are extracted from
contours (green) and texture features are extracted from a rectangular area inside each
contour (red).

Matrices (GLCM) [126], 18 from Laplacian-of-Gaussian Histograms (LoGHist) [94], 126 from

a Gabor Filter Banks (GFB) [93], 48 from Local Binary Patterns (LBP) [127], and 15 from

the Discrete Orthonormal Stockwell Transform (DOST) [91]. Detailed descriptions of the

texture features are provided in Table 5.2.

5.4.5 Feature Selection and Statistical Analysis

Feature selection, analysis, and model generation were performed using a Python-based

platform developed in-house utilizing the Scikit-learn package [102]. We used a sequential

forward feature selection (SFFS) approach in conjunction with quadratic discriminant analysis

[104] to identify the most discriminating features. SFFS starts with an empty set of features

and gradually adds features that offer minimal redundancy but maximal relevance. The

setting used for quadratic discriminant analysis was no priors on classes and threshold of

0.0001 for rank estimation.This approach was repeated 100 times with a random-sampling
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scheme to reduce training bias and improve model generalizability. In each trial, we randomly

selected one-third of the benign and malignant samples and fed the combined samples to

SFFS. The 10 most frequently appearing features among all iterations were selected for

further analysis. Inclusion of more features did not improve classification accuracy.

To simplify results of the analysis, features resulting from a shared-texture method

(eg, GLCM, GFB) were combined using principal component analysis (PCA) [104]. PCA

creates linear combinations of features called principal components (PCs). One to three PCs

were generated per feature group, sufficient to describe 90% of the feature variability. The

final set of features was tested for statistical significance by using a 2-sample t test, with a

P-value of less or equal to 0.05 considered significant. The significant features were used for

classification.

5.4.6 Machine Learning Classification

The statistically significant features, described above, were provided to a Support Vector

Machine (SVM) classifier 20 for construction of a lesion malignancy model. SVM model was

build using a radial basis function kernel with coefficient value of 1 and gamma parameter

equal to 1/numberoffeatures. We utilized a leave-one-out cross-validation (LOOCV)

technique [104] for model construction and estimation of classification performance. LOOCV

iteratively sets aside 1 sample from the dataset as the test sample and uses the remaining

samples as the training set for model development. The model is validated on the test sample

in each trial. This process is repeated until every sample serves as the test sample. We used

this approach to predict the malignancy status of the lesions. The predicted diagnosis across

all test samples was used to estimate performance measures, such as accuracy, sensitivity,

specificity, and area under the receiver operating characteristic (ROC) curve.
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Table 5.2: Summary of the texture features used for breast lesion characterization

Method Type of
features

Details and Settings

Raw intensity Statistical Mean, range, standard deviation of the ROI
scaled intensities before scaling the dynamic
range to [0,255]

Gray Level Co-occurrence Ma-
trices (GLCM) [126]

Statistical Mean and range of 13 GLCM features at 4 angles
(radius of 1).

Discrete Orthonormal Stock-
well Transform (DOST) [91]

Spectral Rotationally invariant dost features for all possi-
ble dyadic frequency bands insidethe ROI. With
the ROI with the size of 32x32, 15 Dost features
were extracted.

Laplacian of Gaussian His-
togram (LoGHist) [94]

Spectral Kurtosis, skewness, standard deviation, aver-
age intensity, entropy and uniformity of the his-
togram resulting from convolutions of band pass
filtersand the ROI. Band pass filter sigma range
(2.0, 4.0, 6.0).

Local Binary Patterns (LBP)
[94]

Statistical Values of histogram bins generated from inten-
sity patterns found within the ROI. The intensity
patterns are categorized into ’uniform’ and ’non-
uniform’ based on the number of bit-wise tran-
sitions from 0 to 1 or vice versa within patches
within the ROI. Radius of patches: (3.0, 5.0, 8.0,
12.0).

Gabor Filter Banks(GFB)
[93]

Spectral Gabor filters (sigma: [1.0 - 5.0], increments of
0.5, frequency: [0.2 - 0.8] increments of 0.1) were
used to focus on different frequency resolution
in the ROI. Mean and standard deviation of
intensities of each filtered image was used as a
GFB feature.

5.4.7 Comparative Human Reader study

Two breast-fellowship-trained radiologists with 5 years of total radiology experience and

6 months experience interpreting CESM images, not involved in other aspects of the study,

reviewed the lesions to provide a non-computer-aided prediction of lesion pathology. Each

lesion location was made apparent to the radiologist with the quadrant location written

next to the case number. The images were reviewed according to standard diagnostic

mammography workflow at our institution. Both breasts in the standard CC and MLO
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views were read first as a diagnostic mammogram on dedicated Hologic workstations (and,

if needed, associated ultrasound images) and decided on as a malignant or benign lesion.

Next, the CESM images were reviewed independently by the readers and designated as

malignant or benign based on low-energy and recombined images. The readers were blinded

to the final pathology of the findings. No additional clinical information was provided to the

readers. Next, performance measures (accuracy, sensitivity, and specificity) of each reader

were calculated. The performance measures of the readers were compared to the performance

measures of our automated model.

5.5 Results

The average age of patients was 57.1 years (52.2 years, patients with benign lesions; 61.9

years, patients with malignant lesions). The age difference between the 2 groups (9.7 years)

was significant (P<.05). Twenty-six (52%) of the 50 biopsied lesions were diagnosed with

breast cancer at histopathology. The remaining 24 (48%) lesions were diagnosed with benign

pathology after core needle biopsy (Table 5.1).

Table 5.3 compares the performance measures of human readers and the computational

model. Reader 1 provided a sensitivity of 92.3% (2 false-negatives) and a specificity of 62.5%

(9 false-positives). Overall accuracy for Reader 1 was 78.0%. Reader 2 provided a sensitivity

of 100.0% (0 false-negatives) and a specificity of 70.8% (7 false-positives). Overall accuracy

for Reader 2 was 86.0%.

Differences between CAD-CESM and the readers are shown in Table 5.3. CAD-CESM

provided a sensitivity of 88% (3 false-negatives from 26 malignant cases). Two false-negative

results were invasive ductal carcinoma, and 1 was ductal carcinoma in situ. The false-negative

lesions ranged from 7 to 12 mm in diameter. CAD-CESM provided a specificity of 92% (2

false-positives from 24 benign cases). Overall, CAD-CESM accuracy was 90%. The differences
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Figure 5.3: Benign lesions misclassified by the radiologists. Three benign lesions (red arrows)
for which the label ’malignant’ was assigned by the blinded human readers but not by
the machine-learning developed quantitative model. Lesions are presented on the digital
subtraction (DES) images Mediolateral-Oblique (MLO) views. The Reader’s descriptions for
these cases were as follows: (a) multiple avidly enhancing lesions, (b) avidly enhancing mass,
satellite lesions, (c) obscured margins, not well defined.

Table 5.3: Exact McNemar’s test between CESM and Reader 1/Reader 2

Sensitivity Specificity Accuracy

Denominator Malignant (N = 26) Benign (N = 24) Overall (N = 50)

CESM 88% 92% 90%

Reader 1 92% 63% 78%

Reader 2 100% 71% 86%

Pvalue1 a >.99 0.016 0.109

Pvalue2 b NA 0.063 0.726
Abbreviation: CESM, Contrast-Enhanced Spectral Mammography.
a Comparing CESM and Reader 1.
b Comparing CESM and Reader 2. Pvalue is NA because of 0 cell.

65



between CAD-CESM and the radiologists were statistically significant for reader 1 specificity

(P=.016). The readers were marginally superior to the model in detecting malignant cases

(0 and 2 misdiagnosed malignant cases for radiologists compared with 3 for the model). In

comparison, benign cases were detected more successfully using the quantitative model. 7

and 9 benign cases were diagnosed as malignant by radiologists compared with only 3 for the

model. Among the misclassified benign lesions by the readers, 3 cases were identical (Figure

5.3). The readers described these lesions using BI-RADS lexicon terms such as “obscured

margin”, “spiculated margin”, “distortion”, and “avidly enhancing”, which typically portends

a malignant diagnosis. The 3 lesions misclassified by the radiologists were, in fact, benign

cellular fibroadenoma, pseudoangiomatous stromal hyperplasia (PASH), and fibrosis.

Table 5.4 shows the list of features selected by the SFFS process. Among the selected

10 features, 7 were extracted from the recombined image, 1 from a low-energy image; 2

were selected from the lesion shape features. After feature selection, PCA was used to

combine the GFB, GLCM, DOST, and LoGHist texture features. Figure 5.4, A shows the

result of univariate analysis (P<.05) on the texture PCs and morphology features. Four

texture features survived the threshold of statistical significance, including 2 Gabor PCs

(combination of the standard deviations of features at high (f=0.8) and medium (f=0.4)

frequencies), 1 GLCM PC (combination of GLCM angular second moment, a measure of

homogeneity of the ROI, and GLCM difference variance), and 1 medium-frequency content

DOST feature. Among the morphology features, shape radial-length ratio corresponding to

irregularity of lesion shape was also identified as statistically significant.

The CESM-CAD malignancy model was constructed using 3 of the 5 statistically signifi-

cant features described above. The 3 features were Gabor PC2, Gabor PC3 – both texture

features extracted from the recombined images – and the morphology feature for lesion

radial-length ratio. The area under the ROC curve was 0.95. Figure 5.4, (B, C) shows the

quantitative model ROC curve, as well as the contributions of shape and texture features to

the model accuracy.
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Table 5.4: Frequently selected features in repeated sequential forward feature selection
algorithm on random samples

CESM
Image and
View

Feature Name Description

MLO, DES Standard deviation of Gabor
filter sigma =1.0, frequency =
0.7

Spectral texture feature corresponding to smaller
kernels that are sensitive to higher frequencies.

MLO, DES Standard deviation of Gabor
filter sigma = 3.0 frequency =
0.4

Spectral texture feature corresponds to kernels
that are sensitive to medium frequencies.

CC, DES Standard deviation of Gabor
filter sigma = 3.5 frequency =
0.8

Spectral texture feature corresponds to smaller
kernels that are sensitive to higher frequencies.

CC, LE Dost5 Spectral texture feature corresponding to
medium level frequencies.

CC, DES Dost3 Spectral texture feature corresponding with low
to medium frequencies.

MLO, DES GLCM Angular Second Mo-
ment

Statistical texture feature, measure of orderliness
in intensity values of neighboring pixels.

MLO, DES GLCM Difference Variance Statistical texture feature, measure of uniformity
in the intensity of neighboring pixels.

MLO, DES LoGHist Entropy with sigma
= 4.0

Spectral Texture feature, measure of entropy of
medium frequency band-pass filters.

MLO Shape entropy Morphology feature, Measure of predictability of
the lesion’s radial length a.

CC Shape radial length ratio Morphology feature, Ratio of minimum to maxi-
mum radial length a.

Key: CC, CranioCaudal; CESM, Contrast-Enhanced Spectral Mammography; DOST, Disc-
rete Orthonormal Stockwell Transform; GFB, Gabor Filter Banks; GLCM, Gray Level Co-occurrence
Matrices; LE, Low Energy; LoGHist, Laplacian-of-Gaussian Histogram; MLO, MedioLateral Oblique.
aRadial length = distance of boundary points from the center.

