

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Architectures for Dependable Modern Microprocessors

Nikolaos A. Foutris

ATHENS

February 2015

ΔΘΝΙΚΟ ΚΑΙ ΚΑΠΟΓΙΣΡΙΑΚΟ ΠΑΝΔΠΙΣΗΜΙΟ ΑΘΗΝΩΝ

ΥΟΛΗ ΘΔΣΙΚΩΝ ΔΠΙΣΗΜΩΝ
ΣΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΣΗΛΔΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ

ΓΙΓΑΚΣΟΡΙΚΗ ΓΙΑΣΡΙΒΗ

Αξρητεθτνληθέο Αμηόπηστεο Λεητνπξγίαο ύγρξνλωλ
Μηθξνεπεμεξγαστώλ

Νηθόιανο Α. Φνπτξήο

ΑΘΗΝΑ

Φεβξνπάξηνο 2015

PhD THESIS

Architectures for Dependable Modern Microprocessors

Nikolaos A. Foutris

ADVISOR: Dimitris Gizopoulos, Associate Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Dimitris Gizopoulos, Associate Professor UoA
Antonis Paschalis, Professor UoA
Mihalis Psarakis, Assistant Professor UniPi

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature)

Dimitris Gizopoulos,
Associate Professor UoA

(Signature)

Antonis Paschalis,
Professor UoA

(Signature)

Mihalis Psarakis,
Assistant Professor UniPi

(Signature)

Manolis Katevenis,
Professor UoC

(Signature)

Dionisiνs Pnevmatikatos,
Professor TUC

(Signature)

Nectarios Koziris,
Professor NTUA

(Signature)

Nikolaos Bellas,
Associate Professor UTH

Examination Date 27/2/2015

ΓΙΓΑΚΣΟΡΙΚΗ ΓΙΑΣΡΙΒΗ

Αξρηηεθηνληθέο Αμηφπηζηεο Λεηηνπξγίαο Σχγρξνλσλ Μηθξνεπεμεξγαζηψλ

Νηθόιανο Α. Φνπτξήο

ΔΠΙΒΛΔΠΧΝ ΚΑΘΗΓΗΣΗ: Γεκήτξεο Γθηδόπνπινο, Αλ. Καζεγεηήο ΕΚΠΑ

ΣΡΙΜΔΛΗ ΔΠΙΣΡΟΠΗ ΠΑΡΑΚΟΛΟΤΘΗΗ:
Γεκήτξεο Γθηδόπνπινο, Αλαπιεξσηήο Καζεγεηήο ΕΚΠΑ
Αλτώλεο Πασράιεο, Καζεγεηήο ΕΚΠΑ
Μηράιεο Φαξάθεο, Επίθνπξνο Καζεγεηήο ΠΑ.ΠΕΙ

ΔΠΣΑΜΔΛΗ ΔΞΔΣΑΣΙΚΗ ΔΠΙΣΡΟΠΗ

(Υπνγξαθή)

Γεκήτξεο Γθηδόπνπινο,
 Αλ. Καζεγετήο ΔΚΠΑ

(Υπνγξαθή)

Αλτώλεο Πασράιεο,
Καζεγετήο ΔΚΠΑ

(Υπνγξαθή)

Μηράιεο Φαξάθεο,
Δπ. Καζεγετήο Πα.Πεη

(Υπνγξαθή)

Μαλόιεο Κατεβαίλεο,
Καζεγετήο Παλ. Κξήτεο

(Υπνγξαθή)

Γηνλύσηνο Πλεπκατηθάτνο,
Καζεγετήο Πνιπτερλείν Κξήτεο

(Υπνγξαθή)

Νεθτάξηνο Κνδύξεο,
Καζεγετήο ΔΜΠ

(Υπνγξαθή)

Νηθόιανο Μπέιιαο,
Αλ. Καζεγετήο Παλ. Θεσσαιίαο

Ηκεξνκελία εμέτασεο 27/2/2015

ABSTRACT

The evolution of semiconductor technology and computer architecture has radically
transformed our world throughout the last decades. However, the combination of
technology scaling and extreme chip integration, along with the compelling requirement
to diminish the time-to-market window, has rendered microprocessors more prone to
design bugs and hardware faults. The goal of this thesis is to provide solutions to the
validation challenges posed from the microprocessor products throughout the life-cycle
of a chip.

Microprocessor validation is grouped into the following categories, based on where they
intervene in a microprocessor‟s lifecycle: (a) silicon debug: the first hardware prototypes
are exhaustively validated, (b) manufacturing testing: the final quality control during
massive production and before chip shipping, and (c) in-field verification: runtime error
detection techniques to guarantee correct operation in the field. The contributions of this
thesis are the following:

 Silicon debug: We propose the employment of deconfigurable microprocessor
architectures along with a technique to generate self-checking random test
programs to: (a) avoid the time- and resource-consuming simulation step, (b)
triage the redundant debug sessions, and thus to accelerate silicon debug [8]
[10].

 Manufacturing testing: We propose a self-test optimization strategy for
multithreaded, multicore microprocessors to: (a) speedup test program
execution time, (b) enhance the fault coverage of hard errors, and thus to make
manufacturing testing more efficient [11].

 In-field verification: We measure the effect of permanent faults performance
components. Then, we propose a set of low-cost hardware-based mechanisms
for the detection, diagnosis and performance recovery in the front-end
speculative structures [2] [5] [6].

The share of silicon debug in the overall microprocessor chips development cycle is
rapidly expanding [2]. The validation step that detects the vast majority of design bugs is
the one that stresses the silicon prototypes by applying huge numbers of random test
programs. Despite its bug detection capability, this step is constrained by the extreme
computing needs for random test program simulation. Moreover, another major
bottleneck and source of “noise” of this phase is that large numbers of random test
programs fail due to the same or similar design bugs. This redundant behaviour adds
long delays in the debug flow since each failing random program must be separately
examined, although it does not usually bring new debug information. This thesis
addresses both challenges of silicon debug. A self-checking methodology is proposed
for generating random test programs (exploiting the ISA diversity property) that detect
bugs by comparing the results of equivalent instructions combined with a technique to
triage the failing test programs into categories with common failure modes. The
proposed framework: (a) improves bug detection efficiency, (b) reduces the redundant
debug session, and thus overall accelerates silicon debug.

When a sufficient level of design bugs coverage is reached the microprocessor design
enters the production stage, where a final quality control is performed to detect
manufacturing defects in massive production. Functional self-testing forms an integral

part of manufacturing test flow due to (a) at-speed testing: test application and response
collection are performed at the processor‟s actual speed, enabling screening of delay
defects that aren‟t detectable at lower frequencies; and (b) non-intrusive nature: does
not add any extra hardware. Multithreaded (MT) SBST methodology proposes a novel
self-test optimization strategy for multithreaded, multicore microprocessor architectures.
The proposed self-test program execution optimization aims to: (a) take maximum
advantage of the available execution parallelism provided by multiple threads and
multiple cores, (b) preserve the high fault coverage that single-thread execution
provides for the processor components; and (c) enhance the fault coverage of the
thread-specific control logic. MT-SBST methodology significantly speeds up self-test
time, while at the same time it improves the overall fault coverage.

The combination of design complexity, shrinking time-to-market windows, and wear-out
effects increases the failure probability of modern designs in the field and leads
microprocessor manufacturers to integrate numerous in-field verification mechanisms.
Trends such as low-voltage operation and process scaling are expected to significantly
increase the rate of faults experienced by silicon. Their impact on a core's non-cache
SRAM structures, such as the speculation components, has not been accurately
quantified. Faults in these structures will not affect correctness, but can cause severe
performance degradation and variability among otherwise identical cores. We first
classify and quantify the impact of permanent faults in the performance components of
modern microprocessors. Then, we propose low-cost microarchitectural mechanisms
that exploit the self-verification property of speculative structures to achieve
performance recovery.

Modern microprocessors implement extremely complex architectures, making the
validation process a major challenge for the semiconductor industry. This thesis
introduces various novel methodologies to address the validation challenges posed
throughout the life-cycle of a chip. The proposed techniques make the validation
process more efficient and are easily applicable to the existing industrial flow.

SUBJECT AREA: Computer Architecture

KEYWORDS: Dependability, Silicon debug, Testing, Errors, Bugs

ΠΔΡΙΛΗΦΗ

Η ξαγδαία εμέιημε ησλ νινθιεξσκέλσλ θπθισκάησλ, απφ ηελ πιεπξά ηεο ηερλνινγίαο
πιηθνχ αιιά θαη ηεο αξρηηεθηνληθήο ππνινγηζηψλ έρνπλ εθηηλάμεη ην θφζηνο, ζε
αλζξσπνψξεο θαη ππνινγηζηηθή ηζρχ, πνπ απαηηείηαη γηα ηελ δηαζθάιηζε ηεο νξζήο
ιεηηνπξγίαο ελφο επεμεξγαζηή. Σε ζπλδπαζκφ κε ηνπο απζηεξνχο ρξνληθνχο
πεξηνξηζκνχο πνπ ππάξρνπλ γηα ηελ αλάπηπμε νινθιεξσκέλσλ θπθισκάησλ ε
επαιήζεπζε ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ θαζίζηαηαη κία εμαηξεηηθά
απαηηεηηθή θαη αθξηβή δηαδηθαζία. Ωο εθ ηνχηνπ, ε αλάπηπμε κεζφδσλ πνπ ζα
επηηαρχλνπλ ηελ δηαδηθαζία ηεο επαιήζεπζεο ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ
είλαη επηβεβιεκέλε.

Με θξηηήξην ην ζηάδην ηνπ θχθινπ δσήο ελφο επεμεξγαζηή, απφ ηελ ζηηγκή θαηαζθεπήο
ησλ πξσηνηχπσλ θαη έπεηηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο δηαθξίλνληαη ζηηο
αθφινπζεο θαηεγνξίεο:

 Silicon Debug: Τα πξσηφηππα νινθιεξσκέλα θπθιψκαηα ειέγρνληαη
εμνλπρηζηηθά γηα ηνλ εληνπηζκφ ζρεδηαζηηθψλ θαη θαηαζθεπαζηηθψλ ζθαικάησλ
ηνπ πιηθνχ. Βαζηθέο πξνθιήζεηο ηνπ silicon debug πνπ ρξίδνπλ αληηκεηψπηζεο
είλαη νη εμήο: (1) ε απνθπγή ηεο πξνζνκνίσζεο ησλ ηπραίσλ πξνγξακκάησλ.
Η δηαδηθαζία ηεο πξνζνκνίσζεο είλαη αξθεηέο ηάμεηο κεγέζνπο πην αξγή απφ
ηελ εθηέιεζε ζην πξαγκαηηθφ πιηθφ, κε απνηέιεζκα λα πεξηνξίδεη ην πιήζνο
ησλ ζελαξίσλ ειέγρνπ νξζήο ιεηηνπξγίαο πνπ κπνξνχλ λα δνθηκαζηνχλ. (2) Η
αλάπηπμε ηερληθψλ πνπ ζα νκαδνπνηνχλ ηα πξνγξάκκαηα ειέγρνπ
ζθαικάησλ, ηα νπνία εληνπίδνπλ ην ίδην ζθάικα, είλαη ηδηαίηεξα ζεκαληηθή γηα
ηελ νκαιή θαη εληφο πξνζεζκηψλ νινθιήξσζε ηνπ ειέγρνπ νξζήο ιεηηνπξγίαο
ελφο νινθιεξσκέλνπ θπθιψκαηνο. (3) Η αλίρλεπζε θαη αληηκεηψπηζε
ζθαικάησλ πιηθνχ πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ [8] [10].

 Manufacturing Testing: Απνηειεί ηνλ ηειηθφ πνηνηηθφ έιεγρν πνπ δηελεξγείηαη
θαηά ηελ καδηθή παξαγσγή ησλ νινθιεξσκέλσλ θπθισκάησλ. Βαζηθέο
πξνθιήζεηο ηνπ manufacturing testing πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο:
(1) O εληνπηζκφο θαηαζθεπαζηηθψλ ζθαικάησλ ή αζηνρηψλ πιηθνχ. (2)
Γξήγνξν εληνπηζκφ ζθαικάησλ θαζψο ε ρξνληθή κεηαηφπηζε ηεο εηζαγσγήο
ελφο πξντφληνο-επεμεξγαζηή ζηελ αγνξά έρεη θαηαζηξνθηθέο ζπλέπεηεο γηα ην
ίδην ην πξντφλ θαη ηελ θαηαζθεπάζηξηα εηαηξία [11].

 In-field verification: Πεξηιακβάλεη ηερληθέο, νη νπνίεο δηαζθαιίδνπλ ηελ
ιεηηνπξγία ηνπ επεμεξγαζηή ζχκθσλα κε ηηο πξνδηαγξαθέο ηνπ. Πξνθιήζεηο
πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) Αλάιπζε ηεο επίδξαζεο ζηελ
απφδνζε ησλ ζθαικάησλ πιηθνχ πνπ είηε έρνπλ μεθχγεη απφ ηα πξνεγνχκελα
ζηάδηα θαηαζθεπήο ηνπ θπθιψκαηνο ή ιφγσ ηεο θζνξάο ηνπ θπθιψκαηνο. (2)
Αλάπηπμε κεραληζκψλ γηα ηελ αλίρλεπζε θαη αλνρή ζθαικάησλ πιηθνχ [2] [5]
[6].

Ο ζθνπφο ηεο δηδαθηνξηθήο δηαηξηβήο είλαη λα πξνηαζνχλ ιχζεηο γηα ηελ αληηκεηψπηζε
ησλ πξνθιήζεηο πνπ ππάξρνπλ ζε θάζε έλα απφ ηα πξναλαθεξζέληα ζηάδηα ηνπ
θχθινπ δσήο ελφο επεμεξγαζηή. Οη πξνηεηλφκελεο ηερληθέο ζπκβάιινπλ ζηελ βειηίσζε
ηεο απνηειεζκαηηθφηεηαο ηεο δηαδηθαζίαο επαιήζεπζεο νξζήο ιεηηνπξγίαο θαζψο θαη
θαζίζηαηαη δπλαηή ε άκεζε πηνζέηεζή ηνπο απφ ηελ βηνκεραλία.

Η αλαγθαηφηεηα ρξήζεο ηνπ silicon debug ζην θχθιν δσήο ελφο επεμεξγαζηή ζπλερψο
απμάλεηαη. Αξρηθά, πξνηάζεθε κία κεζνδνινγία γηα ηελ επηηάρπλζε ηεο δηαδηθαζίαο

εληνπηζκνχ ζθαικάησλ, θαηά ηελ θάζε ηνπ ειέγρνπ ησλ πξσηνηχπσλ θπθισκάησλ,
κέζσ ηεο θαηαζθεπήο ινγηζκηθνχ απηφ-δνθηκήο. Η θεληξηθή ηδέα απηήο ηεο κεζφδνπ
έγθεηηαη ζηελ αμηνπνίεζε ηεο έκθπηεο πνηθηινκνξθίαο ησλ αξρηηεθηνληθψλ ζπλφινπ
εληνιψλ, δειαδή ηεο ηδηφηεηάο ηνπο λα πινπνηνχλ κία ιεηηνπξγία κε πεξηζζφηεξνπο απφ
έλα ηξφπνπο (ή δηαθνξεηηθά κε πεξηζζφηεξεο απφ κία δηαθνξεηηθέο εληνιέο).
Επηπξφζζεηα, πξνηάζεθε κία κέζνδν γηα ηνλ απηφκαην εληνπηζκφ ηπραίσλ
πξνγξακκάησλ πνπ δελ πεξηέρνπλ λέα -ρξήζηκε- πιεξνθνξία ζρεηηθά κε ηελ
γελεζηνπξγφ αίηηα ελφο ζθάικαηνο γηα ηνπο κεραληθνχο. Ο πξνηεηλφκελνο κεραληζκφο
βαζίζηεθε ζηελ ιεηηνπξγία ηεο απφ-δηακφξθσζεο, δειαδή ηελ δπλαηφηεηα λα
απελεξγνπνηνχληαη ηκήκαηα ηεο ινγηθήο ηνπ θπθιψκαηνο ρσξίο λα επεξεάδεηαη ε
ιεηηνπξγηθφηεηα ηνπ επεμεξγαζηή. Τα πξνγξάκκαηα απηνδνθηκήο νκαδνπνηνχληαη ζε
θαηεγνξίεο ζχκθσλα κε ηελ αθνινπζία ησλ ηκεκάησλ ινγηθήο πνπ απνδηακνξθψζεθαλ
απφ ην θχθισκα, έηζη ψζηε λα εθηειεζηνχλ ζσζηά. Ωο εθ ηνχηνπ, νη κεραληθνί
απνζθαικάησζεο ηνπ θπθιψκαηνο κειεηνχλ κφλν έλα πξφγξακκα απφ θάζε θαηεγνξία
γηα λα εληνπίζνπλ ηελ γελεζηνπξγφ αίηηα ηνπ ζθάικαηνο. Τα πεηξακαηηθά απνηειέζκαηα
πηζηνπνίεζαλ ηελ δπλαηφηεηα ησλ πξνηεηλφκελσλ κεζφδσλ ζηνλ (α) ζηνλ εληνπηζκφ
ζρεδηαζηηθψλ ζθαικάησλ θαη (β) ζηελ βειηίσζε ηεο δηαδηθαζίαο απνζθαικάησζε ηνπ
θπθιψκαηνο θαη θαηά ζπλέπεηα ζηελ επηηάρπλζε silicon debug.

Η κεζνδνινγία Multithreaded (MT) SBST πξνηείλεη κία θαηλνηφκν κέζνδν γηα ηελ
βειηηζηνπνίεζε θαη επηηάρπλζε ηεο ζηξαηεγηθήο έιεγρνπ νξζήο ιεηηνπξγίαο ησλ
πνιπλεκαηηθψλ θαη πνιππχξελσλ επεμεξγαζηψλ κέζσ ηεο ρξήζε ινγηζκηθνχ
απηνδνθηκήο. Τν ινγηζκηθφ απηνδνθηκήο απνηειεί αλαπφζπαζην ηκήκα ηνπ
manufacturing testing θαζψο (α) επηηξέπεη ηελ εθηέιεζε ηνπ ινγηζκηθνχ απηνδνθηκήο
ζηελ ζπρλφηεηα ιεηηνπξγίαο ηνπ επεμεξγαζηή θαη (β) δελ πξνζζέηεη λέν πιηθφ. Σηελ
εξεπλεηηθή εξγαζία απηή πξνηάζεθε κία κέζνδνο πνπ απνζθνπεί (α) λα εθκεηαιιεπηεί
ζην κέγηζην ηηο δπλαηφηεηεο παξαιιειηζκνχ πνπ παξέρνπλ ηα πνιιαπιά λήκαηα θαη
ππξήλεο ηνπ επεμεξγαζηή, (β) λα δηαηεξήζεη ζε πςειά επίπεδα ην πνζνζηφ θάιπςεο
ειαηησκάησλ πιηθνχ (άλσ ηνπ 90%) θαη (γ) λα βειηηζηνπνηήζεη ην πνζνζηφ θάιπςεο
ειαηησκάησλ πιηθνχ ζηα ηκήκαηα ινγηθήο φπνπ ζρεηίδνληαη κε ηελ πνιπλεκαηηθή θαη
πνιππχξελε εθηέιεζε. Η κεζνδνινγία MT-SBST επηηαρχλεη ζεκαληηθά ηε δηαδηθαζία
ειέγρνπ νξζήο ιεηηνπξγία ελφο επεμεξγαζηή, ελψ παξάιιεια βειηηψλεη ζπλνιηθά ην
πνζνζηφ θάιπςεο ειαηησκάησλ.

Η ζπλερψο απμαλφκελε πηζαλφηεηα εκθάληζεο ζθαικάησλ πιηθνχ θαηά ηελ δηάξθεηα
ιεηηνπξγία ελφο επεμεξγαζηή (in-field verification), νδήγεζε ζηελ εηζαγσγή κεραληζκψλ
επαιήζεπζεο ηεο νξζήο ηνπο ιεηηνπξγίαο. Σηα πιαίζηα ηεο δηδαθηνξηθήο δηαηξηβήο,
αλαιχζεθε ζε βάζνο ε επίδξαζε πνπ έρνπλ ηα κφληκα ζθάικαηα (κνλά θαη ζε
νξηζκέλεο πεξηπηψζεηο πνιιαπιά) ζηνπο εμήο κεραληζκνχο: (α) κεραληζκφο
πξφβιεςεο δηαθιάδσζεο, θαη (β) κεραληζκφο εθ ησλ πξνηέξσλ πξνζθφκηζεο
δεδνκέλσλ, ζηελ ιεηηνπξγία ηνπ ζπζηήκαηνο. Επηπξφζζεηα, πξνηάζεθαλ ηερληθέο γηα
ηελ αλίρλεπζε θαη αλνρή κφληκσλ ζθαικάησλ πιηθνχ ζηνπο κεραληζκνχο πξφβιεςεο
δηαθιάδσζεο. Εηδηθφηεξα, ε αλίρλεπζε επηηπγράλεηαη κέζσ ηεο αμηνπνίεζεο ηεο
απηφκαηεο δηφξζσζεο ησλ κεραληζκψλ πξφβιεςεο δηαθιάδσζεο, ελψ ε αλνρή κέζσ
ηεο αλαδηακφξθσζεο ηνπ πιηθνχ. Τα πξσηφηππα πεηξακαηηθά απνηειέζκαηα απηψλ ησλ
εξγαζηψλ θαηέδεημαλ κε εκθαηηθφ ηξφπν ηελ αξλεηηθή επίπησζε ησλ ζθαικάησλ πιηθνχ
ζηελ απφδνζε ελφο επεμεξγαζηή θαζψο θαη ηεο απνηειεζκαηηθφηεηαο ησλ
πξνηεηλφκελσλ κεραληζκψλ αλίρλεπζεο θαη αλνρήο ζθαικάησλ.

ΘΔΜΑΣΙΚΗ ΠΔΡΙΟΥΗ: Αξρηηεθηνληθή Υπνινγηζηψλ

ΛΔΞΔΙ ΚΛΔΙΓΙΑ: Αμηνπηζηία, Σθάικαηα Υιηθνχ, Σρεδηαζηηθά ζθάικαηα

στην Ευθυμία

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Dimitris Gizopoulos, who steered me into the
research path. His guidance and continuous encouragement have been invaluable to
the conduction of my dissertation. The interaction with Professor Dimitris Gizopoulos
provided me with several skills and knowledge that would be very helpful in my future
career and life, and I am infinitely graceful to him for that.

I also like to thank the member of my advising committee: Professors Mihalis Psarakis
and Antonis Paschalis. Since my undergraduate studies, I have really enjoyed working
with Professor Mihalis Psarakis and I truly appreciate his support and advises.
Although, I haven‟t worked personally with Professor Antonis Paschalis, I have always
respected him. Also, I would like to thank them for their positive feedback that made the
completion of this dissertation possible. Moreover, I would like to thank all the people
that I had the opportunity to collaborate with throughout these years. Finally, I am
deeply graceful to my friends for their continuous assistance and support, will always
remain in my mind.

Finally, I would like to thank my family, who always stood by me. I am waiting for the
day I will be able to give back to them even a small percentage of what they so
generously offered to me all these years. I am blessed for having such a wonderful
family. Last but not least, completion of this work would not be possible without the
support of Efthymia Kastanidou who always encouraged me in the times of failure and
celebrated my successes. I am grateful for her support and I would like to dedicate my
dissertation to her. Thanks a lot Efthymia.

LIST OF PUBLICATIONS

[1] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile Architecture-
Level Faults Injection Framework for Reliability Evaluation: A First Report”, In
IEEE International On-Line Testing Symposium (IOLTS), 2014.

[2] N.Foutris, D.Gizopoulos, A.Chatzidimitriou, J.Kalamatianos, V.Sridharan,
“Performance Assessment of Data Prefetchers in High Error Rate
Technologies”, In IEEE Workshop on Silicon Errors in Logic – System Effect
(SELSE-10), 2014.

[3] M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Accelerated Online Error
Detection in Many-core Microprocessor Architectures”, in IEEE International
VLSI Test Symposium (VTS), 2014.

[4] M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Parallelizing Online Error
Detection in Many-core Microprocessor Architectures”, Joint Euro-TM/Median
Workshop on Dependable Multicore and Transactional Memory Systems
(DMTM), 2014.

[5] N.Foutris, D.Gizopoulos, J.Kalamatianos, V.Sridharan, “Assessing the Impact
of Hard Faults in Performance Components of Modern Microprocessors”, in
IEEE International Conference on Computer Design (ICCD), 2013.

[6] N.Foutris, D.Gizopoulos, J.Kalamatianos, V.Sridharan, “Measuring the
Performance Impact of Permanent Faults in Modern Microprocessor
Architectures”, in IEEE International On-Line Testing Symposium, 2013.

[7] M.Kaliorakis, N.Foutris, D.Gizopoulos, M.Psarakis, “Online Error Detection in
Multiprocessor Chips: A Test Scheduling Study”, in IEEE International On-Line
Testing Symposium, 2013.

[8] N.Foutris, D.Gizopoulos, X.Vera, A.Gonzalez, “Deconfigurable Microprocessor
Architectures for Silicon Debug Acceleration”, in ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2013.

[9] T.Ramirez, E.Herrero, N.Axelos, J.Carretero, N.Foutris, D.Sanchez, X.Vera,
“Mitigating Lower Layer Failures with Adaptive System Reconfiguration”, in
IEEE International Symposium on Mixed Design of Integrated Circuits and
Systems (MIXDES), 2012.

[10] N.Foutris, D.Gizopoulos, M.Psarakis, X.Vera, A.Gonzalez, “Accelerating
Microprocessor Silicon Debug by Exposing ISA Diversity”, in ACM/IEEE
International Symposium on Microarchitecture (MICRO), 2011.

[11] N.Foutris, M.Psarakis, D.Gizopoulos, A.Apostolakis, X.Vera, A.Gonzalez,
“MT-SBST: Self-Test Optimization in Multithreaded Multicore Architectures”,
in IEEE International Test Conference (ITC), 2010.

ΤΝΟΠΣΙΚΗ ΠΑΡΟΤΙΑΗ ΓΙΓΑΚΣΟΡΙΚΗ ΓΙΑΣΡΙΒΗ

Σηε ζεκεξηλή πξαγκαηηθφηεηα, ηνλ 21ν αηψλα, θάζε άλζξσπνο πεξηβάιιεηαη απφ
ππνινγηζηηθά ζπζηήκαηα, δεη κε απηά, ηα ρξεζηκνπνηεί, είλαη ηδησηηθά ή δεκφζηα
αγαζά, είλαη κηθξά, ίζσο κεγάια, κεγαιχηεξα, ελ γέλεη δηάθνξα ππνινγηζηηθά
ζπζηήκαηα πνπ θαηαθιχδνπλ ηε δσή ελφο αηφκνπ. Θα κπνξνχζε θαλείο λα
αλαθεξζεί ζηηο «ειεθηξνληθέο ζπζθεπέο». Αθφκε πην ελδηαθέξνπζεο φκσο είλαη νη
«έμππλεο ειεθηξνληθέο ζπζθεπέο». Τν θνηλφ ραξαθηεξηζηηθφ φισλ απηψλ είλαη ε
χπαξμε ελφο ελζσκαησκέλνπ «εγθεθάινπ». Σηνλ «εγθέθαιν» απηφ απνδίδνληαη
ηα ραξαθηεξηζηηθά πνπ δηέπνπλ ηα ππνινγηζηηθά ζπζηήκαηα. Με άιια ιφγηα, νη
δηαξθψο απμαλφκελεο αλάγθεο ησλ θαηαλαισηψλ νδεγνχλ ηηο εμειίμεηο, ελψ
παξάιιεια δηακνξθψλνπλ ηηο απαηηήζεηο ζηε βηνκεραλία. Μία έμππλε ινηπφλ
ζπζθεπή είλαη απηή πνπ κεηαμχ άιισλ είλαη δπλαηφο ν έιεγρφο ηεο απφ ην ρξήζηε
εμ ‟απνζηάζεσο, κπνξεί λα δηαιεηηνπξγήζεη κε άιιεο ειεθηξνληθέο ζπζθεπέο, λα
πξνζαξκφδεη ηε ιεηηνπξγία ηεο απηφκαηα, λα εμνηθνλνκεί ελέξγεηα θαη αλακθίβνια
λα είλαη αζθαιήο. Απηά είλαη κφλν νξηζκέλα, έλα πνιχ κηθξφ ππνζχλνιν
ραξαθηεξηζηηθψλ θαη δπλαηνηήησλ πνπ δχλαηαη λα θέξνπλ νη ειεθηξνληθέο
ζπζθεπέο. Σε θάζε πεξίπησζε, ν απψηεξνο ζθνπφο αλάπηπμεο ησλ ζπζθεπψλ
απηψλ είλαη ε δηεπθφιπλζε ηεο δσήο ησλ θαηαλαισηψλ, κε ζεβαζκφ ζην ηξίπηπρν
θφζηνο-απνδνηηθφηεηα-απνηειεζκαηηθφηεηα.

Τα ζχγρξνλα ινηπφλ ηερλνινγηθά επηηεχγκαηα, φπσο ελδεηθηηθά αλαθέξζεθαλ
παξαπάλσ θαηέζηεζαλ αλαγθαία, ή ελδερνκέλσο ιεηηνχξγεζαλ θαη σο θαηαιχηεο
γηα ηε ξαγδαία αλάπηπμε ησλ νινθιεξσκέλσλ θπθισκάησλ, ηε δνκηθή δειαδή
κνλάδα, ηα θχηηαξα ησλ ππνινγηζηηθψλ ζπζηεκάησλ. Τν αληίηηκν απηήο ηεο
εμέιημεο απφ ηελ πιεπξά ηεο ηερλνινγίαο πιηθνχ αιιά θαη ηεο αξρηηεθηνληθήο
ππνινγηζηψλ έρεη εθηηλάμεη ην θφζηνο, ζε αλζξσπνψξεο θαη ππνινγηζηηθή ηζρχ,
πνπ απαηηείηαη γηα ηε δηαζθάιηζε ηεο νξζήο ιεηηνπξγίαο ελφο επεμεξγαζηή. Σε
ζπλδπαζκφ κε ηνπο απζηεξνχο ρξνληθνχο πεξηνξηζκνχο πνπ ππάξρνπλ γηα ηελ
αλάπηπμε νινθιεξσκέλσλ θπθισκάησλ ε επαιήζεπζε ηεο νξζήο ιεηηνπξγίαο
ησλ επεμεξγαζηψλ θαζίζηαηαη κία εμαηξεηηθά απαηηεηηθή, ρξνλνβφξα θαη αθξηβή
δηαδηθαζία. Ωο εθ ηνχηνπ, ε αλάπηπμε κεζφδσλ πνπ ζα επηηαρχλνπλ ηε
δηαδηθαζία ηεο επαιήζεπζεο ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ είλαη
επηβεβιεκέλε θαη απνιχησο ελαξκνληζκέλε κε ηηο αλάγθεο ηνπ επηρεηξεκαηηθνχ
θαη θαηαλαισηηθνχ πεξηβάιινληνο.

Με θξηηήξην ην ζηάδην ηνπ θχθινπ δσήο ελφο επεμεξγαζηή, απφ ηελ ζηηγκή
θαηαζθεπήο ησλ πξσηνηχπσλ θαη έπεηηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο
δηαθξίλνληαη ζηηο αθφινπζεο θαηεγνξίεο:

 Silicon Debug: Τα πξσηφηππα νινθιεξσκέλα θπθιψκαηα ειέγρνληαη
εμνλπρηζηηθά γηα ηνλ εληνπηζκφ ζρεδηαζηηθψλ θαη θαηαζθεπαζηηθψλ
ζθαικάησλ ηνπ πιηθνχ. Βαζηθέο πξνθιήζεηο ηνπ silicon debug πνπ
ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) ε απνθπγή ηεο πξνζνκνίσζεο
ησλ ηπραίσλ πξνγξακκάησλ. Η δηαδηθαζία ηεο πξνζνκνίσζεο είλαη
αξθεηέο ηάμεηο κεγέζνπο πην αξγή απφ ηελ εθηέιεζε ζην πξαγκαηηθφ
πιηθφ, κε απνηέιεζκα λα πεξηνξίδεη ην πιήζνο ησλ ζελαξίσλ ειέγρνπ
νξζήο ιεηηνπξγίαο πνπ κπνξνχλ λα δνθηκαζηνχλ. (2) Η αλάπηπμε
ηερληθψλ πνπ ζα νκαδνπνηνχλ ηα πξνγξάκκαηα ειέγρνπ ζθαικάησλ, ηα
νπνία εληνπίδνπλ ην ίδην ζθάικα, είλαη ηδηαίηεξα ζεκαληηθή γηα ηελ νκαιή

θαη εληφο πξνζεζκηψλ νινθιήξσζε ηνπ ειέγρνπ νξζήο ιεηηνπξγίαο ελφο
νινθιεξσκέλνπ θπθιψκαηνο. (3) Η αλίρλεπζε θαη αληηκεηψπηζε
ζθαικάησλ πιηθνχ πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ [8] [10].

 Manufacturing Testing: Απνηειεί ηνλ ηειηθφ πνηνηηθφ έιεγρν πνπ
δηελεξγείηαη θαηά ηελ καδηθή παξαγσγή ησλ νινθιεξσκέλσλ
θπθισκάησλ. Βαζηθέο πξνθιήζεηο ηνπ manufacturing testing πνπ
ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) O εληνπηζκφο θαηαζθεπαζηηθψλ
ζθαικάησλ ή αζηνρηψλ πιηθνχ. (2) Γξήγνξν εληνπηζκφ ζθαικάησλ
θαζψο ε ρξνληθή κεηαηφπηζε ηεο εηζαγσγήο ελφο πξντφληνο-
επεμεξγαζηή ζηελ αγνξά έρεη θαηαζηξνθηθέο ζπλέπεηεο γηα ην ίδην ην
πξντφλ θαη ηελ θαηαζθεπάζηξηα εηαηξία [11].

 In-field verification: Πεξηιακβάλεη ηερληθέο, νη νπνίεο δηαζθαιίδνπλ ηελ
ιεηηνπξγία ηνπ επεμεξγαζηή ζχκθσλα κε ηηο πξνδηαγξαθέο ηνπ.
Πξνθιήζεηο πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) Αλάιπζε ηεο
επίδξαζεο ζηελ απφδνζε ησλ ζθαικάησλ πιηθνχ πνπ είηε έρνπλ μεθχγεη
απφ ηα πξνεγνχκελα ζηάδηα θαηαζθεπήο ηνπ θπθιψκαηνο ή ιφγσ ηεο
θζνξάο ηνπ θπθιψκαηνο. (2) Αλάπηπμε κεραληζκψλ γηα ηελ αλίρλεπζε
θαη αλνρή ζθαικάησλ πιηθνχ [2] [5] [6].

Ο ζθνπφο απηήο ηεο δηδαθηνξηθήο δηαηξηβήο είλαη λα πξνηαζνχλ ηεθκεξησκέλεο
ιχζεηο γηα ηελ αληηκεηψπηζε ησλ πξνθιήζεσλ πνπ ελππάξρνπλ ζε θάζε έλα απφ
ηα πξναλαθεξζέληα ζηάδηα ηνπ θχθινπ δσήο ελφο επεμεξγαζηή. Εηδηθφηεξα, νη
πξνηεηλφκελεο ηερληθέο ζπκβάιινπλ ζηε βειηίσζε ηεο απνηειεζκαηηθφηεηαο ηεο
δηαδηθαζίαο επαιήζεπζεο νξζήο ιεηηνπξγίαο ελφο νπνηνπδήπνηε επεμεξγαζηή.
Εθηηκάηαη, φηη ν ζηφρνο απηφο επηηπγράλεηαη κε ηελ νινθιήξσζε απηήο ηεο
πξσηφηππεο δηαηξηβήο θαη επηπιένλ ν έκπεηξνο αλαγλψζηεο ζα δηαπηζηψζεη έλα
αθφκε ζεκαληηθφ επίηεπγκα: πξφθεηηαη γηα έλα ζχλνιν απνηειεζκαηηθψλ ηερληθψλ
νη νπνίεο είλαη δπλαηφ λα πηνζεηεζνχλ θαη λα εθαξκνζηνχλ άκεζα απφ ηε
βηνκεραλία. Με άιια ιφγηα, κία ζεκαληηθή πηπρή ηεο δηδαθηνξηθήο απηήο
δηαηξηβήο είλαη ε έκθαζε ζηε δηεπζέηεζε πξαγκαηηθψλ πξνβιεκάησλ, κε
ξεαιηζηηθέο, πξαθηηθέο θαη απνηειεζκαηηθέο ιχζεηο.

Τν silicon debug απνηειεί έλα αλαπφζπαζην θαη ζπλερψο απμαλφκελεο ζεκαζίαο
θαη δηάξθεηαο ηκήκα ηνπ θχθινπ δσήο ελφο επεμεξγαζηή. Ελδεηθηηθή είλαη ε
ζπλερψο απμαλφκελε πίεζε πνπ αζθείηαη ζηνπο κεραληθνχο πιηθνχ γηα λα
νινθιεξψζνπλ ηελ απνζθαικάησζε ελφο επεμεξγαζηή. Σην πιαίζην απηφ ζα
πξέπεη λα ιεθζεί επηπιένλ ππφςε ε εμαηξεηηθά κεγάιε πνιππινθφηεηα ησλ
ζχγρξνλσλ επεμεξγαζηψλ, ζε ζπλδπαζκφ κε ηα ζηελά ρξνληθά πεξηζψξηα πνπ
ηίζεληαη. Επηπξφζζεηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο ελφο επεμεξγαζηή
πξηλ ηελ παξαγσγή ησλ πξσηνηχπσλ θπθισκάησλ (pre-silicon verification)
βαζίδνληαη απνθιεηζηηθά ζε εξγαιεία πξνζνκνίσζεο. Ωζηφζν, παξφιν ηελ
απνηειεζκαηηθφηεηα ησλ ηερληθψλ απηψλ θαη ηελ κεγάιε ππνινγηζηηθή ηζρχ πνπ
ρξεζηκνπνηείηαη γηα ηελ επίηεπμε ηνπ ζηφρνπ, ε ρακειή απφδνζε ησλ ηερληθψλ
πξνζνκνίσζεο απνηειεί βαζηθή ζπζηεκηθή αδπλακία. Πην ζπγθεθξηκέλα, έλαο
ηεξάζηηνο αξηζκφο πξνγξακκάησλ ειέγρνπ νξζήο ιεηηνπξγίαο εθηεινχληαη
αδηάθνπα ζην πξσηφηππν κνληέιν ηνπ επεμεξγαζηή κε ζθνπφ ηελ αλίρλεπζε
νπνηνπδήπνηε ζρεδηαζηηθνχ ή θαηαζθεπαζηηθνχ ζθάικαηνο. Σηελ ζπλέρεηα, θάζε
θνξά πνπ εληνπίδεηαη έλα ζθάικα, ε δηαδηθαζία απνζθαικάησζεο μεθηλά. Ο
ζηφρνο ηεο δηαδηθαζίαο απηήο είλαη ν πξνζδηνξηζκφο ηεο πεγήο ηνπ ζθάικαηνο
θαζψο θαη ε κφληκε δηφξζσζή ηνπ. Είλαη πξνθαλέο φηη ε αλάπηπμε ηερληθψλ νη
νπνίεο ζα αληρλεχζνπλ εγθαίξσο θαη ζα δηνξζψζνπλ ηα ζρεδηαζηηθά ζθάικαηα

πξηλ ηελ καδηθή παξαγσγή ηνπ κνληέινπ ηνπ επεμεξγαζηή απνηειεί θαζνξηζηηθφ
παξάγνληα γηα ηελ απνηπρία ή κε ελφο νινθιεξσκέλνπ θπθιψκαηνο.

Η καδηθή εθηέιεζε πξνγξακκάησλ νξζήο ιεηηνπξγίαο κε ηπραηφηεηα απνηειεί έλα
απφ ηνπο πην απνδνηηθνχο ηξφπνπο εληνπηζκνχ ζρεδηαζηηθψλ ζθαικάησλ.
Παγθνζκίσο, νη κεγαιχηεξεο εηαηξίεο νινθιεξσκέλσλ θπθισκάησλ έρνπλ
θαηαζθεπάζεη εξγαιεία απηφκαηεο παξαγσγήο ηπραίσλ πξνγξακκάησλ
απνζθνπψληαο ζηελ ηαρχηεξε θαη πιεξέζηεξε θάιπςε φισλ ησλ πηζαλψλ
ζελαξίσλ ειέγρνπ ελφο επεμεξγαζηή. Ωζηφζν, παξφιν ηελ επξεία πηνζέηεζε
απηήο ηεο κεζφδνπ, ππάξρνπλ νξηζκέλεο ελ γέλεη αδπλακίεο. Απηέο είλαη νη
αθφινπζεο:

1. Ο εληνπηζκφο ελφο ζρεδηαζηηθνχ ή θαηαζθεπαζηηθνχ ζθάικαηνο
πξνυπνζέηεη ηελ εθηέιεζε ηνπ πξνγξάκκαηνο ειέγρνπ νξζήο
ιεηηνπξγίαο κε ηπραηφηεηα αθελφο ζηνλ πξσηφηππν κνληέιν ηνπ
επεμεξγαζηή θαη αθεηέξνπ ζε έλαλ αξρηηεθηνληθφ πξνζνκνησηή (ν
νπνίνο εμάγεη ην ζσζηφ-αλακελφκελν απνηέιεζκα). Σηελ ζπλέρεηα, ηα
απνηειέζκαηα απφ ηηο δχν πεγέο ζπγθξίλνληαη έηζη ψζηε λα
πξνζδηνξηζηεί ν εληνπηζκφο ή κε ελφο ζθάικαηνο (δηαθνξά ζηα
απνηειέζκαηα ζπλεπάγεηαη ηνλ εληνπηζκφ ζθάικαηνο). Σπλεπψο, ε
δηαδηθαζία ηνπ silicon debug πεξηνξίδεηαη απφ ηελ απφδνζε ηνπ
πξνζνκνησηή, ν νπνίνο ζε θάζε πεξίπησζε είλαη πνιιέο ηάμεηο
κεγέζνπο πην αξγφο απφ έλα πξαγκαηηθφ κεράλεκα.

2. Μία αθφκε πεγή θαζπζηέξεζεο ηεο νινθιήξσζεο ηνπ silicon debug
απνηειεί ν κεγάινο αξηζκφο απφ πξνγξάκκαηα ειέγρνπ νξζήο
ιεηηνπξγίαο πνπ εληνπίδνπλ ην ίδην ζρεδηαζηηθφ ή θαηαζθεπαζηηθφ
ζθάικα, ηα νπνία δελ κεηαθέξνπλ θάπνηα λέα πιεξνθνξία γηα ηελ
θαηάζηαζε ηνπ επεμεξγαζηή. Παξφια απηά νη κεραληθνί πιηθνχ πξέπεη
λα κειεηήζνπλ θάζε έλα απφ απηά μερσξηζηά γηα λα εληνπίζνπλ ηελ
γελεζηνπξγφ αηηία ηνπ ζθάικαηνο θαζπζηεξψληαο ηελ φιε δηαδηθαζία.

