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ABSTRACT 

 

The evolution of semiconductor technology and computer architecture has radically 
transformed our world throughout the last decades. However, the combination of 
technology scaling and extreme chip integration, along with the compelling requirement 
to diminish the time-to-market window, has rendered microprocessors more prone to 
design bugs and hardware faults. The goal of this thesis is to provide solutions to the 
validation challenges posed from the microprocessor products throughout the life-cycle 
of a chip. 

Microprocessor validation is grouped into the following categories, based on where they 
intervene in a microprocessor‟s lifecycle: (a) silicon debug: the first hardware prototypes 
are exhaustively validated, (b) manufacturing testing: the final quality control during 
massive production and before chip shipping, and (c) in-field verification: runtime error 
detection techniques to guarantee correct operation in the field. The contributions of this 
thesis are the following: 

 Silicon debug: We propose the employment of deconfigurable microprocessor 
architectures along with a technique to generate self-checking random test 
programs to: (a) avoid the time- and resource-consuming simulation step, (b) 
triage the redundant debug sessions, and thus to accelerate silicon debug [8] 
[10]. 

 Manufacturing testing: We propose a self-test optimization strategy for 
multithreaded, multicore microprocessors to: (a) speedup test program 
execution time, (b) enhance the fault coverage of hard errors, and thus to make 
manufacturing testing more efficient [11].  

 In-field verification: We measure the effect of permanent faults performance 
components. Then, we propose a set of low-cost hardware-based mechanisms 
for the detection, diagnosis and performance recovery in the front-end 
speculative structures [2] [5] [6]. 

The share of silicon debug in the overall microprocessor chips development cycle is 
rapidly expanding [2]. The validation step that detects the vast majority of design bugs is 
the one that stresses the silicon prototypes by applying huge numbers of random test 
programs. Despite its bug detection capability, this step is constrained by the extreme 
computing needs for random test program simulation. Moreover, another major 
bottleneck and source of “noise” of this phase is that large numbers of random test 
programs fail due to the same or similar design bugs. This redundant behaviour adds 
long delays in the debug flow since each failing random program must be separately 
examined, although it does not usually bring new debug information. This thesis 
addresses both challenges of silicon debug. A self-checking methodology is proposed 
for generating random test programs (exploiting the ISA diversity property) that detect 
bugs by comparing the results of equivalent instructions combined with a technique to 
triage the failing test programs into categories with common failure modes. The 
proposed framework: (a) improves bug detection efficiency, (b) reduces the redundant 
debug session, and thus overall accelerates silicon debug. 

When a sufficient level of design bugs coverage is reached the microprocessor design 
enters the production stage, where a final quality control is performed to detect 
manufacturing defects in massive production. Functional self-testing forms an integral 



 

part of manufacturing test flow due to (a) at-speed testing: test application and response 
collection are performed at the processor‟s actual speed, enabling screening of delay 
defects that aren‟t detectable at lower frequencies; and (b) non-intrusive nature: does 
not add any extra hardware. Multithreaded (MT) SBST methodology proposes a novel 
self-test optimization strategy for multithreaded, multicore microprocessor architectures. 
The proposed self-test program execution optimization aims to: (a) take maximum 
advantage of the available execution parallelism provided by multiple threads and 
multiple cores, (b) preserve the high fault coverage that single-thread execution 
provides for the processor components; and (c) enhance the fault coverage of the 
thread-specific control logic. MT-SBST methodology significantly speeds up self-test 
time, while at the same time it improves the overall fault coverage. 

The combination of design complexity, shrinking time-to-market windows, and wear-out 
effects increases the failure probability of modern designs in the field and leads 
microprocessor manufacturers to integrate numerous in-field verification mechanisms. 
Trends such as low-voltage operation and process scaling are expected to significantly 
increase the rate of faults experienced by silicon. Their impact on a core's non-cache 
SRAM structures, such as the speculation components, has not been accurately 
quantified. Faults in these structures will not affect correctness, but can cause severe 
performance degradation and variability among otherwise identical cores. We first 
classify and quantify the impact of permanent faults in the performance components of 
modern microprocessors. Then, we propose low-cost microarchitectural mechanisms 
that exploit the self-verification property of speculative structures to achieve 
performance recovery. 

Modern microprocessors implement extremely complex architectures, making the 
validation process a major challenge for the semiconductor industry. This thesis 
introduces various novel methodologies to address the validation challenges posed 
throughout the life-cycle of a chip. The proposed techniques make the validation 
process more efficient and are easily applicable to the existing industrial flow. 
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ΠΔΡΙΛΗΦΗ 

 

Η ξαγδαία εμέιημε ησλ νινθιεξσκέλσλ θπθισκάησλ, απφ ηελ πιεπξά ηεο ηερλνινγίαο 
πιηθνχ αιιά θαη ηεο αξρηηεθηνληθήο ππνινγηζηψλ έρνπλ εθηηλάμεη ην θφζηνο, ζε 
αλζξσπνψξεο θαη ππνινγηζηηθή ηζρχ, πνπ απαηηείηαη γηα ηελ δηαζθάιηζε ηεο νξζήο 
ιεηηνπξγίαο ελφο επεμεξγαζηή. Σε ζπλδπαζκφ κε ηνπο απζηεξνχο ρξνληθνχο 
πεξηνξηζκνχο πνπ ππάξρνπλ γηα ηελ αλάπηπμε νινθιεξσκέλσλ θπθισκάησλ ε 
επαιήζεπζε ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ θαζίζηαηαη κία εμαηξεηηθά 
απαηηεηηθή θαη αθξηβή δηαδηθαζία. Ωο εθ ηνχηνπ, ε αλάπηπμε κεζφδσλ πνπ ζα 
επηηαρχλνπλ ηελ δηαδηθαζία ηεο επαιήζεπζεο ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ 
είλαη επηβεβιεκέλε. 

Με θξηηήξην ην ζηάδην ηνπ θχθινπ δσήο ελφο επεμεξγαζηή, απφ ηελ ζηηγκή θαηαζθεπήο 
ησλ πξσηνηχπσλ θαη έπεηηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο δηαθξίλνληαη ζηηο 
αθφινπζεο θαηεγνξίεο:  

