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Zusammenfassung 

Der sich beschleunigende globale Alterungsprozess und die Tatsache, dass sich die kog-

nitiven Fähigkeiten mit dem Alter verschlechtern, was sich erheblich auf die Lebensqua-

lität älterer Erwachsener auswirkt, insbesondere bei altersbedingten Störungen (z. B. kog-

nitiver Beeinträchtigung, Demenz), weisen auf einen dringenden Bedarf an Ansätzen zum 

Schutz und zur Verbesserung der kognitiven Fähigkeiten sowie an Untersuchungen der 

neuronalen Substrate altersbedingter Veränderungen und der Neuroplastizität hin. Da 

man davon ausgeht, dass das Arbeitsgedächtnis (WM) die grundlegende Ursache für al-

tersbedingte kognitive Beeinträchtigungen bei einer Vielzahl von kognitiven Fähigkeiten 

darstellt, ist das Arbeitsgedächtnistraining (WMT) zu einem aktuellen Thema und einem 

beliebten Ansatz geworden. Frühere Studien haben gezeigt, dass das Arbeitsgedächtnis-

training (WMT) die kognitive Leistung verbessert. Die spezifischen Auswirkungen sowie 

die zugrunde liegenden neurobiologischen Mechanismen sind jedoch nach wie vor um-

stritten.  

Ziel dieser Arbeit ist es, die durch das WMT induzierte neuronale strukturelle Plastizität 

auf mehreren Ebenen sowie die Verhaltenseffekte des WMT zu untersuchen.  In der ers-

ten Studie untersuchten wir die topographischen Veränderungen der Morphologie der 

grauen Substanz durch WMT, indem wir vier strukturelle Metriken (d.h. die kortikale 

Dicke, das kortikale Volumen, die kortikale Oberfläche und den lokalen Gyrifikationsin-

dex, LGI) sowie die subkortikalen Volumina explorierten. Konkret wurden 59 gesunde 

Probanden mittleren Alters nach dem Zufallsprinzip entweder einem adaptiven WMT 

oder einer nicht-adaptiven Intervention zugewiesen. Alle Teilnehmer unterzogen sich vor 

und nach der 8-wöchigen WMT-Phase einer Neurobildgebung sowie kognitiven Tests. 

Vor und nach dem WMT wurden vier kortikale Metriken auf Scheitelpunktniveau und 

sieben subkortikale Volumina sowie die globale mittlere kortikale Dicke berechnet. Das 

wichtigste Ergebnis war, dass die WMT-Gruppe im Vergleich zur aktiven Kontrollgruppe 

eine größere Zunahme der kortikalen Faltung in den bilateralen parietalen Regionen 

zeigte. Die Ergebnisse deuten darauf hin, dass strukturelle Veränderungen durch WMT 

in WM-bezogenen Regionen, insbesondere in parietalen Regionen, die Verarbeitung ei-

ner höheren WM-Belastung erleichtern können. Darüber hinaus könnte die kortikale Fal-

tung das relevanteste und plastischste Merkmal von WM und Lernen sein und WMT-

Effekte stärker widerspiegeln als andere Metriken. 
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Basierend auf den Ergebnissen der ersten Studie haben wir darüber hinaus untersucht, ob 

die trainingsinduzierten Effekte des WMT in der kortikalen Faltung auf Vertex-Ebene 

von topologischen Veränderungen begleitet werden. Zu diesem Zweck untersuchten wir 

in Studie zwei die durch WMT verursachte Plastizität auf Netzwerkebene mit Hilfe eines 

strukturellen Kovarianzansatzes (SC), der auf denselben Stichproben basiert. Es wurden 

gyrifikationsbasierte SC-Matrizen für jede Gruppe vor und nach dem Training sowie lon-

gitudinale gyrifikationsbasierte SC-Matrizen erstellt. Innerhalb jeder Gruppe ergab die 

LGI-basierte SC-Analyse keine Hinweise auf WMT-induzierte Veränderungen der kor-

tiko-kortikalen Verbindungen, weder in der WMT- noch in der aktiven Kontrollgruppe. 

Die Ergebnisse der longitudinalen SC-Analyse (unkorrigiert p < 0,005) zeigten, dass die 

trainingsinduzierten Veränderungen der kortikalen Faltungsintensität signifikante Unter-

schiede zwischen Paaren von parietalen Regionen sowie Paaren von frontalen Regionen 

aufwiesen.  

Insgesamt deuten die kombinierten Ergebnisse dieser beiden Studien darauf hin, dass ers-

tens WMT neuronale strukturelle Plastizität hervorrufen kann; zweitens die kortikale Fal-

tung das relevanteste und plastischste Merkmal von WM und Lernen sein könnte, das die 

Auswirkungen von WMT besser widerspiegelt als andere Indikatoren auf Vertex-Ebene; 

und drittens die trainingsinduzierten lokalisierten Veränderungen der kortikalen Faltung 

von einem ähnlichen Muster vergleichbarer struktureller Veränderungen zwischen ROIs 

innerhalb der Regionen begleitet wurden. In Zukunft sind weitere Forschungen erforder-

lich, um diese Ergebnisse zu wiederholen und zu validieren sowie um trainingsinduzierte 

topologische und topografische Veränderungen anhand einer breiteren Palette von Met-

riken und Eigenschaften zu untersuchen. 

 

  



Abstract  

 

 

v 

Abstract  

The accelerating global aging process and the fact that cognitive abilities deteriorate with 

age, which has a significant impact on the quality of life of older adults, particularly those 

with age-related disorders (e.g., cognitive impairment, dementia), all point to an urgent 

need for approaches to protect and enhance cognitive abilities, as well as studies of the 

neural substrates of aging-related changes and neuroplasticity. Since working memory 

(WM) has been assumed to be the fundamental source of age-related cognitive impair-

ments in a variety of cognitive abilities, working memory training (WMT) has become a 

hot topic as well as a popular approach. Previous studies have established that working 

memory training (WMT) improves cognitive performance. However, the specific effects, 

as well as the underlying neurobiological mechanisms, remain a matter of controversy.  

The purpose of this thesis is to investigate WMT-induced neural structural plasticity at 

multiple levels together with the behavioral effects of WMT. In study one, we investi-

gated the topographic changes of grey matter morphology due to WMT by combining 

four structural metrics (i.e., cortical thickness (CT), cortical volume (CV), cortical surface 

area (CSA), and local gyrification index (LGI)) as well as subcortical volumes. Specifi-

cally, 59 healthy volunteers between the ages of 50 and 65 were randomly assigned to 

either an adaptive or a non-adaptive intervention. All participants underwent neuroimag-

ing as well as cognitive testing before and after the 8-week intervention. Four cortical 

metrics at vertex level and seven subcortical volumes, as well as global mean cortical 

thickness, were calculated before and after the intervention. The most important finding 

was that the adaptive WMT group showed greater increases in cortical folding in bilateral 

parietal regions in comparison to the active control group who performed the non-adap-

tive intervention. The results indicate that structural changes due to adaptive WMT in 

WM related regions, particularly parietal regions, may facilitate the processing of a higher 

WM load. In addition, the cortical folding might be the most relevant and plastic feature 

of WM and learning, reflecting WMT effects more than other metrics. 

Based on the findings of study one, we further asked whether the training-induced effects 

of WMT in cortical folding at vertex-level are accompanied by topological changes. To 

this end, study two investigated network-level plasticity due to WMT by using the struc-

tural covariance (SC) approach based on the same samples. Gyrification based SC matri-

ces for each group before and after training, together with longitudinal gyrification SC 
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matrices, were constructed. Within each group, the LGI-based SC analysis revealed no 

evidence of WMT-induced changes in cortical-cortical connections, either in the WMT 

or the active control groups. The results of the longitudinal SC analysis (uncorrected p < 

0.005) revealed that the training induced changes of cortical folding intensity showed 

significant difference between pairs of parietal regions as well as pairs of frontal regions.  

Overall, the combined findings of these two studies indicate that: firstly, WMT can pro-

duce neural structural plasticity; secondly, cortical folding might be the most relevant and 

plastic feature of WM and learning, better reflecting the effects of WMT than other ver-

tex-level indicators; and thirdly, the training induced localized changes in cortical folding 

were accompanied by the pattern of similar structural changes between ROIs within the 

regions. In the future, more research is required to replicate and validate these findings, 

as well as to investigate training-induced topological and topographic changes using a 

broader set of metrics and properties. 
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1. Introduction 

1.1 Working memory  

What is working memory (WM)? This term actually evolved from the concept of short-

term memory, which refers to the capacity for temporally holding information but not 

manipulating it. In contrast, WM, as the term itself implies, includes two key parts: 

“memory” and “working”, which represent a combination of temporal storage of infor-

mation and manipulation. Namely, it is required to hold information and perform mental 

operations on that information at the same time. WM is defined as a cognitive system that 

is capable of retaining a limited amount of temporal accessible information and manipu-

lating and using that information in the course of ongoing cognitive processing (A. 

Baddeley, 2010; A. D. Baddeley & Hitch, 1974). The amount of information that can be 

accessed is limited  by the capacity of the WM, which is varying among individuals 

(Cowan, 2005).  

Several theoretical models of WM have been proposed for how WM functions (e.g., 

multi-store model, embedded-processes model, multiple component model et al.) 

(Atkinson & Shiffrin, 1968a; A. D. Baddeley & Hitch, 1974; Cowan, 1999). Here I will 

focus mainly on the model proposed by Baddeley – the multicomponent WM model, 

which is the most influential and accepted model for explaining WM (A. Baddeley, 2010; 

A. D. Baddeley & Hitch, 1974).  

An initial three-component model was proposed by Baddeley and Hitch (1974), including 

three critical components: an attentional system that is aided by two short-term storage 

systems. The role of the attentional system (i.e., the central executive) is to guide execu-

tive attention to the most relevant aspects of information in a time period and to manage 

the WM capacity. Two additional short-term storage systems (i.e., the visuospatial 

sketchpad and the phonological loop) are in charge of verbal acoustic information and 

visual information, respectively. Over the years, the model has been refined and improved; 

today, the term “multicomponent WM model” refers to the revised version, which in-

cludes a fourth component called the episodic buffer (A. Baddeley, 2010). The episodic 

buffer is a temporal storage system with a limited capacity that allows for the interaction 
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and combination of visual and verbal information as well as other types of information 

(e.g., smell and taste) are allowed to be interacted with and combined (A. Baddeley, 2012). 

Namely, the episodic buffer serves as a mental workspace in which it is capable of holding, 

manipulating, and integrating various sensory inputs. Apart from serving as a buffer for 

information exchange between the components of WM, the episodic buffer is also linked 

to perception and long-term memory (LTM). Thus, WM is not only for current cognitive 

processing (short-term use), but also for further cognitive processing. By bridging per-

ception, LTM and action, WM aids the brain in organizing new information for long-term 

storage (A. Baddeley, 2000). The brain may store information in a messy and disor-

ganized manner, which has an impact on LTM, if there are deficits in WM. LTM refers 

to the storage of large quantities of information over a prolonged period of time. The 

duration as well as the capacity of LTM is potentially unlimited (Atkinson & Shiffrin, 

1968b).  

For a schematic overview of the multicomponent WM model, please see Figure 1 (A. 

Baddeley, 2010).  

 

Figure 1: A schematic overview of the multicomponent model of working memory 

(A. Baddeley, 2010).  