Σην πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο πξνηάζεθε κία κεζνδνινγία γηα ηελ
επηηάρπλζε ηεο δηαδηθαζίαο εληνπηζκνχ ζθαικάησλ, θαηά ηε θάζε ειέγρνπ ησλ
πξσηνηχπσλ θπθισκάησλ, κέζσ ηεο θαηαζθεπήο ινγηζκηθνχ απηφ-δνθηκήο. Η
θεληξηθή ηδέα απηήο ηεο κεζφδνπ έγθεηηαη ζηελ αμηνπνίεζε ηεο έκθπηεο
πνηθηινκνξθίαο ησλ αξρηηεθηνληθψλ ζπλφινπ εληνιψλ, δειαδή ηεο ηδηφηεηάο ηνπο
λα πινπνηνχλ κία ιεηηνπξγία κε πεξηζζφηεξνπο απφ έλα ηξφπνπο (ή δηαθνξεηηθά
κε πεξηζζφηεξεο απφ κία δηαθνξεηηθέο εληνιέο). Απηή ε εξεπλεηηθή εξγαζία
απνζθνπεί ζηελ επηηάρπλζε ηεο δηαδηθαζίαο εληνπηζκνχ ζθαικάησλ, θαηά ηε
θάζε ηνπ ειέγρνπ ησλ πξσηνηχπσλ θπθισκάησλ. Τα πεηξακαηηθά απνηειέζκαηα
(ηα νπνία εμήρζεζαλ ζηελ πην δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ, x86)
πηζηνπνίεζαλ ηε δπλαηφηεηα ηεο πξνηεηλφκελεο κεζφδνπ, αθελφο ζηνλ
εληνπηζκφ (ε πξνηεηλφκελε κέζνδνο έρεη πςειφηεξα πνζνζηά θάιπςεο
ζθαικάησλ ζε ζχγθξηζε κε ππάξρνπζεο ηερληθέο) θαη ζηελ απνθπγή ζθαικάησλ
πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ θαη αθεηέξνπ ζηελ επηηάρπλζε ηεο
δηαδηθαζίαο επαιήζεπζεο ελφο επεμεξγαζηή (ε πξνηεηλφκελε κέζνδνο είλαη
πνιιέο ηάμεηο κεγέζνπο γξεγνξφηεξε έλαληη ηεο βαζηθήο δηαδηθαζίαο πνπ
πηνζεηείηαη απφ ηηο εηαηξείεο). Επηπξφζζεηα, πξνηάζεθε κία κέζνδνο γηα ηνλ
απηφκαην εληνπηζκφ ηπραίσλ πξνγξακκάησλ πνπ δελ πεξηέρνπλ λέα -ρξήζηκε-
πιεξνθνξία ζρεηηθά κε ηελ γελεζηνπξγφ αίηηα ελφο ζθάικαηνο γηα ηνπο
κεραληθνχο. Ο πξνηεηλφκελνο κεραληζκφο βαζίζηεθε ζηελ ιεηηνπξγία ηεο
απνδηακφξθσζεο (deconfiguration), δειαδή ηεο δπλαηφηεηαο λα

απελεξγνπνηνχληαη ηκήκαηα ηεο ινγηθήο ηνπ θπθιψκαηνο ρσξίο λα επεξεάδεηαη ε
ιεηηνπξγηθφηεηα ηνπ επεμεξγαζηή. Οη ζχγρξνλνη επεμεξγαζηέο ελζσκαηψλνπλ
πνιιά ηκήκαηα πιενλάδνπζαο ινγηθήο ηα νπνία δελ ζπκβάιινπλ ζηελ
πινπνίεζε ησλ βαζηθψλ ιεηηνπξγηψλ ηνπ αιιά βειηηψλνπλ ηελ απφδνζε.
Παξάιιεια, αμηνπνηψληαο ηε δπλαηφηεηα ησλ πξνγξακκάησλ απηφ-δνθηκήο γηα
ηελ αλίρλεπζε ζθαικάησλ θαηά ηε δηάξθεηα ιεηηνπξγία ηνπ θπθιψκαηνο, ν
πξνηεηλφκελνο κεραληζκφο απνδηακνξθψλεη ζηαδηαθά ηα πιενλάδνληα ηκήκαηα
ηεο ινγηθήο έσο φηνπ ην πξφγξακκα δελ εληνπίζεη θάπνην ζθάικα (δειαδή, ην
ηκήκα ηεο ινγηθήο πνπ πεξηέρεη ην ζθάικα έρεη απελεξγνπνηεζεί, κε απνηέιεζκα
ην πξφγξακκα λα κελ ην εληνπίδεη). Σηε ζπλερεία, ηα πξνγξάκκαηα απηφ-δνθηκήο
νκαδνπνηνχληαη ζε θαηεγνξίεο ζχκθσλα κε ηελ αθνινπζία ησλ ηκεκάησλ ινγηθήο
πνπ απνδηακνξθψζεθαλ απφ ην θχθισκα, έηζη ψζηε λα εθηειεζηνχλ ζσζηά
(δειαδή, ηα πξνγξάκκαηα πνπ κέζσ ηηο ίδηαο αθνινπζίαο απνδηακφξθσζεο
«έθξπςαλ» ην ζρεδηαζηηθφ ζθάικα αλήθνπλ ζηελ ίδηα θαηεγνξία). Ωο εθ ηνχηνπ,
νη κεραληθνί απνζθαικάησζεο ηνπ θπθιψκαηνο κειεηνχλ κφλν έλα πξφγξακκα
απφ θάζε θαηεγνξία γηα λα εληνπίζνπλ ηελ γελεζηνπξγφ αίηηα ηνπ ζθάικαηνο. Τα
πεηξακαηηθά απνηειέζκαηα (ζηελ πην δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ
x86-64) πηζηνπνίεζαλ ηε δπλαηφηεηα ηεο πξνηεηλφκελεο κεζφδνπ, αθελφο ζηελ
νκαδνπνίεζε ησλ πξνγξακκάησλ απηφ-δνθηκήο πνπ δελ εκπεξηέρνπλ λέα –
ρξήζηκε- πιεξνθνξία γηα ηελ απνζθαικάησζε ηνπ θπθιψκαηνο θαη αθεηέξνπ
ζηελ επηηάρπλζε ηεο δηαδηθαζίαο επαιήζεπζεο ελφο επεμεξγαζηή. Ωο εθ ηνχηνπ,
νη πξνηεηλφκελεο κέζνδνη πεηπραίλνπλ: (α) ηνλ εληνπηζκφ ζρεδηαζηηθψλ
ζθαικάησλ θαη θαηαζθεπαζηηθψλ ζθαικάησλ θαη (β) ηε βειηίσζε ηεο δηαδηθαζίαο
απνζθαικάησζε ηνπ θπθιψκαηνο θαη θαηά ζπλέπεηα ζηελ επηηάρπλζε silicon
debug.

Αθνχ νινθιεξσζεί ν εμνλπρηζηηθφο έιεγρνο ησλ πξσηφηππσλ κνληέισλ ελφο
νινθιεξσκέλνπ θπθιψκαηνο, αθνινπζεί ην ζηάδην ηνπ manufacturing testing. Τo
manufacturing testing απνηειεί αλαπφζπαζην θνκκάηη ηεο ζρεδηαζηηθήο αιπζίδαο
θαηά ην νπνίν εθηειείηαη ν ηειεπηαίνο πνηνηηθφο έιεγρνο ηνπ νινθιεξσκέλνπ
θπθιψκαηνο θαηά ηελ καδηθή παξαγσγή ηνπ επεμεξγαζηή. Ο ζηφρνο ηνπ
manufacturing testing είλαη ν εληνπηζκφο νπνηνπδήπνηε θαηαζθεπαζηηθνχ
ζθάικαηνο ην νπνίν κπνξεί λα ζέζεη ζε θίλδπλν ηελ νξζή ιεηηνπξγία ηνπ
επεμεξγαζηή.

Η βηνκεραλία νινθιεξσκέλσλ θπθισκάησλ έρεη πξνζαλαηνιηζηεί ζηελ αλάπηπμε
πνιππχξελσλ θαη πνιπλεκαηηθψλ επεμεξγαζηψλ, νη νπνίνη αλ θαη ιεηηνπξγνχλ ζε
ρακειφηεξεο ζπρλφηεηεο παξέρνπλ πςειή ππνινγηζηηθή ηζρχ θαζψο
εθκεηαιιεχνληαη ηα πνιιαπιά λήκαηα θαη ηνπο πνιινχο ππξήλεο γηα ηνλ
παξαιιειηζκφ ηελ εθηέιεζεο ελφο πξνγξάκκαηνο. Παξάιιεια, φιεο νη ηερληθέο
πνπ έρνπλ επηλνεζεί γηα ηελ αληηκεηψπηζε ησλ πξνβιεκάησλ αμηνπηζηίαο ησλ
ζχγρξνλσλ κηθξνεπεμεξγαζηψλ πξέπεη λα αθνινπζήζνπλ ηελ κεηάβαζε απφ ηελ
επνρή ησλ ππνινγηζηηθψλ ζπζηεκάησλ κε κνλφ ππξήλα ζε πνιιαπιψλ.
Εηδηθφηεξα, νη κειινληηθέο ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο πξέπεη λα
αμηνπνηήζνπλ ηνλ έκθπην παξαιιειηζκφ ησλ ζχγρξνλσλ επεμεξγαζηψλ, έηζη
ψζηε λα κεηψζνπλ ηε ζπλνιηθή δηάξθεηα ησλ ηερληθψλ ειέγρνπ νξζήο ιεηηνπξγίαο,
βειηηψλνληαο ην ρξφλν δηάζεζεο ζηελ αγνξά, αιιά ρσξίο λα ππνβαζκηζηεί ε
απνηειεζκαηηθφηεηα ηνπο ζε ζρέζε κε ην πνζνζηφ θάιπςεο ζθαικάησλ.

Σην πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο πξνηάζεθε ε κεζνδνινγία
Multithreaded (MT) Software-Based Self-Testing (SBST). Η κεζνδνινγία απηή
απνζθνπεί ζηελ βειηηζηνπνίεζε θαη επηηάρπλζε ηεο ζηξαηεγηθήο έιεγρνπ νξζήο
ιεηηνπξγίαο ησλ πνιπλεκαηηθψλ θαη πνιππχξελσλ επεμεξγαζηψλ κέζσ ηεο

ρξήζεο ινγηζκηθνχ απηφ-δνθηκήο (functional self-testing). H πηνζέηεζε ηνπ
ινγηζκηθνχ απηφ-δνθηκήο απνηειεί αλαπφζπαζην ηκήκα ηνπ manufacturing
testing θαζψο: (α) επηηξέπεη ηελ εθηέιεζε ηνπ ινγηζκηθνχ απηνδνθηκήο ζηε
ζπρλφηεηα ιεηηνπξγίαο ηνπ επεμεξγαζηή θαη (β) ηεο κε-παξεκβαηηθήο
ζπκπεξηθνξάο ζηε ιεηηνπξγία ηνπ (δελ πξνζζέηεη λέν πιηθφ). Πην ζπγθεθξηκέλα, ν
έιεγρνο νξζήο ιεηηνπξγίαο κε ηε ρξήζε ινγηζκηθνχ απηφ-δνθηκήο εθηειείηαη σο
εμήο: έλα πξφγξακκα εθαξκφδεη έλα ζχλνιν απφ δεδνκέλα εηζφδνπ (ηα νπνία
ελεξγνπνηνχλ θάζε πηζαλή θαηάζηαζε ηνπ θπθιψκαηνο) θαη ζηε ζπλέρεηα
ζπιιέγεη ηα απνηειέζκαηα εμφδνπ (απφ ηελ θχξηα κλήκε ηνπ ζπζηήκαηνο) ηα
νπνία θαη ζπγθξίλεη κε ηα ζσζηά-αλακελφκελα έηζη ψζηε λα δηαπηζησζεί εάλ έρεη
εληνπηζηεί θάπνην θαηαζθεπαζηηθφ ζθάικα. Σηελ πεξίπησζε εληνπηζκνχ ελφο
θαηαζθεπαζηηθνχ ζθάικαηνο ην ζπγθεθξηκέλν πξντφλ απνζχξεηαη απφ ηελ
παξαγσγή. Σηελ εξεπλεηηθή απηή εξγαζία πξνηάζεθε κία κεζνδνινγία πνπ
απνζθνπεί ζηα εμήο:

1. Να αμηνπνηήζεη ζην κέγηζην ηηο δπλαηφηεηεο παξαιιειηζκνχ πνπ
παξέρνπλ ηα πνιιαπιά λήκαηα θαη ππξήλεο ηνπ επεμεξγαζηή. Τα
πεηξακαηηθά απνηειέζκαηα καο δείρλνπλ φηη ν πξνηεηλφκελνο αιγφξηζκνο
ρξνλνπξνγξακκαηηζκνχ (ζηνλ επεμεξγαζηή OpenSPARC T1) επηηαρχλεη
ην ρξφλν εθηέιεζεο ηνπ ινγηζκηθνχ απηνδνθηκήο, θαηά 3.6Φ θνξέο ζε
επίπεδν ππξήλα, ελψ ζπλνιηθά ζε επίπεδν επεμεξγαζηή έσο 6.0X ζε
ζχγθξηζε κε ηελ εθηέιεζε ηνπ ινγηζκηθνχ ζε έλα κφλν λήκα εθηέιεζεο.
Επηπιένλ, ζε ζχγθξηζε κε κηα απιή πνιπλεκαηηθή εθηέιεζε ηνπ
ινγηζκηθνχ απηφ-δνθηκήο ν πξνηεηλφκελνο αιγφξηζκνο κεηψλεη ηελ
δηάξθεηα εθηέιεζήο θαηά 33% θαη 20% ζε επίπεδν ππξήλα θαη
επεμεξγαζηή αληίζηνηρα.

2. Να δηαηεξήζεη ζε πςειά επίπεδα ην πνζνζηφ θάιπςεο ειαηησκάησλ
πιηθνχ (ζρεδφλ 90% ζε νιφθιεξν ηνλ επεμεξγαζηή ν νπνίνο απνηειείηαη
απφ 1.5 εθαηνκκχξηα ινγηθέο πχιεο) θαη

3. Να βειηηζηνπνηήζεη ην πνζνζηφ θάιπςεο ειαηησκάησλ πιηθνχ ζηα
ηκήκαηα ινγηθήο φπνπ ζρεηίδνληαη κε ηελ πνιπλεκαηηθή θαη πνιππχξελε
εθηέιεζε. Η κεζνδνινγία MT-SBST επηηαρχλεη ζεκαληηθά ηε δηαδηθαζία
ειέγρνπ νξζήο ιεηηνπξγία ελφο επεμεξγαζηή, ελψ παξάιιεια βειηηψλεη
ζπλνιηθά ην πνζνζηφ θάιπςεο ειαηησκάησλ.

Η ζπλερψο απμαλφκελε πηζαλφηεηα εκθάληζεο ζθαικάησλ πιηθνχ θαηά ηε
δηάξθεηα ιεηηνπξγίαο ελφο επεμεξγαζηή (in-field verification), νδήγεζε ζηελ
εηζαγσγή κεραληζκψλ επαιήζεπζεο ηεο νξζήο ηνπο ιεηηνπξγίαο. Σην πιαίζην
απηήο ηεο δηδαθηνξηθήο δηαηξηβήο, πινπνηήζεθε έλα εξγαιείν απηφκαηεο
εηζαγσγήο κφληκσλ ζθαικάησλ (permanent) ζηελ αξρηηεθηνληθή x86-64 (ε πην
δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ, ρξεζηκνπνηείηαη απφ ηηο εηαηξίεο Intel
θαη AMD). Τν εξγαιείν απηφ ελζσκαηψζεθε ζηνλ επξέσο δηαδεδνκέλν
αξρηηεθηνληθφ πξνζνκνησηή PTLsim. Καηφπηλ, αλαιχζεθε ζε βάζνο ε επίδξαζε
πνπ έρνπλ ηα κφληκα ζθάικαηα (κνλά θαη ζε νξηζκέλεο πεξηπηψζεηο πνιιαπιά)
ζηνπο εμήο κεραληζκνχο:

 Μεραληζκφο πξφβιεςεο δηαθιάδσζεο (branch prediction unit): Ο
κεραληζκφο απηφο πξνβιέςεη ηελ επφκελε εληνιή πνπ ζα εθηειεζηεί απφ
ηνλ επεμεξγαζηή βαζηδφκελνο ζην ηξέρνλ ηζηνξηθφ εθηέιεζεο.

 Μεραληζκφο εθ ησλ πξνηέξσλ πξνζθφκηζεο δεδνκέλσλ (data
prefetching). Ο κεραληζκφο απηφο αλαδεηά ζπγθεθξηκέλα πξφηππα ζηνλ

ηξφπν πξφζβαζεο ζηελ ηεξαξρία κλήκεο. Σηελ πεξίπησζε φπνπ
δηαπηζησζεί φηη έλα ζπγθεθξηκέλν πξφηππν επαλαιεθζεί αξθεηέο θνξέο
(ην πιήζνο θαζνξίδεηαη θαηά ηε ζρεδίαζε ηνπ κεραληζκνχ), ηφηε
πξνρσξάεη ζηελ πξφσξε πξνζθφκηζε δεδνκέλσλ απφ ηελ κλήκε ηνπ
επεμεξγαζηή έηζη ψζηε λα απνθεπρζνχλ κειινληηθέο θαζπζηεξήζεηο
ζηελ εθηέιεζεο ιφγσ αζηνρηψλ ζηε κλήκε δεδνκέλσλ.

Η ηδηαηηεξφηεηα ησλ ζθαικάησλ ζηνπο κεραληζκνχο απηνχο έγθεηηαη ζην γεγνλφο
φηη επεξεάδνπλ απνθιεηζηηθά ηελ απφδνζε ηνπ επεμεξγαζηή θαη φρη ηελ νξζφηεηα
ηεο εθηέιεζεο. Καηά ζπλέπεηα, ε εθηέιεζε ελφο πξνγξάκκαηνο κπνξεί λα
θαζπζηεξήζεη λα νινθιεξσζεί εμαηηίαο ησλ ζθαικάησλ ζηνπο κεραληζκνχο
αχμεζεο ηεο απφδνζεο. Τα πεηξακαηηθά απνηειέζκαηα ππνδειψλνπλ φηη έλα
κεγάιν πιήζνο ζθαικάησλ ζηνπο πξναλαθεξζέληεο κεραληζκνχο επεξεάδνπλ
ηελ απφδνζε ηνπ επεμεξγαζηή (έσο ην 96% ησλ κφληκσλ ζθαικάησλ αλαιφγσο
ην κεραληζκφ θαη ην εθηεινχκελν πξφγξακκα). Παξάιιεια, ε επίδξαζε ησλ
ζθαικάησλ ζηελ απφδνζε ηνπ ζπζηήκαηνο κπνξεί λα είλαη θαηαζηξνθηθή. Γηα
παξάδεηγκα, ζθάικαηα ζην κεραληζκφ εθ ησλ πξνηέξσλ πξνζθφκηζεο
δεδνκέλσλ κπνξεί λα επηβαξχλεη ηελ απφδνζε ελφο ζπζηήκαηνο σο 26%.

Εθηφο απφ ηελ αμηνιφγεζε ησλ κφληκσλ ζθαικάησλ ζηνπο κεραληζκνχο αχμεζεο
ηεο απφδνζεο, πξνηάζεθαλ ηερληθέο γηα ηελ αλίρλεπζε θαη αλνρή κφληκσλ
ζθαικάησλ πιηθνχ ζηνπο κεραληζκνχο πξφβιεςεο δηαθιάδσζεο. Εηδηθφηεξα, ε
αλίρλεπζε επηηπγράλεηαη κέζσ ηεο αμηνπνίεζεο ηεο απηφκαηεο δηφξζσζεο ησλ
κεραληζκψλ πξφβιεςεο δηαθιάδσζεο, ελψ ε αλνρή κέζσ ηεο αλαδηακφξθσζεο
ηνπ πιηθνχ. Τα πξσηφηππα πεηξακαηηθά απνηειέζκαηα απηήο ηεο δηδαθηνξηθήο
δηαηξηβήο θαζηζηνχλ εκθαλή ηε ζεηηθή επίπησζε ησλ πξνηεηλφκελσλ κεραληζκψλ
γηα ηελ αλίρλεπζε θαη αλνρή ζθαικάησλ πιηθνχ.

Τα ππνινγηζηηθά ζπζηήκαηα έρνπλ δηεηζδχζεη, πεξηζζφηεξν απφ πνηέ, ζηηο
θαζεκεξηλέο δξαζηεξηφηεηεο ηεο θνηλσλίαο καο. Παξφια απηά, νη ηερλνινγηθέο
εμειίμεηο, ηφζν ζηελ ηερλνινγία πιηθψλ φζν θαη ζηελ αξρηηεθηνληθή ππνινγηζηψλ,
πνπ καο νδεγνχλ ζε απηά ηα αμηνζαχκαζηα επηηεχγκαηα, απμάλνπλ ηελ
αλαμηνπηζηία ησλ ππνινγηζηηθψλ θπθισκάησλ ζέηνληαο, ηαπηνρξφλσο, ζε
θίλδπλν ηελ θνηλσλία καο. Σπλεπψο, ηφζν νη εηαηξίεο θαηαζθεπήο
νινθιεξσκέλσλ θπθισκάησλ φζν θαη ε αθαδεκατθή θνηλφηεηα είλαη αλαγθαίν λα
εθεχξεη λέεο ιχζεηο θαη λα αλαπηχμεη θαηλνηφκεο ηερληθέο πνπ λα αληηκεησπίδνπλ
ην θξίζηκν πξφβιεκα ηεο αλαμηνπηζηίαο ησλ ζχγρξνλσλ αιιά θαη κειινληηθψλ
επεμεξγαζηψλ. Εηδηθφηεξα, νη κειινληηθέο αξρηηεθηνληθέο ππνινγηζηψλ ζα πξέπεη
λα δηεπθνιχλνπλ φζν ην δπλαηφλ πεξηζζφηεξν ην έιεγρν νξζήο ιεηηνπξγίαο ελφο
ππνινγηζηηθνχ θπθιψκαηνο ζε φιεο ηηο θάζεηο ηηο ζρεδηαζηηθήο αιπζίδαο. Απηή ε
δηδαθηνξηθή δηαηξηβή απνηειεί έλα ζεκαληηθφ βήκα πξνο απηή ηελ θαηεχζπλζε.
Εηδηθφηεξα, πξνηείλνληαη λέεο κεζνδνινγίεο βαζηδφκελεο ζηηο αθφινπζεο
ζεκειηψδεηο ζρεδηαζηηθέο πξνδηαγξαθέο: (α) ρακεινχ θφζηνπο ιχζεηο ζε ελέξγεηα
αιιά θαη πνιππινθφηεηα θαη (β) απηνκαηνπνίεζε, κε ζθνπφ ηελ αληηκεηψπηζε
ησλ πξνθιήζεσλ ηνπ ειέγρνπ αμηνπηζηίαο ησλ θπθισκάησλ ζε νιφθιεξν ηνλ
θχθιν δσήο ηνπο.

Τα εξεπλεηηθά απνηειέζκαηα απηήο ηεο δηδαθηνξηθήο δηαηξηβήο αλνίγνπλ
δηάπιαηα ην δξφκν ζε λέεο εξεπλεηηθέο δξαζηεξηφηεηεο. Εηδηθφηεξα, ζηα πιαίζηα
ηνπ silicon debug, νη κειινληηθέο ηερλνινγίεο εληνπηζκνχ θαη δηφξζσζεο
ζθαικάησλ ζα πξέπεη λα επηθεληξσζνχλ ζηελ απηνκαηνπνίεζε θαη ζηελ
ηππνπνίεζε ηεο δηαδηθαζίαο αλίρλεπζεο θαη απνζθαικάησζεο ζρεδηαζηηθψλ
ζθαικάησλ. Επηπξφζζεηα, απηή ε δηδαθηνξηθή δηαηξηβή απέδεημε ηελ
απνηειεζκαηηθφηεηα ηεο πηνζέηεζεο ηνπ ινγηζκηθνχ απηφ-δνθηκήο ζηελ

επηηάρπλζε ηνπ manufacturing testing δηαηεξψληαο έλα εμαηξεηηθά πςειφ
πνζνζηφ θάιπςεο ειαηησκάησλ. Η επηηπρία απηήο ηεο κεζφδνπ ζα κπνξνχζε λα
απνηειέζεη κία θαηεχζπλζε γηα ηνπο κειινληηθνχο κηθξνεπεμεξγαζηέο.
Επηπξφζζεηα, ε ζπλερψο απμαλφκελε αλάγθε γηα ππνινγηζηηθά ζπζηήκαηα
πςειψλ επηδφζεσλ σζεί ηνπ αξρηηέθηνλεο επεμεξγαζηψλ ζηελ πξνζζήθε
πνιιψλ κεραληζκψλ αχμεζεο ηεο απφδνζεο ζηε ζρεδίαζε ελφο επεμεξγαζηή.
Ωζηφζν, ε νξζή ιεηηνπξγία απνηειεί πξσηαξρηθφ ζηφρν έσο ηψξα έλαληη ηεο
ζσζηή ιεηηνπξγίαο αιιά ζηα αλακελφκελα ρξνληθά πεξηζψξηα. Απηή ε
δηδαθηνξηθή δηαηξηβή θαηέδεημε κε εκθαηηθφ ηξφπν φηη ηα ζθάικαηα πιηθνχ ζηα
ηκήκαηα ηεο ινγηθήο πνπ ζπκβάινπλ ζηελ αχμεζε ηεο απφδνζεο κπνξνχλ λα
νδεγήζνπλ ζε ζεκαληηθή απφθιηζε ηεο απφδνζεο ηνπ επεμεξγαζηή ζε ζρέζε κε
ηελ αλακελφκελε ζπκπεξηθνξά ηνπ. Σπλεπψο, νη κειινληηθνί επεμεξγαζηέο
πξέπεη λα ελζσκαηψζνπλ έλα πιήζνο κεραληζκψλ γηα ηνλ ζπλερή έιεγρν ηεο
επίδνζεο ελφο ζπζηήκαηνο θαη λα είλαη ζε ζέζε λα αληηκεησπίδνπλ πεξηπηψζεηο
αζηνρίαο. Τέινο, κία ζεκαληηθή κειινληηθή εξεπλεηηθή θαηεχζπλζε απνηειεί ν
εληνπηζκφο ηερληθψλ νη νπνίεο λα κπνξνχλ λα εθαξκνζηνχλ ζε φια ηα ζηάδηα ηεο
ζρεδηαζηηθήο αιπζίδαο, απφ ηα πξσηφηππα κνληέια ελφο επεμεξγαζηή κέρξη ηελ
θαλνληθή, παξαγσγηθή, επηρεηξεζηαθή, εκπνξηθή ηνπ ιεηηνπξγία.

Σπκπεξαζκαηηθά, κηα δσηηθήο ζεκαζίαο πξφθιεζε ησλ κειινληηθψλ ηερλνινγηψλ
απνηειεί ε θαηαζθεπή ππνινγηζηηθψλ ζπζηεκάησλ ηα νπνία ζα ιεηηνπξγνχλ κε
αμηνπηζηία ζχκθσλα κε ηηο πξνδηαγξαθέο θαηαζθεπήο ηνπο. Απηή ε δηδαθηνξηθή
δηαηξηβή πξνηείλεη θαηλνηφκνπο κεραληζκνχο απνζθνπψληαο ζηε βειηίσζε ηεο
απνδνηηθφηεηαο ηεο επαιήζεπζεο ηεο ιεηηνπξγίαο ελφο κηθξνεπεμεξγαζηή ζε φιε
ηελ δηάξθεηα ιεηηνπξγίαο ηνπ, κε δηηηφ ζηφρν, ήηνη ην πςειφ πνζνζηφ θάιπςεο
ζθαικάησλ θαη ηε κηθξφηεξε δπλαηή επηβάξπλζε ζηε ζρεδίαζε ηνπ
ππνινγηζηηθνχ ζπζηήκαηνο. Ειπίδνπκε φηη ζπλεηζθνξέο πνπ παξνπζηάδνληαη ζην
πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο λα πξνσζήζνπλ αθφκε πεξηζζφηεξν
ηελ έξεπλα ζηελ αλάπηπμε αμηφπηζησλ ππνινγηζηηθψλ ζπζηεκάησλ. Παξάιιεια,
λα βξνπλ επξεία απήρεζε ζηνπο κειινληηθνχο επεμεξγαζηέο.

TABLE OF CONTENTS

1. INTRODUCTION .. 39

1.1 The ecosystem of a microprocessor ... 39

1.2 Design life-cycle of a microprocessor ... 41

1.3 Dependability life-cycle of a microprocessor ... 43

1.4 The nature of a failure ... 46

1.5 Contributions of this thesis .. 48

1.6 Thesis outline ... 50

2. SILICON DEBUG ... 51

2.1 Silicon debug challenges .. 52

2.2 Self-checking validation by exploiting ISA diversity ... 54

2.2.1 Scope of the self-checking validation .. 54

2.2.2 ISA Diversity analysis .. 55

2.2.3 Diversity examples .. 55

2.2.4 Diversity Statistics ... 57

2.2.5 Self-checking architecture ... 58

2.2.6 Experimental evaluation of the self-checking method .. 65

2.3 Triage by exploiting deconfiguration ability ... 71

2.3.1 Scope of the triage methodology .. 72

2.3.2 Microarchitectural transparency and deconfiguration opportunities 73

2.3.3 Triage methodology .. 75

2.3.4 Cost Implications of the Methodology ... 78

2.3.5 Deconfigurable architecture .. 79

2.3.6 Deconfigurable controller design .. 80

2.3.7 Experimental evaluation of the triage mechanism .. 81

2.4 Related Work .. 88

2.5 Findings summary ... 89

3. MANUFACTURING TESTING ... 91

3.1 Scope of the MT-SBST .. 92

3.2 SBST of single-threaded processors ... 92

3.3 MT-SBST preliminaries and experimental setup .. 94

3.4 Proposed MT-SBST Methodology .. 95

3.5 Test Program Development .. 96

3.6 Test Program Profiling .. 99

3.7 Fault coverage-driven test routine splitting .. 100

3.8 Test Scheduling Algorithm ... 101

3.9 MT-SBST experimental results ... 103

3.10 Related work .. 105

3.11 Findings summary ... 106

4. IN-FIELD VERIFICATION .. 107

4.1 Scope of proposed techniques .. 108

4.2 Background analysis ... 108

4.2.1 Performance components ... 108

4.2.2 SRAM arrays failure probabilities .. 109

4.2.3 Fault classes ... 110

4.3 Simulator and Microprocessor Model ... 111

4.4 Statistical Fault Injection Framework .. 113

4.5 Resiliency of data prefetcher .. 115

4.5.1 Classification of faults .. 115

4.5.2 Benchmark profiling: prefetch-friendly and –neutral ... 117

4.5.3 Performance impact of faults .. 118

4.5.4 Performance Variability ... 129

4.6 Resiliency of branch prediction unit .. 130

4.6.1 Classification of faults .. 130

4.6.2 Performance Impact of faults .. 131

4.6.3 Performance variability .. 136

4.7 Mechanisms to detect and tolerate hard faults .. 137

4.7.1 Fault detection and diagnosis ... 138

4.7.2 Performance recovery alternatives ... 141

4.7.3 Timing implications of the protection mechanisms ... 143

4.7.4 Existing repair techniques ... 144

4.7.5 Comparing with ECC/parity-based protection ... 144

4.7.6 Performance recovery results ... 145

4.7.7 Variability recovery and TCO improvement .. 147

4.8 Related work ... 148

4.9 Findings summary ... 149

5. CONCLUSION AND FUTURE WORK ... 151

ACRONYMS .. 155

REFERENCES .. 157

LIST OF FIGURES

Figure 1: The evolution of global connected electronic devices. 39

Figure 2: Current and future projections of design density. 40

Figure 3: Growth in processor performance since the mid-1980s........................ 41

Figure 4: The life-cycle of a microprocessor product. .. 42

Figure 5: Design bugs and hardware errors distribution throughout

microprocessor‟s life-cycle. .. 46

Figure 6: Relative cost of detecting bugs throughout processor‟s life-cycle 48

Figure 7: Diversity statistics of four popular ISAs. .. 58

Figure 8: The proposed silicon debug framework. ... 59

Figure 9: The structure of an x86 assembly enhanced RIT. 60

Figure 10: Traditional (left) vs. proposed (right) RIT-based validation flow. 61

Figure 11: The structure of the proposed hardware mechanism. 62

Figure 12: Experimental setup and tool-chain to evaluate the effectiveness of the

self-checking methodology. ... 65

Figure 13: Design bugs coverage for the four different methods. 67

Figure 14: Traditional vs. proposed RIT-based silicon debug flow....................... 70

Figure 15: Silicon debug and component deconfiguration. 71

Figure 16: Redundant test program triaging concept. .. 72

Figure 17: Proposed deconfigurable architecture. ... 76

Figure 18: Deconfiguration controller block diagram. ... 80

Figure 19: Methodology timeline for each test program. 81

Figure 20: Experimental framework for the triage methodology. 82

Figure 21: Failing test programs for each of the 1,000 injected design bugs. 84

Figure 22: Failure categories for the 341 failing test programs. 87

Figure 23: Debug sessions in the traditional and the proposed flow. 88

Figure 24: Software-based self-testing concept for single-threaded

microprocessors. ... 93

Figure 25: Manufacturing testing SBST setup. .. 94

Figure 26: Exploiting MP, MT parallelism in the execution of the test program. ... 95

Figure 27: Proposed MT-SBST Methodology. ... 96

Figure 28: OpenSPARC T1 architecture. ... 97

Figure 29: Test program profiling for manufacturing testing. 99

Figure 30: Cumulative probability of 1…k hard faults for 100Kbit and 300Kbit

SRAM arrays. .. 110

Figure 31: Block diagram of the branch prediction unit. 112

Figure 32: Block diagram of next-line instruction prefetcher. 112

Figure 33: Block diagram of the L1 data cache stride prefetcher. 113

Figure 34: Statistical fault injection framework. .. 114

Figure 35: Fault injection simulation timeline. .. 115

Figure 36: IPC loss for prefetch-friendly (upper graph) and –neutral (lower). 119

Figure 37: Correlation of off-range (%) increment with 1, 3, 5 faults injected..... 126

Figure 38: Average and maximum IPC slowdowns and standard deviations for the

fault-free and faulty (a) PIQ and (b) PRQ when single faults are injected. 127

Figure 39: Utilization of the PIQ and PRQ entries across all SPEC CPU2006

benchmarks. .. 129

Figure 40: Extra misprediction ratio (%) (on top of fault-free case) caused by

multiple faults in BTBs. .. 133

Figure 41: Average and maximum % IPC loss (over the fault-free case) with

1…25 faults per component. .. 135

Figure 42: Extra misprediction ratio (%) (on top of the fault-free case) caused by

multiple faults in BP. .. 136

Figure 43: Self-verifying flow enhanced with WRC flow. 138

Figure 44: BTB with WRC flow support. ... 139

Figure 45: Branch predictor with WRC flow support. ... 140

Figure 46: RAS with WRC flow support. .. 140

Figure 47: BHR fault detection mechanism. .. 141

Figure 48: Single-bit counter protection scheme. .. 142

Figure 49: Static prediction outcome protection scheme. 142

Figure 50: Space cells protection scheme. .. 143

Figure 51: BHR performance recovery mechanism. .. 143

Figure 52: Unprotected vs. protected (1-bit counter) IPC slowdown (%) for

Bimodal and Meta predictors. .. 146

Figure 53: Unprotected vs. protected RAS and BHR average IPC slowdown (%)

due to single faults. .. 147

Figure 54: Number of 16nm cores in a 1000-core data centre containing k hard

faults in a 150Kbit predictor. .. 147

LIST OF TABLES

Table 1: Microprocessor product requirements analysis specified during design

planning phase. ... 42

Table 2: The architecture-related features of a microprocessor defined within

development phase. .. 43

Table 3: A list of errata bugs on popular microprocessor. 47

Table 4: Compare simulation, emulation and silicon execution throughput. 52

Table 5: ARM ISA diversity. ... 55

Table 6: MIPS ISA diversity. .. 56

Table 7: PowerPC ISA diversity. .. 56

Table 8: x86 ISA diversity. ... 57

Table 9: The algorithm of the hardware replay mechanism. 63

Table 10: A list of logic bugs types that are injected into the simulator. 66

Table 11: Injected design bugs distribution in the components of the x86-64

processor model. ... 66

Table 12: Validation times from the application of the traditional-based flow,

Reversi, QED, and the proposed method. ... 68

Table 13: Nehalem‟s deconfigurable components. .. 74

Table 14: Injected design bugs distribution in the x86-64 microprocessor

components. .. 83

Table 15: Deconfigurable microprocessor modules in the x86-64 model of the

PTLsim simulator. .. 83

Table 16: Details for the 10 hard-to-detect design bugs. 85

Table 17: Design bugs description. .. 86

Table 18: Functional units and corresponding test routines of each SPARC v9

core. ... 98

Table 19: Modules of the shared FP unit and the corresponding test routines. ... 98

Table 20: Single-threaded execution vs. multithreaded execution. 100

Table 21: Multicore, Multithreaded execution of FPU test routine. 101

Table 22: Test Scheduling Algorithm. .. 102

Table 23: Schedules of core test routines. ... 103

Table 24: Comparison of core level scheduling approaches (FC: Fault Coverage

of thread switch logic). ... 104

Table 25: Schedules of core test routines plus shared FPU routine at processor

level. .. 104

Table 26: Comparison of scheduling approaches including FPU routine. 105

Table 27: Fault coverage (IFUs: Integer functional units, FPU: Floating-point unit,

CCL: Core control logic, INN: Interconnection network, FUs: Functional units of

processor). ... 105

Table 28: SRAM cell Pfail for four technology nodes [74]. 109

Table 29: Enhanced x8-64 model configuration. .. 111

Table 30: Distribution of the injected faults on the prefetcher. 115

Table 31: Data prefetcher array fault classification (Average per component for all

benchmarks and all injected faults). ... 116

Table 32: Data prefetcher control fault classification. .. 117

Table 33: Instruction prefetcher array fault classification. 117

Table 34: Per benchmark IPC speedup provided by the L1 data prefetcher...... 118

Table 35: Average, maximum, and standard deviation of IPC loss across all

SPEC CPU2006 benchmarks when one, three, and five faults are injected into

the prefetcher table. ... 120

Table 36: IPC values for prefetch-friendly and –neutral benchmarks, without data

prefetcher, with the data prefetcher enabled and with 1, 3 and 5 faults injected

into the prefetch table array. .. 121

Table 37: Training activity (X) of the prefetch table entries. Number of prefetch

table entries that handle less than 50%, less than 75% and 100% of the memory

traffic training the prefetcher. ... 122

Table 38: Average L1 cache miss rate and average prefetch issue rate with one,

three, and five faults injected. .. 124

Table 39: Number of off-range stride events for the prefetch-friendly benchmarks

with a fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch

table. .. 125

Table 40: Number of off-range stride events for the prefetch-friendly benchmarks

with a fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch

table. .. 125

Table 41: Average IPC for prefetch-friendly and –neutral benchmarks, without the

data prefetcher, with a fault-free data prefetcher and with single faults injected

into the prefetch input and request queue. .. 128

Table 42: Distribution of the injected faults on the branch prediction unit. 130

Table 43: Branch predictor unit array fault classification. 131

Table 44 Branch Predictor Unit Control Fault Classification. 131

Table 45: Mispredictions per 1K instructions in fault-free BP and BTBs. 132

Table 46: Dynamic branch instructions per 1K instructions that use the Bimodal

predictor, Two-level predictor, cBTB and iBTB (*= very low activity). 132

Table 47: cBTB entry utilization per benchmark. ... 136

Table 48: Max and average IPC slowdown (%) for single faults in the RAS and

the BHR. .. 136

Table 49: Stdev of IPC change over the fault free case for single fault runs in

Bimodal, Meta and RAS. ... 137

Table 50: Stdev of IPC drop over the fault free case for multiple faults in the Meta

predictor. .. 137

Table 51: IPC (%) loss per benchmark due to fetch stalls in fault-free processor

when predictor WRC is enabled. ... 139

Table 52: IPC (%) loss per benchmark due to fetch stalls in fault-free processor

when predictor ECC is enabled. .. 145

Table 53: BP area overhead of error detection and correction techniques [69]. 145

Table 54: TCO with fault-free, unprotected faulty Meta predictor, and faulty

protected cores. ... 148

Architectures for Dependable Modern Microprocessors

N.Foutris
39

1. INTRODUCTION

Information and Communication Technology (ICT) systems are growing
exponentially powered by the progress in semiconductor technology and in
computer architecture. Semiconductor innovation has repeatedly provided more
transistors (Moore‟s Law [73]) for roughly constant power and cost per chip
(Dennard Scaling [35]), while computer architects took these rapid transistor
budget increases and discovered innovative techniques to scale processor
performance. A recent study [31] measured that technology scaling and
architecture improvements contributed almost equally to computer performance
growth, with architecture credited with ~80x improvement since 1985. Thus, the
combined effect of technology and computer architecture makes microprocessors
the most complex and immensely powerful application of the electronics.

The same path that is leading technology toward these remarkable achievements
is also making microprocessors increasingly unreliable posing a threat to our
society. Device integration, design complexity along with the compelling
requirement to diminish the Time-to-Market (TTM) are expected to dramatically
reduce semiconductor product quality: as the transistors and wires shrink and the
circuits complexity increases, microprocessors are becoming more prone to
failures, show larger differences in behaviour although they are designed to be
identical and have higher susceptibility to environmental-induced phenomena.
The vital challenge of future technologies is to build dependable systems. That is
the goal of this thesis; to provide solutions to the dependability challenges posed
from the current and future microprocessor products.

1.1 The ecosystem of a microprocessor

Nowadays, the pervasiveness of microprocessors in our society goes far beyond
the wildest imagination, from their humble beginning (on 1971‟s Intel introduced
the first commercial processor, Intel 4004 [33]). Worldwide combined shipment of
electronic devices (such as, Desktop PCs, Portable PCs, Smartphones and
Tablets) is projected to reach 2.5 billion units until 2017 (Figure 1). Global connected device shipment forecast (in million units)

Figure 1: The evolution of global connected electronic devices. Desktop PC, portable PC,
smartphone, and Tablet shipment through past to present and the forecast for the future
(source: IDC, www.idc.com).

Architectures for Dependable Modern Microprocessors

N.Foutris
40

Chip manufacturers have been striving to increase microprocessor‟s performance
by cramming more and more transistors into a silicon die. Throughout the last
decades, transistors have conducted electricity along a planar surface of a silicon
wafer. Today, tri-gate or multi-gate transistors mark a major change in
semiconductor technology. Three dimensional transistors deliver superior levels
of scalability extending the life of Moore‟s Law. Currently the feature size of the
most new chips in massive production is in the range of 22nm and some chips
are starting to use 14nm technology (Intel‟s, code-name Broadwell [55],
microarchitecture will be shipped during the second half of 2015). The
miniaturisation process of transistor technology is set to continue and we expect
more than 61 billion transistors (Figure 2) in a single die by 2020 (3x increase
compared to the design density we have today).

Millions of Transistors/Chip 61,707

38,873

24,488
15,427

9,718

6,122
3,857

2,430

1,020

2004 2006 2008 2010 2012 2014 2016 2018 2020
year

Figure 2: Current and future projections of design density, measured in millions of
transistors per chip (source: International Technology Roadmap for Semiconductors, ITRS,
2008 update, Mentor Graphics).

As manufacturing technology provides higher transistor density, microprocessors
exploit the additional transistors to boost their efficiency. Figure 3 shows the
growth in processor performance since the mid-1980s. An arsenal of performance
enhancement techniques, such as aggressively speculative mechanisms (e.g.:
sophisticated branch prediction units, data and instruction prefetch mechanisms,
value predictors), higher capacity caches, resource-, data-dependency handling
structures and massively parallel pipelined processing elements allocate the
additional area in silicon estate to exploit the available Instruction-, Thread-, and
Data-Level Parallelisms (ILP, TLP, DLP, respectively). To be so powerful,
processors have become extremely complex systems, making the design and
manufacturing of these devices a major challenge for the semiconductor industry.
Major semiconductor companies such as Intel, AMD, ARM and IBM are forced to
dedicate hundreds of engineers to continue to advance microprocessor
technology and deliver better performance to end-users.

Architectures for Dependable Modern Microprocessors

N.Foutris
41

Figure 3: Growth in processor performance since the mid-1980s. This chart plots
performance relative to the VAX 11/780 as measured by the SPECint benchmarks. Prior to
the mid-1980s, processor performance growth was largely technology driven and averaged
about 25% per year. The increase in growth to about 52% since then is attributable to more
advanced architectural and organizational ideas. Since 2002, processor performance
improvement has dropped to about 22% per year due to the following hurdles: (a) heat
dissipation, (b) little Instruction-Level Parallelism (ILP) left to exploit, and (c) limitation lay
by memory latency. These obstacles signal historic switch from relying solely on ILP to
Thread-Level Parallelism (TLP) and Data-Level Parallelism (DLP) [47].

As microprocessor designs grow in complexity, it becomes increasingly harder to
verify them and ensure that they operate properly. Design houses report [93] that
today verification efforts significantly overweight design activities, since the ratio
between the size of the design and debug teams has reached 2:1. We can only
expect the situation to exacerbate with future performance demands, to the point
that high-quality verification of microprocessors will no longer be possible with
traditional means. Unless the verification demands of the modern microprocessor
are answered, chips released to the public will become more and more unreliable
containing significant numbers of design bugs and manufacturing defects.
Clearly, an efficient verification process can make the difference between the
success and the failure of a microprocessor product.

Putting it all together, a modern microprocessor has the following characteristics:
(a) billions of transistors, (b) integrates complex micro-architectures, and (c) is
implemented on top of unreliable fabrics. Meanwhile, users expect a
microprocessor to remain reliable and to continue to deliver the rated
performance. This challenge will undoubtedly require a major paradigm shift in all
aspects of microprocessor design – fabrication, design, debug, and testing. This
thesis provides solutions to the dependability challenges posed throughout the
life-cycle of a microprocessor product.