 Silicon Debug: Τα πξσηφηππα νινθιεξσκέλα θπθιψκαηα ειέγρνληαη 
εμνλπρηζηηθά γηα ηνλ εληνπηζκφ ζρεδηαζηηθψλ θαη θαηαζθεπαζηηθψλ ζθαικάησλ 
ηνπ πιηθνχ. Βαζηθέο πξνθιήζεηο ηνπ silicon debug πνπ ρξίδνπλ αληηκεηψπηζεο 
είλαη νη εμήο: (1) ε απνθπγή ηεο πξνζνκνίσζεο ησλ ηπραίσλ πξνγξακκάησλ. 
Η δηαδηθαζία ηεο πξνζνκνίσζεο είλαη αξθεηέο ηάμεηο κεγέζνπο πην αξγή απφ 
ηελ εθηέιεζε ζην πξαγκαηηθφ πιηθφ, κε απνηέιεζκα λα πεξηνξίδεη ην πιήζνο 
ησλ ζελαξίσλ ειέγρνπ νξζήο ιεηηνπξγίαο πνπ κπνξνχλ λα δνθηκαζηνχλ. (2) Η 
αλάπηπμε ηερληθψλ πνπ ζα νκαδνπνηνχλ ηα πξνγξάκκαηα ειέγρνπ 
ζθαικάησλ, ηα νπνία εληνπίδνπλ ην ίδην ζθάικα, είλαη ηδηαίηεξα ζεκαληηθή γηα 
ηελ νκαιή θαη εληφο πξνζεζκηψλ νινθιήξσζε ηνπ ειέγρνπ νξζήο ιεηηνπξγίαο 
ελφο νινθιεξσκέλνπ θπθιψκαηνο. (3) Η αλίρλεπζε θαη αληηκεηψπηζε 
ζθαικάησλ πιηθνχ πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ [8] [10]. 

 Manufacturing Testing: Απνηειεί ηνλ ηειηθφ πνηνηηθφ έιεγρν πνπ δηελεξγείηαη 
θαηά ηελ καδηθή παξαγσγή ησλ νινθιεξσκέλσλ θπθισκάησλ. Βαζηθέο 
πξνθιήζεηο ηνπ manufacturing testing πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: 
(1) O εληνπηζκφο θαηαζθεπαζηηθψλ ζθαικάησλ ή αζηνρηψλ πιηθνχ. (2) 
Γξήγνξν εληνπηζκφ ζθαικάησλ θαζψο ε ρξνληθή κεηαηφπηζε ηεο εηζαγσγήο 
ελφο πξντφληνο-επεμεξγαζηή ζηελ αγνξά έρεη θαηαζηξνθηθέο ζπλέπεηεο γηα ην 
ίδην ην πξντφλ θαη ηελ θαηαζθεπάζηξηα εηαηξία [11]. 

 In-field verification: Πεξηιακβάλεη ηερληθέο, νη νπνίεο δηαζθαιίδνπλ ηελ 
ιεηηνπξγία ηνπ επεμεξγαζηή ζχκθσλα κε ηηο πξνδηαγξαθέο ηνπ. Πξνθιήζεηο 
πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) Αλάιπζε ηεο επίδξαζεο ζηελ 
απφδνζε ησλ ζθαικάησλ πιηθνχ πνπ είηε έρνπλ μεθχγεη απφ ηα πξνεγνχκελα 
ζηάδηα θαηαζθεπήο ηνπ θπθιψκαηνο  ή ιφγσ ηεο θζνξάο ηνπ θπθιψκαηνο. (2) 
Αλάπηπμε κεραληζκψλ γηα ηελ αλίρλεπζε θαη αλνρή ζθαικάησλ πιηθνχ [2] [5] 
[6]. 

Ο ζθνπφο ηεο δηδαθηνξηθήο δηαηξηβήο είλαη λα πξνηαζνχλ ιχζεηο γηα ηελ αληηκεηψπηζε 
ησλ πξνθιήζεηο πνπ ππάξρνπλ ζε θάζε έλα απφ ηα πξναλαθεξζέληα ζηάδηα ηνπ 
θχθινπ δσήο ελφο επεμεξγαζηή. Οη πξνηεηλφκελεο ηερληθέο ζπκβάιινπλ ζηελ βειηίσζε 
ηεο απνηειεζκαηηθφηεηαο ηεο δηαδηθαζίαο επαιήζεπζεο νξζήο ιεηηνπξγίαο θαζψο θαη 
θαζίζηαηαη δπλαηή ε άκεζε πηνζέηεζή ηνπο απφ ηελ βηνκεραλία.  

Η αλαγθαηφηεηα ρξήζεο ηνπ silicon debug ζην θχθιν δσήο ελφο επεμεξγαζηή ζπλερψο 
απμάλεηαη. Αξρηθά, πξνηάζεθε κία κεζνδνινγία γηα ηελ επηηάρπλζε ηεο δηαδηθαζίαο 



 

εληνπηζκνχ ζθαικάησλ, θαηά ηελ θάζε ηνπ ειέγρνπ ησλ πξσηνηχπσλ θπθισκάησλ, 
κέζσ ηεο θαηαζθεπήο ινγηζκηθνχ απηφ-δνθηκήο. Η θεληξηθή ηδέα απηήο ηεο κεζφδνπ 
έγθεηηαη ζηελ αμηνπνίεζε ηεο έκθπηεο πνηθηινκνξθίαο ησλ αξρηηεθηνληθψλ ζπλφινπ 
εληνιψλ, δειαδή ηεο ηδηφηεηάο ηνπο λα πινπνηνχλ κία ιεηηνπξγία κε πεξηζζφηεξνπο απφ 
έλα ηξφπνπο (ή δηαθνξεηηθά κε πεξηζζφηεξεο απφ κία δηαθνξεηηθέο εληνιέο). 
Επηπξφζζεηα, πξνηάζεθε κία κέζνδν γηα ηνλ απηφκαην εληνπηζκφ ηπραίσλ 
πξνγξακκάησλ πνπ δελ πεξηέρνπλ λέα -ρξήζηκε- πιεξνθνξία ζρεηηθά κε ηελ 
γελεζηνπξγφ αίηηα ελφο ζθάικαηνο γηα ηνπο κεραληθνχο. Ο πξνηεηλφκελνο κεραληζκφο 
βαζίζηεθε ζηελ ιεηηνπξγία ηεο απφ-δηακφξθσζεο, δειαδή ηελ δπλαηφηεηα λα 
απελεξγνπνηνχληαη ηκήκαηα ηεο ινγηθήο ηνπ θπθιψκαηνο ρσξίο λα επεξεάδεηαη ε 
ιεηηνπξγηθφηεηα ηνπ επεμεξγαζηή. Τα πξνγξάκκαηα απηνδνθηκήο νκαδνπνηνχληαη ζε 
θαηεγνξίεο ζχκθσλα κε ηελ αθνινπζία ησλ ηκεκάησλ ινγηθήο πνπ απνδηακνξθψζεθαλ 
απφ ην θχθισκα, έηζη ψζηε λα εθηειεζηνχλ ζσζηά. Ωο εθ ηνχηνπ, νη κεραληθνί 
απνζθαικάησζεο ηνπ θπθιψκαηνο κειεηνχλ κφλν έλα πξφγξακκα απφ θάζε θαηεγνξία 
γηα λα εληνπίζνπλ ηελ γελεζηνπξγφ αίηηα ηνπ ζθάικαηνο. Τα πεηξακαηηθά απνηειέζκαηα 
πηζηνπνίεζαλ ηελ δπλαηφηεηα ησλ πξνηεηλφκελσλ κεζφδσλ ζηνλ (α) ζηνλ εληνπηζκφ 
ζρεδηαζηηθψλ ζθαικάησλ θαη (β) ζηελ βειηίσζε ηεο δηαδηθαζίαο απνζθαικάησζε ηνπ 
θπθιψκαηνο θαη θαηά ζπλέπεηα ζηελ επηηάρπλζε silicon debug. 

