427 research outputs found

    Learning Behaviour for Service Personalisation and Adaptation

    Get PDF
    Context-aware applications within pervasive environments are increasingly being developed as services and deployed in the cloud. As such these services are increasingly required to be adaptive to individual users to meet their specific needs or to reflect the changes of their behavior. To address this emerging challenge this paper introduces a service-oriented personalisation framework for service personalisation with special emphasis being placed on behavior learning for user model and service function adaptation. The paper describes the system architecture and the underlying methods and technologies including modelling and reasoning, behavior analysis and a personalisation mechanism. The approach has been implemented in a service-oriented prototype system, and evaluated in a typical scenario of providing personalised travel assistance for the elderly using the help-on-demand services deployed on smartphone

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    AI and robotics to help older adults: Revisiting projects in search of lessons learned

    Get PDF
    Abstract This article is a retrospective overview of work performed in the domain of Active Assisted Living over a span of almost 18 years. The authors have been creating and refining artificial intelligence (AI) and robotics solutions to support older adults in maintaining their independence and improving their quality of life. The goal of this article is to identify strong features and general lessons learned from those experiences and conceive guidelines and new research directions for future deployment, also relying on an analysis of similar research efforts. The work considers key points that have contributed to increase the success of the innovative solutions grounding them on known technology acceptance models. The analysis is presented with a threefold perspective: A Technological vision illustrates the characteristics of the support systems to operate in a real environment with continuity, robustness, and safety; a Socio-Health perspective highlights the role of experts in the socio-assistance domain to provide contextualized and personalized help based on actual people's needs; finally, a Human dimension takes into account the personal aspects that influence the interaction with technology in the long term experience. The article promotes the crucial role of AI and robotics in ensuring intelligent and situated assistive behaviours. Finally, considering that the produced solutions are socio-technical systems, the article suggests a transdisciplinary approach in which different relevant disciplines merge together to have a complete, coordinated, and more informed vision of the problem

    Proceedings of the 4th Workshop on Interacting with Smart Objects 2015

    Get PDF
    These are the Proceedings of the 4th IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    A Reference Architecture for Data-Driven and Adaptive Internet-Delivered Psychological Treatment Systems: Software Architecture Development and Validation Study

    Get PDF
    Background: Internet-delivered psychological treatment (IDPT) systems are software applications that offer psychological treatments via the internet. Such IDPT systems have become one of the most commonly practiced and widely researched forms of psychotherapy. Evidence shows that psychological treatments delivered by IDPT systems can be an effective way of treating mental health morbidities. However, current IDPT systems have high dropout rates and low user adherence. The primary reason is that the current IDPT systems are not flexible, adaptable, and personalized as they follow a fixed tunnel-based treatment architecture. A fixed tunnel-based architecture follows predefined, sequential treatment content for every patient, irrespective of their context, preferences, and needs. Moreover, current IDPT systems have poor interoperability, making it difficult to reuse and share treatment materials. There is a lack of development and documentation standards, conceptual frameworks, and established (clinical) guidelines for such IDPT systems. As a result, several ad hoc forms of IDPT models exist. Consequently, developers and researchers have tended to reinvent new versions of IDPT systems, making them more complex and less interoperable. Objective: This study aimed to design, develop, and evaluate a reference architecture (RA) for adaptive systems that can facilitate the design and development of adaptive, interoperable, and reusable IDPT systems. Methods: This study was conducted in collaboration with a large interdisciplinary project entitled INTROMAT (Introducing Mental Health through Adaptive Technology), which brings together information and communications technology researchers, information and communications technology industries, health researchers, patients, clinicians, and patients’ next of kin to reach its vision. First, we investigated previous studies and state-of-the-art works based on the project’s problem domain and goals. On the basis of the findings from these investigations, we identified 2 primary gaps in current IDPT systems: lack of adaptiveness and limited interoperability. Second, we used model-driven engineering and Domain-Driven Design techniques to design, develop, and validate the RA for building adaptive, interoperable, and reusable IDPT systems to address these gaps. Third, based on the proposed RA, we implemented a prototype as the open-source software. Finally, we evaluated the RA and open-source implementation using empirical (case study) and nonempirical approaches (software architecture analysis method, expert evaluation, and software quality attributes). Results: This paper outlines an RA that supports flexible user modeling and the adaptive delivery of treatments. To evaluate the proposed RA, we developed an open-source software based on the proposed RA. The open-source framework aims to improve development productivity, facilitate interoperability, increase reusability, and expedite communication with domain experts. Conclusions: Our results showed that the proposed RA is flexible and capable of adapting interventions based on patients’ needs, preferences, and context. Furthermore, developers and researchers can extend the proposed RA to various health care interventions.publishedVersio

    Modeling the user state for context-aware spoken interaction in ambient assisted living

    Get PDF
    Ambient Assisted Living (AAL) systems must provide adapted services easily accessible by a wide variety of users. This can only be possible if the communication between the user and the system is carried out through an interface that is simple, rapid, effective, and robust. Natural language interfaces such as dialog systems fulfill these requisites, as they are based on a spoken conversation that resembles human communication. In this paper, we enhance systems interacting in AAL domains by means of incorporating context-aware conversational agents that consider the external context of the interaction and predict the user's state. The user's state is built on the basis of their emotional state and intention, and it is recognized by means of a module conceived as an intermediate phase between natural language understanding and dialog management in the architecture of the conversational agent. This prediction, carried out for each user turn in the dialog, makes it possible to adapt the system dynamically to the user's needs. We have evaluated our proposal developing a context-aware system adapted to patients suffering from chronic pulmonary diseases, and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, as well as the perceived quality.This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC2011-28626-C02- 02, CAM CONTEXTS (S2009/TIC-1485

    Activities suggestion based on emotions in AAL environments

    Get PDF
    The elderly population is increasing and the response of the society was to provide them with services directed to them to cope with their needs. One of the oldest solutions is the retirement home, providing housing and permanent assistance for the elderly. Furthermore, most of the retirement homes are inhabited by multiple elderly people, thus creating a community of people who are somewhat related in age and medical issues. The ambient assisted living (AAL) area tries to solve some of the elderly issues by producing technological products, some of them dedicated to elderly homes. One of the identified problem is that elderly people are sometimes discontent about the activities that consume most of their day promoted by the retirement home social workers. The work presented in this paper attempts to improve how these activities are scheduled taking into account the elderlies' emotional response to these activities. The aim is to maximize the group happiness by promoting the activities the group likes, minding if they are bored due to activities repetition. In this sense, this paper presents an extension of the Cognitive Life Assistant platform incorporating a social emotional model. The proposed system has been modelled as a free time activity manager which is in charge of suggesting activities to the social workers. (C) 2018 Elsevier B.V. All rights reserved.Angelo Costa thanks the Fundacao para a Ciencia e a Tecnologia (FCT) the Post-Doc scholarship with the Ref. SFRH/BPD/102696/2014. This work is also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013 and partially supported by the MINECO/FEDER TIN2015-65515-C4-1-R and the FPI grant AP2013-01276 awarded to Jaime-Andres Rincon

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work
    corecore