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Abstract

Due to the increasing demand for high dimensional data analysis from various applications

such as electrocardiogram signal analysis and gene expression analysis for cancer detection,

dimensionality reduction becomes a viable process to extracts essential information from

data such that the high-dimensional data can be represented in a more condensed form

with much lower dimensionality to both improve classification accuracy and reduce com-

putational complexity. Conventional dimensionality reduction methods can be categorized

into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion

from either supervised or unsupervised perspective. On the other hand, the hybrid method

integrates both criteria. Compared with a variety of stand-alone dimensionality reduction

methods, the hybrid approach is promising as it takes advantage of both the supervised

criterion for better classification accuracy and the unsupervised criterion for better data

representation, simultaneously. However, several issues always exist that challenge the

efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that

seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the

performance regarding noisy data, and (3) nonlinear data representation capability.

This dissertation presents a new hybrid dimensionality reduction method to seek projec-

tion through optimization of both structural risk (supervised criterion) from Support Vector

Machine (SVM) and data independence (unsupervised criterion) from Independent Com-

ponent Analysis (ICA). The projection from SVM directly contributes to classification per-

formance improvement in a supervised perspective whereas maximum independence among

features by ICA construct projection indirectly achieving classification accuracy improve-

ment due to better intrinsic data representation in an unsupervised perspective. For linear

dimensionality reduction model, I introduce orthogonality to interrelate both projections
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from SVM and ICA while redundancy removal process eliminates a part of the projection

vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-

based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based

algorithm with nonlinear data representation capability. In the proposed approach, SVM

and ICA are integrated into a single framework by the uncorrelated subspace based on

kernel implementation.

Experimental results show that the proposed approaches give higher classification per-

formance with better robustness in relatively lower dimensions than conventional methods

for high-dimensional datasets.
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Chapter 1

Introduction

1.1 Motivation

Dimensionality reduction transforms the observation onto reduced dimensional space so

as to resolve the “curse of dimensionality” problem in which the increase of the obser-

vation dimension leads to the exponential increase in volume. The data mapped from

the observation to lower dimensional space by dimensionality reduction procedure must

present the entire observations effectively. The effectiveness of the observations in reduced

dimensional space is measured by the corresponding criteria defined in various dimension-

ality reduction algorithms. For example, Principal Component Analysis (PCA) [Ekenel

and Sankur 2005; Martinez and Kak 2001; Nishino et al. 2005; Vidal et al. 2005], Linear

Discriminant Analysis (LDA) [Martinez and Kak 2001; Ye et al. 2004], and Independent

Component Analysis (ICA) [Comon 1994; Hyvarinen and Oja 2000] are all popular di-

mensionality reduction algorithms that have been successfully applied to diverse range

of real-world applications [Chang et al. 2005; Lu et al. 2006; Park et al. 2002]. PCA uses

eigenvalue decomposition to find orthogonal projection vectors, also referred to as principal

components, that minimize squared error between the original and projected observations.

LDA forms a criterion function by between-class and within-class covariance matrices such

that the between-class scatter matrix is maximized and the within-class scatter matrix is

minimized so as to obtain better separability in reduced space. ICA pursues statistically

independent projection vectors from observation by criterion representing independence
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such as Kullback-Liebler (KL) divergence, mutual information, and correlation.

Dimensionality reduction methods can be categorized from three perspectives: 1) su-

pervised or unsupervised, 2) stand alone or hybrid, and 3) capability of supporting nonlin-

earity in data. From the aspect if the formulation needs the class index to construct the

optimization criterion, dimensionality reduction algorithms can be categorized as super-

vised and unsupervised. LDA is a representative supervised method due to the within- and

between-class covariance built by the observations grouped by classes. On the contrary,

the unsupervised approach does not utilize class index to build the criteria. PCA and ICA

are representative unsupervised dimensionality reduction algorithms since their criteria are

irrelevant to class index.

From the aspect if only supervised or unsupervised criterion is used or both criteria are

used, dimensionality reduction methods can be categorized as standalone or hybrid. For

example, PCA, LDA, and ICA are all standalone algorithms. PCA+LDA [Yang and Yang

2001, 2003] that combines the supervised LDA with the unsupervised PCA removing null

space prior to LDA, is a representative hybrid algorithm.

Nonlinear capability acts as an essential component in dimensionality reduction meth-

ods for accurate data representation in lower dimensional space since the real world appli-

cations always include nonlinearity resulting in performance degradation based on linear

model. PCA, LDA, and ICA are based on linear dimensionality reduction model consisting

only of linear data projection. The nonlinearity can be introduced by nonlinear mapping

from input to hyperdimensional feature space. The linear data analysis over the observa-

tion projected onto the feature space reveals corresponding nonlinear nature of observation

in the input space. However, direct use of non-linear mapping for entire data is computa-

tionally expensive. Therefore, kernel trick [Herbrich 2001] is applied where kernel makes

the inner product equivalent to single point mapping from input to feature space.

This dissertation focuses on the study of hybrid dimensionality reduction algorithms

that take advantage of both the supervised criterion resulting in mapping vectors aimed

for better classification accuracy and the unsupervised criterion yielding mapping vectors

that better represent the original data, simultaneously.

2



1.2 Contribution

Although with great potential, hybrid dimensionality reduction algorithms also bring unique

challenges that can be summarized from four aspects. First, it is essential to choose ap-

propriate supervised and unsupervised dimensionality reduction methods. Conventional

hybrid methods mostly depend on supervised LDA so that the problems inherited from

LDA reside in the hybrid design regardless of the way of supervised and unsupervised cri-

teria integration. Secondly, for arbitrary complicated objective functions with constraints,

subspace-based methods are easier to couple the objectives into single framework compared

with the method using unified criterion through constraint optimization, in which case the

construction of an appropriate subspace becomes a challenging problem. Third, due to

the nonlinear nature of real-world data, it is important to incorporate nonlinearity in the

algorithm design. The difficulty resides in the fact that the nonlinear extension should be

accomplished in both criteria without affecting the seamless integration of the two criteria.

Fourth, we need to consider the robustness of performance (or the generalization capability

of the algorithm) regarding noisy data or partial information.

The dissertation work presents a set of innovative hybrid dimensionality reduction

algorithms that effectively answers to the challenging issues discussed above.

First, for hybrid dimensionality reduction, the proposed method adopts Support Vec-

tor Machine (SVM) and Independent Component Analysis (ICA) for the supervised and

unsupervised algorithms, respectively. SVM provides better classification performance for

arbitrary observation by its generalization capability from the structural risk minimization

over tradeoff between empirical error and complexity of the decision surface. SVM can

be used for dimensionality reduction purpose in the similar way as LDA where decision

boundaries for classification can also be treated as projection vectors for dimensionality

reduction. By using SVM instead of LDA, the hybrid dimensionality reduction algorithm

is not influenced by the weaknesses inherited from LDA criterion. For unsupervised crite-

ria integration, independence maximization is incorporated into the hybrid dimensionality

reduction framework since the concept of independence is known as an effective measure

to find intrinsic data representation, compared with other unsupervised method such as

PCA. The hybrid framework utilizes ICA to perform maximization of independence ap-

3



proximated by mutual information [Hyvarinen 1999].

Second, robustness is achieved by incorporating SVM into the proposed method. The

generalization capability in SVM results in the decision surface satisfying maximum sepa-

ration margin from the decision surface to the closest training observations. Consequently,

the arbitrary input in the outer closest training observations becomes better generalized

in classification. The generalization in classification works identically in dimensionality

reduction since better separation delivers more information of the data.

Third, in order to seamlessly integrate SVM and ICA, subspace-based approaches are

designed which helps yield minimum relevance between SVM and ICA. To achieve the

minimum relevance, orthogonal and uncorrelated subspace are introduced to couple the

objectives of SVM and ICA into single framework. The orthogonal subspace provides

the orthogonal property between the bases from SVM and ICA based on the definition

of the projection by minimum distance objective function. However, due to the better

applicability of the subspace based on correlation for nonlinear data representation, the

maximally uncorrelated subspace is designed, referred to as the “uncorrelated subspace”

to emphasize the relationship with the projection from SVM. The subspace construction

is formulated by introducing Lagrangian multipliers and finally summarized in the form of

eigenvalue decomposition. Over the uncorrelated subspace in nonlinear feature space, ICA

is performed to reveal the nature of observations.

Fourth, the nonlinear extension of the linear hybrid dimensionality reduction based

on SVM and ICA is developed based on uncorrelated subspace construction with kernel

function. As a result, the data dimensionality is reduced by the proposed method based

on the nonlinear projection consisting of SVM and ICA projections with uncorrelated

subspace.

1.3 Dissertation Outline

The dissertation is organized as follows: Chapter 2 provides literature reviews for sup-

port vector machines, conventional dimensionality reduction methods, and constrained

optimization techniques. Chapter 3.1 introduces SVM as robust dimensionality reduction

criterion with redundancy removal process. Based on SVM, the orthogonal subspace-based

4



linear SVM plus ICA is described in Chapter 3.2. The uncorrelated subspace-based non-

linear SVM plus ICA is developed in Chapter 3.3. Experimental results are shown in

Chapter 4. This dissertation is concluded in Chapter 5.
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Chapter 2

Background

2.1 Support Vector Machines

This section introduces support vector machines [Vapnik 1999] with the related concepts

such as structural risk [Vapnik 1999], Mercer’s theorem [Herbrich 2001], and kernel ma-

chine [Muller et al. 2001].

2.1.1 Structural Risk vs. Empirical Risk

The empirical risk, Remp, is well-known measure of learning machine, f(x,α) where x

dataset and α denotes a set of parameters of the corresponding learning machine, f . The

training dataset consists of N -many pairs of xi and yi, ∀i = {1, · · · , N} where yi = {1,−1}.
The one of the representative learning machine is neural networks. The structure with

activation function of fixed neural network corresponds to f and the connection weights

are to α. Remp is defined by measured mean error on training dataset as follows,

Remp(α) =
1

N

N∑

i=1

1

2
|yi − f(xi,α)| (2.1)

where |yi − f(xi,α)|/2 is called the loss which only can take 0 and 1. In spite of the wide

utilization of empirical error, Remp has in general a certain distance away from the actual

7
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Figure 2.1: Monotonically increasing VC confidence

risk, R defined by the cumulative density function of P (x, y) as follows,

R(α) =

∫
1

2
|y − f(x,α)| dP (x, y) (2.2)

By choosing η = [0, 1], for losses with probability of 1− η, Vapnik showed the bound holds

as follows,

R(α) ≤ Remp(α) +

√(
h(log (2N/h) + 1)− log (η/4)

N

)
(2.3)

where h ≥ 0 is Vapnik Chervonenkis (VC) dimension indicating the complexity of the

hypothesis space.
√
(h(log (2N/h) + 1)− log η/4)/N in Eq. (2.3) is called VC confidence.

Figure 2.1 shows the monotonically increasing VC confidence when VC dimension increases.

The tradeoff relationship between training error and complexity is clearly shown in Eq. (2.3)

with the monotonically increasing VC confidence over h in Fig. 2.1. The smaller h for

simpler hypothesis space is highly probable not to include appropriate approximation ca-

pability, resulting in higher Remp. On the contrary, larger h might decrease Remp with

higher VC confidence.

To obtain minimum actual risk, nested structure with certain VC dimension of the

8



hypothesis space is introduced as,

H1 ⊂ H2 ⊂ · · · ⊂ Hi · · · (2.4)

where Hi is the nested structure of hypothesis space with the i-th VC dimension, hi ≤ hi+1,

∀i. The goal is to find Hi with the tightest bound over the nested structure in Eq. (2.4).

To find the nested structure, SVM directly obtain the upper bound of VC dimension by

the definition of separation margin which is independent to the dimensionality of input, x.

2.1.2 Nonlinear Implementation via Kernel

f : χ×χ → R is a kernel providing inner product of x ∈ χ in feature space F without direct

analysis of φ(x). The utilization of kernel function easily delivers nonlinear capability in

the algorithm only if the objective function is built only by a set of inner product such

as covariance matrix. In case of SVM, kernel implementation is especially useful since the

nested structure with the lowest bound described in Sec.2.1.1 is found not based on the

feature-by-feature analysis with predefined rank but constructing the feature dimension,

each dimension of which corresponds to the individual input data. The kernel function is

characterized in Reproducing Kernel Hilbert Space (RKHS) and Mercer’s Theorem as a

generalization of spectral decomposition.

Suppose K is symmetric positive-definite matrix where K = [kij ], kij = 〈φ(xi), φ(xj)〉.
K is called “Gram matrix” for the kernel evaluations on the data. For the finite N -many

input xi,i ∈ {1, · · · , N}, assume K has full rank. The eigen-decomposition of K becomes

as follows,

K = UΛUT (2.5)

where U is unitary matrix consisting of normalized eigenvectors in columns. Λ is a diagonal

matrix with eigenvalues of λ1 ≥ · · · ≥ λN > 0 along the diagonal. From Eq. (2.5), The

9



kernel kij is obtained with the corresponding feature mapping φ as follows,

kij=


Λ

1

2Ui




T
Λ

1

2Uj




=〈√λiφ(xi),
√
λjφ(xj)〉

=f(xi,xj)

(2.6)

where Ui denotes the i-th row vector of U . It is clear that the eigenvalues should be non-

negative and less than positive infinity to obtain inner product space due to ‖φ(xi)‖2 =

UT
i ΛUi = λi. The generalization of this concept is called Mercer’s Theorem as follows,

Theorem 1. (Mercer’s). Suppose that f is a continuous positive semi-definite kernel on

a compact set, χ as f : χ × χ → R is symmetric and supx,y f(x,y) < ∞. Let define the

integral operator Tf : L2(χ) → L2(χ) as,

(Tfp)(·) =
∫

χ
f(·,x)p(x)dx (2.7)

is positive semi-definite, ∀p ∈ L2(χ),

∫
χ f(u,v)p(u)p(v)dudv ≥ 0 (2.8)

Then there is an orthonormal basis φi of L2(χ) as eigenfunction corresponding to the

nonzero eigenvalue of λi with
∫
χ f(·,x)φi(x)dx = λiφi(·), then f(u,v) has the representa-

tion of,

f(u,v) =

∞∑

i=1

λiφi(u)φi(v) (2.9)

where
∑

i λi < ∞ and supx φi(x) < ∞. The convergence is absolute and uniform in u,v.

RKHS is fundamentally defined in a Hilbert space H with reproducing kernel. Consider

the vector space with φ : χ → Rχ, φ(x) = f(·,x) as,

span ({φ(x) : x ∈ χ}) =
{
g(·) =

∑

i

αif(·,xi)|xi ∈ χ, αi ∈ R
}

(2.10)
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For p =
∑

i αif(·,ui) and q =
∑

i βif(·,vi), the inner product of p and q is defined as,

〈p, q〉=
∑

i,j

αiβjf(ui,vj)

=
∑

i

βip(vi)

=
∑

i

αiq(ui)

(2.11)

Eq. (2.11) is summarized to reproducing property as

〈g, f(·,x)〉 =
∑

i

αif(x,ui) = g(x) (2.12)

To show that 〈p, q〉 is an inner product, three properties must be check: 1) symme-

try, 2) bilinearity, and 3) positive definiteness. The symmetry is confirmed as 〈p, q〉 =
∑

i,j αiβjf(ui,vj) = 〈q, p〉. The bilinearity is already shown in Eq. (2.11). Since 〈p, p〉 =
αTKα is a quadratic form with α = [α1 · · ·αN ]T and K is positive definite, positive def-

inite property holds with 〈p, p〉 = 0 iff p = 0. From the inner product space defined, K

with the reproducing property spans H = span{f(·,x)|x ∈ χ}
In summary, f is the reproducing kernel of an RKHS of functions on χ and the kernel

represents a legitimate inner product in feature space if f satisfies Mercer’s theorem. By

using the kernel, f , the algorithm simply incorporates the nonlinear data analysis capability

instead of relying on multiple linear manifold analysis.

2.1.3 Fundamental of Support Vector Machines

SVM [Vapnik 1999] searches for a decision boundary which minimizes the upper bound of

the actual risk in Eq. (2.3) over the tradeoff between empirical risk and complexity based on

Vapnik-Cervonenkis (VC) theory in Sec. 2.1.1. Instead of feature-based analysis requiring

pre-defined rank of the features in input observations, SVM introduces separation margin

independent to the input dimensionality but relying on the number of training data.

The dataset for two class problem is defined by (x1, y1), · · · , (xN , yN ), x ∈ Rn, yi ∈
{−1, 1} where xi and yi, i = 1, · · · , N are data vector and class index. The decision is made

by the linear hyperplane represented by 〈w,xi〉 + b = 0 where w is a vector orthogonal
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to the plane and b shifts the plane to be placed in the middle of two classes. The linear

hyperplane should satisfy the equally distant condition as follows,

yi[〈w,xi〉+ b] ≥ 1 (2.13)

where i = 1, · · · , N . The geometric distance for x from the hyperplane is as follows,

dist(w, b;x) = |〈w,x〉+ b|/‖w‖ (2.14)

Suppose ‖w‖ < 1/4. From Eq. (2.13) and Eq. (2.14), dist(w, b;x) ≥ 4 where the

decision hyperplane separates data with the margin of [−4,4]. The VC dimension is

then bounded by h ≤ min([R2/42], n) + 1 in [Vapnik 1999] where R is the radius of a

hypersphere enclosing all the training data. Therefore, minimization of Eq. (2.14) with the

equal distant separation margin constraint in Eq. (2.13) is equivalent to the minimization

of the upper bound of the actual risk in Eq. (2.3) on the VC dimension.