Η κεζνδνινγία Multithreaded (MT) SBST πξνηείλεη κία θαηλνηφκν κέζνδν γηα ηελ 
βειηηζηνπνίεζε θαη επηηάρπλζε ηεο ζηξαηεγηθήο έιεγρνπ νξζήο ιεηηνπξγίαο ησλ 
πνιπλεκαηηθψλ θαη πνιππχξελσλ επεμεξγαζηψλ κέζσ ηεο ρξήζε ινγηζκηθνχ 
απηνδνθηκήο. Τν ινγηζκηθφ απηνδνθηκήο απνηειεί αλαπφζπαζην ηκήκα ηνπ 
manufacturing testing θαζψο (α) επηηξέπεη ηελ εθηέιεζε ηνπ ινγηζκηθνχ απηνδνθηκήο 
ζηελ ζπρλφηεηα ιεηηνπξγίαο ηνπ επεμεξγαζηή θαη (β) δελ πξνζζέηεη λέν πιηθφ. Σηελ 
εξεπλεηηθή εξγαζία απηή πξνηάζεθε κία κέζνδνο πνπ απνζθνπεί (α) λα εθκεηαιιεπηεί 
ζην κέγηζην ηηο δπλαηφηεηεο παξαιιειηζκνχ πνπ παξέρνπλ ηα πνιιαπιά λήκαηα θαη 
ππξήλεο ηνπ επεμεξγαζηή, (β) λα δηαηεξήζεη ζε πςειά επίπεδα ην πνζνζηφ θάιπςεο 
ειαηησκάησλ πιηθνχ (άλσ ηνπ 90%) θαη (γ) λα βειηηζηνπνηήζεη ην πνζνζηφ θάιπςεο 
ειαηησκάησλ πιηθνχ ζηα ηκήκαηα ινγηθήο φπνπ ζρεηίδνληαη κε ηελ πνιπλεκαηηθή θαη 
πνιππχξελε εθηέιεζε. Η κεζνδνινγία MT-SBST επηηαρχλεη ζεκαληηθά ηε δηαδηθαζία 
ειέγρνπ νξζήο ιεηηνπξγία ελφο επεμεξγαζηή, ελψ παξάιιεια βειηηψλεη ζπλνιηθά ην 
πνζνζηφ θάιπςεο ειαηησκάησλ. 

Η ζπλερψο απμαλφκελε πηζαλφηεηα εκθάληζεο ζθαικάησλ πιηθνχ θαηά ηελ δηάξθεηα 
ιεηηνπξγία ελφο επεμεξγαζηή (in-field verification), νδήγεζε ζηελ εηζαγσγή κεραληζκψλ 
επαιήζεπζεο ηεο νξζήο ηνπο ιεηηνπξγίαο. Σηα πιαίζηα ηεο δηδαθηνξηθήο δηαηξηβήο, 
αλαιχζεθε ζε βάζνο ε επίδξαζε πνπ έρνπλ ηα κφληκα ζθάικαηα (κνλά θαη ζε 
νξηζκέλεο πεξηπηψζεηο πνιιαπιά) ζηνπο εμήο κεραληζκνχο: (α) κεραληζκφο 
πξφβιεςεο δηαθιάδσζεο, θαη (β) κεραληζκφο εθ ησλ πξνηέξσλ πξνζθφκηζεο 
δεδνκέλσλ, ζηελ ιεηηνπξγία ηνπ ζπζηήκαηνο. Επηπξφζζεηα, πξνηάζεθαλ ηερληθέο γηα 
ηελ αλίρλεπζε θαη αλνρή κφληκσλ ζθαικάησλ πιηθνχ ζηνπο κεραληζκνχο πξφβιεςεο 
δηαθιάδσζεο. Εηδηθφηεξα, ε αλίρλεπζε επηηπγράλεηαη κέζσ ηεο αμηνπνίεζεο ηεο 
απηφκαηεο δηφξζσζεο ησλ κεραληζκψλ πξφβιεςεο δηαθιάδσζεο, ελψ ε αλνρή κέζσ 
ηεο αλαδηακφξθσζεο ηνπ πιηθνχ. Τα πξσηφηππα πεηξακαηηθά απνηειέζκαηα απηψλ ησλ 
εξγαζηψλ θαηέδεημαλ κε εκθαηηθφ ηξφπν ηελ αξλεηηθή επίπησζε ησλ ζθαικάησλ πιηθνχ 
ζηελ απφδνζε ελφο επεμεξγαζηή θαζψο θαη ηεο απνηειεζκαηηθφηεηαο ησλ 
πξνηεηλφκελσλ κεραληζκψλ αλίρλεπζεο θαη αλνρήο ζθαικάησλ. 
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ΤΝΟΠΣΙΚΗ ΠΑΡΟΤΙΑΗ ΓΙΓΑΚΣΟΡΙΚΗ ΓΙΑΣΡΙΒΗ 

 

Σηε ζεκεξηλή πξαγκαηηθφηεηα, ηνλ 21ν αηψλα, θάζε άλζξσπνο πεξηβάιιεηαη απφ 
ππνινγηζηηθά ζπζηήκαηα, δεη κε απηά, ηα ρξεζηκνπνηεί, είλαη ηδησηηθά ή δεκφζηα 
αγαζά, είλαη κηθξά, ίζσο κεγάια, κεγαιχηεξα, ελ γέλεη δηάθνξα ππνινγηζηηθά 
ζπζηήκαηα πνπ θαηαθιχδνπλ ηε δσή ελφο αηφκνπ. Θα κπνξνχζε θαλείο λα 
αλαθεξζεί ζηηο «ειεθηξνληθέο ζπζθεπέο». Αθφκε πην ελδηαθέξνπζεο φκσο είλαη νη 
«έμππλεο ειεθηξνληθέο ζπζθεπέο». Τν θνηλφ ραξαθηεξηζηηθφ φισλ απηψλ είλαη ε 
χπαξμε ελφο ελζσκαησκέλνπ «εγθεθάινπ». Σηνλ «εγθέθαιν» απηφ απνδίδνληαη 
ηα ραξαθηεξηζηηθά πνπ δηέπνπλ ηα ππνινγηζηηθά ζπζηήκαηα. Με άιια ιφγηα, νη 
δηαξθψο απμαλφκελεο αλάγθεο ησλ θαηαλαισηψλ νδεγνχλ ηηο εμειίμεηο, ελψ 
παξάιιεια δηακνξθψλνπλ ηηο απαηηήζεηο ζηε βηνκεραλία. Μία έμππλε ινηπφλ 
ζπζθεπή είλαη απηή πνπ κεηαμχ άιισλ είλαη δπλαηφο ν έιεγρφο ηεο απφ ην ρξήζηε 
εμ ‟απνζηάζεσο, κπνξεί λα δηαιεηηνπξγήζεη κε άιιεο ειεθηξνληθέο ζπζθεπέο, λα 
πξνζαξκφδεη ηε ιεηηνπξγία ηεο απηφκαηα, λα εμνηθνλνκεί ελέξγεηα θαη αλακθίβνια 
λα είλαη αζθαιήο. Απηά είλαη κφλν νξηζκέλα, έλα πνιχ κηθξφ ππνζχλνιν 
ραξαθηεξηζηηθψλ θαη δπλαηνηήησλ πνπ δχλαηαη λα θέξνπλ νη ειεθηξνληθέο 
ζπζθεπέο. Σε θάζε πεξίπησζε, ν απψηεξνο ζθνπφο αλάπηπμεο ησλ ζπζθεπψλ 
απηψλ είλαη ε δηεπθφιπλζε ηεο δσήο ησλ θαηαλαισηψλ, κε ζεβαζκφ ζην ηξίπηπρν 
θφζηνο-απνδνηηθφηεηα-απνηειεζκαηηθφηεηα. 