Neuroimaging techniques have enabled numerous neuroimaging studies aimed at decod-

ing WM from a neuroscientific perspective. Previous neuroimaging studies have demon-

strated that the degree to which different brain areas contribute to WM varies significantly 



Introduction  

 

 

3 

across the lifespan. During early development, WM is primarily dependent on subcortical 

structures (e.g., hippocampus, thalamus, striatum, and insula), with gradual extension to 

cortical structures in late childhood/early adolescence, and then WM is primarily depend-

ent on a cortical network of frontoparietal regions (Froudist-Walsh et al., 2018). Due to 

the fact that the frontoparietal network is the primary network associated with WM (e.g., 

greater involvement in WM), it is also referred to as the WM neural network. This net-

work is composed primarily of brain areas including the anterior cingulate cortex (ACC), 

the parietal cortex, as well as the dorsolateral prefrontal cortex (DLPFC)(Kim et al., 2015; 

Osaka et al., 2003). WM is involved in multiple brain regions, meaning that WM relies 

on not only the functional specialization of isolated brain regions, but also the functional 

integration of relevant brain areas (A. D. Baddeley, 2000). Please see Figure 2 that depicts 

the neural representation of the multicomponent WM model (Chai et al., 2018). 

 

Figure 2: Neuroanatomical depiction of multicomponent WM model (Chai et al., 

2018). With permission from Chai et al. (2018) 

1.2 Aging, working memory, and brain structure 

With the development of society, economy and medical care, people worldwide are living 

longer. In 21st century, the life span of the population has changed unprecedentedly, and 

one of the most significant population trending is aging (Izekenova et al., 2015). Accord-

ing the results of the 2019 version of World Population Prospects, the world’s population 

aged 65 years and older was 702.9 million in 2019, which was over 9% of the world’s 

population (https://population.un.org/wpp/). According to the United Nations Population 

Fund (UNPFA), the number of people aged 65 years and older is expected to reach 1548.9 

https://population.un.org/wpp/
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million by 2050. The global population over the age of 65 is projected to hit 16% in 2050 

(see Figure 3).  Aging is a global phenomenon and the pace of population aging world-

wide is increasing dramatically. Global aging has a significant impact on society and 

brings all countries the challenge – how to enable people experience healthy aging, in 

other words, how to develop and maintain the functional ability in order for people to 

enjoy a relatively good quality of life in their later years (Sciubba, 2020).  

 

Figure 3: Proportion of the population aged 65 or older.  

Source: United Nations Department of Economic and Social Affairs, Population Division (2019). 

World Population Prospects 2019.  

Human aging is related to the accumulated changes of physical, psychological, behavioral, 

and social changes in a human being over time (Shock, 2020). As people age, they may 

grow wiser as the effects of experience and learned knowledge. However, they also ex-

perience some decreases in cognitive abilities, which are referred to as fluid intelligence. 

Previous studies of cognitive function across the life span revealed that performances on 

measures of fluid intelligence including short-term memory, working memory, speed of 

processing, as well as long-term memory decline with age (Glisky, 2007; Park et al., 2002) 

(see Figure 4). Specifically, WM has been hypothesized to be the primary cause of age-

related deficits in a variety of cognitive abilities (e.g., long-term memory, language, de-

cision making, and problem solving) (Glisky, 2007). WM has been hypothesized as the 

fundamental source for the reason that WM is associated with higher-order cognitive 
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processes (e.g., reasoning, problem solving, planning, etc.) That appears to be critical for 

a variety of cognitive tasks and engaging processing strategies. (Diamond, 2013; Kane et 

al., 2007). Namely, WM is associated with higher-order cognitive functions which are 

crucial in daily life.  

 

Figure 4: Behavioral performance on measures of cognitive function (fluid intelli-

gence) across life span. Adapted from Park et al. (2002) 

Along with the decline in cognitive functions, the brain’s size and/or its weight decreases 

with age. It has been reported that brain atrophy is estimated to occur at a rate of approx-

imately 5% per decade after the age of 40 (Peters, 2006). The shrinking of grey matter is 

one of the most significant brain structural deteriorations with increasing age, which may 

be due to the brain atrophy stemming from changes in neurons (e.g., shrinkage of neurons 

and neuronal cell death), dendrites (decreases in the number and length), synaptic spines, 

and synapses (Peters, 2006; Shock, 2020). Age-associated changes in brain structure have 

been reported both globally and regionally, however, the changes are not uniform across 

the whole brain. In other words, neuroanatomical changes do not occur to the same extent 

in all brain regions. With aging, certain regions of the brain experience shrinkage, espe-

cially those that are important to learning complex mental activities. Previous studies 

have shown that the prefrontal and temporal cortex, as well as subcortical cortex (e.g., 

putamen, thalamus, and accumbens), are the areas most affected by age (Fjell & Walhovd, 

2010). In fact, the age-related neuroanatomical changes, to a substantial degree, could 
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explain the reductions in selected cognitive functions in the elderly population (for a re-

view see Fjell & Walhovd (2010)). For example, with aging neurons in specific regions, 

or/and the number of synapse/synaptic dendrites may be reduced, which can cause com-

munication issues between neurons or cells. These changes can affect cognitive functions. 

Actually, Nissim et al. (2016) reported that the worse performance on WM tasks was 

associated with a reduction in cortical surface areas of the frontal cortex.  

Cognitive declines and neurostructural deficits associated with aging, increase suscepti-

bility to and frequency of disease, frailty, or disability. In fact, aging is a leading risk 

factor for a variety of human diseases, especially chronic diseases. For instance, dementia 

becomes more prevalent with advancing age (Larson et al., 2013). Approximately 3% of 

people aged 65-74 years, 19% of those aged 75-84, and nearly half of those over 85 years 

old have dementia. Almost all the age-related cognitive, biological, neurostructural, and 

behavioral changes are related. With aging, there is a dynamic interplay between factors 

that lead to neurodegeneration and cognitive impairments and factors that lead to neuro-

plasticity and improved cognitive function (see Figure 5).  

 

Figure 5: Aging related behavioral and neural changes as well as modifying factors. 

Adapted and modified from Kraft (2012) and Park et al. (2009). 
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In the light of the global aging phenomenon and the gradual deterioration of cognitive 

abilities with age, as well as the critical impact of cognitive functions on quality of life in 

the elderly population, particularly elderly individuals with age-related diseases (e.g., 

cognitive impairments, dementia), techniques to improve and maintain cognitive abilities, 

are gaining increasing importance (McNab et al., 2015). Furthermore, it is desirable to 

understand the neural mechanisms underlying aging-related changes as well as the neu-

roplasticity of the aging brain. In fact, there is a range of evidence suggesting that even 

the older brain has considerable plasticity or is able to adapt to new challenges/tasks (Park 

& Bischof, 2013).  

1.3 Neuroanatomical measures  

Grey matter and white matter are the major components of the central nervous system. 

White matter consists of axons that are coated with myelin, while grey matter consists of 

neural cell bodies, dendrites, synapses, and unmyelinated axons (Schultz, 2001). Both 

grey matter and white matter are essential components of the brain, however, grey matter 

plays the most significant part in allowing humans to function normally daily 

(Mercadante & Tadi, 2021).  

Magnetic resonance imaging (MRI) is a powerful brain imaging technique invented by 

Peter Mansfield and Paul Lauterbur that utilizes magnetic fields and radio waves to pro-

duce high quality two-dimensional or three-dimensional images of brain structures/func-

tions without the use of ionizing radiation or radioactive tracers (Lauterbur, 1989; 

Weishaupt et al., 2007). Thus, being non-invasive and posing little health risk, MRI is a 

safe technique which can be used even on infants. MRI has been widely applied in med-

ical diagnosis (e.g., tumor and injury) as well as in academic researches. By using specific 

MRI sequences, different MRI signals can be acquired from tissue types (i.e., using struc-

tural MRI) or from metabolic changes (i.e., using functional MRI). Specifically, structural 

MRI (sMRI) provides detailed information to qualitatively and quantitatively evaluate the 

shape, size, location, and integrity of grey and white matter structures of the brain by 

using different types of sMRI sequences (e.g., T1-weighted sMRI, T2-weighted sMRI, 

and diffusion tensor imaging) (Mukherjee et al., 2008; Torkzad et al., 2014). Hereas, I 

will focus primarily on T1-weighted sMRI, which measures spin-lattice relaxation by us-

ing a short echo time (TE) and repetition time (TR). The two most prominent approaches 
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(i.e., Voxel-Based Morphometry and Surface-Based Morphometry) used to analyze high-

resolution T1-weighted data will be described below. 

1.3.1 Voxel-based morphometry 

Voxel-based morphometry (VBM) is one of the key computational approaches in neuro-

anatomy to investigate the differences in local distribution of grey matter density or grey 

matter concentration by comparing image intensities voxel by voxel (Ashburner & 

Friston, 2000). Unlike traditional morphometric methods which measure specific brain 

structures, VBM provides a comprehensive assessment of neuroanatomical differences 

throughout the entire brain.  

 

Figure 6: Overview of voxel-based morphometry (VBM) analysis. Adapted from 

Kurth & Luders (2015)  

The concept of VBM is composed of three key processing steps (Figure 3). Briefly, after 

correcting for inhomogeneities, the high-resolution T1-weighted images are segmented 

into grey matter, white matter, and cerebrospinal fluid. The obtained gray matter segment 

is then registered to a standard template. Afterwards, the spatially normalized data are 

smoothed with an isotropic Gaussian Kernel so that each voxel represents the average of 



Introduction  

 

 

9 

itself and its neighbors. Finally, the smoothed images are used for further voxel-wise sta-

tistical analysis (Kurth & Luders, 2015; Andrea Mechelli et al., 2005). 

Of note, though VBM is methodologically simple and provides comprehensive infor-

mation about grey matter intensity globally, it’s harder to interpret the results because 

grey matter density/concentration is a mixture of thickness, surface area, gyrification reg-

istration, volume-based smoothing, and intensity. In other words, VBM is incapable of 

isolating the geometrical basis underlying cortical changes, which means that changes in 

local grey matter density or concentration may be caused by variations in cortical thick-

ness, surface area, cortical folding, signal intensity, or any possible combination of these 

measures.  

1.3.2 Surface-based morphometry 

Surface-based morphometry (SBM) or surface-based analysis (SBA), differing from 

VBM described above which ultimately analyzes brain properties at the voxel level, is a 

set of brain morphometric approaches used to construct and analyze surfaces that are rep-

resentative of structural boundaries within the brain (Dale et al., 1999; Fischl et al., 1999). 

The boundaries are generated from a cortical surface model, where a grid consisting of a 

set of vertices and the adjacencies of each vertex is used to define the boundaries between 

different tissue types.  

The boundaries between white matter and grey matter or between grey matter and cere-

brospinal fluid (CSF) are referred to as white surface and pial surface respectively, which 

are mainly involved in SBM analyses (Dale et al., 1999). The major steps involved in 

SBM analysis includes surface reconstruction (The reconstructed surfaces, i.e., pial sur-

face and white surface can be used to calculate different cortical metrics, for instance 

thickness, surface area, etc.), surface inflation and surface mapping (Figure 4).  
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Figure 7: Workflow of surface-based morphometric analyses.  

SBM enables researchers to estimate properties of brain structure by using more specific 

surface-based metrics including cortical thickness (CT), cortical volume (CV), cortical 

surface area (CSA), and local gyrification index (LGI) (Fischl & Dale, 2000). CT refers 

to the shortest distance between gray-white boundary (white surface) and the gray-cere-

brospinal fluid interface (pial surface), whereas CSA (the total area of the surface encom-

passing a brain region) was calculated as the sum of the area of the vertices within a given 

region on the white surface (Winkler et al., 2012). The local gyrification index (LGI) was 

calculated as the ratio of the folded pial surface (25mm radius circular region of interest) 

to the surface of the corresponding smoothed outer surface using surface-based, 3D gyr-

ification measurements (Schaer et al., 2008). The values of LGI indicate the degree of 

complexity of folding at a given pial surface, and LGI values can range between 1 and 5, 

with greater LGI values being buried in the sulcal folds (Schaer et al., 2012).   

