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In this paper we tackle the problem of maximizing cooperation among self-interested agents in a resource
exchange environment. Our main concern is the design of mechanisms for maximizing cooperation among
self-interested agents in a way that their profits increase by exchanging or trading with resources. Although
dynamic coalition formation and partner switching (rewiring) have been shown to promote the emergence
and maintenance of cooperation for self-interested agents, no prior work in the literature has investigated
whether merging both mechanisms exhibits positive synergies that lead to increase cooperation even fur-
ther. Therefore, we introduce and analyze a novel dynamic coalition formation mechanism, that uses partner
switching, to help self-interested agents to increase their profits in a resource exchange environment. Our
experiments show the effectiveness of our mechanism at increasing the agents’ profits, as well as the emer-
gence of trading as the preferred behavior over different types of complex networks.
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1. INTRODUCTION
The global benefit of an agent population is deemed to improve if all agents cooperate.
However, achieving cooperation in multi-agents systems (MAS) is a challenging issue,
particularly when agents are self-interested [Hogg 1995]. Individual (self-interested)
decisions may become detrimental despite eventually delivering short-term benefits.
For instance, if many individuals try to download the very same file at the same time,
the download speed they will experience is bound to dramatically decrease. Instead,
group (social) decisions can result in a mutually beneficial cooperation that holds over
time [Shehory and Kraus 1993]. Therefore, designing mechanisms that promote the
emergence and maintenance of cooperation for self-interested agents has become a
major area of interest in MAS [Doran et al. 1997]. In fact, several coevolutionary game
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theory approaches have been used to provide a framework to study cooperation in
those cases [Perc and Szolnoki 2010].

The emergence of cooperation is often studied in the context of the Prisoner’s
Dilemma (PD) theoretical framework [Axelrod 1984], which is well-known in game
theory. This has been specially useful for understanding the role of local interactions
and the maintenance of cooperation [Nowak and May 1992; Langer et al. 2008]. The
prisoner’s dilemma captures the conflict of interest between what is the best for the
individual (defection) and what is best for the group (cooperation), and thus creates a
social dilemma [Hogg 1995]. Thus, specific mechanisms for the evolution of cooperation
are required to help the population to overcome this dilemma.

To prevent social dilemmas and promote and stabilize cooperation, we distinguish
three main strands of work in the literature: coalition-based mechanisms, partner-
switching mechanisms, and self-governing institutions. The idea of self governing in-
stitutions has its origin on Nobel Laureate Elinor Ostrom [Ostrom 1990]. Works in
this line, as Pitt et al. [Pitt et al. 2011; 2012a], use self-governing institutions to model
resource allocation in a network applying a formal characterization of Ostrom’s socio-
economic principles. Coalition-based mechanisms have their roots in the seminal work
of Axelrod introduced in [Axelrod 1997] (chapter 6). Axelrod proposes a tribute/tax
model that allows agents to achieve cooperation when forming coalitions around some
emerging leaders. To maintain coalitions, leaders charge their agents some tribute/tax
in favor of some benefit (e.g., guaranteed cooperation, protection against cheaters).
This is a clear example of the known tradeoff between the benefits vs. the costs of col-
laboration (e.g., taxes) [Tanimoto, K. 2002]. Therefore, Axelrod’s mechanism is based
on a dynamic coalition formation model together with a tax model. Notice that the
choice of coalitions comes at no surprise. The notion of a coalition of individuals has
been studied by the game theory community for decades, and has proved to be use-
ful in both real-world economic scenarios and multi-agent systems. In fact, coalition
formation [Shehory and Kraus 1995; Sandholm et al. 1999] is one of the fundamental
approaches in multi-agent systems for establishing collaborations among agents, each
with individual objectives and properties. In [Burguillo-Rial 2009] Axelrod’s dynamic
coalition formation model was successfully adopted to help agents, on grid topologies,
cooperate when using a spatial version of the PD [Nowak and May 1992; 1993]. Later
on, Salazar et al. [Salazar et al. 2011] introduce an extension of the work in [Burguillo-
Rial 2009] that fosters cooperation on complex networks. These networks provide a
more realistic model of the topological features found in many nature, social and tech-
nological networks (e.g., social networks, the Internet, ecological populations) [Watts
and Strogatz 1998; Reka and Barabási 2002]. Furthermore, it is known that they can
influence emergence [Pujol et al. 2005]. Salazar et al. design a cooperation mechanism
to emerge and sustain full and profitable cooperation, via a single super-coalition,
but with a low collaboration cost (tax). Likewise the approaches in [Axelrod 1997;
Burguillo-Rial 2009], Salazar et al. also rely on a dynamic coalition formation mech-
anism, but they also design a consensus mechanism that allows coalition members
themselves (instead of leaders) to reach a convention over the fair price to pay to be
part of a coalition.

Although the coalition-based mechanisms described in [Axelrod 1997; Burguillo-Rial
2009; Salazar et al. 2011] confirm that coalitions indeed facilitate cooperation between
self-interested agents, there is still room for improvement. Firstly, a coalition leader
must be paid by the agents belonging to the coalition. Furthermore, notice that a coali-
tion leader imposes her decision on the agents in the coalition to maximize cooperation.
Therefore, each coalition leader receives a payoff that is not shared between the mem-
bers of her coalition. Moreover, the decision-making of each coalition is centralised
in a single entity: the leading agent. Additionally, they assume that agents cooper-
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ate with their coalition mates. However, assuming cooperation is too restrictive. Other
works, as Fu et al. [Fu et al. 2012] and Peleteiro et al. [Peleteiro et al. 2012], consider
that an agent should be able to autonomously decide how to behave with respect to
coalition-mates and agents outside her coalition. Secondly, although the mechanisms
in [Burguillo-Rial 2009; Salazar et al. 2011] promote cooperation on different network
topologies, these networks are static (fixed). However, in most real-world situations,
the topology of the network changes in response to the state of the network and the
other way around, namely the state of the network changes in response to the topology.
Research on games on dynamic topologies has found empirical evidence showing that
partner switching leads to cooperative behavior. Along this line, Fu et al. [Fu et al.
2009] propose a model of coevolutionary prisoner’s dilemma that allows agents to ei-
ther adjust their strategies or switch their defective partners, showing that partner
switching may help stabilize cooperation. Although in a different realm (the investiga-
tion of tag-based coordination), Griffiths and Luck [Griffiths and Luck 2010] show that
partner switching (rewiring in their terms) can help increase coordination resilience
in the face of malicious behavior. However, to the best of our knowledge, no prior work
in the literature has investigated whether putting together dynamic coalition forma-
tion with partner switching show positive synergies that lead to increase even further
cooperation.

Besides the way coalitions are formed, we must also consider why members of
a coalition establish cooperation. This is particularly important when considering
actual-world scenarios where agents own resources that they can trade. In fact, re-
garding social and economic collaborating entities (as international alliances, trading
agreements, or cooperation among corporations), resource trading plays an important
role [Jackson et al. 2003]. Not only in social and economic environments, but we can
also consider technological scenarios, as networks of computers that may share their
resources, e.g., its CPU, files, etc. To the best of our knowledge, no coalition-based mech-
anism in the literature has captured the concepts of ownership and trade of resources.

Against this background, our main contribution is a novel mechanism to maximize
cooperation among self-interested agents that own resources, where benefits of agents
are increased through exchange of their resources. Our cooperation mechanism is
based on three main components:

— a game-based interaction model that includes the trading of resources, based on
Yee’s [Yee 2003] trading model;

— a dynamic coalition formation mechanism that allows agents to: (i) decide whether
to join or leave coalitions; and (ii) collectively self-determine the inner and outer
behaviors of a coalition (without the intervention of a leader); and

— a partner switching (rewiring)1 strategy based on experiences acquired in previous
interactions that helps agents avoid defective behaviors.

Furthermore, we empirically and thoroughly evaluate our mechanism. We observe
that indeed coalition formation plus rewiring allows agents to obtain up to 15% more
payoff than only employing either coalition formation or rewiring, and up to 30% more
when none of them are employed. However, the benefits of our mechanism depend on
the availability of resources, the network topology, and the rewiring frequency em-
ployed by agents. Thus, overall our experiments indicate that:

— The higher the availability of resources, the larger the payoff that agents obtain by
cooperating, being 40% more when comparing a plentiful resource scenario versus a
scarce one.

1Henceforth we shall employ the term rewiring for shorter.
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— Rewiring leads to an increase of gains independently of the topology and its effect in
the increase of gains is larger the higher the availability of resources. This increase
reaches 20% in a plentiful resource scenario.

— The higher the rewiring frequency, the lower the clustering of the agent population.
In other words, the higher the rewiring frequency, the bigger the coalitions formed
by agents and the fewer the number of coalitions.

— Agents’ strategies adapt to the availability of resources and concrete scenarios to
obtain the highest benefits.

— The number of traders increases with the availability of resources, being already
more than 80% when the resources are not scarce. Thus trading, i.e., cooperating,
emerges as the preferred strategy;

The paper is organized as follows. In Section 2 we thoroughly review the related
work in the literature. Next, in Section 3 we introduce our cooperation mechanism,
while in Section 4 we offer a detailed empirical analysis. Finally, Section 5 concludes
and sets paths to future research.

