6,902 research outputs found

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment

    Get PDF
    Cortical atrophy is a biomarker of Alzheimer’s disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI

    Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders

    Get PDF
    Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimer’s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age range = 60–88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated

    Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: a multisite study.

    Get PDF
    Relapse of depression following treatment is high. Biomarkers predictive of an individual's relapse risk could provide earlier opportunities for prevention. Since electroconvulsive therapy (ECT) elicits robust and rapidly acting antidepressant effects, but has a >50% relapse rate, ECT presents a valuable model for determining predictors of relapse-risk. Although previous studies have associated ECT-induced changes in brain morphometry with clinical response, longer-term outcomes have not been addressed. Using structural imaging data from 42 ECT-responsive patients obtained prior to and directly following an ECT treatment index series at two independent sites (UCLA: n = 17, age = 45.41±12.34 years; UNM: n = 25; age = 65.00±8.44), here we test relapse prediction within 6-months post-ECT. Random forests were used to predict subsequent relapse using singular and ratios of intra and inter-hemispheric structural imaging measures and clinical variables from pre-, post-, and pre-to-post ECT. Relapse risk was determined as a function of feature variation. Relapse was well-predicted both within site and when cohorts were pooled where top-performing models yielded balanced accuracies of 71-78%. Top predictors included cingulate isthmus asymmetry, pallidal asymmetry, the ratio of the paracentral to precentral cortical thickness and the ratio of lateral occipital to pericalcarine cortical thickness. Pooling cohorts and predicting relapse from post-treatment measures provided the best classification performances. However, classifiers trained on each age-disparate cohort were less informative for prediction in the held-out cohort. Post-treatment structural neuroimaging measures and the ratios of connected regions commonly implicated in depression pathophysiology are informative of relapse risk. Structural imaging measures may have utility for devising more personalized preventative medicine approaches

    Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    Get PDF
    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging

    Morphometric reorganization induced by working memory training: perspective from vertex and network levels

