41 research outputs found

    Adaptive Microarchitectural Optimizations to Improve Performance and Security of Multi-Core Architectures

    Get PDF
    With the current technological barriers, microarchitectural optimizations are increasingly important to ensure performance scalability of computing systems. The shift to multi-core architectures increases the demands on the memory system, and amplifies the role of microarchitectural optimizations in performance improvement. In a multi-core system, microarchitectural resources are usually shared, such as the cache, to maximize utilization but sharing can also lead to contention and lower performance. This can be mitigated through partitioning of shared caches.However, microarchitectural optimizations which were assumed to be fundamentally secure for a long time, can be used in side-channel attacks to exploit secrets, as cryptographic keys. Timing-based side-channels exploit predictable timing variations due to the interaction with microarchitectural optimizations during program execution. Going forward, there is a strong need to be able to leverage microarchitectural optimizations for performance without compromising security. This thesis contributes with three adaptive microarchitectural resource management optimizations to improve security and/or\ua0performance\ua0of multi-core architectures\ua0and a systematization-of-knowledge of timing-based side-channel attacks.\ua0We observe that to achieve high-performance cache partitioning in a multi-core system\ua0three requirements need to be met: i) fine-granularity of partitions, ii) locality-aware placement and iii) frequent changes. These requirements lead to\ua0high overheads for current centralized partitioning solutions, especially as the number of cores in the\ua0system increases. To address this problem, we present an adaptive and scalable cache partitioning solution (DELTA) using a distributed and asynchronous allocation algorithm. The\ua0allocations occur through core-to-core challenges, where applications with larger performance benefit will gain cache capacity. The\ua0solution is implementable in hardware, due to low computational complexity, and can scale to large core counts.According to our analysis, better performance can be achieved by coordination of multiple optimizations for different resources, e.g., off-chip bandwidth and cache, but is challenging due to the increased number of possible allocations which need to be evaluated.\ua0Based on these observations, we present a solution (CBP) for coordinated management of the optimizations: cache partitioning, bandwidth partitioning and prefetching.\ua0Efficient allocations, considering the inter-resource interactions and trade-offs, are achieved using local resource managers to limit the solution space.The continuously growing number of\ua0side-channel attacks leveraging\ua0microarchitectural optimizations prompts us to review attacks and defenses to understand the vulnerabilities of different microarchitectural optimizations. We identify the four root causes of timing-based side-channel attacks: determinism, sharing, access violation\ua0and information flow.\ua0Our key insight is that eliminating any of the exploited root causes, in any of the attack steps, is enough to provide protection.\ua0Based on our framework, we present a systematization of the attacks and defenses on a wide range of microarchitectural optimizations, which highlights their key similarities.\ua0Shared caches are an attractive attack surface for side-channel attacks, while defenses need to be efficient since the cache is crucial for performance.\ua0To address this issue, we present an adaptive and scalable cache partitioning solution (SCALE) for protection against cache side-channel attacks. The solution leverages randomness,\ua0and provides quantifiable and information theoretic security guarantees using differential privacy. The solution closes the performance gap to a state-of-the-art non-secure allocation policy for a mix of secure and non-secure applications

    PRISM: an intelligent adaptation of prefetch and SMT levels

    Get PDF
    Current microprocessors include hardware to optimize some specifics workloads. In general, these hardware knobs are set on a default configuration on the booting process of the machine. This default behavior cannot be beneficial for all types of workloads and they are not controlled by anyone but the end user, who needs to know what configuration is the best one for the workload running. Some of these knobs are: (1) the Simultaneous MultiThreading level, which specifies the number of threads that can run simultaneously on a physical CPU, and (2) the data prefetch engine, that manages the prefetches on memory. Parallel programming models are here to stay, and one programming model that succeed in allowing programmers to easily parallelize applications is Open Multi Processing (OMP). Also, the architecture of microprocessors is getting more complex that end users cannot afford to optimize their workloads for all the architectural details. These architectural knobs can help to increase performance but it is needed an automatic and adaptive system managing them. In this work we propose an independent library for OpenMP runtimes to increase performance up to 220% (14.7% on average) while reducing dynamic power consumption up to 13% (2% on average) on a real POWER8 processor