SBM has several advantages over VBM. First, it has been demonstrated that brain func-

tion has not only voxel-based organization but also surface-based organization  (Sereno 

et al., 1995). Thus, SBM contributes to the understanding of the cortical mechanisms 

related to specific functions. Second, SBM can provide a more precise and accurate in-

terpretation of cortical morphometry through different measurements of CT, CSA, and 

CV, which allows for the differentiation of CT and CSA contributions to CV. CT and 
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CSA have non-identical genetic backgrounds, cellular mechanisms, as well as develop-

mental trajectories (Panizzon et al., 2009). Third, the surface-based methods address a 

number of the constraints and methodological issues inherent to VBM (e.g., significantly 

higher accuracy in registration than any form of volume-based registration) (Ghosh et al., 

2010; Montal et al., 2018).  Additionally, SBM enables the evaluation of cortical folding 

which is quantified using the measure cortical folding (Schaer et al., 2008; Zilles et al., 

2013).  

1.3.3 Structural covariance 

The structural covariance (SC) analysis is a well-established and widely used structural 

MRI measure to infer cortico-cortical connectivity, despite the fact that the neurobiolog-

ical mechanisms underlying the inter-regional SC have yet to be well elucidated 

(Alexander-Bloch et al., 2013). SC characterizes the relationship between pairs of brain 

regions in morphological terms (e.g., CT, CV, etc.) based on the assumption that inter-

individual differences in morphology (i.e., regional structure) covary within communities 

of brain regions (Alexander-Bloch et al., 2013). For instance, the changes of cortical 

thickness or cortical volume in one region have impact on the volume or thickness of 

other regions which are structurally and functionally connected (Geerligs et al., 2016; A. 

Mechelli et al., 2005). It has been reported that SC is related to functional connectivity as 

well as structural connectivity captured by white matter tractography (Romero-Garcia et 

al., 2018). Nevertheless, SC is a unique metric for assessing cortico-cortical connectivity 

on the grounds that it represents, to a certain extent, the outcome of a mutually trophic 

benefit to distant regions that are anatomically connected, in a way that other metrics 

cannot. The SC is related to synchronous changes between neurons during development. 

It is hypothesized that synapses between distant neurons during development may result 

in mutually reinforcing trophic effects under the influence of common factors (e.g., ge-

netic, environmental, functional activation, white matter connectivity, and so on), leading 

to structural covariation at the macroscale level. (Alexander-Bloch et al., 2013). In addi-

tion, this connectivity measure (i.e., SC) is sensitive to altered connectivity and brain 

network organization (Bethlehem et al., 2017; Wannan et al., 2019).   

The concept of SC analysis is composed of three key processing steps: 1) Parameter (e.g., 

CT, CV, LGI, etc.) estimation of each predefined brain region; 2) Computing the inter-

regional correlations of the parameter estimation; 3) Brain-wise correlation matrix of each 
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group (i.e., group-wise SC matrices were created). Please see Figure 8 that illustrates the 

workflow of SC analysis (Alexander-Bloch et al., 2013). 

 

Figure 8: Overview of structural co-variance measurement in human brain MRI 

data. With permission from Alexander-Bloch (2013). 

1.4 Working memory training 

Working memory training (WMT) is aimed to improve the performance of WM. In recent 

years, WMT targeting to improve the WM capacity has been an important topic, espe-

cially the transfer effects of WM.  

As mentioned in section 1.1, several theoretical models have been proposed to explain 

how WM functions, which are based on different assumptions. Notably, all the theoretical 

models assume that the amount of accessible information used for manipulation and 

maintenance (i.e., WM capacity) is limited and varies considerably across individuals. 

Additionally, WM capacity is closely related to other higher-order cognitive functions 

(e.g., reading, fluid intelligence, comprehension, and reasoning abilities) that are crucial 

for each day life functioning (Fukuda et al., 2010; Johnson et al., 2013; Süß et al., 2002). 

Thus, WM capacity not only can predict how WM performance and performance on other 

high-level cognitive abilities change across the life-span, but also can predict individual 

differences in other cognitive abilities (Cowan et al., 2005; Krogsrud et al., 2021).  

Given the link between WM capacity and higher-order cognitive functions, the limitations 

of WM may place restrictions on higher-level cognitive functioning. This suggests that if 

WM capacity can be improved by training, this should generalize benefits to other cog-

nitive skills as well (Shipstead et al., 2010). Thus, WM training (WMT) with the goal of 

improving WM capacity has become an important and hot topic (von Bastian & Oberauer, 

2014). A variety of tasks, such as the delayed match-to-sample task, Sternberg, N-back 



Introduction  

 

 

13 

task, and span tasks can be used to assess WM capacity as well as be used as WMT tasks 

(Oberauer, 2005; Wilhelm et al., 2013).  

The transfer effects induced by WMT have become one of the key research focuses. Ac-

cording to the similarity between the transfer and the trained tasks, the effects of WMT 

can be categorized into practice effects, near, and far transfer effects. Practice effects re-

fers the cognitive improvements in the trained task (Jolles et al., 2012), whereas the im-

provements in tasks with similar materials are near effects, far transfer effects are those 

improvements on other cognitive domains (e.g., improvements on fluid intelligence, ac-

ademic and behavioral outcomes) that differ from the WMT programs (Melby-Lervag et 

al., 2016). The key for WMT is the possibility that the training induced improvements 

will not only transfer to tasks with different materials but also lead to improvements on 

other cognitive abilities like fluid intelligence, reasoning, and decision making (Jaeggi et 

al., 2008). 

1.5 Previous studies – working memory training effects  

As mentioned above, on the behavioral level, the primary goal of WMT studies is to gen-

eralize transfer effects, particularly far transfer effects that may manifest as enhanced 

abilities for daily life functioning (Jobe et al., 2001). Previous studies have shown con-

sistent and repeated evidence that WMT can produce strong practice effects (i.e., WMT 

induced cognitive improvements in the training tasks) (Sala et al., 2019; Soveri et al., 

2017). However, the findings of transfer effects induced by WMT are inconsistent, even 

the conclusions of meta-analyses are contradictory. Inconsistencies in these findings have 

been attributed to a number of factors (e.g., methodological differences), including the 

existence or lack of an active control group, training tasks, training intensity, duration, 

and so on. Notably, among these methodological differences, the presence and type of the 

control group is the primary contributor to the inconsistent results of previous studies 

(Soveri et al., 2017). Significant improvement in fluid intelligence in healthy young adults 

was reported in one meta-analysis study by Au et al. (2015), though the training induced 

transfer effect was small. Nevertheless, other meta-analyses did not find significant im-

provements in any measure of ‘far transfer’ (Melby-Lervag et al., 2016; Sala et al., 2019; 

Soveri et al., 2017).  
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Regarding neuroimaging studies of WMT, most studies investigating the neural effects 

of WMT were based on task-based fMRI. A meta-analysis by Salmi et al. (2018) reported 

changes in brain activity induced by WMT within different networks related to WM, such 

as the dorsal attention and salience network and so on.  Previous WMT investigations, 

particularly those employing n-back tasks as the training paradigm, indicate that training-

induced activation of WM-related areas appears to decline under low and moderate de-

mands (e.g., no higher than 3-back) (Aguirre et al., 2019; Clark et al., 2017; Heinzel et 

al., 2016; Miro-Padilla et al., 2019; Schneiders et al., 2011; Schneiders et al., 2012; 

Schweizer et al., 2013), but increase under higher loads (e.g., 4-back and 5-back) 

(Buschkuehl et al., 2014; Schweizer et al., 2013). Our group reported significantly de-

creased neural activity in WM characteristic regions in the experimental group compared 

to the active control group based on verbal WM task fMRI data (i.e., when comparing the 

activity of 3-back vs. 0-back) (Emch, Ripp, et al., 2019). 

The effects of WMT on anatomical structure have yet been investigated only by a handful 

of research to date, and even scarcer in healthy elderly. Moreover, the findings of these 

restricted investigations differed from one another. Takeuchi and his colleagues observed 

a decrease in grey matter volume in frontoparietal areas following mental calculation 

training for five days in a group of healthy young population (Takeuchi et al., 2011). 

Whereas, in a relatively recent investigation, greater grey matter volume was observed in 

several clusters located in posterior cingulate, the cerebellum, and the temporal lobe in 

WMT group following a three-month adaptive training, compared to a passive control 

training (Colom et al., 2016). Additionally, they reported significant changes in CT and 

CSA by performing surface-based analysis on the same dataset with a-priori region of 

interests (ROIs) (Roman et al., 2016). Of note, both of the two studies used a young 

healthy cohort with restriction to female college students, limiting their conclusions/dis-

coveries were not comparable to other populations (e.g., male participants or other groups 

with different age). In addition, because the supervised training was conducted in the 

laboratory, the findings may not generalize to more natural environments (e.g., home-

based training). Engvig et al. (2010) found increased thickness in the right fusiform and 

insula following an 8-week WMT in a healthy elderly population were accompanied by 

reduced thickness in a passive control group. Metzler-Baddeley et al. (2016a, 2016b) dis-

covered that WM training-related increased CT locating in right caudal middle frontal 

cortex, increased CV in the left pallidum, while decreased CT in the right insula, by using 
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a-priori ROIs. However, another recent ROI-based study found no evidence of significant 

grey matter plasticity (i.e., in terms of changes in grey matter volume, CSA, and CT) 

following a 6-week WMT with n-back paradigm (Lawlor-Savage et al., 2019). In general, 

the findings of these small investigations did not corroborate one another (e.g., training 

induced changes in brain regions were heterogeneous both spatially and in the direction 

of changes (i.e., increase vs. decrease)). Notably, most of the above reported structural 

changes in brain regions are also frequently reported to have changes in brain activation 

as revealed by fMRI studies. 

In addition to training induced regional changes (i.e., changes at the vertex level), it is 

critical to investigate and quantify the relationship between WMT-induced changes in 

different brain regions, as this reveals training-related changes in topology. The SC is a 

more appropriate model for illustrating how training-induced changes in ROIs interact 

(i.e., training induced topological changes). To our knowledge, no study has been con-

ducted to date on the topological changes induced by WMT. Previous studies have found 

that changes in structural covariance are associated with cognitive abilities, ageing, and 

age-related disorders (e.g., cognitive impairments and Alzheimer’s disease (AD)) (DuPre 

& Spreng, 2017; Pichet Binette et al., 2020; Qing et al., 2021). Thus, if we can demon-

strate that non-pharmacological interventions such as WMT can affect topology, this will 

aid in our understanding of the neural mechanisms underlying learning and aging.  

Taken together, given the context of global aging as well as the aging related changes in 

the brain and WM, it is critical to develop effective interventions to preserve health and 

cognitive function, as well as to prevent or even help alleviate the burden of age-related 

diseases. Of those interventions, WMT has become an important and hot topic since WM 

has been assumed as the fundamental source of age-related impairments in a variety of 

cognitive abilities that are crucial for daily life. According to the above literature review, 

the grey matter structural effects induced by WMT have not been thoroughly investigated, 

particularly in middle-aged and elderly individuals. Previous evidence for the neural 

structural effects of WMT on grey matter was not congruent. Variations in training ap-

proaches (e.g., active vs. passive control groups, training paradigms, intensity, location, 

duration, and supervision), populations (e.g., specific age groups, pure male/female co-

horts), and analyzing methods (e.g., a-priori ROIs vs. whole brain approaches, voxel-

based vs. surface-based methods) may account for some of these inconsistencies and sug-

gest the necessity of additional empirical evidence based on well-controlled studies.  
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2. Purposes of the thesis 

Given the foregoing, particularly the contradictory literature, it seems worthwhile to ex-

plore the WMT induced grey matter plasticity at multiple levels (i.e., vertex-level, re-

gional-level, global-level). The purpose of this thesis was of twofold.  