1.2 Design life-cycle of a microprocessor

The aggressive transistor scaling and the ever-growing design density have
enabled microprocessors performance to boost at a dramatic pace; however, the
required effort to manufacture modern microprocessors is continuously

Architectures for Dependable Modern Microprocessors

N.Foutris
42

increasing. The microprocessor life-cycle consists of the following high-level
phases (Figure 4).

Figure 4: The life-cycle of a microprocessor product. The design flow is comprised of a
series of steps that considers the design planning, the development of the specified
functionalities and the implementation of the silicon die. Along with the development flow,
the design is progressively verified (reliability estimation, pre-silicon verification, silicon
debug, manufacturing testing, and in-field verification), to ensure that, the microprocessor
adheres to the design specification.

Design planning: Computer architects define the microprocessor product design
and manufacturing strategy. In particular, product requirement analysis, targeted
market segment, technology selection, design methodology and tool selection
constitute the vital tasks of design planning. For example, the architecture team
explores the feasibility of diverse core architectures and verifies whether they
provide the expected benefits, in terms of functionality, performance and power
budget. In addition, the design team tests out new circuit ideas with test chips,
and evaluate radical modifications in circuit and layout process. Table 1 illustrates
three key product requirements specified within design planning.

Table 1: Microprocessor product requirements analysis specified during design
planning phase.

Market
Segment

Product Requirement

Server High throughput server Performance, reliability

Desktop High performance desktop Performance

Mainstream desktop Balanced performance and cost

Low-cost desktop
Lowest cost at required
performance

Embedded Smartphone Ultra-low power budget

Development: Within this phase the microprocessor is developed and
manufactured based on the design specifications set on the design planning
phase. The development process starts with the definition of the microprocessor

Architectures for Dependable Modern Microprocessors

N.Foutris
43

features that are visible to the Operating System (OS) and to user applications,
such as the Instruction Set Architecture (ISA).

Table 2: The architecture-related features of a microprocessor defined within
development phase.

Features Possible choices

Operand types Register, Register/Memory, Memory

Data formats Integer, Floating-point, SIMD

Data addressing modes
Absolute, Register indirect,
Displacement, Indexed

Instruction encoding
Fixed or Variable, #of registers,
Immediate size

Then, during microarchitecture development process the detailed implementation
of the specified architectural features (i.e. assembly instructions), various logic
elements (such as, functional, control and memory blocks) as well as the
interaction among them are developed. Microarchitectural modifications can
noticeably improve performance, while remaining transparent to the higher level
of the system stack. Microprocessor characteristics and functionalities are
described through an architectural model of the device, typically written in a high-
level programming language, such as C++. This model represents the first
formalized reference of the final system‟s behaviour. Then, the logic design aims
at generating a formal description of the logical behaviour of all the components
and the interaction among them. A Hardware Description Language (HDL), such
as Verilog or VHDL, is exploited to describe and simulate the hardware design.
Depending on the level of abstraction a hardware description language can range
from the behaviour level (i.e. maps major microprocessor events without the time
notion), the Register-Transfer Level – RTL (i.e. models the processor clock along
with the detailed description of the events occurred in each clock phase) to the
structural level (i.e. the gate-level implementation of the design). The last phase
on the development cycle of a microprocessor incorporates the circuit and layout
design process. The former generates the transistor-level specification of the
logic modelled through the HDL, while the latter maps transistors and wires on
the different layers of the material to make up the circuit. The layout step
constitutes the transition between a simulation-based to the silicon-based design
implementation.

Production: On silicon ramp the first silicon prototypes are manufactured and
thoroughly validated. Design fixes that adjust microprocessor performance and
functionality according to design specifications are applied. Then, the massive
volume production starts.

Runtime: The last phase on the design life-cycle of a microprocessor, where the
product is shipped into the market. The manufactured microprocessor is
functional and adheres to the design specifications. From this point onwards, the
design teams have no interaction with the developed design.

1.3 Dependability life-cycle of a microprocessor

Dependability – the trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers [39] – constitutes an integral part
of computer architecture. Dependable operation of computing systems is a key
challenge for the whole information and communication technology since almost
every human activity relies largely or even completely on computing systems.

Architectures for Dependable Modern Microprocessors

N.Foutris
44

Computer architects are facing progressively more challenges in ensuring
microprocessor products to be free of design bugs and hardware errors, due to
the ever-growing design complexity and the continuously shortening time-to-
market. Design bugs and hardware errors are detected either before chips
fabrication, during pre-silicon verification, or after fabrication, during silicon debug.
Without major breakthroughs, microprocessor verification will be a non-scalable,
a show-stopping barrier to further progress in the semiconductor industry.

The development of a microprocessor is coupled with a sequence of verification
tasks. Throughout this process, validation engineers utilize a multitude of
verification tools to ensure that the design adheres to its specifications.
Microprocessor dependability tasks can be grouped into five categories, based on
where they intervene in a microprocessor‟s lifecycle (Figure 4):

Reliability Estimation: Early assessment of the expected reliability of a
microprocessor is a critical task which steers the design decisions related to the
required mechanisms for the in-field error detection and protection. Such fault
tolerance mechanisms may impose significant area, power and performance
overheads. Straightforward guard-banding of the system with inaccurate
knowledge of the effect of hardware faults can easily make the costs of protection
against hardware faults excessive. For example, typical memory error detection
and protection techniques can have a cost (in terms of added memory capacity)
which ranges from 1% to 125% depending on the detection and protection
capabilities of each technique [80]. Clearly, the selection of the most appropriate
protection technique depends on the required reliability levels and studies of its
inherent resiliency to hardware faults. Detection and protection mechanisms
against any fault model must be decided as early as possible to avoid costly re-
design cycles for late integration of such mechanisms. However, early decisions
on the protection mechanisms are hard to make because during the early stages
of a system design a formalized model of the system is missing.

Pre-Silicon Verification: it is mainly based on simulation at different levels of
abstraction [13]. Despite its maturity and the tremendous utilization of computing
resources, it is impossible to guarantee that all design bugs have been fixed
before tape-out [62] because only a small number of functional scenarios can be
simulated during pre-silicon verification. Statistics show that 12% of design bugs
slip into first silicon prototypes and almost 50% of microprocessor chips require
extra unplanned tape-outs due to bugs found in the first manufactured chips [4].
During pre-silicon verification, simulation-based tests, run on RTL model, are
compared to those of the known-correct (or “golden”) architectural model and
discrepancies, indicators of design bugs, are identified and fixed. In addition, pre-
silicon verification engineers employ formal methods, which can check
correctness of a design using mathematical proofs and can thus guarantee the
absence of certain types of errors. Unfortunately, formal methods cannot handle
complex RTL models due to their limited scalability; therefore, their usage is
limited to a few small critical blocks.

Silicon debug: it targets to ensure that a chip‟s actual silicon implementation fully
matches its specification, that is, the planned intended behaviour of the device.
Silicon debug – the process of validating and debugging a new microprocessor
design on its first silicon prototype chips – has evolved to a critical, time-
consuming, and labour-demanding step in a chip‟s development flow [2]. The
underlying reasons for this unmanageable complexity lie in the inability of
validation techniques to keep pace with the highly integrated microprocessors.

Architectures for Dependable Modern Microprocessors

N.Foutris
45

Recent trends [37] show that the time spent from the arrival of the first silicon
prototype chips to high volume production is steadily growing, while the ratio
between the size of the design and the debug teams has reached 2:1. Thus,
efficient silicon debug approaches that promptly detect and eliminate the majority
of design bugs before volume production can make the difference between
success and failure of a microprocessor product [82]. During silicon debug a
comprehensive suite of test programs (such as automatically generated random
test programs, legacy tests and real world applications) covering many test
scenarios are executed on the prototype chips to detect any abnormal behaviour
that stems from a design bug. The application of automatically generated random
test programs on the prototype microprocessor chips is one of the most effective
parts of silicon debug [20]. When a bug is found at this stage, the RTL model is
modified to correct the issue and the chip must be manufacturing again.
Furthermore, volume production may be further prolonged due to bugs that lurk
behind other bugs. These blocking bugs stall the execution of the subsequent
tests, since no workaround exists and therefore additional re-spins are needed.

Manufacturing testing: Manufacturing testing constitutes an integral part on
microprocessor verification cycle. The reason for that is the existence and
effectiveness of test metrics such as stuck-at coverage, transition fault coverage
and N-detect coverage. When a sufficient level of defect coverage is reached the
microprocessor design enters the production stage, where a last quality control is
performed to detect any manufacturing defect. Manufacturing testing techniques
aim at maximizing the fault coverage (i.e. the population of hardware faults
detected through fault simulation), while minimizing test costs, in terms of time
and resources. Overall, the manufacturing testing methods applied to this step
attempt to achieve the target defective parts per million (DPPM) rate that high-
quality product development demands. High-volume manufacturing (HVM) [107]
testing of microprocessors incorporates both functional and structural test
approaches. The functional testing methods, such as the Software-based Self-
testing (SBST) utilize the on-chip programmable resources to apply at-speed the
test stimuli and collect the test responses from memory to make the pass/fail
decision. On contrast, the structural test approaches exploit the knowledge of the
circuit structure and the corresponding fault model to generate the test patterns.
For example, scan-based testing, replace the storage elements with scan cells,
and connecting them into shift registers to provide access to the internal state of
the circuit. Structural testing usually places the circuit in specific self-test mode
and cause excessive test power consumption, over-testing, and thus may lead to
yield loss, compared to functional testing.

In-field Verification: Technology miniaturization, design complexity, shrinking
time-to-market windows, wear-out effects and the environmental impact increase
the failure probability of modern design and steer microprocessor manufacturers
to integrate numerous in-field verification mechanisms. Dual- and triple-modular
redundancy are traditional in-field fault tolerance techniques, which can detect
and correct hardware errors, but only at high costs. Others in-field fault tolerance
technique to protect memories, buses or other microprocessor array structures
are the parity mechanism and the error correction codes (ECC). In the literature,
several in-field verification techniques have been proposed for SRAM caches [5]
[28] [8] as well as mechanisms to protect pipeline flip-flops and combinational
logic [23] [84] [94].

Architectures for Dependable Modern Microprocessors

N.Foutris
46

Figure 5: Design bugs and hardware errors distribution throughout microprocessor’s life-
cycle.

1.4 The nature of a failure

Throughout the lifetime of a microprocessor product, its silicon fabric is subject to
a variety of failure mechanisms that can cause device failures. As the transistor
dimensions scale to smaller sizes, the silicon failure mechanisms get aggravated.
The types of failures that are expected throughout the life-cycle of a
microprocessor (Figure 5) are the following:

Design bugs: Logic, electrical and process-related bugs [16] [29] may be
introduced into microprocessor products during design specification and
implementation phase. Follows an analysis on the common sources of bugs [50]:
The limited capacity and performance of verification techniques, which do not
keep pace with the growth in the amount and complexity of the developed code,
along with the growth in design complexity increase the trend of having
inadequately or incorrectly specified and implemented designs. Furthermore,
synthesis tools may hamper the accuracy of the synthesized design. As a result,
discrepancies between the intended and the developed functionality may exist.
Place and route process is another source of bugs. For instance, the physical
specification requirements may partial be achieved during the layout process. In
addition, the combination of process variation and smaller design margins prevent
microprocessor products from functioning at the intended frequency, while
dynamic power consumption and crosstalk effects may randomly flip values of
memory cells. Technology scaling, model inaccuracies and the lack of efficient
design-rule-checking tools may increase these sources of bugs.

Several years of experience of microprocessor manufacturers have shown that
numerous important design bugs escape (so called, errata bugs) in production
silicon despite the extremely large efforts of the verification team. All
microprocessors have known errata bugs (some of them are presented on Table
3 while the rate of bug escapes has more than doubled in the latest generation of
Intel processors [29]. Furthermore, more than half of design bugs that slip into
volume production have no fixes and for those that a fix exists, the in-field

Architectures for Dependable Modern Microprocessors

N.Foutris
47

workaround is often too costly [12]. Thus, effective verification methods are
needed to ensure that forthcoming architectures will not suffer from severe bug
escapes.

Table 3: A list of errata bugs on popular microprocessor.

Microprocessor Description

Intel Pentium® FDIV bug was a bug in the Intel P5 Pentium floating
point unit. Certain floating point division operations
produced incorrect results. According to Intel, there were
a few missing entries in the lookup table used by the
divide operation algorithm [83].

Intel Pentium® On Pentium 4, If a cache hits on modified data (HITM)
while a snoop is going on, and there are pending
requests to defer the transaction and to re-initialize the
bus, then the snoop is dropped, leading to a deadlock
[52].

AMD OpteronTM AMD64 processors led to incorrect results in certain
situations when a REP MOVS instruction was executed.
An incorrect address size, data size or source operands
segment might be used or a succeeding instruction
might be skipped. This occurred only under certain
conditions and led to production of incorrect results or
system‟s freeze [53].

IBM PowerPC® 750GX processor bug caused some instructions to
execute at lower frequencies (933Mhz compared to
1Ghz) [54].

Intel CoreTM In the 6-series chipsets, of Sandy Bridge
microarchitecture, the Serial-ATA (SATA) ports within
the chipset degraded over time, potentially impacting the
performance or functionality of SATA-linked devices
such as hard disk drivers and DVS-drivers [56].

One of the primary driving forces to develop failure detection techniques is the
cost that a company experiences as a result of fixing a bug. Figure 6 shows that
the relative cost of fixing a bug increases over time. In particular, during the early
stages of a project, changes do not require much rework. Only the Register-
Transfer Level (RTL) is affected, so the cost is very low. Later in the design cycle,
changes to RTL cause schematic change and layout changes, so the cost starts
rising. After the part is send to the fab, the cost of changing the design to fix bugs
includes the cost of building new masks and manufacturing new parts. After parts
start being sold a serious bug may require a recall of parts at a significant
expense to the company, an expense that grows with the number of parts sold.
Obviously, there is a huge advantage in finding bugs as early as possible in the
design process. This reduces the amount of modifications later in the process,
yielding a lower cost of development.

Architectures for Dependable Modern Microprocessors

N.Foutris
48

~

100$

1,000$

10,000$

100,000$

1,000,000$

>>10,000,000$

Design

Planning

Layout Tape

Release

Early

Silicon

Sampling Volume

Production

Relative Cost of Finding Bugs ($)

Figure 6: Relative cost of detecting bugs throughout microprocessor’s life-cycle [37].

Manufacturing defects [86]: Moving into deeper nanometer scale manufacturing
process, an increased amount of manufacturing-related defects will be introduced
into the designs. Optical proximity effects, airborne impurities, and processing
material defects can all lead to the manufacturing of faulty transistors and
interconnects. Moreover, deep-submicron gate oxides have become so thin that
manufacturing variations can lead to currents penetrating the gate, rendering it
unusable. Manufacturing defects are also affected by the immense complexity of
current and forthcoming microprocessor designs. Design complexity makes it
more difficult to test for defects during manufacturing. Semiconductor industry is
forced to either spend more time with parts on the tester, which reduces profits by
increasing time-to-market, or risk the possibility of untested defects escaping to
the field.

In-field errors [86]: Integrated circuits are implemented in miniaturized and
inherently unreliable technologies. This leads to products that are more prone to
transient, intermittent and permanent errors. Single-Event Upsets caused by
neutrons and alpha particles that strike the bulk silicon portion of the die.
Although SEUs do not break the silicon their effect in a logic glitch that can
potentially corrupt computational logic or state bits. Hard errors, on the other side,
appear either because of manufacturing defects that escape high-volume
production manufacturing testing or because of material aging and wear-out
effects. Finally, another source of hardware errors is the process variation, i.e.
variations in device characteristics. In particular, process variation can cause
large fluctuation in performance and power consumption in the manufactured
chips. Current microprocessors show large differences in behaviour although they
are designed to be identical. Process variation is expected to be amplified in the
forthcoming microprocessor designs.

1.5 Contributions of this thesis

The evolution of semiconductor technology and computer architecture has
radically transformed our world throughout the last decades. However, the
combination of technology scaling and extreme chip integration, along with the

Architectures for Dependable Modern Microprocessors

N.Foutris
49

compelling requirement to diminish the time-to-market window, has rendered
microprocessors more prone to design bugs and hardware errors. The goal of this
thesis is to provide solutions to the validation challenges posed from the
microprocessor products starting from the first silicon prototypes till in-field
operation of the chip. The contributions of this thesis are the following:

 Silicon debug: The validation step that detects the vast majority of design
bugs is the one that stresses the silicon prototypes by applying huge
numbers of random tests. Despite its bug detection capability, this step is
constrained by the extreme computing needs for random test program
simulation (to extract the bug-free memory image to compare with the
actual silicon image). Moreover, another major bottleneck and source of
“noise” of this phase is that large numbers of random test programs fail
due to the same or similar design bugs. This redundant behaviour adds
long delays in the debug flow since each failing random program must be
separately examined, although it does not usually bring new debug
information. This thesis addresses both challenges of silicon debug. A
self-checking methodology [10] is proposed for generating random test
programs (exploiting the ISA diversity property) that detect bugs by
comparing the results of equivalent instructions combined with a
technique to group the failing test programs into categories (the failing test
programs are grouped into categories depending on the microprocessor
hardware components that need to be deconfigured for a random test
program to be correctly executed) [8]. The proposed framework: (a)
improves bug detection efficiency, (b) reduces the redundant debug
session, and thus accelerates silicon debug.

 Manufacturing testing: Functional self-testing forms an integral part of
manufacturing test flow due to its at-speed testing and non-intrusive
nature. Multithreaded (MT) SBST methodology [11] proposes a novel self-
test optimization strategy for multithreaded, multicore microprocessor
architectures. The proposed self-test program execution optimization aims
to: (a) take maximum advantage of the available execution parallelism
provided by multiple threads and multiple cores, (b) preserve the high
fault coverage that single-thread execution provides for the processor
components, and (c) enhance the fault coverage of the thread-specific
control logic. MT-SBST methodology significantly speeds up self-test
time, while at the same time it improves the overall fault coverage.

 In-field verification: The combination of design complexity, shrinking
time-to-market windows, and wear-out effects increases the failure
probability of modern design and leads microprocessor manufacturers to
integrate numerous runtime verification mechanisms. Modern
microprocessors use a noticeable silicon estate to implement various
control and data flow speculative hardware. In this thesis, an analysis on
the performance degradation of control flow predictors and data
prefetchers based on projected rates of faults in future technologies is
presented [2] [5] [6]. Then, low-cost microarchitectural techniques to
diagnose predictor faults and recover the performance loss are presented.
The proposed techniques exploit the self-verification property of predictors
to achieve performance recovery at lower cost than comparable
techniques. The presented solutions manage to recover almost all IPC
lost, virtually eliminate performance variability among cores.

Architectures for Dependable Modern Microprocessors

N.Foutris
50

Modern microprocessors implement extremely complex architectures, making the
validation process a major challenge for the semiconductor industry. This thesis
introduces various novel methodologies to address the validation challenges
posed throughout the life-cycle of a chip. The proposed techniques make the
validation process more efficient and are easily applicable to the existing
industrial flow.

1.6 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 presents the proposed mechanisms for silicon debug. In particular, the
employed self-checking random test programs along with the deconfigurable
microprocessor architecture to avoid the time-consuming simulation step and
triage the redundant debug sessions are analysed.

Chapter 3 presents MT-SBST, a novel self-test optimization strategy for
multithreaded, multicore architectures for accelerating manufacturing testing and
improving fault coverage.

Chapter 4 introduces the performance impact of hard errors on a core's
speculative structures along with a low-cost microarchitectural technique to
diagnose predictor faults and recover the performance loss.

Finally, Chapter 5 presents the concluding remarks and discusses directions for
future work.

Architectures for Dependable Modern Microprocessors

N.Foutris
51

2. SILICON DEBUG

Aggressive technology scaling and extreme chip integration, combined with the
compelling requirement to diminish the time-to-market window have rendered
microprocessors more prone to design bugs than ever before. As a result, silicon
debug – the process of validating and debugging a new microprocessor design
on its first silicon prototype chips – has evolved to a critical, time-consuming, and
labour-demanding step in a chip‟s development flow [2]. The pressure on the
debug team to deliver a correct design in the marketplace on time is higher than
ever although the combination of correctness and timeliness seems almost
infeasible given the complexity of modern microprocessor designs (the validation
space is practically “infinite”) and the available time-to-market windows [64] [72].
In fact, the share of silicon debug in chip‟s development cycle is steadily
expanding, while design to debug team ratio has reached 2:1[50]. As a result, an
efficient silicon debug approach that promptly detects and eliminates the design
bugs before volume production can make the difference between success and
failure of a microprocessor product [82].

Pre-silicon verification techniques are mainly based on simulation at different
levels of abstraction [13]. Despite their maturity and the tremendous utilization of
computing resources, the low simulation speed is the inherent weakness of this
step. Simulation-based techniques are orders of magnitude slower than the actual
processor speed. As a result, it is impossible to verify every test scenario prior to
tape-out [62], since only short number of functional scenarios can be exercised, in
a reasonable time, compare to the enormous validation space of a modern
microprocessors. In fact, statistics show that 12% of design bugs slip into first
silicon prototypes and almost 50% of microprocessor chips require extra
unplanned tape-outs [4]. An ineffective silicon debug process easily leads to
product delays or even product recalls and a severely tarnishing in the reputation
for the company.

Silicon debug starts with the arrival of the first silicon prototypes and often
continues well after a product has gone to volume production. A comprehensive
suite of test programs (such as automatically generated random test programs,
legacy tests and real world applications) covering many test scenarios are
executed on the prototype chips 24 hours per day for up to a year at various
frequency, voltage, and temperature operating ranges to detect anything that may
lead to incorrect operation: logic bugs, electrical or process-related bugs and
mask-related manufacturing defects. Every time a bug is detected the debug
team is fed with the failure data. Subsequently, for each failing test program (one
that does not execute correctly due to a bug), separately, a systematic debug
phase is performed by the debug engineers to identify the root cause of the
failure. When a sufficient number of bugs are detected and fixed, a new batch of
prototypes is manufactured and debug continues on the new samples.

Massive application of automatically generated random test programs (each
consisting of a few thousand instructions) on the prototype microprocessor chips
is one of the most effective parts of silicon debug [20]. All major microprocessor
manufacturers have built efficient random test generators that produce trillions of
test programs aiming to cover all possible test scenarios defined by the design
and debug teams together. Despite its bug detection efficiency, this step is
constrained by extreme computing needs for random tests simulation to extract
the bug-free memory image for comparison with the actual silicon image. Another
major bottleneck in this phase is that large number of random test programs fail

Architectures for Dependable Modern Microprocessors

N.Foutris
52

due to the same or similar design bugs [62] [61] [99]. This redundant behaviour
prolongs silicon debug phase since each failing random test program must be
exclusively root-cause analysed, although it does not usually bring new debug
information. Finally, volume production may be further prolonged due to bugs that
lurk behind other bugs. These “blocking bugs” stall the execution of the
subsequent tests, since no workaround exists for the initial bug and therefore
additional re-spins are needed (new prototype chips must be manufactured
without the initial bug).

This thesis introduces a silicon debug methodology for microprocessors with two
major objectives: (a) increase the validation coverage by applying more tests to
silicon prototypes; and (b) reduce debug time by triaging the redundant failing
random test programs. The methodology does so by exploiting (1) the inherent
diversity of microprocessor instruction sets (existence of equivalent ways to
perform operations) to eliminate the very expensive and time consuming
simulation step by employing self-checking tests; and (2) the property that allows
hardware components to be deconfigured (virtually “turned off” without
compromising microprocessor‟s functional completeness) to bucketing the
redundant failing test programs.

2.1 Silicon debug challenges

Effective silicon validation methods are needed to ensure that forthcoming
architectures do not suffer from severe bug escapes due to the following
challenges (Table 3). By effectively addressing these challenges the number of
escaping bugs is expected to be reduced.

Simulation Limitations – Simulation offers excellent control and monitoring
capabilities throughout the entire design, but the limited simulation throughput has
always been a bottleneck in the microprocessors industry. Expensive server
farms devote huge amounts of time and energy for simulation but only a small
portion of the different modes of operation can be thoroughly excited before
silicon. Table 4 summarizes the throughput of simulation, emulation and actual
hardware execution [40].

Table 4: Compare simulation, emulation and silicon execution throughput.

Approach Throughput (instructions/sec)

System simulation ~103

RTL simulation 101 – 103

Emulation ~105

FPGA prototyping ~106

Silicon 107 – 109

Validation tests applied to prototype chips range from random instruction tests
(RIT) [20] to user applications [19]. The silicon debug phase that is based on RITs
contributes tremendously to the detection of design bugs; 71% of the bugs in
Intel‟s CoreTM 2 Duo found in first silicon prototypes are detected by RITs [20]. In
a RIT-based validation a huge number of random instruction sequences (trillions
of random instructions in total) are executed and aim to cover all possible
architectural and micro-architectural scenarios defined by the programmer‟s
reference manual.

Unfortunately RIT-based silicon validation is tightly coupled with a necessary
simulation step and thus suffers from the simulation throughput problems [91]. A

Architectures for Dependable Modern Microprocessors

N.Foutris
53

typical RIT-based validation flow involves the execution of tests on a golden
reference model, which is often an instruction-level accurate model of the
processor (an architectural simulator for example) to produce the correct (golden
or expected) responses. Correct responses must be known to compare them with
the actual prototype responses; in case of a mismatch, bug-hunting begins.

Effective silicon debug of future microprocessors must mitigate the simulation of
random instruction tests to save time, resources, and budget while not limiting
their bugs detection capability. How does one know in a simulation-less method
(without needing “golden responses”) that a random test ran correctly in the
silicon prototype? The proposed methodology contributes to this challenge
proposing a self-checking technique, i.e. one that does not require pre-simulated
golden responses.

At this point, it is important to emphasize on a fundamental requirement that the
proposed methodology adheres: keeping original random tests unmodified.
Several methods for the generation of effective random instruction tests have
evolved throughout the last years [4] [3] [15]. Important problems in random tests
generation have been addressed, such as avoidance of the creation of fixed
patterns, which introduce interference into the test. Interference can spoil the test
scenario and may hinder creation of more general patterns, thus reducing bug
detection coverage. An example of interference is the case where a data
processing operation (e.g. integer addition) is always paired with a data
movement instruction (e.g. data loading). In this case, there is a high probability
that the fixed instruction sequence spoils the contents of caches and leads to
cache misses that the validation scenario is not expecting. The proposed
methodology leaves original RITs unmodified to fully utilize their bug detection
capabilities.

Redundant random test programs – The wide-spread adoption of random
instruction test generation methods by the main industry players proves the
importance of this phase of silicon debug. However, the random nature of the test
suites results in the generation of multiple test programs that actually detect the
same or similar design bugs [62] [61] [99]. While the same debugging information
is shared among all these failing test programs, in the traditional RIT-based flow
the debug engineers need to analyse each of them separately, wasting valuable
human effort as well as other project resources such as compute time in high
performance workstations used for design simulation. Thus, it is crucial to
eliminate or reduce the “dirty” or “misleading” debugging records inside them and
cluster common failure modes more effectively before the debug process begins.
How can the random tests execution in a self-checking method provide more
useful validation data to the debug engineers? This thesis contributes to this
challenge by proposing a hardware mechanism to triage the failing random test
programs along with the detailed information about the offending instructions.

Blocking Bugs – Another major issue of silicon debug is dealing with blocking
bugs. Mostly in the first stages of silicon validation (first prototypes), there are
several bugs with blocking behaviour [60]. A bug is a blocking one, if it can
potentially mask out the discovery of other bugs, by stalling the execution of the
subsequent tests (the rest of the debug plan goes wasted), because no
workaround is possible for that bug. In such a case, silicon debug proceeds only
after bug-fixing, re-design, and new silicon prototypes arrive to the debug teams
[32]. Volume production may be seriously delayed and the overall development
cycle and time-to-market will be prolonged if multiple such silicon re-spins are
necessary before a design is considered sufficiently bug-free. How can a self-

Architectures for Dependable Modern Microprocessors

N.Foutris
54

checking RIT-based method help reducing the effect of blocking bugs? This
thesis contributes to this challenge by providing equivalent instructions
workarounds for the offending instructions.

2.2 Self-checking validation by exploiting ISA diversity

Microprocessor design validation is a time consuming and costly task that tends
to be a bottleneck in the release of new architectures. The validation step that
detects the vast majority of design bugs is the one that stresses the silicon
prototypes by applying huge numbers of random test programs. Despite its bug
detection capability, this step is constrained by extreme computing needs for
random tests simulation to extract the bug-free memory image for comparison
with the actual silicon image.

2.2.1 Scope of the self-checking validation

The proposed methodology is applied during the silicon debug phase of the
microprocessor dependability cycle for the detection of logic and electrical bugs.
The proposed approach aims to detect failures in silicon prototypes through the
comparison of equivalent instructions responses. Furthermore, it refines the
validation data provided to the debug process, by replaying the failing random
tests. The contributions of the proposed methodology are the following:

1. A novel methodology for the generation of enhanced random instruction
tests able to detect design bugs by comparing the results of equivalent
instruction sequences is introduced. The methodology is therefore self-
checking (does not need golden responses to compare with). A bug can
make either an instruction or its equivalent to fail but a mismatch in the
comparison denotes the existence of a bug in either case. Bugs can
escape only when they affect the equivalent instructions in the same
way, which is an extremely unlikely case. By generating equivalent
instructions that do not activate the same hardware areas in the
processor logic we minimize this probability. The identification of
equivalent instruction sequences is a key enabler for the execution of
subsequent random tests despite the existence of bugs, so our method
inherently supports bypassing of blocking bugs. When an offending
instruction is identified and while debug engineers look for fixes before
new prototypes are produced, RIT-based validation can continue
normally by avoiding the use of the problematic instruction and replacing
it with its equivalent.

2. A light-weight hardware mechanism that records the mismatch between
the results of two equivalent instructions to support subsequent
identification of the offending instruction is proposed. Furthermore, the
hardware mechanism contributes to the reduction of validation data
forwarded to the debug engineers. After it records the mismatch location,
the mechanism replays the RIT replacing the offending instruction by its
equivalent sequence to take full advantage of the RIT‟s failure detection
capabilities: it allows continuation of the RIT execution and identification
of additional failures (thus avoids blocking bugs). By utilizing the
information about the exact location of mismatches, the debug engineer
can identify instructions or instruction classes that fail often and focus
root cause analysis to particular structures of the microprocessor. Note

Architectures for Dependable Modern Microprocessors

N.Foutris
55

that the hardware mechanism is complementary to the bug detection
method (checking of equivalent instructions) and is optional.

We evaluate the methodology experimentally on an x86-64 model with a
comprehensive bug injection campaign. Our methodology successfully detected
all injected bugs in the experiments while the traditional RIT-based approach and
the two self-checking methods we compared with failed to do so. Furthermore,
the proposed methodology accelerates the silicon debug process, compared to
the traditional simulation-based flow, by increasing the prototype utilization. To do
so, it introduces the concept of ISA-diversity, self-checking test programs to
mitigate the simulation bottleneck.

2.2.2 ISA Diversity analysis

The bug detection philosophy is based on the existence of inherent equivalences
(i.e. diversity) within modern instruction sets. ISA diversity is the extent to which
operations of an ISA can be performed equivalently by more than one different
ways. If the same input data are applied to equivalent instructions or instruction
sequences, they will produce identical results, although they activate different
logic paths in the processor logic. It is exactly this activation of different parts of
the processor that enables bug detection by comparison (self-checking).

To identify the extent of ISA diversity in microprocessors, an analysis on four
popular instruction set architectures: ARM, MIPS, PowerPC, and x86 along with
examples of diversity and statistics for each ISA is presented in following section.

2.2.3 Diversity examples

Table 5 to 8 list examples of equivalent instruction sequences for ARM, MIPS,
PowerPC, and x86 ISAs, respectively. In most cases, more than one equivalent
instruction sequences exist for each original instruction, but only one alternative
appears in the following Tables. We use the actual assembly instruction
mnemonics of each ISA to describe the equivalent code. For uniformity, we use
the same generic names (RA, RB, RC, etc.) for general purpose registers. Note
that whenever an equivalent code modifies a register – which is not affected by
the original instruction – its value has to be saved before and restored after the
execution of the equivalent code (the save and restore instructions are omitted).

Table 5: ARM ISA diversity.

Original Instruction Equivalent Sequence Description

mvn RA, RB
move not

sub RC, RC, RC
sub RC,RC,#1
eor RA, RC, RB

Uses exclusive OR operation
and an all 1‟s mask stored in
RC to invert the bits of RB.

mlas RA, RB, RC, RD
multiply and accumulate

mul RA, RB, RC
adds RA, RA, RD

Splits the complex operation
into a multiplication and an
addition.

smuad RA, RB, RC
dual 16-bit signed
multiply with add

smulbb RA, RB, RC
smultt RD, RB, RC
add RA, RA, RD

Executes two signed 16-bit
multiplications in the bottom
and top halves of the source
registers (RB, RC); then adds
the intermediate products.

stmia RA!, {RB-RD}
store multiple increment
after

str RB, [RA]
str RC, [RA, #4]!
str RD, [RA, #4]!

Executes multiple single
register store instructions
which (except the first one)
update the index.

Architectures for Dependable Modern Microprocessors

N.Foutris
56

Table 6: MIPS ISA diversity.

Original Instruction Equivalent Sequence Description

slt RA, RB, RC
set on less than

sub RD, RB, RC
srl RA, RD, 31

Executes subtraction and
checks if the result is
negative (R0 = zero register).

lw RA, addr(RB)
load word

lhu RA, addr(RB)
lhu RC, (addr+2)(RB)
sll RC, RC, 16
or RA, RA, RC

Executes two load half-word
unsigned instructions and
places the second half-word
to upper bytes.

lui RA, imm16

load upper
immediate

addi RB, R0, 0xFFFF
and RA, RA, RB
addi RB, R0, imm16
sll RB, RB, 16
or RA, RA, RB

Resets the upper half of RA
and then uses add and shift
instructions to load the
constant (R0 = zero register).

srlv RA, RB, RC
shift word right

rotrv RA, RB, RC
sub RC, R0, RC
addi RC, RC, 32
sllv RB, RB, RC
xor RA, RA, RB

Rotates right instruction and
then left shift to mask upper
bits in the rotated result (R0 =
zero register).

Table 7: PowerPC ISA diversity.

Original Instruction Equivalent Sequence Description

eqv RA, RB, RC
equivalent

andc RD, RB, RC
andc RE, RC, RB
nor RA, RD, RE

Executes the logic
operation:
¬ ((RB & ¬RC) | (¬RB
& RC))

rldimi RA, RB, SH, MB
rotate left doubleword
immediate then mask
insert

rldicr RC, RB, SH,63-SH
clrldi RC, RC, MB
rldicl RB, RB, MB,63-SH
rotrdi RB, RB, MB
or RA, RB, RC

Performs successive
rotate and mask
operations using other
rotate instructions.

lwaux RA, RB, RC
load word algebraic with
update indexed

lwzx RA, RB, RC
add RB, RB, RC
extsw RA, RA

Loads word first, then
update RB with the
new address and
finally extend sign.

cntlzd RA, RB
count leading zeros

addi RA, 0, 0
Loop: add RA, RA, 1
rldcl RC, RB, RA, 63
beq Loop
addi RA, RA, -1

Implements a loop that
rotates and masks
operations to count
leading zeros. Each
iteration rotates RB
left by RA locations
and clears the 63
upper bits (and update
flags). If the result is
zero continues,
otherwise exits.

Architectures for Dependable Modern Microprocessors

N.Foutris
57

Table 8: x86 ISA diversity.

2.2.4 Diversity Statistics

We classify the instructions of the ARM, MIPS, PowerPC, and x86 ISAs in 3
categories.

 Full Equivalence: instructions for which there are one or more equivalent
ways to realize their operation. This category includes the vast majority
of arithmetic and logic instructions, data transfer instructions, compare
instructions, and a large number of control flow instructions.

 Partial Equivalence: instructions which cannot completely diversified. No
equivalent way exists to mimic entirely the original operation. This is due
to: (i) different modes of operation for these instructions some of which

Original Instruction Equivalent Sequence Description

add RA, [m32]
integer addition

fild [m32]
mov m32, RA
fiadd [m32]
fistp m32
mov RA, [m32]

Moves data from integer
register file to FP-stack and
uses the FP addition instead
of integer addition.

mov RA, [m32]
load data from memory
into register

push [m32]
add ESP, 0x4

Next instruction that uses
RA operand should load the
data from the stack. Restore
stack pointer (ESP).

clc
clear carry flag

mov RA, 0x0
bts RA, 0x0

Sets RA to zero and
performs a bit test and set
instruction which clears the
carry flag.

jmp target
jump to target address

mov RA, 0x1
cmp RA, 0x1
je target

Sets RA to a value and
performs a compare
instruction which activates
the ZF flag. The conditional
jump (je) is then used
instead of jmp.

cvtdq2pd RA, [m64]
convert packed dword
integers to packed
double-precision FP
values

cvtsi2sd RA, [m64low]
cvtsi2sd RB, [m64high]
movlpd m64, RA
movhpd m64, RB
movlpd RA, [m64]
movhpd RA, [m64]

Executes two convert dword
integer to scalar double
precision FP values
instructions followed by two
load operations. The
intermediate results (low 32-
bits, high 32-bits) are
merged into the same
register.

fadd [m64]
floating-point addition

movlpd RA, [m64]
fst m64
movhpd RA, [m64]
mov m64low, 0x0
mov m64high, 0x0
haddpd RA, [m128]
movlpd m64, RA
fld [m64]

m64low and m64high are
consecutive memory
addresses filled with zeros.
Modifies operands values
and replaces the floating
point operation by a packed
double-fp horizontal
addition.

Architectures for Dependable Modern Microprocessors

N.Foutris
58

cannot be realized differently (e.g. various addressing modes), (ii)
inherent loss of accuracy in the operation of an instruction (e.g. floating-
point conversions). This category includes some of the instructions not
included in the previous category, a number of floating point instructions,
and some data transfer instructions that involve system storage areas.

 No Equivalence: instructions with no equivalences. This category
includes mainly the privileged instructions that access system resources,
complex control operations, input and output instructions, interrupts,
exceptions and complex arithmetic instructions (mainly in CISC
architectures).

Figure 7 shows the statistics of our analysis for the four popular instruction set
architectures where all instructions are classified in the three categories. For each
ISA, our statistics present the percentage of different instruction mnemonics that
fall in each category and not the different opcodes. In many cases (particularly in
x86) the same mnemonic includes several tens of different opcodes. For the x86
ISA, we focused on the general purpose instructions set and not the special ISA
extensions (our intuition is that a study on the entire x86 instruction set, includes
tens of thousands of instructions, will increase the amount of instruction on the full
equivalence). It is evident from Figure 7 that all four ISAs have a large amount of
instructions in the full equivalence category.

Full
Equivalence

77%

Partial
Equivalence

15%

No
Equivalence

8%

ARM

Full
Equivalence

78%

Partial
Equivalence

14%

No
Equivalence

8%
PowerPC

Full
Equivalence

74%

Partial
Equivalence

6%

No
Equivalence

20%

x86

Full
Equivalence

79%

Partial
Equivalence

10%

No
Equivalence

11%
MIPS

Figure 7: Diversity statistics of four popular ISAs.

2.2.5 Self-checking architecture

The proposed self-checking silicon debug methodology consists of four stages:

1) Generation of the ISA diversity database.

2) Generation of enhanced random instruction tests.

3) Hardware replay mechanism.

4) Post-processing.

Architectures for Dependable Modern Microprocessors

N.Foutris
59

We propose a novel, self-checking, diversity-based, hardware supported
framework to accelerate silicon validation and improve its quality. An overview of
the framework is shown in Figure 8, where our major contributions are
highlighted. A detailed analysis of each feature of the methodology follows.

Test

Scenario

Random

Instruction Test

Generator

Random

Instruction Test

Prototype

Debug

(2) Enhanced Random

Instruction Test

Generator

(1) ISA Diversity

database

(3) Hardware Replay

Mechanism

(4) Enhanced

log fileTriage

Figure 8: The proposed silicon debug framework.

(1) ISA Diversity Database Generation: The fundamental first step of the
proposed methodology is the identification of ISA diversity, i.e. microprocessor
instruction equivalences. Identification of equivalent instruction sequences and
population of the ISA diversity database strongly depends on the designer‟s
knowledge about the underlying architecture (detailed knowledge of the
architecture, micro-architecture and microcode of the design). For this reason it is
very likely to provide high quality results given the insights that the design team
has on the microprocessor architectural details. The database contains for each
instruction a list of equivalent instructions or instruction sequences.

(2) Generation of Enhanced Random Instruction Tests. The validation flow is
fed with effective Random Instruction Tests (RITs) already generated (but not
simulated) by sophisticated random generators that all microprocessor
companies internally use. We pair each RIT with an Equivalent RIT (ERIT), to
implement our basic bug detection concept: bugs are detected in our method by
comparing the execution results of a RIT and its ERIT (a mismatch indicates a
potential silicon bug). An ERIT is automatically generated from a RIT replacing its
instructions with their equivalent counterparts that have been stored in the ISA
diversity database. When the database contains more than one entry with

Architectures for Dependable Modern Microprocessors

N.Foutris
60

equivalent instructions for an original instruction, our approach randomly picks
one of the alternatives. Instructions without equivalents are simply duplicated (in
this case, only electrical bugs related to these instructions can be detected, since
a logic bug will uniformly affect both equivalent ways to perform the particular
operation).

Figure 9 presents the structure of the enhanced RITs that our methodology
automatically generates. Each enhanced RIT consists of the following:

a) An original RIT which is left unmodified; we assume each RIT consists of a
few thousands of instruction cycles as reported in the literature (each RIT
we use in our experimental evaluation consists of 4K instruction cycles).

b) An equivalent RIT (ERIT) generated as described above using the ISA
diversity database. For each instruction in the RIT, an equivalent
instruction or instruction sequence is inserted.

c) A checking code that compares the stored results of the original RIT and
the equivalent RIT to identify mismatches as indications of potential silicon
bugs.

/*Original RiT code starts here.*/

1. add RA, [m32]
2. st RA //storei

3. mov RB, [m32]

4. st RB //storei+1

…

/*Equivalent RIT (eRiT) code starts here.*/

5. fild [m32]
6. mov m32, RA
7. fiadd [m32]

8. fistp m32
9. mov RA, [m32]

10. st RA //estorei

11. push [m32]
12. add ESP, 0x4

13. pop RB
14. st RB //estorei+1

…

/*Checking code starts here. Compare RiT to eRiT responses*/

15. cmp [m32], [m32] //storei = estorei

16. cmp [m32], [m32] //storei+1 ≠ estorei+1

…

Figure 9: The structure of an x86 assembly enhanced RIT.

Bug detection in our method takes place by recording mismatches during silicon
execution (through the checking code); therefore our method provides immediate
bug detection. On the contrary, in a typical RIT-based flow, mismatches (due to
bugs) are only detected very late and off-line when dedicated servers (i.e.
validation host machines) compare the memory dumps (i.e. memory locations
that are accessed or modified by the test, register files and any other data
structures that can be scanned out from the silicon prototype) of the actual silicon
execution with the expected memory dump contents from simulation. Figure 10
outlines the bug detection concept for the traditional and the proposed RIT-based
silicon validation flow for microprocessors.

Architectures for Dependable Modern Microprocessors

N.Foutris
61

Host Machine

Prototype

RIT
Actual

Responses

Actual
Responses

Expected
Responses

c
o

m
p

a
ra

to
r

simulator

Bug
detected

Prototype

RIT

RIT

ERIT

Check

Bug
detected

Host Machine

Figure 10: Traditional (left) vs. proposed (right) RIT-based validation flow.

(3) Hardware Support for Validation. In our method we take advantage of the
fast bug detection that takes place during RIT execution on the prototype chip,
and we support it with a hardware mechanism that is part of the microprocessor
design (Figure 8). The hardware mechanism records the failing comparisons and
points the execution points where mismatches happen. Moreover, when a
mismatch is detected, the hardware mechanism allows replay (re-execution) of
the RIT by replacing the execution of the offending instruction with its equivalent.
If the offending instruction is the original one and its equivalent is bug-free the
enhanced RIT replay produces the useful logging information we want. If this is
not the case (i.e. the equivalent instruction is the offending one) the enhanced
RIT replay does not produce useful logging information. Bugs in the instructions
of the ERIT will be identified subsequently by other RITs that are explicitly
generated to test them.