Τα ζχγρξνλα ινηπφλ ηερλνινγηθά επηηεχγκαηα, φπσο ελδεηθηηθά αλαθέξζεθαλ 
παξαπάλσ θαηέζηεζαλ αλαγθαία, ή ελδερνκέλσο ιεηηνχξγεζαλ θαη σο θαηαιχηεο 
γηα ηε ξαγδαία αλάπηπμε ησλ νινθιεξσκέλσλ θπθισκάησλ, ηε δνκηθή δειαδή 
κνλάδα, ηα θχηηαξα ησλ ππνινγηζηηθψλ ζπζηεκάησλ. Τν αληίηηκν απηήο ηεο 
εμέιημεο απφ ηελ πιεπξά ηεο ηερλνινγίαο πιηθνχ αιιά θαη ηεο αξρηηεθηνληθήο 
ππνινγηζηψλ έρεη εθηηλάμεη ην θφζηνο, ζε αλζξσπνψξεο θαη ππνινγηζηηθή ηζρχ, 
πνπ απαηηείηαη γηα ηε δηαζθάιηζε ηεο νξζήο ιεηηνπξγίαο ελφο επεμεξγαζηή. Σε 
ζπλδπαζκφ κε ηνπο απζηεξνχο ρξνληθνχο πεξηνξηζκνχο πνπ ππάξρνπλ γηα ηελ 
αλάπηπμε νινθιεξσκέλσλ θπθισκάησλ ε επαιήζεπζε ηεο νξζήο ιεηηνπξγίαο 
ησλ επεμεξγαζηψλ θαζίζηαηαη κία εμαηξεηηθά απαηηεηηθή, ρξνλνβφξα θαη αθξηβή 
δηαδηθαζία. Ωο εθ ηνχηνπ, ε αλάπηπμε κεζφδσλ πνπ ζα επηηαρχλνπλ ηε 
δηαδηθαζία ηεο επαιήζεπζεο ηεο νξζήο ιεηηνπξγίαο ησλ επεμεξγαζηψλ είλαη 
επηβεβιεκέλε θαη απνιχησο ελαξκνληζκέλε κε ηηο αλάγθεο ηνπ επηρεηξεκαηηθνχ 
θαη θαηαλαισηηθνχ πεξηβάιινληνο. 

Με θξηηήξην ην ζηάδην ηνπ θχθινπ δσήο ελφο επεμεξγαζηή, απφ ηελ ζηηγκή 
θαηαζθεπήο ησλ πξσηνηχπσλ θαη έπεηηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο 
δηαθξίλνληαη ζηηο αθφινπζεο θαηεγνξίεο:  

 Silicon Debug: Τα πξσηφηππα νινθιεξσκέλα θπθιψκαηα ειέγρνληαη 
εμνλπρηζηηθά γηα ηνλ εληνπηζκφ ζρεδηαζηηθψλ θαη θαηαζθεπαζηηθψλ 
ζθαικάησλ ηνπ πιηθνχ. Βαζηθέο πξνθιήζεηο ηνπ silicon debug πνπ 
ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) ε απνθπγή ηεο πξνζνκνίσζεο 
ησλ ηπραίσλ πξνγξακκάησλ. Η δηαδηθαζία ηεο πξνζνκνίσζεο είλαη 
αξθεηέο ηάμεηο κεγέζνπο πην αξγή απφ ηελ εθηέιεζε ζην πξαγκαηηθφ 
πιηθφ, κε απνηέιεζκα λα πεξηνξίδεη ην πιήζνο ησλ ζελαξίσλ ειέγρνπ 
νξζήο ιεηηνπξγίαο πνπ κπνξνχλ λα δνθηκαζηνχλ. (2) Η αλάπηπμε 
ηερληθψλ πνπ ζα νκαδνπνηνχλ ηα πξνγξάκκαηα ειέγρνπ ζθαικάησλ, ηα 
νπνία εληνπίδνπλ ην ίδην ζθάικα, είλαη ηδηαίηεξα ζεκαληηθή γηα ηελ νκαιή 



 

θαη εληφο πξνζεζκηψλ νινθιήξσζε ηνπ ειέγρνπ νξζήο ιεηηνπξγίαο ελφο 
νινθιεξσκέλνπ θπθιψκαηνο. (3) Η αλίρλεπζε θαη αληηκεηψπηζε 
ζθαικάησλ πιηθνχ πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ [8] [10]. 

 Manufacturing Testing: Απνηειεί ηνλ ηειηθφ πνηνηηθφ έιεγρν πνπ 
δηελεξγείηαη θαηά ηελ καδηθή παξαγσγή ησλ νινθιεξσκέλσλ 
θπθισκάησλ. Βαζηθέο πξνθιήζεηο ηνπ manufacturing testing πνπ 
ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) O εληνπηζκφο θαηαζθεπαζηηθψλ 
ζθαικάησλ ή αζηνρηψλ πιηθνχ. (2) Γξήγνξν εληνπηζκφ ζθαικάησλ 
θαζψο ε ρξνληθή κεηαηφπηζε ηεο εηζαγσγήο ελφο πξντφληνο-
επεμεξγαζηή ζηελ αγνξά έρεη θαηαζηξνθηθέο ζπλέπεηεο γηα ην ίδην ην 
πξντφλ θαη ηελ θαηαζθεπάζηξηα εηαηξία [11]. 