To solve SVM’s constraint optimization problem, the normalized margin is given by

ρ(w, b)= min
{xi;yi=1}

dist(w, b;xi) + min
{xj ;yj=−1}

dist(w, b;xj)

=
1

‖w‖
(

min
{xi;yi=1}

|〈w,xi〉+ b|+ min
{xj ;yj=−1}

|〈w,xj〉+ b|
)

=
2

‖w‖

(2.15)

Therefore, the hyperplane which separates a two-class dataset with maximum separation

margin is obtained by maximization of ρ(w, b), which is equal to minimization of ‖w‖2/2.
Since the minimization problem must satisfy yi[〈w,xi〉+ b] ≥ 1, Lagrangian formulation is

utilized to incorporate the inequality constraint into the minimization problem as follows,

L(w, b,α) =
1

2
‖w‖2 +

N∑

i=1

αi[1− yi(〈w,xi〉+ b)] (2.16)

where αi ≥ 0 is the Lagrange multiplier. L(w, b,α) in Eq. (2.16) must be minimized with

respect to w and b while maximized with respect to α. Based on convexity of L(w, b,α),

I can solve for w and b by taking the partial derivatives ∂L/∂w = 0 and ∂L/∂b = 0,
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which yield w =
∑N

i=1 αiyixi and
∑N

i=1 αiyi = 0. The duality allows us to convert the

minimization problem in Eq. (2.16) ofw and b to the maximization problem of α as follows,

max
α

W (α)=max
α




1

2
‖

N∑

i=1

αiyixi‖2 +
N∑

i=1

αi[1− yi(
N∑

j=1

αjyj〈xi,xj〉+ b)]





=min
α




1

2

N∑

i=1

N∑

j=1

αiαjyiyj〈xi,xj〉 −
N∑

i=1

αi





(2.17)

The w from Eq. (2.17) with the constraints of
∑N

i=1 αiyi = 0 and α ≥ 0 provides hard

decision boundary which does not include any misclassified training data. To allow the

misclassification in training phase which is more general, Vapnik [Vapnik 1999] introduces

penalty function, F (ξ) =
∑

i ξ
σ
i where ξ ≥ 0 denotes misclassification error measure and

σ > 0. The penalty function affect to SVM’s minimum separation margin constraint in

Eq. (2.13) as follows,

yi[〈w,xi〉+ b] ≥ 1− ξi (2.18)

ξi ≥ 0,∀i. Hence, the minimization of the function inversely proportional to the minimum

separation margin in Eq. (2.14) becomes ‖w‖2+C
∑

i ξi constrained by Eq. (2.18) where C

is a given regularization parameter. The Lagrangian formulation in Eq. (2.16) is updated

with the penalty term as follows,

L(w, b,α,β, ξ) =
1

2
‖w‖2 +

N∑

i=1

αi[1− ξi − di(〈w,xi〉+ b)] + C
N∑

i=1

ξi −
N∑

i=1

βiξi (2.19)

where both α and β are Lagrange multipliers. L(w, b,α,β, ξ) in Eq. (2.19) must be

minimized with respect to w,b, and ξ while maximized with respect to α and β. Since

αi + βi = C from ∂L(w, b,α,β, ξ)/∂ξ = 0 cancels
∑

i αi(−ξi), C
∑

i ξi, and −∑
i βiξi, the

dual problem shows identical formulation as Eq. (2.17) with additional constraint of α ≤ C

from αi + βi = C,∀i. The separation margin from SVM’s decision hyperplane increases

when C decreases.

It is clear that the nonlinear data becomes manageable by introducing φ which repre-

sents the nonlinear nature of data, although φ is usually unknown and the direct mapping
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of data through φ requires heavy computational burden. “kernel technique” in Sec. 2.1.2

provides indirect way of obtaining 〈φ(xi), φ(xj)〉 without prior knowledge of φ and high

computational complexity through kernel as follows,

f(x,y) = 〈φ(x), φ(y)〉 (2.20)

which is to map inner product of x and y into feature space, F , though the kernel, f ,

without using mapping function, φ. The constrained minimization problem of SVM in

Eq. (2.17) is now summarized for both linear and nonlinear data representation using

kernel function with regularization parameter C as follows,

α∗ =argmin
α

(
1

2
αTKα−αT1N×1

)

st. 0 ≤ α ≤ C
N∑

i=1

αiyi = 0

(2.21)

where α = [α1 · · ·αN ]T, K = [kij ], kij = f(xi,xj), and 1P×Q denotes P×Q matrix consist-

ing only of 1. The quadratic formulation can be solved by quadratic programming and the

non-zero αi’s among optimal αi’s ∀i construct SVM’s decision surface with corresponding

training data xi’s called “Support Vector”. The decision is made by

〈w, φ(x)〉+ b=

N∑

i=1

αiyif(xi,x) + b

class1
≷

class2
0

(2.22)

where x is an arbitrary input. The bias, b is defined by support vectors as follows,

b=
1

n(S)

∑

i∈S


yi−

∑

j∈S
αjyjf(xi,xj)


 (2.23)

where S represents a set of support vectors. There exist several kernel functions such as

gaussian (radial basis), exponential, fourier, splines, and additive kernels. However, it is

widely accepted that gaussian kernel function works sufficient in most cases since each
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Figure 2.2: Examples of Linear and nonlinear decision boundary by SVM based on kernel

of the support vectors contributes one local gaussian function centered at the support

vector. The set of support vectors with local gaussian functions corresponds to Radial

Basis Function Network (RBFN) which is proven that RBFN can fit any function with

infinite many hidden neurons. The gaussian kernel function is defined as follows,

f(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(2.24)

where σ is a given gaussian kernel width.

Figure 2.2 shows linear and nonlinear decision boundaries by SVM with linear and

gaussian kernel, respectively. The solid dots indicate data points as support vectors in

which corresponding Lagrange multipliers become zero. As shown in Figure 2.2, nonlinear

kernel generates nonlinear decision boundary which provides better discriminant capability

for the given dataset.

2.1.4 Multiclass Extension

Due to the limitation of SVM designed only for two-class dataset, there are two distinctive

multiclass SVM approaches, referred to as one-against-all and one-against-one [Hsu and

Lin 2002]. The one-against-all approach compares data in a single class with all the others

to generate the decision boundary. This method builds c-many decision boundaries from

15



c-many one-against-all data combinations, where c denotes the number of classes. The

one-against-one approach creates decision boundaries from all possible combinations of

two different classes. It basically generates cC2-many decision boundaries. For a 2-class

pattern, one-against-one is equivalent to one-against-all.

The one-against-all provides relatively small number of projection vectors than one-

against-one, resulting in lower dimensional data representation since c ≤ cC2 for c ≥
3. However, the one-against-all also requires at least equal or more amount of data per

SVM for training compared with the one-against-one, resulting in higher computational

complexity to solve the quadratic problem in Eq. (2.21) since the number of unknown

variables, α’s increases proportionally to the number of training samples increasing.

For computational efficiency, one-against-one approach is extended with tree structure

for fast decision making such as Directed Acyclic Graph SVM (DAGSVM) [Platt et al.

2000], Binary Tree of SVM (BTS) [Fei and Jinbai 2006] and SVM with Binary Tree Archi-

tecture (SVM-BTA) [Cheong et al. 2004]. These methods shorten the decision path in the

tree resulting in less number of decision making compared with the original one-against-

one requiring full cC2-many times of decision making. Additionally, the tree-based method

does not require any decision fusion such as majority voting.

2.2 Dimensionality Reduction

Due to the increasing demand for high dimensional data analysis from various applications

such as electrocardiogram (ECG) signal analysis, gene expression analysis for cancer de-

tection/DNA forensic, and content-based image retrieval (CBIR), dimensionality reduction

becomes a viable process to provide robust data representation in relatively low dimen-

sional space. Dimensionality reduction is a process to extract essential information from

data such that the high-dimensional data can be represented in a more condensed form

with much lower dimensionality to both improve classification accuracy and reduce com-

putational complexity. Conventional dimensionality reduction methods can be categorized

into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion

from either supervised or unsupervised perspective, where supervised approaches require

the prior knowledge of class assignment for training data whereas the unsupervised meth-
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ods are free from this requirement. On the other hand, the hybrid method integrates both

criteria. Compared with a variety of stand-alone dimensionality reduction methods, the

hybrid approach is promising as it takes advantage of both the supervised criterion that

results in mapping vectors aimed for better classification accuracy and the unsupervised

criterion yielding mapping vectors that better represent the original data, simultaneously.

However, two issues always exist that challenge the efficiency of the hybrid approach, in-

cluding (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a

single hybrid framework, and (2) the robustness of the performance (or the generalization

capability of the algorithm) regarding noisy data. Existing hybrid approaches usually com-

bine stand-alone methods of Linear Discriminant Analysis (LDA) [Martinez and Kak 2001],

Principal Component Analysis (PCA) [Martinez and Kak 2001], Independent Component

Analysis (ICA) [Hyvarinen 1999; Hyvarinen and Oja 2000], and their variations [Jiang

2009].

2.2.1 Supervised Methods

Linear Discriminant Analysis (LDA) [Martinez and Kak 2001] is a representative supervised

dimensionality reduction method. The projection in traditional LDA [Fisher 1938; Rao

1948] is obtained by maximizing the variance between classes while minimizing the variance

within class so as to achieve better separability in reduced dimensional space as follows,

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T (2.25)

where SB represents between-class scatter matrix. Xi ⊂ X include Ni-many i-th class

data. µi is mean of data in Xi whereas µ is mean of entire data X. c denotes the number

of class in X.

SW =
c∑

i=1

∑

xi∈Xi

(xi − µ)(xi − µ)T (2.26)

where SW is within-class scatter matrix.

W ∗ = argmax
W

|W TSBW |
|W TSWW | (2.27)
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Based on SB and SW , the criterion for LDA is shown in (2.27). The projection W ∗ is

chosen as the matrix which maximizes the ratio of determinant of the between-class scatter

matrix to within-class scatter matrix of the projected samples. W ∗ = [w1 w2 · · · wm]

where wi is n-dimensional generalized eigenvector of SB and SW corresponding to the i-th

largest generalized eigenvalue. Fisher proved that if SW is non-singular matrix, then the

ratio |WTSBW |
|WTSWW | is maximized when the column vectors of the projection matrix W are the

eigenvectors of S−1
W SB [Fisher 1938].

S−1
W SBwi = λiwi (2.28)

Therefore, W ∗ is obtained by solving Eq. (2.28).

LDA is extended to kernel Discriminant Analysis (kDA) [Mika et al. 1999] for nonlinear

data representation using kernel trick introduced in Sec. 2.1.2. Inherited from the LDA

criterion are the major issues of the small sample size (S3) problem, the common mean

(CM) problem, and the robustness problem.

The small sample size often makes the within-class variance singular, so that the LDA

criterion becomes infinite regardless of the between-class variance. Face recognition, for

example, is a well-known application suffering from the S3 problem due to the limited num-

ber of face samples per person. Several approaches have been introduced to overcome the

S3 problem such as Shrunken Centroids Regularized Discriminant Analysis (SCRDA) [Guo

et al. 2007], LDA with Generalized Singular Value Decomposition (LDA/GSVD) [Howland

et al. 2003; Ye et al. 2004], Null space LDA (NLDA) [Chen et al. 2000], Discriminative Com-

mon Vector (DCV) [Cevikalp et al. 2005], Orthogonal Centroid Method (OCM) [Park et al.

2003], and Weighted Piecewise LDA (WPLDA) [Kyperountas et al. 2007]. SCRDA [Guo

et al. 2007] or or equivalently regularized LDA (RLDA) is proposed to resolve singularity

problem in LDA by adding a constant to the diagonal elements of total scatter matrix.

LDA/GSVD [Howland et al. 2003; Ye et al. 2004] applies generalized singular value de-

composition to pseudo-inverse computation for between-scatter matrix for dimensionality

reduction through generalized LDA criterion for minimization instead of maximization of

Eq. (2.27). DCV [Cevikalp et al. 2005] is a variation of LDA using discriminative common

vectors which are on the null space of within-scatter to be minimized resulting in maxi-
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mum between-scatter of data in LDA criterion. For efficient computation, Gram-Schmidt

orthogonalization process is applied instead of solving eigenproblem. Nonlinear extension

of DCV is kernel DCV which resolves the problem of DCV inapplicable to the general prob-

lems except for small sampled one due to its assumption of discriminative common vectors

on the null space of the singular within-scatter matrix. Since dataset in the kernel space is

treated as inherited one with small sample problem due to hyperdimensional feature space,

kernel DCV is no longer limited by the type of the problems. OCM [Park et al. 2003]

only maximizes between-scatter matrix from LDA formulation so as to avoid singularity

in within-scatter matrix. WPLDA [Kyperountas et al. 2007] builds piecewise linear dis-

criminants by weighting the multiple linear discriminants from data subsets with smaller

dimensionality obtained by breaking the samples down. Compared with these LDA-based

criteria using the within-class variance, support vector machine (SVM) minimizes the em-

pirical error by maximizing the separation margin which is measured by the distance from

the separation hyperplane to the support vectors, nearest samples of any class. The sepa-

ration margin is also regularized by additional parameter based on the nature of the data

to prevent the overfitting problem from happening. The maximum separation margin and

regularization lead SVM to search for the optimal trade-off between empirical error and

complexity such that the decision hyperplane in SVM delivers better generalization capa-

bility for arbitrary input, resulting in robustness under noisy environment.Therefore, the

lack of the sample data per class does not degrade the classification performance in SVM

as significantly as in LDA due to the generalization of decision for arbitrary data.

The common mean problem is caused by non-distinguishable between-class variances

from overlapped centers among different classes. As a solution, Hsieh proposed Common

Mean Feature Extraction (CMFE) [Hsieh and Landgrebe 1998], Discriminant Analysis

Common Mean (DACM) [Hsieh and Landgrebe 1998], and CMFE with Approximate Pair-

wise Accuracy Criterion (aPAC [Loog et al. 2001]) [Hsieh et al. 2006]. CMFE [Hsieh and

Landgrebe 1998] is designed to reduce dimensionality with maximum ratio of the largest to

the smallest class covariance so as to resolve the problem with data having common means

resulting in between-scatter matrix to be zero. Since the projection onto null space of map-

ping vectors from LDA transforms original data into ones with common mean problem, the

following CMFE over the projected data can provide additional mapping vectors regarding
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to the information especially from data covariance. DACM [Hsieh and Landgrebe 1998]

results from the integration of LDA and CMFE. [Loog et al. 2001] proposes Approximate

Pairwise Accuracy Criterion (aPAC) by extending Fisher’s LDA criterion in [Fisher 1938] to

approximate weighted formulation of pairwise Fisher criteria based on one-against-one ex-

pansion of Fisher criterion. aPAC approximates the mean accuracy among pairs of classes

to construct weights where the contribution of each class pair depends on the Bayes error

rate. CMFE with aPAC is proposed in the same strategy of DACM but replacing LDA

to aPAC with redundancy removal among features by classification accuracy estimation.

SVM is not influenced by the common mean problem since structural risk in SVM does

not rely on the training data center.

Robustness improvement is pursued as the other critical issue in LDA for better classi-

fication performance in noisy environment. Several methods have been proposed under the

LDA framework, including Asymmetric Discriminant Analysis (ADA) [Jiang 2009] and

LDA over significant nodes [Xu et al. 2004]. ADA [Jiang 2009] incorporates LDA and

CMFE into single formulation with weighting parameters to adjust class asymmetry and

to denote discriminatory information about class mean for robustness data representation

especially against imbalanced data. [Xu et al. 2004] proposed a way for efficient classifica-

tion in Discriminant Analysis by introducing recursively selected significant nodes which

only include a part of original dataset without any violation against LDA’s criterion. Due

to SVM’s complexity suppression in addition to maximum margin, the projection vectors

from SVMs deliver data representation with improved robustness compared with LDA.

The robustness is enhanced especially under biased and noisy environment. According to

[Shashua 1999], LDA can only obtain a decision boundary identical to the one from SVM

when there exist sufficiently large number of observations for effective representation of the

internal structure of data.

Beyond the LDA criteria, SVM-related approaches like Recursive SVM (RSVM) [Tao

et al. 2008] and Large-scale MaximumMargin Discriminant Analysis (Large-scale MMDA) [Tsang

et al. 2008] have been applied for dimensionality reduction purpose. Both are based on a

series of SVMs with orthogonality RSVM is motivated by Recursive LDA (RLDA) [Xiang

et al. 2006] but utilizes SVM instead of LDA to iteratively extract the projection vec-

tor. Large-scale MMDA extracts projection with maximum separability by Core Vector
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Machine (CVM) which provides an approximation of SVM pursuing fast computation in

large-scale dataset. Although both RSVM and large-scale MMDA utilize SVM to obtain

projections resulting in no struggle with the S3 or the common mean problems under

improved robustness, there exists possible redundancy issue due to no analysis of the sim-

ilarity among the extracted projections from the multiple series of SVMs/CVMs under

orthogonal relationship.