Firstly, the study one aimed to assess if there is WMT-induced grey matter plasticity in a 

middle-aged group. If so, which neural metric is the most relevant and most plastic char-

acteristic in terms of working memory and learning. To this end, a working memory group 

and an active control group of healthy volunteers (50-65 years old) completed neuroim-

aging as well as cognitive testing before and after an 8-week WMT. The WMT group 

received adaptive n-back training, while the CON group received non-adaptive training 

with a low-level of fixed difficulty by using the equivalent stimuli. We utilized adaptive 

n-back training because it is widely used and considered to be one of the most efficient 

WMT paradigms. We chose this particular age group (50–65 years old) for several rea-

sons. First, this age group occurs immediately before the onset of aging, which is the 

primary risk for a variety of neurodegenerative diseases (e.g., dementia). Thus, early pre-

vention is necessary to protect the brain from age-related damage, and the age range cho-

sen appears to be optimal for an early but not excessively early prevention. Second, the 

human brain is dynamic and plastic throughout life, which means that neural plasticity 

varies across the lifespan. Thus, the mechanisms underlying young adult brain plasticity 

may not generalize to elderly adults. Given the relatively intact cognition and lack of 

significant atrophy in middle-aged individuals, training in this restricted age group may 

be more promising than training in older adults, thereby excluding potentially confound-

ing effects on WM-related neural plasticity. Therefore, WMT in this age group, if proven 

to be successful, could result in a delay of cognitive decline due to age or disease. Surface-

based morphometry was employed to investigate the neuroplastic effects due to WMT on 

grey matter structure. Specifically, we investigated the WMT related changes in vertex-

wised grey matter metrics (CT, VSA, CV, and LGI) as well as subcortical volumes. Ad-

ditionally, cognitive performance on an extensive cognitive test battery were accessed 

before and after the intervention in order to capture the transfer effects of WMT. 

Secondly, based on the findings from study one, we aimed to capture whether grey matter 

plasticity in cortical folding at vertex level co-occurs with plasticity at a network level.  

The vertex-level results indicate that cortical folding might represent the most relevant 
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and most plastic characteristic of working memory and learning, reflecting WM training 

effects to a greater extent than the other metrics (i.e., CV, CT and CSA) at the vertex level. 

In light of the vertex-level findings, we further asked whether the WMT-induced grey 

matter plasticity observed in cortical folding also occurs at the network level. When com-

pared to analyses at the vertex level, which miss out on quantifying the relationship be-

tween changes across different cortex regions, the structural covariance analysis is a more 

robust method for capturing the pattern of coordinated changes between ROIs due to 

training. In addition, cognitive functions, especially higher order cognitive functions, in-

stead of being determined by separate processing in specialized subsystems (i.e., function 

segregation), rely on the communications and the functional integration of different brain 

regions (i.e., global cooperation between different subsystems or function integration). 

Thus, it’s of importance to characterize whether WMT could produce grey matter plas-

ticity of large-scale neural connectivity (cortico-cortical connectivity), or whether net-

work-based structural connectivity inferred from structural covariance could explain the 

topological distribution of WMT induced grey matter effects across the cortical cortex. 

These can provide further insight into WM training-related neural plasticity by evaluating 

interregional relationships in grey matter structure. We hypothesized that network-based 

effects (i.e., cortico-cortical connectivity) induced by WMT would be distributed in ‘WM 

neural network’, which means that the structural connectivity among cortical regions of 

frontoparietal network would be changed after WMT. 

In summary, based on findings of these two studies, which could shed light on the neural 

mechanisms underlying grey matter plasticity caused by WMT in middle-aged adults.  
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3. Material and Methods 

3.1 Participants 

Participants were recruited through hospital bulletin boards or online advertisements. 

Prior to the enrollment, all volunteers underwent cognitive and neuropsychiatric screen-

ing tests, including the Mini-International Neuropsychiatric Interview (M.I.N.I), the short 

form of the geriatric depression scale (GDS), the Mini-Mental State Examination 

(MMSE), the Clock Drawing Test (CDT), and Edinburgh Handedness Inventory (EHI) 

(Agrell & Dehlin, 2012; Burke et al., 1991; Folstein et al., 1975; Sheehan et al., 1998; 

Veale, 2014). Volunteers who met the following inclusion criteria were included in our 

project: 1) No neurological or psychiatric illness; 2) No cognitive impairment; 3) No con-

traindication to MRI; 4) right-handedness; 5) German speakers; 6) Medication naïve dur-

ing the study. Participants were assigned pseudo-randomly to either a working memory 

training group or an active control group using a single-blinding procedure (gender- and 

age- matched). Finally, fifty-nine participants were included in the analyses: twenty-eight 

in the active control group and thirty-one in the working memory training group (please 

see Figure 9 for details). 

All participants were informed of the purpose of the current study and provided written 

informed consent. The study was approved by the federal office for radiation protection 

and the Ethics Committee of the Klinikum Rechts der Isar, Technische Universität Mün-

chen. 
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Figure 9: Flow chart of the study design. 

WMT, working memory training; CON, control training; a adaptive n-back task training; b non-adap-

tive n-back task training. 

3.2 Working memory training procedure 

All participants received an 8-week supervised working memory training (WMT) that 

was conducted at home. The n-back task (i.e., visual n-back and verbal n-back) paradigm, 

which was adapted from Jaeggi et al.(2010), was used as training paradigm in the current 

study, Figure 10. The stimuli of both the visual and verbal tasks for both groups were 

equivalent.  

The WMT group underwent an adaptive n-back training paradigm consisting of nine 

blocks per task type (i.e., nine blocks visual n-back tasks and nine blocks verbal n-back 

tasks), for a total of eighteen blocks each training session. Each block included a random-

ised sequence of six target trials as well as fourteen non-target trials. The adaptive n-back 

level ranged from one to nine. Participants began each session with a 1-back level and 

difficulty level (i.e., n-back) was increased or decreased adaptively based on the perfor-

mance of participants. Specifically, if the correct response rate was greater than 90%, the 

level of n-back raised by one level in the following block, and if the correct response rate 

was less than 80%, the level of n-back lowered by one level. Or else, the level of n-back 
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remained constant. Figure 10B illustrates the example of 3-back verbal and visual tasks.  

The CON group received non-adaptive training (i.e., 1-back verbal task and X-back visual 

task), which meant that each task’s difficulty level was set to a lower value which did not 

change (see Figure 10A). The X-back (i.e., 0-back) visual task required participants to 

give response whenever the target shape was presented. Throughout the entirety of the 

training, the instruction for the target shape was displayed at the start of each X-back 

block. 

Each training session lasted approximately twenty minutes. The order of training tasks 

was counterbalanced between participants in each group. Participants were instructed to 

complete four training sessions per week and no more than one session each day. Follow-

ing each training session, each participant’s training data was saved in logfiles and auto-

matically uploaded to the Millisecond Software website (https://www.millisecond.com/). 

The training status and performance were monitored, and all participants received a 

weekly training progress report via email. 

 

Figure 10: A schematic illustration of working memory training procedure. 

ISI, Interstimulus Interval  

3.3 Cognitive test battery 

In order to investigate whether the 8-week WMT intervention could potentially induce 

transfer effects, all volunteers completed a cognitive test battery consisting of 9 cognitive 

assessments at baseline as well as after training. The interval between the cognitive as-

sessment and training did not exceed one week (i.e., the interval between first session of 

cognitive assessment and start of training; the interval between second session of 

https://www.millisecond.com/
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cognitive assessment and the end of training). An experimenter explained each task to the 

participants and the instructed them to practice a short version of each task prior to the 

formal task. Cognitive testing took approximately one hour twenty minutes. In these nine 

cognitive tests: 

1) Three cognitive tests were used to assess the nearest transfer effects. The Digit Span 

Test (both forward subtest and backward subtest), a subtest of German version of 

Wechsler Adult Intelligence Scale, HAWIE-R (Tewes, 1994), and the Corsi-block 

Tapping test (Corsi, 1973) were used to measure verbal working memory and visual-

spatial working memory, respectively. The number of correct answers for Digit span 

and the total score of Corsi-block test (i.e., achieved block span x number of correct 

answers) were taken as the outcome measures. The Simple Visual Reaction Time 

(SVRT) task was used to detect the speed of response and attention. The outcome 

measure was the mean latency (Bleecker et al., 1987).  

2) Four cognitive tests, including Color Word Stroop task (CWST), Visual Simon task 

(VST), Rapid Visual Information Processing (RVIP) and the German version of Ver-

bal Learning and Memory test (VLMT), were used to investigate near transfer effects 

(Bialystok et al., 2004; Coull et al., 1996; Helmstaedter & Durwen, 1990; Simon & 

Berbaum, 1990; Uttl & Graf, 1997). CWST and VST were applied to explore inter-

ference inhibition, and the percentage of correct answers as well as the mean reaction 

time of corresponding conditions (e.g., congruent, incongruent and neutral) were cal-

culated as the indicators. The RVIP was used to assess sustained attention, the out-

come measure of which was the accuracy as well as mean reaction time. The VLMT 

was used to assess verbal memory, which consisted of five repeated auditory presen-

tation of word list A and interfering word list B. Participants needed to recall the 

words from list A and list B following the investigator’s instructions. As outcome 

indicators, we used the difference in the number of correct responses between the 

recall before and after the interference list presentation (Dg5-Dg6), the difference in 

the number of correct responses between the recall before and 20-30 minutes after the 

interference list presentation (Dg5-Dg7), and the values from the Word Recognition 

List (WR). 

3) Two cognitive tests were used to investigate far transfer effects. The short version of 

the Raven’s Advanced Progressive Matrices Test (APM) (Arthur & Day, 1994) and 
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the Iowa Gambling Task (IGT) (Bechara et al., 1994) were used to assess fluid intel-

ligence and decision making respectively. The outcome measures were the number of 

correct answers for APM and the net score for IGT (which is good play – bad play). 

3.4 Image acquisition and processing 

3.4.1 Image acquisition 

Imaging data were collected using a 3T hybrid PET/MR Siemens Biograph mMR scanner 

with a vendor-supplied 16-channel head coil at the Klinikum rechts der Isar, Munich, 

Germany. All participants underwent high resolution structural imaging with a three-di-

mensional, T1-weighted magnetization prepared – rapid gradient echo (MP-RAGE) se-

quence. The following parameters were included: repetition time (TR) = 2300 ms; echo 

time (TE) = 2.98 ms; flip angle (FA) = 9º; field of view (FOV) = 256mm; matrix size = 

256 × 240 mm; slice thickness = 1.0 mm (no gap); voxel size = 1.0 × 1.0 × 1.0 mm3 and 

160 sagittal slices. Additionally, PET images, functional images, and diffusion tensor im-

ages were acquired in the same scanning session (results reported elsewhere, for task-

based functional results please refer to (Emch, Ripp, et al., 2019; Ripp et al., 2022). 

3.4.2 Data processing 

A medical specialist reviewed all subjects’ T1-weighted images to identify if there were 

any aberrant structural abnormalities. Two participants were omitted from the study due 

to massive calcification. We visually inspected each image carefully in MRIcron for mo-

tion-related artifacts (e.g., ghosting, blurring, stripping) to further ensure the quality of 

the acquired T1 images. 