 In-field verification: Πεξηιακβάλεη ηερληθέο, νη νπνίεο δηαζθαιίδνπλ ηελ 
ιεηηνπξγία ηνπ επεμεξγαζηή ζχκθσλα κε ηηο πξνδηαγξαθέο ηνπ. 
Πξνθιήζεηο πνπ ρξίδνπλ αληηκεηψπηζεο είλαη νη εμήο: (1) Αλάιπζε ηεο 
επίδξαζεο ζηελ απφδνζε ησλ ζθαικάησλ πιηθνχ πνπ είηε έρνπλ μεθχγεη 
απφ ηα πξνεγνχκελα ζηάδηα θαηαζθεπήο ηνπ θπθιψκαηνο  ή ιφγσ ηεο 
θζνξάο ηνπ θπθιψκαηνο. (2) Αλάπηπμε κεραληζκψλ γηα ηελ αλίρλεπζε 
θαη αλνρή ζθαικάησλ πιηθνχ [2] [5] [6]. 

Ο ζθνπφο απηήο ηεο δηδαθηνξηθήο δηαηξηβήο είλαη λα πξνηαζνχλ ηεθκεξησκέλεο 
ιχζεηο γηα ηελ αληηκεηψπηζε ησλ πξνθιήζεσλ πνπ ελππάξρνπλ ζε θάζε έλα απφ 
ηα πξναλαθεξζέληα ζηάδηα ηνπ θχθινπ δσήο ελφο επεμεξγαζηή. Εηδηθφηεξα, νη 
πξνηεηλφκελεο ηερληθέο ζπκβάιινπλ ζηε βειηίσζε ηεο απνηειεζκαηηθφηεηαο ηεο 
δηαδηθαζίαο επαιήζεπζεο νξζήο ιεηηνπξγίαο ελφο νπνηνπδήπνηε επεμεξγαζηή. 
Εθηηκάηαη, φηη ν ζηφρνο απηφο επηηπγράλεηαη κε ηελ νινθιήξσζε απηήο ηεο 
πξσηφηππεο δηαηξηβήο θαη επηπιένλ ν έκπεηξνο αλαγλψζηεο ζα δηαπηζηψζεη έλα 
αθφκε ζεκαληηθφ επίηεπγκα: πξφθεηηαη γηα έλα ζχλνιν απνηειεζκαηηθψλ ηερληθψλ 
νη νπνίεο είλαη δπλαηφ λα πηνζεηεζνχλ θαη λα εθαξκνζηνχλ άκεζα απφ ηε 
βηνκεραλία. Με άιια ιφγηα, κία ζεκαληηθή πηπρή ηεο δηδαθηνξηθήο απηήο 
δηαηξηβήο είλαη ε έκθαζε ζηε δηεπζέηεζε πξαγκαηηθψλ πξνβιεκάησλ, κε 
ξεαιηζηηθέο, πξαθηηθέο θαη απνηειεζκαηηθέο ιχζεηο. 

Τν silicon debug απνηειεί έλα αλαπφζπαζην θαη ζπλερψο απμαλφκελεο ζεκαζίαο 
θαη δηάξθεηαο ηκήκα ηνπ θχθινπ δσήο ελφο επεμεξγαζηή. Ελδεηθηηθή είλαη ε 
ζπλερψο απμαλφκελε πίεζε πνπ αζθείηαη ζηνπο κεραληθνχο πιηθνχ γηα λα 
νινθιεξψζνπλ ηελ απνζθαικάησζε ελφο επεμεξγαζηή. Σην πιαίζην απηφ ζα 
πξέπεη λα ιεθζεί επηπιένλ ππφςε ε εμαηξεηηθά κεγάιε πνιππινθφηεηα ησλ 
ζχγρξνλσλ επεμεξγαζηψλ, ζε ζπλδπαζκφ κε ηα ζηελά ρξνληθά πεξηζψξηα πνπ 
ηίζεληαη. Επηπξφζζεηα, νη ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο ελφο επεμεξγαζηή 
πξηλ ηελ παξαγσγή ησλ πξσηνηχπσλ θπθισκάησλ (pre-silicon verification) 
βαζίδνληαη απνθιεηζηηθά ζε εξγαιεία πξνζνκνίσζεο. Ωζηφζν, παξφιν ηελ 
απνηειεζκαηηθφηεηα ησλ ηερληθψλ απηψλ θαη ηελ κεγάιε ππνινγηζηηθή ηζρχ πνπ 
ρξεζηκνπνηείηαη γηα ηελ επίηεπμε ηνπ ζηφρνπ, ε ρακειή απφδνζε ησλ ηερληθψλ 
πξνζνκνίσζεο απνηειεί βαζηθή ζπζηεκηθή αδπλακία. Πην ζπγθεθξηκέλα, έλαο 
ηεξάζηηνο αξηζκφο πξνγξακκάησλ ειέγρνπ νξζήο ιεηηνπξγίαο εθηεινχληαη 
αδηάθνπα ζην πξσηφηππν κνληέιν ηνπ επεμεξγαζηή κε ζθνπφ ηελ αλίρλεπζε 
νπνηνπδήπνηε ζρεδηαζηηθνχ ή θαηαζθεπαζηηθνχ ζθάικαηνο. Σηελ ζπλέρεηα, θάζε 
θνξά πνπ εληνπίδεηαη έλα ζθάικα, ε δηαδηθαζία απνζθαικάησζεο μεθηλά. Ο 
ζηφρνο ηεο δηαδηθαζίαο απηήο είλαη ν πξνζδηνξηζκφο ηεο πεγήο ηνπ ζθάικαηνο 
θαζψο θαη ε κφληκε δηφξζσζή ηνπ. Είλαη πξνθαλέο φηη ε αλάπηπμε ηερληθψλ νη 
νπνίεο ζα αληρλεχζνπλ εγθαίξσο θαη ζα δηνξζψζνπλ ηα ζρεδηαζηηθά ζθάικαηα 



 

 

πξηλ ηελ καδηθή παξαγσγή ηνπ κνληέινπ ηνπ επεμεξγαζηή απνηειεί θαζνξηζηηθφ 
παξάγνληα γηα ηελ απνηπρία ή κε ελφο νινθιεξσκέλνπ θπθιψκαηνο. 

Η καδηθή εθηέιεζε πξνγξακκάησλ νξζήο ιεηηνπξγίαο κε ηπραηφηεηα απνηειεί έλα 
απφ ηνπο πην απνδνηηθνχο ηξφπνπο εληνπηζκνχ ζρεδηαζηηθψλ ζθαικάησλ. 
Παγθνζκίσο, νη κεγαιχηεξεο εηαηξίεο νινθιεξσκέλσλ θπθισκάησλ έρνπλ 
θαηαζθεπάζεη εξγαιεία απηφκαηεο παξαγσγήο ηπραίσλ πξνγξακκάησλ 
απνζθνπψληαο ζηελ ηαρχηεξε θαη πιεξέζηεξε θάιπςε φισλ ησλ πηζαλψλ 
ζελαξίσλ ειέγρνπ ελφο επεμεξγαζηή. Ωζηφζν, παξφιν ηελ επξεία πηνζέηεζε 
απηήο ηεο κεζφδνπ, ππάξρνπλ νξηζκέλεο ελ γέλεη αδπλακίεο. Απηέο είλαη νη 
αθφινπζεο: 