Regression is another type of the supervised dimensionality reduction approach which

finds reduced dimensional space for the input variables maximally correlated with the re-

sponse variables. Regression based approaches can be categorized as supervised when the

response is actually the class assignment for training data represented by the input vari-

ables. The regression model for supervised dimensionality reduction includes Partial Least

Squares regression (PLS regression) [Dhanjal et al. 2009; Momma and Bennett 2006; Wold

1966], kernel Partial Least Squares regression (kPLS) [Rosipal and Trejo 2002], and Kernel

Dimensionality Reduction (KDR) [Fukumizu et al. 2004]. PLS is to find linear relationship

between the explanatory input and the corresponding response using the regression model

by projecting the data onto reduced dimensional space consisting of latent variables based

on the covariance structure analysis. However, the covariance-based analysis might lead to

lower classification performance compared with stronger statistical measure of independent

relationship among variables in ICA. kPLS extends the correlation measurement in covari-

ance structure by using kernel function to provide nonlinear representation capability to

reduced dimensional space. KDR extends PLS/kPLS’s correlation analysis to canonical

correlation analysis (CCA) in the Reproducing Kernel Hilbert Space (RKHS) to provide

better statistical relationship of conditional independence between the input and the re-

sponse variables. However, KDR does not provide robust data representation as shown in

SVM due to the lack of generalization capability.

2.2.2 Unsupervised Methods

The data correlation and independence are representative unsupervised dimensionality re-

duction criteria to deliver the nature of data into the reduced dimensional space. Principal

Component Analysis (PCA) [Martinez and Kak 2001; Pearson 1901] seeks a projection
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which maximally uncorrelates data in a least-squares sense as follows,

PCA [Martinez and Kak 2001] is based on linearly projecting raw data to a low di-

mensional feature spaces which yields projection directions that maximize the total scatter

across all class resulting in minimum squared-error.

W ∗ = argmax
W

|W TSTW | (2.29)

ST =
N∑

i=1

(xi − µ)(xi − µ)T (2.30)

where xi is i-th n-dimensional data among N -many dataset. When m is the dimension of

feature vector s satisfying m ≤ n, si = W ∗Txi ∈ Rm where W ∗ represents the mapping

with optimal scatter of the features described by W TSTW . Based on pre-determined

m, W = [w1 w2 · · ·wm] where wi ∈ Rn. The projection W ∗ is chosen to maximize

the determinant of the total scatter matrix of the projected samples. Fisher proved that

|W TSTW | is maximized when the column vectors of the projection matrix W are the

eigenvectors of ST [Fisher 1938].

Swi = λiwi (2.31)

By the fisher’s proof, the optimal mapping for squared error criterion is denoted by eigen-

value decomposition in (2.31). The number of eigenvectorswi corresponding to eigenvalues

λi in descending order determines the amount of the error by features based on PCA. A

drawback of this approach is that the scatter S represented by data correlation to be max-

imized is not only due to between-class scatter which is useful for classification, but also

due to within-class scatter which is unwanted information for better classification accuracy.

To improve the data representation capability of PCA, there exist various approaches

such as PCA with L1-norm, kernel Component Analysis (KCA), 2-dimensional PCA (2DPCA),

Multi-linear PCA (MPCA), and manifold based PCA. [Kwak 2008] incorporates L1-Norm

into PCA for distance measurement to achieve robustness and rotational invariance in

PCA framework. It also provides proof of global optimal solution to be obtained based on

PCA with L1-norm. For the robustness in PCA, [Alzate and Suykens 2008] proposed KCA
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based on kernel PCA with “LS-SVM“-like formulation with robust loss function which

consists of the Huber and the epsilon-insensitive loss function in SVR [Vapnik 1999] for

robust dimensionality reduction with sparsity. 2DPCA [Yang et al. 2004] is proposed to

alleviate computation burden by directly using of two-dimensional image matrix instead

of lexicographical representation resulting in the inapplicable covariance matrix for eigen-

value decomposition in PCA. [Xu et al. 2008] also proposes two schemes of 2DPCA where

the first scheme enhances the transverse characters of images and the second one improves

vertical characters of images with theoretical analysis of traditional 2DPCA. The features

from the two schemes are utilized to classify arbitrary data based on distance measure-

ment. MPCA [Lu et al. 2008] is for 3-dimensional tensor object dimensionality reduction

by directly utilizing the tensor representation in the algorithm framework. MPCA also in-

cludes tensor classification strategy by weighting. Data manifold analysis is applied to the

extension of PCA for subspace segmentation such as Probabilistic Principal Component

Analysis (PPCA) [Archambeau et al. 2008; Tipping and Bishop 1999a,b; Wang and Wang

2006], clustered data based PPCA [Sanguinetti 2008], and Generalized Principal Compo-

nent Analysis (GPCA) [Ma et al. 2008; Vidal et al. 2005]. PPCA [Tipping and Bishop

1999a,b] is proposed as a probabilistic interpretation of PCA through latent variable. It

proved that the principal subspace of the data is spanned with placing a spherical unitary

normal prior on the latent variable by the mapping vectors at maximum likelihood through

Expectation-Maximization (EM), resulting in the generative model with mean vector and

noise being able to provide a probabilistic equivalent of PCA. Robust PPCA [Archambeau

et al. 2008] tried to overcome the problem of PPCA inherited from Gaussian noise model

which is sensitive to atypical outliers. To achieve the robustness, it replace gaussian to

Student-t density to formulate maximum likelihood estimation, where Student-t density

includes additional parameter to regulate the thickness of the distribution tails so as to re-

duce the sensitive to outliers. The PPCA series has theoretical equivalence with subspace

in an aspect of Gaussian density estimation shown in [Wang and Wang 2006] although

these arise from different motivation: PPCA integrates the condition density in the la-

tent space over maximum likelihood framework whereas subspace method minimizes the

Kullback-Leibler (KL) divergence between principal and orthogonal subspaces. Clustered

data based PPCA [Sanguinetti 2008] is proposed similar to PPCA but over clustered data
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based on the latent variables with principal and orthogonal subspace matrix representation

over maximum likelihood with EM. It shows that the likelihood of the proposed model is

a monotonic function of Rayleigh’s coefficient, so that LDA can be retrieved as a subset

of Clustered data based PPCA. GPCA [Ma et al. 2008; Vidal et al. 2005] is unsupervised

multiple manifolds searching algorithms in geometric point of view through polynomial

data embedding. Although the manifold-based approaches showed improved data repre-

sentation capability, the methods usually suffered from the sensitivity to free variables such

as the segmented subspace dimensionality as well as computational complexity.

Independent Component Analysis (ICA) [Hyvarinen 1999; Hyvarinen and Oja 2000]

maximizes the independence among components based on the independence measure such

as mutual information. Generally, ICA provides more intrinsic information resulting gen-

erally in contributing more to performance improvement than PCA with maximum uncor-

relatedness [Yang et al. 2005, 2007]. FastICA is one of the representative independence

maximization approach based on non-Gaussianity in linear mixing model. The source s is

acquired by linear transformation, s = W Tx using unmixing matrix, W with observation

x. Based on Central Limit Theorem, a sum of two independent random variable with

identical distribution has a distribution that has less non-Gaussianity than any of the two

original random variables. Therefore, w as a part of W is then taken for maximizing the

non-Gaussianity of wTx since wTx is least gaussian when there exists only one non-zero

weight for si, i ∈ {1, · · · , n} based on Central Limit Theorem. Kurtosis is a classical

quantitative measure for non-Gaussianity.

kurt(s) = E{s4} − 3(E{s2})2 (2.32)

where kurt(s) represents kurtosis measure for s. Kurtosis can simply be estimated by the

fourth moment of s. Although kurtosis is well-defined measure due to its computational and

theoretical simplicity, it is not a robust measure for non-Gaussianity due to the sensitivity

oven the given data [Hyvarinen and Oja 2000]. Negentropy is another measure for non-

Gaussianity defined by

J(s) = H(sgaussian)−H(s) (2.33)
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where the entropy is defined by H(Y ) = −∑
i P (Y = ai)logP (Y = ai). sgaussian de-

notes gaussian random variable. Since gaussian random variable has the largest entropy

in all random variables of equal variance, negative entropy can be treated as a measure of

non-Gaussianity to be maximized. Therefore, J(s) is always positive or zero. Although

negentropy has well-justified statistical theory, it requires pdf estimation resulting in high

computational complexity. To reduce computational difficulty, there exists an approxima-

tion of negentropy by

J(s) ≈
∑

i

ki[E{Gi(s)} − E{Gi(sgaussian)}]2 (2.34)

where ki is positive constant. Gi’s for i = 1, 2 are non-quadratic functions defined by

G1(s) =
1

a1
log cosh (a1s) (2.35)

G2(s) = − exp

(
−s2

2

)
(2.36)

where 1 ≤ a1 ≤ 2. G1 and G2 are heuristically chosen non-quadratic functions by [Hy-

varinen and Oja 2000]. The maximization of negentropy has equivalent relationship with

minimization of mutual information [Hyvarinen and Oja 2000]. Therefore, it can also be

called by independence maximization based on mutual information due to the equivalence.

The major improvement in ICA occurs at the independent measure represented by the

fixed nonlinear function in FastICA [Hyvarinen 1999] to the function built by nonlinear

search through kernel in Reproducing Kernel Hilbert Space (RKHS) by Kernel Canonical

Component Analysis (kernel CCA) and kernel Generalized Variance (kGV) [Bach and

Jordan 2002; Fukumizu et al. 2004] which formulate canonical correlation in RKHS so

as to provide characterizations of general notions of independence among data for linear

unmixing matrix/projection. Kernel ICA (kICA) utilizes different measure compared with

FastICA, F -correlation based on canonical correlation analysis (CCA) to adopt mapping

of source into feature space using kernel technique although kICA starts at the same

concept of independence maximization of source. The kernel method helps to search the

function space instead of utilizing the heuristic non-quadratic functions of G1 and G2.

Since pair-wise zero F -correlation is equivalent that variables are pair-wise independent,
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minimization problem of CCA using F -correlation can be considered as a method for

achieving maximum independence [Bach and Jordan 2002]. The definition of F -correlation,

ρ to obtain correlation between two mappings of data having two variables inN dimensional

space is represented as follows,

ρ=max corr(〈φ(x(1)), f1〉, 〈φ(x(2)), f2〉)

=max
cov(〈φ(x(1)), f1〉, 〈φ(x(2)), f2〉)

{var(〈φ(x(1)), f1〉)}1/2{var(〈φ(x(2)), f2〉)}1/2
(2.37)

where fi represents a spanned subspace in feature space, F . x is a given data and su-

perscript i in x(i) denotes the variable index in the observation space. Based on repro-

ducing property of the kernel in Hilbert spaces, f(x) = 〈K(·,x), f〉 where K(·,x) =

φ(x) for φ satisfying Mercer’s theorem. The correlation in Eq. (2.37) is equivalent to

corr(f1(x
(1)), f2(x

(2))) denoting correlation between mapping of two variables x(1) and

x(2) onto f1 and f2, respectively. Since f1, f2 ∈ F , f1 =
∑N

i=1 β
(1)
i φ(x

(1)
i ) + f⊥

1 and

f2 =
∑N

i=1 β
(2)
i φ(x

(2)
i ) + f⊥

2 where f⊥
1 and f⊥

2 are orthogonal to linear spaces spanned by

the φ(x
(j)
i ) representing

∑N
i=1 β

(1)
i φ(x

(1)
i ) and

∑N
i=1 β

(2)
i φ(x

(2)
i ). A subscript of x denotes

observation index. The numerator as covariance in Eq. (2.37) is therefore expanded as,

cov(〈φ(x(1)), f1〉, 〈φ(x(2)), f2〉) = 1

N
(β(1))TK1K2β

(2) (2.38)

where Kr = [kij ] = [K(φ(x
(r)
i ), φ(x

(r)
j ))] is the so called Gram matrix. The denominator as

variance in Eq. (2.37) is represented in the same way of Eq. (2.38) as,

var(〈φ(x(1)), f1〉) = 1

N
(β(1))TK2

1β
(1) (2.39)

var(〈φ(x(2)), f2〉) = 1

N
(β(2))TK2

2β
(2) (2.40)

The substitution of Eq. (2.38), (2.40), and (2.40) into Eq. (2.37) results in the following

F -correlation.

ρ = max
(β(1))TK1K2β

(2)

{(β(1))TK1K1β
(1)}1/2{(β(2))TK2K2β

(2)}1/2
(2.41)

The generalized eigenvalue problem in CCA is adopted to form a same type of the problem
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for Eq. (2.41) as follows,


 K2

1 K1K2

K2K1 K2
2




β

(1)

β(2)


 = λ


K

2
1 0

0 K2
2




β

(1)

β(2)


 (2.42)

where λ denotes eigenvalue for the generalized eigenvalue problem. Since the first canonical

correlation, max (λ) is equivalently found by the problem of finding min (λ), the problem

to maximize ρ in Eq. (2.41) is now represented by the problem for finding min (λ) in

Eq. (2.42). However, invertible matrixes of K1 and K2 always result in ρ = 1. Therefore,

regularization is required for Eq. (2.37) as follows,

ρκ = max
cov(〈φ(x(1)), f1〉, 〈φ(x(2)), f2〉)

{var(〈φ(x(1)), f1〉) + κ‖f1‖2}1/2{var(〈φ(x(2)), f2〉) + κ‖f2‖2}1/2
(2.43)

where κ is a small positive constant. By second order estimation of the norm, ‖fi‖2, with a

finite sample, the variance in the denominator of Eq. (2.43) is denoted by ignoring constant

term as,

var(〈φ(x(j)), fj〉) + κ‖fj‖2 = 1

N
(β(j))TK2

jβ
(j) + κ(β(j))TKjβ

(j)

≈ 1

N
(β(j))T (Kj + κ

N

2
I)2β(j)

(2.44)

Finally, I obtain a generalized eigenvalue problem with regularization using the variance

in Eq. (2.44) as follows,

Cβ = λDβ (2.45)

where C = [cij ], cij = (Ki + κ(N/2)I)2 for i = j, cij = KiKj otherwise. D = [dij ],

dij = (Ki + κ(N/2)I)2 for i = j, cij otherwise with i, j = {1, 2}. To generalize the two-

variable problem to more than two variables, Eq. (2.45) is simply extended with i, j =

{1, 2, · · · ,m} using pair-wise independence over entire variables. If I assume the variable

follows Gaussian distribution, the problem to find the minimum eigenvalue in Eq. (2.45) is

interpreted as an equivalent problem of minimizing mutual information. The link between
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canonical correlation and mutual information [Bach and Jordan 2002] is denoted as,

I(x(1), x(2), · · · , x(m))=−1

2

m∑

i=1

λi

=−1

2
log

det(C)

det(D)

(2.46)

Therefore, the problem of pursuing minimum eigenvalue is translated by minimization of

Eq. (2.46) and is especially known as kernel Generalized Variance (kGV). Since the problem

is based on the source obtained through the unmixing process by s = WTx, kICA is finally

represented by a function of W under given observation.

W ∗ = argmin
W

g(W ) (2.47)

g(W ) = −1

2
log

det(C)

det(D)
(2.48)

Although kICA show better data independence, kICA are extremely slow compared with

FastICA due to the computationally burdensome gradient calculation of Eq. (2.48).

Since the unsupervised approaches focus on searching for the better data representation

without separability concern, the lack of consideration in separability might limit the core

information for for classification performance improvement to be delivered into reduced

dimensional space.

2.2.3 Hybrid Methods

The hybrid dimensionality reduction consists of both supervised and unsupervised crite-

ria so as to find better data representation for classification performance improvement

compared with either the supervised or unsupervised method. The conventional hybrid

approaches improve/resolve various problem with limitation. Asymmetric Principal and

Discriminant Analysis (APCDA) [Jiang 2009] alleviates common mean problem and im-

proves robustness since APCDA combines Asymmetric Discriminant Analysis (ADA) in

the Asymmetric PCA (APCA) subspace where ADA incorporates LDA and CMFE into

single formulation with weighting and APCA utilizes asymmetric pooled covariance matrix

regulated by class covariance reliability for unbalanced amount of data per class. LDA over
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PCA [Belhumeur et al. 1997; Yang and Yang 2001, 2003] aims at alleviation of S3 problem

in LDA criteria by null space elimination through PCA, so that it only eliminate disad-

vantage of LDA criteria from S3 problem. ICA augmented by LDA [Kwak and Pedrycz

2007] consists of sequential combination of PCA, ICA, and LDA to reduce dimensionality

by LDA over ICA subspace constrained by PCA. The common mean problems still resides

in ICA augmented by LDA due to between-class variance in ICA augmented by LDA. The

supervised MI-based ICA [Leiva-Murillo and Artes-Rodriguez 2007] proposes supervised

one-unit projection vector extraction which maximizes mutual information between the

extracted components and the data classes. Due to the method only with regularization

of classes on ICA, the supervised Mutual Information(MI)-based ICA does not sufficiently

incorporate separability into the hybrid framework. Discriminant Nonnegative Matrix Fac-

torization (DNMF) [Zafeiriou et al. 2006] is a hybrid of NMF plus LDA represented by

NMF formulation [Lee and Seung 1999] constrained by LDA criteria where within- and

between-class variance are from the decompositions of NMF. Nonnegative Tensor Factor-

ization (NTF) with LDA [Zafeiriou 2009] extends DNMF to 3-dimensional tensor with

arbitrary valence based on within- and between-class variance by tensor decompositions

from NTF. However, in DNMF and NTF with LDA, S3 and common mean problems in-

herited from LDA criteria nullify the LDA’s discriminant characteristic from the hybrid

frameworks since DNMF and NTF with LDA include LDA criteria as a part of their cost

functions.

The traditional hybrid approaches introduced above can be categorized either into

subspace-based or objective-level hybridization. The subspace-based method utilizes sub-

space in between the supervised and unsupervised criteria to construct single algorithm.