The cortical surfaces were anatomically reconstructed and volumetric segmentation was 

performed using FreeSurfer imaging analysis suite (Version 6.0.0, 

https://surfer.nmr.mgh.harvard.edu) following the longitudinal processing stream as pre-

viously described (Reuter & Fischl, 2011; Reuter et al., 2010; Reuter et al., 2012). Several 

preprocessing steps, including motion correction, skull stripping, image registration to 

Talairach space, and gray and white matter segmentation, were completed independently 

for both time points of all subjects. Then, for each subject, both timepoints were used to 

create a robust within-subject template that is unbiased (Reuter et al., 2012). Finally, each 

time point’s longitudinal processing was initialized with the data from the preceding steps 

https://surfer.nmr.mgh.harvard.edu/
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to reduce variability over time and increase statistical power. The reconstructions were 

visually inspected and where necessary, manually corrected (e.g., boundaries found to be 

inaccurate upon visual inspection were corrected manually) (Wu et al., 2021). 

After completing surface reconstructing steps, the reconstructed surfaces were used to 

evaluate the following three vertex-level metrics: cortical thickness (CT), the cortical sur-

face area (CSA) and the cortical volume (CV).  

In addition, volumes of seven subcortical regions of interests (ROIs), including the thal-

amus, putamen, caudate nucleus, pallidum, amygdala, hippocampus, and the nucleus ac-

cumbens, were obtained during the preceding preprocessing for use in volumetric 

measures implemented in Freesurfer. The caudate, putamen, pallidus, and nucleus accum-

bens are major components of the basal ganglia that are involved in the maintenance of 

working memory (Moore et al., 2013). Moreover, cortico-basalganglio-thalamic loops 

contribute to learning, WM control and response selection (Schroll et al., 2012). The 

amygdala-hippocampus complex is critical for memory encoding and consolidation, as 

well as for learning regulation (Richter-Levin & Akirav, 2000). 

Lastly, the global cortical thickness for each hemisphere using the Freesurfer provided 

‘Mean Thickness’ variable was calculated. Specifically, the global mean thickness was 

calculated the difference of the total thickness below the pial surface and the total thick-

ness below the white surface (Fischl & Dale, 2000).  

Subcortical volumes and global cortical thickness values were extracted and then ana-

lyzed with SPSS 19.0 (IBM Corporation, Somers, NY). 

In order to investigate the macrostructural changes induced by WMT at the network level, 

the extracted cortical surfaces from the preprocessing phase described above were then 

parcellated into 148 regions (74 regions per hemisphere) based on the Destrieux altas 

(Destrieux et al., 2010). Following that, the mean LGI for each region was estimated and 

extracted, yielding 148 regional LGI estimates for each participant at each timepoint (i.e., 

pre-training and post-training). The extracted LGIs were then used for further SC analysis 

on a group-by-group basis. 
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3.5 Statistical analyses  

3.5.1 Statistical analyses of behavioral data 

3.5.1.1 Demographic data 

At baseline, demographic data were analyzed using chi-square (gender) or independent 

sample t-tests (age), which were carried out with SPSS 19.0 (IBM Corporation, Somers, 

NY). 

3.5.1.2 Working memory training data 

The improvements induced by WM intervention on trained tasks were measured by 

means of d prime (d’) and achieved n-back level. d’ takes the range for both hits and 

misses into account by calculating the Z transformed hit rate minus false-alarm rate (𝑑′ =

𝑍𝐻𝑖𝑡 − 𝑍𝐹𝐴) (Haatveit et al., 2010; Meule, 2017). Higher values of d’ indicate better 

performance, whereas lower values of d’ values represent worse performance. We first 

calculated the average d’ value of the first and last week (i.e., first 4 and last 4 training 

sessions) for each group and each WM training paradigm separately (e.g., verbal and vis-

ual n-back tasks). And then a two-tailed paired t-test between the mean d’ values of the 

beginning and end of the training was conducted. For the WMT group, an additional t-

test was calculated between the average achieved n-back level during the first and the last 

four training sessions. The CON group, on the other hand, did not undergo this test be-

cause they received fixed n-back training, which meant that their n-back level remained 

constant throughout the thirty-two training sessions.  

3.5.1.3 Cognitive test battery 

All behavioral data of the cognitive test battery were analyzed using a group (CON, WMT) 

by time (pre-training “Pre”, post-training “Post”) multivariate ANOVA (MANOVA) for 

each category of transfer effect (e.g., nearest, near, far) separately following ANOVA for 

each subtest. We considered the results as statistically significant at p < 0.05 Bonferroni 

corrected (3 categories for MANOVAs and all 21 subtests for ANOVAs). All statistical 

analyses were conducted by using SPSS 19.0 (IBM Corporation, Somers, NY). 
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3.5.2 Statistical analyses of neuroimaging data 

3.5.2.1 Global cortical thickness and subcortical volumes 

Global cortical thickness was analyzed statistically using group (WMT, CON) by time 

(Pre, Post) ANOVAs for left and right hemispheres separately. We performed repeated 

measures ANOVAs of group by time by ROIs for each hemisphere’s subcortical volumes. 

The threshold for statistically significant results was set at p < 0.05 (Bonferroni corrected) 

for all ANOVAs.  

3.5.2.2 Four vertex-wised parameters 

We conducted longitudinal analyses using longitudinal two stage model with Freesurfer 

(http://freesurfer.net/fswiki/LongitudinalTwoStageModel). Firstly, each subject’s re-

peated measures were reduced to a single statistic. At each vertex of each subject from 

both timepoints, symmetrized percent change (SPC) which is a dimensionless measure of 

change (i.e., the rate of change with respect to the average CT/CV/CSA/LGI), was calcu-

lated (Reuter et al., 2012). The formula of SPC calculation is:  

𝑆𝑃𝐶 = 100 ∗
(V2 − 𝑉1)

(𝑇2 − 𝑇1) ∗ 0.5 ∗ (𝑉1 + 𝑉2)
= 100 ∗

𝑟𝑎𝑡𝑒

𝑎𝑣𝑔
 

Where V1 is the vertex-wise measure (e.g., CT, CV, CSA and LGI) at baseline (T1) and 

V2 is the measure at 8-week follow-up (T2). The SPC represents the monthly rate of 

change with respect to the average CT/CV/CSA/LGI across the two time points. Secondly, 

within group analysis (within the CON group and WMT group separately) as well as 

group comparisons (comparisons between SPC in WMT group and SPC in CON group) 

of whole brain SPC in CT, LGI, CV and CSA were performed in Freesurfer using a stand-

ard QDEC (general linear model, GLM). CT, CV and CSA were smoothed using Gauss-

ian smoothing kernels with a full-width/half-maximum (FWHM) of 10 mm, whereas the 

LGI was smoothed using Gaussian smoothing kernels with a FWHM of 5 mm (Schaer et 

al., 2012). The GLM analyses of each of above measures were performed for left and 

right hemispheres separately. For each GLM analysis, Monte Carlo simulation (Hagler et 

al., 2006), a cluster-wise correction, was used to correct for multiple comparisons. Only 

when the initially obtained clusters (p < 0.05 at vertex-wise level, two-tailed) met the 

additional cluster-wise threshold of p cluster < 0.05 (two-tailed) and 1000 random permu-

tations were the results considered significant (Wu et al., 2021).   

http://freesurfer.net/fswiki/LongitudinalTwoStageModel
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3.5.2.3 Whole brain structural covariance analysis 

The estimated LGI values of 148 regions of each subject at each time point were then 

used for structural covariance analysis. Here, we calculated structural covariance matrices 

separately for each group and each time point, as well as longitudinal structural covari-

ance matrices.  

In order to capture training-induced SC pattern within each group, the group-wise struc-

tural covariance matrices were generated using the inter-regional Pearson correlation of 

the estimated LGI values. Specifically, age, gender, and years of education were first 

regressed from the LGI estimates (Alexander-Bloch et al., 2013). For each pair of the 148 

Destrieux-atlas cortical regions, the Pearson correlation coefficient was computed be-

tween the LGI values across all subjects within the WMT and the CON groups, and each 

timepoint separately, resulting in a 148 × 148 correlation matrix for each group each 

timepoint (i.e., the SC matrices for CON group pre-training, the SC matrices for CON 

group post-training, the SC matrices for WMT group pre-training, and the SC matrices 

for WMT group post-training). Each correlation matrix comprised 10878 (i.e., 148 (148-

1) /2 = 10878) unique pairwise associations. Thereafter, a Fisher’s Z transformation was 

performed on the correlation coefficients in order to improve normality. Finally, the 

group-wise structural connectivity matrices of each group at each time point were con-

structed.  

The longitudinal structural covariance matrices were generated by computing the inter-

regional Pearson correlation coefficient between the degree of LGI change (ΔLGI) for 

each pair of the atlas regions. Briefly, at the individual level, the LGI change over the 8-

week WM training for each ROI was computed by using post-training minus pre-training, 

yielding 148 ΔLGIs. By computing Pearson correlation coefficient between ΔLGI values 

and then transforming the data using Fisher’s Z transformation, a matrix of correlation 

coefficients (longitudinal structural covariance) for the degree of training-induced 

changes in the LGI within each group was constructed. The higher values of SC captured 

the patterns of similar structural changes between ROIs over WMT.  

A Z-test statistic was applied to compare the structural covariance matrices for statisti-

cally significant differences within each group as well as between groups.  The formula 

for calculating the Z-test statistic is as follows: 
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𝑍 =
𝑍1 − 𝑍2

√
1

𝑛1 − 3 +
1

𝑛2 − 3

 

Where n denotes the group’s sample size. The z value was converted to a p value by using 

a normal cumulative distribution function. For instance, to compare the intergroup differ-

ence of longitudinal SC, the Z-test was calculated as follows: Z = (ZWMT – ZCON)/ 

√
1

𝑁_𝑊𝑀𝑇−3
+

1

𝑁_𝐶𝑂𝑁−3
 . 

We considered the results as statistically significant at p < 0.05 FDR corrected. In addi-

tion, given that the multiple comparison correction was based on tens of thousands of 

paired connections, meaning that such a stringent correction tends to result in a lower 

survival outcome after correction. Alternatively, the training may have caused some pat-

tern changes that were insufficient to withstand such stringent threshold. Thus, on the 

exploratory basis, we also considered the results with more liberal threshold (i.e., uncor-

rected p < 0.005), attempting to capture the potential training-related pattern changes. 

This analysis was performed using MATLAB v2019b (The MathWorks Inc., Natick, 

Massachusetts, USA). 

3.5.3 Correlation analyses  

To investigate a potential relationship between structural changes following the training 

and the improvements of working memory indued by training, the LGI/CT/CV/CSA val-

ues from all clusters exhibiting significant group by time interaction for each time point 

and each subject of the WMT group were first estimated and extracted. Then, the change 

scores for Digit Span (Post - Pre), as well as changes in LGI/CT/CV/CSA (Post - Pre) 

were computed. Correlations between behavioral changes and cortical changes in the 

WMT group were then performed using partial correlation after age, gender, and years of 

education were controlled with SPSS 19.0 (IBM Corporation, Somers, NY). We consid-

ered the results as statistically significant at p < 0.05 Bonferroni corrected. 
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4. Results 

4.1 Behavioral results 

4.1.1 Demographic characteristics 

As shown in Table 1, the results revealed that the demographic varaibles including age, 

gender, and years of education did not differ between the WMT and the CON group at 

baseline. 