5.6 Discussion

The moderate specificity of mammography might result in additional imaging exams,

costs, and patient anxiety, and may cause avoidable breast biopsies. CESM was introduced

in 2011 to improve the diagnostic accuracy of breast imaging through mammography [154].

Although CESM is superior to FFDM, its specificity reaches a maximum of approximately
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70% [155]. Therefore, CAD tools might be used as an adjunct to radiologists’ assessments. In

this study, we aimed to evaluate the performance of a CAD-CESM tool based on quantitative

morphology and texture features extracted from lesions on the recombined CESM images.

We showed that by using this tool, the accuracy of CESM could be further improved when

compared with that of 2 experienced radiologists, especially regarding specificity of this

diagnostic test.

CESM is a promising imaging technique, which provides information from standard

digital mammography combined with enhancement characteristics related to underlying

neoangiogenesis. CESM has been reported to offer improved sensitivity, specificity, and

accuracy compared with conventional mammography [156]. Cheung et al. [144] investigated

the performance of CESM vs mammography in dense breasts. Their results suggested that

using CESM improves diagnosis by 21.2% in sensitivity, 16.1% in specificity, and 12.8% in

overall accuracy. Tagliafico et al. [147] recently summarized the diagnostic performance of

CESM in a systematic review of 8 eligible studies. The pooled sensitivity of CESM was 98%

(95% CI, 96%-100%); with a pooled specificity being moderate at 58% (95% CI, 38%-77%).

This moderate specificity is mainly explained by a preponderance of data from a Polish

study group, which showed very poor diagnostic accuracies, even for FFDM. When the

results of the review are recalculated with the results from the Polish group removed, the

specificity increases to 78% (95% CI, 56%-90%). CAD tools might aid in further improving

the specificity of CESM, preferably while not decreasing the already high sensitivity of

CESM.

In our study, the model of the CAD-CESM tool was constructed by using lesion-shape

irregularity and spectral texture features from an ROI. Lesion shape is one of the primary

diagnostic factors used by radiologists. In fact, radiologists describe the morphology of lesions

on imaging reports based on criteria suggested by BI-RADS shape vs margin [152]. The shape

of a mass in radiologic reports is generally described as round, oval, or irregular, and the
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Figure 5.4: A) Univariate analysis of the selected imaging features compared with the
pathologic finding (benign vs. malignant). We used a 2-tailed t test to evaluate the final set
of features used for classification purposes. Red to white cells show significant features at P
< 0.05 (corrected for false-discovery rate). Principal component analysis was only performed
when multiple texture features resulted from the common texture analysis method. B)
The receiver operating characteristic curve (solid line) demonstrates the performance of the
automated model using machine-learning techniques coupled with contrast-enhanced spectral
mammographic imaging features (area under the curve or AUC = 0.95). C) Across all features,
the overall model accuracy (90%), sensitivity (88%), and specificity (92%) were predominantly
contributed from texture features, with minor contributions from shape features. [Key: CC,
CranioCaudal; DOST, Discrete Orthonormal Stockwell Transform; GFB, Gabor Filter Banks;
GLCM, Gray Level Co-occurrence Matrices; LoGHist, Laplacian-of-Gaussian Histogram;
MLO, MedioLateral Oblique; PC, Principal Component].
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margins are categorized as circumscribed, obscured, microlobulated, indistinct, or spiculated.

The positive predictive value for carcinoma of masses visible in digital mammograms with

spiculated margins is 81% and with irregular shape is 73% [157].

Lesion shape has been used previously to predict malignancy [158]. We found benign

lesions to be associated with more round shapes and malignant lesions to have more irregular

shapes. Texture features that contributed to the model included GFB features. GFB uses

filters that are capable of detecting patterns at a certain scale and orientation. Using an

exhaustive approach, we generated a high number of GFBs to maximize the possibility of

finding patterns present at any scale or orientation. We found different enhancing patterns

for the benign and malignant groups on the recombined CESM images. These patterns were

detectable via medium and high-frequency GFB features. Combining shape irregularity and

texture feature, the model reached an area under the ROC curve of 0.95, a sensitivity of

88%, and a specificity of 92% for 50 lesions.

A strength of this study is the use of a multi-parametric texture analysis approach for

feature extraction. This approach has been designed to simplify inclusion of additional

computer vision algorithms and to maximize the chance of detecting informative features. It

has been shown to be beneficial, especially when applied to multiple images with varying

contrast characteristics [17, 56]. The texture analysis methods in our package have been

previously cited in the literature in various applications, such as for classifying on magnetic

resonance imaging [159] and computed tomography of the breast [160], assessing response to

therapy [161], and predicting tumor invasion [162].

The modest sensitivity of CAD-CESM will be addressed in future models. Contrary

to the reader study, the entirety of the lesions was not provided to the texture analysis

pipeline. Regions used for texture analysis were small (ROI size: 32x32 pixels), with well

circumscribed areas within the contours. The region size therefore was constrained by the

largest available cross-sectional area across the cohort, as well as the presence of marks from
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previous biopsies on some cases. An automated approach, using the geometric center of the

lesion, placed the ROI at the center of the lesion for consistency purposes. Although this

approach to selection of the region of interest provided us with a framework for automation,

we suspect that the 2 factors (size and location of the ROIs) might have caused the false

negative cases. In future work, we aim to address these limitations by pursuing a global

lesion texture analysis approach.

Our study has some limitations. We acknowledge a high prevalence of malignancy in our

study (52%). While our result shows great promise, future plans will include a validation

study in which we will test CAD in a larger population with other disease prevalence and

preferably in images from multiple contrast enhanced mammography vendors to improve

generalizability. We also plan to include and report on how this tool compares between

variable BI-RADS breast densities. We developed a preliminary computer-aided diagnosis

tool for contrast-enhanced spectral mammography (CAD-CESM) to test whether there is

potential to reduce false positives in breast cancer screening. CESM-based texture features

complemented the lesion boundary features in predicting lesion malignancy status. The

computational model showed higher specificity and accuracy than the human reader using

BI-RADS descriptors suggesting the potential of CESM-CAD (computer aided detection)

systems to improve breast cancer detection specificity. Although the sensitivity of the model

was lower than human readers, future work will include margin assessments which may

improve sensitivity of the CAD-CESM.

While our result shows great promise, it will need to be evaluated with external validation

datasets, including more patients. We did not assess the impact of contouring variability on

the model accuracy. In future work, we intend to implement automatic lesion segmentation

to eliminate any reader bias in drawing the ROI. Also, we did not include lesion margin

descriptors in this preliminary study. Earlier reader studies have shown a negative predictive

value of 80% to 84% for circumscribed masses and a positive predictive value of 90% to 93%
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for noncircumscribed masses [163]. In the future, we intend to extend our image analytics

package to include margin descriptors, which we hope will improve sensitivity of the model.

5.7 Conclusion

We developed a preliminary computer-aided diagnosis tool for contrast-enhanced spectral

mammography (CAD-CESM) to test whether there was potential to reduce false-positives in

breast cancer screening. CESM-based texture features complemented the lesion boundary

features in predicting malignancy status of the lesion. The computational model showed

higher specificity and accuracy than the human readers using BI-RADS descriptors, suggesting

the potential of CAD-CESM (computer aided detection) systems to improve breast cancer

detection specificity. Although the sensitivity of the model was lower than that of the human

readers, future work will include margin assessments, which may improve the sensitivity of

the CAD-CESM.
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Chapter 6

VALIDATION STUDY III: COMPUTED TOMOGRAPHY BASED TEXTURE

ANALYSIS TO DETERMINE HUMAN PAPILLOMAVIRUS STATUS OF

OROPHARYNGEAL SQUAMOUS CELL CARCINOMA

6.1 Summary

This chapter reports on a retrospective study to determine whether machine learning

can accurately classify human papillomavirus (HPV) status of oropharyngeal squamous cell

carcinoma (OPSCC) using computed tomography (CT)-based image features. This work has

been accepted by Journal of Computed Assisted Tomography (JCAT). My contributions to

this manuscript are 1) devising technical design of the study, 2) implementing the methods

section, 3) implementing the machine learning process, 4) producing the results, and 5)

writing and editing the manuscript.

Authors Sara Ranjbar1, Shuluo Ning2, Christine M. Zwart3, Christopher P. Wood4, Steven

M. Weindling5, Teresa Wu2, J Ross Mitchell6, Jing Li2, and Joseph M. Hoxworth3.

Affiliations 1Department of Biomedical Informatics, Arizona State University, Tempe,

AZ, 2 School of Computing, Informatics, and Decision Systems Engineering, Arizona

State University, Tempe, AZ, 3Department of Radiology, Mayo Clinic, Phoenix, AZ,

4Department of Radiology, Mayo Clinic, Rochester, MN, 5Department of Radiology,

Mayo Clinic, Jacksonville, FL, 6Department of Research, Mayo Clinic, Phoenix, AZ.

73



6.2 Abstract

Objective: To determine whether machine learning can accurately classify human

papillomavirus (HPV) status of oropharyngeal squamous cell carcinoma (OPSCC) using

computed tomography (CT)-based texture analysis.

Methods: Texture analyses were retrospectively applied to regions of interest from

OPSCC primary tumors on contrast-enhanced neck CT, and machine learning was used to

create a model that classified HPV status with the highest accuracy. Results were compared

against the blinded review of 2 neuroradiologists.

Results: The HPV-positive (n = 92) and -negative (n=15) cohorts were well-matched

clinically. Neuroradiologist classification accuracies for HPV status (44.9%, 55.1%) were

not significantly different (P = 0.13), and there was a lack of agreement between the two

neuroradiologists (kappa = -0.145). The best machine learning model had an accuracy of

75.7%, which was greater than either neuroradiologist (P<0.001, P = 0.002).

Conclusions: Useful diagnostic information regarding HPV infection can be extracted

from the CT appearance of OPSCC beyond what is apparent to the trained human eye.

Keywords: Squamous cell carcinoma; human papilloma virus; oropharynx; oropharyn-

geal cancer; texture analysis; machine learning; radiomics

6.3 Introduction

Infection with high risk human papillomavirus (HPV), particularly HPV16, has become

increasingly recognized as a risk factor for oropharyngeal squamous cell carcinoma (OPSCC),

and the prevalence of HPV-positive OPSCC has dramatically risen in recent decades [164,

165]. This represents a clinically distinct group comprised of predominantly younger male

patients, many of whom lack the typical risk factors of alcohol consumption and cigarette

smoking. Because of improved prognosis and treatment response over HPV-negative OPSCC,
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establishing HPV-positivity is clinically relevant but requires tissue sampling [166, 167].

Given the complex molecular mechanisms underlying HPV-induced carcinogenesis, HPV

infection can be determined pathologically with a variety of techniques that most commonly

focus on p16 overexpression or viral DNA detection [168, 169].