1. Ο εληνπηζκφο ελφο ζρεδηαζηηθνχ ή θαηαζθεπαζηηθνχ ζθάικαηνο 
πξνυπνζέηεη ηελ εθηέιεζε ηνπ πξνγξάκκαηνο ειέγρνπ νξζήο 
ιεηηνπξγίαο κε ηπραηφηεηα  αθελφο ζηνλ πξσηφηππν κνληέιν ηνπ 
επεμεξγαζηή θαη αθεηέξνπ ζε έλαλ αξρηηεθηνληθφ πξνζνκνησηή (ν 
νπνίνο εμάγεη ην ζσζηφ-αλακελφκελν απνηέιεζκα). Σηελ ζπλέρεηα, ηα 
απνηειέζκαηα απφ ηηο δχν πεγέο ζπγθξίλνληαη έηζη ψζηε λα 
πξνζδηνξηζηεί ν εληνπηζκφο ή κε ελφο ζθάικαηνο (δηαθνξά ζηα 
απνηειέζκαηα ζπλεπάγεηαη ηνλ εληνπηζκφ ζθάικαηνο). Σπλεπψο, ε 
δηαδηθαζία ηνπ silicon debug πεξηνξίδεηαη απφ ηελ απφδνζε ηνπ 
πξνζνκνησηή, ν νπνίνο ζε θάζε πεξίπησζε είλαη πνιιέο ηάμεηο 
κεγέζνπο πην αξγφο απφ έλα πξαγκαηηθφ κεράλεκα. 

2. Μία αθφκε πεγή θαζπζηέξεζεο ηεο νινθιήξσζεο ηνπ silicon debug 
απνηειεί ν κεγάινο αξηζκφο απφ πξνγξάκκαηα ειέγρνπ νξζήο 
ιεηηνπξγίαο πνπ εληνπίδνπλ ην ίδην ζρεδηαζηηθφ ή θαηαζθεπαζηηθφ 
ζθάικα, ηα νπνία δελ κεηαθέξνπλ θάπνηα λέα πιεξνθνξία γηα ηελ 
θαηάζηαζε ηνπ επεμεξγαζηή. Παξφια απηά νη κεραληθνί πιηθνχ πξέπεη 
λα κειεηήζνπλ θάζε έλα απφ απηά μερσξηζηά γηα λα εληνπίζνπλ ηελ 
γελεζηνπξγφ αηηία ηνπ ζθάικαηνο θαζπζηεξψληαο ηελ φιε δηαδηθαζία. 

Σην πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο πξνηάζεθε κία κεζνδνινγία γηα ηελ 
επηηάρπλζε ηεο δηαδηθαζίαο εληνπηζκνχ ζθαικάησλ, θαηά ηε θάζε  ειέγρνπ ησλ 
πξσηνηχπσλ θπθισκάησλ, κέζσ ηεο θαηαζθεπήο ινγηζκηθνχ απηφ-δνθηκήο. Η 
θεληξηθή ηδέα απηήο ηεο κεζφδνπ έγθεηηαη ζηελ αμηνπνίεζε ηεο έκθπηεο 
πνηθηινκνξθίαο ησλ αξρηηεθηνληθψλ ζπλφινπ εληνιψλ, δειαδή ηεο ηδηφηεηάο ηνπο 
λα πινπνηνχλ κία ιεηηνπξγία κε πεξηζζφηεξνπο απφ έλα ηξφπνπο (ή δηαθνξεηηθά 
κε πεξηζζφηεξεο απφ κία δηαθνξεηηθέο εληνιέο). Απηή ε εξεπλεηηθή εξγαζία  
απνζθνπεί ζηελ επηηάρπλζε ηεο δηαδηθαζίαο εληνπηζκνχ ζθαικάησλ, θαηά ηε 
θάζε ηνπ ειέγρνπ ησλ πξσηνηχπσλ θπθισκάησλ. Τα πεηξακαηηθά απνηειέζκαηα 
(ηα νπνία εμήρζεζαλ ζηελ πην δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ, x86) 
πηζηνπνίεζαλ ηε δπλαηφηεηα ηεο πξνηεηλφκελεο κεζφδνπ, αθελφο ζηνλ 
εληνπηζκφ (ε πξνηεηλφκελε κέζνδνο έρεη πςειφηεξα πνζνζηά θάιπςεο 
ζθαικάησλ ζε ζχγθξηζε κε ππάξρνπζεο ηερληθέο) θαη ζηελ απνθπγή ζθαικάησλ 
πνπ απνθξχπηνπλ ηνλ εληνπηζκφ λέσλ θαη αθεηέξνπ ζηελ επηηάρπλζε ηεο 
δηαδηθαζίαο επαιήζεπζεο ελφο επεμεξγαζηή (ε πξνηεηλφκελε κέζνδνο είλαη 
πνιιέο ηάμεηο κεγέζνπο γξεγνξφηεξε έλαληη ηεο βαζηθήο δηαδηθαζίαο πνπ 
πηνζεηείηαη απφ ηηο εηαηξείεο). Επηπξφζζεηα, πξνηάζεθε κία κέζνδνο γηα ηνλ 
απηφκαην εληνπηζκφ ηπραίσλ πξνγξακκάησλ πνπ δελ πεξηέρνπλ λέα -ρξήζηκε- 
πιεξνθνξία ζρεηηθά κε ηελ γελεζηνπξγφ αίηηα ελφο ζθάικαηνο γηα ηνπο 
κεραληθνχο. Ο πξνηεηλφκελνο κεραληζκφο βαζίζηεθε ζηελ ιεηηνπξγία ηεο 
απνδηακφξθσζεο (deconfiguration), δειαδή ηεο δπλαηφηεηαο λα 



 