Table 1: Demographics of two groups 

 

WMT 

(n=31) 

CON 

 (n=28) 
P value 

Mean ± SD Mean ± SD 

Age 55.81 ± 4.23 56.00 ± 4.19 0.861 

Gender (female/male) 15/16 14/14 0.902 

YoE 17.03 ± 3.14 16.14 ± 3.06 0.276 

WMT, working memory training; CON, active control group; SD, standard deviation; 

YoE, years of education; Gender (categorical data) was tested by using chi-squared tests 

(χ2) 

4.1.2 Working memory training 

The results of training data revealed that after an 8-week WMT, participants’ performance 

improved significantly in both visual n-back trained tasks (t(30) = -6.75, p < 0.0001) and 

verbal n-back trained task  (t(30) = -6.9, p < 0.0001) (i.e., for the WMT group, the d' values 

were significantly higher at the end of the WMT group compared to the beginning). Ad-

ditionally, significant improvements in achieved n-back level were observed for both ver-

bal (t(30) = -7.13, p < 0.0001) and visual n-back training (t(30) = -6.14, p < 0.0001) (Figure 

11). In the CON group, no significant difference in d’ values were observed between the 

first four sessions and the last four sessions for verbal n-back training or visual n-back 

training. 
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Figure 11: Training results of working memory training (WMT) group.  

Mean achieved n-back level over 32 sessions for both verbal and visual WMT (left); Mean 

achieved d’ values over 32 sessions for both verbal and visual WMT (right) 

4.1.3 Cognitive test battery 

The results of the cognitive test battery are summarized in Table 2. Briefly, no significant 

difference was found between the two groups (i.e., CON group and WMT group) at base-

line across all cognitive tests as well as subtests. The MANOVAs revealed significant 

group × time interaction only in the nearest transfer effect category (F (4.53) = 5.93, p < 

0.05, Bonferroni corrected, partial η2 = 0.31) and a significant group by time interaction 

was found only in the forward Digit span test (F (1,58) = 19.3, p < 0.01, Bonferroni cor-

rected, partial η2 = 0.26) using follow-up ANOVAs for each subtest.  

Table 2: T-tests (i.e., WMT vs. CON) at baseline and ANOVAs results of all cognitive 

tests 

WMT 

ef-

fects 

Tests 

WMT  

n = 31 

CON 

n = 28 

ANOVAs In-

teraction 

group × time 

T-test 

at base-

line 

Pre 

M (SD) 

Post 

M (SD) 

Pre 

M (SD) 

Post 

M (SD) 
F 

P  

(partial 

η2) 

T  P 

Near-

est- 

effects 

(3) 

Digit 

Span 
        

Forward 7.8 (2.1) 8.9 (1.7) 7.5 (2.2) 7.0 (2.7) 19.3 
<.0001* 

(.26) 
.54 .59 
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Back-

ward 
6.7 (1.3) 7.5 (2.1) 7.1 (2.3) 7.6 (2.5) .16 

.69 

(.003) 
-.67 .51 

Corsi 
46.6 

(17.1) 

47.6 

(15.8) 

43.9 

(18.7) 

44.0 

(16.5) 
.22 

.64 

(.004) 
.32 .75 

SVRT         

M-la-

tency 

287.2 

(31.0) 

305.1 

(47.3) 

292.0 

(49.2) 

288.5 

(41.7) 
4.84 

.03 

(.08) 
-.44 .67 

Near-

trans-
fer (4) 

VLMT         

Dg5-6 1.6 (1.7) 2.0 (2.8) 1.0 (1.8) 1.0 (1.3) .26 
.61 

(.005) 
1.32 .19 

Dg5-7 1.3 (1.6) 1.1 (1.7) .9 (1.4) 1.0 (1.1) .76 
.39 

(.01) 
1.12 .24 

w-f 
12.8 

(2.5) 

13.0 

(2.2) 

13.0 

(3.0) 

14.0 

(1.4) 
1.38 

.25 

(.02) 
-.28 .78 

RVIP         

Accu-

racy 

18.2 

(7.1) 

21.0 

(4.9) 

18.2 

(7.1) 

20.1 

(5.7) 
.11 

.74 

(.002) 
.74 .46 

RT 
521.0 

(74.3) 

527.8 

(66.2) 

512.6 

(84.3) 

492.9 

(65.2) 
1.98 

.17 

(.03) 
.41 .69 

CWST         

RT-cong 
1320.4 

(278.9) 

1228.8 

(271.6) 

1331.6 

(268.1) 

1309.6 

(300.6) 
1.43 

.24 

(.03) 
-.16 .88 

RT-in-

cong 

1578.7 

(289.0) 

1487.3 

(317.1) 

1531.1 

(287.5) 

1538.6 

(299.3) 
1.80 

.19 

(.04) 
.63 .53 

RT-neu-

tral 

1239.5 

(237.8) 

1172.7 

(236.2) 

1228.9 

(232.8) 

1240.9 

(262.4) 
2.06 

.16 

(.04) 
.17 .86 

%-cong 
.996 

(.01) 

.988 

(.03) 

.994 

(.02) 

.996 

(.01) 
2.41 

.13 

(.04) 
.44 .66 

%-in-

cong 

.937 

(.07) 

.933 

(.07) 

.952 

(.06) 

.950 

(.05) 
.02 

.90 

(.00) 
-.84 .40 

%-neu-

tral 

.984 

(.04) 

.990 

(.03) 

.999 

(.01) 

.996 

(.01) 
2.05 

.16 

(.04) 
-1.8 .08 

VST         

RT-cong 
453.8 

(59.2) 

424.5 

(60.3) 

449.3 

(62.6) 

407.7 

(78.7) 
1.03 

.32 

(.02) 
1.59 .12 

RT-in-

cong 

502.5 

(63.7) 

467.2 

(64.3) 

493.4 

(70.5) 

452.1 

(74.7) 
.22 

.64 

(.004) 
.22 .83 

%-cong 
.982 

(.04) 

.988 

(.02) 

.943 

(.13) 

.982 

(.02) 
1.87 

.18 

(.03) 
1.1 .29 

%-in-

cong 

.963 

(.04) 

.965 

(.03) 

.937 

(.13) 

.944 

(.05) 
.03 

.86 

(.001) 
.51 .61 
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WMT, working memory training; M (SD), mean (standard deviation);Corsi, Corsi-block 

Tapping test; SVRT, simple visual reaction time task; M-latency, mean latency; RVIP, the 

rapid visual information processing task; Accuracy = hits – FA; RT (ms), mean reaction 

time for correct responses in millisecond; CWST, the color-word stroop task; RT-cong; 

mean reaction time for congruent condition; RT-incong, mean reaction time for incon-

gruent condition; RT-neutral, mean reaction for neutral condition; %-cong, percent cor-

rect for congruent condition; %-incong, percent correct for incongruent condition; %-

neutral, percent correct for neutral condition; VST, visual Simon task; Short-APM, the 

short version of Raven’s Advanced Progressive Matrices Test; IGT, Iowa Gambling Task, 

independent variable here is net score. * Significant at p < .05 (Bonferroni corrected). 

4.2 Results at neural level 

4.2.1 Global cortical thickness & subcortical volumes 

The results of global mean CT and subcortical volumes are summarized in Figure 12 and 

Figure 13, respectively. We did not detect significant training induced changes (i.e., sig-

nificant group × time interaction) either in global mean thickness or in the selected sub-

cortical volumes. 

 

Figure 12: Global mean cortical thickness comparison, pre- as well as post-training 

of each group. 

Far-

trans-
fer (2) 

APM 5.6 (2.2) 6.5 (2.6) 5.3 (2.4) 5.7 (2.4) .75 
.39 

(.01) 
.63 .53 

IGT 6.0 (8.1) 
10.8 

(10.8) 

5.4 

(12.9) 

10.6 

(16.8) 
.006 

.94 

(.00) 
.21 .83 
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LH, left hemisphere; RH, right hemisphere; CON, active control group; WMT, working 

memory training group. 

 

Figure 13: Bar graphs of the average subcortical volumes (standard error). 

LH, left hemisphere; RH, right hemisphere; CON, active control group; WMT, working 

memory training group; NAcc, nucleus accumben 

4.2.2 Four vertex-wised parameters 

The results of WMT induced microstructural changes on vertex-level within each group 

are shown in Table 3 and Figure 14. Significant changes (i.e., SPC) were detected in the 

active control group only in terms of a greater LGI in the left lateral occipital cortex ex-

tending to the medial occipital cortex compared to baseline. 

In the WMT group, in contrast, the LGI, the CT, and the CV were increased in several 

regions following training, in comparison to at baseline. Greater LGI clusters were ob-

served in bilateral superior parietal cortex, as well as the left inferior parietal cortex and 

the right precuneus. Clusters in the left paracentral lobule and the right precentral gyrus 

demonstrated an increase in CT, corresponding to regions with a greater CV. Additionally, 

a reduction in CSA in bilateral visual cortex, in particular bilateral primary visual cortex 

as well as visual association area was observed (Wu et al., 2021).  
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Figure 14: Gray matter changes between pre-training (baseline) and post-training 

in each group. 

 A) Local gyrification index; B) Cortical thickness; C) Cortical volume; D) Surface area. 

Colored regions are used to indicate significant changes between pre-training (baseline) 

and post-training. Red/yellow represents greater values for post-training compared with 

pre-training, while blue represents greater values at baseline (pre-training) compared 

with post-training. The value of the color bar is a log10(p value). CON, active control 

group; WMT, working memory training group.  

 

Table 3: Clusters of cortical changes in each group 

Group 
Cortical 

structures 

Hemi-

sphere 
Max 

Size 

(mm2) 
TalX TalY TalZ 

No. Ver-

tices 
Annotation  

WMT 

LGI 

L 4.36 4943.93 -19.1 -69.4 39.9 10432 SPC, IPL 

Post 

> 

Baseline 

R 3.11 2250.48 17.2 -69.4 39.4 9709.02 
SPC, Precu-

neus 

CT 
L 4.84 797.01 -11.7 -36.4 64.8 1959 PL 

R 4.27 1124.41 33.9 -19.1 44.4 2577 PG 

CV 
L 4.98 784.32 -13.3 -36.4 63.7 1950 PL 

R 4.93 1100.91 35.9 -18.2 50.8 2549 PG 

SA L -3.79 2787.33 -22.9 -76.1 -0.8 3456 mOC Baseline 
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R -3.19 1144.02 28.9 -92.2 -4.6 1470 lOC > 

Post R -3.43 1572.58 11.0 -81.4 12.7 2029 mOC 

CON LGI L 2.55 2465.34 -15.7 -92.1 20.6 3514 lOC, mOC 

Post 

> 

Baseline 

WMT, working memory training group; CON, active control group; LGI, local gyrifica-

tion index; CT, cortical thickness; CV, cortical volume; SA, surface area; SPC, superior 

parietal cortex; IPL, inferior parietal lobule; PL, paracentral lobule; PG, precentral gy-

rus; mOC, medial occipital cortex; lOC, lateral occipital cortex; L, left; R, right; Max, 

log10 (p value); Tal (X, Y, Z), Talairach (X, Y, Z); Post, post-training.  

Table 4 and Figure 15 provide a summary of the results of SPC group differences. The 

group comparison results for these four metrics were in accord with the findings of the 

WMT group. In the WMT group, the clusters showing greater SPC in LGI were located 

in bilateral superior parietal cortex and the right precentral gyrus, compared to the CON 

group. In contrast, one cluster, the left cuneus, showed smaller SPC in LGI in WMT group, 

compared to the CON group. The WMT group showed increased SPC in CT as well as 

in CV in the left paracentral lobule and the right precentral gyrus, compared to the CON 

group. Additionally, one cluster locating in left precuneus showed increased SPC in CV 

in the WMT group compared to the CON group. Compared to the CON group, one cluster 

of the right lateral occipital cortex showed decreased SPC in CSA in the WMT group 

(Wu et al., 2021). 