Oropharyngeal squamous cell carcinoma demonstrates significant intratumoral genomic

heterogeneity [170]. This is particularly relevant for patients undergoing primary chemora-

diation whose diagnosis may be based on limited biopsy samples, as incomplete tumor

characterization could lead to treatment resistance. The field of radiomics offers the potential

to help in this regard by identifying the spatial distribution of tumor phenotypes and geno-

types on conventional radiology images [171]. This process involves extracting mineable data

from the complex visual pattern within a biomedical image by using histogram, texture, and

higher order statistical analyses in an attempt to mathematically characterize subpatterns

and similarities (or dissimilarities). Because of the high dimensional nature of this feature

data, machine learning methodology is well suited for data analysis and classification.

Computed tomography CT-based texture analysis was previously used in OPSCC to

identify individual image feature differences based on HPV status [172]. To advance this

field, the primary aims of the current study were to determine if CT-based texture analysis

and machine learning can accurately classify the HPV status of OPSCC and to compare this

classification result to that of the neuroradiologist.

6.4 Materials and Methods

This retrospective study is compliant with the Health Insurance Portability and Account-

ability Act and was approved by the Institutional Review Board at our institution with

waiver of informed consent.
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6.4.1 Study Cohort

The pathology database was queried from January 1, 2010 through December 31, 2014 to

find adult patients (age > 18 years) who underwent surgical resection of OPSCC originating

in the tonsil or base of the tongue, and patients were excluded if the OPSCC originated

in any other oropharyngeal subsite. Subject demographic and clinical data were obtained

from the electronic medical record and included age at diagnosis, gender, subsite of tumor

origin within the oropharynx, pathologic tumor T stage [173], tumor histologic type, and

HPV-status. The HPV testing was performed as part of standard clinical care utilizing

DNA in situ hybridization, and “HPV-positive” indicates positivity for one of more of the

following high risk HPV types: 16, 18, 31, 33, or 51. The OPSCC had to be of keratinizing

or non-keratinizing histologic type, and less common squamous cell carcinoma variants such

as papillary, small cell, undifferentiated, adenosquamous, and spindle cell were excluded

[174]. Based upon review of the medical record, subjects who had any history of prior head

and neck tumor, surgery, or irradiation were also excluded. Potential subjects meeting the

above criteria were cross-referenced against the radiology information management system

to identify those subjects who had a pretreatment contrast-enhanced neck CT electronically

archived and available for review. This initial study cohort consisted of 131 HPV-positive and

23 HPV-negative subjects, which is concordant with the high rate of HPV-related OPSCC

found in our practice.

To maximize generalizability of the study results, there was no requirement for the use

of a single CT scanner type, common imaging protocol, or standardized bolus of intravenous

contrast administration. Neck CT scans were eligible for inclusion even if performed at an

outside facility and, in fact, 60 of 107 neck CT’s (56.1%) were performed before patient referral

to our institution. For inclusion, the contrast-enhanced neck CT had to include axial images

with a slice thickness ranging from 1.5 mm to 3 mm, and the images had to qualitatively be

rendered with a smooth reconstruction kernel. The pretreatment contrast-enhanced neck CT

was reviewed for each potential subject by a board-certified neuroradiologist with 11 years of

76



experience. To permit reliable region of interest (ROI) assessment, it was required that the

primary oropharyngeal tumor had to be clearly discernible on CT with minimum orthogonal

measurements of 1x1 cm2 on at least one axial image, leading to the further elimination

of 22 cases (19 HPV-positive and 3 HPV-negative). Subjects for whom the primary tumor

assessment on neck CT was degraded by patient motion or beam-hardening streak artifact

were also excluded (17 HPV-positive, 4 HPV-negative). Lastly, tumors containing any air

due to ulceration were removed (3 HPV-positive, 1 HPV-negative). The final subject cohort

therefore consisted of 107 cases, 92 HPV-positive and 15 HPV-negative cases, whose neck

CT scans were then anonymized to undergo texture analysis in a blinded fashion.

6.4.2 Texture Analysis

The DICOM imaging data was imported into OsiriX (version 6.5; Pixmeo SARL, Bernex,

Switzerland) and, to account for differences in imaging protocols, the images were resampled

to have uniform 0.7mm x 0.7 mm pixel spacing and 512x512 matrix size. Because ROI

assessment was performed by the same neuroradiologist who screened the neck CT’s for study

eligibility, a period of two months was allowed to elapse between CT anonymization and

further imaging evaluation to preserve blinding and eliminate potential bias. For descriptive

purposes, tumor margins were manually traced on all axial images, and tumor volume was

estimated by the “ROI Volume” function in OsiriX. In order to follow a standard approach,

the axial image with the largest tumor cross-sectional area was selected for each subject

as the basis for texture analysis. The neuroradiologist then inserted the largest possible

rectangular ROI that would fit within the margins of each tumor (Figure 6.1, b). To avoid the

potentially confounding effect of oversampling larger tumors, an automated script determined

the largest common square ROI that would fit within the borders of the manually placed

rectangular ROIs for all 107 cases. This least-common square ROI, which was found to be

16x16 pixels, was automatically centered within each respective rectangular ROI and served

as the input for two-dimensional texture analysis.
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(a) A 55 year-old man with HPV-negative squa-
mous cell carcinoma of the left palatine tonsil
(T2N1M0).

(b) A 70 year-old man with HPV-positive squa-
mous cell carcinoma of the left palatine tonsil
(T2N0M0).

Figure 6.1: Regions of interest for texture analysis. White boxes represent the largest
manually drawn rectangular ROI that would fit within the confines of the tumor. The inset
images in the upper left corner of each image are the 16x16 matrices obtained from the
isocenter of the manually drawn ROI and served as the input for 2-dimensional texture
analysis.

The texture operators used in this study have been previously described [17, 56] and

include first-order textural features, second-order Ggray Level Co-occurrence Matrices

(GLCM)[126], Laplacian of Gaussian Histogram (LoGHist)[94], Discrete Orthonormal Stock-

well Transform (DOST)[91], Gabor Filter Banks (GFB)[93], and Local Binary Patterns

(LBP)[127], summing up to a total of 77 features per patient that were exported for lesion

classification. The texture analyses were implemented in Python programming language

using custom written code based on these previous publications and open source libraries.

First, mean, standard deviation, and range of the gray level values across the ROI in

the original image (i.e. ’raw’ features) were reported as the first order statistics of texture.

Next, the gray value dynamic range of the ROI was reduced to 8 bits per pixel intensity

levels for computational feasibility of analysis. GLCM is a well-established statistical method
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of extracting second-order statistics of texture [126]. GLCM features such as entropy,

energy, angular second moment, homogeneity, dissimilarity, and correlation are descriptors

of randomness/orderliness, homogeneity, or dependency of gray-tones of the ROI to each

other. GLCM features corresponding to a distance of one pixel and four angles (0◦, 45◦,

90◦, and 135◦) were calculated. Mean and range of each feature over the four directions

were calculated and exported for a total of 26 GLCM features. The LBP method finds the

most frequent intensity patterns within a certain radius of each pixel in the ROI [127], and a

radius of three pixels was selected to focus on medium textures for a total of 12 features per

sub image.

Transform-based texture analyses such as DOST, LoGHist, and GFB capture the spectral

composition of the lesion in intermediate scales not accessible to first and second order

statistical methods. DOST is a rotationally-invariant multi-resolution spatial-frequency

representation of an image based on dyadic sampling of Fourier representation of the image

[91], while LoGHist uses different sizes of band-pass filters to highlight and enhance different

scales of texture ranging from fine to coarse details [94]. Gaussians with three different values

of sigma (2.0, 4.0 and 6.0) were used to cover the range of fine to medium scale textures.

The GFB method uses localized filters to capture details in various frequency resolutions

[93]. Using two levels of sigma (1.0 and 3.0) and two levels of frequency (0.6 and 1.0), four

different Gabor filters were applied with mean and standard deviation of the filtering result

determined. In total, 10 DOST, 18 LoGHist, and 8 GFB features were calculated, yielding a

total of 36 spectral texture features per sub image.

6.4.3 Neuroradiologist Qualitative Classification

In order for texture analysis to become a useful tool to assist with clinical image

interpretation, it needs to detect tumor characteristics not well appreciated by radiologists.

Although differences have been described between HPV-positive and HPV-negative OPSCC,

these were related to features, such as muscle invasion, exophytic morphology, and cystic
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nodal metastases [175, 176]. To date, no qualitative features (i.e. necrosis or enhancement

pattern) limited to the internal tumor appearance have been reported as a predictor of HPV

status in OPSCC [175]. To determine if texture analysis could provide useful information

beyond what was obvious to the trained human eye, two board-certified neuroradiologists,

with 25 and 28 years of experience, respectively, reviewed the tumors for all 107 subjects in

a blinded fashion. Using OsiriX, they independently assessed the primary tumors with any

window, level, and magnification adjustments that they deemed necessary and subsequently

rendered an opinion of HPV-positive or -negative for each case. Of note, the CT images were

zero-filled outside of the ROIs that had been manually traced around the tumor margins

thereby preventing ancillary features such as tumor location, invasive behavior, and cystic

metastatic lymph nodes from being taken into account. This was performed to allow an

isolated comparison based exclusively on the internal appearance of the tumor, because this

was the only aspect being interrogated with texture analysis. Again, because no differentiating

features have been published in this regard, the neuroradiologists were not given any explicit

guidelines on image review, other than to use their best judgment based on decades of

experience in head and neck radiology.

6.4.4 Machine Learning and Statistical Analysis

Open-source statistical R software (http://www.R-project.org) was used to perform

the analyses. Classification of OPSCC HPV status was achieved using widely accepted

machine learning methodology, which was performed utilizing the open-source python-based

package scikit-learn [102] in conjunction with custom written code. The texture features were

first standardized by removing the mean and standard deviation and scaling them to unit

variance. Principal component analysis (PCA) was used to improve model generalizability

to unseen cases and to reduce data dimension [177–179]. Principal component analysis

creates principal components (PCs), which are linear combinations of lesion features that

best explain the variability in the dataset. To aid with clinical interpretation, PC sets were
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constructed from each texture analysis algorithm separately resulting in 5 sets of PCs. One to

3 PCs per subset, sufficient to describe 90% of the subset variability, were selected for further

processing. Several comparative datasets were generated with PCA to find the optimal level

of variance in the PCs for gaining the highest accuracy while avoiding over-fitting. The

resulting PCs were then merged with raw first order features as the final set predictors in

the analysis. HPV status was used as the class label for supervised machine learning.

Figure 6.2: Univariate comparison of texture features, which are adjusted for multiple
comparisons using the False Discovery Rate, are plotted for comparison of texture features
between HPV-positive and -negative OPSCC tumors using the two sample t test.

Based on prevalence within our practice, there was a domain-specific reason for dataset

skewness towards the HPV-positive class. With 86% HPV-positive samples, imbalanced

class distributions rendered standard machine learning algorithms unsuitable. Instead, a

sampling approach was used to ensure that the training model had the opportunity to learn

the inherent properties of each class without the dominance of the majority class [180, 181].