With our hardware replay (Figure 11), the test can continue execution and more
bugs can be detected. Replay can happen several times for a single enhanced
RIT as long as it detects more mismatches (potential bugs). In a typical RIT-
based flow (without our modifications), after the first mismatch the remaining
execution of the test is most probably useless since many subsequent responses
are corrupted (since an output value of one operation can propagate to the input
value of the subsequent operations). Other bugs that could possibly be detected
by the remaining of the test are left undetected. In the replaying of the test using
our hardware mechanism, the mismatch is bypassed, subsequent responses are
not corrupted and if the remaining test can detect another mismatch (more bugs)
it is allowed to do so. The last execution of the enhanced RIT is mismatch-free
and detailed logging information is available for post-processing.

Architectures for Dependable Modern Microprocessors

N.Foutris
62

To demonstrate the hardware mechanism, we assume that an enhanced RIT
(original RIT + ERIT + checking code) will be executed on the prototype chip. The
original RIT includes k store instructions that write the results of the computation
to the memory. For a typical RIT of ~4K instructions, it is realistic to assume that k
is somewhere between 500 and 1000. Similarly, the ERIT includes k store
instructions that write the results of the equivalent computations. The checking
code compares the results stored by instruction store[i] and estore[i], where
store[i] is the ith store of the RIT and estore[i] is the ith store of the ERIT, with i =
1…k.

The basic concept of the mechanism is that when a mismatch is detected
between store[i] and estore[i], during replay, instead of executing the “buggy”
code between store[i–1] and store[i], the processor executes the equivalent code
between estore[i–1] and estore[i]. The mismatch has been just bypassed.

The hardware mechanism is shown in Figure 11 and operates as follows:

s
to

re
-a

d
d

r

e
s
to

re
-a

d
d

r

bypass control

program counter

store counter

mids from checking

code (from a register)

monitor

hit

mids-queue

Figure 11: The structure of the proposed hardware mechanism.

First run of the enhanced RIT. The checking code finishes with the first mismatch
among the k responses of RIT and the k responses of ERIT stored in variable mid
(mismatch id), with mid between 0 and k. If mid = 0 (i.e. the queue is empty), then
there is no mismatch and the chip passes the enhanced RIT; validation continues
with the next RIT. If mid > 0 (i.e. the queue is not empty) the enhanced RIT will be
replayed because store[mid] and estore[mid] instructions generated different
results. Moreover, during the first run of the enhanced RIT the addresses of all
store instructions (of the RIT and the ERIT) are saved in the store-addr and
estore-addr buffers of the hardware mechanism to facilitate replay. Each of these
two structures has a size of k words (addresses) for a total of 2k words. The
store-addr and estore-addr buffers record the address of the store instructions
themselves and not the address they store the data to. The contents of the two
buffers are needed to replay the enhanced RIT by manipulating the contents of
the program counter – PC (or Instruction Pointer – IP) in hardware, as explained
below.

Subsequent runs of the enhanced RIT. Every mismatch produced in previous

Architectures for Dependable Modern Microprocessors

N.Foutris
63

runs is stored in an entry of the mids-queue. The hardware mechanism counts
the number of stores (monitoring instruction decoding) in the new run of the RIT
in a store-counter (which is reset at the beginning of each run of the enhanced
RIT). When store-counter gets equal to mid – 1 (i.e. before execution of the
corrupted sequence) where mid is the mismatch id at the head of the mids-queue
a “bypass” must happen (managed by the bypass control component), i.e.
execution of the RIT code between store[mid–1] and store[mid] must be
“replaced” by the execution of the ERIT code between estore[mid–1] and
estore[mid] (this is why store-counter must be equal to mid–1). The “replacement”
is done on-the-fly as follows using the store addresses information saved in
buffers store-addr and estore-addr:

 After instruction store[mid –1] finishes, PC gets the address of the
instruction following estore[mid–1].

 After the instruction before estore[mid] finishes, PC gets the address of
instruction store[mid].

Therefore, instead of executing the “buggy” code between store[mid–1] and
store[mid], the processor executes the equivalent code between estore[mid–1]
and estore[mid]. The mismatch has been bypassed.

Table 9: The algorithm of the hardware replay mechanism.

inputs: Set of RITs: original random instruction tests
 Set of ERITs: equivalent random instruction tests
output: Log information {mids-queue}

for all RITs do
 execute RIT; save store addresses to store-addr buffer;
 execute ERIT; save store addresses to estore-addr buffer;
 execute checking code; compare RIT/ERIT responses;
 update mids-queue: add entry if mismatch found;
 if (mid = 0) then
 TestPassed;
 else
 while (mid > 0) do
 store-counter = 0;
 replay(RIT, ERIT);
 if (store-counter hits a mid – 1 in mids-queue) then
 PC estore[mid – 1] + 4;
 execute equivalent operation;
 PC store[mid];
 end if
 execute checking code; compare RIT/ERIT responses;
 update mids-queue: add entry if new mismatch found;
 end while
 end if
end for

During each replay run, this bypass process is repeated for each mid saved in the
mids-queue. At the end of each “replay” run a new non-zero mid may be
produced (in the checking code) and stored in the mids-queue. This means that in
the subsequent replay execution one more bypassing will take place because the

Architectures for Dependable Modern Microprocessors

N.Foutris
64

RIT found one more mismatch. Eventually, the last “replay” (in which multiple
bypasses took place) will produce a mid = 0 denoting a mismatch-free execution.
Table 9 summarizes the operation of the hardware replay mechanism.

The logging information produced for the debug engineer is the queue of the
mismatch identifiers mids-queue. For example, if at the end of the execution of an
enhanced RIT (including all replays) the mids-queue contains integers 10, 25,
130, and 0, this means that mismatches have been detected between store[10]
and estore[10], between store[25] and estore[25], and between store[130] and
estore[130], and that the fourth “replay” was mismatch-free. With this logging
information in hand, the debug engineer can directly locate the code portions with
mismatches and focus on them for root-cause analysis. The debug engineer can
also easily identify the RIT code replaced by the equivalent ERIT code for each
bypass (it is of course the code before the stores with mismatches). We note also
that the mids-queue contents must be also saved in memory so that after the end
of the test they are passed as the methodology log to the debug team. Inside the
hardware mechanism itself, mid information is passed by the checking code in
one of the processor registers and the hardware mechanism records it in the
mids-queue.

The size of the hardware mechanism depends on the size of the store-addr and
estore-addr buffers (we assume a maximum size of 1,000 address entries for
each buffer; equals to the average amount of store operations on 4K random test
program), the size of the mids-queue (we assume a maximum of 10 entries; it is
very unlikely for a single RIT to detect more bugs), the store-counter, and the
bypass control logic that includes multiplexers and comparators. The hardware
mechanism is deactivated after the end of silicon debug and thus it does not
consume any power and does not affect performance in the field.

(4) Post-processing. As we mentioned earlier, it has been reported in the
literature that the same bug can corrupt a large number of RITs. When the debug
engineer is fed with many failing RIT memory dumps that are due to the same
bug (in the same instruction, operation, or structure) the debug phase takes
unnecessarily long time in order to determine if that failure is unique. This is an
inherent inefficiency of traditional RIT-based flow since mismatches are detected
much later in the server that compares the memory dumps. Our method offers a
very important advantage to the post-processing phase: validation data provided
by our hardware mechanism can help clustering of failure modes. This can be
achieved through post-processing of the enhanced logs generated by the
hardware mechanism (list of mismatch identifiers, mids, i.e. stores that saved
different results to memory).

The list of mismatch identifiers (mids) is the log information our method provides.
An integer m in the log (an entry in the mids-queue) means that: (a) the mth pair of
stores produced a mismatch, i.e. store[m] and estore[m] produced different
results; (b) the code between store[m–1] and store[m] has been replaced by the
code between estore[m–1] and estore[m] and the RIT continued. These two
pieces of information can help the debug engineer identify the offending
instructions and work on them.

Apart from the instruction bypassing realized by the hardware mechanism, our
methodology and corresponding logging data provide a fast workaround solution
necessary to allow validation to continue running subsequent RITs: buggy
instructions can be avoided in subsequent RITs by using their bug-free
equivalents from the ISA diversity database.

Architectures for Dependable Modern Microprocessors

N.Foutris
65

2.2.6 Experimental evaluation of the self-checking method

We assess our validation methodology by performing a comprehensive bug
injection experiments campaign on a superscalar, out-of-order, single-core x86-
compatible model in the PTLsim simulator [110]. PTLsim supports the full x86-64
instruction set of Pentium 4 (and subsequent), Athlon 64, and similar machines
with all extensions (x86-64, SSE/SSE2/SSE3, MMX, x87).

For the experimental evaluation of our microprocessor validation methodology,
we set up the tool chain outlined in Figure 12. Building a realistic experimental
framework is an non-trivial task, since the available data regarding silicon debug
models is limited. For instance, the insight on modelling real design bugs is
limited due to the criticality of these data for the semiconductor industry.

Enhanced Random Instruction

Test Generator

Random

Instruction

Test

ISA Diversity

database

Design Bugs

database

x86 Simulator
Bug Injection

Tool

Bug Injection Controller

Figure 12: Experimental setup and tool-chain to evaluate the effectiveness of the self-
checking methodology.

The experimental framework consists of the following:

a) The PTLsim architectural simulator for the x86 microprocessor.

b) Our RIT enhancement tool described previously that gets original RITs
and produces enhanced RITs applying the equivalence-based
methodology utilizing the ISA diversity database.

c) A bug injection tool that injects both logic and electrical bug at various
locations throughout the entire processor. The bug injection tool uses our
bug database which has been populated with bugs of either type.

For a given set of bugs in the design bugs database and a given set of enhanced
RITs produced by our methodology, the experimental framework executes the
enhanced RITs and records if a bug is detected or not.

We have injected both logic and electrical bugs to model different design bug
conditions throughout the entire x86 architecture. For electrical bugs injection, we
follow [70] which assumes that an effective and realistic way to model electrical
bugs is to model them as transient bit flips at the microprocessor‟s flip-flops. In
particular, on our experiments electrical bugs are models as a bit-flip (either for „0‟
to „1‟ or vice versa) in a random simulation clock cycle of a randomly selected
memory element. On the other hand, logic bugs have a permanent effect and we

Architectures for Dependable Modern Microprocessors

N.Foutris
66

model them through a modification in the semantic correctness [102] of the
architectural simulator‟s source code. Table 10 summarizes the types of the
injected logic bugs.

Table 10: A list of logic bugs types that are injected into the simulator.

Semantic Modification Correct Instance Buggy Instance

Wrong operator a = b + c a = b – c

Wrong conditional statement if (a > b) if (a ≥ b)

Wrong signal assignment a ← b + c a ← d

Conceptual error
if (a > b) then

a ← c
if (a > b) then

a ← c + b

Wrong constant assignment a = 0x000F a = 0x0002

Table 11 presents a summary of the logic and electrical bugs we injected. In total,
1,025 design bugs were injected, 802 of them are logic and 223 are electrical,
covering all pipeline stages and hardware components of the x86-64
microprocessor model. We injected electrical bugs mostly in the components that
integrate large memory arrays, i.e. branch prediction unit, register file, etc.
because the memory-dominated modules are more vulnerable to electrical bugs
due their high density. The bit-flips are activated randomly in any position of a
data structure. On the other hand, we injected logic bugs mostly in the control-
related components where design errors in the complex conditional decisions are
more likely to occur.

Table 11: Injected design bugs distribution in the components of the x86-64 processor
model.

Pipeline Stage Component Logic bugs Electrical bugs Total bugs

Fetch/

Decode

Branch Predictor

Prefetcher

Instruction Decoder

Microcode

Instruction Buffer

71

29

100

62

–

16

12

–

–

18

87

41

100

62

18

Issue/

Execute

Integer Arithmetic

FP Arithmetic

Jump logic

Load/Store logic

Issue Queue

Scheduler

Register File

95

97

46

66

42

32

61

–

–

–

21

–

–

63

95

97

46

87

42

32

124

Retire Reorder Buffer 101 41 142

Instruction & Data – 52 52

 Total 802 223 1025

We compare our methodology with the traditional RIT-based validation flow.
Moreover, we perform the same set of experiments for two other self-checking
validation approaches presented in the literature that also aim to mitigate the
time-consuming simulation step of RIT-based validation: (a) Reversi [105],
according to which each instruction is followed by a reverse instruction; a bug is

Architectures for Dependable Modern Microprocessors

N.Foutris
67

detected when the final result is not equal to the initial one (i.e. it has not been
reversed correctly); (b) QED or instruction duplication [48], according to which
each instruction is duplicated and electrical bugs are detected when execution of
duplicated instructions gives different results. For each of the three methods
(Reversi, QED, and ours), we use the same original RIT as input and we enhance
it according to the basic idea of each method.

Each of the original RIT sequences we use as an input consists of 4K instruction
cycles and was generated by the tool generously provided to us by the authors of
[105]. In our experiments we used 154 original RITs produced by the RIT
generator, thus we ran a total of 616K random instructions in the simulator for
each of the 1,025 injected bugs. Our RIT enhancement methodology increases,
on average, the RIT code size by 6 times compared with the original RIT size
(min = 4.3X, max = 9X, for the 154 RITs). The total number of instructions for the
full campaign of 154 enhanced RITs (includes the original RITs, the equivalent
RITs, and the checking code) is 3.7M of x86 instructions. The corresponding
increase in RIT size by Reversi is on average 4 times (i.e. total number of
instructions is approximately 2.5M instructions) and by QED is on average 3
times (i.e. total instructions is approximately 1.9M).

The results of our bug injection experiments are shown in Figure 13. Our
methodology detects all 1,025 bugs injected into the simulator (bug coverage
100%) because we stopped generation of more RITs when all the injected bugs
were detected. The traditional silicon validation flow detects 928 bugs (coverage
90.54%). This difference, against the proposed method, is explained by the
activation of more hardware areas by the equivalent RIT. The instruction
reversing method (Reversi) detects 903 bugs (coverage 88.10%) because there
are cases where an instruction cannot be inverted. Furthermore, the flexibility of
the ISA diversity concept to deploy equivalent instructions which activate totally
different path in processor‟s logic provides us with the ability to avoid bug
masking conditions (e.g. integer addition and subtraction happen on the same
module, while in our method the equivalent addition take place on the floating
point logic). Finally, the duplicated instructions approach (QED) detects 210 bugs
(coverage 20.49%) because it can only detect electrical bugs, since a logic bug
will act in an identical way in both original and duplicated instruction.

Traditional

RIT-based flow

Reversi QED Proposed

928

903

210

1025

Detected Bugs
100%

20.49%

88.10%
90.54%

Figure 13: Design bugs coverage (1,025 bugs injected in total) for the four different
methods.

Architectures for Dependable Modern Microprocessors

N.Foutris
68

For a complete validation plan (trillions of instructions), we expect our approach to
have the same bug detection capability with the traditional RIT-based flow since
our bug detection capability relies on the original RITs which are carefully
generated by sophisticated industrial random generators. The advantage of our
method is that mitigating the time-consuming simulation step it is able to apply
more RITs and thus detect potential bugs earlier. Our methodology compares
favourably with the other two self-checking approaches Reversi and QED. This is
because Reversi is based on instructions whose effect can be reversed; this is
not possible in many cases, and thus a number of bugs are not detected. QED on
the other hand is based on instruction duplication and is very effective only for
electrical bugs but not for logic ones.

Another advantage of the proposed method is that, it refines the validation data
using the hardware replay mechanism. During our bug injection experiments, we
observed that the average number of different bugs that were detected by a
single RIT is about 4. Therefore, we integrated the hardware replay mechanism in
the PTLsim simulator and conducted a second set of experiments: we injected all
the bugs at the beginning of the simulation and executed all RITs with the highest
bug detection capability. The proposed hardware mechanism detected all the
injected bugs (through bypassing the offending instructions with their equivalents
in the replay executions). This is a significant benefit of the proposed framework
compared to the traditional flow which requires more tests to detect the same
number of bugs.

Table 12 presents a comparison in terms of validation time (all timing
measurements are on an Atom N270 with 1 GHz clock frequency) for the
traditional RIT-based flow, Reversi, QED and the proposed method. Note that in
silicon debug stage numerous (hundreds of millions for almost a year) random
tests are generated; therefore Table 12: Validation times from the application of
the traditional-based flow, Reversi, QED, and the proposed method. represents
only a snapshot of the whole process. We discuss the different parts of the total
validation time in the following.

Table 12: Validation times from the application of the traditional-based flow, Reversi, QED,
and the proposed method.

Time (sec) Traditional RIT Reversi QED Proposed

Generation 4.460 6.310 5.530 7.680

Simulation 51.000 – – –

Execution 0.027 0.110 0.071 0.176

Total 55.487 6.420 5.601 7.856

In a typical microprocessor the total validation time of the first silicon prototypes
consists of the following parts.

 Generation time: The time required to generate the random tests in the
host machine. In our experiments, we generate 154 random tests, each
one consisting of 4K instructions (summing up to 616K instructions for
the traditional RIT flow, 2.4M instructions for Reversi, 1.8M instructions
for QED, and 3.7M instructions for the proposed method).

 Upload time: The time required to upload the test from the host machine
to the prototype for execution. This is typically performed through a

Architectures for Dependable Modern Microprocessors

N.Foutris
69

standard PCIe interface (or any other host debug interface). Given that
the size of a random test is only a few kilobytes the PCIe throughput
guarantees a nearly zero upload time and we do not include this time in
Table 12.

 Simulation time: Only the traditional RIT-based flow needs to be
simulated, since the other three approaches are self-checking.

 Execution time: The actual silicon execution time.

 Download time: The time required to download the responses (memory
locations affected by the random test) of the test from the prototype to
the host machine using the PCIe or other host interface. For the three
self-checking methods the responses are downloaded only in the case of
a failing RIT, while for the traditional RIT-based flow responses'
downloading always follows each test execution. Since PCIe throughput
guarantees a nearly zero download time for such small RITs, we don‟t
include it in Table 12.

 Compare time: The time required to compare the actual responses with
the expected ones (golden signatures). This is again very fast and we do
not include it in Table 12.

The timing measurements demonstrate that the proposed method is much faster
than the traditional RIT-based flow: more RITs can be applied in the same time.
In addition, the longer test execution time of the proposed method compared to
the two self-checking alternatives is due to the longer random tests it uses.
However, this is alleviated by the improved bug detection capability of our method
as shown in Figure 13.

Note that the speedup offered by our methodology by the mitigation of simulation
applies only to the validation of instructions that have equivalents (more than
three quarters of the ISAs). For the remaining instructions, the classic simulation-
based RIT flow must be followed and thus our methodology is complementary to
current industry practice.

Figure 14 roughly visualizes the timing of a traditional RIT-based flow and the
timing of the proposed flow to give a clear idea of the timing advantages of the
proposed method. In the host machine, we assume that generation (G) of random
tests, uploading (U), simulation (S), downloading (D) and comparison (C) of the
actual responses with the expected can take place in parallel. The prototype
starts execution of legacy tests available from pre-silicon verification (or from
previous architectures) and then executes the newly generated random tests.
Although, in our experiments the upload, download and compare times are
negligible because of the high throughput of PCIe interface, in Figure 14 we
include them for demonstration purposes. The upload and download times can be
significant if a slower interface than PCIe is used or if the size of the tests is much
larger than a few kilobytes.

Architectures for Dependable Modern Microprocessors

N.Foutris
70

Host

Machine

Traditional Flow

G1

S1

G2

idle E2 idle

pass/fail

Proposed Flow – best case scenario

G1 G2 G3

pass

idle E2

Host

Machine

Prototype

Prototype

time

G4 G5

E4

G6

legacy

tests

legacy

tests
E1

U1

D1 D2

G3

S2

U2 U3

S3

E3

C2C1

pass/fail

C3

pass/fail

U1

E1

U3

E3

U4 U5

D3

U2

idle idle idle

U6

idle

U7

E5 E6 idle E7

passpass pass pass pass pass

G7

Proposed Flow – worst case scenario

G1 G2 G3

idle E2

Host

Machine

Prototype

G4

legacy

tests

U1

E1

U3

fail

D1

idle

D3

U4

idle E4E3

D4

U5

D5

idle idle

failfailfailfail

U2

E5

D2

G5

Figure 14: Traditional vs. proposed RIT-based silicon debug flow.

Figure 14 shows that the proposed methodology mitigates the simulation phase
and also downloads only the responses of the failing RITs to the host machine. In
a sense, the silicon prototypes are better utilized with our method and they
execute more random tests during the same time. For example, Figure 14 shows
that the proposed flow executes five random tests in the worst case (all failing)
and seven random tests in the best case (all passing) while the traditional RIT-
based flow executes only three. Thus, it accelerates silicon debug significantly.

Architectures for Dependable Modern Microprocessors

N.Foutris
71

2.3 Triage by exploiting deconfiguration ability

A critical step in silicon debug is triage, the process of analysing failing test
programs and grouping them in “buckets” according to their failure mode. An
effective triage process makes actual debug (the process of finding the root
cause of the failure) much easier for the debug engineers and allows them to
focus on dominant failure modes instead of spending expensive man power on
test programs that fail due to the same underlying issue (the same bug).

Random test program flow constitutes a mature and efficient technique to detect
bugs, however randomness is the inherent weakness of this part of the process.
Random test program-based silicon debug results in the generation of many
redundant test programs that fail due to the same or similar bugs. Every failing
random test program consumes several hours or days of man and computational
power. This debugging “noise” and overhead is expected to get worse in the
future with the increasing design complexities. Clearly, the identification of
dominant failure modes among the random test programs that can triage them
into categories with common failure modes will significantly reduce the number of
debug sessions and will therefore speed silicon debug up by several weeks or
months.

The proposed methodology optimizes the triage process by exploiting the
following property of many hardware components of microprocessors: a
component can be “turned off” or deconfigured while the microprocessor remains
functionally complete (i.e. processor‟s baseline functionality is guaranteed despite
the absence of the component).

Component1

Component2

Component3

Component9Component4

Component5

Component6

Component7

Component8

FAIL

execute test program

deconfigure comp3 execute test program

comp3 has a bug

Component1

Component2

Component3

Component9Component4

Component5

Component6

Component7

Component8

PASS

Phase 1

Phase 2

Figure 15: Silicon debug and component deconfiguration.

Our silicon debug methodology utilizes such deconfigurable microprocessor
architectures and supports them by a dedicated hardware mechanism for
dynamic deconfiguration of components during runtime. Random test programs
are grouped in categories based on the set of components that need to be
deconfigured for the test program to be correctly executed. Deconfigured
components are pinpointed as potential hosts of bugs and just a few member of

Architectures for Dependable Modern Microprocessors

N.Foutris
72

each failing test programs category can be debugged for the identification of the
failure root cause.

As a high-level quantitative example, Figure 16 outlines the issue of redundant
test programs in a flow without (left) and with (right) a triage method. We assume
that during a time interval a prototype chip executes 1 million random test
programs. Among them, 1 out of 10.000 fails due to a design bug (failure rate)
and 1 out 10 failing test program is redundant to another (redundant test program
rate). The silicon debug flow without a triage method results in 100 debug
sessions (one for each failing test program), while for the flow with a triage
method, which is able to detect all the redundant test programs, the amount of
debug session is reduced to only 10 (i.e. 100 failing test programs grouped into
10 categories).

Prototype

Test programs

Debug sessions

1
M

il
li
o

n

Failing Test

Program Rate

 1/10K

1
0

0

Prototype

Debug sessions

Triage

1
0

Redundant

Tests Rate

1/10

Figure 16: Redundant test program triaging concept.

As our experimental results section shows in detail (Section 2.3.7), we performed
a set of experiments to calculate the degree of redundancy among the random
test programs in a test suite. The experimental results show that on average 5
every 1000 failing random test programs detect the same design bug.

This thesis propose a silicon debug methodology for microprocessors with the
major objective to automatically triage the failing random test programs of an
overnight run in as small as possible number of “buckets” of failing tests with
common failure modes. This triage obviously leads to less test programs to be
debugged, and thus accelerates the overall silicon debug phase.

2.3.1 Scope of the triage methodology

The proposed methodology is applied at the silicon debug phase of the
microprocessor dependability cycle for the triage of design bugs and aims to
deliver a minimal set of failing tests groups after an overnight random programs
campaign without manual intervention. The proposed methodology detects
design bugs with the following characteristics: (a) their excitation does not depend
on the operational conditions (temperature, voltage, frequency); and (b) they

Architectures for Dependable Modern Microprocessors

N.Foutris
73

continue to manifest themselves despite the deconfiguration of components from
the overall design. The contributions of the proposed methodology to silicon
debug are the following:

1. We propose the employment of deconfigurable microprocessor
architectures along with self-checking random test programs to reduce
the redundant debug sessions and make the triage step of silicon debug
more efficient. Several hardware components of high performance
microprocessor micro-architectures can be deconfigured while keeping
the functional completeness of the design. This is the property we exploit
in our silicon debug methodology for the triaging of random test
programs.

2. We support our methodology by a hardware mechanism dedicated to
silicon debug that groups the failing test programs into categories
depending on the microprocessor hardware components that need to be
deconfigured for a random test program to be correctly executed.
Identical deconfiguration sequences for multiple test programs indicate
the existence of redundancy among them and group them together. This
grouping significantly reduces the number of failing tests that must be
debugged afterwards.

The proposed methodology has been evaluated in an x86-64 microprocessor
model of a publicly available architectural simulator. Experimental results prove
both the validity of the claim that many random test programs fail due to the same
bug, and also the large reduction in the debug time that is achieved by the
effective triaging of failing tests using the proposed silicon debug methodology.

2.3.2 Microarchitectural transparency and deconfiguration opportunities

Throughout microprocessors evolution computer architects have devised
numerous techniques to improve performance. Superscalar executions paths,
multiple functional units, simultaneous multi-threading operating modes, out-of-
order execution, dynamic scheduling, branch prediction, data and instruction
prefetching are some examples of performance-enhancing mechanisms. All these
techniques share a common attribute: microprocessor baseline functionality is
guaranteed even without them. For instance, a core will continue to be
functionally-complete even when its branch predictor is turned off or a cache
memory bank is disabled. Therefore, the integration of these techniques in the
hardware of a microprocessor is transparent to the instruction set architecture.
Because of their sophisticated implementation such components are prone to
design bugs. Our methodology aims to triage random test programs that fail due
to bugs in such deconfigurable components.

The emergence of the previous techniques in modern microprocessor designs
have also contributed to the evolution of Instruction Set Architectures.
Sophisticated extensions of the instructions sets have been deployed, targeting to
grasp the maximum performance speedup from the enhanced designs. These
extensions are essentially built upon a basic set of primitive operations, such as
arithmetic and logical operations and memory transactions. For example, the
SIMD extension provides the ability to execute multiple arithmetic operations on a
data vector, which is essentially comprised of a group of primitive operations.
Therefore, equivalent instruction sequences exist (as this work has demonstrated
so far), which can be used interchangeably to perform the same operation and at

Architectures for Dependable Modern Microprocessors

N.Foutris
74

the same time these modifications are transparent to the semantic correctness of
an application.

It is evident that microprocessor architectures built around deconfigurable
components which can be “turned off”, either directly by dedicated hardware at
the micro-architecture level or indirectly by software through equivalent instruction
sequences. Such deconfigurations will not compromise the functional-
completeness of the microprocessor. We employ such architectures in this work
to facilitate the triage step of the silicon debug process.

We studied Intel‟s Nehalem micro-architecture [57] [58] to estimate the size of
logic that is redundant to the baseline functionality of a processor and can be
transparently deconfigured through hardware or software.

Table 13: Nehalem’s deconfigurable components.

Components Size/Instances Deconfiguration

L1 Instr. Cache 32KB Hardware

L1 Data Cache 32KB Hardware

L2 Cache 256KB Hardware

First level iTLB 128 entries Hardware

Second level iTLB 512 entries Hardware

Instruction Queue 18 entries Hardware

Branch Target Buffer 2 Hardware

Conditional Branch Predictor 2 Hardware

Return Address Stack 16 entries Hardware

Simple Decoder
(simple, frequent instructions)

3 Software

Complex Decoder
(complex instructions)

1 Software

MS-ROM 1 Software

Instruction Decode Queue 28 entries Hardware

Loop Stream Detector 1 Hardware

Micro-fusion 1 Hardware

Macro-fusion 1 Hardware

Reorder buffer 128 entries Hardware

Reservation Stations 36 entries Hardware

Integer Functional Units 9 Either

Floating Point Functional Units 3 Either

Load Buffer 48 entries Hardware

Store Buffer 32 entries Hardware

Table 13 contains the following information: the first column presents the
components of the Nehalem core architecture that can be potentially
deconfigured. The second column shows the component size in bytes or number
of entries (e.g.: iTLB, caches), or the number of instances (e.g.: integer functional
units). The last column states the way that a component can be deconfigured
(hardware-, software-assisted or both). Singleton microprocessor components,
modules for which no other candidate component exists to replace its
functionality, can exclusively be deconfigured through the ISA diversity technique.
It is evident that a very large number of Nehalem‟s components, 35 in total, can
be potentially deconfigured from the design.

Architectures for Dependable Modern Microprocessors

N.Foutris
75

It is evident from Table 13 that a very large number of microprocessor
components, 35 in total, can be potentially deconfigured from the design either
directly in hardware or indirectly through software or either way. Some storage
elements cannot be completely deconfigured. A small part of them must remain
enabled to guarantee the baseline functionality of the design. For example, a
single entry store buffer, or a 4-entries instruction queue are enough to have a
functionally complete design.

In this work, we focus on the hardware-based deconfiguration of the
microprocessor components and the triage support it offers. Various [10] [106]
[48] have developed self-checking random test programs that can be used for the
detection of bugs in microprocessors. Any such method for the development of
self-checking random programs can be employed in our methodology.

2.3.3 Triage methodology

The proposed triage methodology dynamically deconfigures several
microprocessor modules during the execution of a failing random test program
until it is correctly executed: i.e. the bug that causes the failure is masked by the
deconfigurations. In particular, the triage methodology consists of the following
steps:

1. A self-checking random test program is loaded for execution on the
silicon prototype. The outputs of self-checking random test programs do
not need to be compared with golden responses (from pre-silicon
simulation) but rather generate a pass/fail indication at the end of their
execution. This is a key requirement of the proposed methodology that
facilitates re-execution of the test program without external intervention
during uncontrolled overnight silicon debug runs.

2. If the test program fails, a hardware mechanism (deconfiguration
controller) decides (based on a pre-defined sequence or dynamically) to
deconfigure one of the deconfigurable components of the
microprocessor.

3. The hardware mechanism arranges for the re-execution of the test
program.

4. If the test program fails again, another deconfigurable component is
“turned off” and the test program is re-executed.

5. Finally, if the test program is executed correctly (i.e. bug has been
“masked” by the sequence of deconfigurations) the set of components
that have been deconfigured is used as a label for a “bucket” of failing
tests in the triage process. All test programs that eventually execute
correctly after the same sequence of deconfigurations are grouped in the
same “bucket”. Intuitively, the bug that causes the failure most probably
resides within the components that have been deconfigured.

The main requirements for the proposed triage methodology to happen during an
uncontrolled overnight run of huge numbers of random tests are the following:

 Software requirement: the random test programs must be self-checking
so that the failure indication of a test is known to the hardware right at
the end of its execution.

 Hardware requirement: the deconfigurable processor must be equipped
with a mechanism which, in case of a failing test program, can: (i)

Architectures for Dependable Modern Microprocessors

N.Foutris
76

gradually (one at a time) “turn off” its components and (ii) re-execute the
failing self-checking test program.

Alternatively, deconfiguration and re-execution can be partly implemented in
software (by setting control register values). However, we focus on a hardware
implementation because it can collect run-time information from hardware
performance counters (existing or new) and it only requires a small part of the
microprocessor (our deconfiguration controller explained below) to be bug-free.

The proposed deconfigurable architecture is outlined in Figure 17 and consists of
the following elements:

C
o

m
p

o
n

e
n

t-
4

C
o

m
p

o
n

e
n

t-
3

C
o

m
p

o
n

e
n

t-
5

C
o

m
p

o
n

e
n

t-
1

C
o

m
p

o
n

e
n

t-
2

C
o

m
p

o
n

e
n

t-
6

Bypass Network

Profiler

D
e

c
o

n
fi

g
u

ra
ti

o
n

C
o

n
tr

o
ll
e

r

Figure 17: Proposed deconfigurable architecture.

 Deconfiguration controller. This is the main hardware element of the
proposed architecture. It interfaces with all the deconfigurable
components of the microprocessor (can be several tens of components
as shown in the previous subsection) and takes dynamic decisions about
the components to be deconfigured during each execution of a random
test program.

 Bypass network. Controlled by the deconfiguration controller and
performs the actual deconfiguration of the hardware components.

 Profiler. Each of the deconfigurable components communicates with this
module which collects dynamic execution statistics of the random test
programs to be considered in the deconfiguration actions. For example,
for a memory element the number of write and read operations or for a
functional unit the amount of activations can be suitable statistics.

After a self-checking random test fails (mechanism not shown in Figure 17), the
deconfiguration controller takes the following actions:

 It selects the deconfigurable component that is considered most
susceptible to contain a bug and turns it off. This decision is based on a
bug susceptibility model discussed below.

 It arranges for the re-execution of the failing test program; no manual
intervention is required.

Architectures for Dependable Modern Microprocessors

N.Foutris
77

 If the test program fails again, the deconfiguration controller repeats the
previous two steps until the program executes correctly or there are no
remaining components to be deconfigured.

The outcome of the operation of the deconfiguration controller for each self-
checking random test program is a list of components that have been
deconfigured. The interpretation of the list provides the following triage-related
information.

1. Empty list. The random test program was correctly executed. No failure
detected; no debug action required in the morning.

2. List contains a subset of the deconfigurable components. The random
test program was correctly executed after components {Ck, Cn, Cm, Cq}
have been deconfigured. The list of components indicates a “bucket” of
failing test programs. All test programs ending with the same list of
deconfigurations are grouped together. The bug that is the root cause of
the failures most likely resides within the deconfigured components. If a
deconfigurable component contains more than one uncorrelated bugs
the debug engineers will most probably diagnose them through during
root cause analysis using simulation. Even if this does not happen, the
execution of the subsequent test programs will detect and pinpoint the
buggy component again.

3. List contains all deconfigurable components. The random test program
fails even after all deconfigurable components are turned off. No triage
grouping information; the random test must be separately debugged.

The bug susceptibility model on which the deconfiguration controller decisions are
based is a flexible model that the silicon debug engineers can tune according to
the stage of the silicon debug (early or late), the pre-silicon information available
and the run-time statistics that can be collected by the profiler.

For each deconfigurable component Ci of the microprocessor, the deconfiguration
controller calculates a bug susceptibility value Si (higher value means a more
bug-prone component). When a new component must be turned off before a
failing test program is re-executed, the component with the highest Si value that
has not been deconfigured yet, is selected and turned off. The information that
the deconfiguration controller can use for the calculation of the Si values of the
deconfigurable components is static or dynamic.

Static bug susceptibility information comes from the pre-silicon (simulation-based)
debug process. When a microprocessor component Ci is new in a design or if a
large number of design bugs have been already found before silicon debug (given
that in pre-silicon verification each component has not been exhaustively studied
due to the simulation throughput bottleneck, there is a higher probability that more
design bugs exist in its design), the debug team can assign it a large bug
susceptibility value Si

static. Moreover, static bug susceptibility assignments can be
based on the size of the components, on their complexity (larger and more
complex components are more bug prone) etc., and the deconfiguration controller
can be updated with new values before a new overnight run starts.

Dynamic bug susceptibility information is collected during the execution of
random test programs by the profiler component of the proposed architecture.
The information may contain activity monitors (from existing or new hardware
performance counters or other signals of the design) that show if a component is
intensively activated by the particular test program. If this is the case, this is a

Architectures for Dependable Modern Microprocessors

N.Foutris
78

useful indication that the component is more susceptible to contain the bug that
causes the failure of the test program. Therefore, the dynamic bug susceptibility
value Si

dynamic of the component Ci must be higher than others with smaller
activity during the execution of the failing test program.

In total, the deconfiguration controller calculates an aggregate bug susceptibility
value for each component that can be potentially deconfigured:

Si = a * Si
static+ (1 – a) * Si

dynamic

Parameter a can be tuned (values between 0 and 1) so that decisions lean more
towards the static pre-silicon information (large a values) or more towards the
dynamic run time statistics (small a values).

The component with the highest susceptibility value Si is selected to be turned off
in the next re-execution of the failing random test program. Bug susceptibility is a
metric that can be finely tuned, is based on both dynamic and static information,
and bounds the amount of possible test programs re-executions avoiding useless
deconfigurations of microprocessor components.

At the end of the repetitive re-executions the failing test is characterized by the
set of components that have been deconfigured and have the highest bug
susceptibility values. It is therefore, very likely, that the failure of the test is due to
a bug inside these components. Triaging failing random test programs in
“buckets” according to their list of deconfigured components provides useful
insight to the debug teams that will start debugging the tests in the morning after
an intensive overnight run.

2.3.4 Cost Implications of the Methodology

Before analysing the different deconfiguration mechanisms that can be employed
in our methodology we discuss the cost implications of the methodology.

Costs related to the deconfiguration infrastructure of the architecture. The
components listed in Table 13 (all very common to x86 architectures) can be
potentially turned into deconfigurable ones so that the proposed silicon debug
methodology is applied. Therefore, the extra hardware adds to the complexity of
the design. In the case of some storage elements the need to keep at least some
of their entries active while the rest of the component is deconfigured, adds
further design modification costs. These hardware modifications come with a
positive aspect: the existence of the deconfiguration infrastructure is an added
value for the microprocessor because it can be used in the field for the permanent
“shut down” of components when they are diagnosed with hard errors.
Employment of deconfiguration (at different granularities) for fault tolerance in the
field has been reported in the past [6] [22] [23] [84] [90] [97] [101]. Finally, the
cost of deconfiguration depends also on the granularity it is applied. If subsets of
entries of a component are separately deconfigured the cost may become high
(both for the deconfiguration controller and the bypass network and profiler). We
believe that the deconfiguration granularity given in Table 13 (common for x86
microprocessors) is suitable for the needs of silicon debug. If debug engineers
are supplied with the information that a short list of 3-4 components have been
deconfigured before a test is correctly executed, their debug job is much easier
and focuses on the list of these components. In most cases, the list is expected to
consist of just one component which is very likely the one with the bug.

Costs related to the dynamic collection of statistics. The profiler component
dynamically collects run time statistics when random tests are executed. This

Architectures for Dependable Modern Microprocessors

N.Foutris
79

feature requires design effort and also increases the area of the microprocessor.
If the design team decides to rely on the run time statistics the investment in the
design of the profiler and the utilization of its outputs by the deconfiguration
controller justifies the cost. However, if the debug team decides to use the
deconfiguration controller with a priory known susceptibility values from the pre-
silicon effort, the cost of the profiler is saved.

Timing overheads and time savings. The proposed methodology adds a time
overhead to the random test phase of silicon debug: each failing random test is
repeated one or more times. However, this minimal time overhead is absolutely
justified by the large savings in the debugging time of the failing tests. For
example, consider an overnight campaign of random test programs executions
that is prolonged by a relatively small amount of time (measured in minutes or an
hour for the entire campaign), required for the re-executions of the failing test
programs. Even, assuming a large percentage of failing tests (1%) and an
average number of re-executions equal to 5 (i.e. 5 components are deconfigured
and a failing test program is repeated 5 times on average) the time overhead for
the overnight run will be around 5% (1% times 5 re-executions). In other words,
approximately 5% less random test programs will be applied during the night.
Even in the worst case, where all available components have to be deconfigured
(based on the study we perform on Nehalem‟s architecture, the total number of
deconfigurable components is 35) the extra overhead from the re-executions
remains small compared to the expected debug sessions savings. The successful
application of the methodology will reduce the number of failing test programs
that will need to be debugged from several thousands to just a few tens. This
saving is measured in days or weeks of debug time and is the major contribution
of the method to silicon debug.

2.3.5 Deconfigurable architecture

In this section, we review the mechanisms reported in the literature that can be
employed to deconfigure the components of a high performance microprocessor.
Furthermore, we discuss simple deconfiguration schemes for branch predictors
and prefetchers. The deconfiguration granularity can be flexibly tuned and is only
limited by the cost implications. Previous research [6] [22] [23] [84] [97] [101]
proposed various techniques to deconfigure components with permanent faults
from a microprocessor design.

The circularly-accessed arrays, the directly-accessed arrays and the functional
units comprise the list of processor modules that are often duplicated or contain a
high degree of regularity and can be deconfigured. The circularly-accessed
arrays, such as the instruction fetch queue, the reorder buffer or the load and
store queues, are augmented with a fault map. The fault map communicates with
the pointer advancement logic, forcing it to skip an entry that is marked as faulty
(“buggy” in silicon debug).

For the cases of functional components and directly-accessed memory arrays,
the available deconfiguration solution is to mark the components or memory
entries as permanently busy, preventing the microprocessor from issuing further
requests to them.

In silicon debug the aforementioned deconfiguration techniques are clearly
applicable. However, the deconfiguration granularity could be more coarse-
grained (for example, deconfigure half of the reservation stations, or the entire L1
data cache and not parts of it), since localizing a bug at the level of micro-

Architectures for Dependable Modern Microprocessors

N.Foutris
80

architecture components carries enough information for the debug engineers to
root cause the failure.

Modern microprocessors integrate numerous performance-increasing
components. Among them, the branch predictors and the data and instruction
prefetchers are the most widely used ones. These modules can be deconfigured
from the design, since they do not contribute to its functional completeness.
Regarding the branch predictors, a simple deconfiguration mechanism can be
used, where the component can be bypassed by setting the predictor‟s state
machines permanently to not-taken state. A similar deconfiguration mechanism
can be applied to the data and instruction prefetchers. In particular, the
prefetcher‟s queue, where all prefetching requests are buffered, can set
permanently the overflow flag. Therefore, all prefetching requests will be dropped
and the prefetcher is effectively deconfigured.

2.3.6 Deconfigurable controller design

The main structure of the proposed microprocessor architecture is the
deconfiguration controller. The controller can calculate dynamically, at runtime,
the susceptibility value of each deconfigurable module and decides the module
for the next deconfiguration (i.e.: the module with the higher probability to be the
source of the failure). Figure 18 outlines the structure of the deconfiguration
controller in the general case where both static pre-silicon susceptibility
information and dynamic run time susceptibility information is utilized.

The deconfiguration controller consists of three memory elements and a
combinational part implementing the proposed deconfiguration model. The
memory elements are implemented through the allocation of memory-mapped
space in the main memory of the prototype. The deconfiguration controller
accesses these structures for write/read operations.

bypass network

Profiler

deconfiguration mechanism

deconfiguration unit

activity

array

component

buffer

pipeline

controller

Figure 18: Deconfiguration controller block diagram.

A bug-proneness array is updated with the susceptibility value of each
deconfigurable module as assessed from the designer from pre-silicon data. The
array is updated at the initialization phase of the silicon prototype chip during test

Architectures for Dependable Modern Microprocessors

N.Foutris
81

program uploading. A single entry for each deconfigurable component is reserved
in the bug-proneness array.

A second array, the activity array, is accessed by the profiler and stores the
activity (existing or new performance counters and other signals values) of each
deconfigurable module during execution of a test program. At the end of test
program execution the utilization array is updated with the value of the
performance counters. The activity array can contain more than one entry for
each deconfigurable component depending on the counters and signals that need
to be monitored for the component for a more elaborate decision at run time.
Therefore the array may have a size of a few hundreds words.

The deconfiguration unit parses the two memory arrays (bug-proneness and
activity) to find the component with the largest value of bug susceptibility Si as
described previously. This component is assumed to be the one with the highest
probability to be the source of the failure.

The deconfiguration unit output is written to the component buffer of the
deconfiguration controller. Each entry of this array saves the id of the component
that will be deconfigured. In every re-execution of the random test program the
deconfiguration unit increases the pointer of the component buffer, writes the id of
the next component to deconfigure and activates the relevant bypass logic.

At the end of the multiple hardware-enabled test program re-executions, the
component buffer contents are downloaded along with the remaining memory
image of the prototype on the workstation (a server that controls the validation
process for a particular prototype) for further analysis in the morning. Before each
re-execution of a test program the arrays are reset, since only the components
that have not been already deconfigured should be considered in the estimation
of the susceptibility model. Figure 19 visualizes the timeline of the operation of
the proposed deconfiguration controller.