For example, Asymmetric Principal and Discriminant Analysis (APCDA) performs ADA

in APCA subspace [Jiang 2009]. LDA over PCA removes null space by PCA for LDA. ICA

augmented by LDA build subspace by ICA for LDA. The objective-level hybridization usu-

ally adopts supervised information into unsupervised criterion. The supervised MI-based

ICA, DNMF, and NTF rely on the objective-level hybridization. The supervised MI-based

ICA utilizes the class label in the dataset during the mutual information maximization. The

objective functions in DNMF and NTF are both constrained by LDA criterion to incorpo-

rate the supervised discriminant information into unsupervised matrix/tensor factorization.
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Although the conventional hybrid approaches try to provide improved data representation

capability, most of them in both subspace-based and objective-level hybridization schemes

are based on LDA-like criteria consisting only of between- and within-class covariance anal-

ysis which result in S3 and common mean problem with robustness concern. Therefore,

it is required to improve the classification performance in the reduced dimensional space

that the better supervised and unsupervised criteria be incorporated into the concept of

hybrid dimensionality reduction.

2.3 Constrained Optimization

The constraints in optimization problem is generally managed either by deterministic or

stochastic approach. The deterministic approach is usually focused on primal and dual

formulation based on Lagrange multipliers [Ciarlet 1989] whereas the stochastic approach

relies on the stochastic search such as genetic algorithm [Goldberg 1989] with constraints

treated as independent objectives [Tan et al. 2005, 2003].

2.3.1 Deterministic Approach

Introducing Lagrange multiplier is a traditional deterministic approach to handle con-

straints in optimization problem where the differentiable objective function, J : Ω → R
has a relative minimum as J(u) ≤ J(v) at a point u for every v. Let u = (u1, u2) is a

point of the set, U = {(v1, v2) ∈ Ω : ϕ(v1, v2) = 0} ⊂ Ω where Ω is an open subset of a

product V1 × V2 of normed vector spaces, the space V1 being complete, and ϕ : Ω → V2 is

a function over Ω. ∂ϕ(u1, u2) ∈ Isom(V2). If J has a relative minimum at u with respect

to the set U , then there exist an element Λ(u) such that

J ′(u) + Λ(u)ϕ′(u) = 0 (2.49)

Eq. (2.49) is further expanded for each of the ϕi’s, ∀i as follows,

J ′(u) +
∑

i

λi(u)ϕ
′
i(u) = 0 (2.50)
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where ϕi’s are linearly independent constraints. λi’s in Eq. (2.50) are called Lagrange mul-

tipliers associated with the constrained minimum u. By introducing Lagrange multipliers,

the differentiable function, J at u can incorporate the constraints into single formulation as

Eq. (2.50), and the u for the minimum of J is found by solving Eq. (2.50) with ϕ′
i(u) = 0,

∀i. For the problem as follows,

u ∈ U={v ∈ V : ϕi(v) ≤ 0, 1 ≤ i ≤ m}
J(u) = inf

v∈U
J(v)

(2.51)

The point u belonging to the set of U is a solution of the problem in Eq. (2.51) if (u,λ) ∈
V ×Rm

+ is a saddle point of L where R+ denotes semi-positive subspace of R. Additionally,

there exists at least one vector λ such that the pair (u,λ) is a saddle point of L when J

is convex and differentiable at u, the solution of Eq. (2.51). The constrained minimization

problem in Eq. (2.51) is represented by Lagrange multiplier in single formulation as follows,

L(v,µ) = J(v) +
∑

i

µiϕi(v) (2.52)

where L is called ’Lagrangian’. Therefore, if λ is known, then Eq. (2.51) becomes uncon-

strained problem at the saddle point in the representation of Eq. (2.52) as follows,

L(uλ,λ)= inf
v∈V

L(v,λ)

= sup
µ∈Rm

+

inf
v∈V

L(v,µ)
(2.53)

where uλ denotes u with the given λ. Eq. (2.53) is represented as maximization instead

of minimization as follows,

G(λ) = sup
µ∈Rm

+

G(µ) (2.54)

where G(µ) = infv∈V L(v,µ) is called the dual problem of the primal problem in Eq. (2.51).

The primal and dual solution are identical when there primal/dual has unique solution.

The duality is helpful to convert the optimization problem in easier formulation as shown

in Eq. (2.17) for the formulation of SVM.
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2.3.2 Stochastic Approach

Stochastic optimization methods are optimization algorithms which incorporate probabilis-

tic (random) elements, either in the problem data (the objective function, the constraints,

etc.), or in the algorithm itself (through random parameter values, random choices, etc.),

or in both. The concept contrasts with the deterministic optimization methods, where the

values of the objective function are assumed to be exact, and the computation is completely

determined by the values sampled so far.

This section introduces evolutionary algorithm and its multiobjective extension for

constraint handling. Evolution in optimization is an approach to overcome local minimum

problem which usually results from gradient-based search such as steepest descent and

Newton’s method. The search algorithms based on evolution utilize multiple search point

whereas conventional gradient-based approaches use single search point toward gradient

decreasing. Genetic algorithm (GA) as one of the evolutionary optimization techniques

performs single objective optimization successfully for many engineering problems. Exten-

sion for multiobjective problem based on GA also provides promising performance due to

the isolation between data and search space.

Genetic Algorithm

Genetic algorithm is an optimization algorithm which mimic evolution in nature. For

example, there is a question, “Why is giraffe’s neck long?”. The answer in an aspect of

evolution is that giraffes with longer neck can have more change to survive since they

can reach to leaves in taller tree to feed themselves. Therefore, longer neck is treated

as dominant characteristic for their descendant by nature. The evolution can be applied

as an optimization algorithm in similar way by presenting the gene from real world input,

generating various possibility by search operators, and providing search direction and speed.

Holland [Holland 1992] introduced schema theory which is widely accepted as a basis of

genetic algorithm although it does not provide a strict proof as a global optimum finder.

Schema theory shows convergence from one generation to the next based on building block

hypothesis (BBH). BBH attempts to explain how GA solves a problem by positing that

near optimal solutions were forged from small, low-order, above-average schemata which is
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Figure 2.3: Genetic algorithm framework

a template allowing exploration of similarities among chromosomes.

GA consists of 4 major elements: encoding, evaluation, selection, and operators. En-

coding provides a scheme to map between phenotype and genotype. By isolation of search

space represented by genotype from the data space by phenotype, GA is easily facilitated

into wide range of applications by appropriate encoding scheme. Figure 2.4 denotes genetic

algorithm framework based on pre-determined encoding scheme to build internal structure

of individuals. Evaluation denotes a measure for objective function. Based on the result

from evaluation, selection gives overall search direction for individuals to be gradually im-

proved. Operators perturb the location of individuals so as to search better candidate for

next generation.

Encoding is one of the essential components for GA to perform successfully since op-

timization is performed in the search space converted from solution space by encoding

scheme. [Ronald 1997] provides 9 ideal encoding features. Most problems are not able

to fit all these requirements but adopt compromising encoding. Figure 2.4 shows conver-

sion between coding space and solution space by encoding and decoding. There are two
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distinct encoding scheme, binary and real encoding. Binary encoding utilizes only 0 or 1

to consist of individuals whereas real encoding directly use real value of which individuals

are composed. Real-valued encoding provides much higher precision than binary whereas

binary offers lower computational complexity than real encoding due to restricted search

space by 0 and 1.

A stochastic selection by the roulette wheel method is a basic selection/reproduction

mechanism used frequently in the genetic algorithm. The roulette wheel selection method

is based on the fitness ratio, which has some weaknesses. In early stage of evolution, a

chromosome with a larger fitness value than other chromosomes has a high survival proba-

bility in the reproduction process, which might cause premature convergence. Also, when

individuals converge to near solution, an average fitness might be close to the populations

best fitness. If this is the situation, the solution candidates with average and best fitness

will have nearly the same number of copies in future generations. Then competition be-

tween individuals by genetic operators becomes low, and so individuals wander around the

solution.

To overcome this problem, one can reduce the relatively high fitness values of the

individual chromosomes, and the fitness difference between the chromosomes can be scaled

by the distribution of the individual state of all fitness. The fitness scaling and ranking

methods [Michalewicz 1996] are the representative solutions for the problem [Goldberg

1989]. The fitness ranking method ranks the chromosomes by fitness values and then

redistributes fitness exponentially according to rank. The fitness ranking method does not

consider the relation between object function and fitness. The fitness scaling method scales

all fitness using maximum, minimum, and average fitness by a linear function. The fitness
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scaling considers the state of all fitness, but if the average fitness is close to the maximum

fitness, a fitness less than the average fitness can be evaluated as a negative value.

Tournament selection [Goldberg et al. 1991] is a selection scheme to reproduce a child

by competing among the candidate set which includes more than one individuals randomly

picked from parents. The size of the candidate set is called as tournament size. Larger

tournament size results in faster convergence. Tournament selection is heuristically known

as a selection method including the advantages of both ranking and scaling based selection

especially against genetic drift.

There are two operators widely utilized, crossover and mutation. Crossover is to ex-

change information between individuals. Since crossover does not provide any new external

information, it is usually treated as local search operator. Mutation, on the other hand,

is to insert new information into individuals as a random perturbation resulting in “big

jump” for global search.

Extension to Multiobjective Optimization for Constraint Handling

Since genetic algorithm isolates data and search space resulting in providing flexibility to

perform optimization regardless of problems, genetic algorithm can easily extended for

problem with multiple objectives, so called multiobjective optimization problem. The

major difference between single and multiple objective case is that additional measure is

required to determine dominance among individuals during multiobjective optimization.

Pareto optimality [Steuer 1986] is a major trend of dominance determination for evolu-

tionary multiobjective optimization although there are several different dominance deter-

mination measures such as weight [Hajela and Lin 1992], minmax [Coello and Christiansen

1999], and sub-population [Richardson et al. 1989; Schaffer 1985]based algorithms. The

review for evolutionary multiobjective optimization here is focused on methods based on

Pareto optimality. The detail of the Pareto optimality is as follows,

1. Global Pareto optimality: A decision vector x∗ ∈ S is global Pareto optimal if there does

not exist another decision vector x ∈ S such that fi(x) ≤ fi(x
∗) for ∀i and fj(x) ≤ fj(x

∗)

for at least one index j. x∗ ∈ S also is global Pareto optimal by Pareto dominance if there

35



does not exist another x ∈ S which dominate x∗.

2. Local Pareto optimality: x∗ ∈ S is locally Pareto optimal if there exist δ > 0 such that

x∗ is Pareto optimal in S ∩B(x∗, δ) where B(x∗, δ) = {x ∈ Rn|‖x∗ − x‖ < δ}.

3. Local Pareto optimum in convex problem: Let x∗ ∈ S ∩ B(x∗, δ) be local Pareto op-

timum. If x∗ is not globally Pareto optimal, then there exist some other point, xo ∈ S

which is more optimized than x∗. Let x̂ = βxo + (1 − β)x∗, where 0 < β < 1 is se-

lected such that x̂ ∈ B(x∗, δ), then there does not exist any dominant points in B by

the definition of Pareto optimality. By the convexity of the objective functions and global

Pareto optimality, fi(x̂) ≤ βfi(x
o) + (1 − β)fi(x

∗) ≤ βfi(x
∗) + (1 − β)fi(x

∗) = fi(x
∗),

∀i. Because x∗ is locally Pareto optimal and x̂ ∈ B(x∗, δ), fi(x̂) = fi(x
∗), ∀i. Further,

fi(x
∗) ≤ βfi(x

o) + (1− β)fi(x
∗) for ∀i. Because of β > 0, fi(x

∗) ≤ fi(x
o) for ∀i. Accord-

ing to global Pareto optimality, (fi(x
∗) > fi(x

o) for some i. Contradiction. Thur, x∗ is

globally Pareto optimal.

4. Local Pareto optimum in quasiconvex problem: Let x∗ ∈ S∩B(x∗, δ) be local Pareto op-

timum. If x∗ is not globally Pareto optimal, then there exist some other point, xo ∈ S which

is more optimized than x∗. Let x̂ = βxo+(1−β)x∗, where o < β < 1 is selected such that

x̂ ∈ B(x∗, δ). There does not exist any dominant points in B by the definition of Pareto

optimality. By fi(x
o) ≤ fi(x

∗) for ∀i and fj(x
o) < fj(x

∗) for some j, and the quasiconvex-

ity of the objective functions, respectively, for each index i such that fi(x
o) = fi(x

∗), it is

obtained that fi(x̂) ≤ max [fi(x
o), fi(x

∗)] = fi(x
∗) (i.e. fi(x̂) ≤ fi(x

∗) if fi is quasiconvex

and for each index j such that fj(x
o) < fj(x

∗), fj(x̂) ≤ max [fj(x
o), fj(x

∗)] = fj(x
∗) (i.e.

fj(x̂) ≤ fj(x̂) ≤ fj(x
∗) if fj is quasiconvex. Because at least one of the objective functions

is strictly quasiconvex, at least one of the inequalities above is strict. Contradition with

local Pareto optimality of x∗. Thus, x∗ is globally Pareto optimal.

There exist various evolutionary multiobjective optimization algorithms based on Pareto

optimality. Multiobjective Genetic Algorithm (MOGA) [Fonseca and Fleming 1993] is

one of the representative evolutionary algorithm for the problem with multiple objectives.
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MOEA is based on Pareto ranking and fitness sharing [Goldberg 1989] in objective domain.

fi = (1 + qi)
−1 (2.55)

where qi denotes the number of individuals dominating i-th individual in objective domain.

Smaller qi, higher fi. The fitness sharing is originally a method to equivalently evaluated

optima by measuring distance among near individuals in coding space. MOGA utilizes

sharing not in coding space, but in objective space so as to find more accurate Pareto front

by applying orthogonal pressure with the pressure directed toward Pareto front in selection

process as follows,

f ′
i =

fi∑

i

S(i, j)
(2.56)

S(i, j) =





1− [d(fi, fj)/σ]
α if d(fi, fj) < σshare

0 otherwise
(2.57)

where f ′
i is fitness with sharing for MOGA. d(fi, fj) = ‖fi − fj‖2. α controls the shape of

S and σshare is to decide the radius for sharing process to be applied. The key of Niched

Pareto Genetic Algorithm (NPGA) [Horn et al. 1994] is the utilization of Pareto dominance

tournament for selection. The selection scheme is based on tournament approach with two

individuals and subpopulation. The size of subpopulation acts as a convergence control

parameter like tournament size but they are not allowed to be reproduced. By comparison

of two individuals based on Pareto optimality, dominating one is selected. If there is no

dominance relationship between the two individuals, then NPGA utilizes sub-population

to count the number of dominated individuals for each one of the two individuals. The

winner is chosen as a child. Nondominated Sorting Genetic Algorithm II (NSGA-II) [Deb

et al. 2002] includes two key components: fast nondominated sorting and crowding distance

measure. Fast nondominated sorting is to provide rapid method to acquire Pareto ranking

qi in Eq. (2.55) based on the idea of speedup in sorting algorithms. Crowding distance offers

orthogonal selection pressure to the pressure toward Pareto front. The difference between

sharing and crowding is that sharing utilizes sphere area defined by σshare to measure
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density whereas crowding distance only measures distance to the nearest individual in

objective space to relieve computational complexity. To increase search capability, crowding

distance for individuals at the border is set to infinite to be always reproduced.

38



Chapter 3

SVM plus ICA

This chapter presents linear and nonlinear hybrid dimensionality framework based on op-

timization of both structural risk and independence. Two different criteria of structural

risk and independence are satisfied with intermediate stage so called projection and uncor-

relatedness in between structural risk and independence optimization. Linear/Nonlinear

mapping obtained through the hybrid framework will provide improves classification per-

formance compared with other traditional stand alone or hybrid methods such as PCA,

LDA, ICA, and PCA plus LDA.

3.1 Dimensionality Reduction based on Support Vector Ma-

chine

3.1.1 Support Vector Machine for Dimensionality Reduction

Support Vector Machine (SVM) provides robust nonlinear decision boundary of 〈w, φ(x)〉+
b = 0 which minimizes structural risk consisting not only of empirical risk but also of com-

plexity of the boundary [Vapnik 1999], where w and b are the projection vector and bias

respectively for arbitrary input, x. w is utilized as a projection vector for dimensional-

ity reduction to explicitly incorporate decision information into data representation while

robustness in SVM is preserved in reduced dimensional space [Tao et al. 2008].

The mappings from structural risk minimization by SVM might be more robust than

LDA due to the generalization capability especially when observations in the same class are
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Figure 3.1: Example of robustness between decision boundaries from SVM and LDA

biased or corrupted with noise. Additionally, structural risk based dimensionality reduction

shows equal or better classification accuracy than LDA or kDA since LDA can only obtain

a decision boundary identical to the one from SVM when there exist sufficiently large

number of observations for effective representation of the internal structure of data [Shashua

1999]. In order to demonstrate that SVM presents better robustness than LDA in noisy

environments, I put together an example using a two-class synthetic dataset in a two-

dimensional space. The data in each class consists of mixture of two Gaussians with biased

number of samples corrupted by noise of SNR=5 where SNR is the signal-to-noise ratio.