An algorithm was designed that utilized a leave one out cross validation technique combined

with ensemble down-sampling. In each round, one sample was selected and set aside as the

test sample, while the remaining samples were used for training. The majority class was

split into 6 randomly selected non-overlapping subsets with sizes roughly matching that of
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the minority class. Each of these subsets together with the minority class was used to train

a classifier, rounding up to a total of 6 classifiers per test sample. The class label for the

training task was HPV status. Diagonal quadratic discriminant analysis, which was used

to perform supervised classification for each batch of samples [133, 182], is a parsimonious

model that avoids overfitting and has elicited good performance for high dimensional data

with small sample sizes [183–185]. The setting used for quadratic discriminant analysis was

no priors on classes and threshold of 0.0001 for rank estimation.

Table 6.1: Subject Demographics and Tumor Features

HPV-Positive HPV-Negative P Value
(n = 92) (n = 15)

Gender 0.66a

Male 86 (93.5%) 14 (93.3%)
Female 6 (6.5%) 1 (6.7%)

Age 54.6 ± 9.1 65.7± 13.4 0.007b

Squamous Cell Carcinoma Histology < 0.001a

Keratinizing 11 (12.0%) 12 (80.0%)
Non-keratinizing 81 (88.0%) 3 (20%)

Oropharyngeal Subsite of Tumor Origin 0.48c

Base of the Tongue 40 (43.5%) 8 (53.3%)
Tonsil 52 (56.5%) 7 (46.7%)

Tumor Volume 19.5 ± 13.4 cm3 23.0 ± 17.9 cm3 0.38b

Tumor T Stage 0.91d

T1 10 (10.9%) 1 (6.7%)
T2 36 (39.1%) 7 (46.7%)
T3 15 (16.3%) 3 (20.0%)
T4 31 (33.7%) 4 (26.7%)

Age and tumor volume are presented as mean ± standard deviation. All other values are numbers
of subjects in each category with percentages included as parentheticals. The reported P values
represent comparisons using the Fisher exact testa, two sample t testb, Pearson chi-square testc

, and the Freeman-Halton extension of the Fisher exact testd.

Tumor T stage reflects the American Joint Committee on Cancer staging system (7th edition) [173],
which was in effect during the study period.

Selecting features for classifier construction is an important issue in the machine learning

process. The sequential forward feature selection algorithm was utilized, as this selects

features that have minimal redundancy yet are maximally relevant for prediction. PCs were
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selected if they improved the classifier’s performance by at least 5%, as estimated using leave

one out cross validation [45]. After training, the 6 models were used to predict HPV status in

the test sample using the average posterior probability of the models as the final prediction.

Receiver operating characteristic curves were used to evaluate classification performance

metrics with a higher percentage of the area under the curve indicative of better model

performance.

Additional statistical analyses were performed to assess for potential differences between

the OPSCC HPV-positive and -negative groups. Differences in mean age and tumor volume

were assessed using the 2-sample t test. Frequencies for gender and tumor histologic type

were compared using the Fisher exact test, while the Pearson chi-square test was employed

for tumor subsite (i.e. base of the tongue versus tonsil). Tumor T stage frequencies were

evaluated using the Freeman-Halton extension of the Fisher exact test. The 2-sample t test

was used for a univariate comparison of texture features between HPV-positive and -negative

tumors prior to model development, and P values were corrected for multiple comparisons

using the False Discovery Rate [186]. Cohen’s κ coefficient was calculated to measure inter-

rater agreement for the prediction of HPV status by the 2 blinded neuroradiologists, while

potential differences in accuracy were assessed with a 2-tailed test of population proportion.

All hypothesis tests were 2-sided, and statistical significance was defined as P less than 0.05.

6.5 Results

6.5.1 Study Cohort

Demographic and tumor characteristics are summarized in Table 6.1. The HPV-positive

and -negative cohorts were similarly male predominant, while the subjects with HPV-positive

tumors were significantly younger on average. No statistically significant differences were

identified for tumor volume, T stage, or oropharyngeal subsite of tumor origin based on

HPV status. Concordant with previous publications, conventional keratinizing squamous
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Table 6.2: Diagnostic Performance of Texture Analysis With Machine Learning Compared
With Neuroradiologist Review for the Differentiation of HPV-Positive from HPV-Negative
OPSCC

In-Situ Hybridization
HPV-positive HPV-negative

(n = 92) (n = 15)

Texture Analysis (Diagonal
Quadratic Discriminant Analysis)

Accuracy ab75.7%
HPV-positive 69 3 Sensitivity 75.0%

Specificity 80.0%
HPV-negative 23 12 PPV 95.8%

NPV 34.3%

Neuroradiologist #1
Accuracy ac44.9%a

HPV-positive 44 11 Sensitivity 47.8%
Specificity 26.7%

HPV-negative 48 4 PPV 80.0%
NPV 7.7%

Neuroradiologist #2
Accuracy bc55.1%

HPV-positive 53 9 Sensitivity 57.6%
Specificity 40.0%

HPV-negative 39 6 PPV 85.5%
NPV 13.3%

Comparison of accuracies was performed using a 2-tailed test of population proportion:
aP < 0.001, bP = 0.002, cP = 0.13.
PPV indicates positive predictive value; NPV, negative predictive value.

cell carcinoma predominated in HPV-negative OPSCC, while the majority of HPV-positive

tumors were non-keratinizing [174].

6.5.2 Neuroradiologist Qualitative Classification

Neuroradiologist classification results for tumor HPV status are documented in Table 6.2.

The respective accuracies of 44.9% and 55.1% were not significantly different (P = 0.13).

The percent agreement between the 2 raters was 43.0%, while the κ statistic was -0.145

indicating a lack of agreement between the 2 neuroradiologists.
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Figure 6.3: Model performance depicted by receiver operating characteristic curve. Classifiers
were trained to predict tumor HPV status, and average posterior probability of models
was used as the prediction for each classifier. Area under the curve for the best diagonal
quadratic discriminant analysis model was 0.80.

6.5.3 Texture Analysis and Machine Learning

Based on a univariate comparison, all forms of texture analysis had at least some features

that were significantly different between HPV-positive and -negative OPSCC (P < 0.05),

except for LoGHist and LBP (Figure 6.2). The performance of the best diagonal quadratic

discriminant analysis model is depicted by the receiver operating characteristic curve in

Figure 6.3, which had an area under the curve of 0.80. The model was comprised of texture

features with the highest predictive value for classification of HPV status. Figure 6.4 shows

how different texture analysis methods compare in terms of their relative contribution to

accuracy across all models, with the raw features contributing the least. The best-performing

model from diagonal quadratic discriminant analysis was significantly more accurate as

compared to the performance of either neuroradiologist (Table 6.2).
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Figure 6.4: Comparison of predictive value among texture analysis methods. As detailed
in the materials and methods, numerous models were created in an iterative fashion using
leave one out cross validation. Boxplots were generated using the statistics of all models
to summarize relative contributions to accuracy of the various texture analyses. Individual
outliers are plotted with the accuracy gained by the raw features.

6.6 Discussion

The potential for CT-based texture analysis to determine HPV status of squamous cell

carcinoma both within and outside of the oropharynx has been recently demonstrated [172,

187]. In applying a Student t test for independent samples, the authors assessed mean

differences in histogram, GLCM, gray level run length, gray level gradient matrix, and

Law features. For OPSCC, a limited number of statistically significant differences were

identified in histogram parameters (median and entropy) and GLCM entropy [172]. To

show potential future clinical applicability, the current study applied a more sophisticated

battery of texture analyses to OPSCC and synthesized these results using a machine-learning

model in lieu of simply attempting to show statistical differences for individual features. The

best classification model demonstrated a promising result of 80% area under the receiver

86



operating characteristic curve. Based on the inaccurate results from the neuroradiologist

review and the lack of interobserver agreement, the difference between HPV-positive and

HPV-negative tumors is not obvious to the trained eye of an experienced neuroradiologist

when solely evaluating the intrinsic appearance of the primary tumor. Hence, although the

machine-learning classification accuracy was not perfect, it underscores that texture analysis

has the potential to complement the interpretative skills of a neuroradiologist for determining

HPV status of OPSCC. In addition, these results show promise for the generalizability of

CT-based texture analysis for OPSCC since CT scans were not acquired with a standard

imaging protocol at a single institution, in contrast to previous studies [172, 187]. This is

reassuring in light of results showing the impact that CT parameter variation can have on

texture features [188, 189].

It is well recognized that HPV-related OPSCC is a molecularly and morphologically

distinct tumor type, with the majority demonstrating a poorly differentiated, basaloid, and

non-keratinizing histologic appearance [174]. The presence of cystic lymph node metastases

from OPSCC is strongly correlated with HPV positivity [175, 176] However, the imaging

appearance of the primary tumor has historically been considered a less reliable predictor.

Cantrell and colleagues [175] found that HPV-negative tumors were significantly more likely

to invade adjacent muscle, while increased enhancement, exophytic morphology, and well

defined borders were found more frequently in HPV-positive cases, but these observed

differences did not all reach statistical significance at the P less than 0.05 level. The low

accuracy from the neuroradiologist review in the current study further supports that it

is challenging to predict HPV status of OPSCC based solely on the appearance of the

primary tumor (i.e. without taking tumor margins and cystic nodal metastases into account).

However, there is evidence that HPV-positive and -negative tumors have differences that

can be objectively quantified with imaging.

In using immunohistochemistry to identify p16 overexpression as a surrogate marker

for HPV infection, mean and minimum apparent diffusion coefficients were significantly
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lower in p16-positive OPSCC [190]. By applying cut-off values of 1.027 x 10-3 mm2/s and

0.641 x 10-3 mm2/s for mean and minimum apparent diffusion coefficients respectively, p16

status was predicted with 80.77% accuracy in a small retrospective cohort. These results are

presumably related to differences in tumor cellularity and water content and likely reflect

underlying histology. The p16-negative cohort was comprised of 64.3% keratinizing tumors,

while the p16-positive group was 66.7% non-keratinizing. However, no subgroup analysis was

reported to determine if diffusion characteristics correlated with histologic type, independent

of p16 expression.

Previous studies have shown the potential for texture analysis to extract other clinically

relevant features from imaging data in patients with OPSCC. Zhang and colleagues [191]

performed CT histogram and texture measurements in a cohort of 72 patients with locally

advanced head and neck squamous cell carcinoma, of which 40% were OPSCC. Primary

mass entropy (pixel complexity or irregularity in space) and skewness of the pixel intensity

distribution were independently associated with overall survival in patients treated with

induction chemotherapy. Unfortunately, HPV status was not available for most of their

patients, histologic data was not presented, and their Cox proportional hazards models were

not adjusted for primary mass location. As a result, it is not possible to delineate whether

the impact of these texture and histogram features on improved survival could be partially or

completely attributed to the better prognosis of HPV-related OPSCC, which is known to be

more responsive to chemoradiation, have lower recurrence rates, and demonstrate improved

disease-specific survival [166, 167]. Likewise, an additional study used texture analysis to

predict p53 expression with 81.3% accuracy in a small cohort of patients with squamous cell

carcinoma of the oropharynx and hypopharynx, but without specific mention of p16 or HPV

status [192] Because p53 expression is not tightly coupled to HPV expression, the results are

of limited value in comparing with the current study [193].