απελεξγνπνηνχληαη ηκήκαηα ηεο ινγηθήο ηνπ θπθιψκαηνο ρσξίο λα επεξεάδεηαη ε 
ιεηηνπξγηθφηεηα ηνπ επεμεξγαζηή. Οη ζχγρξνλνη επεμεξγαζηέο ελζσκαηψλνπλ 
πνιιά ηκήκαηα πιενλάδνπζαο ινγηθήο ηα νπνία δελ ζπκβάιινπλ ζηελ 
πινπνίεζε ησλ βαζηθψλ ιεηηνπξγηψλ ηνπ αιιά βειηηψλνπλ ηελ απφδνζε. 
Παξάιιεια, αμηνπνηψληαο ηε δπλαηφηεηα ησλ πξνγξακκάησλ απηφ-δνθηκήο γηα 
ηελ αλίρλεπζε ζθαικάησλ θαηά ηε δηάξθεηα ιεηηνπξγία ηνπ θπθιψκαηνο, ν 
πξνηεηλφκελνο κεραληζκφο απνδηακνξθψλεη ζηαδηαθά ηα πιενλάδνληα ηκήκαηα 
ηεο ινγηθήο έσο φηνπ ην πξφγξακκα δελ εληνπίζεη θάπνην ζθάικα (δειαδή, ην 
ηκήκα ηεο ινγηθήο πνπ πεξηέρεη ην ζθάικα έρεη απελεξγνπνηεζεί, κε απνηέιεζκα 
ην πξφγξακκα λα κελ ην εληνπίδεη). Σηε ζπλερεία, ηα πξνγξάκκαηα απηφ-δνθηκήο 
νκαδνπνηνχληαη ζε θαηεγνξίεο ζχκθσλα κε ηελ αθνινπζία ησλ ηκεκάησλ ινγηθήο 
πνπ απνδηακνξθψζεθαλ απφ ην θχθισκα, έηζη ψζηε λα εθηειεζηνχλ ζσζηά 
(δειαδή, ηα πξνγξάκκαηα πνπ κέζσ ηηο ίδηαο αθνινπζίαο απνδηακφξθσζεο 
«έθξπςαλ» ην ζρεδηαζηηθφ ζθάικα αλήθνπλ ζηελ ίδηα θαηεγνξία). Ωο εθ ηνχηνπ, 
νη κεραληθνί απνζθαικάησζεο ηνπ θπθιψκαηνο κειεηνχλ κφλν έλα πξφγξακκα 
απφ θάζε θαηεγνξία γηα λα εληνπίζνπλ ηελ γελεζηνπξγφ αίηηα ηνπ ζθάικαηνο. Τα 
πεηξακαηηθά απνηειέζκαηα (ζηελ πην δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ 
x86-64) πηζηνπνίεζαλ ηε δπλαηφηεηα ηεο πξνηεηλφκελεο κεζφδνπ, αθελφο ζηελ 
νκαδνπνίεζε ησλ πξνγξακκάησλ απηφ-δνθηκήο πνπ δελ εκπεξηέρνπλ λέα –
ρξήζηκε- πιεξνθνξία γηα ηελ απνζθαικάησζε ηνπ θπθιψκαηνο θαη αθεηέξνπ 
ζηελ επηηάρπλζε ηεο δηαδηθαζίαο επαιήζεπζεο ελφο επεμεξγαζηή. Ωο εθ ηνχηνπ, 
νη πξνηεηλφκελεο κέζνδνη πεηπραίλνπλ:  (α) ηνλ εληνπηζκφ ζρεδηαζηηθψλ 
ζθαικάησλ θαη θαηαζθεπαζηηθψλ ζθαικάησλ θαη (β) ηε βειηίσζε ηεο δηαδηθαζίαο 
απνζθαικάησζε ηνπ θπθιψκαηνο θαη θαηά ζπλέπεηα ζηελ επηηάρπλζε silicon 
debug. 

Αθνχ νινθιεξσζεί ν εμνλπρηζηηθφο έιεγρνο ησλ πξσηφηππσλ κνληέισλ ελφο 
νινθιεξσκέλνπ θπθιψκαηνο, αθνινπζεί ην ζηάδην ηνπ manufacturing testing. Τo 
manufacturing testing απνηειεί αλαπφζπαζην θνκκάηη ηεο ζρεδηαζηηθήο αιπζίδαο 
θαηά ην νπνίν εθηειείηαη ν ηειεπηαίνο πνηνηηθφο έιεγρνο ηνπ νινθιεξσκέλνπ 
θπθιψκαηνο θαηά ηελ καδηθή παξαγσγή ηνπ επεμεξγαζηή. Ο ζηφρνο ηνπ 
manufacturing testing είλαη ν εληνπηζκφο νπνηνπδήπνηε θαηαζθεπαζηηθνχ 
ζθάικαηνο ην νπνίν κπνξεί λα ζέζεη ζε θίλδπλν ηελ νξζή ιεηηνπξγία ηνπ 
επεμεξγαζηή. 

Η βηνκεραλία νινθιεξσκέλσλ θπθισκάησλ έρεη πξνζαλαηνιηζηεί ζηελ αλάπηπμε 
πνιππχξελσλ θαη πνιπλεκαηηθψλ επεμεξγαζηψλ, νη νπνίνη αλ θαη ιεηηνπξγνχλ ζε 
ρακειφηεξεο ζπρλφηεηεο παξέρνπλ πςειή ππνινγηζηηθή ηζρχ θαζψο 
εθκεηαιιεχνληαη ηα πνιιαπιά λήκαηα θαη ηνπο πνιινχο ππξήλεο γηα ηνλ 
παξαιιειηζκφ ηελ εθηέιεζεο ελφο πξνγξάκκαηνο. Παξάιιεια, φιεο νη ηερληθέο 
πνπ έρνπλ επηλνεζεί γηα ηελ αληηκεηψπηζε ησλ πξνβιεκάησλ αμηνπηζηίαο ησλ 
ζχγρξνλσλ κηθξνεπεμεξγαζηψλ πξέπεη λα αθνινπζήζνπλ ηελ κεηάβαζε απφ ηελ 
επνρή ησλ ππνινγηζηηθψλ ζπζηεκάησλ κε κνλφ ππξήλα ζε πνιιαπιψλ. 
Εηδηθφηεξα, νη κειινληηθέο ηερληθέο ειέγρνπ νξζήο ιεηηνπξγίαο πξέπεη λα 
αμηνπνηήζνπλ ηνλ έκθπην παξαιιειηζκφ ησλ ζχγρξνλσλ επεμεξγαζηψλ, έηζη 
ψζηε λα κεηψζνπλ ηε ζπλνιηθή δηάξθεηα ησλ ηερληθψλ ειέγρνπ νξζήο ιεηηνπξγίαο, 
βειηηψλνληαο ην ρξφλν δηάζεζεο ζηελ αγνξά, αιιά ρσξίο λα ππνβαζκηζηεί ε 
απνηειεζκαηηθφηεηα ηνπο ζε ζρέζε κε ην πνζνζηφ θάιπςεο ζθαικάησλ. 