2. RELATED WORK
Individual decisions (self-interested), besides providing only momentary benefits, are
detrimental if many agents take them. Instead, group decisions (social) can result in a
mutually beneficial cooperation that holds over time [Shehory and Kraus 1993]. This
is why coalition formation has attracted the attention of researchers for several years.

In the following sections we present a review of related work in the literature. We
begin with a brief review of static coalition formation, which is followed by related
work on dynamic coalition formation.

2.1. Static Coalition Formation
Coalition formation is a process where agents come together to achieve a goal or
to increase their performance. Coalitions have been widely used in multi agent sys-
tems [Shehory and Kraus 1993; Shehory et al. 1998; Salazar et al. 2011], as they enable
agents to accomplish goals they are unable to accomplish independently. However, the
number of potential coalitions increases when increasing the number of agents, since
the problem is exponential.

In the following subsections, we present two different approaches to tackle the coali-
tion formation problem. Firstly, optimization approaches, which mainly focus on find-
ing an optimal coalition, i.e. tackling the CSG problem. Secondly, game theoretic ap-
proaches, because they have implications and uses in many real-world domains, in-
cluding those involving automated agents, electronic commerce, auctions, and general
resource allocation scenarios.

2.1.1. Optimisation approaches. One of the main problems in coalition formation is the
coalition structure generation (CSG) problem. It has been shown to be NP-complete,
and existing algorithms cannot generate solutions within a reasonable time for even
moderate numbers of agents. Thus, to find an optimal coalition can become intractable
because the number of coalition structures exponentially depends on the number of
agents. There are several algorithms trying to tackle the CSG problem, and according
to [Rahwan and Jennings 2008b], they can be classified in three main categories: dy-
namic programming (DP) [Rahwan and Jennings 2008b; Service and Adams 2011],
heuristics [Shehory and Kraus 1998], and anytime optimal algorithms [Sandholm
et al. 1999; Rahwan et al. 2009].

Each of those approaches has its advantages over the others, and this led researchers
to try to develop new approaches combining their best characteristics. To get the best
of DP and anytime algorithms, Rahwan et al. [Rahwan and Jennings 2008a] combine
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the state-of-the-art dynamic programming [Rahwan and Jennings 2008b] and state-
of-the-art anytime algorithm [Rahwan et al. 2009] on CSG, and develop the IDP-IP
hybrid algorithm, which outperforms the time convergence of the former ones. How-
ever, the approach presented in [Rahwan and Jennings 2008a] has some limitations,
that are identified and solved in [Rahwan et al. 2012]. This work provides a new IDP-
IP* algorithm that outperforms IDP-IP.

Since finding the optimal partition of agents by checking the whole space may be too
expensive in terms on time and computation, several other approaches have been pro-
posed to try to reduce the search space and provide faster solutions. Shrot et al. [Shrot
et al. 2010] re-examine the computational complexity of the different coalition for-
mation problems when assuming that the number of different agent types is fixed,
showing that many of the problems that were proved hard under a general case are
polynomial with this assumption. Another option to reduce the search space is to avoid
redundant computation, as done in Voice et al. [Voice et al. 2012], where they consider
coalition formation problems for agents with an underlying synergistic graph, that
constrains the number of feasible coalitions.

2.1.2. Game theoretic approaches. One of the goals when forming coalitions is to im-
prove the cooperation among agents. To address this issue, game theory approaches
have been widely used. Thus, as a result of the desire to embed game theoretic princi-
ples into agent systems, computational aspects of game theory have been extensively
studied in recent years [Bachrach and Rosenschein 2008].

One static and theoretical view of coalition formation concerns hedonic games, which
are a rich and versatile class of coalition formation games which also encapsulate var-
ious stable matching scenarios. The main focus in hedonic games has been on notions
of stability for coalition structures such as Nash stability, individual stability, contrac-
tual individual stability, or core stability and characterizing conditions under which
the set of stable partitions is guaranteed to be non-empty [Aziz et al. 2011]. However,
in our work we neither focus on static coalitions nor on finding stability conditions, but
in a dynamic environment where agents join, leave and form new coalitions to increase
their benefits.

Overlapping coalition formation (OCF) games are cooperative games where play-
ers can simultaneously participate in several coalitions. Using this game, Shehory et
al. [Shehory and Kraus 1996] present an anytime algorithm that provides subopti-
mal results. Chalkiadakis et al. [Chalkiadakis et al. 2010] propose models for overlap-
ping coalition formation that allow to handle and reason about stability of overlapping
coalition structures. Contrary to these OCF approaches, in our work we consider that
agents can only belong to one coalition, as we regard coalitions as independent entities
where an agent has to commit exclusively when it joins. This is because in our case
coalitions act as a whole and take joint decisions to play against others.

Bachrach et al. [Bachrach and Rosenschein 2008] propose the coalitional skill games
(CSGs), a simple model of cooperation among agents to find the optimal coalition struc-
ture to improve gains when each agent performs a task. This is a restricted form of
coalitional game, where each agent has a set of skills that are required to complete
various tasks. In other type of games, the coalitional resource games (CRG), each agent
has a set of resources. In order to achieve a set of goals a coalition has to count on the
agents that possess the necessary resources. Wooldridge et al. [Wooldridge and Dunne
2006] investigate and classify the computational complexity of a number of natural
decision problems for CRGs. However, in our work we focus on agents that have re-
sources that they can trade and all the resources are of the same type. Therefore, our
focus is not to find the optimal coalition, but to improve resource sharing in an a priori
selfish scenario.
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2.2. Dynamic Coalition Formation (DCF)
Most previous works in literature aim at finding the optimal coalition. However, when
we need to form coalitions in a dynamic environment, where agents constantly may
want to change the coalition they belong to, computing the optimal coalition may be
either infeasible (because optimality is constrained to a very small number of agents)
or take longer than the time of existence of a coalition. Moreover, when the focus is not
to find an optimal coalition, or to study the stability of a coalition, the contributions
introduced in Sect. 2.1 may not be useful.

Optimal coalition formation has several drawbacks when applied to the real world.
First, the time needed to find the optimal coalition prevents its use in a dynamic multi-
agent system where agents have to decide if it is beneficial for them to join in a small
amount of time. Second, the number of agents involved has to be small, since the
number of coalition structures (O(nn)) is so large that it cannot be enumerated for
more than a few agents [Sandholm et al. 1999]. Thus, if we focus on a system where
we have a large number of agents interacting, the computational cost is so high that it
makes it impossible to compute. This is why it is necessary to use domain knowledge
and/or mathematical games with certain constraints and where agents have particular
characteristics to solve the problem of coalition formation in a reasonable efficient way.

2.2.1. DCF over static topologies. To form dynamic coalitions to improve cooperation,
there is a need to find decentralized procedures that allow self-interested agents to
negotiate the formation of coalitions and division of coalition payoffs. In real world
scenarios, it may happen that agents are selfish and only focused on improving their
own performance, while if they were cooperative, the whole system performance would
improve. To model this situation, non-cooperative games, where agents are selfish,
have been used to study coalition formation and its dynamics. Along this line, the
Iterated Prisoner’s Dilemma (IPD) game has been widely used in modelling various
social and economic phenomena, as well as the emergence of cooperation. Contrary
to the classic Prisoner’s Dilemma (PD), where defecting is the dominant strategy, in
repeated games where the total number of rounds is random or unknown, sustained
cooperation strategies may emerge [Aumann 1959].

The IPD with coalitions has been firstly used in spatial scenarios, where agents
play in a grid scenario, interacting only with the closest neighbors. In this scenario,
Seo et al. [Seo et al. 1999] study the emergence of cooperative coalitions in N-player
Iterated Prisoner’s Dilemma (NIPD), focusing on how the local interaction between
agents affects the evolution of the game. They conclude that the more localized the
interaction is, the easier is to evolve cooperation. Moreover, to improve their previous
results, in [Seo et al. 2000] the authors use the IPD to study coalition emergence in
a co-evolutionary learning environment. In this case, they assign to each agent a con-
fidence that specifies how well each is dealing with her opponents. That confidence
is adapted through evolutionary learning, basing coalition behavior on most confident
agents. With this, Seo et al. found that adaptative confidences can improve coalition
performance, and deal with different opponents. Nguyen et al. [Nguyen and Ishida
2009] use the spatial version of the IPD to model one environmental coalition forma-
tion problem. In their work, the authors study how specifying different weights for
agents, which determine how powerful they are, and allowing them to decide if taking
their own decisions or following more powerful agents, influences coalition formation
and cooperation.