This study is limited by its retrospective nature and, based upon patient demographics

during the study period, the HPV-negative cases were underrepresented as the minority class.
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Over-sampling and under-sampling are 2 commonly used approaches in machine learning for

dealing with class imbalance [194]. We avoided over-sampling since it can lead to excessive

copies of the minority samples and result in over-fitting. Under-sampling, on the other hand,

can discard potentially useful majority samples. To avoid this drawback, we adopted an

ensemble under-sampling strategy that has shown success in fully utilizing samples of both

classes [195–197].

Future prospective validation is necessary, and this would benefit from a much larger

sample size to determine whether texture analysis is merely detecting keratinizing versus

non-keratinizing histologic differences or some other unique feature related to HPV infection.

Lastly, this study was not intended to compare texture analysis to a neuroradiologist’s

clinical interpretive skills, as the latter synthesizes numerous additional imaging features that

were deliberately hidden from view. Instead, the study was structured solely to determine

whether the CT appearance of an OPSCC primary tumor contains imaging data that has

not yet been recognized to be of qualitative value in predicting HPV status.

In conclusion, CT texture analysis and machine learning classified the HPV status of

OPSCC with a higher accuracy than neuroradiologist review when limited to the internal

appearance of the primary tumor. This suggests that useful diagnostic information can be

extracted from the CT appearance of OPSCC above and beyond what is apparent to the

trained human eye. Consequently, this technique may have potential to complement image

interpretation by using a CT-based radiomic analysis to predict HPV-status in patients with

OPSCC, though future prospective validation is necessary.
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Chapter 7

VALIDATION STUDY IV: BRAIN MR RADIOMICS TO DIFFERENTIATE COGNITIVE

DISORDERS

7.1 Summary

This chapter reports the result of a retrospective study to investigate the utility of MRI

imaging features in capturing the subtle effects of cognitive decline on the brain. Initial

results of the work was presented at Scientific Computing with Python (SciPy) conference,

July 2015, Austin, TX. The manuscript is pending submission. My contributions to this

manuscript are 1) devising technical design of the study, 2) data selection, data gathering,

and data cleaning, 3) implementing the methods section including the image analysis process

as well as the machine learning and statistical analysis processes, 4) writing and editing the

manuscript.
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Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and implementation of ADNI and/or provided

data but did not participate in analysis or writing of this report. A complete listing of ADNI

investigators can be found here 1.

7.2 Abstract

Subtle and gradual changes in brain anatomy may occur years prior to cognitive im-

pairment. Radiomics can help identify these underlying pathophysiological changes via

quantitative image analyses. This study explores the utility of hippocampal texture analysis

and volumetric features to differentiate between cognitive states (cognitively normal (CN),

Mild Cognitive Impairment (MCI), Alzheimer’s disease (AD), Clinical Dementia Rating

(CDR) scores. 175 cases from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with

3T T1-weighted structural magnetic resonance (MR) images were selected. Texture and

volume features from the bilateral hippocampal area were extracted and machine learning

techniques were applied to perform binary classification using Diagonal Quadratic Discrimi-

nant Analysis (DQDA) in a leave one out cross validation approach. Area under the receiver

operating characteristic (ROC) curve (AUC), sensitivity and specificity were used to assess

model performance. Texture analysis was better able to differentiate between no impairment

and mild impairment (CN-MCI: AUC of 0.86 and CDRs 0-1: AUC of 0.95). Volumetric

features achieved a better classification between no impairment and advanced stages of

impairment (CN-AD: AUC of 0.86 and CDRs 0-2: AUC of 0.98). Brain MR radiomics may

be a promising tool for assessing early cognitive impairment, as many features are sensitive

to early AD pathology.

Keywords: Texture analysis; Alzheimer’s disease; Mild cognitive impairment; Machine

learning; Radiomics

1https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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7.3 Introduction

The identification of where an individual lies on the cognitive continuum can lead to an

earlier diagnosis of cognitive impairment. This is important for rapid communication for

management decisions and selective pharmacologic treatment options, which may be more

responsive to treatments given at this early stage. It is possible that the current therapeutics

for Alzheimer’s disease (AD) dementia fail because the intervention is occurring too late

in the disease progression. Thus, identifying quantifiable biomarkers of disease progression

beyond a collection of cognitive symptoms is paramount.

The existence of a grey zone of cognitive impairment has been reinforced by the emerging

clinical need of something beyond the binary diagnosis of the presence or absence of AD [198].

In Alzheimer’s disease dementia, the hallmark signatures of extracellular deposits of beta

amyloid (Aβ) and intraneuronal neurofibrillary tangles (NFTs), along with neuronal injury

and synaptic loss may precede clinical manifestations by several decades, placing it on the

far end of the cognitive continuum [199, 200]. Mild cognitive impairment (MCI) falls in the

intermediate stage and is often, but not always, a transitional phase from cognitive changes

of normal aging to those typically found in AD [198, 201]. Patients with MCI constitute

a high-risk group because they develop dementia at 10-15% per year compared with the

general population at 1-2% [202]. There is no gold standard for which neuropsychological

test battery is used for diagnosis of MCI, but it is important that all the main cognitive

areas are examined; these typically include executive function, attention, language, memory

and visuospatial skills [198, 203].

Neuropsychological tests in the context of AD help stage dementia severity [204]. A

popular brief cognitive screening test to detect cognitive impairment and classify patients as

having normal cognition, MCI, or dementia is the Mini Mental State Examination (MMSE)

[205]. Staging is needed to generate homogenous or comparable patient samples, define

endpoints in clinical drug trials, and to guide pharmacologic treatment options that have
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been approved for different levels of disease severity [204, 206]. However, the use of MMSE

performance in AD clinical trials and diagnostic studies for inclusion and endpoints may

have limitations [206]. Several studies have addressed the MMSE’s large ceiling and floor

effects, sensitivity to practice effects, and general psychometric limitations [207, 208]. In

determining the correspondence between the MMSE and Clinical Dementia Rating (CDR)

scores, Perneczky et al. [204] found that MMSE lacks both accuracy in the identification of

MCI or mild AD dementia, and validity in detecting and discriminating across the various

disease stages. Clinical Dementia Rating is considered the gold standard for staging dementia

severity, has good inter-rater reliability and criterion validity, and has also been shown

to predict neuropathology [209–212]. Thus, Clinical Dementia Rating scores could be a

closer approximation to brain pathology and magnetic resonance (MR) imaging and may be

sensitive in early cognitive impairment.

Multiple pattern recognition based methods applied to structural MR images have been

developed to predict Alzheimer’s disease [9, 213, 214]. Several studies found that local

hippocampal and total brain volume are significantly reduced in AD and MCI as compared

to healthy elderly [215–219]. Hippocampal volume is the most studied structural biomarker

of AD and is used in the criteria for AD diagnosis [220]. In addition, prediction of MCI

to AD conversion has been correlated with the rate and amount of hippocampal, medial

temporal lobe, and total brain atrophy [221–223].

A current challenge is to discriminate patients who are at a very early stage of cognitive

impairment. While volumetric macro-structural correlations provide useful information,

another approach that incorporates the well-established microscopic pathological changes in

AD is texture analysis. Texture analysis focuses on deriving quantitative and reproducible

mathematical metrics from images that describe the interrelations of pixel intensities across

multiple spatial scales. Texture analysis has been used previously in the context of AD [215,

221, 224, 225]. For example, Sorensen et al. describes hippocampal texture measures that

may serve as a prognostic neuroimaging biomarker of early cognitive impairment [215, 225].

93



Our group has developed a radiomics texture analysis platform that was previously used

characterize gene expression and tumor content heterogeneity of brain cancers[17, 56], and

pathology of head and neck cancer [1]. Radiomics involves the high-throughput extraction of

quantitative features that converts images into minable data. These features can be used to

build descriptive and predictive models that may reveal quantitative predictive or prognostic

associations between images and clinical outcomes [26, 171, 226]. The overall goal of this

study is to classify neuropsychological performances as they relate to subtle brain changes.

In general, we hypothesize that changes in neuropsychological functions has a morphological

counterpart, detectable via structural MRI. We hypothesize that the application of brain MR

radiomics can achieve comparable classification accuracies with volume and texture features.

Our objectives are 2-fold: 1) to differentiate between cognitive states (cognitively normal

(CN), Mild Cognitive Impairment (MCI), Alzheimer’s disease (AD), and 2) to estimate

neuropsychological performance using Clinical Dementia Rating (CDR) scores.

7.4 Methods

7.4.1 Image Dataset

We used T1 MR images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database for this study [227]. Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [228]. The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI-1 started in October

2004 as a 5-year study, with a cohort of 200 CN, 200 MCI and 400 AD cases. We selected

cases from the shared image collection ADNI1: The patients were divided into the CN, MCI,
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and AD groups and subjected to 3T imaging at the following time points: baseline, 6, 12, 18

(MCI only), and 24 months.

7.4.2 Cognitive measures

Clinical Dementia Rating (CDR) scores is one of our classification targets as it focuses on

decline in cognitively-driven everyday function, rather than objective cognitive deficits [209].

The CDR score is obtained through semi-structured interviews of patients and informants with

the goal of evaluating the patient in six domains: memory, orientation, judgment and problem

solving, community affairs, home & hobbies, and personal care [209]. An algorithm creates

an overall rating of impairment severity: 0 (no impairment), 0.5 (questionable impairment),

1.0 (mild dementia), 2.0 (moderate dementia), or 3.0 (severe dementia). Typically, a score of

0.5 is given to individuals with a diagnosis of MCI [209, 229].

We also used the categorical division of patients into three cognitive group classifications:

cognitively normal (CN), MCI and AD. Group specific inclusion criteria are available on

ADNI’s website under the General Procedures Manual [230].

7.4.3 Patient Cohort

The initial patient selection criteria were as follows: 1) available CDR score associated

with the time of image acquisition, and 2) available 3T scanning protocol to ensure maximum

resolution for the image analysis.

We found 204 unique patients in ADNI-1 with available 3T MR images. Image data was

available for all patients at different time points ranging from baseline to month 24. Since

we were interested in predicting static cognition levels (CDR scores, cognitive groups), time

point was irrelevant and we focused on the CDR scores. To ensure unique patients across

groups, we selected one time point per patient. To maximize group sizes, we started with

finding the minority group cases first: patients who were assigned the CDR score of 2 at
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any given time. These patients were excluded from all the other groups. The process was

repeated for CDR scores 1 and 0.5. All the remaining patients not assigned to the above

groups were placed in the CDR 0 group. The group of CDR score 3 was excluded due to

small sample size. Next, we proceeded to find the 3T MR scan time points associated with

the assigned group labels for patients. The image data acquired at the selected time points

were used for analysis. 29 patients were excluded because the time point of the 3T MR

image and CDR score acquisition date did not match, which was a requisite in our selection

process. 8 patients were excluded due to image unavailability. The final sample size was 175:

67 non-impaired (CDR 0), 50 questionable (CDR 0.5), 39 mild (CDR 1) and 19 moderate

(CDR 2) cognitively impaired individuals.