    Towards Closing the Programmability-Efficiency Gap using Software-Defined Hardware

    Full text link
    The past decade has seen the breakdown of two important trends in the computing industry: Moore’s law, an observation that the number of transistors in a chip roughly doubles every eighteen months, and Dennard scaling, that enabled the use of these transistors within a constant power budget. This has caused a surge in domain-specific accelerators, i.e. specialized hardware that deliver significantly better energy efficiency than general-purpose processors, such as CPUs. While the performance and efficiency of such accelerators are highly desirable, the fast pace of algorithmic innovation and non-recurring engineering costs have deterred their widespread use, since they are only programmable across a narrow set of applications. This has engendered a programmability-efficiency gap across contemporary platforms. A practical solution that can close this gap is thus lucrative and is likely to engender broad impact in both academic research and the industry. This dissertation proposes such a solution with a reconfigurable Software-Defined Hardware (SDH) system that morphs parts of the hardware on-the-fly to tailor to the requirements of each application phase. This system is designed to deliver near-accelerator-level efficiency across a broad set of applications, while retaining CPU-like programmability. The dissertation first presents a fixed-function solution to accelerate sparse matrix multiplication, which forms the basis of many applications in graph analytics and scientific computing. The solution consists of a tiled hardware architecture, co-designed with the outer product algorithm for Sparse Matrix-Matrix multiplication (SpMM), that uses on-chip memory reconfiguration to accelerate each phase of the algorithm. A proof-of-concept is then presented in the form of a prototyped 40 nm Complimentary Metal-Oxide Semiconductor (CMOS) chip that demonstrates energy efficiency and performance per die area improvements of 12.6x and 17.1x over a high-end CPU, and serves as a stepping stone towards a full SDH system. The next piece of the dissertation enhances the proposed hardware with reconfigurability of the dataflow and resource sharing modes, in order to extend acceleration support to a set of common parallelizable workloads. This reconfigurability lends the system the ability to cater to discrete data access and compute patterns, such as workloads with extensive data sharing and reuse, workloads with limited reuse and streaming access patterns, among others. Moreover, this system incorporates commercial cores and a prototyped software stack for CPU-level programmability. The proposed system is evaluated on a diverse set of compute-bound and memory-bound kernels that compose applications in the domains of graph analytics, machine learning, image and language processing. The evaluation shows average performance and energy-efficiency gains of 5.0x and 18.4x over the CPU. The final part of the dissertation proposes a runtime control framework that uses low-cost monitoring of hardware performance counters to predict the next best configuration and reconfigure the hardware, upon detecting a change in phase or nature of data within the application. In comparison to prior work, this contribution targets multicore CGRAs, uses low-overhead decision tree based predictive models, and incorporates reconfiguration cost-awareness into its policies. Compared to the best-average static (non-reconfiguring) configuration, the dynamically reconfigurable system achieves a 1.6x improvement in performance-per-Watt in the Energy-Efficient mode of operation, or the same performance with 23% lower energy in the Power-Performance mode, for SpMM across a suite of real-world inputs. The proposed reconfiguration mechanism itself outperforms the state-of-the-art approach for dynamic runtime control by up to 2.9x in terms of energy-efficiency.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169859/1/subh_1.pd