The two Gaussians in class 1 have 500 and 50 samples centered at [−2 3]T and [2 3]T

respectively whereas class 2 includes two Gaussians with 50 and 500 samples centered at

[−2 − 3]T and [2 − 3]T, respectively. The covariance for the Gaussians are all identity

matrices. The distribution of data for the example is shown in Fig. 3.1, where the filled

circle indicates data in class 1 and the empty circle is for data in class 2. Due to the

symmetric location between class 1 and class 2 data, the optimal decision should be made

at the linear decision boundary, x2 = 0, indicated by the dark solid line in the figure.

I also observe that the decision boundary by linear SVM is closer to the optimal than

the one by LDA, which shows that SVM is more robust than LDA in noisy and biased

environment. This is because SVM is to find support vectors usually located close to the
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decision surface whereas LDA utilizes sample mean to form decision criteria. Consequently,

the robustness of LDA is determined by the accuracy of the sample mean over the true

mean. The decision boundaries by both LDA and SVM should converge to the optimal

when there exist sufficient amount of clean data with unbiased data distribution.

The multiclass extension [Hsu and Lin 2002] is applied to SVM to make it applicable

to multiclass dataset by providing l-many SVM’s, each of which corresponds to {wi, bi}
for the i-th decision boundary, where the number of SVM’s represented by l depends on

the type of the multiclass extension applied. In this dissertation, I utilize one-against-all

(1-a) multiclass extension constructing c-many SVM’s based on the dataset consisting of

all Xi’s, i = {1, · · · , c}, where c denotes the number of classes in the dataset and Xi is a

set of data belonging to the i-th class. The i-th SVM in 1-a approach builds a decision

boundary by wi and bi to separate the data in Xi and the others. The multiple projection

vectors from SVM’s based on multiclass extension are consolidated into the projection

matrix, W1,l = [w1 · · ·wl] for dimensionality reduction, where wi is as follows,

wi =
N∑

k=1

α
(i)
k y

(i)
k φ(xk) (3.1)

where α
(i)
k denotes the k-th Lagrange multiplier corresponding to xk for wi. The desired

output is set to y
(i)
k = 1 for xk ∈ Xi and y

(i)
k = −1 otherwise. N is the total number

of data satisfying N =
∑c

i=1 n(Xi). φ is nonlinear embedding function to transform data

directly from source to hyperdimensional feature space, F . Eq. (3.1) is also represented

in the compact form as wi = Φa(i) where Φ = [φ(x1) · · ·φ(xN )] and a(i) = [a
(i)
1 · · · a(i)N ]T

with a
(i)
k = α

(i)
k y

(i)
k . The compact form of the projection matrix is obtained based on the

compact representation of Eq. (3.1) as follows,

W1,l = ΦA (3.2)

where A = [a(1) · · · a(l)]. W1,l = [w1 · · ·wl] where l is set to c due to c-many SVM’s in

1-a multiclass extension. The bias, bi centers the projected data on the decision boundary
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corresponding to wi and is denoted as follows,

bi=
1

n(Si)

∑

p∈Si


y(i)p −

∑

q∈Si

α(i)
q y(i)q 〈φ(xq), φ(xp)〉


 (3.3)

where Si represents a set of support vectors for wi.

3.1.2 Redundancy Removal by Asymmetric Decorrelation Metric

The redundancy among all wi’s, i ∈ {1, · · · , l} in W1,l should be removed since c-many

wi’s are obtained based on 1-a SVM to minimize structural risk which is irrelevant to

the similarity in the projected data onto W1,l. Although ICA includes symmetric decor-

relation [Hyvarinen 1999] as a redundancy removal process for wi’s in Wl+1,m allowing

orientation change, it is inappropriate for wi’s in W1,l from SVM since the orientation of

SVM’s projection vector delivers essential information of decision. Instead of symmetric

decorrelation in ICA, this dissertation introduces the concept of asymmetric decorrelation

to alleviate redundancy among wi’s in W1,l with no orientation alteration.

Asymmetric decorrelation between two projection vectors is conducted based on two

metrices, the angular distance between the vectors and the classification performance of

training data on the projections. The angular distance is represented as follows,

θij = arccos
〈wi,wj〉

‖wi‖2‖wj‖2 (3.4)

where θij represents the angular distance betweenwi and wj which is symmetric, satisfying

θij = θji ∈ [0, π]. The inner product of wi and wj in Eq.(3.4) is obtained based on the

compact representation of Eq. (3.1) as follows,

〈wi,wj〉=〈Φa(i),Φa(j)〉
=a(i)TΦTΦa(j)

=a(i)TKa(j)

(3.5)

where K is N×N Gram matrix composed of kij ’s, each of which is represented by kij =

〈φ(xi), φ(xj)〉 = f(xi,xj), i, j ∈ {1, N}, an element in the i-th row and the j-th column
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of K. f(xi,xj) is a kernel function which provides a point mapping for the inner product

between φ(xi) and φ(xj) without direct use of φ(·) based on Mercer’s theorem [Herbrich

2001]. The Euclidean norm in Eq. (3.4) is also obtained by using Eq. (3.5) as ‖wi‖2 =

〈wi,wi〉1/2 = (a(i)TKa(i))1/2. The classification performance of ri from wi over training

dataset is as follows,

ri=
1

2N

N∑

k=1

∣∣∣y(i)k − sign(〈wi, φ(xk)〉+ bi)
∣∣∣

=
1

2N

N∑

k=1

∣∣∣y(i)k − sign
(
a(i)Tu(xk) + bi

)∣∣∣
(3.6)

where sign(·) is signum function and u(x) is a projection of x onto φ(xi),∀i in F as u(x) =

ΦTφ(x) = [f(x1,x) · · · f(xN ,x)]T. ri ∈ [0, 1],∀i. I formulate the joint effect of these two

metrics of angular distance and classification performance as follows,

dij = θij
ri
rj

γmin

π
(3.7)

where θij denotes the angular distance between wi and wj . ri and rj are the classification

accuracies using wi and wj , respectively. Set to 0.5 is γmin which provides lower bound

of classification performance for all wi’s. Any wi with ri ≤ γmin is discarded prior to the

redundancy removal process. π is normalization factor such that dij ∈ [0, 1]. dij represents

how close wi is to wj . It is asymmetric due to dij 6= dji. Smaller dij denotes more

redundancy between wi and wj . I choose to remove wi instead of wj because dij < dji

when ri < rj , i.e., wi becomes less meaningful due to lower classification accuracy of ri

than rj .

Figure 3.2 shows the pseudocode for the redundancy removal process for wi’s from

SVM. δ ∈ [0, 1] is a threshold for asymmetric decorrelation to guide decision whether to

discard wi so as to control the amount of redundancy among wi’s. The removal process

iteratively eliminates wi∗ ’s with minimum asymmetric decorrelation of wi’s in I until

minimum decorrelation found is greater than δ or there is nothing to eliminate. When

δ = 1, the removal process eliminates all wi’s whereas δ = 0 does not remove any wi’s.

I add small positive value to di∗j∗ only when di∗j∗ = 0 at the first iteration. The small
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Begin

Require: δ ∈ [0, 1]
Initialize I = {1, · · · , l}, i∗ = 0
Evaluate dij for ∀i, j ∈ I, i 6= j
repeat

I ← (I − {i∗})
(i∗, j∗) = argmin

(i,j)∈I,i 6=j
(dij)

until di∗j∗ > δ or n(I) == 0
return wi’s where i ∈ I

End

Figure 3.2: Pseudocode for redundancy removal
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Figure 3.3: Example of redundancy removal

positive value makes di∗j∗ ∈ (0, 1], compared with dij ∈ [0, 1] so that the removal process

avoids the case that wi∗ at the first iteration is eliminated with δ = 0. Since the removal

process eliminateswi’s based on the redundancy evaluation without orientation change, the

decision information in wi’s from SVM holds. After the redundancy removal, I considers

W1,l = [· · ·wi · · · ], ∀i ∈ I where l becomes n(I) ≤ l.

Figure 3.3 shows an example for the redundancy removal process with the threshold,

δ = 0.1. The example includes 7 wi’s, i ∈ I = {1, · · · , 7} generated from SVM’s with

linear kernel function, f(xi,xj) = 〈xi,xj〉. The solid lines denote wi’s survived at the end

whereas dotted lines indicate wi’s eliminated during the redundancy removal process. In
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the first iteration, the minimum asymmetric decorrelation is found between w2 and w7

with min(dij) = d72 = 0.0174 resulting in the elimination of w7 due to r7 < r2. In the

second iteration, w2 is selected to be removed based on min(dij) = d21 = 0.0275 with

r2 < r1. w3 is chosen to be eliminated with min(dij) = d36 = 0.0322 and r3 < r6 in

the third iteration. w4 is the last one to be discarded with min(dij) = d45 = 0.0729 and

r4 < r5 in the fourth iteration. The removal process terminates at the fifth iteration since

min(dij) = d61 = 0.1968 > δ leaving only w1, w5, and w6 which are sufficiently far away

from each other with relatively higher classification accuracies.

3.2 Linear SVM plus ICA

This section presents an effective linear hybrid dimensionality reduction method based on

Support Vector Machine (SVM) and Independent Component Analysis (ICA), referred to

as SVM plus ICA (SVM+ICA), to maintain high classification accuracy in lower dimen-

sional space that is less sensitive to noise. Since SVM+ICA is not based on LDA, it does

not suffer from the S3 or common mean problems inherited from the LDA criteria.

SVM minimizes structural risk so as to offer projection with better generalization capa-

bility to improve classification/estimation performance for unknown samples. Since maxi-

mum margin among features provides better data representation to improve classification

performance [Gilad-Bachrach et al. 2004] and SVM projection itself is capable of building

an effective subspace for dimensionality reduction [Tao et al. 2008; Tsang et al. 2008], I

adopt SVM as a supervised component in the proposed hybrid algorithm.

On the other hand, ICA offers projection which maximizes independence among features

with better data representation [Hyvarinen 1999] and has been shown [Yang et al. 2005,

2007] to play an important role in classification performance improvement, I incorporate

ICA as the unsupervised component in the proposed hybrid algorithm.

In order to combine projections derived from SVM and ICA into a unified framework for

effective dimensionality reduction, the orthogonal relationship is sought between mapping

vectors from SVM and ICA, such that contribution made by the supervised and unsuper-

vised processes have minimum correlation, leading to much reduced dimensionality. This

idea is similar to the Orthogonal Centroid Method (OCM) [Foley and Sammon Jr. 1975;
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Ye 2005] but I replace OCM’s maximum margin criterion with SVM’s structural risk min-

imization which does not suffer from the S3 problem. Under the orthogonal relationship

between SVM and ICA, ICA over the subspace orthogonal to SVM projection vectors

allows us to merge two projections from both SVM and ICA into one concatenated pro-

jection matrix. Therefore, SVM+ICA improves classification performance with robustness

resulting from minimum structural risk with independence.

3.2.1 The Concept of Linear SVM plus ICA

This section describes the new hybrid dimensionality deduction method that consists of the

simultaneous minimization of structural risk (the supervised criterion) and maximization

of data independence (the unsupervised criterion), as each criterion has shown better per-

formance individually compared to the corresponding traditional criterion, such as LDA

or PCA. I refer to this method as SVM+ICA. Figure 3.4 provides a block diagram of

the proposed linear SVM+ICA method. It consists of three components, structural risk

minimization, projection, and independence maximization. In Fig. 3.4, X = {xi ∈ Rn, ∀i}
represents a training data set of dimension n, which is to be reduced to another set, S, of

dimension, m, where m ¿ n, using the projection matrix, W , of m mapping column vec-

tors constructed from the SVM+ICA process. The structural risk minimization component

generates the first l mapping vectors of W , denoted as W1,l and the data independence

maximization component yields the other m−l vectors of W , denoted as Wl+1,m. This con-
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catenation process is denoted using the symbol
⊕

in Fig. 3.4. Z is the projected data set

from X based on W1,l, which is to be fed to the data independent maximization component

to derive Wl+1,m. I will elaborate on the rationale behind the proposed linear SVM+ICA

in the following three subsections.

3.2.2 Orthogonality

Intuitively, the most effective set of mapping vectors derived from the structural risk min-

imization process (W1,l) and the independence maximization process (Wl+1,m) should be

the ones without any redundant information for the reduced space construction spanned

by W1,l and Wl+1,m. The least amount of redundancy results from the pair-wise orthog-

onality between wi and wj where i ∈ {1, · · · , l} and j ∈ {l + 1, · · · ,m}. The pair-wise

orthogonality is also represented by W1,l⊥Wl+1,m or equivalently WT
l+1,mW1,l = 0.

The projection component, as an intermediate step in the linear SVM+ICA, allows for

mapping vectors derived from structural risk minimization and independence maximization

to achieve minimum correlation. It does so by projecting the given data X onto the

subspace satisfying WT
1,lx = 0, yielding the projected data, Z, such that the subsequent

independence maximization process based on Z is least affected or correlated with the

previous structural risk minimization process. After the projection procedure, the projected

data, Z, would lose information along the direction of W1,l, which indicates that decision

information through W1,l is no longer valid in the projection subspace. Therefore, the

projection guarantees that any mapping vectors from structural risk minimization, W1,l,

and independence maximization, Wl+1,m, are uncorrelated since Wl+1,m⊥W1,l.

The projection onto the subspace, orthogonal to the decision hyperplane from structural

risk minimization, W1,l, is formulated as a constrained optimization problem as follows,

z∗ = argmin
z

‖x− z‖2

subject to WT
1,lz = 0

(3.8)

where z represents the projected data onto the subspace orthogonal to W1,l and parallel to

the decision hyperplane(s). Due to the orthogonality between W1,l and any components in

the decision hyperplane, the structural risk minimization and independence maximization
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are isolated and performed one by one holding independence between any pair of wi’s and

wj ’s where i ∈ {1, · · · , l} and j ∈ {l+1, · · · ,m}. In order to solve the constrained optimiza-

tion problem, I apply Lagrange optimization by introducing the Lagrangian multipliers,

λ ∈ Rl as follows,

L(z,λ)= ‖x− z‖2 + λT(WT
1,lz) (3.9)

Taking the partial derivative of L with respect to z and λ, I have

∂L(z,λ)

∂z
= −2(x− z∗) +W1,lλ = 0 (3.10)

∂L

∂λ
= WT

1,lz
∗ = 0 (3.11)

By summarizing Eqs. (3.10) and (3.11), I have


 2In W1,l

WT
1,l 0




 z∗

λ


=


 2x

0


 (3.12)

where In is the identity matrix of n dimension. The z∗’s form the projected dataset Z

which will be used by the subsequent independent maximization process in the orthogonal

subspace to wi’s from SVM’s.

3.2.3 Linear Projection from ICA over Orthogonal Subspace

As the unsupervised dimensionality reduction component in the proposed SVM+ICA

framework, independence maximization is applied over the projected data, Z. Indepen-

dence maximization searches for a linear non-orthogonal coordinate system whose axes are

determined by both the second and higher order statistics of the original data. Since inde-

pendence maximization is known as a method providing better data representation than

other conventional techniques such as PCA, higher classification accuracy is expected, lead-

ing to the adoption of independence maximization in the proposed hybrid dimensionality

reduction framework. To find mappings which maximize independence, I adopt the approx-

imated negative entropy criterion introduced in [Hyvarinen and Oja 2000], also referred to

as FastICA, due to well-justified statistical theory and computational efficiency. The Fas-
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tICA algorithm involves two sequential processes, the one unit (weight vector) estimation

and the decorrelation among weight vectors. The one unit process estimates the weight

vectors as follows,

w+
i = E

{
zg(wT

i z)
}− E

{
g′(wT

i z)
}
wi (3.13)

where w+
i is the temporal approximation of the independent component with i ∈ {l +

1, · · · ,m}. g is the derivative of the non-quadratic function introduced in [Hyvarinen and

Oja 2000], and g(u) = tanh(au). g′ is the derivative of g, and g′(u) = sech2(u).

The purpose of the decorrelation process is to keep different weight vectors from con-

verging to the same maximum. The deflation scheme based on symmetric decorrela-

tion [Karhunen et al. 1997] helps remove dependency among w+
i ’s as follows,

Wl+1,m = W+
l+1,m


(W+

l+1,m
T
W+

l+1,m)
−
1

2



T

(3.14)

where Wl+1,m represents decorrelated mappings based on W+
l+1,m = [w+

l+1 · · ·w+
m] from

independence maximization.

3.2.4 Conducting Dimensionality Reduction

The dimensionality reduction by the linear SVM+ICA is performed by linear projection

as follows,

s = WTx (3.15)

where x is an arbitrary input and s ∈ Rm denotes the input represented in reduced

dimension space. W = [W1,l Wl+1,m] and m is the number of dimensions to be reduced

to. When m ≤ l, the dimensionality reduction is driven only by wi’s from SVM without

ICA. When m > l, (m− l)-many mapping vectors from ICA will be added to the mapping

matrix, W .
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3.3 Nonlinear SVM plus ICA

The linear SVM plus ICA in Sec. 3.2 is extended to nonlinear SVM plus ICA, nonlinear

hybrid dimensionality reduction approach to provide improved classification performance

and robustness based on the integration of the supervised criterion from SVM and the

unsupervised criterion from ICA through the uncorrelated subspace construction. The

proposed approach consists of three components, nonlinear projection through SVM where

the directions of the decision surfaces are used as a part of the projection vectors in dimen-

sionality reduction, uncorrelated subspace construction such that projection vectors from

SVM are pair-wise uncorrelated with those from ICA, and nonlinear projection through

ICA over the uncorrelated subspace. I am not the first to use projection vectors for dimen-

sionality reduction purpose. Previous works, e.g., Decision Boundary Feature Extraction

(DBFE) [Lee and Landgrebe 1993] and RSVM, have showed that decision information can

be explicitly utilized as projection vectors for dimensionality reduction. The projection

vectors built by the set of support vectors make SVM less computationally expensive than

DBFE. The weakness of RSVM regarding ineffective projection vectors due to the mul-

tilevel decomposition does not reside in the proposed approach since the redundancy in

multiple SVM’s from one-against-all multiclass extension [Hsu and Lin 2002] is removed

by the so-called redundancy removal process using the asymmetric decorrelation metric

introduced in Sec. 3.1.2. All the processes in the proposed nonlinear SVM plus ICA are

completed in hyperdimensional space for nonlinear data representation through kernel func-

tion based on Mercer’s theorem [Herbrich 2001]. Therefore, the nonlinear SVM plus ICA

improves classification performance with robustness resulting from minimum structural

risk and maximum data independence with nonlinear data representation capability.