Table 7.1 shows the demographic information and clinical parameters of the final cohort.

Note that to receive a diagnosis of MCI or AD, in addition to clinician judgement, intra-

individual decline must be obtained with serial cognitive measurements (multiple CDR scores

over time), or by a history of change from previously attained levels [198]. Thus, the numbers

of patients between cognitive grouping and CDR scores may differ.

Table 7.1: Demographic and Clinical Parameters

CN MCI AD
(N = 62) (N = 71) (N = 42)

Male N (%) 26 (41.9) 44 (61.9)§ 17 (40.5)
Age Mean (SD) 75.2 (4.7) 75.8 (8.5) 76.2 (8.5)

CDR 0 CDR 0.5 CDR 1 CDR 2
(N = 67) (N = 50) (N = 39) (N = 19)

Male N (%) 29 (43.3) 27 (54) 22 (56.4) 9 (47.4)
Age Mean (SD) 74.9 (5.3) 75.6 (7.3) 74.3 (8.9) 81.3 (7.6)*

[Key: CDR, clinical dementia rating; AD, Alzheimer’s disease; MCI,
mild cognitive impairment; CN, cognitively normal].
§indicates significantly higher proportion of males in the MCI group
(Pearson chi-square = 4.0704, p < 0.001), and *indicates a significantly
higher age in the CDR 2 group (student’s t test, p < 0.05).
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7.4.4 Image preprocessing

Each MPRAGE image in ADNI database is linked with related image files which have

undergone specific image preprocessing correction steps which are described on the ADNI

website [231]. To ascertain the correction of intensity values within a single scan, we

normalized the images based on cerebrospinal fluid (CSF) intensity variance (mean and

standard deviation) [232]. Texture and volume analysis were performed using the normalized

images.

7.4.5 Regions of Interest

The bilateral hippocampal area was extracted from images in two different methods for

texture and volume analysis. For texture analysis, we manually performed 2.5D hippocampal

segmentation using the MIPAV (Medical Image Processing, Analysis, and Visualization)

application version 7.2.0 [233]. 3 sequential coronal image slices with the largest cross-

sectional views of the hippocampus tissue were selected. Unlike other views, coronal view had

a common pixel spacing across the cohort as all images were 256x256 pixels with 1.02x1.02

mm2 of pixel spacings. To minimize the inclusion of areas outside the hippocampus in the

analysis, we manually marked the left and right hippocampal area in each slice using square

16x16 pixel ROIs (Figure 7.1a). The ROIs were cropped out of each image and set aside for

further analysis.

Segmentation of hippocampi volume was performed automatically as part of volumetric

feature extraction using the online volBrain framework [234]. volBrain is a framework that

automatically segments parenchyma, brain tissues, macrostructure and subcortical structures

of provided MR images in a 3D manner. Figure 7.1b shows volBrain report for one image in

the cohort.

97



Figure 7.1: Segmentation of the hippocampus in texture and volume analysis (a) Texture
analysis regions of interest: The left and right hippocampal areas are manually marked
using 16x16 pixel squares (contour in red). This process is repeated on 3 coronal slices with
the largest cross-sectional view of the hippocampus area. (b) Volume analysis region of
interest: volBrain framework automatically segments subcortical brain tissues. The image
shows overlay of segmentation result in volBrain report for one of the patients in our cohort.
Hippocampal areas, the region of interest in our analysis, are shown in orange.

7.4.6 Feature Extraction

For each patient, 6 16x16 ROIs (3 image slices x 2 hippocampi) were used as feature

extraction inputs. First, to ensure comparability of spectral content across the cohort, the

dynamic range of intensities of ROIs were normalized to 0-255. Next, each ROI was analyzed

using a texture analysis pipeline with prior success in the analysis of MR images [1, 17,

56]. Developed in Python version 2.7 [99], this in-house-developed pipeline utilizes several

available libraries [235, 236] to describe texture of a region of interest statistically and

spectrally. Texture descriptors used in this study and their settings are listed in Table 7.2.

Overall, we extracted 119 texture features for each ROI. To account for sampling variability,
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we averaged the features across each hippocampus, which resulted in a total of 238 texture

features (119 per hippocampus) per patient.

Hippocampal volumetric features were generated using VolBrain pipeline [234]. volBrain

reported 3 volumetric features for the hippocampus area including absolute volume (cm3),

relative volume (%), and asymmetry index (%). Relative volume represents the sum of

hippocampi volumes in relation to the volume of intracranial cavity. The asymmetry index

shows the difference between right and left volumes divided by their mean. We used %volume

and %asymmetry for our analysis.

Table 7.2: Texture Analysis Methods, Settings, and Number of Features for a Region of
Interest

Method Feature
Type

Details # Features

Raw intensity Statistical Mean, range, and standard deviation of the
ROI before dynamic range normalization.

3

Gray Level Co-
occurrence Matrices
(GLCM) [126]

Statistical Mean and range of 13 GLCM features in-
cluding entropy, heterogeneity, uniformity,
etc. Refer to [126] for complete list of fea-
tures.

26

Discrete Orthonormal
Stockwell Transform
(DOST) [91]

Spectral Rotationally invariant dost features for
dyadic frequency bands inside the ROI.

10

Laplacian of Gaussian
Histogram (LoGHist)
[94]

Spectral Mean, standard deviation, kurtosis, skew-
ness, entropy and uniformity of the his-
togram constructed from convolutions of
the ROI with band pass filters with sigmas:
[0.7, 0.8, 1.2, 1.7, 4.0, 6.0].

36

Local Binary Patterns
(LBP) [127]

Statistical Normalized counts of a histogram generated
from aggregated intensity patterns found
within patches with 3px radius inside the
ROI.

36

Gabor Filter Banks
(GFB) [93]

Spectral Mean and standard deviation of Filtered
ROI. Filters were Gabor filters with sigmas:
[0.7, 0.8, 1.0, 1.2, 1.7, 2.0, 2.4, 3.0], frequen-
cies: [1.0, 3.0].

32
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7.4.7 Statistical analysis and machine learning

Open-source statistical R software (http://www.R-project.org) and Scipy 0.18.1 pack-

age [101] in Python version 2.7 were used to perform the analyses. The area under the receiver

operating characteristic curve (AUC-ROC) was used to assess classification performance.

Estimates of P-value (0.05) and 95% confidence interval using DeLong et al. method [237]

was used to estimate ROC curve significance. Open-source statistical R software and pRoc

package [72] were used for this analysis. Statistical differences between groups were tested

using Student’s t test for age and Pearson’s chi-square test for sex. Statistical significance

level was defined as p<0.05. We performed univariate analysis to compare the difference in

texture and volume feature values for both CDR groups and cognitive groups. The p-values

of the two-sample t tests were adjusted for multiple comparisons using the Benjamini and

Hochberg False Discovery Rate (FDR) correction method [186].

We used Principle Component Analysis (PCA) [238] to reduce data dimensionality of

texture features. To ensure interpretability of the principle components, PCA was applied to

features stemming from a common texture analysis method. Several comparative datasets

were generated with PCA to find the optimal level of variance. Final set of PCs represented

90% of the variance in the original features, the optimal level of variance in the PCs that

resulted in the highest accuracy while avoiding over-fitting. Texture PCs combined with

volume features were used in supervised classification experiments using 2 label variables:

(1) cognitive groups (CN, MCI, AD); (2) CDR scores. Machine learning was conducted

utilizing the open-source python-based package scikit-learn library [102] and custom-written

script. Features were selected using Sequential Forward Feature Selection (SFFS) [238]

method. Starting from an empty set, SFFS sequentially adds features to the set if they lead

to improved accuracy beyond a pre-defined threshold. We used 5% accuracy improvement as

the threshold for adding features to the model. We used Diagonal Quadratic Discriminant

Analysis (DQDA) [238] to perform supervised classification using a leave one out cross

validation (LOOCV) approach. LOOCV uses all samples except for one as the training set
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while the left-out sample serves as the test case. This process is repeated so that every

sample in the dataset serves as the test sample. The setting used for quadratic discriminant

analysis was no priors on classes and threshold of 0.0001 for rank estimation.

We encountered class-imbalance in classification experiments that involved CDR 2.

Imbalance in class size is a well-known issue in predictive modeling in which dominance

of the majority class hinders the classifier’s ability to learn the inherent properties of each

class. To ensure generalizability of the result, we used an ensemble down-sampling approach

coupled with leave one out cross validation in these experiments. In each cross-validation

round, train sample was divided into majority and minority groups. The majority group was

then randomly divided into subsets roughly the same size as the minority group. Each of

the subsets were merged with the minority group and used to build a classification model.

Average of the probabilities of the models was used as the result of the cross validation round.

7.5 Results

The MCI group had a higher proportion of males than the CN and AD groups (Pearson

chi-square = 4.0704, p < 0.001). No significant difference was observed in gender ratio of

other groups. As expected, the age of patients in the CDR 2 group was significantly higher

than that of patients at other CDR levels. Figure 7.2 compares volume features across groups

and CDR scores. Figure 7.3 shows the univariate comparison of features across feature

groups. Features extracted from left and right hippocampi showed similar significance levels.

Increasing the level of variance included in the principle components of texture feature did

not improve the results.

7.5.1 Classification of Cognitive Groups

Figure 7.4A compares Area under the ROC curves (AUCs) of this section. Classification of

Cognitive Groups reached AUC levels of 0.89 (CI: 0.82-0.94) for CN-AD, 0.86 (CI: 0.79-0.91)
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for CN-MCI, and 0.70 (CI: 0.61-0.77) for MCI-AD classification experiments, respectively.

Table 7.3 shows the performance measures, selected features, and ROC curve analysis of

this section. All models were significant at p<0.05. Texture feature used in MCI-AD and

CN-MCI was the first principle component of Laplacian of Gaussian Histogram (LoGHist)

extracted from the left hippocampal region. %Volume was predictive of cognition only in

CN-AD models.

Figure 7.2: Comparison of boxplots for the volumetric features across cognitive groups and
CDR scores. The plot shows the distribution of the two volume features (y-axis) across
different grouping of patients: cognitive states and CDR scores (x-axis). [ %Volume shows the
sum of hippocampal volumes in relation to the volume of intracranial cavity. The asymmetry
index shows the difference between right and left hippocampal volumes divided by their
mean.]
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Figure 7.3: Heatmap of univariate analysis of features across groups. Dependent variables
are listed above columns (CDR score and cognitive group). Color maps show the False
Discovery Rate (FDR) corrected p-values of a two-sample t test. Red to white colors indicates
significance (p). [HC, Hippocampus; Dost, Discrete orthonormal Stockwell transform; GFB,
Gabor Filter Banks; GLCM, Gray level Co-occurrence Matrices; LBP, Local Binary Patterns;
LoGHist, Laplacian of Gaussian Histograms].
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Table 7.3: Classification Results for Prediction of Cognitive Groups

AUC CIb SEc Z-stats P-value Model Features

CN-MCI 0.86 (0.79, 91) 0.03 11.58 <0.0001 LoGHist and LBP PCs
of left HC

MCI-AD 0.70 (0.61,0.77) 0.05 4.16 <0.0001 LBP PC of left HC

CN-AD 0.89 (0.82, 0.94) 0.03 12.31 <0.0001 %Volume
[Key: AUC, Area Under the ROC Curve; PC, Principal Component; HC, Hippocampus;
LoGHist, Laplacian of Gaussian Histogram; LBP, Local Binary Patterns].
bBinomial exact 95% Confidence Interval for the AUC.
cStandard Error of the AUC (Delong et al. [237]).