    Scalable Hierarchical Instruction Cache for Ultra-Low-Power Processors Clusters

    Full text link
    High Performance and Energy Efficiency are critical requirements for Internet of Things (IoT) end-nodes. Exploiting tightly-coupled clusters of programmable processors (CMPs) has recently emerged as a suitable solution to address this challenge. One of the main bottlenecks limiting the performance and energy efficiency of these systems is the instruction cache architecture due to its criticality in terms of timing (i.e., maximum operating frequency), bandwidth, and power. We propose a hierarchical instruction cache tailored to ultra-low-power tightly-coupled processor clusters where a relatively large cache (L1.5) is shared by L1 private caches through a two-cycle latency interconnect. To address the performance loss caused by the L1 capacity misses, we introduce a next-line prefetcher with cache probe filtering (CPF) from L1 to L1.5. We optimize the core instruction fetch (IF) stage by removing the critical core-to-L1 combinational path. We present a detailed comparison of instruction cache architectures' performance and energy efficiency for parallel ultra-low-power (ULP) clusters. Focusing on the implementation, our two-level instruction cache provides better scalability than existing shared caches, delivering up to 20\% higher operating frequency. On average, the proposed two-level cache improves maximum performance by up to 17\% compared to the state-of-the-art while delivering similar energy efficiency for most relevant applications.Comment: 14 page

    DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

    Full text link
    Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.Comment: Our open source software is available at https://github.com/CMU-SAFARI/DAMO

    Scalable Hierarchical Instruction Cache for Ultralow-Power Processors Clusters

    Get PDF
    High performance and energy efficiency are critical requirements for Internet of Things (IoT) end-nodes. Exploiting tightly coupled clusters of programmable processors (CMPs) has recently emerged as a suitable solution to address this challenge. One of the main bottlenecks limiting the performance and energy efficiency of these systems is the instruction cache architecture due to its criticality in terms of timing (i.e., maximum operating frequency), bandwidth, and power. We propose a hierarchical instruction cache tailored to ultralow-power (ULP) tightly coupled processor clusters where a relatively large cache (L1.5) is shared by L1 private (PR) caches through a two-cycle latency interconnect. To address the performance loss caused by the L1 capacity misses, we introduce a next-line prefetcher with cache probe filtering (CPF) from L1 to L1.5. We optimize the core instruction fetch (IF) stage by removing the critical core-to-L1 combinational path. We present a detailed comparison of instruction cache architectures' performance and energy efficiency for parallel ULP (PULP) clusters. Focusing on the implementation, our two-level instruction cache provides better scalability than existing shared caches, delivering up to 20% higher operating frequency. On average, the proposed two-level cache improves maximum performance by up to 17% compared to the state-of-the-art while delivering similar energy efficiency for most relevant applications