3.3.1 The Fundamentals of Nonlinear SVM plus ICA

Nonlinear SVM plus ICA is a dimensionality reduction algorithm consisting of both super-

vised SVM and unsupervised ICA based on the noiseless nonlinear dimensionality reduction

model, s = 〈W,φ(x)〉 where x and s are the observation input and the corresponding out-

put, respectively, with nonlinear function, φ which projects data into the hyperdimensional

space, F .
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SVM plays an important role in dimensionality reduction to deliver projection with

maximum separability for arbitrary input [Tao et al. 2008] since structural risk minimiza-

tion in SVM provides the best trade-off between minimum empirical error and complexity

of the projection over the given dataset, (xi, yi) for i ∈ {1, · · · , N} where N is the number

of data samples. Since SVM requires supervised directive, yi to measure both empiri-

cal risk and complexity [Vapnik 1999], SVM is categorized as supervised approach. ICA

searches for the projection which maximizes component-wise independence by imposing

the criteria where the probability density function of output factorizes in reduced dimen-

sional space. The better data representation capability inherited from the independent

relationship makes ICA another important approach in dimensionality reduction. Since in-

dependent components is constructed by the understanding of the given data, xi, without

corresponding yi , ICA belongs to the unsupervised approach.

Hybrid dimensionality reduction consists of both supervised and unsupervised criteria

to provide better data representation for classification performance improvement compared

with either the supervised or unsupervised method. Based on how the supervised and

unsupervised criteria are integrated, hybrid methods can be categorized as subspace-based

and unified criterion-based.

The subspace-based method utilizes subspace in between the supervised and unsuper-

vised criteria. Due to the intermediate subspace, subspace based methods simply couple

two distinctive criteria into one although it requires two-stage optimization, one for the

supervised component and the other for the unsupervised component. Since the reduced

dimensional space from the subspace-based method is partially regulated by the subspace,

the construction of the subspace becomes critical. Several hybrid dimensionality reduction

methods fall into this category, including LDA over PCA [Belhumeur et al. 1997; Yang and

Yang 2001, 2003], APCDA [Jiang 2009], and ICA augmented by LDA [Kwak and Pedrycz

2007]. LDA over PCA combines LDA with PCA to resolve the S3 problem by removing

singularity through PCA so that LDA is performed in the PCA subspace. APCDA consists

of Asymmetric Discriminant Analysis (ADA) and and Asymmetric PCA (APCA) where

ADA extends LDA with Common Mean Feature Extraction (CMFE) and APCA regulates

PCA with supervised directive for unbalanced number of data per class. APCA provides

subspace for ADA in a similar way as LDA over PCA. ICA augmented by LDA builds
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subspace by ICA instead of PCA for LDA to provide better discriminant capability.

In contrast to the subspace-based method, in unified criterion-based hybrid methods,

the two distinctive supervised and unsupervised criteria are integrated into a single ob-

jective function through constrained optimization where the two distinctive criteria are

optimized simultaneously with no additional computational cost for subspace construc-

tion. However, complicate formulations of supervised and unsupervised criteria make it

very difficult for a seamless integration of the two criteria. To simplify the process, some

portions of the original criteria are ignored resulting in somewhat performance degradation.

The unified criterion-based methods include the supervised MI-based ICA [Leiva-Murillo

and Artes-Rodriguez 2007], DNMF [Zafeiriou et al. 2006], and Non-negative Tensor Fac-

torization (NTF) with LDA [Zafeiriou 2009]. The supervised MI-based ICA only incorpo-

rates supervised class directive into mutual information maximization in ICA. Since the

supervised MI-based ICA does not strictly incorporate between-class separability, the in-

tegration does not contribute directly to the classification performance improvement in

reduced dimensional space. In DNMF and NTF with LDA, LDA’s within- and between-

class variance are linearly added with control parameters to the factorization objective

functions. Although DNMF and NTF with LDA successfully integrate the two objectives

into single formulation, there still exists common mean problem inherited from the direct

incorporation of LDA’s between-class variance and the unified criterion does not provide

maximum separability shown in LDA due to the linear integration of LDA’s within-class

variance.

To summarize, when designing hybrid dimensionality reduction methods, there are two

key factors need to be taken into consideration. First of all, it is essential to choose ap-

propriate supervised and unsupervised dimensionality reduction methods. Conventional

hybrid methods mostly depend on supervised LDA so that the problems inherited from

LDA reside in the hybrid design regardless of the way of supervised and unsupervised cri-

teria integration. Secondly, for arbitrary complicated objective functions with constraints,

subspace-based methods are easier to couple the objectives into single framework compared

with the method using unified criterion, in which case the construction of an appropriate

subspace becomes essential.

I propose a new dimensionality reduction algorithm, nonlinear SVM plus ICA as a
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subspace-based method to integrate SVM as a supervised and ICA as an unsupervised

criterion over the subspace with uncorrelatedness constraint. I refer to this subspace as the

“uncorrelated subspace. In this method, SVM delivers generalization capability for better

classification performance for arbitrary input and the intrinsic information extracted by

ICA provides better data representation capability. The uncorrelated subspace provides

minimum relation between SVM and ICA where the empirical correlation formulation is

adopted to measure this relationship. The uncorrelated subspace is especially effective for

the integration of SVM and ICA in nonlinear dimensionality reduction model via kernel.

The kernel method transforms data into hyperdimensional feature space, F , so that the

number of data becomes much less than the data dimensionality. Since ICA requires

whitened input [Hyvarinen and Oja 2000] for better performance and fast computation, the

subspace on which ICA is performed should be reduced to the most extent by eliminating

the null space found in the centered covariance of the training data in F while SVM is

minimally correlated with ICA over the subspace. The eigen-decomposition is an effective

tool to remove the null space and the minimal correlation between SVM and ICA can be

incorporated into the eigen-problem as a constraint. I will introduce the in-depth design of

nonlinear SVM plus ICA in the later sub-chapters. Since the projection from the proposed

algorithm is from nonlinear dimensionality model, s = 〈W,φ(x)〉, nonlinearity in data is

better represented by the proposed compared with the methods based on the linear model,

s = 〈W,x〉. I expect that nonlinear SVM plus ICA finds nonlinear projection which

provides better data representation capability resulting in the classification performance

improvement with robustness under noisy environment.

Figure 3.5 shows the nonlinear SVM plus ICA to obtain nonlinear projection matrix

for dimensionality reduction from input to m-dimensional reduced space based on N -many

training dataset, xi, i ∈ {1, · · · , N}. W1,l denotes projection matrix composed of l-many
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projection vectors from SVM. The uncorrelated subspace is spanned by vi’s where vi

is the i-th column vector of V . ICA finds Wl+1,m containing (m − l)-many projection

vectors in the uncorrelated subspace. The overall projection matrix, W is built by W1,l, V ,

and Wl+1,m for which the proposed algorithm requires three parts of SVM, uncorrelated

subspace construction, and ICA.

SVM in the proposed algorithm explicitly contributes to classification performance im-

provement based on structural risk minimization. The column vectors in W1,l correspond

to l-many projection vectors orthogonal to the decision surfaces obtained by l-many SVM’s

where l is determined by multiclass extension strategy for multiclass dataset. The redun-

dancy removal is a post-processing to eliminate redundancy among the l-many projection

vectors based on asymmetric decorrelation metric. I introduced the detail of SVM with

the redundancy removal process for dimensionality reduction in Sec. 3.1.

The uncorrelated subspace construction provides maximally uncorrelated subspace with

W1,l spanned by vi in V ,∀i for ICA to find Wl+1,m in the subspace so as to contribute

the projections from both SVM and ICA in the tradeoff between class separability and

independent data representation. The detail of the uncorrelated subspace construction is

introduced in Sec. 3.3.2.

ICA is utilized as an unsupervised method in the proposed algorithm to extract intrinsic

information from data in the subspace uncorrelated with W1,l. The intrinsic information

in data is obtained by nonlinear projection using Wl+1,m which consists of (m − l)-many

column vectors each of which denotes a projection corresponding to one of the independent

components for dimensionality reduction. Sec. 3.3.3 will provide detail description for

nonlinear ICA as a dimensionality reduction process in the proposed algorithm.

3.3.2 Uncorrelated Subspace Construction

The construction of the uncorrelated subspace with the projection from SVM’s, W1,l, nul-

lifies the component-wise separability offered by wi’s from SVM’s so that ICA performed

on the subspace delivers maximally independent component without interference from sep-

arability.
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Formulation of the Optimization Problem

The t-th component in V is built by the maximum correlation search in F with three

constraints of uncorrelated relationship with W1,l, pair-wise orthogonality, and unit length

as follows,

v∗
t=argmax

vt

E
[
‖XT

φ̃
vt‖2

]

s.t. E
[
(XT

φ̃
W̃1,l)

T(XT
φ̃
vt)

]
= 0

V T
1,t−1vt = 0

‖vt‖2 = 1

(3.16)

where vt is the t-th component spanning the uncorrelated subspace. For the correlation

based objective function and the constraint in Eq. (3.16), the data must be centered in

search space. φ̃ is based on φ but centered in the embedding space to remove the degree

of freedom that φ be translated by a constant amount,

φ̃(x) = φ(x)− µ (3.17)

where µ = 1
N

∑N
k=1 φ(xk). The compact representation of Eq. (3.17) for all xi’s are as

follows,

Φ̃=[φ(x1) · · ·φ(xN )]

(
I − 1

N
1N×N

)

=ΦH

(3.18)

where H =
(
I − 1

N 1N×N

)
satisfying HT = H and Φ = [φ(x1) · · ·φ(xN )].

1N×N denotes an N × N matrix with all elements being 1s. Xφ̃ denotes a random

vector satisfying E[Xφ̃] = 0 in F through centered nonlinear embedding.
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V1,t−1 and vt are defined as follows,

vt=
N∑

k=1

β
(t)
k φ̃(xk)

=Φ̃β(t)

(3.19)

V1,t−1=[v1 · · ·vt−1]

=Φ̃Υ1,t−1

(3.20)

where vt is represented as the linear combination of φ̃(xk) with the corresponding weight,

β
(t)
k since the maximally correlated vt for the data projected onto F is found by the data

covariance analysis of
(∑N

k=1 φ̃(xk)φ̃(xk)
T
)
vt =

∑N
k=1

(
φ̃(xk)

Tvt

)
φ̃(xk) showing that vt

lies in the span of φ̃(xk)’s. β
(t) = [β

(t)
1 · · ·β(t)

N ]T ∈ RN×1. Υ1,t−1 = [β(1) · · ·β(t−1)].

The projection matrix from SVM, according to Eq. (3.2), isW1,l = ΦA. Therefore, W̃1,l,

through centered nonlinear embedding, is W̃1,l = Φ̃Ã. SinceW1,l are made up of normalized

projection vectors whose orientations do not change with the data center, W̃1,l = W1,l. I

can now solve Ã with respect to A based on Φ̃TW̃1,l = Φ̃TW1,l with Φ̃TW̃1,l = Φ̃TΦ̃Ã=K̃Ã

and Φ̃TW1,l=Φ̃TΦA=HΦTΦA=HKA as follows,

Ã = K̃−1HKA (3.21)

where K̃ is centered Gram matrix introduced in [Bach and Jordan 2002; Scholkopf et al.

1998]. Based on Eq. (3.18), K̃ can be further written as

K̃=Φ̃TΦ̃

=HTΦTΦH

=HKH

(3.22)

Note that K̃T = K̃ since both K and H are symmetric.
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Solving the Optimization Problem

I use Lagrangian formulation to obtain vt from the constrained maximization problem in

Eq. (3.16). The objective function is rewritten as

L=vT
t E

[
Xφ̃X

T
φ̃

]
vt +

l∑

i=1

λ
(1)
i E

[
(XT

φ̃
w̃i)

T(XT
φ̃
vt)

]
+

t−1∑

i=1

λ
(2)
i vT

i vt + λ(3)
(
vT
t vt − 1

)

=
1

N
vT
t Φ̃Φ̃

Tvt +
1

N

{
Φ̃Φ̃TW1,lλ

(1)
}T

vt +
(
V1,t−1λ

(2)
)T

vt + λ(3)
(
vT
t vt − 1

)
(3.23)

where, in total, (l+t)-many Lagrange multipliers are used including λ(1) = [λ
(1)
1 · · ·λ(1)

l ]T ∈
Rl×1, λ(2) = [λ

(2)
1 · · ·λ(2)

t−1]
T ∈ R(t−1)×1 (λ(2) is activated only when there exist pre-obtained

vi’s), and λ(3) ∈ R1.

To solve the problem, we take partial derivatives of the Lagrangian formulation in

Eq. (3.23) with respect to four different sets of parameters, β(t), λ(1), λ(2), and λ(3) as

follows,

∂L

∂β(t)
=

∂vt

∂β(t)

∂L

∂vt

=Φ̃T

(
2

N
Φ̃Φ̃Tvt +

1

N
Φ̃Φ̃TW1,lλ

(1) + V1,t−1λ
(2) + 2λ(3)vt

)

=
2

N
Φ̃TΦ̃Φ̃TΦ̃β(t) +

1

N
Φ̃TΦ̃(HΦTΦA)λ(1) + Φ̃TΦ̃Υ1,t−1λ

(2) + 2λ(3)Φ̃TΦ̃β(t)

=
2

N
K̃2β(t) +

1

N
K̃GTλ(1) + K̃Υ1,t−1λ

(2) + 2λ(3)K̃β(t)

(3.24)

where G = ATKH. ∂L/∂β(t) ∈ RN×1.

∂L

∂λ(1)
=E

[
(XT

φ̃
W1,l)

T(XT
φ̃
vt)

]

=
1

N

(
Φ̃TW1,l

)T
Φ̃TΦ̃β(t)

=
1

N

(
ATΦTΦH

)
Φ̃TΦ̃β(t)

=
1

N
(ATKH)K̃β(t)

=
1

N
GK̃β(t)

(3.25)
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∂L

∂λ(2)
=V T

1,t−1vt

=
(
Φ̃Υ1,t−1

)T
Φ̃β(t)

=ΥT
1,t−1Φ̃

TΦ̃β(t)

=ΥT
1,t−1K̃β(t)

(3.26)

∂L

∂λ(3)
=vT

t vt − 1

=
(
Φ̃β(t)

)T
Φ̃β(t) − 1

=β(t)TK̃β(t) − 1

(3.27)

where ∂L/∂λ(1) ∈ Rl×1, ∂L/∂λ(2) ∈ R(t−1)×1, and ∂L/∂λ(3) ∈ R1.