Time

ü Upload test

program

ü Init Bug-proneness

array

ü Init Activity array

ü Execute test

program

ü Profiler updates

activity array

Test Program FAIL

ü Deconf. unit

calculates

susceptibility

values

ü A component

is deconfigured

ü Re-execute

test program

ü Profiler updates

activity array

ü Download

Component

Buffer

contents

Test Program PASS

ü

Figure 19: Methodology timeline for each test program.

2.3.7 Experimental evaluation of the triage mechanism

In this section we evaluate the proposed triage methodology. We first describe
the experimental framework. Subsequently, we measure the degree of
redundancy among the random test programs generated by our generator (which
has been developed following guidelines that major microprocessor companies
provide in the literature) for an x86-64 microprocessor using PTLsim architectural
simulator [110]. Finally, using the same framework we demonstrate the benefits

Architectures for Dependable Modern Microprocessors

N.Foutris
82

of module deconfiguration in random test program triaging for silicon debug
acceleration.

For the experimental evaluation of the proposed silicon debug methodology, we
set up the tool chain shown in Figure 20 (dashed components are implemented
from scratch to evaluate our methodology). The experimental framework consists
of the following main modules:

Random Test

Generator

Self-Checking

method

Design Bug

Database
Bug Injection Tool

Deconfiguration

Controllerx86-64

Architectural

Simulator

Random Test Program Infrastructure

P
ro

file
r

Deconfiguration

mechanisms

Deconfiguration Infrastructure

Design Bug Infrastructure

Figure 20: Experimental framework for the triage methodology.

Random Test Program Infrastructure: This module generates random, x86
assembly test programs enhanced with a self-checking capability (i.e. not needing
golden responses to compare with in order to conclude about the detection of a
design bug). We adopted the method presented in [10] which exploits the
diversity property of microprocessor ISAs. The input of the random test program
generator is a set with the basic x86 instruction templates. For example, the
template of an addition operation is the following: add, <operand1>, [<operand2>
| <memory>]. Registers selection, operands value initialization, data memory
initialization and instructions sequence are completely randomized. The output of
random test program generator is x86 assembly random test programs of 4K
instructions each.
Design Bug Infrastructure: Similar to [10], the bug injection tool injects design
bugs at various locations of an x86-64 superscalar, out-of-order, single-core
design modelled through PTLsim architectural simulator (Figure 20). The design
bug database is populated with a set of logical and electrical bugs that model
different design bug conditions in the entire x86-64 architecture ([70] [102]). Table
14 summarizes the numbers of logic and electrical bugs injected in the
components of the x86-64 microprocessor model. In total, 1K design bugs were
injected, 500 logical and 500 electrical respectively, covering all pipeline stages
and the majority of hardware components of the x86 microprocessor model.

Architectures for Dependable Modern Microprocessors

N.Foutris
83

Table 14: Injected design bugs distribution in the x86-64 microprocessor components.

Component Electrical Bugs Logic Bugs Total

Instruction Fetch Queue 50 - 50

Branch Prediction Unit 50 50 100

Simple Decoder - 100 100

Complex Decoder - 100 100

Register Renaming 50 50 100

Issue Queues 100 - 100

Scheduler - 100 100

Functional Unit - 50 50

Load/Store Queue 100 - 100

Reorder buffer 150 50 200

 Total 500 500 1000

Deconfiguration Infrastructure: The x86-64 microprocessor modelled in the
PTLsim simulator integrates various structures that can be deconfigured while the
processor remains functionally complete. Table 15 lists the deconfigurable
components (first column) and the techniques from section 2.3.5 that have been
used to implement the deconfiguration on the simulator (second column). The
third column presents the initial size of each component, while the last column
demonstrates the selected deconfiguration granularity. The deconfiguration
granularity must not violate the basic functionality of the microprocessor. For
example, the default size of instruction fetch queue is 32 entries (in our
configuration) out of which 28 (at maximum) can be deconfigured (the baseline
fetch width of the microprocessor must be guaranteed. In our case, the baseline
fetch width is 4-way). As well as, only the redundant ALU can be also
deconfigured .

Table 15: Deconfigurable microprocessor modules in the x86-64 model of the PTLsim
simulator.

Component
Deconfigurable

Mechanisms
Initial

Size/ Entities
Deconfigurable

Granularity

Instruction
Fetch Queue

Fault-map 32 entries/–
28 entries
altogether

Return Address Stack Stuck-at 16 entries/–
16 entries
altogether

Conditional Predictor Stuck-at –/2 2

Instruction Prefetcher Stuck-at –/1 1

Data Prefetcher Stuck-at –/1 1

Branch Target Buffer Stuck-at 4K/–
4K entries
altogether

Register
Renaming Table

Fault-map 16x256 16x128

Issue Queue Fault-map 16 entries
8 entries

altogether

ALU Busy mode –/2 1

Architectures for Dependable Modern Microprocessors

N.Foutris
84

FPU Busy mode –/2 1

Load Queue Fault-map 48 entries/–
44 entries
altogether

Store Queue Fault-map 32 entries/–
28 entries
altogether

Re-order Buffer Fault-map 128 entries/–
124 entries
altogether

Our deconfiguration infrastructure in the experimental framework integrates a
simple profiler component that monitors the activity of the deconfigurable modules
and provides the dynamic bug susceptibility data to the deconfiguration controller.
We have not implemented all details of the profiler because the analysis we
provide in the following subsection does not depend on the type of bug
susceptibility that the deconfiguration controller considers (static or dynamic).
Future work can analyse the efficiency of different dynamic run time statistics
collection by the profiler as well as their exact hardware costs.

The experimental evaluation of the proposed methodology is divided into two sets
of experiments:

First set of experiments. The random test program infrastructure and the design
bug infrastructure are used to quantify the degree of redundancy among the
random test programs. We need this first set of experiments to support our claim
about redundancy which is the main motivation of our work.

0

Random Test Programs

100 200 300 400 500 600

D
e

s
ig

n
 B

u
g

s
1

1
0

0
0

Figure 21: Number of failing test programs (among 10,000 executed) for each of the 1,000
injected design bugs.

Architectures for Dependable Modern Microprocessors

N.Foutris
85

For a given set of 1K design bugs defined in the design bug database and a given
set of 10K random tests programs generated by the random test program
generator, the experimental framework executes each random test program with
a single design bug injected at a time and records if the bug is detected or not
(test program fails). The graph of Figure 21 shows the number of test programs
that fail for each injected bug. The vertical axis shows all the 1K design bugs
injected into PTLsim simulator, while the horizontal axis shows the number of
failing random test programs for each bug.

The large numbers of redundant test programs are evident in Figure 21. In
particular: on average 52 test programs (0.52% of all 10K applied test programs)
detect the same design bug (fail due to the bug existence), the maximum number
of test programs that fail due to a single bug is 515 (5.15% of all 10K test
programs) and the minimum is 2 (0.02% of all 10K test programs). Only 27%
(273) of the 1000 injected bugs are detected by more than 30 of the 10K random
tests (0.3% of the tests).

Clearly, the motivating observation of this work is valid. If this set of experiments
is extrapolated for an overnight run of massive numbers of random test programs,
the debug team will have to deal with a very large number of failing tests. Each
and every failing test will probably need to be separately debugged a process that
may take several days.

Second set of experiments. Aims to demonstrate the benefits of the
deconfiguration mechanism for RIT triaging. Towards this aim, we have selected
a set of 10 hard-to-detect logic bugs from the initial set of injected bugs (all 10
bugs are detected by a small number of test programs; smaller than the average
case) distributed among the deconfigurable modules of PTLsim simulator.

We repeated the experiments only for the subset of the initial 1K random test
programs that are affected from them (derived from the first set of experiments);
these are 341 test programs. A critical difference in this set of experiments is that
all 10 design bugs are together injected from the beginning of the bug injection
campaign, as an attempt to model more accurately the silicon debug environment
where all bugs can co-exist in the prototype chip. In this set of experiments, of
course, the deconfiguration infrastructure shown in Figure 20 is enabled.

Table 16: Details for the 10 hard-to-detect design bugs.

Bug ID
Microprocessor

Component
Failing Test
Programs

1 Conditional Predictor 45

2 Return Address Stack 10

3 Issue Queue1 32

4 Issue Queue2 21

5 Floating Point Unit 50

6 Data cache 17

7 Load Queue 47

8 Store Queue 29

9 Reorder Buffer 48

10 Reorder Buffer 42

 Total 341

Architectures for Dependable Modern Microprocessors

N.Foutris
86

Table 16 presents details about the selected design bugs. First column is the id of
each bug, while the second column gives the microprocessor component in which
the bug resides. Issue Queue1 and Issue Queue2 refer to different components in
the microprocessor design (Issue Queue1 for the integer cluster, and Issue
Queue2 for the floating point cluster). The third column shows the number of test
programs affected by each design bug when injected individually (from the first
set of experiments). For example, the design bugs injected in Issue Queue2
cause 21 of the initial 10K test programs to fail. Error! Not a valid bookmark
self-reference. describes the 10 bugs.

Table 17: Design bugs description.

Microprocessor
Component

Bug Description

Conditional Predictor
Update fetch address on branch
misprediction fails

Return Address Stack Incorrect push to stack

Issue Queue1
Dependent uop issued, while producer is
waiting in ready to write-back state

Issue Queue2
Entry not get flushed on a branch
misprediction

Floating Point Unit Incorrect rounding operation

Data cache Valid array logic; invalid data read

Load Queue Load to store aliasing

Store Queue Store data before address gets valid

Reorder Buffer Commit entry more than once

Reorder Buffer Invalid control bit activation

Figure 22 shows the results from the execution of a subset of random test
programs for the set of 10 hard-to-detect design bugs (all 10 bugs injected
together – just like in a real prototype chip). In particular, it shows the different
“buckets” of failing random test programs that are formed when the proposed
methodology is applied (horizontal axis). The vertical axis shows the number of
failing test programs of each bucket. In this set of experiments, the
deconfiguration sequence is statically determined assuming pre-silicon bug
susceptibility data is provided to the deconfiguration controller. The
deconfiguration controller deconfigures the microprocessor modules for each
pipeline stage starting from instruction fetch. Thus, the sequence of
deconfigurations is the following: {Conditional Predictor, RAS, Issue Queue1,
Issue Queue2, FPU, Data Cache, Load Queue, Store Queue, ROB}. When all the
deconfigurable components from one stage are deconfigured it continues to the
next stage. This process is repeated until the test program is executed correctly
or all deconfigurable microprocessor components have been deconfigured.

Architectures for Dependable Modern Microprocessors

N.Foutris
87

45

10

32

18

53

17

47

29

90

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

T
e

s
t

P
ro

g
ra

m
s

Failure Categories

Figure 22: Failure categories for the 341 failing test programs.

The application of the proposed methodology, with the deconfiguration
mechanisms enabled, results in a triaging of the 341 random test programs in 9
different failure categories shown in Figure 22. Some observations from this
second set of experiments:

 Failure categories 1, 2, 3, 4, 6, 7, and 8 group the test programs that are
affected exclusively from the design bugs in the following microprocessor
components: Conditional Predictor, RAS, Issue Queue1, Issue Queue2,
Data Cache, Load and Store Queues, respectively. As a result, when the
deconfiguration controller turned the corresponding microprocessor
component off, the bug is “masked” and the test program execution is
correct. For example, the design bug in data cache unit, which
manifested through the propagation of an incorrect data value, was
masked when the data cache block was deconfigured from the design.
Furthermore, the design bug in the load queue manifested as an invalid
forwarding of loaded data to a dependent instruction. As a result,
deconfiguring the load queue entries that hold that buggy information
result in a correct execution of the test program.

 Failure category 5 groups 53 random test programs, while the expected
number of test programs affected from a design bug in the FPU unit is
50. The reason for that is that these particular test programs (3 from
Issue Queue2) were able to detect more than one design bugs (design
bugs injected both in the Issue Queue and the FPU). As a result, only
when both buggy microprocessor components were deconfigured the re-
execution of the test program results in a correct execution.

 Failure category 9 includes the test programs that fail due to bugs 9 and
10 injected in the Reorder Buffer‟s logic. The deconfiguration
mechanisms were unable to distinguish these design bugs into different
categories, since both of them were inside the deconfiguration
granularity of the ROB structure. Specifically, these bugs reside in
neighbouring entries of the re-order buffer and manifest themselves as
invalid dependency re-dispatching when a mispeculation happens.

Architectures for Dependable Modern Microprocessors

N.Foutris
88

Therefore, the same sequence of deconfiguration results in masking
both bugs. This is still very effective because the debug team will
certainly focus on the ROB component and it is very likely that it will
identify the root cause of both bugs.

In a traditional silicon debug flow, without the proposed triage mechanism, the
number of failing test in this set of experiments would be 341. This would be
exactly the number of debug sessions that the debug team will need to examine
starting the next morning. On the contrary, if the proposed deconfiguration-based
silicon debug methodology is adopted, the number of failing tests remains the
same (341) but the number of debug sessions would be only 9 (less than 3% of
the traditional flow).

Clearly, the proposed flow has a profound impact on the effectiveness of silicon
debug and greatly accelerates root cause analysis by removing the “noise” of
redundant random tests that fail due to the same underlying bug. Figure 23
visualizes this reduction in the number of debug sessions when our methodology
is applied.

0

50

100

150

200

250

300

350

Traditional Flow Proposed Flow

D
e
b

u
g

 S
e
s
s

io
n

s

Figure 23: Number of debug sessions (number of failing test programs that must be
debugged) in the traditional and the proposed flow.

2.4 Related Work

There is no work in the literature that reports employment of: (i) deconfigurable
microprocessor architectures along with (ii) self-checking random test programs
for the optimization of silicon debug.

Self-checking methods: Previous studies [105] [87] have proposed the generation
of reversible test programs, where the program‟s final state is known a priori, as a
way to avoid the simulation step of golden signature production. However,
generating reversible operations is not always an easy task and in some cases is
partially or totally infeasible, like in the case of floating point operations. Another
recent approach [48] targets to minimize the error detection latency of electrical
bugs by duplicating instructions.

Software diversity: Previous approaches have adopted the concept of software
diversity, as a zero-overhead alternative of design diversity, to build fault-tolerant

Architectures for Dependable Modern Microprocessors

N.Foutris
89

systems. The key idea is to modify the executed code when a hard fault is
present, without spoiling the original code functionality [71]. Independent
generation of programs has been also proposed as a fault tolerant approach [26].
Construction of programs with duplicated instruction and diverse data operands
has been proposed as a way to detect temporal and permanent faults in the field
[76]. Software implemented fault tolerance aims to provide soft error tolerance by
instruction duplication [18]. Our method, for first time, utilizes the concept of ISA
diversity for efficient silicon debug.

Triage: In [99] a static grouping of random test programs at generation time
through the application of correlation, statistical and pattern recognition analysis
methods is proposed. Differently, our methodology dynamically triages the test
programs in runtime, based on the bug susceptibility of each component. The
proposed framework provides enhanced log information to the debug engineers,
facilitating the post-processing analysis of the failing self-checking test programs.
On the contrary, the proposed methodology systematically addresses the issue of
triaging through the introduction of hardware mechanisms capable to deconfigure
a microprocessor design.

Debug [2] [25] [32] [50] [60] [61] [79]: Many proposals introduce various design-
for-debug hooks into a design to monitor test execution and extract logging
information to facilitate failure analysis. On the contrary, the proposed method
acts proactively, in the silicon debug process, reducing the amount of test
programs that need to be debugged, by detecting dominant failure modes among
the failing random test programs. Furthermore, the massiveness of the silicon
debug phase, both in test program execution throughput and in bug detection
capabilities, encourages the adoption of high-level debug solutions. The proposed
method addresses this challenge, in contrast to the existing research proposals
that operate in a very fine granularity. It provides a unified solution for localizing
the malfunctioning component throughout the microprocessor design. Obviously,
the proposed methodology contributes to the acceleration of the root cause
analysis through an improved triaging stage, and complements other silicon
debug methods used in the industry.

Online bug detection: Previous approaches propose the use of dedicated
hardware to detect and recover from bugs in the field [93] [29] [11] [102] [106].
Semiconductor industry needs bugs detected as soon as possible before massive
production of the microprocessor chip. The proposed silicon debug methodology
aims to satisfy this requirement.

Fault tolerance [6] [23] [22] [71] [84] [90] [97] [101]: Design deconfiguration is a
well-known concept for tolerating hard errors in the field. The proposed
methodology employs for first time the concept of deconfiguration in the silicon
debug setup and in particular the random test program triaging step; as it is
shown throughout this work, this is not a straightforward task.

2.5 Findings summary

Effective silicon debug for modern microprocessor architectures must minimize
the simulation bottleneck and reduce the redundant debug sessions of random
test flows to save time, resources, and budget while not limiting bug detection
efficiency. We have proposed a novel, self-checking, hardware supported
framework to accelerate and improve the quality of silicon debug by exploiting
ISA diversity and the property of microprocessor components to be deconfigured
without compromising the function completeness. Our analysis for ARM, MIPS,

Architectures for Dependable Modern Microprocessors

N.Foutris
90

PowerPC, and x86 instruction sets shows that despite their differences, modern
ISAs can perform an operation with many equivalent ways. We take advantage of
this ISAs property to generate random tests that detect bugs by comparing results
of equivalent instructions. Moreover, several hardware components of high
performance microprocessors can be “turned off” or deconfigured while the
functional completeness of the design remains unaffected. We combine this
property of microprocessor architectures with carefully developed self-checking
random test programs to deliver a silicon debug methodology with an optimized
triage stage. Redundant failing random test programs during an overnight random
test programs execution campaign are grouped in classes each containing test
programs that most likely fail due to the same underlying bug. This is decided
based on the set of hardware components that need to be deconfigured so that
each of the random tests programs is correctly executed. Experimental results, in
an x86-64 microprocessor model prove the high bug detection efficiency, and
also the large savings in debug time due to avoiding the simulation step of
random test programs and by the effective triaging of failing tests using the
proposed silicon debug methodology.

Architectures for Dependable Modern Microprocessors

N.Foutris
91

3. MANUFACTURING TESTING

The physical limits of semiconductor-based microelectronics have become a
major concern in manufacturing technology. The diminishing gains in processor‟s
performance due to the increasing gap between processor and memory speed
(memory wall), the absence of enough parallelism in single instruction streams
(ILP wall) and the exponential escalation in power consumption (power wall)
motivate computer architects and designers to look at different directions for next
processor generations.

Current industry trend is orientated towards the development of chip
multiprocessors (CMP) and chip multithreaded (CMT) processors which although
may operate at lower frequencies are able to deliver higher performance
exploiting thread-level (intra-core) or processor-level (inter-core) execution
parallelism. However, test technology has to explore the transfer from the
uniprocessor era to the multiprocessor era (CMP and CMT architectures) of all
test techniques, that have been recently devised to deal with the emerging
reliability problems of modern microprocessors. The main objective of this
transfer of techniques to multithreaded multiprocessors should be the exploitation
of the execution parallelism of the new processor architectures to avoid excessive
scaling of the overall test time and therefore improve time-to-market but without
degrading the effectiveness of the technique in terms of fault coverage.

Software-Based Self-Testing (SBST) [80] [27] [30] [81] [38] [42] [46] [68] [109] is a
testing method that has gained increasing acceptance with major microprocessor
vendors and today forms an integral part of the manufacturing test flow of single-
threaded processors [85]. The key idea of SBST is to exploit the instruction set
architecture and on-chip programmable resources to execute self-test programs.
The use of SBST methodologies contributes to the reduction of yield loss (avoids
over-testing), while its non-intrusive nature does not require any processor
hardware modification. In addition, at-speed testing ability enables screening of
timing defects that do not manifest themselves at lower frequencies.

The effective application of SBST to multithreaded multicore architectures poses
significant challenges: (i) porting of existing self-test programs from the single-
threaded, single-core case to efficiently test all the individual cores; (ii) providing
sufficient fault coverage for the thread-specific control logic, that constitutes a
significant portion of the control logic in the new multithreaded architectures and
schedules the execution of threads on it; and (iii) exploitation of thread-level and
core-level parallelism to reduce test/validation execution time.

We present a complete multithreaded software-based self-testing (MT-SBST)
methodology that targets both the optimization of test execution time and the
improvement of the fault coverage of the thread-specific control logic. First, we
assess the impact of test routine scheduling in the fault coverage of hard-to-test
control structures (i.e. difficult to be controlled through test program stimuli): the
thread switch logic inside each processor core and the thread-specific control
logic of the shared components out of the processor cores. Subsequently, we
propose a multithread scheduling algorithm that achieves a very efficient trade-off
between test execution time and fault coverage of the thread-specific control
logic, and is only based on easy-to-obtain run-time statistics of the single-
threaded execution of the self-test program.

Architectures for Dependable Modern Microprocessors

N.Foutris
92

3.1 Scope of the MT-SBST

The proposed methodology is applied at the manufacturing testing phase of the
microprocessor dependability cycle for the last quality control before chips are
shipped to customers for integration in a system. Our proposed MT-SBST
methodology performs the following:

 Test program development for all the functional units of a CMT
multiprocessor architecture.

 Test program profiling for the single-threaded single-core execution for
manufacturing testing (execution from on-chip cache memory).

 Assessment of the impact of the multithreaded execution of test program
on the fault coverage of the thread-specific control logic.

 Test program scheduling to take maximum advantage of thread-level
parallelism and speedup execution of its test routines for the core-
internal functional units, and core-level parallelism to speedup the
execution of its test routines for the core-external shared functional units.
At the same time, our scheduling improves the fault coverage for those
structures that are sensitive to the thread scheduling.

We provide full demonstration of the proposed methodology in the most complex
publicly available CMT processor architecture, OpenSPARC T1 [77]. Our
experimental results show that the proposed multithread scheduling algorithm
speeds up the execution time of test program at both core-level (up to 3.6X) and
processor-level (up to 6.0X) compared with the single-threaded execution.
Furthermore, compared with a straightforward multithreaded execution of the test
program the proposed multithreaded schedule reduces test execution time at
core-level and processor-level more than 33% and 20%, respectively. On top of
these significant improvements in test time, and despite its shorter execution
time, the proposed MT-SBST schedule improves the fault coverage of the thread
switch logic of each core by about 10% compared with the straightforward
multithreaded version. Overall, our methodology guarantees high stuck-at fault
coverage levels: more than 91% for the functional units (all integer functional
units of the eight cores and the shared floating point unit) and more than 88% for
the logic of the entire processor (including the functional units, the thread switch
logic and the interconnection networking, which count about 1.5M logic gates).

3.2 SBST of single-threaded processors

The basic concept of software-based self-testing (SBST) [37] for a single-
threaded single-core processor is depicted in Figure 24. Test program is
executed by the processor at normal mode of operation. Test instruction
sequences usually load test patterns from memory (or generate them internally)
and apply the appropriate operations to excite faults in hardware components; for
example, in Figure 24 the test code loads two operands (test vectors of the adder
circuit) and adds them to excite a hardware fault in the adder module. Finally, in
order to propagate the fault effect to observable locations the test code moves the
test responses from the register file to data memory. The first hard task in SBST
is to generate test instruction sequences that can adequately test the processor
modules achieving high fault coverage. Several recent works propose efficient
test program generation methodologies targeting different modules of single-
threaded microprocessor cores, such as integer functional units [27] [30] [81]

Architectures for Dependable Modern Microprocessors

N.Foutris
93

floating-point units [109], pipeline and control logic [42] [38] and speculative
mechanisms [46].

…

LOAD R1, A

LOAD R2, B

ADD R4, R1, R2

STORE R4, X

…

…

A: 11000011

B: 00111100

…

…

X: 11101111

…

11000011
00111100

11101111

Fetch Decode Execute Memory Write-back

11000011

00111100

11101111

faultRegister File

R1

R4

PC I-cache
Decode

Logic
D-cache

Test Code

Test Data Test Responses

ADD R4, R1, R2

R2

Figure 24: Software-based self-testing concept for single-threaded microprocessors.

The main advantages of SBST are:

 Non-intrusiveness. SBST operates in normal functional mode and does
not require extra hardware.

 At-speed testing. SBST application and response collection are
performed at the processor‟s full speed which enables screening of delay
defects that do not manifest themselves at lower frequencies.

 No over-testing. SBST avoids test overkill and thus detection of defects
that will be never manifested during the normal processor operation; this
leads to significant yield increase.

SBST is a reusable, all-around solution for checking the microprocessor‟s
integrity throughout its life cycle; self-test software can be executed during
manufacturing testing, and periodic online testing. The role of SBST in a
manufacturing test flow is complementary since it does not aim to replace the
other traditional testing approaches. On the contrary, SBST improves the overall
test quality combining the benefits of the other approaches: self-test program can
be developed targeting low-level structural fault models and applied in native
functional mode.

Figure 25 presents a typical SBST flow for manufacturing testing which comprises
three steps: (1) test code and data are downloaded into on-chip instruction and
data caches, respectively (for simplicity caches are not shown separately), using
a low-speed, low-cost tester. Test data downloading is performed via a cache
load interface at low-speed; (2) test program is executed by the processor at full
speed and test responses are stored back to on-chip data cache; and (3) tester
responses are uploaded into the tester memory via the low-speed cache interface
for external evaluation. Self-test programs must be developed so that no cache

Architectures for Dependable Modern Microprocessors

N.Foutris
94

misses occur during test execution, a scheme called cache-resident testing [14],
[80]. This allows reducing the total test cost by (i) reducing test execution time
avoiding external (main) memory access cycles, and (ii) eliminating the need for
expensive high-speed functional testers that would handle the memory
transactions.

Microprocessor core

…

LOAD R1, A

LOAD R2, B

ADD R4,R1,R2

STORE R4, X

…

LOAD R1, C

LOAD R2, D

ADD R4,R1,R2

STORE R4, Y

…

…

A: 11000011

B: 00111100

…

C: 10001100

D: 01000100

…

…

X: 11101111

…

Y: 11010000

…

Cache load

interface

2

1

Test

Code

Test

Data

Test

Responses

Low-cost tester

On-chip

cache

3

(a)

Microprocessor core

On-chip cache

…

LOAD R1, A

LOAD R2, B

ADD R4,R1,R2

STORE R4, X

…

LOAD R1, C

LOAD R2, D

ADD R4,R1,R2

STORE R4, Y

…

…

A: 11000011

B: 00111100

…

C: 10001100

D: 01000100

…

…

X: 11101111

…

Y: 11010000

…

Memory

interface

Main Memory

(b)

…

LOAD R1, A

LOAD R2, B

ADD R4,R1,R2

COMP R5, R4

…

LOAD R1, C

LOAD R2, D

ADD R4,R1,R2

COMP R5, R4

…

STORE R5, X

…

…

A: 11000011

B: 00111100

…

C: 10001111

D: 01000100

…

…

X: 10111111

…

Memory

interface

Main Memory

(c)

Microprocessor core

On-chip cache

Figure 25: Manufacturing testing SBST setup.

3.3 MT-SBST preliminaries and experimental setup

For the application of SBST in a multithreaded multicore architecture, we assume
the following experimental setup:

 The test program consists of a set of test routines that target all the
private functional units of each processor core (i.e. functional units in the
execution pipeline of each core such as ALU, multiplier, divider and
shifter) and the shared functional units (i.e. a floating-point unit that all
cores of T1 share).

 A single copy of the test program (test code and data) is stored in
memory (either on-chip cache or main memory depending on the setup)
instead of a separate copy for every core; this reduces the memory
storage requirements. All processor cores have to execute the same test
program to detect faults in their private units while the self-test program
for the shared units must be executed once (in one core or split in more
cores).

 Each processor core generates a set of separate test responses; this
assumption enables the diagnosis of faulty core (the alternative is to
compact all responses from all processors loosing the diagnosis

Architectures for Dependable Modern Microprocessors

N.Foutris
95

capability). This is important for manufacturing testing since it allows the
binning of partially “good” chips (those containing some faulty cores)
[104].

In order to reduce the execution time in an MT-SBST approach, we need to take
advantage of both the available thread-level and core-level parallelism, visualized
in Figure 26. Let assume four test routines for the functional units FU1, FU2, FU3
and FU4 of the processor core (these routines must be executed be each core)
and one test routine for a shared-functional unit (this routine must be executed
once). Exploitation of core-level parallelism enables the parallel execution of the
test routines FU1, FU2, FU3 and FU4 by all n processor cores and speeds up the
execution of the shared-FU test routine. If execution parallelism is not exploited,
the overall test application time will scale with the number of processor cores (8 in
T1 multiprocessor). Instead of having a single core to execute the shared-FU
routine (top of Figure 26), the routine is split into n subroutines which can be
executed in parallel (middle of Figure 26). We can schedule in a different way the
test routines in the n cores to achieve the optimum utilization of the common
memory subsystem and the interconnection network [9]. Next, we exploit thread-
level parallelism to speedup the execution of the test routines in each core;
assuming that each core supports four hardware threads in an interleaved
multithreading fashion, all 4 threads are used to execute the test routines as
shown in Figure 26 (bottom). The overlap of the idle intervals of one thread (i.e.
due to a long latency operation or a cache miss) by another active thread is the
key point for the efficient parallelization of test routines.

Shared-FU FU1 FU2 FU3 FU4

Single-thread execution

Exploiting MP and MT parallelism

Core0

Core1

Coren-1

thread0

thread1

thread2

thread3

idle

Figure 26: Exploiting MP and MT parallelism in the execution of the test program.

3.4 Proposed MT-SBST Methodology

When normal applications are developed for a multithreaded architecture the
main focus is the maximization of the application throughput and processor‟s
resource utilization. The tuning of the application workload depends on its specific
characteristics. However, self-test programs do not belong to a specific class of
commercial workloads with common characteristics, and thus require separate
performance analysis. We aim to tune self-test programs to the characteristics of
the multithreading technology to achieve the maximum speedup, that – as our

Architectures for Dependable Modern Microprocessors

N.Foutris
96

experiments reveal – a naïve, straightforward multithreading scheduling cannot
reach. The necessity for effective self-test scheduling algorithms as the one
proposed in this thesis is therefore revealed.

The main objectives of the proposed methodology are: (a) to assess the test
program execution characteristics for its efficient tuning towards a multithreaded
architecture; (b) to analyse how the multithreaded execution of the test program
affects the fault coverage of the thread-specific control logic (which is not
explicitly targeted by the test routines for the functional units); and (c) to propose
an efficient scheduling algorithm which reduces test program execution time
without degrading its effectiveness in terms of fault coverage for the related logic.
Overall, the main goal of our methodology is to achieve the best trade-off
between self-test time reduction and self-test effectiveness for the thread-specific
control logic. The steps of the methodology are summarized in Figure 27 and
individually analysed in the following subsections.

Fault-Coverage driven

test routine splitting

Test program

profiling

Test program

development

Test scheduling

algorithm

Figure 27: Proposed MT-SBST Methodology.

3.5 Test Program Development

Our demonstration vehicle is the open-source CMT processor model,
OpenSPARC T1, which integrates eight 64-bit SPARC V9 processor cores, each
one supporting four hardware threads [77]. Figure 28 shows the organization of
the OpenSPARC T1 processor. Each CPU core implements a six-stage, single-
issue execution pipeline and has a 16KB L1 instruction cache and a 8KB L1 data
cache. An on-chip unified 3MB L2 cache divided in four banks is shared among
all CPU cores. A crossbar switch handles communication between the CPU cores
and the shared memory while at the same time provides access to a shared
floating-point unit. OpenSPARC T1 uses fine-grain multithreading technology: it
switches among the available threads at every cycle giving priority to the least
recently executed thread.

Architectures for Dependable Modern Microprocessors

N.Foutris
97

L2 Cache

Bank 0

L2 Cache

Bank 1

L2 Cache

Bank 2

L2 Cache

Bank 3

Cache Crossbar (CCX)

SPARC

V9

CPU0

SPARC

V9

CPU1

SPARC

V9

CPU2

SPARC

V9

CPU3

SPARC

V9

CPU4

SPARC

V9

CPU5

SPARC

V9

CPU6

SPARC

V9

CPU7

I$

D$

Multiplier Divider

ALU SPU FFU

FP

 Adder

FP

Divider

FP

Multiplier

Figure 28: OpenSPARC T1 architecture.

The first step of the proposed methodology is the development of test routines
that target all the complex functional units of the SPARC V9 core: ALU, shifter,
integer multiplier, integer divider, stream processing unit (SPU – used for
cryptography operations), and floating-point frontend unit (FFU). The test routines
for these six functional units must be executed by all processor cores. We also
develop separate test routine for the components of the off-core floating-point unit
(FPU) of OpenSPARC T1 which must be executed only once (FP adder, FP
multiplier, FP divider).

For a few functional units, like the shifter and the multiplier we adopted proven
effective optimized test sets from previous SBST approaches [81] [38] for other
single-core models and tune them to the functional units of SPARC V9 core. For
the other modules, we either developed customized test routines (like in the
cases of the ALU and the divider) or used the regression tests of the modules
(like in the cases of FFU and SPU) included into OpenSPARC T1 verification
suite and enhanced them with more test patterns. It is important to note that this
first step of self-test program development does not affect the operation of the
subsequent steps. This means that any self-test program for the individual integer
and floating-point units can be used. One of the important part of this work is that
our experiment work stress the limits of MT-SBST on OpenSPARC T1 using as
efficient as possible self-test programs for the individual units.

Table 18 summarizes the characteristics of the functional units of the SPARC V9
core and the corresponding test routines. Second column presents the gate count
of the functional units and third column demonstrates the fault coverage achieved
by the corresponding test routines in a single-thread execution (results are based
on the stuck-at fault model and have been calculated using Synopsys‟ TetraMAX
tool).

Architectures for Dependable Modern Microprocessors

N.Foutris
98

Table 18: Functional units and corresponding test routines of each SPARC v9 core.

Functional
units

Gate count
(K gates)

Fault coverage
(stuck-at %)

Single-thread execution time
(K cycles)

Manufacturing testing

Shifter 5.9 97.5 14.4

ALU 6.2 92.7 32.5

Divider 11.4 97.3 54.5

Multiplier 54.2 96.4 8.6

FFU 16.6 72.1 9.9

SPU 18.5 86.9 33.1

Total 112.8 91.2 153.0

The rightmost column show the test routine execution time in a single thread for
manufacturing testing (execution from on-chip shared L2 cache). The execution
time of the test routines depends on: the number of test patterns, the latency of
the corresponding instructions and the development style (which affects the
instruction-level parallelism of the routines – loops, etc.). Our test program
achieves more than 91% fault coverage in total for all the functional units which is
the highest structural fault coverage that has been ever reported by a software-
based testing approach on a real open-source industrial processor such as
OpenSPARC T1. Note that, the low fault coverage of the FFU is due to the partial
activation of the component from the single-thread test programs, while combined
with the scheduling algorithm the fault coverage is increased.

In Table 19 we present the effectiveness of the FPU routine in terms of stuck-at
fault coverage only to the execution pipelines (adder, multiplier, divider) included
in the shared floating-point unit. We deal with the control part of the floating-point
unit later. The developed FPU routine achieves more than 92% stuck-at fault
coverage on average for this complex functional unit. The total execution time of
FPU routine is 2.6M clock cycles when executed from on-chip shared L2 cache.

Table 19: Modules of the shared FP unit and the corresponding test routines.

Modules
Gate count
(K gates)

Fault coverage
(stuck-at %)

Single-thread
execution time (K cycles)

Manufacturing testing

FP Add. 33.7 91.7 1300.1

FP Multiplier 60.1 92.9 520.4

FP Divider 13.6 91.0 780.2

Total 107.4 92.3 2600.7

The fault coverage of the functional units is not affected when the corresponding
test routines are executed in a multithreaded fashion. However, this is not the
case for the control logic, either the thread-specific control logic of the core or the
shared FPU control logic.

Architectures for Dependable Modern Microprocessors

N.Foutris
99

3.6 Test Program Profiling

The second step of the methodology is the high-level profiling of the single-thread
version of the test program that allows us to quickly assess its scaling
characteristics to a multithreaded environment. All test routines are executed in a
single hardware thread of a SPARC V9 core having exclusive access to the core
while the other three threads are parked (i.e. exclusive single-thread
performance).

Figure 29 shows the exclusive single-thread performance of all test routines for
the manufacturing testing SBST setup (see explanation for the different routines
of each type at the end of this section). Each bar represents the fractions of time
the state machine of the hardware thread, executing the corresponding test
routine, is in one of the five possible states: ready, run, wait, speculative ready
and speculative run. The SPARC V9 core switches among the available threads
at every cycle (i.e. fine-grain multithreading technology). A thread can be
scheduled (is available) when it is in one of the following states: ready (i.e. the
hardware thread is available for selection by the scheduler), speculative ready
(i.e. data dependencies are expected to be resolved and the thread will soon be
available), run (i.e. the hardware thread has been selected), and speculative run
(i.e. the hardware thread will be selected by the scheduler) . On the other hand, a
thread enters the wait state due to one of the following reasons: I-cache fill, store
buffer full, long latency operation, and resource conflict (i.e. concurrent requests
to a shared resource). Therefore, when executing the test routines in a single-
threaded core, the core enters a wait state when the thread is unavailable. To
collect runtime statistics for the thread state we used the functionality of the
thread monitor unit of SPARC V9 core.

 SpecRdyRunWait

0%

20%

40%

60%

80%

100%

D
iv

1

D
iv

2

S
ft

M
u

lt

A
lu

F
fu

1

F
fu

2

S
p

u
1

S
p

u
2

0%

20%

40%

60%

80%

100%

D
iv

1

D
iv

2

S
ft

M
u

lt

A
lu

F
fu

1

F
fu

2

S
p

u
1

S
p

u
2

Figure 29: Test program profiling for manufacturing testing.

Test program profiling shows that the total core utilization is very low since the
core is waiting for long time intervals because the thread is unavailable. In the
case of manufacturing testing (Figure 29) the thread is in wait state for the 62% of
the total execution time of the test program. Hence, the test program profiling
stage designates the ability for performance gains when routines scheduled in
multithreaded environment.

We further analysed test routine profiles to identify different execution phases,
such as CPU-bound or memory-bound intervals, within a test routine execution

Architectures for Dependable Modern Microprocessors

N.Foutris
100

and then we split it into more subroutines based on these phases. This splitting
procedure enabled us to schedule more efficiently the test routines into the
hardware threads achieving better exploitation of TLP. In our case study, routines
Div, FFU and SPU, present different runtime statistics and are split into two
subroutines each, Div1 (24.2 K) and Div2 (30.3 K), FFU1 (9.4 K) and FFU2 (0.5 K)
and SPU1 (23.8 K) and SPU2 (9.3 K), respectively (parentheses show the
execution time from L2 cache in clock cycles).

3.7 Fault coverage-driven test routine splitting

At this section, we study how the multithreaded execution of test routines affects
the fault coverage of the on-core (thread switch logic) and off-core (shared FPU)
control logic.

On-core control logic (thread-switch logic). Thread-switch logic fault coverage
increases with the activity of the four thread state machines (and therefore, the
number of state evaluations and thread selections that the thread-switch logic
performs). Thus, if we want to keep the fault coverage of the thread-switch logic
high, we should avoid decreasing the number of state transitions of the thread
state machines by forcing the four threads to enter more times in the wait state.
However, this target contradicts with the test execution time reduction goal since
increasing the number of resource conflicts (i.e. concurrent requests to a shared
resource) will adversely affect the exploitation of CMT technology.

We start considering two routines from our basic core test program that can
cause resource conflicts due to their long latency operations: multiplier and
divider routines. We performed a set of fast, high-level experiments to quantify
the speedup achieved if we split these test routines into two or four time-balanced
subroutines and schedule two or four hardware threads to execute them in
parallel. In Table 20, we compare the time of the single-threaded execution
versus the multithreaded execution for these two routines for execution from L2
cache.

Table 20: Single-threaded execution vs. multithreaded execution (ET: Execution Time).

Testing setup Routines

1-thread 2-threads 4-threads

ET (A)
K cycles

ET (B)
K cycles

Speedup
(A/B)

ET (C)
K cycles

Speedup
(A/C)

Manufacturing
testing

Multiplier 8.6 5.7 1.5 5.4 1.6

Divider 54.5 37.1 1.5 35.9 1.5

The experimental results show that the two-threaded execution achieves
significant speedup, 1.5X times, over the single-threaded execution. However, the
speedup saturates at two threads since using more than two threads reduces
slightly the execution time. Therefore, to improve the fault coverage of the thread-
switch logic during the multithreaded execution we split the long-latency routines
into subroutines that causes resource conflicts when executed in multithreaded
mode. However, to achieve the best trade-off between execution time reduction
and fault coverage of the thread-switch logic the number of subroutines must not
exceed the number of threads at which the speedup saturates. The output of this
step is a number of sets each one containing the appropriate number of
subroutines that must be executed in parallel to cause resource conflicts. In our
case study two sets are created: {Div1, Div2} and {Mult1, Mult2}.

Architectures for Dependable Modern Microprocessors

N.Foutris
101

Off-core control logic (shared FPU). We exploit core-level parallelism to
execute the test routines for the off-core shared FPU. In order to determine an
efficient multicore, multithreaded execution of FPU test routine we study how the
execution time and the fault coverage scale with the number of cores and
threads. Thus, we split FPU test routine into 4, 8, 16 and 32 subroutines and
schedule them to different number of processor cores: 1, 4 or 8 cores each
running 1 or 4 threads. Table 21 presents total execution time and combined
stuck-at fault coverage of the two FPU control sub-modules: FP input that
multiplexes the FPU requests from multiple cores and FPU output that arbitrates
the results of FP pipelines for the single FPU-crossbar connection. Table 21
presents results for both the execution from L2 cache. Our experiments
demonstrate that the fault coverage is affected by the execution of FPU test
routine by multiple cores and multiple threads. This happens because the FPU
control modules carry thread and core id specific information. The results suggest
that the most efficient FPU routine schedule in terms of speedup and fault
coverage in both setups is 8 cores each running 4 threads: a total of 32 threads
executing in parallel 32 FPU time-balanced subroutines. Thus, in our proposed
test scheduling the FPU test subroutines are executed in parallel by all processor
cores – separately from basic core test routines – occupying all 32 threads of the
CMT architecture.

Table 21: Multicore, Multithreaded execution of FPU test routine (ET: Execution Time, FC:
Fault Coverage of the FPU control logic).

Schedule
1 thread 4 threads

ET (K cycles) FC (%) ET (K cycles) FC (%)

Manufacturing Testing

1 core 2600.7 61.9 1400.1 62.7

4 cores 920.1 89.9 490.3 91.0

8 cores 519.2 90.9 437.4 91.6

3.8 Test Scheduling Algorithm

We propose an algorithm that schedules a set of test routines {R1, R2, …, RN} into
k hardware threads targeting the best trade-off between test execution time and
fault coverage. The proposed algorithm is presented in Table 22.

The first part of the algorithm partitions test routines into two groups: GL which
contains routines having waiting time fraction (WT) less than the average waiting
time fraction (WTavg) of all test routines and GH which contains routines having
WT more than WTavg. Then, the two groups are sorted in descending order
according to the execution time (ET) of their routines.

The second part of the algorithm picks up test routines from the two groups and
assigns them into threads in an iterative manner. The longest test routines (with
the higher ET) are scheduled first in order to produce a time-balanced scheduling.
When a routine that belongs to a resource conflict group (RCG) (an RCG
contains routines that perform concurrent requests to a shared resource) is
selected then all the other elements of the group are scheduled in parallel. If there
are routines that cannot be scheduled in parallel due to resource limitations they
are not selected in the current loop iteration. For instance, in our case study,
routines SPU1 and SPU2 cannot be executed in parallel since the co-processor
implementing the SPU operations supports one outstanding SPU operation per
core.

Architectures for Dependable Modern Microprocessors

N.Foutris
102

Table 22: Test Scheduling Algorithm.