    Exploiting data locality in cache-coherent NUMA systems

    Get PDF
    The end of Dennard scaling has caused a stagnation of the clock frequency in computers.To overcome this issue, in the last two decades vendors have been integrating larger numbers of processing elements in the systems, interconnecting many nodes, including multiple chips in the nodes and increasing the number of cores in each chip. The speed of main memory has not evolved at the same rate as processors, it is much slower and there is a need to provide more total bandwidth to the processors, especially with the increase in the number of cores and chips. Still keeping a shared address space, where all processors can access the whole memory, solutions have come by integrating more memories: by using newer technologies like high-bandwidth memories (HBM) and non-volatile memories (NVM), by giving groups cores (like sockets, for example) faster access to some subset of the DRAM, or by combining many of these solutions. This has caused some heterogeneity in the access speed to main memory, depending on the CPU requesting access to a memory address and the actual physical location of that address, causing non-uniform memory access (NUMA) behaviours. Moreover, many of these systems are cache-coherent (ccNUMA), meaning that changes in the memory done from one CPU must be visible by the other CPUs and transparent for the programmer. These NUMA behaviours reduce the performance of applications and can pose a challenge to the programmers. To tackle this issue, this thesis proposes solutions, at the software and hardware levels, to improve the data locality in NUMA systems and, therefore, the performance of applications in these computer systems. The first contribution shows how considering hardware prefetching simultaneously with thread and data placement in NUMA systems can find configurations with better performance than considering these aspects separately. The performance results combined with performance counters are then used to build a performance model to predict, both offline and online, the best configuration for new applications not in the model. The evaluation is done using two different high performance NUMA systems, and the performance counters collected in one machine are used to predict the best configurations in the other machine. The second contribution builds on the idea that prefetching can have a strong effect in NUMA systems and proposes a NUMA-aware hardware prefetching scheme. This scheme is generic and can be applied to multiple hardware prefetchers with a low hardware cost but giving very good results. The evaluation is done using a cycle-accurate architectural simulator and provides detailed results of the performance, the data transfer reduction and the energy costs. Finally, the third and last contribution consists in scheduling algorithms for task-based programming models. These programming models help improve the programmability of applications in parallel systems and also provide useful information to the underlying runtime system. This information is used to build a task dependency graph (TDG), a directed acyclic graph that models the application where the nodes are sequential pieces of code known as tasks and the edges are the data dependencies between the different tasks. The proposed scheduling algorithms use graph partitioning techniques and provide a scheduling for the tasks in the TDG that minimises the data transfers between the different NUMA regions of the system. The results have been evaluated in real ccNUMA systems with multiple NUMA regions.La fi de la llei de Dennard ha provocat un estancament de la freqüència de rellotge dels computadors. Amb l'objectiu de superar aquest fet, durant les darreres dues dècades els fabricants han integrat més quantitat d'unitats de còmput als sistemes mitjançant la interconnexió de nodes diferents, la inclusió de múltiples xips als nodes i l'increment de nuclis de processador a cada xip. La rapidesa de la memòria principal no ha evolucionat amb el mateix factor que els processadors; és molt més lenta i hi ha la necessitat de proporcionar més ample de banda als processadors, especialment amb l'increment del nombre de nuclis i xips. Tot mantenint un adreçament compartit en el qual tots els processadors poden accedir a la memòria sencera, les solucions han estat al voltant de la integració de més memòries: amb tecnologies modernes com HBM (high-bandwidth memories) i NVM (non-volatile memories), fent que grups de nuclis (com sòcols sencers) tinguin accés més ràpid a una part de la DRAM o amb la combinació de solucions. Això ha provocat una heterogeneïtat en la velocitat d'accés a la memòria principal, en funció del nucli que sol·licita l'accés a una adreça en particular i la seva localització física, fet que provoca uns comportaments no uniformes en l'accés a la memòria (non-uniform memory access, NUMA). A més, sovint tenen memòries cau coherents (cache-coherent NUMA, ccNUMA), que implica que qualsevol canvi fet a la memòria des d'un nucli d'un processador ha de ser visible la resta de manera transparent. Aquests comportaments redueixen el rendiment de les aplicacions i suposen un repte. Per abordar el problema, a la tesi s'hi proposen solucions, a nivell de programari i maquinari, que milloren la localitat de dades als sistemes NUMA i, en conseqüència, el rendiment de les aplicacions en aquests sistemes. La primera contribució mostra que, quan es tenen en compte alhora la precàrrega d'adreces de memòria amb maquinari (hardware prefetching) i les decisions d'ubicació dels fils d'execució i les dades als sistemes NUMA, es poden trobar millors configuracions que quan es condieren per separat. Una combinació dels resultats de rendiment i dels comptadors disponibles al sistema s'utilitza per construir un model de rendiment per fer la predicció, tant per avançat com també en temps d'execució, de la millor configuració per aplicacions que no es troben al model. L'avaluació es du a terme a dos sistemes