7.5.2 Classification of Clinical Dementia Rating Scores

Figure 7.4B compares Area under the ROC curves (AUCs) of this section. Overall,

models were more successful in classification when the target groups were further apart on

the CDR spectrum. The AUC levels of the models built in this section respectively were:

0.98 (CI: 0.93-0.99) for CDRs 0-2, 0.95(CI: 0.9-0.98) for CDRs 0-1, 0.84 (CI: 0.76-0.89) for

CDRs 0-0.5, 0.73 (CI:0.61-0.83) for CDRs 0.5-2, 0.71 (CI: 0.61-0.8) for CDRs 0.5-1, and 0.56

(CI: 0.42-0.69) for CDRs 1-2. Table 7.4 presents details of models performance and statistical

analysis for this section. All models were significant except for classification model of CDR

1-2. The most predictive texture features in this classification experiment were principal

components from Discrete Orthonormal Stockwell Transform (DOST) and Gabor Filter

Banks (GFB). Similar to the previous experiment, %volume was a predictive volumetric

feature. We conducted further analysis to assess whether age accounted for relative volume

significantly differentiating between CDR 0 versus 2 in Table 7.4. When age was included in

the model, relative hippocampi volume(%) remained highly statistically significant (p=0.003)

while age was not significant (p=0.35). The AUC only slightly increased from 0.98 (model

with relative volume alone) to 0.9910 (model with relative volume and age). Note, a model

containing age by itself resulted in an AUC of only 0.785, and the addition of relative volume
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significantly improved the model fit (p<0.0001). Thus, relative volume is meaningful in

differentiating between CDR 0 and 2 above and beyond age.

Table 7.4: Classification Result for Prediction of Clinical Dementia Rating (CDR) Score

AUC CIb SEc Z-stats P-value Model Features

CDRs 0,0.5 0.84 (0.76, 89) 0.04 9.67 <0.0001 %Volume

CDRs 0.5,1 0.71 (0.61,0.8) 0.05 4.03 <0.0001 DOST PC of right HC

CDRs 1,2 0.56 (0.42, 0.69) 0.08 0.74 0.46 GFB PC of left HC

PCs from DOST, LoGHist, and
CDRs 0,1 0.95 (0.9,0.98) 0.02 22.88 <0.0001 GFB of left HC, GLCM

of right HC

CDRs 0.5,2 0.73 (0.61,0.83) 0.08 2.89 0.0038 PCs from DOST and GFB
of left HC

CDRs 0,2 0.98 (0.93,0.99) 0.01 46.5 <0.0001 %Volume
[Key: AUC, area under the ROC curve; HC, hippocampus; PC, principle component;DOST, Discrete
orthonormal Stockwell transform; GFB, Gabor Filter Banks; GLCM, Gray-Level Co-occurence
Matrices].
bBinomial exact 95% Confidence Interval for the AUC.
cStandard Error of the AUC (Delong et al. [237]).

Figure 7.4: Comparison of Area Under ROC Curves. A) Area under the ROC curves of
cognitive group classification models, B) Area under the receiver operator curve of CDR
score classification models. Error bars show the confidence interval of AUCs. [Key: CN,
control; MCI, mild cognitive impairment; AD, Alzheimer’s; CDR, clinical dementia rating;
ROC, receiver operating characteristic curve; AUC, area under curve].
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7.6 Discussion

Despite innate difficulties in identifying MCI due to its heterogeneity, we found that

the well-established volume features and texture features had comparable classification

accuracies. In distinguishing between CDR scores, we found that texture features had a

high classification accuracy (AUC: 0.95) between no cognitive impairment (CDR 0) and

mild impairment (CDR 1). Volume had a high classification accuracy (AUC: 0.98) when

distinguishing between no impairment (CDR 0) and moderate impairment (CDR 2). It is

noteworthy that texture and volume had close accuracies. Volume features performed well

in extremes (CN-AD; CDR 0-2), and texture features generally had high accuracies earlier

in cognitive impairment (CN-MCI; CDR 0-1).

The experiment to distinguish between CDR 1 and 2 was inconclusive as AUC was

poor, not achieving statistical significance (P=0.46). The transition from mild to moderate

impairment appears to be a subtle shift without pronounced, discernable steps. While

texture features suggest that CDR scores and neuropathology may have a relationship early

in cognitive impairment, i.e. early deposition of amyloid or tau, the lack of discrimination

accuracy between CDR 1 and 2 suggests the pathological depositions may not help in

improving classification accuracy. Aisen et al. [239] posit that the terminology behind mild

and moderate AD is inaccurate, because the individual has had the disease present for many

years. The clinical staging nomenclature infers a clear distinction between various stages,

but in reality, the process progresses in a more continuous manner [239].

There are debates in the literature about what exactly texture captures. In one study,

Sorensen et al. suggested that texture captures patterns related to function of hippocampus

since it seems to have significant correlation with FDG-PET uptake [215]. The same group

also found that hippocampal texture was the most important feature in the algorithm

followed by hippocampal volume in discriminating cognitive groups [225]. In our study,

texture features contributed to both CN-MCI and MCI-AD models for classification of
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sequential stages of cognitive decline. The most comparable study to ours is by Sorensen et

al [215]. Our findings are in par with their result. However One technical difference between

our methods and Sorensen’s is in preprocessing of MR images. They resampled MR images to

have consistency in voxel size across their cohort, a necessary preprocessing step when images

are obtained from different institutes. However, resampling involves interpolation, which

changes the high spatial frequency content (fine level texture) of the image. To establish

a reliable baseline for utility of texture features, we focused our study to images with a

common voxel size. In the future, we aim to validate this result on external datasets.

Due to technical limitations of our pipeline, we did not perform 3D texture analysis

on our data. Instead, we used manual placement of fixed-sized 2-dimensional ROIs (16x16

pixels) on 3 slices with the largest cross sectional view of the hippocampus, which may

include immediate anatomical structures including the entorhinal cortex. Additionally, the

3T imaging criteria within ADNI-1 dataset was a limitation which imposed a constraint on

the sample size of our study (N = 175). However, we felt it was justified given that 3T images

tend to have higher spatial resolution and contrast-to-noise ratios than 1.5T images. As a

result, we did not partition the dataset into independent train and test sets but instead, used

leave one out cross validation for evaluation of model performance. Therefore, we cannot

claim the clinical utility of textural biomarkers introduced in this study since the models

were not tested prospectively.

7.7 Conclusion

We utilized existing resources (ADNI-1) to introduce a new application of brain MR

radiomics using texture analysis and volumetric features in the field of aging, neuropsychiatry,

and dementia. Our study findings support the use of brain MR radiomics for assessing

early cognitive impairment, as many features are sensitive to early AD pathology. With

time and finesse, brain MR radiomics may have the potential for individualized prediction

of cognitive impairment or conversion to AD, and may identify individuals at the earliest
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stage of cognitive impairment. Early identification of cases has implication in identifying a

target population for clinical intervention to delay cognitive deterioration. However, future

studies need to replicate our findings and should examine the clinical utility of image texture

features as AD biomarkers.
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Chapter 8

DISCUSSION

This thesis proposed a tool for deriving quantitative imaging features from diagnostic

imaging. For AIM I, I presented an analytical informatics-driven pipeline that can contribute

to the advancement of biomedical imaging informatics in a variety of ways. Data provided

with this pipeline can be used to enhance context-driven image interpretations to improve

diagnostic accuracies. They can also be utilized in the development of advanced applications

for computer-aided diagnosis to improve performance compared with the current clinical

standard of care.

The processes of biomarker detection and measurement need to be accurate, reproducible

and feasible over time [240–242]. Imaging biomarkers are no exception in this regard. In order

to produce reproducible and reliable imaging biomarkers standardized feature extraction

processes need to be developed. Among the criticisms to traditional quantitative image

analysis studies are that they are fragmented studies that are difficult to repeat and are

rarely validated. These studies are sometimes referred to “feature engineering” experiments,

in which models are built on too specific data using overly selective feature extraction and

analysis method. Radiomics approach addresses at least one of these criticisms by reducing

the effect of feature extraction method. Using a variety of feature extraction methods,

radiomics remains open to all possible options including widening the range of parameter

settings, leaving the decision on the value of each feature to the machine learning. By

facilitating close-to-optimal extraction of information from diagnostic imaging, radiomics

serves as a bench mark for faster standardization of feature extraction and analysis processes.

This approach also expedites standardization and technical validation of potential imaging

biomarkers. Several recent standardization studies support this argument in which the

radiomics approach was used to assess robustness and reproducibility of imaging features
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[243], to determine the significance of inter-scanner variability on imaging features [244], to

find the optimal image intensity quantization method [245], and to compare across feature

selection and classification methods [105]. This pipeline currently provides a number of

highly-cited texture analysis methods. Inclusion of additional texture analysis algorithms

and other clinically relevant quantifiers such as descriptors of lesion boundary/margin can

be potential future directions for the this pipeline.

In this pipeline, we focused on the analysis of small regions (ROIs) within larger suspicious

regions identified by experts. Focusing the analysis to a smaller-sized region limits spatial

support encroached by the texture operators and avoids mixing properties from distinct

texture classes [246]. However, in general having common-sized ROI for all patients is not

necessarily a requirement for texture analysis. This requirement in our pipeline is a restriction

imposed by the discrete orthonormal Stockwell transform, in which different sizes of ROI

leads to variance in the number and content of features. The default settings of parameters

for the texture analysis operators included here are also the result of our limited experiments

with small biomedical texture. Optimal settings of parameters for feature extraction and

optimal size of the ROIs should be addressed with rigorous examination in future studies. If

available, test-retest data are also extremely helpful, as they can help prioritize features on

the basis of their reproducibility and reliability.

In my humble opinion, parameter tuning is also a limitation imposed on classic quantitative

imaging approaches. Traditionally quantitative imaging relies on classic machine learning

approaches that require previously-crafted features for learning. In recent years deep learning

has shown excelled performance in segmentation [247–250], detection [251], diagnosis [252],

and classification [253] of tissue structures. The appeal of deep learning lies its abstract

data representations and elimination of the need for hand-crafted features. Although deep

learning requires large amount of training data with attached ground truth. Moreover, the

collective data produced overtime for rare diseases probably will never suffice for the effective

use of deep learning. Scarcity of large amount of labeled data is an obstacle that is expected
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to lead to slower adoption of deep learning approach in clinical practice. Transfer learning

[254–256], in which deep trained networks trained on very large datasets (eg. ImageNet [257])

are trained with biomedical images for a different task are often suggested as an intermediate

solution to expedite the process.