Inputs: k: number of threads

 Basic core test routines: S = {R1, R2, …, RN}

 Single-threaded test program profiling results:

 ETi: execution time of routine Ri

 WTi: waiting time fraction of routine Ri

 WTavg: average waiting time fraction of all test routines

 Routines groups causing resource conflicts: RCG1, …, RCGM

Restrictions: Routines cannot be executed concurrently due to limited resources (i.e.
SPU1, SPU2)

Output: Scheduled test routines in k threads: {SRth1, SRth2, … SRthk}

// Partition routines into two groups: GL (low WT fraction) and GH (high WT fraction)

for i = 1, 2, …, N do

 if WTi < WTavg insert Ri to GL ;

 else insert Ri to GH ;

end for

Sort GL and GH in descending order according to ETi

ETth1, ETth2, … ETthk = 0 ; // Accumulated ET of routines assigned to threads 1…k

SRth1, SRth2, … SRthk = Ø ; // Set of routines scheduled to threads 1…k

CXR = Ø ; // Set of currently executed routines by all k threads

while (GL, GH not empty) do

 select thread j with shortest ETthj;

 remove the last routine of SRthj from CXR ;

 if (GH empty) OR

 ((GL not empty) AND (#routines in CXR with low WT < # of routines in CXR
with high WT)) then

 select the longest routine Ri from GL that does not have restriction with any
routine of CXR ;
 remove Ri from GL ;

 end if

 if (GL empty) OR

 ((GH not empty) AND (# of routines in CXR with low WT # of routines in CXR
with high WT)) then

 select the longest routine Ri from GH that does not have restriction with any
routine of CXR ;

 remove Ri from GH ;

 end if
 insert Ri to SRthj ;
 insert Ri to CXR ;

 if Ri belongs to an RCGm then
 remove Ri from RCGm ;

 while (RCGm not empty) do

 select next longest routine Ri from RCGm ;

 select thread j with shortest ETthj ;

 remove the last routine of SRthj from CXR ;

 remove routine Ri from its group (GL or GH) ;

 insert Ri to SRthj ;

 insert Ri to CXR ;

 end while

 end if

end while

Architectures for Dependable Modern Microprocessors

N.Foutris
103

The algorithm satisfies two scheduling criteria: (a) routines causing resource
conflicts (belong to a resource conflict group, RCG) are executed in parallel; and
(b) at any time the set of currently executed routines (CXR) contains equal
number of low-WT and high-WT test routines. The first criterion targets to the
improvement of the fault coverage of the thread-specific control logic and the
second criterion targets to overlap the “long” waiting intervals of the half routines
with the “running” intervals of the other half routines. The algorithm output is k
sets SRth1, SRth2, … SRthk that contain the routines scheduled to each thread.

3.9 MT-SBST experimental results

We applied the proposed scheduling algorithm to the test routines of functional
units of the OpenSPARC T1 for manufacturing testing setup. For the sake of
comparison, we also set up a naïve (straightforward) multithreading approach that
assigns routines with the same characteristics to the same thread, i.e. routines
using the multiplier (SPU and Mult), divider routines (Div), short latency
operations (ALU and Sft) and floating-point operations (FFU and FPU). Both
naïve and proposed multithreading approaches are based upon the same
requirement: to avoid resource conflicts that degrade test program performance.
Therefore, naïve approach constitutes a fair alternative of the proposed approach.

We first analyse core-level thread scheduling without considering testing of the
shared FPU. The generated test routine schedules for manufacturing testing
setup and the naïve scheduling approach are shown in Table 23. Each column
includes the test routines scheduled in each thread of the core. Notice that the
proposed schedules for the two SBST setups are different which is due to the
different test program profiling.

Table 23: Schedules of core test routines.

 Routines per Thread Assignment

Naïve
scheduling

Thread 0 Thread 1 Thread 2 Thread 3

SPU1

SPU2

Mult1

Mult2

Div1

Div2

ALU

Sft

FFU1

FFU2

Proposed
scheduling

Manufacturing Testing

Thread 0 Thread 1 Thread 2 Thread 3

ALU Div1

Mult2

FFU1

Div2

SPU2

SPU1

Mult1

FFU2

Sft

In Table 24 we compare the proposed multithreaded scheduling with the single-
threaded and naïve scheduling approaches in terms of execution time and stuck-
at fault coverage of the thread-switch logic (recall that the coverage for the
functional units is more than 91% – see Table 18 – since the coverage does not
depend on the multithreaded execution). The speedup of the multithreaded
approach is calculated against the test execution time of the single-threaded
execution. The speedup achieved by the proposed multithreaded scheduling is up
to 3.3X, very close to the ideal theoretical 4X speedup, which means that it
exploits the TLP very efficiently, using only easy-to-obtain run-time statistics from
the single-threaded execution and avoiding time consuming simulations.

Architectures for Dependable Modern Microprocessors

N.Foutris
104

Compared with the naive scheduling (that achieves a speedup only up to 2.2X),
our methodology reduces the test time by 33%.

Table 24: Comparison of core level scheduling approaches (FC: Fault Coverage of thread
switch logic).

 Single-threaded Naïve scheduling Proposed scheduling

Execution time
(K cycles)

153.0 69.2 46.1

Speedup – 2.2 3.3

FC (%) 32.6 67.6 75.5

Furthermore, the proposed scheduling does not degrade the fault coverage of
thread-specific control logic of the core but on the contrary (due to the elaborate
routines scheduling) it improves it up to about 10% compared with the naïve
scheduling, thus achieving an excellent trade-off between speedup and fault
detection capability.

From this point onward, we include the testing of the control part of the shared
FPU (recall that the coverage for the FPU adder, multiplier and divider is more
than 92% – see Table 19) in our scheduling. In naïve scheduling the FPU routine
is split into 8 subroutines (FPUi/8) which are executed by thread 3 of each core
shown in bold in Table 25. In our approach the FPU test routine is split into 32
time-balanced subroutines (FPUi/32) which are executed by all four threads of
each core before the basic core test routines: all 32 threads of the architecture
are occupied to execute in parallel the FPU subroutines. Note that Table 25
presents only the schedules of processor core 0 for the naïve (straightforward)
approach and our proposed approach for manufacturing testing. The schedules
for all processor cores can be produced directly from Table 23 scheduling the
FPU subroutines before the core test routines.

Table 25: Schedules of core test routines plus shared FPU routine at processor level.

Routines per Thread Assignment

Naïve scheduling

Thread 0 Thread 1 Thread 2 Thread 3

SPU1

SPU2

Mult1

Mult2

Div1

Div2

ALU

Sft

FFU1

FFU2

FPU1/8

Proposed

Scheduling

Manufacturing Testing

Thread 0 Thread 1 Thread 2 Thread 3

FPU1/32

ALU

FPU2/32

Div1

Mult2

FFU1

FPU3/32

Div2

SPU2

FPU4/32

SPU1

Mult1

FFU2

Sft

Table 26 summarizes test execution time of single-threaded, naïve scheduling
and proposed scheduling approaches and the speedup achieved by the
multithreaded approaches over the single-threaded one. Compared with the

Architectures for Dependable Modern Microprocessors

N.Foutris
105

naïve scheduling, the proposed scheduling reduces the test execution time of the
entire processor by up to 18%.

Table 26: Comparison of scheduling approaches including FPU routine.

 Single threaded Naïve scheduling Proposed Scheduling

Execution time
(K cycles)

2753.7 588.4 483.5

Speedup – 4.6 5.6

Finally, Table 27 presents the fault coverage for the targeted logic (about 1.5M
gates of logic) of the OpenSPARC T1, which includes all the integer functional
units and the on-core control logic (thread switch logic and integer pipeline control
logic) of all eight CPU cores, the shared FPU (including the execution units and
the thread-specific control logic) and also the interconnection network (this is not
explicitly targeted by test routines). The total fault coverage for all functional units
(both integer and floating-point) is 91.3%, while the total fault coverage for the
entire processor is 88.6%.

Table 27: Fault coverage (IFUs: Integer functional units, FPU: Floating-point unit, CCL:
Core control logic, INN: Interconnection network, FUs: Functional units of processor).

Components
Gate count
(K gates)

Fault coverage (stuck-at %)

Single
threaded

Naïve
scheduling

Proposed
scheduling

Core (x8)
IFUs 8 112.8 91.2 91.2 91.2

CCL 8 28.4 62.2 71.8 82.8

Off-core
FPU 115.8 86.7 88.8 92.3

INN 259.5 14.9 79.9 82.7

Total (FUs) 1018.2 90.7 90.9 91.3

Total (Processor) 1504.9 73.4 86.1 88.6

3.10 Related work

There is no work in the literature that studies (a) the impact of SBST test
optimization strategy on a multicore, multithread architecture; and (b) measures
the fault coverage of thread-specific control logic.

Multithreading: Bayraktaroglu et al. [14] proposed the conversion of existing
legacy tests, either hand-written or randomly-generated to test the multithreaded
cores of the CMT architecture of UltraSPARC T1. They described how a
software-based cache-resident test methodology can be utilized during the
manufacturing test flow of a commercial multicore chip, UltraSPARC T1, and
applied by a low-cost external tester. In [14], the CPU cores of the CMT
architecture execute the test program sequentially while the other cores are
disabled; this scheme eliminates the need for replicating the test program for
each processor core but it does not exploit either the core-level parallelism or the
thread-level parallelism of the architecture, thus, it does not satisfy the main
objective of a multithreaded SBST methodology. Apostolakis et al. [9] considered
the application of SBST to bus-based CMP architectures consisting of simple
single-threaded cores. They proposed a scheduling methodology for the test
routines to exploit core-level execution parallelism and minimize the time
overheads coming from the memory subsystem in order to reduce the total test

Architectures for Dependable Modern Microprocessors

N.Foutris
106

execution time. However, [9] focuses only on the execution parallelism among
different cores in order to improve test program performance for the processor.

Multiprocessor: A first approach on studying the application of SBST in CMT
architecture for manufacturing testing, was proposed in [10] where thread-level
parallelism is exploited to reduce self-test execution time.

3.11 Findings summary

We present the application of SBST in multithreaded, multicore architectures as a
natural extension to single-core, single thread SBST. The proposed MT-SBST
methodology leverages the existing thread-level parallelism (TLP) for test
optimization. We analyse the impact of multithreaded test execution on fault
coverage and propose a methodology to speed up the test execution time by
exploiting execution parallelism without degrading the fault coverage of the
control logic (but on the contrary improving it). Comprehensive experiments on
OpenSPARC T1 demonstrate that our methodology speeds up the test time of a
4-threaded core by 3.3. Compared with a straightforward multithreaded
scheduling the proposed methodology achieves significant time reduction, 33% at
the core-level and 18% at the processor-level. Overall, our methodology
guarantees high fault coverage, more than 91% fault coverage for the functional
units and more than 88% for the entire OpenSPARC T1 processor logic (more
than 1.5M gates of logic).

Architectures for Dependable Modern Microprocessors

N.Foutris
107

4. IN-FIELD VERIFICATION

High-performance microprocessor architectures consolidate all available design
techniques towards a single aim: delivery of the highest performance given the
power constraints of an individual market segment. Towards this aim, a
continuously increasing number of transistors are integrated in microprocessor
chips along with sophisticated circuit design and architectural techniques to
improve performance. Chip manufacturing technologies, however, have already
entered an era where permanent, intermittent, and transient hardware faults have
unacceptably high rates due to manufacturing defects, process variation,
environment impact, and device wear-out and aging [74]. Under these
circumstances, the microprocessor chip manufacturing cost is seriously affected
by reduced yield levels and the inevitable overheads for fault tolerance.

Silicon technology process scaling has been shown to increase the rate of hard
faults in microprocessor SRAM arrays [59] [18] [21]. One of the most important
trend for reducing processor power consumption is low voltage operation which
further increases the rate of hard faults in SRAM arrays [28] [1] [108]. Several
hard fault tolerance techniques for SRAM caches have been proposed [5] [28]
[66] [89] [100] as well as mechanisms to protect pipeline flip-flops and
combinational logic [23] [84] [94] [71] [90] [95] [41] [75]. However, many non-
cache structures such as those in control and data flow speculative hardware are
also implemented using large SRAM arrays (e.g. branch target buffer size is 2.5K
entries in AMD‟s Jaguar core [92], which equals to 9% of the non-cache core
area, accounting for 44% of the non-cache SRAM area).

Although these speculation mechanisms do not affect program correctness, faults
that lead to extra mispeculations can significantly degrade performance [46] [44]
[49] [63] [7]. The exact behaviour depends on the location of the fault (in an array
entry or in the control part of the component) and the component-access pattern
by an application or benchmark. Transient faults, such as those caused by high-
energy particle strikes, minimally affect performance because they incur few extra
mispredictions and thus will not be investigated in this study. However, hard
(permanent) faults can significantly reduce performance especially when faulty
array entries are accessed frequently.

Performance loss from faults reduces performance without corresponding
reductions in power, decreasing overall efficiency. Performance variability across
identical cores is undesirable in many settings including data centre and HPC
deployments. For instance, estimation of the Total-Cost-of-Ownership (TCO) of a
data centre can be done using estimation frameworks as the one reported in [45];
these frameworks show that, under certain configurations, performance variability
increases both system cost and power consumption and worsens the system‟s
environmental impact. Moreover, large parallel workloads running on HPC
environments often execute at the speed of the slowest node [34] meaning that
performance variability among nodes can substantially reduce the overall
throughput of the system. Performance variability is also undesirable in the
mobile and desktop markets [51] since it reduces the ability to provide
performance guarantees in real-time systems.

We measure the effect of permanent faults in the arrays and the control logic of
performance components: branch predictors (BPs), branch target buffers (BTBs),
the return address stack (RAS), and data and instruction prefetchers (DP and IP).
Soft errors are exempt from this study, since their transient impact has
insignificant effect on microprocessor‟s performance. Then, we propose a set of

Architectures for Dependable Modern Microprocessors

N.Foutris
108

low-cost hardware-based mechanisms for the detection, diagnosis and
performance recovery in the BP and BTB structures.

4.1 Scope of proposed techniques

The reliability evaluation and proposed techniques are applied at in-field
verification phase of the microprocessor dependability cycle. In particular, we
perform the following tasks:

 Classify the behaviour of microprocessor speculative mechanisms in the
presence of faults in the four categories (output error, performance
errors, benign errors and crash).

 Demonstrate that faults such as those from low-voltage operation and
process scaling can lead to substantial performance loss and variability
in these structures. We assess the impact of hard faults in the
conditional Branch Predictor (BP), the branch target buffer (BTB), and
the return address stack (RAS), using expected rates of hard faults for
future technologies and low-voltage operation.

 We propose a set of low-cost hardware-based mechanisms for the
detection, diagnosis and performance recovery in the aforementioned
structures. Our objectives are to recover the fault-free execution time by
mitigating the impact of faults on IPC, and to minimize variation among
cores with different fault locations in control flow predictors. Our
techniques leverage the observation that the inherent self-verifying
nature of all these components offers an opportunity for low-cost
diagnosis of faults. Therefore, we overload the self-verification
mechanism to trigger hard fault detection and diagnosis in each
predictor. Once a hard fault is identified, we employ limited spatial
redundancy to minimize the number of additional mispredictions and
recover performance.

Our analysis delivers the following key insights. First, performance components
with single permanent faults do not lead to functional errors and that most faults
(44% to 96%) cause only performance fluctuation. Second, hard faults in a stride
data prefetcher can affect microprocessor performance significantly (up to 26%)
and increase inter-core performance variability (more than 4.5%). Likewise, in the
branch prediction unit the performance loss (up to 13%) and variability (more than
16%) can be significant. Finally, the low-cost hardware-based solutions for the
detection, diagnosis and performance recovery of multiple hard faults in all front-
end speculation components (BPs, BTBs, RAS, BHR) achieves to mitigate almost
the entire IPC loss due to faults.

4.2 Background analysis

4.2.1 Performance components

The quest for higher performance at lower power continues as we keep stacking
more transistors on a die. All major compute elements (CPUs, GPUs, etc.)
employ an array of structures whose main (and, in some cases, only) purpose is
to provide higher performance (caches, BPs, prefetchers, load/store speculation,
execution units, out-of-order schedulers, hardware-based multi-threading, etc.).
These mechanisms are used to hide the ever-increasing memory latency
(caches, prefetchers, load/store speculation) and boost parallelism exploited
either at the instruction level (OoO schedulers, execution units, BPs) or at the

Architectures for Dependable Modern Microprocessors

N.Foutris
109

thread level (multi-threading). The effect of permanent errors on some of these
structures has been studied in the past [49] [17]. Most of the reliability studies
have focused on structures based on the area they occupy (caches), their
immediate performance impact (execution units), and their ability to influence
functional correctness (caches, schedulers).

We examine the impact of permanent faults on the front-end structures of high-
performance microprocessors. These include branch outcome predictors, BTB,
and RAS. Modern microprocessors employ all these techniques in an effort to
provide a continuous stream of instructions to their execution units. The accuracy
of these mechanisms is a key metric in achieving high instruction-level parallelism
(ILP). Permanent faults in their arrays or control logic can cause the mis-
prediction rate to fluctuate, leading to performance changes. High mis-prediction
rates can cause additional memory traffic (especially for conditional and indirect
branch prediction), which in turn can amplify the side effects on the core IPC and
power. Independent of the actual nature of the workload (compute- or memory-
dominated), the steady supply of instructions to the back end of the core will
remain critical in maintaining high performance at a low power cost.

We also steer focus towards structures that affect performance only. A prefetcher
is one such case. If not accurate enough, it can degrade performance (and
increase power) by polluting the cache and by wasting shared resources (miss
information/status handling registers (MSHRs), tag/DC and command/data bus
bandwidth, victim buffers, etc.). If the prefetcher is accurate enough, it reduces
the average memory latency and lowers the need for larger data caches.
However, permanent faults can cause variations in the prefetched address
stream, which in turn can lead to large IPC fluctuations if the prefetcher is
accurate and the data working set of the application does not fit in the data cache.
Permanent errors can change prefetcher coverage (by dropping pending prefetch
requests and training opportunities), prefetch request timeliness (by issuing
requests earlier or later than their error free equivalent), and prefetch accuracy
(by perturbing prefetch address-generation logic).

4.2.2 SRAM arrays failure probabilities

Technology modelling in roadmaps predicts extremely small single-bit failure
probabilities for combinational logic even beyond the 12nm node [74]. However,
several orders of magnitude higher numbers of hard faults in SRAM arrays are
expected in the following two contexts:

 Chips manufactured in current and future technologies (e.g., 22nm) that
operate at reduced voltage levels for power reduction purposes [28] [1]
[108].

 Forthcoming chips manufactured in more defective technologies (16nm,
12nm) [101].

In both contexts, the failure probability (Pfail) of a single SRAM cell is expected to
fall between 10-6 and 10-4 [28] [74] [108], a substantial increase over the SRAM
cell Pfail in 32nm, as shown in Table 28.

Table 28: SRAM cell Pfail for four technology nodes [74].

Node SRAM cell Pfail Node SRAM cell Pfail

32nm 7.30E-09 16nm 5.50E-05
22nm 1.50E-06 12nm 2.60E-04

Architectures for Dependable Modern Microprocessors

N.Foutris
110

To put this in perspective, Figure 30 shows the expected number of faults in
100Kbit and 300Kbit SRAM arrays (within range of BP and BTB arrays used in
commercial processors; see Introduction) for the technology nodes of Table 28,
expressed as a cumulative probability. As we can see in Figure 30, the average
number of faults in a 100Kbit array in 32nm is only 0.001, while the same array in
16nm is expected to have 5.5 faults on average.

Figure 30: Cumulative probability of 1…k hard faults for 100Kbit (top) and 300Kbit (bottom)
SRAM arrays.

4.2.3 Fault classes

We classify the outcomes of each fault injection simulation based on the impact of
the fault on the simulated system. Follows the analysis of fault effects classes.
These represent typical classes (and corresponding terminology) used in the
reliability literature.

 Output error: The fault causes data corruption at benchmark output,
register values, or memory state (although this category is expected to
be empty, we include it in our study and check the processor state at
simulation end to verify that functional correctness is preserved).

 Performance error (slowdown or speedup): The fault changes only the
execution time of the benchmark.

 Benign error: The fault does not cause an output or performance error.

Architectures for Dependable Modern Microprocessors

N.Foutris
111

 Crash: The fault produces an exception or system crash.

4.3 Simulator and Microprocessor Model

Our statistical fault injection campaign runs on top of the PTLsim x86 architectural
simulator [110], which is used widely for performance measurements. We have
enhanced the x86-64 microprocessor model of PTLsim so it resembles as much
as possible a modern design that incorporates all the major performance
components of our study. Table 29 summarizes all parameters of the enhanced
x86-64 microprocessor model we used in our experiments.

Table 29: Enhanced x8-64 model configuration.

Parameter Setting

Fetch//Issue/Commit 4/4/4 instructions per cycle

Return address stack 16 entries
Branch target buffer
(Cond./Uncond. direct branches)

4-way set associative, 1K sets

Branch target buffer (Indirect
branches)

4-way set associative, 512 sets

Combined predictor Bimodal, Two-Level predictors
16KB (65,536 entries, 2 bits per entry,
16 bits history)
Meta-predictor table: 65,536 entries

Reorder buffer 128 entries
Functional units 4 clusters (ALUs: 2 INT, 2 FPU)
L1 instruction cache 32KB (64B cache line, 128 sets, 4 ways, 2

cycles latency, 8 MSHRs)

L1 data cache 16KB (64B cache line, 64 sets, 4 ways, 2
cycles latency, 32 MSHRs, max.
MSHR entries for prefetch requests: 20)

L2 cache 256KB inclusive (64B cache line, 16 ways,
12 cycles latency, 40 MSHRs)

L3 cache 4MB inclusive (64B cache line, 32 ways, 40
cycles latency, 40 MSHRs)

Main memory Infinite size (200 cycles latency)
Prefetch input queue (PIQ) 8 entries
Prefetch table 64 entries, 4-way set assoc., PC indexed
Confidence size 3 bits

Confidence threshold 3
Stride size 5 bits
Prefetch distance 1 (single step)
Prefetch request queue (PQR) 8 entries

First, we enhanced the branch prediction unit (Figure 31) with a new BTB model
for conditional/direct branches (cBTB) with a misprediction penalty of 3 cycles.
The cBTB is separate from the one PTLsim uses for indirect branches, which we
label iBTB. Conditional and direct branches form the majority of instructions
modifying control flow, so it is important to add the cBTB so the pipeline can
maintain a steady stream of instruction supply to its execution units. In addition,
simulating permanent errors to cBTB is more important than the iBTB since the
cBTB predicts the targets of those branches.

Architectures for Dependable Modern Microprocessors

N.Foutris
112

BTB

(indirect

branch)

C
o

n
d

it
io

n
a

l

P
re

d
ic

to
r

PC

BTB

(Cond. &

Uncond.

branch)

RAS

(ret. Addr.)

Figure 31: Block diagram of the branch prediction unit.

Second, we added a next-line instruction prefetcher (IP) to the instruction cache
that shares the miss handling status registers (MHSR) with demand instruction
cache miss requests from the processor (Figure 32). Instruction prefetching is an
effective technique in hiding latency of the instruction cache misses that are non-
overlapping in time because instruction cache is typically a blocking cache. The
instruction prefetcher works as follows: On miss, a prefetch request is added on
the prefetch queue with the next sequential cache line. Then, the request is
issued to the L1 instruction cache; in case of miss an entry on the miss buffer is
allocated and the request is propagated to the lower level of the cache hierarchy.
Finally, request that already exists on the miss buffer are dropped.

Prefetch Queue Miss Buffer

L1

Instruction

Cache

demand-fetch

Figure 32: Block diagram of next-line instruction prefetcher.

Architectures for Dependable Modern Microprocessors

N.Foutris
113

Third, we added an L1 data cache stride data prefetcher (DP) that also shares the
MSHRs with demand data cache miss requests (Figure 33). An address-training
queue and a prefetch-request queue were also modelled to faithfully mimic the
logic used to train the DP as well as the generation of prefetch requests before
they are issued to the data cache (for hit/miss identification). The prefetch table
consists of the following fields: (i) Tag: RIP of the x86 memory operation, (ii) Load
Address: previous train address, (iii) Stride: most recently recorded stride, (iv)
Confidence: m bit counter to indicate the occurrences of a particular stride, (v)
Valid: indicates the existence of valid data; and (vi) LRU: replacement policy bits.
The data prefetcher operates as follows: The load/store addresses produced by
the address generation unit are buffered into the input queue to train the
prefetcher. Repetitive memory operations with a linear stride generate prefetch
requests with the prefetch distance shown on Table 29. The prefetch requests are
then buffered in the request queue. Finally, null and off-range strides are
dropped.

tag (RIP) load address stride conf. valid

Prefetch Table

Input Queue

Request Queue

dynamic

load/store

L1 D$

lru

Figure 33: Block diagram of the L1 data cache stride prefetcher.

4.4 Statistical Fault Injection Framework

We have developed a statistical fault injection framework, on top of PTLsim
architectural simulator, to evaluate the impact of permanent faults on the
performance of modern microprocessors (Figure 34). It consists of three main
elements: a fault mask database, golden and faulty models of the
microprocessor, and a post-processing analysis tool. The fault mask database is
populated with the set of fault masks injected in both the arrays and the control
logic of the microprocessor components. Each fault mask has the following fields:

 Module_ID: The targeted microarchitectural array.

 Entry_ID: The line inside a structure where a permanent fault is injected
(for the set-associative components, a pair of entry/way is generated to
define an array entry exclusively).

 Position_ID: The bit location within an entry to inject a fault.

 Fault_type: Stuck-at-0, stuck-at-1.

Architectures for Dependable Modern Microprocessors

N.Foutris
114

The fault mask database for the arrays is populated based on the statistical
sampling technique of [67] (The method has been originally proposed for soft
error injection; it computes the number of injection experiments in an array of
given size under confidence level1 and error margin2 requirements. There is no
mandatory temporal parameter in the sampling of [67] and it can be adopted for
both transient and permanent faults by taking or not time into consideration,
respectively). More details regarding the selected confidence level and the error
margin will be presented in the following sub-sections. Further, the Entry_ID,
Position_ID, and Fault_type attributes are randomly selected for each fault mask
based on a normal distribution. The control faults are modeled by modifying the
semantics of the simulator‟s source code that models the control logic of each
microarchitectural component. We injected a total of 155 permanent faults in the
control logic of the DP and the BPU. The selection of the 155 control-logic faults
was done using only one criterion: maximum correspondence of the injected fault
in the architectural simulator model and an actual single stuck-at hardware fault at
the RT level assuming a generic logic design implementation of each sub-
component.

GOLDEN PTLsim

enhanced model

{

Fault_Mask

Database

SPEC CPU2006

Benchmark Suite

FAULTY PTLsim

enhanced model

Module_ID

Entry_ID

Position_ID

Fault_type

Fault Classification

Performance Impact

Analysis

Post-processing Tool

Figure 34: Statistical fault injection framework.

Each SPEC CPU2006 benchmark runs once on the golden (fault-free) model and
once for each fault in the database on the faulty model (on each run, a single fault
is injected). Figure 35 shows the timeline of a simulation run. At the beginning of
the fault injection simulation, the framework reads the fault mask from the
database and launches simulation. We warm up the microprocessor for an
interval of 20 million committed x86 instructions (no checkpoint captured). At the
end of the 20 million instructions, the fault is injected and executed for 80 million
more committed instructions (i.e., each simulation lasts 100 million committed x86
instructions). At the end of each run, a checkpoint of the simulator state is
extracted for further off-line analysis.

We present our experimental results in three parts:

 The first part classifies the behaviour of data and instruction prefetcher
sub-components (arrays and control) in the presence of faults in the four
categories (output error, performance error (slowdown or speedup),
benign error, and crash) and then we measure the performance impact
(IPC) due to them.

1
 Probability that the observed sample contains the measured attribute‟s real mean in the full

population.
2
 Maximum expected difference between the population's mean value and a sample‟s mean value

of the measured attribute.

Architectures for Dependable Modern Microprocessors

N.Foutris
115

 The second part classifies the behaviour of the branch prediction unit
sub-components (arrays and control) in the presence of faults in the four
categories (output error, performance error (slowdown or speedup),
benign error, and crash) and quantify the performance impact (IPC) due
to them.

 Third part presents a low-cost microarchitectural mechanism that detects
and tolerates the performance impact of hardware faults in the branch
prediction unit.

Fault Injection Run
Launch

Benchmark

End of Simulation

 (100M committed

x86 instructions)

Warm-up Interval

(20M committed

x86 instructions)

Hard Fault Injected

 (either sa0 or sa1)

}

Simulation Interval

(80M committed

x86 instructions)

}

Figure 35: Fault injection simulation timeline.

4.5 Resiliency of data prefetcher

4.5.1 Classification of faults

In this sub-section, we present the fault classification of the prefetcher sub-
components. For confidence (95%) and error margin (5%), 2,604 faults masks
are sampled and injected into the arrays (Table 30).

Table 30: Distribution of the injected faults on the prefetcher.

Component Field
#Injected

faults

Data prefetcher
array

Load address 571
Tag 571
Stride 216
Confidence 149
LRU 128
Valid 58
PRQ – Load Address 289
PIQ – Load Address 289

Data prefetcher
control

Prefetcher table index-generation logic 15
Prefetcher table tag-search logic 4
Prefetcher table replacement logic 4

Stride calculation logic 5
Confidence calculation logic 5
Output logic to issue a prefetch request 2
PRQ - CAM multi-hits 3
PRQ - Head/Tail pointer 3
PIQ - Head/Tail pointer 3

Instruction
prefetcher Fetch address 289

Total 2,560 array faults + 44 control faults 2,604

Architectures for Dependable Modern Microprocessors

N.Foutris
116

The following tables break down the fault classifications for each field of the
prefetcher. We separately present results for the arrays and the control parts. No
output error has been observed in our experiments and thus we have omitted
columns for output errors (all are 0%); this is an expected result that matches
intuition for the components we studied.

Table 31 shows that faults in the arrays of the data prefetcher either cause only
performance errors or are benign. Faults in its arrays that are excited can lead to
cache pollution, which causes performance fluctuations. For example, when a
fault resides in the load address field of the data prefetcher and the
corresponding entry is activated (trained, locked on a stride, and actively issuing
prefetches), this will lead to modification of the number of issued prefetch
requests and/or corruption of the load address of a prefetch request. Thus, in
both cases, the cache will be polluted and performance will slow.

Table 31: Data prefetcher array fault classification (Average per component for all
benchmarks and all injected faults).

Field
Slowdown
error (%)

Speedup
error (%)

Benign
error (%)

Load Address 23.4 27.3 49.2

Tag 20.4 18.2 61.3

Stride 23.9 26.5 49.6

Confidence 16.1 29.5 54.4

LRU 27.0 16.1 56.9

Valid 22.2 8.7 69.1

PRQ – Load Address 44.7 3.8 51.5

PIQ – Load Address 66.3 24.0 9.7

Average 30.5 19.3 50.2

The high concentration of benign faults in our experiments is because faults occur
in entries that are not activated. To verify this, we studied the behaviour of a few
benign faults from the execution of several benchmarks (bzip2, games, zeusmp);
our finding is that the number of prefetch requests remains stable (i.e., equal to
the golden run) because all these faults are not excited throughout the simulation
runs.

The different fields of the data prefetcher arrays behave as Table 31 shows:
benign errors range roughly between 10% and 70% across fields, while the
performance errors category takes from about 30% to about 90% of the fault
population. On average, 49.8% of the faults in the arrays of the data prefetcher
lead to performance errors (30.5% slowdowns and 19.3% speedups) and 50.2%
are benign. Finally, there are no crashes or exceptions generated by faults in the
DP because prefetch requests to invalid/illegal addresses are dropped in our
system; thus we do not include a crash column in the Table 31.

Table 32 shows that faults in the control part of the data prefetcher lead to many
more performance faults (greater than 76%) than faults in the arrays (Table 31).
Slowdown errors occur much more frequently than speedups, and are more
massive compared to the array. A fault in the output logic that issues prefetcher
requests actually disables the data prefetcher.

Architectures for Dependable Modern Microprocessors

N.Foutris
117

Table 32: Data prefetcher control fault classification.

Field
Slowdown
error (%)

Speedup
error (%)

Benign
error (%)

Prefetcher table index-generation logic 32.9 14.9 52.2

Prefetcher table tag-search logic 50.0 36.2 13.8

Prefetcher table replacement logic 48.3 34.5 17.2

Stride calculation logic 31.0 44.8 24.1
Confidence calculation logic 51.7 29.0 19.3
Output logic that decides whether to
issue Prefetch or not

100.0 0.0 0.0

PRQ - CAM multi-hits 33.3 25.3 41.4

PRQ - Head/tail pointer 43.7 27.6 28.7

PIQ - Head/tail pointer 42.5 40.2 17.2

Average 48.2 28.1 23.7

Table 33 shows that more than 80% of the faults in the instruction prefetcher
array (eight buffers holding addresses to be prefetched) are not activated. This is
in line with the corresponding large percentage of benign faults in the arrays of
the data prefetcher (Table 31). A next-line instruction prefetcher will not utilize
more than a few entries because it generates a prefetch on an Icache miss.

Table 33: Instruction prefetcher array fault classification.

Field
Slowdown

Error
Speedup

Error
Benign
Error

Instruction prefetcher array 17.5% 0.8% 81.7%

4.5.2 Benchmark profiling: prefetch-friendly and –neutral

We profile the full set of SPEC CPU2006 benchmarks to measure the IPC impact
of a fault-free L1 cache-stride data prefetcher. Table 34 presents the IPC
speedup for each benchmark due to the stride data prefetcher. On average, the
data prefetcher boosts IPC by 6.85%. However, performance improvement varies
and depends on the stream of memory access patterns generated by each
benchmark. For that reason, we classify benchmarks into two major categories:
prefetch-friendly, in which the IPC change is greater than the average speedup
across all SPEC CPU2006 benchmarks, and prefetch-neutral, in which the
change is less than the average speedup. Eleven benchmarks are classified as
prefetch-friendly and 18 are classified as prefetch-neutral. The impact of faults on
performance significantly differs between the two groups of benchmarks.

Architectures for Dependable Modern Microprocessors

N.Foutris
118

Table 34: Per benchmark IPC speedup provided by the L1 data prefetcher (*milc IPC is
slowed).

Prefetch-friendly
benchmarks

IPC (%)
speedup

Prefetch-neutral
benchmarks

IPC (%)
speedup

bzip2 19.99 perlbench 2.58
bwaves 10.14 gcc 1.89
gamess 21.51 mcf 0.16

zeusmp 9.10 milc –4.11*
leslie3d 7.55 gromacs 2.86
dealII 9.61 cactusADM 0.49
soplex 9.50 namd 0.34

GemsFDTD 19.66 gobmk 0.60
libquantum 17.20 povray 0.42
tonto 15.91 calculix 4.73
wrf 34.59 hmmer 0.62
average 15.887 sjeng 0.07
 h2564ref 0.96
 lbm 4.66
 omnetpp 0.07
 astar 3.01
 sphinx3 0.67

 xalancbmk 3.80
 average 1.780

Overall average (%) 6.85

4.5.3 Performance impact of faults

In this section, we measure the performance impact of hard faults injected only
into the data prefetcher. Figure 36 shows the average and maximum IPC
slowdown (due to faults) when one, three, and five faults are injected in the
prefetch table along with the standard deviation; the upper diagram shows
prefetch-friendly benchmarks and the lower diagram shows prefetch-neutral
benchmarks. Figure 36 presents the average performance loss across all
benchmarks (i.e., the prefetch-friendly benchmarks show a combined 3.049% IPC
loss if we average the maximum IPC loss over all single fault runs per
benchmark, 5.759% IPC loss over all triple faults, and 9.271% IPC loss over all
quintuple faults). Thus, an L1 cache-stride data prefetcher can severely degrade
microprocessor performance, up to 9.271% on average for the prefetch-friendly
and up to 0.733% on average for the prefetch-neutral benchmarks, when the
prefetcher table‟s SRAM cells suffer multiple hard faults.

Architectures for Dependable Modern Microprocessors

N.Foutris
119

Prefetch-neutral

Prefetch-friendly

Figure 36: IPC loss for prefetch-friendly (upper graph) and –neutral (lower).

Table 35 shows the average (upper) and maximum (lower) normalized IPC
slowdown for each SPEC CPU2006 benchmark when one, three, and five faults
are injected. The benchmarks are grouped into prefetch-friendly (upper half) and -
neutral (rt half), to identify any correlation between workloads and performance
loss. The colours on each column depict the additional IPC loss relative to the
fault-free model from the injection of one, three, and five faults. For example, on
bzip2, the maximum IPC loss is 4.5% for a single injected fault, 4.8% for triple
faults, and 17.1% for quintuple faults (i.e., the aggregation of single, triple, and
quintuple IPC losses). As expected, the prefetch-friendly benchmarks show a
greater IPC impact with the same number of faults compared to the prefetch-
neutral. In particular, a fault-free prefetcher improves execution time of
GemsFDTD by 20% and sphinx3 by 0.6% (Table 34). GemsFDTD suffers a
maximum 17% IPC slowdown, while sphinx3 loses only 0.06% when quintuple
faults are injected.

By further analysing the internal behaviour of the prefetcher, we found that the
extent of the performance impact depends on the distribution of the training input
addresses across the prefetch table entries. For example, Table 37 presents the
activity of each prefetcher table entry for two benchmarks, bzip2 and gcc, and
shows very different sensitivities to data prefetching (17% and 0.06%,
respectively). gcc shows a much more uniform usage of the entries of the table,
while bzip2 trains only seven entries (95% of training occurs on only three entries
and the remaining four are trained only marginally). Thus, in gcc, the majority of
the training addresses remain unaffected by the injected faults; even if they do
access a faulty entry, the IPC impact is relatively small because of the lower
average dynamic usage frequency. In bzip2, if the fault occurs in one of the

Architectures for Dependable Modern Microprocessors

N.Foutris
120

heavily used entries, the majority of training is affected, and so the IPC loss due
to faults is much greater.

Table 35: Average, maximum, and standard deviation of IPC loss across all SPEC CPU2006
benchmarks when one, three, and five faults are injected into the prefetcher table. The 11
upper-most rows show the prefetch-friendly benchmarks, the next 18 show the prefetch-

neutral benchmarks and the last row show the averages for the two categories.

Benchmark

IPC (%) slowdown

1-fault 3-faults 5-faults

Avg Max Stdev Avg Max Stdev Avg Max Stdev

P
re

fe
tc

h
 f

ri
e
n

d
ly

bzip2 2.182 4.536 2.518 3.490 4.835 1.790 3.905 17.101 1.409

Bwaves 0.261 0.087 0.405 0.278 0.934 0.491 0.294 0.974 0.499

Gamess 0.009 0.506 0.005 0.668 7.728 3.447 1.035 18.533 4.246

Zeusmp 0.003 1.350 0.060 0.019 1.424 0.060 0.083 1.512 0.060

leslie3d 0.097 1.234 0.272 0.332 1.644 0.465 0.690 2.750 0.623

dealII 0.033 0.168 0.011 0.035 3.291 0.020 0.041 4.446 0.028

Soplex 0.442 0.572 0.001 0.688 0.981 0.242 0.696 2.543 0.350

GemsFDTD 0.471 11.425 1.948 1.740 12.093 3.673 2.920 17.301 4.492

libquantum 1.124 2.207 0.934 1.455 7.992 0.889 1.827 13.793 1.467

tonto 0.615 7.176 2.012 0.865 15.515 2.312 1.160 15.524 2.613

wrf 0.122 4.282 0.322 0.630 6.922 1.175 1.339 7.508 1.768

Average 0.487 11.425 0.771 0.927 15.515 1.324 1.271 18.533 1.595

P
re

fe
tc

h
 n

e
u

tr
a
l

perlbench 0.098 1.110 0.171 0.224 1.442 0.227 0.259 1.465 0.245

gcc 0.009 0.033 0.006 0.016 0.047 0.013 0.021 0.065 0.018

mcf 0.007 0.031 0.004 0.009 0.070 0.005 0.009 0.079 0.006

milc 0.181 0.739 0.000 0.211 1.704 0.000 0.310 2.243 0.001

gromacs 0.118 1.016 0.252 0.433 1.092 0.306 0.549 1.618 0.322

cactusADM 0.161 0.204 0.124 0.241 0.396 0.127 0.268 0.723 0.150

namd 0.008 0.019 0.007 0.009 0.084 0.006 0.009 0.148 0.007

gobmk 0.010 0.018 0.009 0.011 0.021 0.008 0.012 0.028 0.008

povray 0.007 0.132 0.006 0.011 0.146 0.008 0.013 0.488 0.008

calculix 0.062 0.161 0.081 0.068 0.306 0.083 0.077 0.318 0.090

hmmer 0.036 0.081 0.010 0.039 0.111 0.022 0.048 0.199 0.034

sjeng 0.007 0.018 0.003 0.008 0.024 0.006 0.009 0.028 0.006

h2564ref 0.007 0.028 0.007 0.008 0.028 0.007 0.009 0.156 0.007

lbm 0.218 0.978 0.364 0.278 1.074 0.399 0.366 2.564 0.418

omnetpp 0.025 0.088 0.027 0.031 0.286 0.021 0.036 0.681 0.019

astar 0.013 0.219 0.028 0.026 0.261 0.042 0.047 0.273 0.069

sphinx3 0.005 0.008 0.001 0.006 0.029 0.006 0.011 0.056 0.013

xalancbmk 0.026 0.054 0.008 0.040 0.578 0.080 0.058 2.070 0.115

Average 0.055 1.110 0.065 0.092 1.704 0.075 0.112 2.564 0.085

Overall average 0.219 11.176 0.331 0.409 15.515 0.549 0.555 18.533 0.658

To clarify the severity of the performance loss due to the faulty data prefetcher,
Table 36 shows the actual IPC of the prefetch-friendly (upper half) and prefetch-
neutral (lower half) SPEC CPU2006 benchmarks for the following CPU core
configurations: (a) L1 cache stride data prefetcher disabled, (b) fault-free L1
cache stride data prefetcher enabled, and (c) faulty data prefetcher with 1, 3, and
5 faults injected into the prefetch table array (maximum IPC loss for each fault
class). In particular, 8 out of 29 benchmarks (31%) lost the performance
improvement gained from integrating the data prefetcher in the baseline CPU
design. For example, on bzip2 the IPC without the data prefetcher was 1.074.
When quintuple faults were injected into the prefetch table array, IPC was

Architectures for Dependable Modern Microprocessors

N.Foutris
121

reduced to 1.064 (similar behaviour was seen in: gamess, GemsFDTD,
libquantum, tonto, cactusADM, povray, sjeng and omnetpp).

Table 36: IPC values for prefetch-friendly and –neutral benchmarks, without data
prefetcher, with the data prefetcher enabled and with 1, 3 and 5 faults injected into the

prefetch table array.

Benchmark
IPC

w/o data
prefetcher

w/ data
prefetcher

1-fault
3-

faults
5-

faults

P
re

fe
tc

h
 f

ri
e

n
d

ly

bzip2 1.074 1.284 1.226 1.221 1.064

bwaves 0.648 0.714 0.713 0.707 0.707

gamess 1.743 2.118 2.107 1.954 1.725

zeusmp 0.971 1.059 1.045 1.044 1.043

leslie3d 0.784 0.844 0.834 0.830 0.821

dealII 0.988 1.083 1.081 1.047 1.035

soplex 0.547 0.599 0.596 0.593 0.584

GemsFDTD 0.528 0.634 0.561 0.558 0.525

libquantum 0.395 0.463 0.453 0.426 0.395

tonto 1.601 1.855 1.722 1.567 1.567

wrf 0.793 1.068 1.022 0.994 0.988

P
re

fe
tc

h
 n

e
u

tr
a
l

perlbench 1.663 1.705 1.686 1.680 1.680
gcc 0.693 0.707 0.707 0.707 0.707
mcf 0.208 0.209 0.209 0.209 0.209
milc 0.757 0.726 0.721 0.714 0.710
gromacs 0.944 0.971 0.961 0.960 0.955
cactusADM 1.457 1.464 1.461 1.458 1.453
namd 1.550 1.555 1.555 1.554 1.553
gobmk 1.234 1.242 1.242 1.242 1.242
povray 1.130 1.135 1.134 1.133 1.129
calculix 1.127 1.181 1.179 1.177 1.177
hmmer 1.169 1.176 1.175 1.175 1.174
sjeng 1.180 1.181 1.181 1.181 1.180

h2564ref 1.549 1.563 1.563 1.563 1.561
lbm 0.686 0.718 0.711 0.710 0.700
omnetpp 0.505 0.505 0.505 0.504 0.502
astar 0.914 0.941 0.939 0.939 0.938
sphinx3 1.365 1.374 1.374 1.374 1.373

xalancbmk 1.102 1.144 1.143 1.137 1.120

By further analysing the internal behaviour of the prefetcher, we found that the
extent of the performance impact that faults have, depends on the distribution of
the training input addresses across the prefetch table entries (apart from the
prefetch-friendliness of the workload).

Architectures for Dependable Modern Microprocessors

N.Foutris
122

Table 37: Training activity (X) of the prefetch table entries. Number of prefetch table entries
that handle less than 50%, less than 75% and 100% of the memory traffic training the

prefetcher.