Also in a spatial scenario, Burguillo [Burguillo-Rial 2009] presents a framework for a
memetic analysis of coalition formation considering the spatial prisoner’s dilemma. In
his approach, agents may play isolated or join coalitions ruled by leaders. Each leader
defines the behavior of the agents belonging to her coalition and charges them with
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taxes. Using memetic strategies, Burguillo obtained emerging cooperative coalitions.
However, Salazar et al. [Salazar et al. 2011] noticed that in Burguillo’s work: (i) the
coalition strategies employed cannot accomplish full cooperation in complex networks;
(ii) the mechanism employed by leaders to tax agents is unfair for the population as
a whole. To address these issues, the authors propose a set of strategies that pro-
mote profitable cooperation in complex networks, as well as a consensus mechanism
to reach a convention to establish fair taxes. Although the coalition-based mechanisms
described in [Burguillo-Rial 2009; Salazar et al. 2011] confirm that coalitions indeed
facilitate cooperation between self-interested agents, there is still room for improve-
ment. Firstly, in those two approaches, a coalition leader must be paid by the agents
belonging to the coalition. This penalises the utility that an agent can obtain from par-
ticipating in a coalition. Furthermore, a coalition leader imposes her decision on the
agents in the coalition to maximize cooperation. By imposing the coalition’s strategy,
the leader does not take into account valuable information that agents could use for
the benefit of all the members of the coalition, not only the leader. Moreover, the payoff
distribution is unfair, since: (i) leaders receive a payoff that they do not distribute; and
(ii) the agents in the frontier of the coalition (interacting with agents outside of the
coalition) obtains less payoff. In order to avoid the mentioned shortcomings, in this pa-
per, we focus on flat coalitions, namely coalitions without leaders that: (i) collectively
self-determine their behaviors; and (ii) share profits without applying taxes.

When agents group, they must decide how to behave with in-group and out-group
agents. Fu et al. [Fu et al. 2012] propose a mathematical framework for the evolution
of in-group favoritism, where different agents may use different strategies with agents
in its group or outside of it, updating its behavior depending on the payoff. They de-
termine under which conditions in-group cooperation emerges, and when out-group
cooperation may be beneficial, using a mutation-selection process. In our case, we also
allow agents to decide their behavior against in and outsiders of their coalitions. How-
ever, we want agents choose their behavior depending on their own past experience.

Some works have used learning algorithms to address coalition formation and be-
havior decisions, since these algorithms allow agents to modify their behavior depend-
ing on their past experiences. In Bazzan et al. work [Bazzan et al. 2011], agents play
the spatial IPD considering social relationships such as belonging to a hierarchy or to a
coalition, or being isolated. Each of the members individually learns, using Q-learning,
which is the best behavior, whether to be isolated or in a group, and if behaving cooper-
atively or defectively. Moreover, if they belong to a group, they vote to decide the whole
coalition behavior. A preliminary version of this approach was also tested with positive
results in [Peleteiro et al. 2011], where the focus was to compare Q-learning and learn-
ing automata techniques using different payoff matrix. In both works, results show
that learners end up joining in coalitions and cooperating among themselves.

However, previous approaches [Bazzan et al. 2011; Peleteiro et al. 2011] assume
that agents behave cooperatively within a coalition. Assuming cooperation is too re-
strictive, Peleteiro et al. [Peleteiro et al. 2012] consider that an agent should be able to
autonomously decide how to behave with respect to coalition-mates and agents outside
her coalition. They find that when agents are allowed to join coalitions, they learn that
grouping and behaving cooperatively with their coalition members results in higher
benefits. In this paper we will also follow this approach.

2.2.2. DCF over dynamic topologies. Previous approaches focus on static networks. How-
ever, in most real-world situations, the topology of the network changes in response to
the state of the network and the other way around, namely the state of the network
changes in response to the topology. In fact, there is an increasing interest in games
on adaptative networks and its influence in cooperation, where agents may improve
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their topology (see [Gross and Blasius 2008] for a review), for example by changing the
neighbors with whom they interact. Within these, the IPD has been broadly used as a
test bench to study cooperation in complex networks. Zimmerman et al. [Zimmermann
et al. 2004] present a model where agents imitate the strategy of their neighbors and
where they are allowed to rewire their neighbors under certain fixed restrictions. Their
model of cooperation with network plasticity leads to hierarchical topologies. Contin-
uing their work, Eguiluz et al. [Eguiluz et al. 2005] focus on how possible dynamical
mechanisms achieve a small world connectivity, also by allowing to imitate strategies
and to change links to its neighbors. However, in their work agents imitate their best
neighbors to decide their strategy, while in our approach agents learn how to behave
based on their past interactions. The same happens with the neighbor selection, since
they use fix strategies, while in our approach agents learn to which agent type it is
better to rewire to.

Pacheco et al. [Pacheco et al. 2006] provide a model which incorporates decisions of
individuals when establishing new links or giving up existing ones, by evaluating the
productivity of their links. In our work each agent does not evaluate the productivity
of each of the links. Instead, each agent decides to which agent type it provides a better
payoff to link to. Fu et al. [Fu et al. 2009] propose a model of coevolutionary prisoner’s
dilemma that allows agents to either adjust their strategies or switch their defective
partners. Thus, they show that partner switching is effective to stabilize cooperation.
Although in a different realm (the investigation of tag-based coordination), Griffiths
et al. [Griffiths and Luck 2010] show that partner switching (rewiring in their terms)
can help increase coordination resilience in the face of malicious behavior. Along this
line, in this paper using individual decisions on how to add or remove/replace a link is
used to improve cooperation and avoid defective behavior.

2.2.3. Coalitions with resources. Apart from how coalitions are formed, how the mem-
bers of a coalition establish cooperation is an important issue. This is even more im-
portant when modelling nowadays interconnected world, where agents own resources
that they can trade. Indeed, social and economical trading agreements or cooperation
play an important role in our society. That is why we are interested in the scenario
where agents cannot only cooperate or defect, like in the classical IPD, but where they
can also own tradable resources. From an economical point of view, Yee [Yee 2003]
develops an evolutionary game model of property ownership and trade. Based on an
evolutionarily model of animal territoriality, the author models human property own-
ership theoretically, showing that trading is evolutionary preferred over permanent
ownership without trade.

Based on that work, Burguillo et al. [Burguillo and Peleteiro 2010] perform a study
of the extended IPD-Possessor-Trader model. They present how evolutionary forces al-
low the emergence of different types of strategies using a spatial scenario. However,
their work studies a grid and static scenario, which may not represent real world dy-
namic and complex topologies among agents and where no coalitions can be formed.
Moreover, in such model, agents play independently, i.e., they cannot join coalitions to
improve cooperation.

Finally, although the coalition-based mechanism in this paper is based on Axelrod
approaches, there is also the idea of self governing institution due to Nobel Laureate
Elinor Ostrom [Ostrom 1990]. In this line, Pitt et al. [Pitt et al. 2012a] model resource
allocation in a network applying a formal characterization of Ostrom’s socio-economic
principles. Even if their focus and application domain is different, we can see that
there is a correlation between their work and ours. We can regard Yee trading model
as a linear public good game; coalition formation as cluster formation (Ostrom’s princi-
ple 1: membership); deciding inner and outer behaviors as self-organization of cluster
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rules; and rewiring as cluster movement. Therefore, it may be interesting to study sim-
ilarities between the two models, to see how our results can contribute their problem,
and vice-versa. However, this is out of the scope of this paper, but can be regarded as
promising future work.

3. MODEL DESCRIPTION
In our model, we consider an agent population using a network as its iteration topology,
where we model agents as nodes, and relations among them as edges. These agents
interact with the peers in their social neighborhood, i.e., the agents to which they
are linked, playing the Possessors-Traders game (agents are possessors or traders,
see Sect. 3.1). Thus agents not only cooperate or defect, but they also have resources,
with which they can trade. Moreover, to increase the cooperation level of the multi-
agent system, agents can form coalitions, since group decisions (social) can result in a
mutually beneficial cooperation that holds over time. Finally, agents do not have static
neighborhoods, but they can change partners using rewiring. Thus during the game,
additionally of trading resources, each agent must decide:

— To belong to a coalition or to be independent: Agents must decide whether being
independent or in a coalition provides more benefits.

— To whom to rewire: As agents can change their neighbors, i.e., they rewire to improve
their neighborhood, they have to decide to which agent to rewire.

Additionally, agents in a coalition act as a unity, i.e., all the agents of a coalition
must decide which action to perform with agents belonging to their coalition (insiders)
and with agents not belonging to it (outsiders). Thus, which is the coalition behavior,
and how it is decided, is an important factor in the dynamics of the coalition.

In the following subsections we explain in detail the main agent decisions (see Algo-
rithm 1): the trading strategies, the coalitions strategies, and the rewiring strategies.

ALGORITHM 1: Agent Cycle
1: Payoffs = TradeAgainstAllneighbors()
2: Rewiring(Payoffs)
3: ReviseCoalition(Payoffs)

3.1. Trading strategies
In this section we describe the strategies that agents use to trade among them. It is
primarily based on the model of property ownership and trade [Yee 2003; Burguillo and
Peleteiro 2010]. This model is an extension of the Iterated Prisoner’s Dilemma (IPD),
i.e., trading is modeled as an extension of the IPD’s cooperate and defect actions. In the
model of property ownership and trade, there are two types of players: Possessors (P),
which own a resource; and Traders (T), which sell and buy resources. In the following
subsections we explain in detail the trading strategies of our game, that we define as
Iterated Possessor-Trader (IPT).

