229 research outputs found

    Fostering cooperation through dynamic coalition formation and partner switching

    Get PDF
    In this article we tackle the problem of maximizing cooperation among self-interested agents in a resource exchange environment. Our main concern is the design of mechanisms for maximizing cooperation among self-interested agents in a way that their profits increase by exchanging or trading with resources. Although dynamic coalition formation and partner switching (rewiring) have been shown to promote the emergence and maintenance of cooperation for self-interested agents, no prior work in the literature has investigated whether merging both mechanisms exhibits positive synergies that lead to increase cooperation even further. Therefore, we introduce and analyze a novel dynamic coalition formation mechanism, that uses partner switching, to help self-interested agents to increase their profits in a resource exchange environment. Our experiments show the effectiveness of our mechanism at increasing the agents' profits, as well as the emergence of trading as the preferred behavior over different types of complex networks. © 2014 ACM.The first author thanks the grant Formación de Profesorado Universitario (FPU), reference AP2010-1742. J.Ll.A. and J.A.R-A are partially funded by projects EVE (TIN2009-14702-C02-01), AT (CSD2007-0022), COR (TIN2012-38876-C02-01), MECER (201250E053), and the Generalitat of Catalunya grant 2009-SGR-1434Peer Reviewe

    Learning to resolve social dilemmas: a survey

    Get PDF
    Social dilemmas are situations of inter-dependent decision making in which individual rationality can lead to outcomes with poor social qualities. The ubiquity of social dilemmas in social, biological, and computational systems has generated substantial research across these diverse disciplines into the study of mechanisms for avoiding deficient outcomes by promoting and maintaining mutual cooperation. Much of this research is focused on studying how individuals faced with a dilemma can learn to cooperate by adapting their behaviours according to their past experience. In particular, three types of learning approaches have been studied: evolutionary game-theoretic learning, reinforcement learning, and best-response learning. This article is a comprehensive integrated survey of these learning approaches in the context of dilemma games. We formally introduce dilemma games and their inherent challenges. We then outline the three learning approaches and, for each approach, provide a survey of the solutions proposed for dilemma resolution. Finally, we provide a comparative summary and discuss directions in which further research is needed

    Novelty-driven cooperative coevolution

    Get PDF
    Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents’ individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.info:eu-repo/semantics/publishedVersio

    Multiagent Learning Through Indirect Encoding

    Get PDF
    Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other. In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent’s location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. iii The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(λ) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl
    • …
    corecore