Benchmark
Prefetch Table Entries Training Activity

X ≤ 50% X ≤ 75% X =100%

P
re

fe
tc

h
 f

ri
e

n
d

ly

bzip2 1 2 7
bwaves 4 7 12
gamess 17 17 17
zeusmp 9 25 62
leslie3d 9 17 47

dealII 1 2 24
soplex 8 18 63
GemsFDTD 4 7 32

libquantum 1 2 5
tonto 3 6 40
wrf 12 22 59

Average 6 11 33

P
re

fe
tc

h
 n

e
u

tr
a
l

perlbench 3 4 63
gcc 7 20 64
mcf 3 5 47
milc 1 2 23
gromacs 12 22 58
cactusADM 4 6 11

namd 2 8 57
gobmk 3 9 64
povray 6 14 64
calculix 4 8 63
hmmer 6 10 59
sjeng 3 6 64
h2564ref 8 20 64
lbm 1 2 32
omnetpp 1 2 31
astar 4 6 47
sphinx3 1 2 57
xalancbmk 2 3 62

Average 4 8 51

Table 37 presents the activity of each entry of the prefetcher table for the
prefetch-friendly (upped half) and prefetch-neutral benchmarks (lower half). For
example, in GemsFDTD, 4 entries are trained by 50%, 7 entries by 75%, and 32
entries by 100% of the load/store address traffic (GemsFDTD speedup is 20.07%,
while slowdown is up to 17.30% when quintuple faults are injected). The
observations from Table 37 are the following:

1. When a fault occurs in heavily used entries, the majority of training will
be affected, and so the maximum IPC loss will be much greater. For
example, in libquantum, a single entry is trained by 50%, 2 entries by
75%, and 5 entries by 100% of the load/store address traffic (libquantum
speedup is 17.20%, while slowdown is up to 13.80% when quintuple
faults are injected).

Architectures for Dependable Modern Microprocessors

N.Foutris
123

2. Benchmarks with uniform usage of the prefetch table entries have lower
probability of massive IPC loss. For example, the training address
stream generated by gcc is distributed across the entries of the prefetch
table (7 entries are trained by 50% of the traffic while all 64 entries are
trained by 100% of the memory traffic. Therefore, the probability of
polluting the majority of the training addresses by a given number of
injected faults is low leading to a very low max IPC loss (-0.065% with 5
faults; see Table 4)

3. Table 38 shows the number of issued prefetch requests per 1,000
committed instructions and the L1 cache miss rate (misses per 1,000
committed instructions, or MPKI) for the fault-free and faulty cases for
each group of injected faults. As we can observe in Table 38, the faulty
prefetcher is throttled because the faults reduce the number of training
events. As a result, the number of issued prefetch requests drops for all
benchmarks (on average, the number of issued prefetch requests drops
from 22 to 20 per 1,000 committed instructions); therefore, performance
gains due to prefetching are lower (the average L1 cache miss rate
roughly increases from 26 to 27 MPKI in the quintuple injected fault
scenario). The data in Table 6 also illustrate the greater performance
sensitivity of the prefetch-friendly benchmarks to faults. Faults in the
prefetch table change the prefetch addresses sent to memory, which in
turn increases the L1 cache miss rate and hurts IPC.

We also looked at a variety of microarchitectural events that can be used to
identify when faults in the data prefetcher lead to IPC loss. We found that the
number of off-range strides is such an event and is triggered when the difference
between the trained address and a new memory address is outside the legal
stride limits. As a result, the incoming memory address is dropped and fails to
train the stride data prefetcher.

Architectures for Dependable Modern Microprocessors

N.Foutris
124

Table 38: Average L1 cache miss rate and average prefetch issue rate with one, three, and
five faults injected.

Benchmark

fault-free 1-fault 3-faults 5-faults

Prefetch
Issue Rate

Miss
Rate

Prefetch
Issue
Rate

Miss
Rate

Prefetch
Issue
Rate

Miss
Rate

Prefetch
Issue
Rate

Miss
Rate

P
re

fe
tc

h
 f

ri
e
n

d
ly

bzip2 3.81 16.15 3.80 16.42 3.65 16.44 3.56 16.45

bwaves 22.88 121.27 22.20 121.65 21.50 121.84 17.65 121.98

gamess 9.84 6.02 9.84 6.03 9.68 6.30 9.51 6.57

zeusmp 45.54 15.12 44.15 15.33 42.50 15.41 40.49 15.51

leslie3d 18.04 26.84 18.00 26.85 17.65 26.88 17.24 26.90
dealII 6.43 4.57 6.41 4.57 6.38 4.58 6.37 4.59

soplex 8.44 16.61 8.21 16.62 8.00 16.73 7.91 16.88

GemsFDTD 40.65 43.01 38.91 42.34 37.76 42.63 37.21 42.95

libquantum 25.22 14.28 24.84 14.31 24.10 14.36 23.37 14.40

tonto 39.22 16.64 38.90 16.80 38.35 17.09 37.74 17.33

wrf 32.96 7.64 32.70 7.70 32.12 7.86 31.44 8.05

Average 23.00 26.20 22.54 26.24 21.97 26.37 21.14 26.51

P
re

fe
tc

h
 n

e
u

tr
a
l

perlbench 14.70 2.82 14.58 2.89 14.31 2.89 14.17 2.92

gcc 16.22 11.54 15.99 11.54 15.98 11.55 15.76 11.56

mcf 8.05 219.37 7.88 219.37 7.80 219.39 7.39 219.39

milc 35.15 38.96 34.39 39.37 33.64 40.04 32.40 40.74
gromacs 4.33 31.49 4.30 31.67 4.21 31.68 4.12 31.70

cactusADM 11.07 0.001 11.02 0.001 10.90 0.001 10.01 0.001

namd 0.07 0.31 0.07 0.31 0.07 0.31 0.06 0.31

gobmk 7.18 6.92 7.02 6.92 6.88 6.93 6.79 6.93

povray 3.91 37.82 3.83 37.83 3.76 37.85 3.74 37.86

calculix 45.74 9.45 45.18 9.45 43.84 9.45 43.27 9.46

hmmer 19.08 6.29 18.84 6.36 18.54 6.43 17.97 6.59

sjeng 100.20 4.03 100.02 4.05 99.86 4.06 99.19 4.06

h2564ref 13.40 5.41 13.14 5.41 12.74 5.41 12.72 5.41

lbm 17.69 42.00 17.44 42.04 17.03 41.90 16.60 41.98

omnetpp 0.63 52.01 0.63 52.05 0.62 52.06 0.61 52.07
astar 10.85 0.38 10.85 0.38 10.83 0.38 10.81 0.38

sphinx3 3.01 0.83 2.93 0.83 2.93 0.83 2.90 0.83

xalancbmk 57.92 23.82 55.30 23.98 55.30 24.06 54.31 24.18

Average 20.51 27.41 20.27 27.47 19.96 27.51 19.61 27.58

Overall average 21.76 26.95 21.41 27.00 20.96 27.08 20.37 27.17

Table 39,Table 40 present the number of off-range stride events per 1K
committed instructions for the fault-free and the faulty microprocessor models (i.e.
1, 3 and 5 faults injected into the prefetch table array). In particular, multiple
permanent faults increase the amount of off-range stride events up to 25% for the
prefetch-friendly benchmarks (off-range stride rate increased from 118.7 to 148.3
per 1K commits), up to 8% for the prefetch-neutral benchmarks (ranging from
231.3 to 249.3 per 1K commits) and across all SPEC CPU2006 benchmarks up
to 14% (from 175.0 to 198.8 per 1K commits). The number of off-range strides
increases for two reasons:

 Faults injected in tag field can result in unexpected table hits. Therefore,
memory instructions with completely different access patterns are
compared and produce out-of bound strides.

 Faults in the previous load address sub-field increase the amount of off-
range stride occurrences.

Architectures for Dependable Modern Microprocessors

N.Foutris
125

Table 39: Number of off-range stride events for the prefetch-friendly benchmarks with a
fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch table.

Off-range stride (per 1K commits)
Prefetch-friendly

benchmarks
fault-free 1-fault 3-faults 5-faults

bzip2 80.668 84.456 90.826 98.275
bwaves 199.938 215.250 217.930 232.224
gamess 0.619 8.729 14.790 21.116
zeusmp 58.051 62.352 69.640 78.678
leslie3d 162.893 164.042 173.872 183.859
dealII 161.653 167.454 185.109 197.482
soplex 185.109 197.482 253.957 256.547
GemsFDTD 231.682 238.504 249.156 257.502

libquantum 199.884 210.384 226.992 240.348
tonto 7.225 12.792 22.158 34.330

wrf 19.070 22.450 26.061 31.600

Average 118.799 125.808 139.135 148.360

Table 40: Number of off-range stride events for the prefetch-friendly benchmarks with a
fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch table.

Off-range stride (per 1K commits)
Prefetch-neutral

benchmarks
fault-free 1-fault 3-faults 5-faults

perlbench 175.905 179.268 184.975 190.678
gcc 451.466 454.177 463.396 474.071

mcf 29.761 33.629 47.334 60.829
milc 126.264 131.267 139.166 149.406
gromacs 305.408 305.732 311.365 317.117
cactusADM 154.198 155.932 161.514 170.552
namd 345.105 346.445 348.692 352.429
gobmk 322.921 325.778 331.724 336.996
povray 344.224 346.796 350.445 357.719
calculix 56.477 57.814 62.998 68.642
hmmer 219.894 226.234 239.336 250.625
sjeng 113.718 128.047 141.591 151.138
h2564ref 181.039 181.074 188.750 195.844
lbm 413.886 414.130 417.924 421.734

omnetpp 314.216 315.534 321.305 327.514
astar 106.356 120.792 125.509 133.075

sphinx3 309.220 310.852 315.971 321.027
xalancbmk 194.846 201.784 207.318 208.105

Average 231.383 235.293 242.184 249.305

The severe impact of faults on the performance of SPEC CPU2006 benchmarks
indicates the need to integrate fault detection schemes for stride prefetchers.
Figure 37 presents the average percentage of increase on the off-range stride
occurrences (y-axis) to the amount of injected faults (x-axis). It is evident that the
number of off-range stride events linearly correlates to the number of faults in the
prefetcher and therefore to IPC loss. Monitoring the behaviour of off-range

Architectures for Dependable Modern Microprocessors

N.Foutris
126

occurrences throughout workload execution, can steer the implementation of
permanent error detection mechanisms.

5.90%

17.12%

24.88%

1.73%

4.76%

7.79%

0%

5%

10%

15%

20%

25%

30%

0 1 3 5

o
ff

-r
a

n
g

e
 %

 i
n

c
re

a
s
e

#faults

prefetch-friendly prefetch-neutral

Figure 37: Correlation of off-range (%) increment with 1, 3 and 5 faults injected.

Apart from the prefetch table fault injections and analysis, we performed a similar
injection campaign in the input and request queues of the data prefetcher (PIQ
and PRQ). Due to the small size of PIQ and PRQ (8 entries each), we injected
only single faults in them. This was sufficient to demonstrate the severe impact on
performance that hard faults on these queues can have on IPC. Figure 38 shows
the maximum and average IPC slowdowns and the standard deviation for single
faults injected into the PIQ and PRQ per benchmark.

0%

5%

10%

15%

20%

25%

IP
C

 (%
)

s
lo

w
d

o
w

n

max

avg

stdev

(a)

(b)

0%

5%

10%

15%

20%

25%

30%

p
e

rl
b

e
n

c
h

b
z
ip

2

g
c
c

b
w

a
v
e

s

g
a

m
e

s
s

m
c
f

m
ilc

z
e

u
s
m

p

g
ro

m
a

c
s

c
a

c
tu

s
A

D
M

le
s
lie

3
d

n
a

m
d

g
o

b
m

k

d
e

a
lI
I

s
o

p
le

x

p
o

v
ra

y

c
a

lc
u

lix

h
m

m
e

r

s
je

n
g

G
e

m
s
F

D
T

D

lib
q

u
a

n
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
e

tp
p

a
s
ta

r

w
rf

s
p

h
in

x

x
a

la
n

c
b
m

k

a
v
e

ra
g

e

IP
C

 (
%

)
s

lo
w

d
o

w
n

max

avg

stdev

Architectures for Dependable Modern Microprocessors

N.Foutris
127

0%

5%

10%

15%

20%

25%

30%

p
e

rl
b

e
n

c
h

b
z
ip

2

g
c
c

b
w

a
v
e

s

g
a

m
e

s
s

m
c
f

m
ilc

z
e

u
s
m

p

g
ro

m
a

c
s

c
a

c
tu

s
A

D
M

le
s
lie

3
d

n
a

m
d

g
o

b
m

k

d
e

a
lI
I

s
o

p
le

x

p
o

v
ra

y

c
a

lc
u

lix

h
m

m
e

r

s
je

n
g

G
e

m
s
F

D
T

D

lib
q

u
a

n
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
e

tp
p

a
s
ta

r

w
rf

s
p

h
in

x

x
a

la
n

c
b
m

k

a
v
e

ra
g

e

IP
C

 (
%

)
s

lo
w

d
o

w
n

max

avg

stdev(b)

Figure 38: Average and maximum IPC slowdowns and standard deviations for the fault-free

and faulty (a) PIQ and (b) PRQ when single faults are injected.

Across all 29 benchmarks, the average IPC loss (1.5% and 2.5% for PIQ and
PRQ, respectively) and maximum IPC loss (24.3% and 26.3% for PIQ and PRQ,
respectively) are significantly higher than that of the prefetch table because a
large number of training addresses (buffered in PIQ) and prefetch requests
(queued in PRQ) are likely to be polluted by a single hard fault. Table 41 shows
the IPC change for the prefetch-friendly (upped half) and prefetch-neutral
benchmarks (lower half). It is evident that having a faulty PRQ or PIQ severely
slows-down performance (13 benchmarks out of the 29 lost the speedup gained
by the data prefetcher due to a faulty PRQ and 11 due to a faulty PIQ).

Architectures for Dependable Modern Microprocessors

N.Foutris
128

Table 41: Average IPC for prefetch-friendly and –neutral benchmarks, without the data
prefetcher, with a fault-free data prefetcher and with single faults injected into the prefetch

input and request queue.

Benchmark
Average IPC

w/o data
prefetcher

w/ data
prefetcher

1-fault
PIQ

1-fault
PRQ

P
re

fe
tc

h
 f

ri
e

n
d

ly

bzip2 1.074 1.289 1.041 1.000

bwaves 0.648 0.714 0.707 0.706

gamess 1.743 2.118 1.819 1.866

zeusmp 0.971 1.059 0.964 0.965

leslie3d 0.784 0.844 0.802 0.821

dealII 0.988 1.083 1.069 1.048

soplex 0.547 0.599 0.571 0.547

GemsFDTD 0.528 0.632 0.477 0.507

libquantum 0.395 0.463 0.378 0.341

tonto 1.601 1.855 1.569 1.567

wrf 0.793 1.068 0.868 0.824

P
re

fe
tc

h
 n

e
u

tr
a
l

perlbench 1.663 1.705 1.679 1.666

gcc 0.693 0.707 0.702 0.702
mcf 0.208 0.209 0.208 0.208
milc 0.757 0.726 0.701 0.657
gromacs 0.944 0.971 0.947 0.943
cactusADM 1.457 1.464 1.454 1.453
namd 1.550 1.555 1.554 1.551
gobmk 1.234 1.242 1.240 1.239
povray 1.130 1.135 1.133 1.133
calculix 1.127 1.181 1.179 1.174
hmmer 1.169 1.176 1.174 1.163
sjeng 1.180 1.181 1.179 1.178
h2564ref 1.549 1.563 1.538 1.556
lbm 0.686 0.718 0.714 0.698

omnetpp 0.505 0.505 0.504 0.504
astar 0.914 0.941 0.930 0.928
sphinx3 1.365 1.374 1.372 1.372
xalancbmk 1.102 1.144 1.098 1.113

The fault location determines the extent of the performance impact. Figure 39
shows the average utilization of each entry of the PRQ and PIQ (% of times a
given entry of the queue is utilized). In particular, the PIQ entries are utilized
uniformly across all benchmarks with the exception of the top 2 entries. On the
contrary, the top three entries in PRQ are utilized 95% of the time across all
benchmarks. Therefore, faults that reside in the rear entries of the queue have
minimal impact on performance. A different entry allocation scheme (e.g. advance
a write pointer every time we insert a new prefetch request in the PRQ) can
distribute the payload uniformly for each of the queues and reduce the IPC loss.
Detecting faults in the PIQ could be done by monitoring off-range strides (they
should increase) while detecting faults in the PRQ can be accomplished by
monitoring addresses that cross the 4k page boundary.

Architectures for Dependable Modern Microprocessors

N.Foutris
129

35.9%

16.7%

10.6% 8.1% 8.8% 7.0% 6.4% 6.7%

66.7%

18.4%

9.9%
3.2%

0.8% 0.4% 0.4% 0.2%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 2 3 4 5 6 7 8

Average (%) activity of each entry in PIQ for SPEC CPU2006

Average (%) activity of each entry in PRQ for SPEC CPU2006

Figure 39: Utilization of the PIQ and PRQ entries across all SPEC CPU2006 benchmarks.

4.5.4 Performance Variability

In this section, we examine the performance variability across identical CPU
cores in the presence of multiple faults in their data prefetchers. Our findings
(resulting from the performance impact analysis and the detailed results of the
previous subsection) are the following:

 There is a large variation of IPC loss even under the presence of
different single faults (up to 7% for single faults in the prefetch table,
24% for the PIQ, and 26% for the PRQ) in the data prefetcher. This
finding holds when all cores are affected by the same number of faults.

 The difference in IPC slowdown for different numbers of faults (1 to 5)
across the cores ranges between 0.005% and 17% compared to the
fault-free IPC, when considering only faults in the prefetch table. The
same range is 0.01 to 24% for PIQ faults and 0.02% to 26% for PRQ
faults.

 The difference between the best- and worst-case performance for single
and multiple faults is not due to outlier behaviour. The standard deviation
of the IPC loss on the prefetch-friendly benchmarks due to faults in the
prefetcher table is 0.7%, 1.3%, and 1.6% for single, triple, and quintuple
faults, respectively.

As Table 35 shows, certain benchmarks have even larger stdev values: for
example the stdev of bzip2 benchmark with single fault injected is 2.5%, while the
gamess benchmark stdev is 3.4% and 4.2% for triple and quintuple faults,
respectively.

The standard deviation of IPC loss for the prefetch-neutral benchmarks is 0.06%,
0.07%, and 0.08% (Table 35). The standard deviation of the IPC drop for all
single faults injected into PIQ and PRQ is 2.0% and 2.4%, respectively. The key
message here is that hard faults in data prefetchers significantly increase inter-
core performance variability.

Architectures for Dependable Modern Microprocessors

N.Foutris
130

4.6 Resiliency of branch prediction unit

4.6.1 Classification of faults

In this sub-section, we present the fault classification in the branch prediction unit
component (we pick a representative component from each structure of
predictors integrated into the BPU). For confidence (95%) and error margin (5%),
2,604 faults masks are sampled and injected into the arrays (Table 42).

Table 42: Distribution of the injected faults on the branch prediction unit.

Component Field
#Injected

faults
Branch predictor
array

Bi-modal predictor 660
cBTB – Branch address 662

cBTB – Tag 660

RAS 403
Branch predictor
control

Bi-modal/Two-level/Meta-predictor
index-generation logic

64

Bi-modal/Two-level direction counter
adder

2

Global history register shift operation to
append new values

2

Meta-predictor selection logic 2
Meta-predictor update logic 2
RAS head/tail pointer value 10
RAS head/tail pointer update logic 5
RAS annulment bit 2
RAS overflow bit 2
RAS underflow bit 2
cBTB index-generation logic 10
cBTB tag-search logic 2
cBTB replacement logic 2

Global BPU logic 4

Total 2,385 array faults + 111 control faults 2,495

The following tables break down the fault classifications for the most
representative sub-components of the branch prediction unit (Bimodal Predictor,
cBTB, RAS). We separately present results for the arrays and the control parts.
No output error has been observed in our experiments and thus we have omitted
columns for output errors (all are 0%); this is an expected result that matches
intuition for the components we studied. Table 43 shows that more than 55% of
the faults in the BPU arrays are performance faults; about 43% are benign, while
the RAS exhibits the only case in which crashes are reported (6.1%) due to the
generation of illegal addresses. A similar behaviour was expected for the faults in
the cBTB array (tag and address) for the same reason (invalid address
generation). In our experiments, we have not observed such cases in the cBTB,
most likely because the BTB array is significantly larger than the RAS array. It is
therefore probable that the injected faults leading to invalid addresses in the BTB
array are not excited by the benchmarks.

Architectures for Dependable Modern Microprocessors

N.Foutris
131

Table 43: Branch predictor unit array fault classification.

Field
Slowdown

Error (%)
Speedup
Error (%)

Benign
Error

Crash

Bi-modal Predictor 40.3 34.4 25.3 0.0

cBTB – Branch Address 9.0 43.3 47.7 0.0

cBTB – Tag 19.8 31.0 49.2 0.0

RAS 36.0 8.5 49.4 6.1

Average 26.3 29.3 42.9 1.5

Table 44 shows that faults in the control part of the BPU, which lead to more
performance faults (greater than 60%) than faults in the arrays (Table 43).
Slowdown errors occur much more frequently than speedups, and are more
massive compared to the array. Furthermore, RAS-related control logic can lead
to simulator crashes because they generate invalid addresses, which is also the
case in the RAS array (Table 43).

Table 44 Branch Predictor Unit Control Fault Classification.

Field
Slowdown
Error (%)

Speedup
Error (%)

Benign
Error (%)

Crash
(%)

Bi-modal/Two-level/Meta-
predictor index generation
logic

29.3 16.0 54.7 0.0

Bi-modal/Two-level direction
counter adder

100.0 0.0 0.0 0.0

Global history register shift
operation to append new
values

98.3 1.7 0.0 0.0

Meta-predictor selection logic 84.5 10.3 5.2 0.0
Meta-predictor update logic 27.6 20.7 51.7 0.0
RAS head/tail pointer value 76.6 7.6 13.8 2.1
RAS head/tail pointer
increment/ decrement
logic

2.1 2.1 29.7 66.2 %

RAS annulment bit 7.4 88.9 3.7 0.0
RAS overflow bit 22.4 6.9 70.7 0.0
RAS underflow bit 6.9 89.7 3.4 0.0

cBTB index-generation logic 71.6 0.9 27.6 0.0
cBTB tag-search logic 0.0 0.0 0.0 100.0
cBTB replacement logic 1.7 0.0 98.3 0.0
Global BPU logic 46.9 53.1 0.0 0.0

Average 41.1 21.3 25.6 12.0

4.6.2 Performance Impact of faults

In this section we measure the performance loss and variability due to hard faults.
According to the analysis of Section 4.2.2, we inject multiple faults of different
group sizes (1 and 5 to 25 in steps of 5 faults) in the five large arrays (Bimodal,
Two-level, Meta predictors, cBTB and iBTB) while for the two smaller structures
(RAS and BHR) we inject single faults.

Architectures for Dependable Modern Microprocessors

N.Foutris
132

Figure 41 shows the AVG and max IPC slowdown for the five arrays. Each graph
shows the average across all 11 benchmarks with up to 25 faults injected. Using
[67] we compute fault populations for 99% confidence and 3% error margin. The
calculations lead to a total of 1176 different single faults which are used for the
injections (110 faults for each of the Bimodal, Two-level, Meta; 490 for the cBTB;
290 for the iBTB ; 50 for the RAS; and 16 for the BHR). In multiple fault injections
we apply sets of randomly selected faults to each component with the exception
of RAS and BHR where we inject single faults because of their small size. Each
group is constructed by randomly selecting (uniform distribution) from the set of
1176 single faults. For each multiple fault group size (5, …, 25) we run 1200
different injection experiments for a total of 6000 multiple fault injections. All faults
are injected in different array entries because our mechanisms can protect from
any number of faults per entry.

Table 45: Mispredictions per 1K instructions in fault-free BP and BTBs (* = very few
misses).

Benchmark Branch predictor cBTB iBTB

perlbench 1.39 0.11 0.02
bzip2 6.49 0.00* 0.00*
gcc 12.98 0.14 0.00*
mcf 30.39 0.16 0.00*
gobmk 20.00 0.07 0.00*
dealII 1.71 0.00* 0.00*
soplex 14.02 0.00* 0.00*
povray 5.86 0.06 0.00*
lbm 0.05 0.00* 0.00*
omnetpp 5.85 0.03 0.00*
xalancbmk 3.53 0.10 0.00*

Average 9.30 0.06 0.00*

To better interpret the multiple fault injection graphs of Figure 41, Table 45 shows
the number of mispredictions per 1K instructions for BP, iBTB and cBTB while
Table 46 shows the branch dynamic frequencies.

Table 46: Dynamic branch instructions per 1K instructions that use the Bimodal predictor,
Two-level predictor, cBTB and iBTB (*= very low activity).

benchmark Bimodal Two-level cBTB iBTB

perlbench 179.79 28.31 245.5 12.81

bzip2 136.35 34.46 181.9 0.00*
gcc 223.39 78.82 364.7 7.65
mcf 367.29 193.46 625.4 0.00*
gobmk 210.38 95.21 350.8 0.00*

dealII 36.40 35.52 96.42 0.32
soplex 271.86 43.52 326.7 0.00*
povray 85.49 59.82 195.9 8.50
lbm 8.44 2.89 63.95 0.00*
omnetpp 154.15 63.68 264.8 7.08
xalancbmk 193.75 43.88 269.7 20.97

Average 169.75 61.78 271.4 5.21

Among the three components of the branch predictor (Bimodal, Two-level, Meta)
multiple faults in the Bimodal and Meta lead to severe IPC loss (first and third

Architectures for Dependable Modern Microprocessors

N.Foutris
133

diagrams of Figure 41). For the Bimodal, the IPC impact is high because it drives
the prediction decision 78% of the time. The Two-level predictor is less frequently
used and thus faults in it have smaller impact on IPC (second diagram). Faults in
the Meta predictor, consistently have a large IPC impact because it is always
used. As Table 45 shows, the frequency of fault-free mispredictions in the two
BTBs is very small so the impact of faults is negligible too.

Figure 42 shows the extra mispredictions due to faults over the fault-free case in
the predictors (an n % point means that if the fault-free case has a k %
misprediction ratio, the faulty has k+n %). Multiple faults in the Bimodal and the
Meta predictor lead to significantly higher misprediction ratios and IPC loss as
shown in Figure 41. Multiple faults in the two-level predictor lead to very limited
IPC loss because it is used infrequently by the Meta predictor.

0.100

0.130
0.150

0.160

0.230
0.250

0.002 0.002 0.002 0.003 0.003 0.004

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 5 10 15 20 25

M
is

p
re

d
ic

ti
o

n
 r

a
ti

o
 (

%
)

#faults

AVG (%) misprediction ratio deviation for cBTB

AVG (%) misprediction ratio deviation for iBTB

Figure 40: Extra misprediction ratio (%) (on top of fault-free case) caused by multiple faults
in BTBs.

The BTBs are minimally affected by faults, as the last graphs of Figure 41 show,
due to the low number of extra mispredictions (Figure 40). The iBTB‟s lack of IPC
sensitivity is due to low frequency of indirect branches (Table 46) and fault
masking in the high order bits of the target address which does not change often.
Although the cBTB is much more frequently used (Table 46), IPC is less sensitive
to cBTB mispredictions because (a) only a small number of cBTB entries are
utilized (Table 47), (b) as in iBTB, a lot of faults are masked due to infrequently
changing high address bits and (c) the cBTB misprediction penalty is much lower
than that of the BP because the targets of conditional and unconditional-direct
branches are verified in the front end of the processor.

Despite the small impact of faults in the Two-level predictor and the two BTBs, we
include them in our evaluation because in workloads with a larger code footprint,
the impact of multiple faults will be higher. Table 48 shows the max and average
IPC slowdown for single faults in the RAS and BHR. The results clearly justify the
need for protection. A single faulty cell in the RAS seriously degrades its
prediction accuracy; IPC slowdown can be more than 16% when the call stack
depth is low because of high reuse of the same faulty entry. Similarly, a single
faulty bit in the BHR degrades performance significantly by affecting the accuracy
of branch predictors.

Architectures for Dependable Modern Microprocessors

N.Foutris
134

6.446

8.249

10.907
11.101 11.272 11.295

1.290

2.326

4.335

5.348 5.356

6.452

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

MAX (%) IPC slowdown for Bi-modal Predictor

AVG (%) IPC slowdown for Bi-modal Predictor

0.12

1.029

1.262
1.345 1.349

1.542

0.060 0.063 0.065 0.067 0.068 0.088

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

MAX (%) IPC slowdown for Two Level Predictor

AVG (%) IPC slowdown for Two Level Predictor

8.205
9.898

10.231

11.452
12.258 13.031

5.510 5.660 5.893 5.952

6.938
7.687

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 5 10 15 20 25

ÌP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

MAX (%) IPC slowdown for Meta Predictor

AVG (%) IPC slowdown for Meta Predictor

Architectures for Dependable Modern Microprocessors

N.Foutris
135

0.652 0.671 0.684
0.731

0.851
0.901

0.151 0.174

0.258

0.397

0.684

0.786

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

MAX (%) IPC slowdown for cBTB

AVG (%) IPC slowdown for cBTB

0.054

0.071

0.081
0.087

0.091

0.102

0.030

0.042

0.051

0.072 0.075 0.093

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

MAX (%) IPC slowdown for iBTB

AVG (%) IPC slowdown for iBTB

Figure 41: Average and maximum % IPC loss (over the fault-free case) with 1…25 faults per
component

3
.

3
 The 6.4% IPC slowdown for single fault in the Bimodal predictor has been measured for gcc

benchmark which heavily accesses the single faulty entry for the SimPoint sample with the largest
weight. Similarly high IPC loss has been observed even for single faults in gobmk and omnetpp.

Architectures for Dependable Modern Microprocessors

N.Foutris
136

2.951 3.062 3.081 3.115

4.121

5.164

0.632

1.048 2.021

2.837 2.894

4.654

0.61

0.623 0.641 0.652 0.658 0.669
0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 5 10 15 20 25

M
is

p
re

d
ic

ti
o

n
 r

a
ti

o
 (

%
)

#faults

AVG (%) misprediction ratio deviation for Meta Predictor

AVG (%) misprediction ratio deviation for Bi-modal Predictor

AVG (%) misprediction ratio deviation for Two Level Predictor

Figure 42: Extra misprediction ratio (%) (on top of the fault-free case) caused by multiple
faults in BP.

Table 47: cBTB entry utilization per benchmark.

Benchmark cBTB % utilization
perlbench 44.82
bzip2 0.53
gcc 2.24
mcf 0.12

gobmk 6.68
dealII 1.17
soplex 9.81
povray 3.36
lbm 0.00
omnetpp 1.39
xalancbmk 17.92
Average 8.00

Table 48: Max and average IPC slowdown (%) for single faults in the RAS and the BHR.

Component Avg IPC slowdown (%) Max IPC slowdown (%)

RAS 1.03 16.12

BHR 2.26 8.27

4.6.3 Performance variability

Our simulations show large performance variability across cores in the presence
of faults. Our findings are the following:

 The max IPC slowdown even for single faults (Table 48, Figure 41) can
be up to 6.45% for the Bimodal, 8.21% for the Meta, and 16.12% for the
RAS, there is a large variation of IPC loss. This is observed when all
cores are affected by the same number of faults.

 The difference in IPC slowdown for different number of faults (1…25
faults; Figure 41) ranges for the Bimodal between 1.3% and 6.5% over
the fault-free IPC on the average (6.5% to 11.3% for worst case) and for

Architectures for Dependable Modern Microprocessors

N.Foutris
137

the Meta predictor between 5.5% and 7.7% over fault-free IPC on
average (8.2% to 13.0% for the worst case). This is observed when the
cores are affected by different number of faults.

 The difference between the best and worst case performance for single
and multiple faults is not due to outlier behavior. The standard deviation
(stdev) of the IPC change for single faults in Bimodal, Meta and RAS is
shown in Table 49. Similarly, Table 50 summarizes the stdev of IPC drop
for all multiple fault group sizes (5 to 25) in the Bimodal predictor.

Together, the data of Table 49 and Table 50 demonstrate the large variability of
the IPC impact for all fault group sizes. In 6 out of the 11 benchmarks the stdev of
IPC loss over the fault-free case ranges between 3.5% and 9.6%, and the
average stdev across all benchmarks is more than 3% for all fault group sizes.

Table 49: Stdev of IPC change over the fault free case for single fault runs in Bimodal, Meta
and RAS.

Stdev of IPC change (%) for single fault runs
benchmark Meta Bimodal RAS

perlbench 1.648 0.181 1.079
bzip2 8.261 0.643 0.475

gcc 6.510 3.211 1.236
mcf 0.464 0.045 1.014
gobmk 3.457 3.483 0.581
dealII 0.612 0.055 0.516
soplex 0.308 0.662 0.062
povray 4.969 0.464 1.268
lbm 0.050 0.513 0.578
omnetpp 4.184 4.179 2.785
xalancbmk 3.223 3.073 1.885

Average 3.062 1.500 1.043

Table 50: Stdev of IPC drop over the fault free case for multiple faults in the Meta predictor.

 Stdev IPC drop (%) [#faults in Meta]
benchmark [5] [10] [15] [20] [25]

perlbench 1.843 1.901 2.891 2.755 2.863

bzip2 8.851 8.987 9.644 9.344 9.399
gcc 6.756 6.612 6.891 6.954 6.901
mcf 0.672 0.681 0.788 0.712 0.764

gobmk 3.912 3.935 4.576 4.398 4.411
dealII 0.759 0.814 0.988 0.911 0.932
soplex 0.390 0.400 0.691 0.600 0.609
povray 5.112 5.231 5.958 5.921 5.932
lbm 0.050 0.051 0.077 0.074 0.076
omnetpp 4.352 4.472 4.989 4.981 4.984
xalancbmk 3.499 3.618 4.273 4.247 4.251

Average 3.290 3.336 3.796 3.717 3.738

4.7 Mechanisms to detect and tolerate hard faults

We propose low-cost hardware-based mechanisms that can detect and diagnose
any number of hard faults in front end speculation components and recover the
performance loss. The basic detection mechanism is based on enhancing the
inherent self-verifying property of the predictors with a write-read-compare (WRC)

Architectures for Dependable Modern Microprocessors

N.Foutris
138

flow, while the performance recovery techniques exploit spatial redundancy to
isolate, replace, or remap the faulty entries.

4.7.1 Fault detection and diagnosis

All front end predictors generate on-the-fly a response during the self-verification
stage. We exploit this property to trigger fault detection and diagnosis. Even
though our study focuses on control flow predictors (assuming that no parity or
ECC protection exists) the proposed techniques can easily be ported to other
self-verified speculation structures such as load address, value, memory
dependence predictors, etc.

The top part of Figure 43 shows a traditional self-verifying flow of a speculation
component while the bottom part shows the same flow enhanced with the WRC
mechanism. During the normal self-verifying flow, the array is updated upon a
misprediction (in some cases the predictor is always updated, e.g. in BP). Our
enhanced self-verifying flow is activated only on a misprediction and operates as
follows:

1. Write: This is the normal update step to the predictor.

2. Read: The newly written value is read from the prediction array in the
next cycle.

3. Compare: The newly read data from the prediction array is compared
against the ones used to update it (held in a register). In case of
mismatch, a permanent (or intermittent) fault is detected (it can‟t be
transient/soft since the entry was just updated). On a match, we assume
a fault-free entry.

Figure 43: Self-verifying flow enhanced with WRC flow.

The WRC flow requires a comparator to detect the existence of a fault (if the
SRAM array supports MBIST, the comparator of MBIST logic can be reused) and
extra control logic. Furthermore, array entries are extended with a faulty bit that is
set when the entry is diagnosed as faulty. The “faulty” bit is later used by the
recovery mechanisms.

The WRC flow will stall fetch during the Read step cycle, only if the front end
needs to read the same SRAM bank for a new prediction in that cycle (we model

Architectures for Dependable Modern Microprocessors

N.Foutris
139

these stalls assuming an 8KB bank for the BPs and BTBs). We experimentally
show that WRC flow overhead is very small.

In Table 51, we show the IPC overhead in fault-free runs when fault detection via
the WRC flow is enabled for all predictors. The IPC loss is due to the WRC
overhead. Compared to the IPC loss we observe in the runs with multiple faults,
the WRC overhead is very small. The WRC overhead can be further minimized if
it is enabled only when the CPU core operates in low voltage (i.e. more
susceptible to errors). Follows a detailed analysis of the protection mechanisms
for each component.

Table 51: IPC (%) loss per benchmark due to fetch stalls in fault-free processor when
predictor WRC is enabled.

Benchmark IPC loss

perlbench 0.164

bzip2 0.209
Gcc 0.819
Mcf 0.327
gobmk 1.227
dealII 0.118
soplex 0.459
povray 0.331
Lbm 0.000
omnetpp 0.097
xalancbmk 0.074

Average 0.348

BTB detection/diagnosis: For every cBTB or iBTB read access (target address
prediction) the pipeline verifies the predicted target. If the prediction is correct
then the BTB entry, used to make the prediction, is fault-free. If the target is
mispredicted, then the misprediction happens either due to aliasing or due to a
fault. In either case, we trigger the WRC flow and detect if a permanent or
intermittent fault has occurred, thus protecting BTB write accesses. Figure 44
illustrates the concept.

Figure 44: BTB with WRC flow support.

BP detection/diagnosis: A correct conditional branch execution verifies that the
2-bit counter used in the prediction is fault-free. A misprediction could be due to a

Architectures for Dependable Modern Microprocessors

N.Foutris
140

fault, aliasing, Meta predictor wrong decision or due to random branch behaviour.
Even though, unlike BTBs, BP arrays are always updated, we still trigger a WRC
flow only when the predictor mispredicts. The WRC flow for the BP predictors is
shown in Figure 45.

Figure 45: Branch predictor with WRC flow support.

RAS detection/diagnosis: Typically, a RAS is written on every push and read on
every pop operation. It is also written when we resolve a misprediction and
restore the contents of one of its entries with the correct branch target. Protecting
the RAS on read operations can be done when the return instruction is executed
using the default verification mechanism. If no misprediction is found then we
safely assume that the RAS entry used to make the prediction is fault-free. If a
misprediction occurs then we trigger a WRC flow when restoring the RAS entry
contents. We also trigger a WRC flow when we push into the RAS after fetching a
call instruction. On either occasion, we store the target address to both the RAS
and a register. Then, we read the same RAS entry (using a secondary write
pointer) and compare the value with the register. If no mismatch is found then
there is no fault. If a mismatch is found then a permanent/intermittent fault has
been detected (Figure 46). Small structures such as the RAS are typically
implemented with flip-flops instead of SRAM but our protection techniques apply
to both cases.

Figure 46: RAS with WRC flow support.

Architectures for Dependable Modern Microprocessors

N.Foutris
141

BHR detection/diagnosis: The fault detection mechanism for a N-bit Branch
History Register is based on adding a log2(N)-bit up/down, saturating counter,
which operates as follows: the counter is incremented every time a „1‟ is shifted
into the BHR and decremented every time a „1‟ is shifted out. So at any point in
time, the counter tracks the number of 1‟s in the BHR. If the counter underflows,
then at least one stuck-at-1 fault has been detected. A stuck-at-1 fault at slot X of
an N-bit BHR will propagate to the remaining slots X+1, …, N since the BHR is a
shifting structure. That will eventually cause the counter to underflow because we
will decrement (shift out 1) more often than we would increment (shift in 1). In the
event of constantly shifting 1‟s (for example when a BHR encounters a stream of
taken conditional branch instances inside a loop) then it is possible that no fault
will be detected for a period of time. This is not an issue though because the fault
is essentially masked. On the contrary, the counter overflows, when the BHR
experiences at least one stuck-at-0 fault. A stuck-at-0 fault at slot X will propagate
to the remaining slots X+1, …, N and will eventually cause the counter to overflow
because it will increment (occasionally shift in 1s) but never decrement (shift out
only 0s). Upon a BP misprediction, the BHR contents could be restored to a
previous value in order to improve prediction accuracy. In this case, the counter is
set to be equal to the number of 1s in the restored BHR value. Figure 47
illustrates the hardware support for detecting hard faults in the BHR. Once a fault
is detected, diagnosis of the fault happens without stalling instruction fetch as
follows (the predictor keeps using the BHR contents):

 Stuck-at 1 (0): We load BHR with 0s (1s), set the counter to N (0) and
gradually decrement. This mode ends when the counter underflows
(overflows) or when we see the first „1‟ („0‟) at the BHR output before the
counter underflows (overflows). If we detect a „1‟ („0‟) then we have
verified that the stuck-at-1 (stuck-at-0) fault is hard and the faulty location
is at the (N-M)-th slot of the BHR where M is the value of the counter at
detection time and N is the BHR‟s length (M<N). If we don‟t detect a „1‟
(„0‟) at the BHR output by the time the counter underflows (overflows)
then no fault is detected and normal operation proceeds by resetting the
BHR and the counter.

Figure 47: BHR fault detection mechanism.

4.7.2 Performance recovery alternatives

The low-cost fault detection/diagnosis mechanisms discussed in the previous
subsection are based on the inherent self-verifying operation of the speculation
components and are the major reason towards minimizing performance impact.
Once we detect the faulty entries we can minimize the performance impact by
avoiding accessing them. Different schemes can be employed towards this goal.

Architectures for Dependable Modern Microprocessors

N.Foutris
142

We describe here some indicative mechanisms to recover performance in the BP,
RAS and BHR. Similar techniques can be applied to the BTBs but we do not
include them for space reasons.

Potential recovery techniques for the BP arrays include:

1. Single-bit counter: A faulty 2-bit direction counter (Figure 48) can be
converted to a 1-bit counter when a single stuck-at fault is detected
(instead of disabling it altogether). We propose adding a small
associative table (which we call fault map) that holds the array index of
faulty entries, and a 2-bit mask marking the location of the fault. We then
use the mask to make a prediction using the fault-free bit or update the
counter‟s fault-free bit. The size of the fault map is dictated by the
maximum, estimated number of faults that can occur in a SRAM array
under a given technology node and operating voltage.

Branch Predictor

0
1
0
0

Branch directionFaulty bit

Reg.

(1) Write

(3) Compare

s-at-X

(2
) R

e
a
d

m
is

m
a
tc

h

Protection
single-bit counter

x
bit0bit1

prediction

output

Figure 48: Single-bit counter protection scheme.

2. Static prediction outcome: detect faulty counters with a fault map and
predict a branch that accesses a faulty counter as always not-taken or
always taken (Figure 49). We experimented with a default prediction of
not-taken. The results show that performance does not improve and in
some cases IPC was further decreased. This happens because the
faulty design can provide higher prediction accuracy, since there is a
high probability that a fault is masked.

Branch Predictor

0
1
0
0

Branch directionFaulty bit

Reg.

(1) Write

(3) Compare

s-at-X

(2
) R

e
a

d

m
is

m
a

tc
h

Protection
static prediction

0
bit0bit1

prediction

output

Figure 49: Static prediction outcome protection scheme.

Architectures for Dependable Modern Microprocessors

N.Foutris
143

3. Spare cells: we re-map faulty entries to fault-free ones (Figure 50). The
spare cells can fully recover the performance loss induced from hard
faults, as long as the amount of concurrent active hard faults doesn‟t
exceed the amount of the available spares. However, the logic to provide
online repair for spare cells lies on the read and write critical paths of the
SRAM array and can increase access time [43].

Branch Predictor

0
1
0
0

Branch directionFaulty bit

Reg.

(1) Write

(3) Compare

s-at-X

(2
) R

e
a
d

m
is

m
a
tc

h

Protection
space cells

prediction

output

replace

Figure 50: Space cells protection scheme.

A potential recovery mechanism for the RAS would be to disable the faulty
entries: the top-of-stack pointer logic arithmetic can be modified to bypass all
entries with the faulty bit being set.

Finally, a potential recovery mechanism for the BHR would be to use bypass
multiplexers: Once a fault is located, through the up/down saturating counter, the
contents of the faulty BHR slot are masked in the index generation logic. Further,
a bypass mechanism avoids fault propagation to the rest of the BHR. The BHR
slot bypass logic is implemented through the addition of a 2:1 mux between any 2
successive BHR flops. Multiplexer inputs come from the preceding flop of the
BHR and the preceding multiplexer to implement the bypass path (Figure 51).
The diagnosis mechanism feeds the multiplexers control signals. The faulty BHR
slot is bypassed based on the control signals driving the multiplexers that change
only when detecting a fault during BHR update.

Figure 51: BHR performance recovery mechanism.

4.7.3 Timing implications of the protection mechanisms

There is no timing impact for the WRC flow since we the Read and Compare step
are done in a separate cycle from that of the Write step. Our performance
recovery solutions for the cBTB/iBTB do not lie on the critical prediction path (they

Architectures for Dependable Modern Microprocessors

N.Foutris
144

are triggered on the update flow of the structure) and thus have no effect on the
cycle time.