3.1.1. Ownership (Possessors). A Possessor (P) is an agent owning a resource. Its strat-
egy models the practice of ownership, i.e., the agent owns a resource with which it does
not trade. Their behavior depends on whether they own a resource or they do not own
it, i.e., if a possessor owns a resource, it acts as a defector, but if it does not, it cooper-
ates (see [Yee 2003] for details). We show the Possessor (P) strategy in Algorithm 2.
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ALGORITHM 2: Possesor Strategy
1: if owning(resource) then
2: Defect
3: else
4: Cooperate
5: end if

3.1.2. Trading (Traders). A trader (T) is an agent willing to sell or buy a resource when
dealing with a fellow trader. If an agent has the capability of trading, it uses it to try to
maximize its benefits by selling a resource when owned. Indeed, nowadays society is
based on trading agreements, obtaining services on the one hand, and benefits on the
other. In particular, when two traders meet, the owner (agent that owns the resource
to trade) values the resource at a random value y 2, where v < y < V , (v, V ) ∈ R. Then,
the buyer (the agent that wants to get the resource) offers a value x for the resource,
where v < x < V . If x > y, then the buyer purchases the resource at random value z,
being y < z ≤ x. In [Yee 2003], the author models this norm introducing the Trader
(T) strategy (see Algorithm 3). Note that if a trader plays against an agent that is not
a trader, it behaves as a possessor (agents can know the type of the adversary before
playing).

ALGORITHM 3: Trader Strategy
1: if is Trader(neighbor) then
2: if onwing(resource) AND v < y < V then
3: Sell for y
4: else if not(owning(resource)) AND y < x then
5: Buy for z
6: else
7: Behave as Possessor
8: end if
9: else
10: Behave as Possessor
11: end if

3.1.3. The Prisoner’s Dilemma Game. The model of property ownership and trade is an
extension of the Iterated Prisoner’s Dilemma (IPD). IPD models a situation in which
two agents have to decide whether to cooperate (C) or defect (D), but without knowing
what the other is going to do. In the IPD, the payoffs achieved in interaction are the
following: if both agents cooperate, they get a reward (Re) each, but if they both defect
they get a punishment (Pu). If one defects and the other cooperates, the first one gets
Te (meaning the temptation payoff), and the cooperator receives Su (the sucker’s pay-
off) (Table I). A prisoner’s dilemma game satisfies the inequalities Te > Re > Pu > Su
and 2Re > Su + Te. Considering that Te > Re, it pays to defect if the other player co-
operates. When the other player chooses defection, there is a choice between defection,
that provides P (the punishment for mutual defection) or cooperation which yields Su
(the sucker’s payoff). Again, considering Pu > Su , it pays to defect if the other player
defects. Thus, independently from what the other player does, it pays to defect. How-
ever, when they both defect, they get Pu instead of Re, which is a higher value that
they both could get if they cooperate [Axelrod 1984].

2We choose a random value because the valuation of the resources is beyond the scope of this paper.
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Player Aj Cooperates Player Aj Defects
Player Ai Cooperates Re, Re Su, Te

Player Ai Defects Te, Su Pu, Pu

Table I: General Prisoner’s Dilemma Matrix

Payoffs in this model are set based on [Yee 2003]. The author defines a payoff matrix
for its trader game starting from the Hawk-Dove (HD) problem [Maynard Smith and
Price 1973]. If 1

2V > h then the HD corresponds to the PD game. As this is our case,
we model our defection and cooperation based on the HD values that Yee defines for
his Trader game:

Te = (V + v)/2

Re = (V + v)/4

Pu = (V + v)/4− h
Su = 0

3.2. Coalitions
The basic strategy by which agents join a coalition or change to a new one is shown in
Algorithm 4. If an agent (ai) has the worst payoff within its neighborhood after the last
round (line 1), it joins the agent that has had the best one (line 2). If aj is an indepen-
dent agent, then ai joins aj to create a new coalition (line 4); but if aj already belongs
to a coalition, then ai joins aj ’s coalition (line 6). Note that this rule also enables any
agent to change from a coalition to another in case it receives very poor payoffs in the
former one.

In this dynamic network, agents form coalitions to act as a unity. All agents belong-
ing to a coalition (each agent can belong to only one coalition at a time) do not need
to be linked among them: they are a set of agents that act together, to maximize their
performance. However, even though an agent does not have to have a link to all their
coalition mates, it must have at least one link with one agent belonging to its coalition;
if not, it becomes independent (lines 9-10, Algorithm 4). This is because if the agent
is not connected to any of their coalition mates, it cannot know coalition information,
strategy, share and divide gains, thus it must become independent. Again, notice that
if agents change links, it does not imply that they change coalitions: rewiring to others
means changing neighbors. We explain in following section how agents form and join
coalitions, and how they decide the coalition behavior.

When agents are in a coalition, they must agree on the behavior to play with the
other agents in the coalition (insiders) and with agents outside the coalition (outsiders).
In our approach, we consider that coalitions are flat, i.e., there are no leaders, nor
central authority imposing any policy, unlike in [Salazar et al. 2011; Burguillo-Rial
2009]. To decide the coalition behavior, each agent votes for a strategy (P or T) to play
with insiders and for a strategy to play with outsiders (line 16, Algorithm 4).

To decide its vote, each agent uses a Learning Automata (LA) algorithm [Narendra,
K.S. and Thathachar, M. A. L. 1989] that is trained from its trading history experience
and payoffs. The LA algorithm keeps two probability models, one to assess the strategy
to play against insiders ([ProbInT, ProbInP ]) and another to assess the strategy to
play against outsiders ([ProbOutT, ProbOutP ]). Specifically, each agent uses Eq. 1 to
reinforce the action with which the agent has obtained a higher payoff in the past:
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ALGORITHM 4: ReviseCoalition(Payoffs)
1: if WorstPayoffInneighborhood(Payoffs) then
2: aj = neighborWithBestPayoff()
3: if Independent(aj) then
4: CreateNewCoalition(aj , ai)
5: else
6: JoinCoalition(aj , ai)
7: end if
8: end if
9: if Isolated() then
10: GetIndependence()
11: else
12: [ProbInT, ProbInP ] = UpdateLAInsiders(Payoffs)
13: [ProbOutT, ProbOutP ] = UpdateLAOutsiders(Payoffs)
14: ActionIn = ChooseInAction(ProbInT, ProbInP )
15: ActionOut = ChooseOutAction(ProbOutT, ProbOutP )
16: V oteBestBehavior(ActionIn,ActionOut)
17: end if

pi,t+1 = pi,t + α(1− pi,t)
∀j 6=i : pj,t+1 = pj,t(1− α) (1)

In these equations, pi,t+1 is the probability that an agent performs a concrete action
i, and α ∈ [0, 1] is a (small) learning factor. The first rule is used to reinforce the action i
chosen if it performed better than its alternatives in the considered state. At the same
time, we apply the second rule to the other actions, decreasing its probability. In the
next round, the agent chooses its new strategy using the updated probabilities. For
instance, if the agent has obtained more gains in the past by playing action T against
insiders (members of the coalition), then the probability of behaving as T with insiders
is higher than behaving as P, and the same for playing against outsiders (out of the
coalition). Using the corresponding probability model, each agent decides the action it
wants to propose (line 14-15, ActionIn and ActionOut).

Once each agent has calculated its strategy (ActionIn and ActionOut), all the mem-
bers of a coalition vote to decide the coalition strategy with insiders and outsiders (line
16, Algorithm 4). The voting is carried out using a voting protocol in which agents pass
the vote, so there is no need of a central entity. Moreover, contrary to the case of having
a leader, where agents belonging to a coalition may pay taxes to the leader [Burguillo-
Rial 2009; Salazar et al. 2011], all the payoff within the coalition is equally and fairly
shared among all coalition members. We choose a simple approach for the payoff distri-
bution, since it is out of the scope of this paper to study other more complex approaches.
However, there are several fair division techniques in social choice that are worth ex-
ploring, as in [Chevaleyre et al. 2007; Pitt et al. 2012b; Brandt et al. 2013]. We consider
this as a promising line for future work.

3.3. Rewiring mechanism
In most real-world network interactions, relationships are not static, i.e., agents can
change the individuals with whom they interact. This capability is modeled introduc-
ing a rewiring mechanism. Introducing rewiring, agents can modify their neighbor-
hood whenever they are not satisfied with the outcome they receive from their actual
neighbors. In the current work, we consider that only one link can be rewired by each
agent at each iteration, although each agent can have several neighbors. We do not
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ALGORITHM 5: Rewiring(Payoffs)
1: Aw = WorstNeighbour()
2: if Independent() then
3: [ProbRewP, ProbRewT ] = UpdateLARewiring(Payoffs)
4: Ac = FindNewAgentToRewire(ProbRewP, ProbRewT )
5: else
6: Ac = BestNeighbourWithinCoalition()
7: end if
8: if ShouldIRewire() then
9: if Ac 6= ∅ AND AcceptsRewiring(Ac) then
10: LeaveWorstNeighbour(Aw)
11: RewireTo(Ac)
12: end if
13: end if

consider the all-or-nothing rewiring, where an agent adopts a new neighborhood, since
that extreme rewiring is not realistic in most scenarios [Griffiths and Luck 2010].