NUMA d'alt rendiment, i els comptadors mesurats en un sistema s'usen per predir les millors configuracions a l'altre sistema. La segona contribució es basa en la idea que el prefetching pot tenir un efecte considerable als sistemes NUMA i proposa un esquema de precàrrega a nivell de maquinari que té en compte els efectes NUMA. L'esquema és genèric i es pot aplicar als algorismes de precàrrega existents amb un cost de maquinari molt baix però amb molt bons resultats. S'avalua amb un simulador arquitectural acurat a nivell de cicle i proporciona resultats detallats del rendiment, la reducció de les comunicacions de dades i els costos energètics. La tercera i darrera contribució consisteix en algorismes de planificació per models de programació basats en tasques. Aquests simplifiquen la programabilitat de les aplicacions paral·leles i proveeixen informació molt útil al sistema en temps d'execució (runtime system) que en controla el funcionament. Amb aquesta informació es construeix un graf de dependències entre tasques (task dependency graph, TDG), un graf dirigit i acíclic que modela l'aplicació i en el qual els nodes són fragments de codi seqüencial (o tasques) i els arcs són les dependències de dades entre les tasques. Els algorismes de planificació proposats fan servir tècniques de particionat de grafs i proporcionen una planificació de les tasques del TDG que minimitza la comunicació de dades entre les diferents regions NUMA del sistema. Els resultats han estat avaluats en sistemes ccNUMA reals amb múltiples regions NUMA.El final de la ley de Dennard ha provocado un estancamiento de la frecuencia de reloj de los computadores. Con el objetivo de superar este problema, durante las últimas dos décadas los fabricantes han integrado más unidades de cómputo en los sistemas mediante la interconexión de nodos diferentes, la inclusión de múltiples chips en los nodos y el incremento de núcleos de procesador en cada chip. La rapidez de la memoria principal no ha evolucionado con el mismo factor que los procesadores; es mucho más lenta y hay la necesidad de proporcionar más ancho de banda a los procesadores, especialmente con el incremento del número de núcleos y chips. Aun manteniendo un sistema de direccionamiento compartido en el que todos los procesadores pueden acceder al conjunto de la memoria, las soluciones han oscilado alrededor de la integración de más memorias: usando tecnologías modernas como las memorias de alto ancho de banda (highbandwidth memories, HBM) y memorias no volátiles (non-volatile memories, NVM), haciendo que grupos de núcleos (como zócalos completos) tengan acceso más veloz a un subconjunto de la DRAM, o con la combinación de soluciones. Esto ha provocado una heterogeneidad en la velocidad de acceso a la memoria principal, en función del núcleo que solicita el acceso a una dirección de memoria en particular y la ubicación física de esta dirección, lo que provoca unos comportamientos no uniformes en el acceso a la memoria (non-uniform memory access, NUMA). Además, muchos de estos sistemas tienen memorias caché coherentes (cache-coherent NUMA, ccNUMA), lo que implica que cualquier cambio hecho en la memoria desde un núcleo de un procesador debe ser visible por el resto de procesadores de forma transparente para los programadores. Estos comportamientos NUMA reducen el rendimiento de las aplicaciones y pueden suponer un reto para los programadores. Para abordar dicho problema, en esta tesis se proponen soluciones, a nivel de software y hardware, que mejoran la localidad de datos en los sistemas NUMA y, en consecuencia, el rendimiento de las aplicaciones en estos sistemas informáticos. La primera contribución muestra que, cuando se tienen en cuenta a la vez la precarga de direcciones de memoria mediante hardware (o hardware prefetching ) y las decisiones de la ubicación de los hilos de ejecución y los datos en los sistemas NUMA, se pueden hallar mejores configuraciones que cuando se consideran ambos aspectos por separado. Con una combinación de los resultados de rendimiento y de los contadores disponibles en el sistema se construye un modelo de rendimiento, tanto por avanzado como en en tiempo de ejecución, de la mejor configuración para aplicaciones que no están incluidas en el modelo. La evaluación se realiza en dos sistemas NUMA de alto rendimiento, y los contadores medidos en uno de los sistemas se usan para predecir las mejores configuraciones en el otro sistema. La segunda contribución se basa en la idea de que el prefetching puede tener un efecto considerable en los sistemas NUMA y propone un esquema de precarga a nivel hardware que tiene en cuenta los efectos NUMA. Este esquema es genérico y se puede aplicar a diferentes algoritmos de precarga existentes con un coste de hardware muy bajo pero que proporciona muy buenos resultados. Dichos resultados se obtienen y evalúan mediante un simulador arquitectural preciso a nivel de ciclo y proporciona resultados detallados del rendimiento, la reducción de las comunicaciones de datos y los costes energéticos. Finalmente, la tercera y última contribución consiste en algoritmos de planificación para modelos de programación basados en tareas. Estos modelos simplifican la programabilidad de las aplicaciones paralelas y proveen información muy útil al sistema en tiempo de ejecución (runtime system) que controla su funcionamiento. Esta información se utiliza para construir un grafo de dependencias entre tareas (task dependency graph, TDG), un grafo dirigido y acíclico que modela la aplicación y en el ue los nodos son fragmentos de código secuencial, conocidos como tareas, y los arcos son las dependencias de datos entre las distintas tareas. Los algoritmos de planificación que se proponen usan técnicas e particionado de grafos y proporcionan una planificación de las tareas del TDG que minimiza la comunicación de datos entre las distintas regiones NUMA del sistema. Los resultados se han evaluado en sistemas ccNUMA reales con múltiples regiones NUMA.Postprint (published version