Monte Carlo simulations were used to adjust all of the results for the four vertex-wise 

cortical metrics (i.e., LGI, CV, CT, and CSA), both for the within-group results as well 

as for group-time interaction results. At a threshold that was considered to be more con-

servative (i.e., FDR), there were no significant results observed. 
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A) Local gyrification index; B) Cortical thickness; C) Cortical volume; D) Surface area. 

Colored regions are used to indicate significant “group by time interaction”. Red/yellow 

represents greater values of symmetrized percent change for WMT group compared CON 

group, while blue represents greater values of symmetrized percent change for the CON 

group compared with the WMT group. The value of the color bar is a log10(p value). CON, 

active control group; WMT, working memory training group. 

Table 4: Differences in gray matter changes between groups 

Cortical 

structures 

Hemis 

phere 
Max 

Size 

(mm2) 
TalX TalY TalZ 

No. Ver-

tices 
Annotation  

LGI 

L 3.51 1044.75 -18.9 -68.4 39.2 2042 SPC WMT > CON 

L -3.01 1372.94 -5.3 -90.8 13.6 1735 Cuneus CON > WMT 

R 2.97 1465.38 16.4 -70.3 42.9 2858 SPC WMT > CON 

R 2.70 1334.99 33.0 -18.7 55.2 3287 PG WMT > CON 

CT 
L 3.74 552.86 -11.9 -36.2 66.8 1344 PL WMT > CON 

R 4.25 1083.04 35.1 -23.7 44.0 2406 PG WMT > CON 

CV 

L 3.26 527.40 -10.6 -36.8 62.1 1262 PL WMT > CON 

L 2.63 725.55 -5.8 -66.0 42.5 1421 precuneus WMT > CON 

R 4.72 691.73 34.4 -21.4 42.2 1522 PG WMT > CON 

CSA R -2.45 653.52 16.6 -95.7 -2.3 841 lOC CON > WMT 

WMT, working memory training group; CON, active control group; LGI, local gyrifica-

tion index; CT, cortical thickness; CV, cortical volume; SA, surface area; SPC, superior 

parietal cortex; PL, paracentral lobule; PG, precentral gyrus; lOC, lateral occipital cor-

tex; MTC, middle temporal cortex; L, left; R, right; Max, log10 (p value); Tal (X, Y, Z), 

Talairach (X, Y, Z) 

Figure 15: Differences of gray matter changes between the groups. 
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4.2.3 Network-level – structural covariance  

The SC matrices of LGI for each group before and after training were summarized in 

Figure 16. No significant training induced changes were observed within group compar-

ison, neither in the CON group or the WMT group. 

The results of WMT induced structural changes on network-level as well as the longitu-

dinal SC matrices for each group were shown in Figure 17. Briefly, no significant train-

ing-induced group differences were observed on longitudinal SC, however, at an uncor-

rected level (i.e., p < 0.005), significant group differences of longitudinal structural co-

variance were observed in several pairs of cortical regions (e.g., parietal regions, frontal 

regions) between the CON and WMT groups. 

 

Figure 16: Structural covariance matrices of cortical gyrification for each group 

pre-training and post-training.  
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Figure 17: Longitudinal structural covariance matrices for CON and WMT groups. 

CON, active control group; WMT, working memory training group; The threshold of P-

values shown here is p < 0.005 without multiple correction; a represents group differ-

ences of longitudinal structural covariance between left parietal regions and other corti-

cal regions; b represents group differences of longitudinal structural covariance between 

right parietal regions and other cortical regions; and c represents the group differences 

of longitudinal structural covariance between left frontal regions and other cortical re-

gions. 

4.3 Association of behavioral changes and vertex-wised cortical 

changes 

No significant correlations between microstructural changes and forward Digit Span 

change scores were observed after correcting for multiple comparisons. However, on an 

uncorrected level, we did detect that the change in the LGI of the right superior parietal 

cortex positively correlated with the change in forward Digit Span (r = 0.483, p = 0.014, 

uncorrected). 
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5. Discussion  

5.1 Behavioral effects induced by WMT 

On the behavioral level, in comparison with the CON group, participants of the WMT 

group performed significantly better on the training tasks (i.e., trained verbal and visual 

n-back tasks) and on a cognitive test (i.e., Digit Span Test) with a high degree of similarity 

to training tasks following the 8-week WMT. However, neither near- or far- transfer ef-

fects were detected.  

On the one hand, these findings support the efficacy of WMT in elderly populations, 

particularly in terms of the practice effects that WMT-induced has on those populations, 

which corroborate replicated prior evidence (Dahlin et al., 2008; Sala et al., 2019; Tusch 

et al., 2016).  

On the other hand, our data do not support the transfer efficacy of WMT, at least, in this 

specific population (i.e., healthy adults aged 50-65 years). Even so, it is worth noting that 

the results should be interpreted with caution, that is to say while we did not observe any 

near- or far- transfer effects in the present study, we cannot conclude that transfer effects 

are completely absent because these findings were based on a specific population (i.e., 

healthy middle-aged individuals) and training procedures (i.e., N-back training paradigm), 

as well as the use of specific cognitive test battery to assess transfer effects. As described 

previously (please see instruction section), although there are numerous WMT studies 

and an increasing number of meta-analyses investigating whether WMT can generate 

transfer effects, the evidence is still not as conclusive as that for training-induced practice 

effects. And several reasons, especially heterogeneity of methodology and research sub-

jects may contribute to the inconsistency of the findings. In addition, when we compared 

participants’ performance on all cognitive tests before and after training separately within 

each group, we did observe that participants in the WMT group demonstrated a trend 

toward superior performance on the majority of these cognitive tests following the train-

ing, but not in the CON group. When all of the results are combined, it may not be appro-

priate to conclude that WMT has no transfer effect at all, but it may indicate that WMT 

has a very limited transfer effect. Further research is required to determine whether WMT 

can generate transfer effects and, if so, to further investigate the magnitude of the transfer, 
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the populations most susceptible to transfer, and the most effective training paradigms, 

etc. 

5.2 Neural structural effects at vertex level 

5.2.1 Cortical folding 

One of the most important findings of the current study was that, following the intensive 

adaptive working memory intervention for eight weeks, we found that the WMT group 

demonstrated an increase in LGI in bilateral parietal regions, whereas the active control 

group showed greater cortical folding in only one cluster located in the left lateral occip-

ital cortex (Figure 15A). Furthermore, the findings from the group by time interaction 

were consistent from the findings within each group, with the exception of one additional 

finding (i.e., the WMT group showed increased in gyrification in the right precentral gy-

rus after training compared to the active control). The spatially smaller regions of group 

× time interaction indicated the effects induced by training after adjusting for non-adap-

tive training effects in the active control (Figure 16A).  

These findings suggest that long-term intensive WM training with adaptive difficulty 

level tends to increase the extent of gyrification in brain areas which are known to be 

crucial for processing higher-load WM tasks, whereas intensive WM training with low 

difficulty level only generates changes of cortical folding in a visual cortex. This discov-

ery stands to reason, given that when participants were trained in adaptive WM, the dif-

ficulty increased with their performance, requiring them to concentrate on progressively 

higher levels of n-back, which placed greater demands on cognitive abilities such as con-

tinuous updating and processing of information, higher processing speed and WM capac-

ity, decision making, etc. (Gajewski et al., 2018). Previous research has found a correla-

tion between increased cortical folding and enhanced cognitive performance, specifically 

a positive correlation between the degree of cortical folding in parietal-prefrontal regions 

and the capacity of working memory (Green et al., 2018). While the precise mechanisms 

of cortical folding remain unknown, but there is evidence suggesting that, in contrast to 

other cortical metrics that are strongly determined by genetic variations, cortical folding 

appears to be primarily determined by the lifelong experience or environmental correlates 

(Gautam et al., 2015; Green et al., 2018; Kochunov et al., 2010; Luders et al., 2012; 

Rogers et al., 2010; White et al., 2002). Thus, the cortical folding is the hallmark feature 
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of the cortex surface, reflecting the dynamic reorganization of the morphological cortex 

of the brain as a result of training/learning processes in ontogeny. The gyri bring distinct 

brain areas of grey matter closer together, potentially increasing their communication ef-

ficiency and enabling more efficient cognitive processing. It’s possible that changes in 

either domain-general or domain-specific functions are reflected by changes in cortical 

regional convolutional variability. As previously stated, the CON group received a very 

low-load WMT that consisted solely of fundamental processing of WM. It is believed 

that occipital regions contribute significantly to fundamental visuo-attentional WM pro-

cesses by forwarding and transforming information along two processing pathways (e.g., 

occipito-parietal and occipito-temporal pathways) (Ungerleider et al., 1998). Conse-

quently, the observed greater LGI in the visual cortex may facilitate the information pro-

cessing of transformative low-level inputs, which leads to more efficient and robust pro-

cessing of relevant information at lower levels. On the other hand, training more complex 

WM processes was related to the gyrification remodeling in parieto-frontal networks. The 

parietal areas integrate sensory information, distribute attention, and promote efficient 

encoding, retrieval as well as feedback processes (Bajaj et al., 2018; Gevins & Smith, 

2000; Graham et al., 2010). Thus, our finding that the greater degree of cortical folding 

associated with WMT group’s improved working memory performance can be inter-

preted as evidence for the distinct but limited WM-induced cognitive-neurobiological 

benefits. Which means, the increased gyrification observed in the specific regions may 

imply that individuals are better able to integrate information via the parietal-prefrontal 

network/pathways in order to produce optimal responses. Following this line, the result 

that training-related changes confined to WM-related regions coincides with the discov-

ery that WMT did have an effect on working memory performance (i.e., performance in 

forward digit span task). The confined cognitive-neurobiological effect induced by WMT 

was further supported by a trend association between increase cortical folding in right 

superior parietal cortex and training-induced improved performance in digit forward span. 

The link may suggest that the effects on cortical folding induced by WMT, at least in 

superior parietal areas, are strongly related to the enhancement of cognitive ability, par-

ticularly in domains that are identical or comparable to trained tasks. As this is the first 

study to look into the neuroplastic effects on cortical folding induced by WMT, additional 

research is required to elucidate the precise mechanisms underlying cortical folding and 

training-associated cortical folding changes, and the relationship between the degree of 
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cortical folding changes and other alterations (e.g., alterations on neural level and behav-

ioral level) caused by WMT.  

5.2.2 Cortical thickness & cortical volume 

Following the 8-week WMT, similar training induced changes were observed in CV and 

CT within the WMT group (Figure 15 B and C), of note, which were also discernable in 

group comparison (i.e., the training group vs. the active control) (Figure 16 B and C). 

Specifically, we observed training-induced increases in both CT and CV locating in the 

left paracentral lobule as well as the right precentral cortex in the WMT group, which 

coincided with the results of group-by-time interaction. Furthermore, in the left precuneus, 

the WMT group showed higher CV than the CON group. 