We have two rewiring strategies, depending on whether the agent is independent or
belongs to a coalition:

(1) Independent agents
Independent agents use a Learning Automata to learn which type of agent it is the
best to rewire and the kind of agents must be refused for rewiring. Analogously
to the coalition strategy, each agent keeps track of its history and revises the de-
cision depending on its experience and payoffs. The LA stores a probability model
[ProbRewP, ProbRewT ] which represents the probability to rewire to a possessor
or to a trader. Specifically, the probability model is updated (line 3, Algorithm 5)
using Eq.1, reinforcing to rewire to the type of agents that has provided more gain
in the past. Once every independent agent has updated the probability vector, it
looks for a candidate agent to rewire fitting the current probability model (Ac, line
4, Algorithm 5). Since there are two types of agents (P or T), the selected candidate
is randomly selected within all the population of the estimated best type (P or T).
However, it can happen that there is not a candidate, or the selected agent Ac
refuses the agent that wants to add a link with it, if it does not belong to the type
of agents that they learn that they want to rewire. Finally, note that since the
number of links in the network must remain constant (we do it as in [Griffiths and
Luck 2010]), if the rewiring succeeds, the agent must leave the neighbor with the
worst payoff in the last round (line 10, Algorithm 5).

(2) Coalition agents
A coalition agent may rewire to the neighbor’s best neighbor. This greedy approach
takes advantage of the qualified information that coalition agents may obtain from
their peers. Moreover, by allowing to rewire to agents that may not belong to the
coalition, we provide more flexibility for coalition formation and agent interaction.
To rewire, a coalition agent asks all its coalition peers for the neighbor that pro-
vided the biggest payoff in the last round (line 6, Algorithm 5). Then, the agent
rewires to the best neighbors’ neighbor (Ac) and leaves the peer that provided it
the worst payoff (Aw).

4. EXPERIMENTS
The aim of this section is to empirically analyze the cooperation mechanism for the
resource trading environment introduced in Section 3. First experiments focus on
analysing the contribution of the coalition and rewiring mechanisms to increase the
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payoffs of the agents. Specifically, each proposed mechanism is compared with the
complete coalition+rewiring proposal. Moreover, we compare our approach against the
mechanism described in [Salazar et al. 2011]. We will also focus our attention on the
dynamics of coalition formation and on the influence of rewiring in the coalition for-
mation process. To evaluate the resilience of our approach, we will also report experi-
ments on the presence of free-riders (agents that, despite belonging to a coalition, do
not follow its agreements).

Hence, first in Section 4.2 we start by comparing four cooperation mechanisms,
namely:

— Base. Agents employ the Iterated Possessor-Trader (IPT) as their interaction mech-
anism.

— Rewiring-only. Agents interact by means of the IPT, but they also use rewiring to
change their neighborhoods.

— Coalition-only. Agents interact by means of IPT, but they also use coalition decisions
to either form, join or leave coalitions.

— Coalition-plus-rewiring. Agents interact by means of IPT, but they also use coalition
decisions and rewiring.

Our purpose is to show the benefits in terms of payoff increase that agents derive
when using the coalition plus rewiring mechanism with respect to the other three
cooperation mechanisms.

Next, in Section 4.3 we analyze the dynamics of the coalition formation mechanism
described in Section 3 when paired with rewiring. We study how the coalition forma-
tion mechanism partitions the agent population into coalition agents (those belong-
ing to some coalition) and independent agents. Our purpose is to quantify the effec-
tiveness of our coalition formation mechanism in helping agents to form coalitions.
Furthermore, we also analyze the effect of adding rewiring to our coalition formation
cooperation mechanism. More precisely, we observe how rewiring influences the coali-
tion formation process by observing the number and sizes of the coalitions formed by
agents.

Then, in Section 4.4 we focus on the coalition-plus-rewiring mechanism identified as
the one leading to higher gains by our first experiment. Then, we explain the evolu-
tionary behavior of agents within coalitions: (i) to understand how they strategically
behave with other agents inside and outside their coalitions; and (ii) to understand
their rewiring behavior. The purpose of this analysis is to observe how agents learn to
be more cooperative.

In Sect. 4.5 we analyze the effect of varying our payoff matrix while maintaining the
constraints that payoff values must satisfy. Our purpose is to show that our results do
not depend on the specific parameters we have chosen for the represented experiments.

Finally, in Sect. 4.6, we study the influence of rewiring in the coalition formation pro-
cess. We do this since rewiring and coalition formation are closely related, and, as we
will show in our experiments, rewiring has a non-trivial effect on coalition formation.

4.1. Empirical settings
Our empirical evaluation is based on a discrete-event simulation of a population of
agents interacting with one another on a network. Each agent is placed in a node of
the network and two agents cannot be placed at the very same node. Interactions only
occur between a pair of agents whenever they are connected by a link of the network.

At the outset of a simulation, agents in the agent population are endowed with one of
the cooperation mechanisms listed at the beginning of Section 4. A simulation consists
of a sequence of simulation steps. At each simulation step, each agent will be able to
interact with its neighboring agents playing the game described in Section 3 (either
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as part of a coalition or as an independent agent). Furthermore, depending on the
cooperation mechanism deployed on the agent population, each agent will be allowed
to form coalitions, join coalitions, leave coalitions, and rewire to other agents. As a
simulation proceeds, each agent accumulates payoffs as a result of the games played
with its neighboring agents. We shall consider that a simulation has converged when
the number of coalitions formed by the agent population remains stable after twenty
simulation steps.

For each of the experiments reported below, we ran ten simulations till convergence.
The reported results correspond to averaging the values observed during these simu-
lations unless indicated otherwise. Moreover, we show the variances of average values.

4.1.1. Agent population. Unless stated otherwise, for each experiment we generate an
agent population composed of 400 agents. The IPD game matrix employed by all agents
in the population is set as follows: Te = 2.5, Re = 1.25, Pu = 0.25, and Su = 0. Each
agent’s initial strategy to play in a game is chosen at random so that there is a 0.5
probability that each agent is initially either a trader (T) or a possessor (P). Moreover,
an agent’s initial strategy is the one played by its when it becomes independent. The
trading values required by traders (v and V ) are sampled from a uniform distribution
U [0, 5]. We set h = 1.

Recall from Section 3 that possessors and traders behave differently depending on
whether they own resources or not. Thus we will generate agent populations with
varying distributions of resources: from 10% up to 90% of the agents in a population
owning resources. We will be particularly interested in investigating three types of
cooperation scenarios, which depend on the following distributions of resources in the
population:

— Scarcity of resources. A small fraction of the agent population (10%) own resources.
— Balanced resources. Half of the agents in an agent population (50%) own resources.
— Plentiful resources. There is plenty of agents owning resources in the agent popula-

tion (90%).

Finally, the learning factors used by all agents employing coalition strategies and
rewiring strategies, αcoalition and αrewire respectively, are both set to 0.1.

4.1.2. Network topology. We have chosen two types of network topologies: small-world
and scale-free. Both small-world and scale-free networks provide realistic models of the
topological features found in many nature, social, and technological networks [Reka
and Barabási 2002; Pastor-Satorras and Vespignani 2001; Watts and Strogatz 1998].

On the one hand, small-world networks model real world complex systems such
as neural networks, food webs, scientific-collaboration networks, and computer net-
works [Kniesburges et al. 2012]. These networks are characterized by the small-world
phenomenon, in which nodes have small neighborhoods, and yet it is possible to reach
any other node in a small number of hops. This type of networks is highly-clustered,
namely they have a high clustering coefficient. Recall that the clustering coefficient is
a measure of degree to which nodes in a graph tend to cluster together. Thus, small-
world networks tend to contain cliques, and near-cliques, meaning sub-networks that
have connections between almost any pair of nodes within them. Formally, we note a
small-world network as W k;p

N , where N is the number of nodes, k stands for the av-
erage connectivity (the average size of a node’s neighborhood), and p is the rewiring
probability. In this paper we employed the Watts & Strogatz model [Watts and Stro-
gatz 1998] to generate small-world networks with the following settings: N = 400,
k = 5, and p = 0.1.
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On the other hand, scale-free networks model real-world networks like the world-
wide web [Adamic, L.A. and Huberman, B.A. 2000], the Internet, and some biological
networks [Newman 2003]. These networks are characterized by having a few nodes
acting as highly-connected hubs, while the rest of them have a low connectivity de-
gree. Unlike small-world networks, scale-free networks are low-clustered networks.
Formally we note a scale-free network as Sk;−γN , where N is the number of nodes, and
the probability that a node in the network connects with k other nodes is roughly pro-
portional to k−γ , namely P (k) ∼ k−γ . In this paper, we employed the Barabasi-Albert
algorithm [Reka and Barabási 2002] to generate scale-free networks with the following
settings: N = 400, k = 5, and γ = 2.