By setting Eqs. (3.24)- (3.27) to zeros, we first simplify λ(1) by multiplying G to

∂L/∂β(t) as follows,

G
∂L

∂β(t)
=G

{
2

N
K̃2β(t) +

1

N
K̃GTλ(1) + K̃Υ1,t−1λ

(2) + 2λ(3)K̃β(t)

}

=
2

N
GK̃2β(t) +

1

N
GK̃GTλ(1) + (ATΦTΦH)Φ̃TΦ̃Υ1,t−1λ

(2) + 2λ(3)GK̃β(t)

=
2

N
GK̃2β(t) +

1

N
GK̃GTλ(1) + (WT

1,lΦ̃)(Φ̃
TV1,t−1)λ

(2) + 2λ(3)N
∂L

∂λ(1)

=
2

N
GK̃2β(t) +

1

N
GK̃GTλ(1)

(3.28)

where (WT
1,lΦ̃)(Φ̃

TV1,t−1) = 0 due to Eq. (3.25)such that ∂L
∂λ(1) = 1

N (Φ̃TW1,l)
TΦ̃TΦ̃β(t) =

1
NWT

1,lΦ̃Φ̃
Tvt = 0, ∀t. λ(1) can then be derived as

λ(1) = −2
(
GK̃GT

)−1
GK̃2β(t) (3.29)

In the same manner of obtaining λ(1) in Eq. (3.28), we acquire λ(2) by multiplying ΥT
1,t−1
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to ∂L/∂β(t) as follows,

ΥT
1,t−1

∂L

∂β(t)

=ΥT
1,t−1

{ 2

N
K̃2β(t) +

1

N
K̃GTλ(1) + K̃Υ1,t−1λ

(2) + 2λ(3)K̃β(t)
}

=
2

N
ΥT

1,t−1K̃
2β(t) +

1

N
ΥT

1,t−1Φ̃
TΦ̃GTλ(1)+ΥT

1,t−1Φ̃
TΦ̃Υ1,t−1λ

(2)+2λ(3)ΥT
1,t−1K̃β(t)

=
2

N
ΥT

1,t−1K̃
2β(t) +

1

N
(V T

1,t−1Φ̃G
T)λ(1) + V T

1,t−1V1,t−1λ
(2) + 2λ(3) ∂L

∂λ(2)

=
2

N
ΥT

1,t−1K̃
2β(t) + λ(2)

(3.30)

where GΦ̃TV1,t−1 = GK̃Υ1,t−1 = 0 according to Eqs. (3.25) and (3.20) for vi’s, ∀i ∈
{1, · · · , t−1} and V T

1,t−1V1,t−1 = I due to the unity and orthogonal constraints of ‖vt‖2 = 1

and V T
1,t−1vt = 0 in Eq. (3.16). Based on Eq. (3.30), we can then solve for λ(2) as follows,

λ(2) = − 2

N
ΥT

1,t−1K̃
2β(t) (3.31)

λ(3) is obtained by multiplying β(t)T to ∂L/∂β(t) as follows,

β(t)T ∂L

∂β(t)
=β(t)T

{
2

N
K̃2β(t) +

1

N
K̃GTλ(1) + K̃Υ1,t−1λ

(2) + 2λ(3)K̃β(t)

}

=
2

N
β(t)TK̃2β(t) +

(
∂L

∂λ(1)

)T

λ(1) +

(
∂L

∂λ(2)

)T

λ(2) + 2λ(3)

(
∂L

∂λ(3)
+ 1

)

=
2

N
β(t)TK̃2β(t) + 2λ(3)

(3.32)

From Eq. (3.32), λ(3) can be derived as follows,

λ(3) = − 1

N
β(t)TK̃2β(t) (3.33)

Substitute λ(1), λ(2), and λ(3) in Eqs. (3.29), (3.31), (3.33) to Eq. (3.24), we obtain an

expression that is only dependent on β(t),

N

2
K̃−1 ∂L

∂β(t)
=K̃β(t) −GT

(
GK̃GT

)−1
GK̃2β(t)

−Υ1,t−1Υ
T
1,t−1K̃

2β(t) −
(
β(t)TK̃2β(t)

)
β(t)

(3.34)
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Setting ∂L/∂β(t) to zero, we obtain the following eigen-formulation

EtDt = DtΛt (3.35)

where

Et =

[
I−

{
GT

(
GK̃GT

)−1
G+Υ1,t−1Υ

T
1,t−1

}
K̃

]
K̃ (3.36)

Dt = [β(t),1 · · ·β(t),N ] with β(t),i representing the i-th eigenvector and Λt = diag(λt,1, · · · , λt,N )

with λt,i denoting the i-th eigenvalue corresponding to β(t),i as λt,i = β(t),iTK̃2β(t),i.

By solving the eigen-formulation in Eq. (3.35) for Et, the eigenvector, β
(t), correspond-

ing to the maximum eigenvalue, λt = max
i

(λt,i) is chosen for vt which maximizes correlation

while satisfying the constraints in Eq. (3.16).

In Etβ
(t),i=λt,iβ

(t),i, eigenvalue decomposition does not guarantee that eigenvalue λt,i of

Et is identical to β(t),iTK̃2β(t),i from Eq. (3.34) since there exist infinite many eigenvectors

with different length but same direction, i.e., scaling of β(t),i is required as follows,

Et

(
ρ
(t)
i β(t),i

)
=

{(
ρ
(t)
i β(t),i

)T
K̃2ρ

(t)
i β(t),i

}
ρ
(t)
i β(t),i (3.37)

where ρ
(t)
i is a scaling factor for β(t),i and can be derived as follows based on Eq. 3.37,

Etβ
(t),i=

{(
ρ
(t)
i β(t),i

)T
K̃2ρ

(t)
i β(t),i

}
β(t),i

=λt,iβ
(t),i

ρ
(t)
i =

√
λt,i

(
β(t),iTK̃2β(t),i

)−1/2

(3.38)

Therefore, ρ
(t)
i β(t),i is selected for the t-th eigenvector with maximum eigenvalue

(
(ρ

(t)
i β(t),i)

T

K̃2ρ
(t)
i β(t),i

)
equivalent to the return of the objective function in Eq. (3.16).

To reduce computational complexity when performing the eigenvalue decomposition of

Eq. (3.35), we further investigate into the problem and develop a non-iterative approach.

First of all, the relationship between Et−1 and Et can be derived from Eq. (3.36) as follows,

Et−1 = Et + β(t−1)β(t−1)TK̃2 (3.39)
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Multiplying both sides by β(t), we have

Et−1β
(t)=Etβ

(t) + β(t−1)β(t−1)TK̃2β(t)

=λtβ
(t)

(3.40)

where β(t−1)TK̃2β(t) = β(t−1)TΦ̃TΦ̃β(t) = vT
t−1vt = 0 by the orthogonal constraint in

Eq. (3.16). Eq. (3.40) implies that we can find λt = max
i

(λt,i) from Et−1 and λt−1 ≥ λt since

λt−1 is the maximum value among {λt−1,i, ∀i|Et−1} which includes λt. These relationships

can be extended to

λ1 ≥ · · · ≥ λt−1 ≥ λt ≥ · · · ≥ λN

and

E1β
(t) = λtβ

(t)

which means the eigenvalues from E1 include all λi’s from Ei’s, ∀i ∈ {1, · · · , N}. Therefore,
the one-time eigenvalue decomposition of E1 without the orthogonal constraint provides

complete set of eigenvalues corresponding to β(i)’s from Ei’s, ∀i in descending order without

iterative eigenvalue decompositions.

I choose β(i)’s, i ∈ {1, · · · , N} only when the normalized eigenvalue is greater than or

equal to the threshold, set to 0.1% in this dissertation. vi’s based on the selected β(i)’s

with scaling span uncorrelated subspace, as V = [v1 · · ·vm′ ], m′ ≤ N where m′ denotes

the number of selected β(i)’s.

3.3.3 Nonlinear Projection from ICA over Uncorrelated Subspace

After obtaining the uncorrelated subspace spanned by V , the observation data, x is pro-

jected onto the subspace, resulting in z, where the independent component analysis (ICA)

is applied. ICA provides linearly unmixed signal s, from mixed data z, through unmixing

matrix W as s = WTz. The projection of data, Φ̃ onto the uncorrelated subspace is
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obtained as follows,

Z=V T
1,m′Φ̃

=ΥT
1,m′Φ̃TΦ̃

=ΥT
1,m′K̃

(3.41)

where Z = [z1 · · ·zN ]. zk ∈ Rm′
represents the k-th projected data corresponding to

xk. The linear ICA is then applied to Z in the uncorrelated subspace so as to derive the

linear unmixing matrix Wl+1,m, consisting of (m − l)-many column vectors of wi ∈ Rm′
,

i ∈ {l + 1, · · · ,m}. The linear ICA offers Wl+1,m by maximizing independence among the

components in S over Z.

S = WT
l+1,mZ (3.42)

3.3.4 Conducting Dimensionality Reduction

The nonlinear SVM plus ICA aims at providing nonlinear embedding with minimum struc-

tural risk by SVM (Sec. 3.1) and maximum independence among data by ICA (Sec. 3.3.3).

Figure 3.6 shows the proposed dimensionality reduction process to represent arbitrary in-

1,lW

2s

1s

Unsupervised

Dimensionality Reduction

Supervised

Dimensionality Reduction

x
(arbitrary data)

1,l m
W

+ 1,mV ′

s

Figure 3.6: Dimensionality reduction in nonlinear SVM plus ICA

put, x of higher dimension to s in reduced dimensional space. The
⊕

in the figure indicates

the union of s1 and s2 into single vector representation as s = [sT1 sT2 ]
T ∈ Rm×1. s1 ∈ Rl×1

satisfies minimum structural risk through nonlinear SVM-based supervised dimensionality

reduction (W1,l) whereas s2 ∈ R(m−l)×1 is from maximum independence through ICA-

based unsupervised dimensionality reduction (Wl+1,m) over nonlinear uncorrelated sub-
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space spanned by (V1,m).

The arbitrary input, x is interpreted in the space spanned by Φ̃ with centered data

representation as

ũ(x) = Φ̃Tφ̃(x) =
[
f̃(x1,x) · · · f̃(xN ,x)

]T

where the centered kernel function f̃ can be calculated as follows,

f̃(xk,x)=〈(φ(xk)− µ) , (φ(x)− µ)〉

=〈φ(xk), φ(x)〉+ 1

N2

N∑

p,q=1

〈φ(xp), φ(xq)〉

− 1

N

N∑

q=1

〈φ(xk), φ(xq)〉 − 1

N

N∑

p=1

〈φ(xp), φ(x)〉

=f(xk,x) +
1

N2
(11×NK1N×1)− 1

N


KT

k,k1N×1 +
N∑

p=1

f(xp,x)




(3.43)

where µ is the sample mean of φ(xk)’s ∀k as Eq. (3.17). Kp,q, p ≤ q, denotes the submatrix

consisting of the column vectors from the p-th to the q-th column in the Gram matrix

K. The centered kernel implementation in Eq. (3.43) allows us to represent ũ(x) by

u(x) = ΦTφ(x) = [f(x1,x) · · · f(xN ,x)]T as follows,

ũ(x)=u(x) +
1

N2
(1N×NK1N×1)− 1

N
(K1N×1 + 1N×Nu(x))

=

(
I − 1

N
1N×N

)
u(x) +

1

N

(
1

N
1N×N − I

)
K1N×1

=Hu(x)− 1

N
HK1N×1

(3.44)

Based on Eq. (3.44), the supervised SVM-based dimensionality reduction projects ar-

bitrary data x onto nonlinear embedding, W1,l with kernel function as follows,

s1=W̃T
1,lφ̃(x)

=ÃTΦ̃Tφ̃(x)

=ÃTũ(x)

=(HÃ)Tu(x)− 1

N
(HÃ)TK1N×1

=ATu(x) + b

(3.45)
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where s1 ∈ Rl. Eq. (3.45) is simplified by A based on HÃ = A from Eqs. (3.21) and (3.22)

that Ã = (HKH)−1HKA = H−1A. b = − 1
NATK1N×1 ∈ Rm×1.

The dimensionality reduction onto subspace constructed from unsupervised ICA is as

follows,

s2=WT
l+1,m〈V1,m′ , φ̃(x)〉

=WT
l+1,mΥT

1,m′Φ̃Tφ̃(x)

=
(
Υ1,m′Wl+1,m

)T
ũ(x)

=
(
HΥ1,m′Wl+1,m

)T
u(x)− 1

N
WT

l+1,mΥT
1,m′HK1N×1

=BTu(x) + h

(3.46)

where s2 ∈ R(m−l), B = HΥ1,m′Wl+1,m ∈ RN×(m−l), and h = − 1
NWT

l+1,mΥT
1,m′HK1N×1 ∈

R(m−l)×1.

Consequently, the dimensionality reduction process in Fig. 3.6 is summarized by Eqs. (3.45)

and (3.46) as follows,

s=


s1
s2




=

[
A

ζ1

B

ζ2

]T
u(x) +


b
h




(3.47)

where s ∈ Rm. ζ1 and ζ2 are normalization factors for A and B to be equally contributed in

magnitude to s. The normalization factors should be determined based on the projection

matrix W̃1,l for A and V1,m′Wl+1,m for B. Frobenius norm is adopted for normalization

since the inner product for Frobenius norm in F can be obtained through kernel function

while keeping the magnitude-wise relationship for individual projection vectors in either A

or B. Hence, ζ1 and ζ2 can be derived as follows,

ζ1=tr
(
W̃T

1,lW̃1,l

)1/2

=tr
(
WT

1,lW1,l

)1/2

=tr
(
ATKA

)1/2
(3.48)
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where W̃1,l = W1,l is utilized. tr(·) denotes the trace function.

ζ2=tr
(
WT

l+1,mV T
1,m′V1,m′Wl+1,m

)1/2

=tr
(
WT

l+1,mWl+1,m

)1/2 (3.49)

V T
1,m′V1,m′ is canceled from ζ2 due to the orthonormality of V1,m′ in Eq. (3.16).
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Chapter 4

Experimental Results

The performance of SVM+ICA is evaluated based on classification accuracy over two

dataset, ‘Arrhythmia’ from UCI Machine Learning databases [Asuncion and Newman 2007]

and ‘Cancer’ from the Center for Genome Research at MIT Whitehead Institute [Center

for Genome Research MIT Whitehead Institute 2009] under noisy environment so as to

demonstrate the effectiveness of the proposed dimensionality reduction method toward

noisy data input.

The Arrhythmia dataset consists of 452 samples in R279 to classify 16 types of cardiac

arrhythmia. I remove 3 cardiac types from the Arrhythmia dataset due to no corresponding

samples found to the excluded 3 types in the dataset. Since the Arrhythmia dataset

includes 408 missing elements in the samples, I replace the missing elements with uniformly

distributed random numbers between the minimum and maximum values of those elements.

The Cancer dataset is to distinguish 14 types of cancers using 16063 tumor gene expression

signatures with no missing elements and is composed of the given 144 training and 46

testing data samples. The Arrhythmia and Cancer data shows distinctive characteristics

in the number of samples per class and dimensionality. The number of samples per class

varies from 2 to 245 in the Arrhythmia dataset whereas the Cancer dataset has relatively

consistent amount of data from 8 to 24 per class. However, the samples in the Cancer

dataset are represented in R16063 compared with R279 for the data in the Arrhythmia

dataset. For noisy environment construction, I add gaussian noise to individual dimension

independently for the entire data with Signal-To-Noise (SNR) ratio from 5[dB] to 50[dB].
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The noiseless data has SNR of ∞[dB].

I utilize the k-Nearest Neighbor classifier (kNN) as a performance measure of dimen-

sionality reduction method due to its non-parametric nature. The classification accuracy

by kNN is measured by average of multiple runs with n-fold cross validation. I apply 2-

fold cross validation to the Arrhythmia dataset due to the minimum number of samples

per class being 2 whereas no cross validation applied to the Cancer dataset due to the

given training and testing data samples. The parameters are set to achieve the highest

performance for each dataset where the SVM relaxation parameter C ranges from 0.01 to

∞, gaussian or equivalently Radial Basis Function (BRF) kernel with the kernel width of

[0.01,∞], and the number of nearest neighbors, k in kNN from 1 to 50. I report the result

that reaches 99.5% of the highest classification accuracy to avoid the case of extremely

high dimensionality but with very little performance improvement.

4.1 Comparison of Different Approaches

Figure 4.1 denotes the classification performance over noisy environment with various noise

levels. I compare the the classification performance of linear and nonlinear SVM+ICA with

that of PCA, kPCA, ICA for unsupervised, LDA, kDA for supervised, and PCA+LDA for

hybrid approaches. For kernel-based method such as kPCA and kDA, I utilize the gaussian

kernel with the kernel width selected in the range of [0.01,∞] to achieve the best classifica-

tion performance. Since the cancer dataset has 144 training samples in 16063-dimensional

space, its covariance matrix becomes 16063 × 16036 which is not applicable. Instead of

direct covariance calculation, I apply Eigenface [Turk and Pentland 1991] to reduce the

computational complexity when implementing the PCA and PCA+LDA approaches. I

exclude LDA for the cancer dataset due to the difficulty in eigenvalue decomposition from

the 16063× 16063 matrix. Additionally, kPCA and kDA do not utilize covariance matrix,

but the Gram matrix of 144× 144.

I make four observations from Fig. 4.1. First of all, no matter what the SNR level is,

the proposed SVM+ICA always presents the highest classification accuracy, demonstrating

its supremacy over existing supervised, unsupervised or hybrid approaches. This remains

true for both the balanced and imbalanced datasets. Second, the nonlinear SVM+ICA
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Figure 4.1: Comparison of classification performance in noisy environment

achieves higher classification accuracy compared with linear one. It represents that non-

linear SVM+ICA is effective tool to reveal nonlinear nature of data than kPCA and kDA
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Figure 4.2: Comparison of reduced dimensionality

where they failed to outperform PCA and LDA. Third, for imbalanced datasets like the

Arrhythmia, the unsupervised methods such as PCA, kPCA, and ICA work better than the

supervised methods such as LDA and kDA or the hybrid approach of PCA+LDA. And for

the cancer dataset with relatively well-balanced data distribution, the supervised methods

generally outperform the unsupervised methods. In both cases, the proposed SVM+ICA,

with its seamless integration of the supervised SVM and unsupervised ICA, presents the

best overall performance. Fourth, the nonlinear SVM+ICA with linear kernel works bet-

ter than the linear SM+ICA due to the uncorrelatedness subspace, especially when the

dataset is balanced or equivalently there exists enough data to estimate sample covariance

for correlation analysis. However, nonlinear data representation capability of RBF kernel

results in better performance than linear kernel in the nonlinear SVM+ICA.

Another presentation of the overall summary of Fig. 4.1 is provided in Table 4.1 with

the classification accuracy and the corresponding reduced dimensionality.