BHR protection can have an impact in the case of multiple, successive, faulty flip-
flops but the probability of that happening is extremely small due to the size of the
BHR. Alternatively, we can assume that the position and number of multiplexers
is such that no cycle violations occur when all bypass paths are activated (e.g.
protect every other flip flop in the BHR). The protection mechanism for the RAS
can be on the critical path but there is plenty of slack when updating the
Read/Write pointers to transition to the next, fault-free RAS entry.

BP fault protection lies on the critical path of making a branch outcome prediction
and could put pressure on the clock cycle. In order to alleviate this pressure,
control flow can be redirected, one cycle after making a prediction with a faulty
counter, once we identify the fault and its position and only if the alternative
prediction differs. The redirection leads to a 1 cycle fetch stall.

4.7.4 Existing repair techniques

SRAM arrays can be protected against faults circuit level techniques such as
wordline boosting [78] which reduces the effect of process variations and failures;
however, such techniques add complexity and area to SRAM array design and
only address write failures, which are a subset of all hard faults.

ECC is an architectural-level technique for transient and permanent error
detection and correction, typically employed in SRAM arrays which affect
functionality. ECC adds area and design overhead proportional to the SRAM
array size and number of faults that we want to detect and correct (in the
experimental section we compare our solutions to ECC).

Hardware redundancy techniques such as spare SRAM rows/columns have a
significant area overhead and can increase access latency [43]. Such techniques
won‟t scale (in terms of circuit complexity and size) in more defective
technologies where large numbers of spare rows and columns are required.

Existing SRAM protection/repair techniques are costly and are best used to
protect architectural arrays since the cost is justified. For control flow predictors,
which do not affect correctness (and thus the cost of expensive techniques is not
justified), we propose adopting low cost detection and protection techniques
which can recover the performance loss due to the extra mispeculations that hard
faults cause.

4.7.5 Comparing with ECC/parity-based protection

SRAM arrays can be protected by parity or ECC. Parity-based protection provides
fault detection but no fault diagnosis (e.g., soft vs. hard determination) or
performance recovery, masking or mitigation of the fault effect.

ECC provides fault detection and correction but no diagnosis which means that
ECC bits can be used to protect against soft errors whose performance impact is
negligible. Furthermore, an ECC correction flow lies on the critical path for array
reads and will impose a 1-cycle fetch stall overhead just like our proposed
solutions for the BP arrays. The ECC generation flow for array writes has the
same time overhead per write operation as our WRC flow since it requires a
Read-Modify-Write (RMW) flow. The total number of times the ECC RMW flow
will be triggered for the BP predictor (and thus the potential for fetch bandwidth
loss) will be higher than in our WRC flow solution because ECC is updated for

Architectures for Dependable Modern Microprocessors

N.Foutris
145

every write operation, not just in case of a misprediction (as with WRC). Table 52
shows the IPC overhead in fault-free runs of each benchmark when using ECC in
the BP arrays.

Table 52: IPC (%) loss per benchmark due to fetch stalls in fault-free processor when
predictor ECC is enabled.

benchmark IPC loss

perlbench 12.806
bzip2 4.357
gcc 10.762
mcf 2.302
gobmk 9.047
dealII 3.483
soplex 3.411

povray 5.462
lbm 0.346
omnetpp 3.671
xalancbmk 12.290

Average 6.176

Compared to the WRC IPC loss (Table 51), the ECC IPC loss is almost 6% larger
on average (and can be more than 12% in some cases). ECC overhead on writes
for the RAS, cBTB and iBTB is similar to the proposed mechanisms. Table 53
compares the area overhead of parity, ECC [69] and our 1-bit counter BP
protection solution, assuming 32 bits (16x2-bit counters) per BP entry.

Table 53: BP area overhead of error detection and correction techniques [69].

Protection Technique Area Overhead

Parity 3.12%
SEC-DED 21.9%
DEC-TED 40.6%

WRC+1-bit (proposed) 0.68%

The extra silicon estate required by our proposed BP error protection solution is a
fault map (Figure 45) to identify the faulty entries. We reuse the comparator and
register for the WRC flow from the BP Memory BIST logic. We assume a 25-entry
fault map to deal with the max number of faults across all 4 technology nodes
(Figure 30). Each fault map entry consists of a 16-bit index and 2-bit fault mask
for a total of 450 bits of storage (0.68% area overhead) which clearly provides the
best trade-off among all solutions.

4.7.6 Performance recovery results

In this section, we provide results for the components that suffer the largest IPC
slowdown: Bimodal predictor, Meta predictor, RAS, BHR. We have also
implemented and evaluated the protection mechanisms for the Two-level
predictor and the two BTBs and results are in line with the ones presented here.

Figure 52 shows the average IPC loss, over all benchmarks, when a varying
number of faults are injected in the Bimodal and the Meta predictors. The
“unprotected” lines show the IPC loss for the unprotected, faulty core, and the
“protected” lines show the IPC loss when the 1-bit counter protection mechanism
is used.

Architectures for Dependable Modern Microprocessors

N.Foutris
146

1.290

2.326

4.335

5.348 5.356

6.452

0.362
0.381 0.389 0.394 0.41 0.414

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

AVG (%) IPC slowdown for the Unprotected Bi-modal Predictor

AVG (%) IPC slowdown for the Protected Bi-modal Predictor

unprotected

protected

5.510 5.660 5.893 5.952

6.938
7.687

0.381
0.392 0.407 0.425 0.449 0.453

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 5 10 15 20 25

IP
C

 s
lo

w
d

o
w

n
 (

%
)

#faults

AVG (%) IPC slowdown for the Unprotected Meta Predictor

AVG (%) IPC slowdown for the Protected Meta Predictor

unprotected

protected

Figure 52: Unprotected vs. protected (1-bit counter) IPC slowdown (%) for Bimodal and
Meta predictors.

We recover 94.1% of the IPC loss in the Meta predictor (IPC loss of 0.453% with
protection compared to 7.687% IPC loss without protection) and 93.6% of the IPC
loss in the Bimodal predictor (IPC loss of 0.414% with protection compared to
6.452% without protection). Our mechanisms also virtually eliminate performance
variability due to faults. The unrecovered IPC loss is due to the WRC flow
overhead and the use of 1-bit vs. 2-bit counters. The protected cores achieve
performance that is almost the same as the fault-free core despite the large
number of permanent faults.

Figure 53 shows the performance recovery for single faults in the RAS and BHR;
we compare the unprotected and protected structures. More than 94% of IPC loss
due to a single fault in the RAS and more than 92% in the BHR are recovered.
The remaining IPC loss over the fault-free case (0.057% for RAS, 0.169% for
BHR) is due to the reduced sizes of the faulty, protected structures.

Architectures for Dependable Modern Microprocessors

N.Foutris
147

1.033

0.057

2.262

0.169

0.000

0.500

1.000

1.500

2.000

2.500

Unprotected Protected

IP
C

 s
lo

w
d

o
w

n
 (

%
)

AVG (%) IPC slowdown on RAS AVG (%) IPC slowdown on BHR

Figure 53: Unprotected vs. protected RAS and BHR average IPC slowdown (%) due to
single faults.

4.7.7 Variability recovery and TCO improvement

In this section we discuss the impact on performance variability due to hard faults
in front end predictors by measuring the Total Cost of Ownership (TCO). Let us
assume a data centre installation with 1000 cores in 16nm. Using the SRAM
failure probabilities of Table 1 and an SRAM array of 150K bits (approximately the
size of each of the three predictor arrays in our experiments), Figure 54 shows
the number of cores that are expected to contain k hard faults in the SRAM array
(k is on the x-axis). The number of faults k ranges from 0 to 25 faults.

0 2
9

24

50

83

114

135
139

127

105

79

54

34

20
11

6 3 1 1 0 0 0 0 0 0 0

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26+

#
c
o

re
s

#faults in each core's 150K bit predictor array

Figure 54: Number of 16nm cores in a 1000-core data centre containing k hard faults in a
150Kbit predictor.

Figure 54 clearly demonstrates that in this 1000-core configuration the numbers
of faults in the predictor array varies significantly. For example, 210 of the 1000
cores are expected to contain more than 10 faults, while 11 of the 1000 cores are
expected to contain more than 15 faults. Assuming 150Kbits in the Meta predictor
array, 210 of the 1000 cores (those with more than 10 hard faults) will suffer (if
left unprotected) an average IPC loss of more than 5.893% (max IPC loss
10.231%); as the third diagram of Figure 4 shows. Similarly, 11 of the 1000 cores
(those with more than 15 hard faults) will suffer an average IPC loss of more than

Architectures for Dependable Modern Microprocessors

N.Foutris
148

5.952% (max IPC loss 11.452%). IPC loss translates to an effective lower clock
frequency. For example, a 3.0 GHz core suffering a 6% IPC loss due to faults in a
predictor array operates at the same performance level as a 2.82 GHz core due
to a 180 MHz frequency degradation.

 If the aforementioned IPC loss for the 210 cores, with >10 faults, or the 11 cores,
with >15 faults, renders these cores unusable (given an expected minimum
performance requirement) then the system must provide spare cores to recover
the throughput loss; this increases the overall TCO.

Table 54 shows the TCO increase due to the degraded performance (on average
5.9% and 6.0% IPC loss based on Figure 13; or PVF – performance vulnerability
factor – according to [44] [45]) in cores with more than 10 and 15 hard faults on
the Meta predictor array. When our protection mechanisms are employed to
recover the performance loss (on average the un-recovered IPC slowdown is only
0.4% both for >10 and >15 faults), the TCO of the system remains almost
unaffected. We apply the TCO calculations on the original ISPASS paper [45]
data centre configuration: the HPE (high performance) server configuration
provided in the tool of [111] with 1000 cores, and for three different utilization
levels: (a) low (20%), (b) medium (50%) and (c) high utilization (90%).

Table 54: TCO with fault-free, unprotected faulty Meta predictor, and faulty protected cores.

 (TCO=$/Month)

Average Server Utilization
0.2

(low)
0.5

(medium)
0.9

(high)

Initial TCO 7.848M 8.018M 8.246M

TCO with PVF4=5.9%

8.373M
(+6.7%)

8.555M
(+6.7%)

8.798M
(+6.7%)

TCO with PVF=6.0%

8.384M
(+6.8%)

8.566M
(+6.8%)

8.808M
(+6.8%)

TCO with our protection
mechanisms (PVF=0.4%)

7.880M
(+0.4%)

8.051M
(+0.4%)

8.297M
(+0.6%)

The TCO increase due to performance loss from a faulty Meta predictor ranges
from 6.7% to 6.8% for three different utilization levels of the server farm. When
our protection techniques are employed, TCO is marginally affected by only 0.4%
to 0.6%.

4.8 Related work

There is no prior work in the literature that: (1) classifies and measures the
performance overhead and variability of hard fault in speculative structures; and
(2) proposes low-cost fault detection and performance recovery for the front-end
predictors.

Speculative arrays: Hardy et al. [44] propose an analytical model called
performance vulnerability factor to predict IPC loss due to faults in non-
architectural arrays. The method‟s accuracy depends on having a fixed
misprediction penalty in each structure, which is not always true in modern

4
 The PVF (Performance Vulnerability Factor) parameter of the TCO tool corresponds to the

performance (IPC) loss.

Architectures for Dependable Modern Microprocessors

N.Foutris
149

microarchitectures. Karimi et al. [63] evaluated the impact of faults in branch
predictors but the study has limited scope and does not make broad conclusions.
Finally, Hsieh et al. [49] discussed the importance of detecting hard faults that
only lead to performance degradation to improve microprocessor yield.

A few works address the detection (but no protection) of hard faults in speculative
structures. These include Almukhaizim et al. [7], Hatzimihail et al. [46], and
Bhattachatya et al. [17] (branch predictor). None of these works evaluates the
IPC recovery and cost of the techniques.

Architectural SRAM arrays: Several works examine the impact of and propose
remediation techniques for hard faults in caches [5] [8] [66] [89] [100]. Caches
affect functionality and their error protection solutions are entirely complementary
to our work; we expect cores to need protection in all SRAM arrays, including
caches.

Pipeline/Core logic: Using the inherent microarchitectural and/or architectural
redundancy to detect and/or repair hard faults has been studied extensively [23]
[84] [94] [71] [90] [95] [41] [75]. The focus is to gracefully salvage single or
multicore processor chips which contain hard faults in the processor pipeline.

4.9 Findings summary

We presented a detailed classification and quantification of the impact of
permanent faults in the performance components of modern microprocessors.
The analysis relies on a comprehensive statistical fault injection framework built
on top of a cycle-accurate x86-64 based architectural simulator and the latest
SPEC CPU2006 CPU benchmarks. Our analysis verifies that performance
components with permanent faults do not lead to functional errors and that most
faults (44% to 96%) cause only performance fluctuation. Across the different
components, performance slowdown ranges from 2% to 20% (faults in control
components have more severe performance impacts).

Furthermore, the existence of hard faults in a stride data prefetcher can affect
microprocessor performance significantly and increase inter-core performance
variability. Our detailed experimental analysis demonstrates that IPC loss due to
hard faults in the prefetch table can be up to 17%, and up to 24% and 26% for the
prefetch input queue and prefetch request queue, respectively. Also, performance
variability across cores is increased: the standard deviation of IPC loss between
benchmarks can be more than 4.5%. Similar behaviour was measured in
microprocessor front end predictors. The experimental resuts show that: (a) IPC
loss due to faults can be more than 16% over the fault-free IPC; and (b)
performance variability across faulty cores with the same number of faults each
can lead to more than 8% of IPC difference over the fault-free case. The IPC loss
stdev for different number of faults per benchmark, ranges between 3.5% and
9.6% for most of the benchmarks, while the stdev of IPC loss across benchmarks
is almost 4%.

To tolerate the large performance drop and variability we have proposed a
coherent suite of low-cost hardware-based solutions for the detection, diagnosis
and performance recovery of multiple hard faults in all front-end speculation
components (BPs, BTBs, RAS, BHR). Our evaluation shows that almost the
entire IPC loss due to faults is recovered by our solutions. The unrecovered IPC
in all cases is within 0.5% of the fault-free IPC while the difference in IPC
between cores with significantly different numbers of faults is virtually eliminated:
always less than 0.07% of the fault-free IPC. Finally, we estimated the TCO

Architectures for Dependable Modern Microprocessors

N.Foutris
150

overhead due to hard faults in one front end predictor, assuming a server farm of
1000 cores and an available TCO estimation model. Our findings show an almost
7% TCO overhead that gets virtually eliminated if our protection mechanisms are
used.

Architectures for Dependable Modern Microprocessors

N.Foutris
151

5. CONCLUSION AND FUTURE WORK

Today, the pervasiveness of microprocessors, the most complex and immensely
powerful product of electronics, in our society goes far beyond the wildest
imagination. The same path that is leading technologies toward these remarkable
achievements is also making them increasingly unreliable posing a threat to our
society. Silicon technology process scaling trends, modern architecture
complexity and the compelling requirement to diminish the Time-to-Market
threaten to create a “validation wall”. As a result, semiconductor industry and
academic researchers must explore radical solution and develop innovative
techniques to address the dependability challenges of the current and the
forthcoming microprocessors. This thesis introduced novel methodologies to
address the validation challenges posed throughout different stages of the life-
cycle of a microprocessor.

Microprocessor validation is grouped into three categories, based on where they
intervene in a microprocessor‟s lifecycle: (a) silicon debug: the first hardware
prototypes are exhaustively validated, (b) manufacturing testing: the final quality
control during massive production, and (c) in-field verification: runtime error
detection techniques to guarantee correct operation. This thesis introduces
various techniques to tackle the challenges of microprocessor validation targeting
to: (a) make the microprocessor‟s verification process more efficient; and (b) be
easily applicable to the existing industrial flow. The contributions of this thesis are
as follows:

 Silicon debug: The share of silicon debug in the overall microprocessor
chips development cycle is rapidly expanding due to the ever growing
design complexity and the limited throughput of pre-silicon verification
methods. Massive application of short random test programs on the
prototype microprocessor chips is one of the most effective parts of
silicon debug. Despite its bug detection capability, it is constrained by
extreme computing needs for random test programs simulation to extract
the bug-free memory image. Another major bottleneck and source of
“noise” in this phase is that large numbers of random test programs fail
due to the same or similar design bugs. This redundant behaviour adds
long delays in the debug flow since each failing random test program
must be separately examined, although it does not usually bring new
debug information. We proposed the employment of self-checking
random test programs along with a deconfigurable microprocessor
architecture to avoid the time-consuming simulation step, triage the
redundant debug sessions and thus accelerate silicon debug. To do so,
we exploited the inherent diversity found in all popular Instruction Set
Architectures (ISAs) and the ability to deconfigure hardware modules
without affecting the functional completeness of a design. Detailed
evaluation of the method on an x86 microprocessor model demonstrated
its effectiveness in accelerating silicon debug.

 Manufacturing testing: We presented an efficient multithreaded (MT)
SBST methodology that optimizes self-test time taking maximum
advantage of thread-level parallelism while at the same time enhances
the self-test program error detection capability on the thread-specific
control logic of the processor. The methodology contributed to the
effective application of SBST in manufacturing testing. Our experiments
on OpenSPARC T1 revealed that the proposed methodology improved

Architectures for Dependable Modern Microprocessors

N.Foutris
152

significant test execution time at both the core level (3.6 times) and the
processor level (6.0 times) against single-threaded execution, while at
the same time it improves fault coverage. Compared with a
straightforward multithreading approach, it reduces the self-test time at
both the core level and the processor level by 33% and 20%,
respectively. Overall, our methodology guarantees high stuck-at fault
coverage (88% for the entire processor, more than 1.5M logic gates),
which is the highest coverage ever reported in the literature by a
software-based functional test methodology in such a complex industrial
microprocessor.

 In-field verification: Aggressive technology scaling along with low
voltage operation exacerbates the likelihood and rate of hard faults not
only in large SRAM arrays (such as cache memories), but also in non-
SRAM microprocessor structures. Some of the largest non-cache SRAM
structures support speculation such as the branch predictor tables, the
branch target buffers, and the data prefetcher. Faults in these structures
will not affect correctness, but can cause severe performance
degradation and variability among otherwise identical cores. We
accurately classified and quantified the performance impact of hard
faults in non-SRAM structures over a set of CPU benchmarks. To do so,
we applied a statistically safe fault injection campaign for single and
multiple faults a modified version of the cycle-accurate x86 architectural
simulator PTLsim running the SPEC CPU2006 suite. Our evaluation
revealed significant differences in the effect of faults and their
performance impacts across the components as well as within each
component. In particular, we demonstrated that a very large fraction
(44% to 96%) of hard faults in these components leads to performance
fluctuation, Furthermore, faults in the data prefetcher degrade IPC by up
to 26%, compared to fault-free operation, while faults on the branch
prediction unit reduce IPC by more than 16%, respectively. Moreover,
we found that faults in these components can substantially increase the
performance variability across identical cores. Finally, we proposed low-
cost microarchitectural techniques to diagnose predictor faults and
recover the performance loss. Our techniques exploited the self-
verification property of predictors to achieve performance recovery at
lower cost than comparable techniques. We found that our solutions can
recover almost all performance loss and virtually eliminate performance
variability among cores.

The research outcomes of this thesis open the door to several future directions.
Future systems architectures must be designed to facilitate hardware validation.
In particular, future solutions should have adhere to the following guideline
principles: (a) low-power, (b) negligible area overhead, (c) scale with design
complexity; and (d) highly automated. In the silicon debug domain, future
research should focus on the automation and standardization of the design bug
detection and root-cause analysis process. Furthermore, this thesis demonstrated
the effectiveness of software-based techniques in accelerating manufacturing
testing and guaranteeing a high level of fault coverage. This may be an indication
that future microprocessors should devote valuable silicon estate in hardware
hooks that enable the at-speed, low-cost testing. The growing demand for high-
performance computer systems push computer architects to integrate numerous
performance mechanisms in the microprocessor designs. However, functional

Architectures for Dependable Modern Microprocessors

N.Foutris
153

correctness is prioritized over performance correctness. This work revealed that
faults in performance components can lead to noticeable performance loss and
variability in otherwise identical cores. Therefore, future designs must integrate
mechanisms to continuously monitor the system performance health and applying
contingency actions. Finally, a vital future research direction is to bridge the gap
between silicon debug, manufacturing testing and in-field verification techniques
through the development of cross-cutting solution that will operate throughout the
entire life-cycle of a microprocessor.

The vital challenge of future technologies is to build dependable systems. This
thesis proposed various novel techniques to make the validation process,
throughout microprocessor life-cycle, more effective in terms of bug/error
detection efficiency, resource- and time-budget. We hope, that the contributions
presented in this thesis will advance the research in manufacturing dependable
microprocessor architectures and will find applicability in future commercial
microprocessor products.

Architectures for Dependable Modern Microprocessors

N. Foutris
155

ACRONYMS

ATPG Automatic Test Pattern Generation

BIST Built-in Self-Test

BTB Branch Target Buffer

BP Branch Predictor

cBTB Conditional/Unconditional direct Branch Target Buffer

CMP Chip-Multiprocessors

CMT Chip-Multithreading

DFT Design for Testability

DLP Data-Level Parallelism

DP Data Prefetcher

DPPM Defective Parts Per Million

ERIT Equivalent Random Instruction Test

HDL Hardware Description Language

HVM High-Volume Manufacturing

iBTB Unconditional indirect Branch Target Buffer

ICT Information and Communication Technology

IC Integrated Circuit

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

IP Instruction Prefetcher

MHSR Miss Handling Status Registers

MT-SBST Multithreading Software-Based Self-Test

OS Operating System

RAS Return Address Stack

RIT Random Instruction Test

RTL Register-Transfer Level

SBST Software-based Self-Testing

SEU Single Event Upset

TLP Thread-Level Parallelism

TTM Time-to-Market

Architectures for Dependable Modern Microprocessors

N. Foutris
157

REFERENCES

[1] J.Abella, J.Carretero, P.Chaparro, X.Vera, A.Gonzalez, “Low Vccmin Fault-Tolerant Cache with
Highly Predictable Performance”, In ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2009.

[2] M.Abramovici, P.Bradley, K.Dwarakanath, P.Levin, G.Memmi, D.Miller. “A reconfigurable Design-for-
Debug Infrastructure for SoCs”, In ACM/IEEE Design Automation Conference (DAC), 2006.

[3] A.Adir, E.Almog, L.Fournier, E.Marcus, M.Rimon, M.Vinov and A.Ziv, “Genesys-pro: Innovations in
Test Program Generation for Functional Processor Verification”, In IEEE Design & Test of Computers
(D&T), 21(2):84-93, 2004.

[4] A.Adir, S.Copty, S.Landa, A.Nahir, G.Shurek, A.Ziv, C.Meissner and J.Schumann. A Unified
Methodology for Pre-silicon Verification and Post-silicon Validation. In ACM/IEEE Design, Automation
& Test in Europe Conference (DATE), 2011.

[5] A.Agarwal, B.C.Paul, H.Mahmoodi, A.Datta, K.Roy, “A Process-Tolerant Cache Architecture for
Improved Yield in Nanoscale Technologies”, In IEEE Trans. on VLSI Systems (TVLSI), vol. 13, no. 1,
pp. 27-38, January 2005.

[6] A.Agarwal, P.Ranganathan, N.Jouppi, J.Smith, “Configurable Isolation: Building high availability
systems with commodity multi-core processors”, In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2007.

[7] S.Almukhaizim, T.Verdel, Y.Makris, “Cost-effective graceful degradation speculative processor
subsystems: the branch prediction case”, In IEEE International Conference on Computer Design
(ICCD), 2003.

[8] A.Ansari, S.Gupta, S.Feng, S.Mahlke, “Zerehcache: Armoring Cache Architectures in High Defect
Density Technologies”, In ACM/IEE International Symposium on Microarchitecture (MICRO), 2009.

[9] A.Apostolakis, D.Gizopoulos, M.Psarakis, A.Paschalis, “Software-Based Self-Testing of Symmetric
Shared-Memory Multiprocessors”, In IEEE Transactions on Computers (TC), vol. 58, no. 12, 2009,
pp. 1682-1694.

[10] A.Apostolakis, M.Psarakis, D.Gizopoulos, A.Paschalis, I. Parulkar, “Exploiting Thread-Level
Parallelism in Functional Self-Testing of CMT Processors”, In IEEE European Test Symposium
(ETS), pp. 33-38, 2009.

[11] T.Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design”, In ACM/IEEE
International Symposium on Microarchitecture (MICRO), 1999.

[12] A.Avizienis, H.Yutao. Microprocessor entomology: A Taxonomy of Design Faults in COTS
Microprocessors. IEEE Dependable Computing for Critical Applications (DCCA), 1999.

[13] F.Bacchini, R.Damiano, B.Bentley, K.Baty, K.Normoyle, M.Ishii, and E.Yogev. Verification: What
Works and What Doesn‟t. In ACM/IEEE Design Automation Conference (DAC), 2004.

[14] I.Bayraktaroglu, J.Hunt, D.Watkins, “Cache Resident Functional Microprocessor Testing: Avoiding
High Speed IO Issues”, In IEEE Internatioal Test Conference (ITC), paper 27.2, 2006.

[15] M.Behm, J.Ludden, Y.Lichtenstein, M.Rimon and M.Vinov, “Industrial Experience with Test
Generation Languages for Processor Verification”, In ACM/IEEE Design Automation Conference
(DAC), 2004.

[16] B.Bentley, “Validating the Intel
®

Pentium
®

4 Microprocesor”, In ACM/IEEE Design Automation
Conference (DAC), 2001.

[17] G.Bhattacharya, I.Maity, B.K.Sikdar, B.Das, “Exploring impact of faults on Branch Predictor‟s Power
for Diagnosis of Faulty Module”, In IEEE Asian Test Symposium (ATS), 2011.

[18] R.Blish, T.Dellin, S.Huber, M.Johnson, J.Maiz, B.Likins, N.Lycoudes, J.McPherson, Y.Peng,
C.Peridier, A.Preussger, G.Prokop, L.Tullos, “Critical Reliability Challenges for The Int‟l Technology
Roadmap for Semiconductors (ITRS)”, Technical Report 03024377A-TR, Int‟l SEMATECH,
http://www.itrs.net/Links/2003ITRS/LinkedFiles/PIDS/4377atr.pdf, [10/01/2015].

[19] T.Bojan, F.Igor and M.Robert, “Intel‟s Post Silicon Functional Validation Approach”, In IEEE High
Level Design Validation and Test Workshop (HLDVT), 2007.

[20] T.Bojan, I.Frumkin and R.Mauri, “Intel® First Ever Converged Core Functional Validation Experience:
Methodologies, Challenges, Results and Learning”. In IEEE Microprocessor Test and Validation
(MTV), 2007.

[21] S.Borkar, “Designing reliable systems from unreliable components: The challenges of transistor
variability and degradation”, IEEE Micro, 25(6):10–16, 2005.

[22] F.Bower, D.Sorin and S.Ozev, “A mechanism for online diagnosis of hard faults in microprocessors”,
In ACM/IEEE International Symposium on Microarchitecture (MICRO), 2005.

[23] F.Bower, P.G.Shealy, S.Ozev, D.J.Sorin, “Tolerating Hard Faults in Microprocessor Array Structures”,
In IEEE/IFIP International Conference on Dependable systems and Networks (DSN), 2004.

[24] M.Butler, L.Barnes, D.Das Sarma, B.Gelinas, “Bulldozer: An Approach to Multithreaded Compute
Performance”, In IEEE Micro, Mar/Apr 2011.

Architectures for Dependable Modern Microprocessors

N. Foutris
158

[25] J.Carretero, X.Vera, J.Abella, T.Ramirez, M.Monchiero and A.Gonzalez, “Hardware/Software-based
diagnosis of load-store queues using expandable activity logs”, In IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2011.

[26] L.Chen, A.Avizienis, “N-Version Programming: A Fault-Tolerance Approach to Reliability of Software
Operation”, In IEEE Fault Tolerance Computing Symposium (FTCS), 1996.

[27] L.Chen, S.Ravi, A.Raghunathan, S.Dey, “A Scalable Software-Based Self-Test Methodology for
Programmable Processors”, In IEEE/ACM Design Automation Conference (DAC), 2003.

[28] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu, “Improving Cache Lifetime Reliability at
Ultra-low Voltages”, In ACM/IEE International Symposium on Microarchitecture (MICRO), 2009.

[29] K.Constantinides, O.Mutlu, T.Austin. Online Design Bug Detection: RTL Analysis, Flexible
Mechanisms, and Evaluation. ACM/IEEE International Symposium on Microarchitecture (MICRO),
2008.

[30] F.Corno, E.Sanchez, M.Sonza Reorda, G.Squillero, “Automatic Test Program Generation – a Case
Study”, In IEEE Design & Test of Computers (D&T), vol. 21, no. 2, pp. 102–109, 2004.

[31] A.Danowitz, K.Kelley, J.Mao, J.P.Stevenson, M.Horowitz, CPU DB: Recording Microprocessor
History, ACM Queue Magazine, vol. 10, no. 4, April 2002.

[32] E.Daoud and N.Nicolici, “Embedded Debug Architecture for Bypassing Blocking Bugs During Post-
silicon Validation”, In IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
19(4):559-570, 2011.

[33] Datasheet Intel 4004; http://datasheets.chipdb.org/Intel/MCS-4/datashts/intel-4004.pdf [Accessed
26/11/2014].

[34] N.DeBardeleben, “Reliability requirements for GPUs in HPC”, Tutorial on Soft Error Resilience in
GPGPUs for HPC, HiPEAC Conference, 2014.

[35] R.H.Dennard, F.H.Gaenssien, H-N.Yu, V.L.Rideout, E.Bassous, A.LeBlanc, “Design of ion-implanted
MOSFET‟s with very small physical dimensions”, In IEEE Journal of Solid State Circuit, October,
1974.

[36] J.S.Gardner, “Octeon III starts at Low End”, In Microprocessor Report, Jun 2013.
[37] D.Gizopoulos, Advance in Electronic Testing: Challenges and Methodologies, Springer, 2006.
[38] D.Gizopoulos, M.Psarakis, M.Hatzimihail, M.Maniatakos, A.Paschalis, A.Raghunathan, S.Ravi,

“Systematic Software-Based Self-Test for Pipelined Processors”, In IEEE Transactions on VLSI
Systems (TVLSI), vol.16, no. 11, pp 1441-1453, November 2008.

[39] D.Gizopoulos, S.Mukherjee, “Special Section on Dependable Computer Architecture: Guest
Editors‟Introduction”, In IEEE Transactions on Computers (TC), vol. 60, no. 1, January 2011.

[40] J.Goodenough and R.Aitken, “Post-silicon is Too Late Avoiding the $50 Million Paperweight Starts
with Validated Designs‟, In ACM/IEEE Design Automation Conference (DAC), 2010.

[41] S.Gupta, S.Feng, A.Ansari, J.Blome, S.Mahlke, “The StageNet Fabric for Constructing Resilient
Multicore Systems”, In ACM/IEEE International Symposium on Microarchitecture (MICRO), 2008.

[42] S.Gurumurthy, S.Vasudevan and J.Abraham, “Automatic generation of instruction sequences
targeting hard-to-detect structural faults in a processor”, In IEEE International Test Conference (ITC),
2006.

[43] T.P.Haraszti, CMOS Memory Circuits, Kluwer, 2000.
[44] D.Hardy, I.Sideris, N.Ladas, Y.Sazeides, “The performance vulnerability of architectural and non-

architectural arrays to performance faults”, In ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2012.

[45] D.Hardy, M.Kleanthous, I.Sideris, A.Saidi, E.Ozer, Y.Sazeides, “An Analytical Framework for
Estimating TCO and Exploring Data Center Design Space”, In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013.

[46] M.Hatzimihail, M.Psarakis, D.Gizopoulos, A.Paschalis, “A Methodology for Detecting Performance
Faults in Microprocessor Speculative Execution Units via Hardware Performance Monitoring”, In IEEE
International Test Conference (ITC), paper 29.3, 2007.

[47] J.Hennessy, D.Patterson, Computer Architecture: A Quantitative Approach (5
th
 Edition), Elsevier,

2012.
[48] T.Hong, Y.Li, S-B.Park, D.Mui, D.Lin, Z.A.Kaleq, N.Hakim, H.Naeimi, D.S.Gardner and S.Mitra,

“QED: Quick Error Detection Tests for Effective Post-silicon Validation”, In IEEE International Test
Conference (ITC), 2010.

[49] T.Y.Hsieh, M.A.Breuer, M.Annavaram, S.K.Gupta, K.-J.Lee, “Tolerance of Performance Degrading
Faults for Effective Yield Improvement”, In IEEE International Test Conference (ITC), 2009.

[50] Y.C.Hsu, F.Tsai, W.Jong and Y-T Chang, “Visibility Enhancement for Silicon Debug”, In ACM/IEEE
Design Automation Conference (DAC), 2006.

[51] C.Hughes, P.Kaul, S.V.Adve, R.Jain, C.Park, J.Srinivasan, “Variability in the Execution of Multimedia
Applications and Implications for Architecture”, In ACM/IEEE International Symposium on Compute
Architecture (ISCA), 2001.

Architectures for Dependable Modern Microprocessors

N. Foutris
159

[52] Inquirer staff, Intel hidden Xeon, Pentium 4 bugs, http://www.theinquirer.net, [Accessed 04/01/2015].
[53] Inquirer Staff. AMD Opteron bug can cause incorrect results. http://www.theinquirer.net, [Accessed

15/12/2014].
[54] Inquirer Staff. IBM Power PC 1GHz chip only runs properly at 933MHz. http://www.theinquirer.net,

[Accessed 15/12/2014].
[55] Intel CEO promises Broadwell PCs on shelves for holidays;

http://www.reuters.com/article/2014/05/18/us-intel-chips-idUSBREA4H08P20140518 [Accessed
30/11/2014].

[56] Intel finds flaw in Sandy Bridge chipsets, halt shipment.
http://www.techreport.com/discussions.x/20326 [Accessed 1/12/2014].

[57] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Intel Corporation, Nov. 2009.
[58] Intel® 64 and IA-32 Architectures Software Developer's Manual, Intel Corporation, Jun.2010.
[59] JEDEC Solid State Technology Association. Failure Mechanisms and Models for Semiconductor

Devices. JEDEC Publication JEP122-G, http://www.jedec.org/standards-documents/docs/jep-122e
[Accessed 10/01/2015].

[60] D.Josephson, “The Manic Depression of Microprocessor Debug”, In IEEE International Test
Conference (ITC), 2002.

[61] D.Josephson, S.Poehhnan and V.Govan, “Debug Methodology for McKinley Processor”, In IEEE
International Test Conference (ITC), 2001.

[62] D.Josephson. The Good, the Bad, and the Ugly of Silicon Debug. In ACM/IEEE Design Automation
Conference (DAC), 2006.

[63] N.Karimi, M.Maniatakos, C.Tirumurti, A.Jas, Y.Makris, “Impact Analysis of Performance Faults in
Modern Microprocessors”, In IEEE International Conference on Computer Design (ICCD), 2009.

[64] J.Keshava, N.Hakim and C.Prudvi, “Post-silicon Validation Challenges: How EDA and Academia Can
Help”, In ACM/IEEE Design Automation Conference (DAC), 2010.

[65] A.Krstic, W.C.Lai, K.T.Cheng, L.Chen, S.Dey, “Embedded Software-Based Self-Test for
Programmable Core-Based Designs”, In IEEE Design and Test of Computers (D&T), vol. 19, no. 4,
pp. 18-27, July-August 2002.

[66] H.Lee, S.Cho, B.R.Childers, “Performance of Graceful Degradation for Cache Faults”, IEEE
Comp.Society Symp. on VLSI (ISVLSI), 2007.

[67] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical Fault Injection: Quantified Error and
Confidence,” In IEEE Design, Automation & Test In Europe (DATE), 2009.

[68] L.Lingappan, N.K.Jha, “Satisfiability-based automatic test program generation and design for
testability for microprocessors”, In IEEE Transactions on VLSI Systems (TVLSI), vol. 15, no. 5, pp.
518-530, May 2007.

[69] Y.Luo, S.Govindan, B.Sharma, M.Santaniello, J.Meza, A.Kansal, J.Liu, B.Khessib, K.Vaid, O.Mutlu,
“Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via
Heterogeneous-Reliability Memory”, In IEEE/IFIP International Conference on Dependable systems
and Networks (DSN), 2014.

[70] R.McLaughlin, S.Venkataraman and C.Lim, “Automated Debug of Speed Path Failures Using
Functional Tests”, In IEEE VLSI Test Symposium (VTS), 2009.

[71] A.Meixner and D.Sorin, “Detouring: Translating Software to Circumvent Hard Faults in Simple Cores”,
In IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2008.

[72] S.Mitra, S.A.Seshia and N.Nicolici, “Post-silicon Validation Opportunities, Challenges and Recent
Advances”, In ACM/IEEE Design Automation Conference (DAC), 2010.

[73] G.Moore, “Cramming more components onto integrated circuits”, In Electronics, April, 1965.
[74] S.R.Nassif, N.Mehta, Y.Cao, "A Resilience Roadmap", In IEEE Design, Automation & Test In Europe

(DATE), 2010.
[75] S.Nomura, M.D.Sinclair, C.-H.Ho, V.Govindaraju, M.de Kruijf, K.Sankaralingam, “Sampling+DMR:

Practical and Low-Overhead Permanent Fault Detection”, In ACM/IEEE International Symposium on
Compute Architecture (ISCA), 2011.

[76] N.Oh, S.Mitra and E.J.McCluskey, “ED4I: Error Detection by Diverse Data and Duplicated
Instructions”, In IEEE Transactions on Computers (TC), 51(2):180-199, 2002.

[77] OpenSPARC T1 Microarchitecture Specification, Sun Microsystems Inc., Aug. 2006.
[78] Y.Pan, J.Kong, S.Ozdemir, G.Memik, S.W.Chung, “Selecting Wordline Voltage Boosting for Caches

to manage Yield under Process Variations”, In ACM/IEEE Design Automation Conference (DAC),
2009.

[79] S.B.Park, T.Hong and S.Mitra, “Post-silicon Bug Localization in Processors Using Instruction
Footprint Recording and Analysis (IFRA)”, In IEEE Transactions on Computer-Aided Design (TCAD),
28(10):1545-1558, 2009.

[80] P.Parvathala, L.Maneparambil, W.Lidsay, “FRITS – A Microprocessor Functional BIST Method”, In
IEEE International Test Conference (ITC), 2002.

Architectures for Dependable Modern Microprocessors

N. Foutris
160

[81] A.Paschalis, D.Gizopoulos, “Effective Software-Based Self-Test Strategies for On-line Periodic
Testing of Embedded Processors”, In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 24, no. 1, 2005, pp. 88-99.

[82] P.Patra, “On the Cusp of a Validation Wall”, In IEEE Design & Test (D&T), vol.24, no.2, pp.193-196,
March-April 2007.

[83] Pentium FDIV bug. http://www.intel.com/support/processors/pentium/sb/CS-012748.htm, [Accessed
15/12/2014].

[84] M.D.Powell, A.Biswas, S.Gupta, S.S.Mukherjee, “Architectural Core Salvaging in a Multi-Core
Processor for Hard-Error Tolerance”, In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2009.

[85] M.Psarakis, D.Gizopulos, E.Sanchez, M.Sonza Reorda, “Microprocessor Software-Based Self-
Testing”, In IEEE Design & Test of Computers (D&T), May/June 2010.

[86] J.M.Rabaey, Digital Integrated Circuits: a design perspective, Prentice-Hall, Inc., 1996.
[87] R.Raina and R.Molyneaux, “Random Self-test Method –Applications on PowerPCTM Microprocessor

Caches”, In IEEE Great Lake Symposium on VLSI, 1998.
[88] G.Reis, J.Chang, N.Vachharajani, R.Rangan and D.August, “SWIFT: Software Implemented Fault

Tolerance”, In ACM/IEEE International Symposium on Code Generation and Optimization (CGO),
2005.

[89] D.Roberts, S.K.Nam, T.Mudge, “On-chip cache device scaling limits and effective fault repair
techniques in future nanoscale technology”, In Microprocessors and Microsystems, vol. 32, no. 5-6,
pp. 244-253, Aug. 2008.

[90] B.Romanescu, D.Sorin, “Core cannibalization architecture: Improving lifetime chip performance for
multicore processors in the presence of hard faults”, In ΙΕΕΕ International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[91] H.Rotithor, “Postsilicon Validation Methodology for Microprocessors”, In IEEE Design & Test of
Computers (D&T), 17(4):77-88, 2000.

[92] J.Rupley, “AMD‟s „Jaguar‟: A next generation low power x86 core,” Hot Chips 24, Aug, 2012.
[93] S.Sarangi, A.Tiwari, J.Torrellas. Phoenix: Detecting and Recovering from Permanent Processor

Design Bugs with Programmable Hardware. ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2006.

[94] E.Schuchman, T.N.Vijaykumar, "Rescue: a microarchitecture for testability and defect tolerance", In
ACM/IEEE International Symposium on Computer Architecture (ISCA), 2005.

[95] E.Schuchman, T.N.Vijaykumar, “BlackJack: Hard Error Detection with Redundant Threads on SMT”,
In IEEE/IFIP International Conference on Dependable systems and Networks (DSN), 2007.

[96] J.Shen, J.A.Abraham, “Native Mode Functional Test Generation for Processors with Applications to
Self-Test and Design Validation”, In IEEE International Test Conference (ITC), 1998.

[97] P.Shivakumar, S.Keckler, C.Moore, D.Burger, “Exploiting microarchitectural redundancy for defect
tolerance”, In IEEE International Conference on Computer Design (ICCD), 2003.

[98] C.Shum, F. Busaba, S.Dao-Trong, G.Gerwig, C.Jacobi, T.Koehler, E.Pfeffer, B.R.Prasky, J.G.Rell,
A.Tsai, “Design and microarchitecture of the IBM System z10 microprocessor”, In IBM Journal of
Research and Development, v53,n1, 2009.

[99] E.Singerman, Y.Abarbanel and S.Baartmans, “Transaction Based Pre-to-Post Silicon Validation”, In
ACM/IEEE Design Automation Conference (DAC), 2011.

[100] G.Sohi, “Cache Memory Organization to Enhance the Yield of High Performance VLSI
Processors”, In IEEE Transactions on Computers (TC), vol. 38, no. 4, pp.484-492, April 1989.

[101] J.Srinivasan, S.Adve, P.Bose, J.Rivers, “Exploiting structural duplication for lifetime reliability
enhancement”, In ACM/IEEE International Symposium on Compute Architecture (ISCA), 2005.

[102] S.Sudhakrishnan, L.Su and J.Renau, “Processor Verification with hwBugHunt”, In IEEE
International Symposium on Quality Electronic Design (ISQED), 2008.

[103] S.Sudhakrishnan, R.Dicochea and J.Renau, “Releasing Efficient Beta Cores to Market Early”, In
ACM/IEEE International Symposium on Computer Architecture (ISCA), 2011.

[104] P.J.Tan, T.Le, K.-H.Ng, P.Mantri, J.Westfall, “Testing of UltraSPARC T1 Microprocessor and its
Challenges”, In IEEE International Test Conference (ITC), paper 16.1, 2006.

[105] I.Wagner and V.Bertacco, “Reversi: Post-silicon Validation System for Modern Microprocessors”, In
IEEE International Conference on Computer Design (ICCD), 2008.

[106] I.Wagner, V.Bertacco and T.Austin, “Using Field-Repairable Control Logic to Correct Design Errors
in Microprocessors”, In IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 27(2):380-393, 2008.

[107] L.T.Wang, C.Stroud, N.Touba, “System-on-Chip Test Architectures: Nanometer design for
testability”, Elsevier, 2007.

Architectures for Dependable Modern Microprocessors

N. Foutris
161

[108] C.Wilkerson, H.Gao, A.R.Alameldeen, Z.Chishti, M.Khellah, S.-L.Lu, “Trading off Cache Capacity
for Reliability to Enable Low Voltage Operation”, In ACM/IEEE International Symposium on Compute
Architecture (ISCA), 2008.

[109] G.Xenoulis, D.Gizopoulos, M.Psarakis, A.Paschalis, “Instruction-Based Online Periodic Self-
Testing of Microprocessors with Floating-Point Units”, In IEEE Transactions on Dependable and
Secure Computing, vol. 6, no.2, pp. 124-134, 2009.

[110] M.Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator”, In IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), 2007.

[111] COST-ET: COSTing and Exploring TCO for data centers, http://www.cs.ucy.ac.cy/carch/xi/cost-
et.php. [Accessed 12/01/2015]