4.2. Evaluating cooperation mechanisms
Next we compare the coalition-plus-rewiring mechanism with the base, rewiring-only,
and coalition-only mechanisms. Our aim is to quantify the benefits in terms of payoff
that agents obtain when employing the coalition-plus-rewiring mechanism. We mea-
sure such benefits depending on the distribution of resources in the agent populations
that we simulate. More precisely, we assess the benefit of a given cooperation mecha-
nism as the percentage of payoff that it obtains with respect to the maximum payoff
that it could obtain. We obtain the maximum payoff from the simulation run with the
maximum average payoff out of all the simulation runs performed for the four cooper-
ation mechanisms.

Figure 1 shows the percentage of payoff gain obtained by the four cooperation mech-
anisms over different network topologies, and depending on availability of resources.
Overall, all cooperation mechanisms lead to higher payoffs as more resources are avail-
able, namely the higher the availability of resources, the larger the profit obtained
by cooperating. However, the slope of rewiring-only, coalition-only, and coalition-plus-
rewiring is larger than the slope of base. This indicates that the increase of payoff
with the availability of resources is larger when either using rewiring or coalitions or
both. As we will discuss further in Section 4.4, as more resources are available, there
are more opportunities to trade, and hence trading emerges as the preferred strategy.
Moreover, independently of the topology, the coaliton-plus-rewiring mechanism leads
to the higher payoffs. However, the amount of profit that coaliton-plus-rewiring deliv-
ers does differ depending on the network topology. As to small-world (see Figure 1a),
observe that using coaliton-plus-rewiring leads to up to 30% more payoff than the base
mechanism over a small-world network (see Figure 1a) and up to 25% over a scale-free
network (see Figure 1b).

So far we have compared our coalition-plus-rewirng mechanism against the simpler
cooperation mechanisms described at the beginning of Section 4. Next, we compare
our approach against the mechanism described in [Salazar et al. 2011]. In [Salazar
et al. 2011] Salazar et al. introduce a dynamic coalition formation mechanism aimed
at emerging cooperation. Unlike our approach, the mechanism in [Salazar et al. 2011]
relies on leaders that impose the behavior of the coalitions and charge taxes to coali-
tion members. Fig. 2 shows the percentage of gain of our mechanism (labelled Without
leaders in the figure) against the leader-based mechanism in [Salazar et al. 2011] (la-
belled With leaders in the figure) as resource availability increases. We observe that
our mechanism outperforms the leader-based mechanism. The larger the resource
availability, the larger the percentage of gains of our mechanism with respect to the
leader-based one. There are two main reasons that explain why our mechanism out-
performs the leader-based one. First, agents using our mechanism do not pay taxes
to any leader, thus all gains are shared among coalition members. Second, recall that
leaders impose coalitions’ behaviors. In doing so, a leader disregard valuable, local in-
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(a) Small-world network.
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(b) Scale-free network.

Fig. 1: Comparison of gains obtained by all cooperation mechanisms (with prew = 0.4).
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Fig. 2: Comparison of our mechanism with other previous approach that uses leaders
(scale-free network and prew = 0.4)).

formation that might potentially benefit all coalition members, not only the leader.
Unlike the leader-based approach, our mechanism lets agents learn their best coali-
tion strategies from their own experience. Hence, agents can exploit such information
to reach a consensus and decide the overall behavior of their coalitions.

Next we focus on the coaliton-plus-rewiring mechanism to assess the effect of us-
ing rewiring on the payoff gain obtained. Figure 3 shows the percentage of payoff gain
obtained depending on the rewiring probability employed by agents (prew) and depend-
ing on the availability of resources (scarcity, balance, plentiful). Notice that the results
when there is no rewiring (prew = 0) correspond to using the coalition-only mecha-
nism. Recall that the use of rewiring is intended to help an agent increase its payoffs
by disconnecting from neighbors that have demonstrated not to deliver good payoffs
in the past and connecting to other agents that may potentially deliver better payoffs
in the future. We observe that indeed rewiring leads to increase gains independently
of the topology, and that by introducing small rewiring (prew = 0.1) the gains are al-
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Fig. 3: Coalition-plus-rewiring mechanism. Percentage of payoff gain per agent when
varying the rewiring probability of agents and depending on the availability of re-
sources (scarcity, balance, plentiful).

ready highly increased (20% with plentiful resources). Moreover, this payoff gain does
depend on the distribution of resources: the larger the number of resources, the larger
the payoff gain. We observe for both topologies that total rewiring (prew = 1) represents
a extreme case depending on the distribution of resources. Thus, using total rewiring
(continuously changing neighbors) has a rather negative effect when there is either
plentiful or balanced resources. However, although total rewiring is worse in terms
of payoff gain than lower rewiring probabilities, it is still better than no rewiring at
all. Notice that agents benefit from total rewiring when there is low resources in both
topologies. This is because the fact that agents continuously change neighbors help
them to find agents eager to trade in a scenario where resources are scant.

Finally, we are also interested in studying the sensitivity of our mechanism to free
riders (agents that, despite belonging to a coalition, do not follow its rules). Fig. 4
shows the percentage of gain obtained when using our mechanism without free riders
compared to the percentage of gain obtained as the percentage of free riders increases.
Observe that as the percentage of free riders increases, the percentage of gain de-
creases. The gain loss ranges from ∼ 14% to ∼ 33%. Thus, free riders to affect our
mechanism. However, notice that the gain loss is not dramatic. This is because our
mechanism manages to isolate a free rider within a coalition because its members re-
alize that the free rider is selfishly looking for benefitting from the coalition. Thus, the
free rider ends up not belonging to the coalition. However, since we assume anonymity
(agents are not identified with ids), after an agent is expelled from a coalition, she is
free to join another one because this new coalition knows nothing about the agent’s
past. Hence, future work should aim at extending our mechanism to cope with anony-
mous free-riders.

4.3. Analyzing coalition formation dynamics
As we have shown in the previous section, grouping agents into coalitions and rewiring
improves their payoff gains. Hereafter we analyze how the coalition formation mech-
anism, described in Section 3, partitions the agent population into coalitions agents
and independent agents. We pursue to measure the effectiveness of our coalition for-
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Fig. 4: Gains obtained by our mechanism when the agent population contains free
riders and when it does not (scale-free network, prew = 0.4 and plentiful resources
(90%)).

mation mechanism in helping agents to form coalitions. Moreover, we analyze how
rewiring influences the coalition formation process by observing the features present
in the coalitions that emerge.
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(a) Small-world network, no rewiring.
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(b) Scale-free network, no rewiring.
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(c) Small-world network, plentiful resources (90%).
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(d) Scale-free network, plentiful resources (90%).

Fig. 5: Independent versus coalition agents.

According to our model in Section 3, agents can decide either to stay independent
or join a coalition. Figure 5a and Figure 5b show the percentage of agents belong-
ing to coalitions depending on the distribution of resources on small-world and scale-
free topologies. Since agents employ no rewiring, both cases correspond to using the
coalition-only cooperation mechanism. Observe that the results are slightly affected by
the amount of resources in the agent population. On the one hand, around 90% of the
agents in the population become coalition agents on small-world networks, whereas
around 85% of the agents become coalition agents on scale-free networks. Figure 5c
and Figure 5d show the percentage of coalition agents when using rewiring. For both
topologies, the use of rewiring leads to a 5−10% increase in the percentage of coalition
agents. Thus, the percentage of coalition agents comes close to 95% on small-world net-
works and close to 95−100% on scale-free networks. Notice though that the percentage
of coalition agents decreases with total rewiring (prew = 1). Thus, total rewiring has
a detrimental effect on the coalition formation process, since when agents constantly
change their neighbors, rewiring acts as noise. Moreover, we have observed, that these
individual agents are ostracized. Since they do not show a cooperative behavior, other
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(a) Small-world network, medium rewiring proba-
bility (prew = 0.4).
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Fig. 6: Number of coalitions.
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(a) Small-world, medium rewiring probability
(prew = 0.4).
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(b) Scale-free, medium rewiring probability
(prew = 0.4).

Fig. 7: Average payoff gain per coalition.

agents rewire to other agents, isolating them. This is in line with the results of Fu et
al. [Fu et al. 2009], where they show that isolated individuals are often defectors.

Now we turn our attention to analyzing how our coalition formation mechanism par-
titions the agent population into different coalitions. Figure 6a shows the number of
coalitions as the percentage of resources in the population varies for the coalition-only
and coalition-plus-rewiring cooperation mechanisms. Observe that allowing agents to
rewire leads to significantly reduce the number of coalitions that are created by means
of coalition-only. In fact, coalition-plus-rewiring leads to less than a half of the coali-
tions created by means of coalition-only. Therefore, using rewiring has a compacting
effect on the coalition formation process: less and bigger coalitions. Since agents within
the same coalition cooperate, having less and bigger coalitions is bound to yield signifi-
cant payoff benefits. This is confirmed by Figure 7, which shows the percentage of pay-
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off gain that agents obtain when employing coalition-plus-rewiring versus employing
coalition-only. We observe that the benefits are larger as the percentage of resources in
the agent population is higher, thus our approach takes advantage of the availability
of resources to increase the benefits of the agents..