We used classic classification approaches such as support vector machines in the ex-

periments presented here. Overly specific feature selection and complicated classification

methods were avoided to reduce the potential for overfitted models, specially since we had

small datasets and no separate validation or test sets. In general the success of traditional

machine learning approach in finding meaningful features heavily depends on the data

available and the parameter setting used for machine learning. I acknowledge that the

models presented here may have potential for improvement as a result of our conservative

classification approaches. These models should be considered as “proof of concept” or “pilot”

models and should be examined for the effect of parameter setting as well as the choice of

feature selection and classification method in the future.

The current pipeline has several limitations. Firstly, we performed image analysis on 2-

dimensional (2D) images in Chapters 4-6. Two-dimensional image analysis is straightforward

to implement, yet does not allow for optimal or comprehensive image analysis, particularly

for volumetric data acquired using magnetic resonance imaging (MRI) machines or computed

tomography (CT) scanners. In the Alzheimer’s study (Chapter 7) I attempted to address

this shortcoming by performing image analysis on three slices instead of one to allow for

2.5D analysis of the regions of interest and improved sampling on image data. However,

2.5D approach has also not been without disadvantages since it results in the lose of spatial

information related to distinct local habitats. To become fully comprehensive, this pipeline

needs to allow for 3D image analysis. Hence, future directions for this pipeline should include

its refinement into a volumetric analysis tool.

The second limitation of this pipeline lies in its segmentation process. Success of a
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radiomics workflow highly relies on the result of intermediate steps such as the segmentation

process. Segmentation is of utmost importance particularly for extraction of morphological

features which heavily depend on the result of segmentation. This pipeline uses manual

segmentation (outline drawn by an expert) as the basis for the selection of a region of interest.

In breast cancer study (Chapter 5) outlines drawn by radiologists were used for computation

of quantitative morphological features. However, as previously discussed in Chapter 2 (and

also in the discussion section of Chapter 5), manual segmentation is time-consuming and

can suffer from inter- and intra-reader variability, factors that can limit the prospect of this

pipeline’s use in fully elaborated workflows and the validity and reliability of the features. In

the future, this pipeline should incorporate an automatic or a semi-automatic segmentation

system to expedite the implementation process and clinical efficiency, and to result in

objective morphology features.

Studies conducted for completion of AIM II (Chapters 4-7) assessed the utility of imaging-

derived features in diagnostic applications related to head and neck cancers, breast cancer,

and Alzheimer’s disease. These retrospective studies demonstrated that identifying imaging

traits can lead to improved diagnosis accuracy and potentially result in advancement of

diagnostic biomarker discovery. Given that the image data used in these studies was acquired

from multiple sites (with the exception of the breast cancer study), I am hopeful that

repeating these experiments on datasets acquired from other institutes would render good

results in the future. In this thesis we focused on evaluation of the utility of imaging-derived

features in diagnostic applications In cancer-related studies the performance of predictive

models was compared with that of radiologists to investigate the benefits of quantitative

image analysis to routine care. In these studies we often compared the performance of models

with human readers. It should be noted that the motivation of these comparisons was to

assess the potential utility of the pipeline to supplement radiologists’ interpretive skills in

diagnostic tasks and not to compete with them.

Chapter 5 discussed the potential utility of this technique in breast cancer screening.
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The model built on quantitative image features provided reduced number of false positives

compared to trained radiologists. The study suggested that a computer aided diagnosis

system based on quantitative image features can provide benefit in improving the accuracy of

diagnosis by providing a recommendation. This can result in reduced number of unnecessary

supplemental imaging and invasive biopsy procedures for the patients leading to reduced

cost on the health care system as well as enhancement in patient outcome. This study is

under final stages of review by European Journal of radiology.

Chapter 6 and 7 discuss the utility of this pipeline in biomedical discovery. The study

reported in chapter 6 (accepted for publication by the Journal of Computed Assisted

Tomography) showed that quantitative image features could be used to detect differences

in lesion representation of HPV-positive and HPV-negative OPSCC lesions. Provided with

the same region of interest, experienced neuroradiologists did not observe any detectable

visual difference between the two cohorts. HPV is an important factor in patient prognosis

and can only be detected via biopsies. Thus a system built on this approach can potentially

enhance the diagnosis process by providing critical information at an early stage. This study

has been accepted by the Journal of Computed Tomography in 2017 (publication details to

be defined).

Chapter 7 showed texture features can provide information when proved pathological

diagnosis does not exists. Definite diagnosis of Alzheimer’s is delayed until the disease is

fully advanced and can only be pathologically proven post-mortem. By detecting earlier

signs of cognitive decline, model based on image analysis can lead to earlier interventions in

the treatment process and improved patient management.

Imaging features can also be used along with other types of biomedical data such as

genomics and clinical data to generate multi-scale models to improve patient outcome and

survival. Bridging imaging features with other sources of clinical data can provide a path for

advancement of individualized medicine [258]. It should be emphasized that these types of
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analyses identify correlations, not causes [31]. However, these correlations can inform the

decision about whether to test for certain gene alterations in biopsy samples as well as the

choice of biopsy sites [31].

Apart from the studies presented in Chapters 4-7, we also have conducted two studies

using this pipeline that support the radiogenomics argument. In 2015 our group conducted a

study in which imaging features extracted from MRI images were used to predict the tumor

content of biopsied locations of Glioblastoma Multiforme (GBM) [17]. The model was used

to generate maps of predicted tumor content across the entire lesions. These prediction maps

showed promising result when tested against a previously unseen validation set, suggesting

the utility of a radiomics models in guiding biopsy procedures. In a followup study in 2016

image features were identified as non-invasive imaging signatures for the genomics pathways

of GBM lesions. We generated prediction maps of genomics pathways of GBM across the

entirety of lesions using models built on imaging features. The models showed promising

result on unseen validation data, suggesting a potential for characterization of regional

genetic heterogeneity in glioblastoma.

Although promising, the results presented here should not be interpreted as the perfor-

mance of an established diagnostic imaging test. Radiomics is a young discipline that will

need to undergo a slow process of standardization and characterization before it reaches

the level of reliability and reproducibility required for clinical implemented diagnostic and

therapeutic systems [240–242]. The obstacles along the way can be associated with a number

of causes, including technical complexities of identifying reliable and reproducible image

features. These features need to be portraying disease manifestation across the population

and not be the result of unrecognized confounding variable such as image acquisition. To

address this concern, radiomics investigations should be validated against external completely

unseen datasets preferably from other institutes. These studies should be conducted prospec-

tively and directed to assess imaging-pathology, imaging-molecular or imaging-genomics
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correlations [259]. Patient risk factor data (such as subject age, biology) also need to be

incorporated into radiomics as these factors can influence the image features [260].

Large standardized datasets representing the full spectrum of patients are required to

result in unbiased inferences of radiomics analyses. Initiatives such as Quantitative Imaging

Biomarkers Alliance (QIBA), sponsored by Radiological Society of North America (RSNA)

and the National Institute for Biomedical Imaging and Bioengineering [261], are among

promising steps that encourage collaboration among the stakeholders and advance the field

through provision of a consensus on imaging protocols, and the measurement accuracy of

imaging biomarkers. The Cancer Imaging Archive (TCIA) [262], Quantitative Imaging Data

Warehouse (QIDW) [263], Alzheimer’s Disease Neuroimaging Initiative (ADNI) [264] are

examples of targeted data collections that aim to generate a consensus among the stakeholders

on how to optimize, harmonize, and standardize data collection and analysis processes.
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Chapter 9

CONCLUSION

Despite major advances in computational biology, gaps still exist in our understanding of

cancer dynamics. Radiomics offer the potential for a non-invasive tool to complement existing

methods of assessing disease characteristics and behavior to enhance diagnosis, monitoring,

and prediction of response to treatment for various cancers. The field of radiomics is still

young and requires rigorous technical and clinical validation studies. As the field grows,

we can expect radiomics to bridge the gaps of knowledge and help shift medicine closer to

a fundamental genetic-based and truly personalized practice. With expanding radiomics

cohorts and feature dimensions higher prediction performance in future radiomics studies is

expected.

This thesis aimed to develop a radiomics pipeline for biomedical image analysis, and to

examine its utility in diagnostic applications. The data provided with this pipeline showed

potential in the following tasks: a) to provide incremental benefit to the neuroradiologists

in differentiating small head and neck lesions (chapter 4), b) to reduce the number of false

positives in breast cancer screening (chapter 5), c) to provide insight about the presence

of HPV in a malignant type of head and neck cancer (chapter 6) and finally, d) to detect

early signs of cognitive decline in patients with Alzheimer’s disease. These studies suggest

that converting images to quantitative data can enable improved accuracy in the diagnosis

of head and neck cancers, breast cancer, and Alzheimer’s disease. Enhancing diagnostic

accuracy results in improved patient care and patient management as well as earlier and

better-informed decisions in treatment planning. Overall, this thesis is a step forward towards

the enhancements of radiomics based clinical predictions.

The Future path for this pipeline can include conducting integrative studies that contribute

117



to further advancement of imaging biomarker research. Examples are standardization studies

that assess reproducibility and reliability of imaging features over image acquisition setting,

feature extraction, and feature analysis method or validation studies that assess imaging-

pathology, imaging-molecular or imaging-genomics correlations.
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DOST: Discrete Orthonormal Stockwell Transform
GFB: Gabor Filter Banks
GLCM: Gray Level Co-occurrence Matrices
LBP: Local Binary Patterns
LoGHist: Laplacian of Gaussian Histogram
ROI: Region Of Interest
PC: Principal Component
PCA: Principal Component Analysis
SVM: Support Vector Machine
QDA: Quadratic Discriminant Analysis
DQDA: DIagonal Quadratic Discriminant Analysis
LDA: Linear Discriminant Analysis
SFFS: Sequential Forward Feature Selection
AD: Alzheimer’s Disease
ADNI: Alzheimer’s Disease Neuroimaging Initiative
CDR: Clinical Dementia Rating
MCI: Mild Cognitive Impairment
CN: Cognitively Normal
CSF: Cerebro-Spinal Fluid
IP: Inverted Papilloma
SCC: Squamous Cell Carcinoma
HPV: Human PapillomaVirus
OPSCC: OroPharyngeal Squamous Cell Carcinoma
MRI: Magnetic Resonance Imaging
CT: Computed Tomography Imaging
PET: Positron Emission Tomography
T1: axial T1-weighted MRI pulse sequence
T2: axial T2-weighted MRI pulse sequence with frequency selective fat-

suppression
T1C: axial T1-weighted post-contrast MRI pulse sequence with frequency

selective fat-suppression
CESM: Contrast-Enhanced Spectral Mammography
MLO: Mediolateral Oblique
CC: Cranial-Caudal
FN: False Negative
FP: False Positive
PPV: Positive Predictive Value
NPV: Negative Predictive Value
ROC: Receiver Operating Characteristic curve
AUC-ROC: Area Under the ROC curve
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