    Get PDF
    Der sich beschleunigende globale Alterungsprozess und die Tatsache, dass sich die kog-nitiven Fähigkeiten mit dem Alter verschlechtern, was sich erheblich auf die Lebensquali-tät älterer Erwachsener auswirkt, insbesondere bei altersbedingten Störungen (z. B. kogni-tiver Beeinträchtigung, Demenz), weisen auf einen dringenden Bedarf an Ansätzen zum Schutz und zur Verbesserung der kognitiven Fähigkeiten sowie an Untersuchungen der neuronalen Substrate altersbedingter Veränderungen und der Neuroplastizität hin. Da man davon ausgeht, dass das Arbeitsgedächtnis (WM) die grundlegende Ursache für altersbe-dingte kognitive Beeinträchtigungen bei einer Vielzahl von kognitiven Fähigkeiten dar-stellt, ist das Arbeitsgedächtnistraining (WMT) zu einem aktuellen Thema und einem be-liebten Ansatz geworden. Frühere Studien haben gezeigt, dass das Arbeitsgedächtnistrai-ning (WMT) die kognitive Leistung verbessert. Die spezifischen Auswirkungen sowie die zugrunde liegenden neurobiologischen Mechanismen sind jedoch nach wie vor um-stritten. Ziel dieser Arbeit ist es, die durch das WMT induzierte neuronale strukturelle Plastizität auf mehreren Ebenen sowie die Verhaltenseffekte des WMT zu untersuchen. In der ers-ten Studie untersuchten wir die topographischen Veränderungen der Morphologie der grauen Substanz durch WMT, indem wir vier strukturelle Metriken (d.h. die kortikale Dicke, das kortikale Volumen, die kortikale Oberfläche und den lokalen Gyrifikationsin-dex, LGI) sowie die subkortikalen Volumina explorierten. Konkret wurden 59 gesunde Probanden mittleren Alters nach dem Zufallsprinzip entweder einem adaptiven WMT oder einer nicht-adaptiven Intervention zugewiesen. Alle Teilnehmer unterzogen sich vor und nach der 8-wöchigen WMT-Phase einer Neurobildgebung sowie kognitiven Tests. Vor und nach dem WMT wurden vier kortikale Metriken auf Scheitelpunktniveau und sieben subkortikale Volumina sowie die globale mittlere kortikale Dicke berechnet. Das wich-tigste Ergebnis war, dass die WMT-Gruppe im Vergleich zur aktiven Kontrollgruppe eine größere Zunahme der kortikalen Faltung in den bilateralen parietalen Regionen zeigte. Die Ergebnisse deuten darauf hin, dass strukturelle Veränderungen durch WMT in WM-bezogenen Regionen, insbesondere in parietalen Regionen, die Verarbeitung einer höhe-ren WM-Belastung erleichtern können. Darüber hinaus könnte die kortikale Faltung das relevanteste und plastischste Merkmal von WM und Lernen sein und WMT-Effekte stär-ker widerspiegeln als andere Metriken. Basierend auf den Ergebnissen der ersten Studie haben wir darüber hinaus untersucht, ob die trainingsinduzierten Effekte des WMT in der kortikalen Faltung auf Vertex-Ebene von topologischen Veränderungen begleitet werden. Zu diesem Zweck untersuchten wir in Studie zwei die durch WMT verursachte Plastizität auf Netzwerkebene mit Hilfe eines strukturellen Kovarianzansatzes (SC), der auf denselben Stichproben basiert. Es wurden gyrifikationsbasierte SC-Matrizen für jede Gruppe vor und nach dem Training sowie lon-gitudinale gyrifikationsbasierte SC-Matrizen erstellt. Innerhalb jeder Gruppe ergab die LGI-basierte SC-Analyse keine Hinweise auf WMT-induzierte Veränderungen der kor-tiko-kortikalen Verbindungen, weder in der WMT- noch in der aktiven Kontrollgruppe. Die Ergebnisse der longitudinalen SC-Analyse (unkorrigiert p < 0,005) zeigten, dass die trainingsinduzierten Veränderungen der kortikalen Faltungsintensität signifikante Unter-schiede zwischen Paaren von parietalen Regionen sowie Paaren von frontalen Regionen aufwiesen. Insgesamt deuten die kombinierten Ergebnisse dieser beiden Studien darauf hin, dass ers-tens WMT neuronale strukturelle Plastizität hervorrufen kann; zweitens die kortikale Fal-tung das relevanteste und plastischste Merkmal von WM und Lernen sein könnte, das die Auswirkungen von WMT besser widerspiegelt als andere Indikatoren auf Vertex-Ebene; und drittens die trainingsinduzierten lokalisierten Veränderungen der kortikalen Faltung von einem ähnlichen Muster vergleichbarer struktureller Veränderungen zwischen ROIs innerhalb der Regionen begleitet wurden. In Zukunft sind weitere Forschungen erforder-lich, um diese Ergebnisse zu wiederholen und zu validieren sowie um trainingsinduzierte topologische und topografische Veränderungen anhand einer breiteren Palette von Metri-ken und Eigenschaften zu untersuchen.The accelerating global aging process and the fact that cognitive abilities deteriorate with age, which has a significant impact on the quality of life of older adults, particularly those with age-related disorders (e.g., cognitive impairment, dementia), all point to an urgent need for approaches to protect and enhance cognitive abilities, as well as studies of the neural substrates of aging-related changes and neuroplasticity. Since working memory (WM) has been assumed to be the fundamental source of age-related cognitive impair-ments in a variety of cognitive abilities, working memory training (WMT) has become a hot topic as well as a popular approach. Previous studies have established that working memory training (WMT) improves cognitive performance. However, the specific effects, as well as the underlying neurobiological mechanisms, remain a matter of controversy. The purpose of this thesis is to investigate WMT-induced neural structural plasticity at multiple levels together with the behavioral effects of WMT. In study one, we investigated the topographic changes of grey matter morphology due to WMT by combining four structural metrics (i.e., cortical thickness (CT), cortical volume (CV), cortical surface area (CSA), and local gyrification index (LGI)) as well as subcortical volumes. Specifically, 59 healthy volunteers between the ages of 50 and 65 were randomly assigned to either an adaptive or a non-adaptive intervention. All participants underwent neuroimaging as well as cognitive testing before and after the 8-week intervention. Four cortical metrics at ver-tex level and seven subcortical volumes, as well as global mean cortical thickness, were calculated before and after the intervention. The most important finding was that the adap-tive WMT group showed greater increases in cortical folding in bilateral parietal regions in comparison to the active control group who performed the non-adaptive intervention. The results indicate that structural changes due to adaptive WMT in WM related regions, particularly parietal regions, may facilitate the processing of a higher WM load. In addi-tion, the cortical folding might be the most relevant and plastic feature of WM and learn-ing, reflecting WMT effects more than other metrics. Based on the findings of study one, we further asked whether the training-induced effects of WMT in cortical folding at vertex-level are accompanied by topological changes. To this end, study two investigated network-level plasticity due to WMT by using the struc-tural covariance (SC) approach based on the same samples. Gyrification based SC matri-ces for each group before and after training, together with longitudinal gyrification SC matrices, were constructed. Within each group, the LGI-based SC analysis revealed no evidence of WMT-induced changes in cortical-cortical connections, either in the WMT or the active control groups. The results of the longitudinal SC analysis (uncorrected p < 0.005) revealed that the training induced changes of cortical folding intensity showed sig-nificant difference between pairs of parietal regions as well as pairs of frontal regions. Overall, the combined findings of these two studies indicate that: firstly, WMT can pro-duce neural structural plasticity; secondly, cortical folding might be the most relevant and plastic feature of WM and learning, better reflecting the effects of WMT than other vertex-level indicators; and thirdly, the training induced localized changes in cortical folding were accompanied by the pattern of similar structural changes between ROIs within the regions. In the future, more research is required to replicate and validate these findings, as well as to investigate training-induced topological and topographic changes using a broader set of metrics and properties
    corecore