In general, as shown by Figure 6b, the larger the rewiring probability, the lower the
number of coalitions. Notice also that when there are abundant resources (90%), the
number of coalitions reaches its minimum. This occurs because, in general, the larger
the number of resources, the larger the number of possessors behaving as defectors,
and hence agents learn to group into bigger coalitions to avoid defection.

So far we have shown that the number of coalitions decreases as the rewiring prob-
ability employed by agents increases. Hereafter we show that the size of the coalitions
formed increases with rewiring. Figure 8 displays several histograms representing the
number of coalitions that are formed per coalition size as the rewiring probability in-
creases for both scale-free and small-world networks. Figures 8a, 8b, and 8c show how
the size of coalitions formed by agents increases as rewiring increases. Thus, in Fig-
ure 8a, there are 45 coalitions with 2 or less than 2 agents, being 22 the maximum
coalition size. In Figure 8b there are 15 coalitions with less than 10 agents, and the
maximum coalition size goes up to 80. Finally, in Figure 8c, a big coalition composed
of more than 250 agents is formed, while the rest of agents spread into coalitions with
less than 50 agents (e.g., there are 92-agent coalitions). Rewiring leads to this increase
in coalition sizes. Since agents are allowed to change their neighbors, they can choose
to wire to agents that provide more benefits and to join bigger coalitions to be more
efficient against non-cooperative behaviors. Together, the decrease in the number of
coalitions, and the increase in their size, results in higher payoffs for agents. Notice
that we observe the same effect of rewiring on small-world networks, as shown by
Figures 8d, 8e, and 8f.

4.4. Analysing agents’ behaviors
Now we focus on the individual behavior of agents employing the coalition-plus-
rewiring mechanism. We dissect the individual behavior of agents: (i) to understand
how they strategically behave with other agents inside and outside coalitions; and (ii)
to understand their rewiring behavior. Our aim is to learn how agents’ individual be-
haviors lead to cooperation.

4.4.1. Coalition behavior. Recall from Section 3.2 that agents within a coalition vote to
decide the coalition behavior to play both against insiders (coalition members) and
outsiders (agents out of the coalition). Such decisions depend on what agents learnt in
the past, i.e., on the actions that yield more payoffs. Note that agents choose the action
with the highest number of votes. In case of draw, they randomly choose one of the
tied actions. Therefore, consensus is always guaranteed. Next we study which actions
agents choose to improve their payoffs.

Figures 9a and 9b show the percentage of coalition agents per strategy (possessor or
trader) for both small-world and scale-free topologies as the distribution of resources
varies. As resource availability increases, coalition agents’ behaviors both against out-
siders and insiders (coalition mates) varies. Thus, along the line of [Fu et al. 2012],
we are interested in the conditions under which preferential in-coalition cooperation
emerges. Moreover, we are also concerned with assessing when behaving cooperatively
with outsiders of a coalition might be beneficial.

We consider first the small-world topology. In Figure 9a we clearly differentiate three
scenarios:

— Low cooperation. When there is less than 20% of resources, coalition agents do not
trade with outsiders, but mostly do it with insiders (around 75% of the agents behave
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as traders with coalition-mates). Since there are few resources to trade with, even
behaving as possessors with coalition-mates eventually occurs. Nonetheless, coali-
tion agents quickly learn that it is more beneficial to trade with coalition mates. To
summarize, the dominant strategy with outsiders when the percentage of resources
is very low is to be a possessor.

— No dominant strategy. When the percentage of resources is around 20%, there is a
transition in the behavior of coalitions with outsiders. Thus, we observe that half
of coalitions behave as possessors with outsiders, while the other half behave as
traders. At this point there is no dominant strategy with outsiders.

— High cooperation. Beyond 20% of resources, coalition agents progressively become
more and more cooperative with outsiders. A medium or large availability of re-
sources allows agents to perform more trades, obtaining higher benefits by cooper-
ating in this way. However, notice that the percentage of traders with insiders is
larger than with outsiders, though the gap closes as the availability of resources
increases because the number of trades increases and also the defective behavior of
outsiders. To summarize, trading becomes the dominant strategy against outsiders.
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(a) Scale-free network, no rewiring (prew = 0).
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(c) Scale-free network, high rewiring (prew = 0.8).
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(d) Small-world network, no rewiring (prew = 0).
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(e) Small-world, medium rewiring (prew = 0.4).
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Fig. 8: Histogram for the size of coalitions created when employing the coalition-plus-
rewiring cooperation mechanism. The x-axis represents the size of coalitions, and the
y-axis represents the number of coalitions.
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(a) Small-world topology.
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(b) Scale-free topology.

Fig. 9: Percentage of agents per strategy within coalitions.

Consider now the scale-free topology. We observe the very same scenarios described
above. However, there are slight differences. Firstly, in the low cooperation scenario,
the percentage of traders with outsiders is larger (hence the percentage of possessors,
is smaller). Secondly, once the transition between low and high cooperation occurs
(beyond 20% of resources), trading with outsiders very quickly becomes the dominant
strategy.

4.4.2. Rewiring behavior. Recall that the rewiring strategy described in Section 3 al-
lows agents to change their neighborhoods. Recall also from Section 4.2 that using
rewiring together with coalition formation, the so-called coalition-plus-rewiring coop-
eration mechanism, helps agents to obtain higher payoffs than only using coalition
formation (as shown in Figure 1) .

First, we analyze the rewiring behavior of coalition agents. Figure 10 shows the dis-
tribution of links for coalition agents with coalition-mates and with outsiders for both
small-world and scale-free topologies. The rewiring behavior radically differs depend-
ing on the network topology.

On the one hand, regarding small-world networks, we observe that as the rewiring
probability increases, the number of links that agents establish with coalition-mates
increases. Thus, when the probability of rewiring is large (beyond 80%), coalition
agents establish more links with coalition-mates than with outsiders. This results in
fewer and bigger coalitions, as shown in Figure 8, which are loosely connected with
outsiders. Therefore, cooperation increases and agents obtain larger payoffs, as shown
in Figure 3a 3.

On the other hand, we do not observe the same behavior on scale-free networks. In-
deed, as the rewiring probability increases, the number of links that agents establish
with coalition-mates increases too. However, the percentage of links with outsiders
remains significantly larger. To understand this differing behavior, we further investi-
gated how the topology of a scale-free network evolves. Figure 11 illustrates the final
topology of a network (depicted using Pajek [Batagelj and Mrvar 2003]) that started
as a scale-free network upon convergence. The network contains 100 agents (to ease

3Except when agents employ total rewiring, which has a detrimental effect, as discussed in Section 4.2.
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(a) Small-world topology. Medium availability of
resources (50%).
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(b) Scale-free topology. Medium availability of re-
sources (50%).

Fig. 10: Percentage of links of coalition agents: with insiders (coalition-mates) and with
outsiders.

Fig. 11: Final topology of a scale-free network after agents deploy the coalition-plus-
rewiring mechanism.

its display) with high availability of resources (90%) and medium rewiring probability
(prew = 0.4). Two different types of coalitions are formed:
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(a) Small-world network. High availability of re-
sources (90%).
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(b) Scale-free. High availability of resources
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Fig. 12: Percentage of links of coalition agents with outsiders.

— Hub-centered coalitions. A coalition that is organized around a hub. This hub is
connected to a large number of agents. Each of these agents has in turn a single
link to the hub.

— Clique-like coalitions. These are coalitions whose agents share many links with
coalition-mates, thus showing a clique-like structure.

We observe that the number of hub-centered coalitions is larger than the number of
clique-like coalitions. Therefore, this explains why the percentage of links with insiders
is low compared to the percentage of links with outsiders, as shown in Figure 10b.

Finally, we analyze how coalition agents establish links with outsiders. Figure 12
shows the percentage of links established by coalition agents with outsiders depend-
ing on the outsiders’ cooperation behavior in an environment with plentiful resources,
i.e., a highly defective environment in the presence of possessors. The figures show how
the percentage of links varies with the rewiring probability for both small-world and
scale-free topologies. In both networks, we observe that agents behaving as traders
with outsiders increase their number of links. The reason for this is that agents want
to have as neighbors the agents that provide the largest payoffs. With this aim, an
individual agent learns that rewiring to traders provides larger benefits, while a coali-
tion agent recommends to rewire to its neighbors’ traders (since these provide its with
the largest benefits). This increases the links of traders with outsiders which, in turn,
reinforces their trading strategy with outsiders since their gains are expected to in-
crease.

4.5. Discussion on the effects of varying payoffs
In the above-described experiments we have employed a payoff matrix based on the
one introduced in [Yee 2003]. In this section we analyze the effect of varying our pay-
off matrix while maintaining the constraints that payoff values must satisfy as stated
in Sect.3.1. Overall, our empirical evaluation indicates that changing the payoff ma-
trix does not have a big influence in the final results (provided PD inequalities are
maintained).