    Architectures for dependable modern microprocessors

    Get PDF
    Η εξέλιξη των ολοκληρωμένων κυκλωμάτων σε συνδυασμό με τους αυστηρούς χρονικούς περιορισμούς καθιστούν την επαλήθευση της ορθής λειτουργίας των επεξεργαστών μία εξαιρετικά απαιτητική διαδικασία. Με κριτήριο το στάδιο του κύκλου ζωής ενός επεξεργαστή, από την στιγμή κατασκευής των πρωτοτύπων και έπειτα, οι τεχνικές ελέγχου ορθής λειτουργίας διακρίνονται στις ακόλουθες κατηγορίες: (1) Silicon Debug: Τα πρωτότυπα ολοκληρωμένα κυκλώματα ελέγχονται εξονυχιστικά, (2) Manufacturing Testing: ο τελικό ποιοτικός έλεγχος και (3) In-field verification: Περιλαμβάνει τεχνικές, οι οποίες διασφαλίζουν την λειτουργία του επεξεργαστή σύμφωνα με τις προδιαγραφές του. Η διδακτορική διατριβή προτείνει τα ακόλουθα: (1) Silicon Debug: Η εργασία αποσκοπεί στην επιτάχυνση της διαδικασίας ανίχνευσης σφαλμάτων και στον αυτόματο εντοπισμό τυχαίων προγραμμάτων που δεν περιέχουν νέα -χρήσιμη- πληροφορία σχετικά με την αίτια ενός σφάλματος. Η κεντρική ιδέα αυτής της μεθόδου έγκειται στην αξιοποίηση της έμφυτης ποικιλομορφίας των αρχιτεκτονικών συνόλου εντολών και στην δυνατότητα από-διαμόρφωσης τμημάτων του κυκλώματος, (2) Manufacturing Testing: προτείνεται μία μέθοδο για την βελτιστοποίηση του έλεγχου ορθής λειτουργίας των πολυνηματικών και πολυπύρηνων επεξεργαστών μέσω της χρήση λογισμικού αυτοδοκιμής, (3) Ιn-field verification: Αναλύθηκε σε βάθος η επίδραση που έχουν τα μόνιμα σφάλματα σε μηχανισμούς αύξησης της απόδοσης. Επιπρόσθετα, προτάθηκαν τεχνικές για την ανίχνευση και ανοχή μόνιμων σφαλμάτων υλικού σε μηχανισμούς πρόβλεψης διακλάδωσης.Technology scaling, extreme chip integration and the compelling requirement to diminish the time-to-market window, has rendered microprocessors more prone to design bugs and hardware faults. Microprocessor validation is grouped into the following categories, based on where they intervene in a microprocessor’s lifecycle: (a) Silicon debug: the first hardware prototypes are exhaustively validated, (b) Μanufacturing testing: the final quality control during massive production, and (c) In-field verification: runtime error detection techniques to guarantee correct operation. The contributions of this thesis are the following: (1) Silicon debug: We propose the employment of deconfigurable microprocessor architectures along with a technique to generate self-checking random test programs to avoid the simulation step and triage the redundant debug sessions, (2) Manufacturing testing: We propose a self-test optimization strategy for multithreaded, multicore microprocessors to speedup test program execution time and enhance the fault coverage of hard errors; and (3) In-field verification: We measure the effect of permanent faults performance components. Then, we propose a set of low-cost mechanisms for the detection, diagnosis and performance recovery in the front-end speculative structures. This thesis introduces various novel methodologies to address the validation challenges posed throughout the life-cycle of a chip
    corecore