Figure. 4.2 denotes the average dimensionality over various SNR’s.. Since I fix the

maximum dimensionality of kDA to the number of classes minus 1 which is equivalent to

the rank of the between-class scatter matrix for multiclass datasets, the maximum dimen-

sionality of kDA for the Arrhythmia and the cancer dataset is 12 and 13 shown in Fig. 4.2a

and 4.2b, respectively. However, I do not apply the upper bound restriction to LDA or
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Figure 4.3: Number of neighbors in kNN

PCA+LDA such that I can observe the behavior of classification performance improvement

with the introduction of information from the null space to compensate the linear model

used in LDA against the nonlinear model used in kDA. For the imbalanced Arrhythmia

dataset, in general, supervised methods return higher dimensionality than unsupervised

methods. SVM+ICA stands close to unsupervised methods since the unbalanced dataset

degrades the performance of supervised SVM so that SVM+ICA acts closer to unsuper-

vised ICA. kDA has relatively small dimensionality than LDA and PCA+LDA due to the

application of the upper limit. On the contrary, the balanced cancer dataset shows higher

dimensionality from the unsupervised approaches but lower dimensionality from supervised

approaches, with SVM+ICA stands in between due to the balanced contribution from both

SVM and ICA. PCA is an exception here due to early saturation with poor classification

performance. For both datasets, the reduced dimensionality by the nonlinear SVM+ICA

with linear kernel is placed in between the linear and nonlinear SVM+ICA.

I also use the number of neighbors (k) in kNN to observe the performance sensitivity to

different patterns of data distribution in the dataset. In Fig. 4.3a, it is clear that supervised

kDA and LDA and hybrid PCA+LDA achieve their highest classification accuracies with

large k’s whereas unsupervised methods such as ICA, kPCA, and PCA utilize k’s of approx-

imately no more than 10. The large k results from the degraded performance of supervised
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Table 4.2: Classification performance summary of the linear SVM+ICA for the Arrhythmia
dataset

Classification Accuracy [%] over various SNR’s

Class samples 5[dB] 10[dB] 20[dB] 30[dB] 40[dB] 50[dB] ∞[dB]

1 245(54.2%) 94.7 95.1 93.9 90.6 97.1 92.7 95.9

2 44 (9.7%) 40.9 22.7 40.9 43.2 31.8 38.6 38.6

3 15 (3.3%) 60.0 66.7 26.7 46.7 20.0 26.7 60.0

4 15 (3.3%) 26.7 20.0 60.0 46.7 33.3 46.7 66.7

5 13 (2.9%) 0 7.7 0 0 0 0 0

6 25 (5.5%) 0 0 0 16.0 4.0 4.0 4.0

7 3 (0.7%) 0 0 0 0 0 0 0

8 2 (0.4%) 0 0 0 0 0 0 0

9 9 (2.0%) 0 11.1 11.1 33.3 11.1 0 11.1

10 50(11.1%) 30.0 52.0 54.0 54.0 56.0 62.0 60.0

11 4 (0.9%) 0 0 0 0 0 0 0

12 5 (1.1%) 0 0 0 0 0 0 0

13 22 (4.9%) 0 0 0 0 0 0 0

Total
accuracy 61.5 62.8 63.9 63.9 64.2 63.5 67.0

dimension 20(4+16) 10(7+3) 30(13+17) 15(13+2) 15(13+2) 20(13+7) 20(11+9)

methods for the imbalanced Arrhythmia dataset shown in Fig. 4.1a. SVM+ICA requires

intermediate k between the supervised and unsupervised, although k for SVM+ICA is close

to the unsupervised. For the cancer dataset, all methods achieve their highest classification

accuracies with relatively small k’s where k < 7, as shown in Fig. 4.3b whereas SVM+ICA

presents the relatively small k’s among all. The nonlinear SVM+ICA with linear kernel

requires the number of neighbors in between the linear and nonlinear SVM+ICA.

4.2 Class-wise Performance Comparison

4.2.1 Linear SVM plus ICA

In order to study the effect of imbalanced vs. balanced data distribution, I study the

class-wise classification performance using SVM+ICA. Table 4.2 shows the performance

summary of the linear SVM+ICA for the Arrhythmia dataset. The 1st, 2nd, and 10-

th classes include more than 9% of total number of data samples. Due to the sufficient

number of data for training, the overall performance on this dataset is mostly dependent
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Figure 4.4: Trend of classification accuracy corresponding to normalized δ in the linear
SVM+ICA for the Arrhythmia dataset

on the performance of the three classes. However, classes 5, 7, 8, 9, 11, and 12 only

have tiny portion of data samples (less than 3%) in 2-fold cross validation so that the

linear SVM+ICA fails to construct appropriate dimensionality reduction model, resulting

in poor classification accuracies.

Figure 4.4 shows the trend of classification accuracy corresponding to normalized δ

(between 0 and 1) over various SNR’s. By introducing normalized δ, I provide explicit

correspondence of δ with the number of projection vectors from SVM. SVM+ICA selects
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Table 4.3: Classification performance summary of the linear SVM+ICA for the Cancer
dataset

Classification Accuracy [%] over various SNR’s

Class samples 5[dB] 10[dB] 20[dB] 30[dB] 40[dB] 50[dB] ∞[dB]

1 8 (5.6%) 66.7 0 33.3 33.3 33.3 0 33.3

2 8 (5.6%) 0 0 0 0 0 0 0

3 8 (5.6%) 33.3 33.3 33.3 0 33.3 33.3 33.3

4 8 (5.6%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 16(11.1%) 100.0 83.3 100.0 100.0 100.0 100.0 100.0

6 8 (5.6%) 66.7 66.7 33.3 66.7 33.3 66.7 100.0

7 8 (5.6%) 100.0 50.0 50.0 100.0 100.0 100.0 100.0

8 8 (5.6%) 50.0 50.0 100.0 100.0 100.0 100.0 100.0

9 24(16.7%) 53.3 66.7 66.7 83.3 66.7 66.7 66.7

10 8 (5.6%) 0 0 0 0 0 0 0

11 8 (5.6%) 33.3 66.7 100.0 100.0 100.0 100.0 100.0

12 8 (5.6%) 0 33.3 33.3 33.3 33.3 33.3 33.3

13 8 (5.6%) 66.7 100.0 100.0 100.0 100.0 100.0 100.0

14 16(11.1%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Total
accuracy 63.0 58.7 65.2 69.6 67.4 67.4 71.7

dimension 45(14+31)35(14+21) 40(9+31) 45(9+36) 35(9+26) 30(14+16) 40(9+31)

normalized δ that generates the highest classification accuracy, represented by the dotted

vertical line, so that any projection vectors from SVM with the normalized δ lower than

the vertical line are eliminated by the redundancy removal process. I observe from Fig. 4.4

that the noise level largely affect the performance of SVM as the higher the noise level,

the higher the normalized δ, and more projection vectors would be eliminated, resulting in

degraded SVM.

Table 4.3 shows the performance summary of the linear SVM+ICA for the cancer

dataset. The cancer dataset has relatively balanced amount of data per class compared

with the Arrhythmia dataset in Table 4.2. Since there exists no significant data imbalance

in the cancer dataset, the poor performance from the 2nd and 10th classes is expected due

to less informative training samples in the classes to reveal the nature of dataset by SVM.

As shown in Fig. 4.5, the noise level would not affect the performance much where

the normalized δ across different noise levels is in general very small, when the dataset is

with balanced data distribution such as the cancer dataset compared with Fig. 4.4 for the
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Figure 4.5: Trend of classification accuracy corresponding to normalized δ in the linear
SVM+ICA for Cancer dataset

imbalanced Arrhythmia dataset.

4.2.2 Nonlinear SVM plus ICA

In order to study the effect of imbalanced vs. balanced data distribution, I study the

class-wise classification performance using the nonlinear SVM+ICA. Table 4.4 shows the

class-wise performance summary of the nonlinear SVM+ICA for the Arrhythmia dataset.

From the data distribution per class in Table 4.4, I categorize the classes into three groups
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Table 4.4: Classification performance summary of the nonlinear SVM+ICA for the Ar-
rhythmia dataset

Classification Accuracy [%] over various SNR’s

Class samples 5[dB] 10[dB] 20[dB] 30[dB] 40[dB] 50[dB] ∞[dB]

1 245(54.2%) 93.1 94.7 94.1 91.8 94.3 91.8 95.3

2 44 (9.7%) 44.8 47.2 48.9 52.3 40.9 47.7 47.7

3 15 (3.3%) 72.4 80.0 66.7 73.3 46.7 40.0 70.0

4 15 (3.3%) 39.1 37.8 33.3 33.3 46.7 53.3 63.3

5 13 (2.9%) 0 0 3.9 0 0 0 0

6 25 (5.5%) 2.9 0 0 0 8.0 8.0 10.0

7 3 (0.7%) 0 0 0 0 0 0 0

8 2 (0.4%) 0 0 0 0 0 0 0

9 9 (2.0%) 58.7 55.3 55.6 44.4 11.1 11.1 22.2

10 50(11.1%) 51.4 49.5 52.0 56.0 56.0 66.0 61.0

11 4 (0.9%) 0 0 0 0 0 25.0 0

12 5 (1.1%) 0 0 0 0 0 0 0

13 22 (4.9%) 1.3 0 0 0 0 0 4.6

Total
accuracy 65.6 66.4 66.0 65.5 65.0 65.7 68.7

dimension 29(11+18)22(11+11)24(12+12)27(13+14) 18(13+5) 20(13+7) 17(13+4)

by the percentage of the number of data samples. The 1st group includes the 1st, 2nd, and

10-th classes with more than 9% of data. Due to the sufficient number of data for training

especially in the 1st class, the overall performance on this dataset is mostly dependent on

the performance of the three classes. The 3rd, 4th, 6th, and 13th classes are categorized

into the 2nd group with 3% ∼ 9% of the data resulting in minor contribution to the overall

classification accuracy. From the 1st and 2nd groups, the 4th, 6th, and 10th classes show

clear classification performance improvement toward the noise decreasing. However, classes

5, 7, 8, 9, 11, and 12 in the 3rd group only have tiny portion of data samples (less than 3%)

in 2-fold cross validation so that the nonlinear SVM+ICA fails to construct appropriate

dimensionality reduction model, resulting in poor classification accuracies.

Figure 4.6 represents the trend of the best classification accuracy to corresponding

normalized δ ∈ [0, 1] over various SNR’s. The normalized δ helps to provide explicit corre-

spondence of δ with the removed projection vectors from SVM. The dotted vertical lines

denotes the normalized δ selected at the highest classification accuracy so that any projec-

tion vectors from SVM with the normalized δ lower than the vertical line are eliminated by
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Figure 4.6: Trend of classification accuracy corresponding to normalized δ in Nonlinear
SVM+ICA for the Arrhythmia dataset

the redundancy removal process. I observe from Fig. 4.6 that the noise level largely affect

the performance of SVM as the higher the noise level, the more projection vectors would

be eliminated, resulting from more similarity among the projection vectors from SVM. For

example, the number of projection vectors from SVM increases from 11 to 13 while SNR

increases. Between 5[dB] and 10[dB] SNR’s, normalized δ are chosen at 0.1 in Fig. 4.6a and

0.2 in Fig. 4.6b respectively, although the number of removed projection vectors are the

same as 2. Therefore, projection vectors are more crowded around the minimum distance

77



Table 4.5: The classification performance summary of the nonlinear SVM+ICA for the
Cancer dataset

Classification Accuracy [%] over various SNR’s

Class samples 5[dB] 10[dB] 20[dB] 30[dB] 40[dB] 50[dB] ∞[dB]

1 8 (5.6%) 33.3 0 0 0 0 0 33.3

2 8 (5.6%) 0 0 0 0 0 0 0

3 8 (5.6%) 33.3 33.3 33.3 66.7 33.3 66.7 66.7

4 8 (5.6%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 16(11.1%) 83.3 66.7 83.3 100.0 100.0 100.0 83.3

6 8 (5.6%) 66.7 66.7 100.0 66.7 100.0 100.0 100.0

7 8 (5.6%) 100.0 100.0 50.0 100.0 100.0 100.0 100.0

8 8 (5.6%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

9 24(16.7%) 100.0 83.3 100.0 100.0 100.0 100.0 100.0

10 8 (5.6%) 0 100.0 33.3 33.3 33.3 33.3 33.3

11 8 (5.6%) 33.3 66.7 100.0 100.0 100.0 100.0 100.0

12 8 (5.6%) 33.3 66.7 33.3 66.7 66.7 33.3 33.3

13 8 (5.6%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

14 16(11.1%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Total
accuracy 67.4 71.7 71.7 78.3 78.3 78.3 78.3

dimension 28(14+14) 19(14+5) 25(14+11) 17(9+8) 34(14+20) 19(14+5) 24(14+10)

measured by asymmetric correlation metric under 5[dB] than 10[dB] noisy environment,

resulting in more redundancy under higher noise. The identical interpretation can be made

between the environment with SNR’s of 10 and 20[dB] based on the increased normalized

δ from 0.2 in Fig. 4.6b to 0.3 in Fig. 4.6c but the decreased number of SVM projection

vectors from 2 to 1. More projection vectors from ICA work with the projection vector left

from SVM for overall classification performance improvement under higher noise level.

Table 4.5 shows the class-wise performance summary of the nonlinear SVM+ICA for

the Cancer dataset. The Cancer dataset has relatively balanced number of data per class

compared with the class-wise distribution of number of data for Arrhythmia dataset in

Table 4.4. Since there exists no significant data imbalance in the cancer dataset, the poor

performance from the 2nd class is expected due to less informative training samples in the

class to reveal the nature of the Cancer dataset by SVM. The 3rd, 6th, and 11th clearly

contribute to the overall classification accuracy improvement when SNR’s decrease.

Figure 4.7 shows the trend of the best classification accuracy to corresponding normal-
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Figure 4.7: Trend of classification accuracy corresponding to normalized δ in the nonlinear
SVM+ICA for Cancer dataset

ized δ ∈ [0, 1] over various SNR’s in nonlinear SVM+ICA for the Cancer dataset. Since

the Cancer dataset is with balanced data distribution, the noise level would not affect the

performance much, as shown in Fig. 4.7 where the normalized δ across different noise levels

is very small in general.
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Chapter 5

Conclusion

5.1 Summary

This dissertation proposed linear and nonlinear SVM plus ICA, hybrid dimensionality

reduction algorithm. The linear SVM plus ICA provides projection that minimizes SVM-

based structural risk in supervised manner and maximizes ICA-based data independence

in unsupervised manner based on orthogonality whereas the nonlinear SVM+ICA pro-

vides nonlinear projection that optimizes SVM and ICA under uncorrelated relationship.

Due to the power of structural risk minimization to pursue minimized empirical error and

complexity in conjunction with independence maximization to find maximally indepen-

dent features, the SVM plus ICA offers projection vectors as a mapping from observation

to reduced dimensional space including advantages from both approaches simultaneously.

The projection from nonlinear SVM plus ICA also offers nonlinear data representation

capability by kernel. I showed experimental results that linear and nonlinear SVM plus

ICA outperform other methods including conventional supervised, unsupervised, and hy-

brid approaches by providing better classification performance in relatively low reduced

dimensional space under noisy and noise-free environment.

5.2 Future Research

There exist two major concerns for future research. First of all, the three optimization

process of SVM, subspace construction, and ICA might be better to integrated into single
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formulation for fast processing speed. In this case, the objective function will suffer from the

computational complexity of the optimization. However, the simple/unified formulation

might not only provide clearer understanding of the hybrid framework but also suppress the

possible error accumulated from each of the steps in the subspace-based hybrid framework.

The approach of nonlinear data representation is another concern. The clear advantage of

the kernel-based method is easy-of-implementation. However, it is hard to determine which

kernel to use as well as the free variables relying on the kernel. Manifold-based analysis is

a promising alternative since it does not depend on nonlinear embedding through kernel

function. However, the hardness to determine free variables in manifold-based approach

results in the nonlinear data representation not to be extended easily based on manifold

method.
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Appendix: Nomenclature

1p,q p× q matrix where all elements are 1’s

A [a(1) · · ·a(l)]

E[·] Expectation

In n× n identity matrix

K Gram matrix

Ki,j Matrix consisting of the vectors from the i-th to j-th column of K, i ≤ j

N The number of training data

Si Set of support vectors for wi

V1,m′ Uncorrelated subspace basis matrix

W [W1,l Wl+1,m]

W1,l Projection matrix from SVM, W1,l = [w1 · · ·wl]

Wl+1,m Projection matrix from ICA, Wl+1,m = [wl+1 · · ·wm]

Xφ̃ Random variable to represent the centered observation in F
Φ [φ(x1) · · ·φ(xN )]

Υ1,t−1 [β(1) · · ·β(t−1)]

α
(i)
k The k-th Lagrange multiplier corresponding to xk for wi in SVM’s quadratic

formulation

β
(t)
k Weight corresponding to xk for the t-th basis, vt for uncorrelated subspace

β(t) [β
(t)
1 · · ·β(t)

N ]T

a(i) [a
(i)
1 · · · a(i)N ]T

s Data in the reduced dimensional space

s1 Data in reduced dimensional space by SVM

s2 Data in reduced dimensional space by ICA
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vt The t-th basis for uncorrelated subspace

wi The i-th projection vector

xk The k-th training data

z Projected data onto the subspace orthogonal to W1,l

γmin Lower bound of ri

F Hyperdimensional space embedded by φ(·)
φ(·) Nonlinear mapping function

θij Angular distance between wi and wj

K̃ Centered Gram matrix

f̃(·, ·) Centered kernel function

ũ(·) Projection onto the centered training data in F
ζ1 Scaling factor for SVM projection matrix

ζ2 Scaling factor for ICA projection matrix

bi Bias for wi

c The number of classes in the training dataset

dij Asymmetric decorrelation metric

f(·, ·) Kernel function

g(·) Nonlinear function for non-Gaussianity

kij Element in K at the i-th row and j-th column

m The number of dimension to be reduced

ri Classification accuracy by wi

sign(·) Signum function

y
(i)
k Class index ∈ {1,−1} corresponding to xk for wi
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