First, we observed the effects of increasing the value of Pu until it becomes almost
same as Re. In this case, although the number of agents behaving as possessors with
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insiders increases a 10%, trading prevails as the dominant strategy. Secondly, when
increasing the value of Re until it becomes almost the same as Te, there is an increase
of 20% of traders when resources are scarce. This result is coherent: when two traders
meet and they do not have a resource, they both cooperate, obtaining Re as payoff.
Finally, we have also investigated the effects of changing the value V . With this aim,
we doubled its initial value. This caused that the percentage of agents of each type
remains almost the same as in Fig.9. Nonetheless, we also observed that the total gains
of the population increase, being this increase higher when there are more resources
available.

4.6. Effects of rewiring on coalition formation
As mentioned above, rewiring and coalition formation are closely related. Thus, we
next focus on analyzing the effect of rewiring on coalition formation. Fig. 13 illustrates
the influence of rewiring on the the number of agents that change its coalition (Coali-
tion changes) versus the number of agents that change a link (Rewiring changes) for
different rewiring probabilities.

Fig.13a shows the percentage of coalition changes and of rewiring changes along
three different simulations corresponding to different rewiring probabilities (low,
medium, and high, namely prew ∈ {0.2, 0.4, 0.6}). As the probability of rewiring in-
creases, not only the number of partner changes (rewirings) increases, but also the
number of coalition changes. This is because the increase of rewiring leads to higher
coalition instability. Thus, although an agent can be stable in a coalition, after rewiring
she may discover a better coalition or become isolated from the coalition she belonged
to. Furthermore, we observe that the gap between the number of rewiring changes and
coalition changes also increases with the rewiring probability. That is, as we increase
the probability of rewiring, the number of partner changes proportionally increases.
However, coalition instability is lower than rewiring changes.

Fig.13b shows the effect of varying the value of the probability of rewiring during
a simulation. At the outset of the simulation, we set the probability of rewiring to a
large value (prew = 0.8). After 50 simulation ticks, we set the probability of rewiring
to 1/3 of its initial value. Thereafter the number of rewiring and coalition changes
drop until we turn up again the the probability of rewiring: we set it to 2/3 of its
initial value when reaching 100 simulation ticks. We may observe that both coalition
and rewiring changes increase again. After 150 simulation ticks we set back again the
probability of rewiring to 1/3 of its initial value. Finally, after 200 simulation ticks, we
set the probability of rewiring to its initial value. Experiments reported show that the
number of coalition and rewiring changes increases again to reach similar percentages
to the ones at the beginning of the simulation.

4.7. Summary
In this section we summarize the main results of the presented experiments. Unless
otherwise stated, the results are the ones when using our mechanism coalition-plus-
rewiring.

(1) Analysis of agents’ gains.
— Comparison of coalition-plus-rewiring with alternative mechanisms (base,

rewiring-only, coalition-only). Overall, there is an increase of benefits with in-
crease of resources. Moreover, our mechanism coalition-plus-rewiring leads to
higher payoffs than the others.

— Comparison of coalition-plus-rewiring with a leader-based mechanism. Our
mechanism outperforms the leader-based mechanism in terms of agents’ gains.
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(b) Influence of the rewiring probability (prew).

Fig. 13: Influence of rewiring on coalition formation

The larger the resource availability, the larger the percentage of gains of our
mechanism with respect to the leader-based one.

— Effects of rewiring. Rewiring leads to increase gains independently of the topol-
ogy when using coalition-plus-rewiring. In fact, introducing a small rewiring
(prew= 0.1) highly increases the gains already.

— Sensitivity of coalition-plus-rewiring to free riders. As the percentage of free rid-
ers increases, the percentage of gain decreases, ranging the loss between 14%
and 33%.

(2) Analysis of the effects of rewiring on coalition formation.
— Independent and coalition agents. Using coalition-only (without rewiring),

around 90% of agents are in a coalition. Using our mechanism coalition-plus-
rewiring leads to a 5-10% increase in the percentage of coalition agents. Total
rewiring (prew = 1) has a detrimental effect on the coalition formation process
because rewiring becomes noise when agents constantly change their neighbors.

— Effects of rewiring over coalitions. Using our mechanism coalitions-plus-
rewiring leads to significantly reduce the number of coalitions that are created
when compared to coalitions-only, in fact to less than half. Thus, the larger the
rewiring probability, the lower the number of coalitions. Moreover, rewiring also
leads to an increase in coalition sizes. Together, the decrease in the number of
coalitions, and the increase in their size, results in higher payoffs for agents.
Therefore, using rewiring has a compacting effect on the coalition formation
process: less and bigger coalitions.

— Effects of rewiring on coalition formation. As the probability of rewiring in-
creases, not only the number of partner changes (rewirings) increases, but also
the number of coalition changes. Moreover, as we increase the probability of
rewiring, the number of partner changes proportionally increases. However,
coalition instability is lower than rewiring changes.

(3) Analysis of coalition agents’ behavior.
— Trading strategies. As resource availability increases, coalition agents behaviors

both against outsiders and insiders (coalition mates) varies. We have observed
three scenarios: low cooperation (less than 20% of resources), where coalition
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agents do not trade with outsiders, but mostly do it with insiders (around 75%
of the agents behave as traders with coalition-mates); no dominant strategy (per-
centage of resources is around 20%), where half of coalitions behave as posses-
sors with outsiders, while the other half behave as traders; and high coopera-
tion (beyond 20% of resources), where trading becomes the dominant strategy
against outsiders.

— Rewiring behavior. As the rewiring probability increases, the number of links
that agents establish with coalition-mates increases. Moreover, agents behaving
as traders with outsiders increase their number of links.

5. CONCLUSIONS
In this paper we have presented a cooperation mechanism to help self-interested
agents to establish sustained and successful cooperation in resource exchange environ-
ments. The mechanism is based on: (1) a game-based interaction model that includes
the trading of resources; (2) a dynamic coalition formation mechanism that allows
agents to decide whether to join or leave coalitions, and to collectively self-determine
the inner and outer behaviors of a coalition (without the intervention of a leader); and
(3) a partner switching (rewiring) strategy based on experiences acquired in previous
interactions to help agents to avoid defective behaviors.

We empirically analyzed our mechanism to quantify its benefits with respect to al-
ternative cooperation mechanisms akin to others appearing in the literature. We ob-
served that our mechanism allows agents to obtain higher payoffs, ranging from 15%
to 30%, than other cooperation mechanisms. Furthermore, we found that these bene-
fits depend on the availability of resources in the environment. Thus, the larger the
number of resources, the larger the payoffs that agents are expected to obtain.

The benefits of our cooperation mechanism stem from the fact that rewiring has a
positive effect when coupled with coalition formation. Thus, we empirically showed
that rewiring helps agents to obtain higher payoffs (compared to exclusively using
coalition formation, the so-called coalition-only mechanism), independently of the net-
work topology. Indeed, even a small rewiring frequency can lead to up to a 20% increase
of payoffs with respect to coalition formation. In fact, we observed that the higher the
rewiring frequency, the less and bigger the number of coalitions, namely the lower the
clustering of the agent population. In fact, our mechanism leads to less than a half of
the coalitions created by means of coalition-only. Therefore, the use of rewiring has a
compacting effect on the coalition formation process: less and bigger coalitions. Since
agents within the same coalition cooperate, having less and bigger coalitions is bound
to yield significant payoff benefits. The reason for this is that since agents are allowed
to change their neighbors, they can choose to wire to agents that provide more benefits
and to join bigger coalitions to be more efficient against non-cooperative behaviors. To-
gether, the decrease in the number of coalitions, and the increase in their size, results
in higher payoffs for agents.

Finally, we also analyzed agents’ strategic behavior in the realm of our cooperation
mechanism. Our main observation is that agents adapt their behavior depending on
the availability of resources. In fact, in low cooperation scenarios, i.e., when there is
less than 20% of resources, the dominant strategy with outsiders is to defect. When the
percentage of resources is around 20%, there is a transition in the behavior of coali-
tions with outsiders, and there is no dominant strategy with outsiders. Beyond 20% of
resources, coalition agents progressively become more and more cooperative with out-
siders. Thus a medium or large availability of resources allows agents to perform more
trades, obtaining higher benefits by cooperating in this way. To summarize, trading,
i.e., cooperating, becomes the dominant strategy against outsiders.
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Regarding future work, we plan to improve our model by developing new mecha-
nisms to cope with agents with malicious behavior and/or free-riders, since we have
seen that our approach is not able to successfully discriminate them. Moreover, we
will also focus on studying sustainability of resources to analyze how it may influence
the benefits and convergence of the approach. As we have seen that self-organization
approaches and techniques used in [Pitt et al. 2012a] seem to be applicable to coalition
formation, we plan to study the similarities between their approach and ours, to see
how our results can contribute their problem, and vice-versa. Finally, we also plan to
study different fair division techniques to see its influence in our approach.
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