Several significances follow from these findings. Firstly, the results demonstrate a close 

interdependence between the two measures, implying that changes in CT due to WMT 

contribute to changes in cortical volume. As previously reported, the change in thickness 

is highly positively associated with the change in volume, and the findings of current 

study is consistent with prior research (Storsve et al., 2014). The alterations in thickness 

and volume may be related to increased dendritic branching, synaptogenesis, angiogene-

sis or other processes (Zatorre et al., 2012). In particular, grey matter changes associated 

with practice or training may be predominantly attributable to synaptic reorganization in 

particular processing regions (Ilg et al., 2008). Secondly, the findings reveal grey matter 

alterations in only those that are believed to be relevant to WM processing. In the current 

study, we found that, compared to the CON group, participants in the WMT group showed 

a greater CV in the left precuneus following the 8-week WMT. Additionally, increased 

CT was observed in the paracentral lobule and precentral gyrus, both of which are critical 

components of primary motor cortex (PMC). The precuneus has been demonstrated being 

a critical brain region involved in WM processing, particularly during the processing of 

visuo-spatial working memory (Cavanna & Trimble, 2006; Lundstrom et al., 2005; Schott 

et al., 2019; Silk et al., 2006). The PMC, in addition to be in charge of planning and 

executing movement, also participates in higher order cognition such as learning, move-

ment inhibition, etc. (Bhattacharjee et al., 2020; Hoshi & Tanji, 2006; Jeannerod, 2001). 

Moreover, the balance of the neural activation and inhibition in the PMC is closely linked 

to high load WM-related neural activity (Freeman et al., 2016). Specifically, greater acti-

vation in the PMC has been linked to quicker reaction times as well as higher intelligence 
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level (Bajaj et al., 2018; Emch, von Bastian, et al., 2019). Consequently, the findings of 

the present study may imply that increases in thickness in bilateral PMC contribute to 

optimizing the balance of activation and inhibition in specific neurons through synaptic 

reorganization, thereby resulting in improved performance in specific cognitive tasks 

(e.g., response faster Emch et al. (2019)). 

5.2.3  Cortical surface area  

Unexpectedly, after the training, the WMT group had a lower CSA bilaterally in occipital 

cortex than the CON group (Figure 15 D and Figure 16 D). Prior research has found that 

the surface area is a dynamic process associated with variations in local gyrification, spe-

cifically the CSA is increasing with LGI (Green et al., 2018; Wierenga et al., 2014). We 

observed the WMT group showed cortical contraction in the visual-attentional regions 

after WMT, which may suggest that the dynamic organization process of cortical folding 

of the cortical mantle induced by training. Particularly, as discussed earlier, increased 

cortical folding in bilateral parietal cortex may bring brain regions closer together. During 

this dynamic reorganization process, portions of the occipital cortex may have been 

stretched and pulled closer to parietal regions, leading to a reduction in the surface area 

of the occipital cortex. In this light, the findings are plausible and consistent with cortical 

folding findings reported above. To date, only two studies have reported the effects in-

duced by WMT on CSA. Román and colleagues (2016) discovered a small surface ex-

pansion in the right middle temporal cortex in the training group, while mixed findings 

(i.e., a tendency for expansion in the right frontal and anterior medial temporal areas, and 

a tendency for contraction in the left temporal-parietal cortex) were observed in the con-

trol group. However, no changes in the CSA were found following an n-back training 

(Lawlor-Savage et al., 2019). Inconsistencies may be partially explained by variations in 

methodology, as stated previously. Due to the paucity of research on the neural structural 

effects of WMT on surface area, additional research is required to identify the key brain 

areas and the extent of alterations in surface area that reflect the neural substrates under-

lying WMT. 
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5.3 Neural structural effects at network level – Structural 

Covariance  

The results of the first study (i.e., the WMT induced plasticity on cortical structures at 

vertex level) indicated that WMT can produce plasticity in cortical structures at vertex 

level. In addition, the cortical folding seems to be the most relevant or sensitive cortical 

characteristic related to WMT in comparison to other metrics.  

Based on the findings above observed, we aimed to capture whether grey matter plasticity 

in cortical folding at vertex level co-occurs with plasticity at a network level by using 

structural covariance analysis, in other words, whether WMT induced plasticity of corti-

cal reorganization in a network-level topology. To date, structural covariance has not been 

studied in terms of the neural effects induced by working memory training (neither thick-

ness-based SC, nor LGI -based SC).  

The results of the LGI-based SC analysis within each group revealed no significant WMT 

induced changes in cortical-cortical connections, either in the WMT group or the CON 

group. In the longitudinal SC analysis, after correcting for multiple corrections, no sig-

nificant results were found. However, at the uncorrected level (i.e., p < 0.005), the training 

induced changes of cortical folding intensity showed significant difference between pairs 

of parietal regions as well as pairs of frontal regions. The results observed at the uncor-

rected level seem to be important in two folds. First, they indicated that the longitudinal 

SC could capture the pattern of topological changes due to WMT (i.e., the pattern of 

similar structural changes between ROIs). Specifically, combined the results obtained 

from study one, where WMT resulted in a significant increase in cortical folding, which 

was accompanied by the pattern of similar structural changes between ROIs in the areas 

where this occurred over the 8-week working memory training. Second, these cortical 

regions (i.e., parietal regions) might be the hub associated with WM training/learning at 

both vertex- and network-level. The magnitude of the changes in these regions may serve 

as a predictor of changes in other related regions, particularly those associated with pro-

cessing improvement. As this is the first study to investigate neural effects in network-

level topology by using SC, more work will be required to fully understand these issues.  

The neuroplasticity induced by WMT might manifest itself in a variety of ways. Firstly, 

it is possible that training-induced neural structural plasticity may be associated with a 

variety of metrics, including cortical thickness, cortical volume, cortical folding, surface 
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area etc. What’s more, training-induced plasticity in various metrics might be character-

ized in a variety of ways at various scales, which means that WMT may result in a more 

optimal configuration of various metrics at various levels during the cognitive processes 

following the training. For instance, we observed significantly increased cortical folding 

in cortical regions associated with better WM performance at vertex level, but not at the 

network level (e.g., within group SC comparisons), revealed on global structural covari-

ance. The following are several possible explanations for the results: 1) The training-

induced effects on global structural covariance may be too subtle to detect; 2) Changes in 

structural coordination induced by WMT may not occur at the whole-brain level, but ra-

ther within regions with significant localized (i.e., vertex-level) changes. This pattern (i.e., 

no changes in global SC but only within regions with significant local changes) was re-

ported recently in a study – the thickness-based structural covariance was not altered at 

the whole brain level but only in regions with significantly reduction of thickness in schiz-

ophrenia compared to controls (Wannan et al., 2019); 3) Cortical folding might be the 

most relevant and plastic feature of working memory and learning at the vertex-level, 

reflecting WM training effects to a greater extent than the other metrics. However, it may 

not be the optimal indicator for characterizing training-induced changes in structural co-

ordination, alternative metrics (e.g., cortical thickness, cortical volume, etc. may be more 

appropriate. 4) Structural covariance analysis (i.e., direct comparison of SC matrices 

within and between groups) might not be sufficient to detect the topological changes in-

duced by WMT, as SC analysis does not allow for the evaluation of a variety of topolog-

ical properties (e.g., global efficiency, clustering coefficient, modularity etc.) that can 

provide insights into the topological changes. Given that this is the first study to investi-

gate WMT-induced neural topological plasticity using structural covariance, additional 

work is needed to replicate and validate this finding, as well as to use a more comprehen-

sive approach to explore training induced topological changes by combing different met-

rics and properties. The points raised above can serve as inspiration for future research 

directions and topics. Prospects for future research are outlined in the outlook section 

(please see section 5.6 Strengths, limitations and future prospects for details.) 

5.4 Strengths, limitations and future prospects 

Several strengths of studies within this thesis are worth noting. To begin, this is the first 

study to examine behavioral effects as well as neural structural plasticity at the vertex, 
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network, and global levels due to WMT, providing a more complete picture of the mech-

anisms underlying WMT. In addition, instead of a non-contact control or passive control, 

the control group in current studies were active control, meaning volunteers in the active 

control group underwent same intervention as the training group, except the training dif-

ficulty in the control group was not adaptive. Furthermore, this study focused on a specific 

middle-aged group (i.e., 50 65 years) that occurs prior to the onset of aging as well as is 

strongly associated with the onset of a variety of neural degenerative diseases. Lastly, the 

sample size was adequate in comparison to other longitudinal intervention studies in neu-

roimaging. 

This study does have few limitations. Firstly, regarding the vertex-wise structural analysis, 

we used a longitudinal two stage model which relatively simple in comparison to a linear 

mixed effects (LME) model, due to the design (two-timepoint repeated measures design) 

and balanced data with approximately equally spaced. The LME model is relative more 

complex but more powerful in studies with multiple timepoints or unbalanced data 

(Bernal-Rusiel et al., 2013). The LME model is capable of handling both unequal timing 

and unbalanced data, allowing for the inclusion of participants with as few as one 

timepoint in the analyses. Secondly, since we aimed to investigate whether WMT induced 

changes in cortical folding at vertex level were companied by changes in network-level 

topology. It was therefore decided to use the LGI exclusively for the purpose of construct-

ing structural covariance matrices, rather than other metrics such as CV, CT, or CSA. 

In the future, further research is needed to investigate training-induced topological 

changes using a more comprehensive approach that combines different metrics and prop-

erties. According to the findings of the current study, cortical folding might more accu-

rately reflect the effects of WMT-induced at the vertex level than other metrics; however, 

it might be restricted to the vertex level rather than the topological level, implying that 

the most appropriate metric for training-induced structural coordination changes may be 

another metric. Thus, the SC analyses need to be conducted using all available metrics. 

Moreover, in addition to global SC, SC analysis should be also restricted to regions with 

significant vertex-level changes, as WMT may result in changes in structural coordination 

only within regions with altered localized changes. Additionally, along with SC analysis, 

it is worthwhile to investigate training-induced neural structural plasticity at the network 

level using graphic theory approach, which allows for a broader range of topological 

properties than the SC. The following topological properties are used to characterize the 
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topological organization of structural covariance networks (SCNs): network segregation 

(clustering and modularity), network integration (global efficiency), and the balance be-

tween segregation and integration (small-world topology) (Alexander-Bloch et al., 2013). 

By examining how these properties change in response to WMT, we can gain a better 

understanding of how the brain dynamically reconfigures its structural organization, 

thereby providing a better platform for better performances on cognitive tasks. 
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6. Conclusion 

In current thesis, we combined cognitive testing and grey matter metrics to look into the 

behavioral effects induced by WMT, as well as neural structural plasticity at multiple 

levels (i.e., vertex, network, and global levels). The results revealed that, in a group of 

older adults, extensive high-load working memory intervention resulted in creased corti-

cal folding, volume, and thickness, as well as changes in surface area in several core 

regions. In addition, the morphometric changes induced by the intervention were accom-

panied by improvements in training performance. In particular, training-induced localized 

(i.e., vertex-level) changes in cortical folding were restricted to a network of regions 

known to be critically involved in WM processing. These findings at vertex level indicate 

that the cortical folding, but not other metrics, might represent the most relevant and plas-

tic features of working memory and learning, and might reflect neuroplastic effects in-

duced by working memory intervention to a greater extent than the other metrics (i.e., 

CV, CT and CSA). Moreover, the results of longitudinal structural covariance analysis 

revealed that the significant increase in cortical folding in vertex-level observed during 

the 8-week WMT was accompanied by a similar pattern of structural changes across ROIs 

in these regions. Overall, combined the results from study one and study two, these cor-

tical regions (i.e., parietal regions, especially superior parietal cortex and inferior parietal 

lobule) may act as hubs for WM training/learning, and they may play a critical role in 

reconfiguring structural organization to optimize the functional organization and thereby 

to support cognitive processes with higher load.  

Further research is required to: 1) replicate and validate the findings observed in the cur-

rent study; 2) determine whether WMT can generate transfer effects and, if so, to further 

investigate the magnitude of the transfer, the populations most susceptible to transfer, and 

the most effective training paradigms, etc.; 3) investigate training-induced topological 

changes using a more comprehensive approach that combines different metrics and prop-

erties. 
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