Σην πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο πξνηάζεθε ε κεζνδνινγία 
Multithreaded (MT) Software-Based Self-Testing (SBST). Η κεζνδνινγία απηή 
απνζθνπεί ζηελ βειηηζηνπνίεζε θαη επηηάρπλζε ηεο ζηξαηεγηθήο έιεγρνπ νξζήο 
ιεηηνπξγίαο ησλ πνιπλεκαηηθψλ θαη πνιππχξελσλ επεμεξγαζηψλ κέζσ ηεο 



 

 

ρξήζεο ινγηζκηθνχ απηφ-δνθηκήο (functional self-testing). H πηνζέηεζε ηνπ 
ινγηζκηθνχ απηφ-δνθηκήο απνηειεί αλαπφζπαζην ηκήκα ηνπ manufacturing 
testing θαζψο: (α) επηηξέπεη ηελ εθηέιεζε ηνπ ινγηζκηθνχ απηνδνθηκήο ζηε 
ζπρλφηεηα ιεηηνπξγίαο ηνπ επεμεξγαζηή θαη (β) ηεο κε-παξεκβαηηθήο 
ζπκπεξηθνξάο ζηε ιεηηνπξγία ηνπ (δελ πξνζζέηεη λέν πιηθφ). Πην ζπγθεθξηκέλα, ν 
έιεγρνο νξζήο ιεηηνπξγίαο κε ηε ρξήζε ινγηζκηθνχ απηφ-δνθηκήο εθηειείηαη σο 
εμήο: έλα πξφγξακκα εθαξκφδεη έλα ζχλνιν απφ δεδνκέλα εηζφδνπ (ηα νπνία 
ελεξγνπνηνχλ θάζε πηζαλή θαηάζηαζε ηνπ θπθιψκαηνο) θαη ζηε ζπλέρεηα 
ζπιιέγεη ηα απνηειέζκαηα εμφδνπ (απφ ηελ θχξηα κλήκε ηνπ ζπζηήκαηνο) ηα 
νπνία θαη ζπγθξίλεη κε ηα ζσζηά-αλακελφκελα έηζη ψζηε λα δηαπηζησζεί εάλ έρεη 
εληνπηζηεί θάπνην θαηαζθεπαζηηθφ ζθάικα. Σηελ πεξίπησζε εληνπηζκνχ ελφο 
θαηαζθεπαζηηθνχ ζθάικαηνο ην ζπγθεθξηκέλν πξντφλ απνζχξεηαη απφ ηελ 
παξαγσγή. Σηελ εξεπλεηηθή απηή εξγαζία πξνηάζεθε κία κεζνδνινγία πνπ 
απνζθνπεί ζηα εμήο: 

1. Να αμηνπνηήζεη ζην κέγηζην ηηο δπλαηφηεηεο παξαιιειηζκνχ πνπ 
παξέρνπλ ηα πνιιαπιά λήκαηα θαη ππξήλεο ηνπ επεμεξγαζηή. Τα 
πεηξακαηηθά απνηειέζκαηα καο δείρλνπλ φηη ν πξνηεηλφκελνο αιγφξηζκνο 
ρξνλνπξνγξακκαηηζκνχ (ζηνλ επεμεξγαζηή OpenSPARC T1) επηηαρχλεη 
ην ρξφλν εθηέιεζεο ηνπ ινγηζκηθνχ απηνδνθηκήο, θαηά 3.6Φ θνξέο ζε 
επίπεδν ππξήλα, ελψ ζπλνιηθά ζε επίπεδν επεμεξγαζηή έσο 6.0X ζε 
ζχγθξηζε κε ηελ εθηέιεζε ηνπ ινγηζκηθνχ ζε έλα κφλν λήκα εθηέιεζεο. 
Επηπιένλ, ζε ζχγθξηζε κε κηα απιή πνιπλεκαηηθή εθηέιεζε ηνπ 
ινγηζκηθνχ απηφ-δνθηκήο ν πξνηεηλφκελνο αιγφξηζκνο κεηψλεη ηελ 
δηάξθεηα εθηέιεζήο θαηά 33% θαη 20% ζε επίπεδν ππξήλα θαη 
επεμεξγαζηή αληίζηνηρα. 

2. Να δηαηεξήζεη ζε πςειά επίπεδα ην πνζνζηφ θάιπςεο ειαηησκάησλ 
πιηθνχ (ζρεδφλ 90% ζε νιφθιεξν ηνλ επεμεξγαζηή ν νπνίνο απνηειείηαη 
απφ 1.5 εθαηνκκχξηα ινγηθέο πχιεο) θαη 

3. Να βειηηζηνπνηήζεη ην πνζνζηφ θάιπςεο ειαηησκάησλ πιηθνχ ζηα 
ηκήκαηα ινγηθήο φπνπ ζρεηίδνληαη κε ηελ πνιπλεκαηηθή θαη πνιππχξελε 
εθηέιεζε. Η κεζνδνινγία MT-SBST επηηαρχλεη ζεκαληηθά ηε δηαδηθαζία 
ειέγρνπ νξζήο ιεηηνπξγία ελφο επεμεξγαζηή, ελψ παξάιιεια βειηηψλεη 
ζπλνιηθά ην πνζνζηφ θάιπςεο ειαηησκάησλ. 

Η ζπλερψο απμαλφκελε πηζαλφηεηα εκθάληζεο ζθαικάησλ πιηθνχ θαηά ηε 
δηάξθεηα ιεηηνπξγίαο ελφο επεμεξγαζηή (in-field verification), νδήγεζε ζηελ 
εηζαγσγή κεραληζκψλ επαιήζεπζεο ηεο νξζήο ηνπο ιεηηνπξγίαο. Σην πιαίζην 
απηήο ηεο δηδαθηνξηθήο δηαηξηβήο, πινπνηήζεθε έλα εξγαιείν απηφκαηεο 
εηζαγσγήο κφληκσλ ζθαικάησλ (permanent) ζηελ αξρηηεθηνληθή x86-64 (ε πην 
δηαδεδνκέλε αξρηηεθηνληθή ππνινγηζηψλ, ρξεζηκνπνηείηαη απφ ηηο εηαηξίεο Intel 
θαη AMD). Τν εξγαιείν απηφ ελζσκαηψζεθε ζηνλ επξέσο δηαδεδνκέλν 
αξρηηεθηνληθφ πξνζνκνησηή PTLsim. Καηφπηλ, αλαιχζεθε ζε βάζνο ε επίδξαζε 
πνπ έρνπλ ηα κφληκα ζθάικαηα (κνλά θαη ζε νξηζκέλεο πεξηπηψζεηο πνιιαπιά) 
ζηνπο εμήο κεραληζκνχο: 

 Μεραληζκφο πξφβιεςεο δηαθιάδσζεο (branch prediction unit): Ο 
κεραληζκφο απηφο πξνβιέςεη ηελ επφκελε εληνιή πνπ ζα εθηειεζηεί απφ 
ηνλ επεμεξγαζηή βαζηδφκελνο ζην ηξέρνλ ηζηνξηθφ εθηέιεζεο. 

 Μεραληζκφο εθ ησλ πξνηέξσλ πξνζθφκηζεο δεδνκέλσλ (data 
prefetching). Ο κεραληζκφο απηφο αλαδεηά ζπγθεθξηκέλα πξφηππα ζηνλ 



 

ηξφπν πξφζβαζεο ζηελ ηεξαξρία κλήκεο. Σηελ πεξίπησζε φπνπ 
δηαπηζησζεί φηη έλα ζπγθεθξηκέλν πξφηππν επαλαιεθζεί αξθεηέο θνξέο 
(ην πιήζνο θαζνξίδεηαη θαηά ηε ζρεδίαζε ηνπ κεραληζκνχ), ηφηε 
πξνρσξάεη ζηελ πξφσξε πξνζθφκηζε δεδνκέλσλ απφ ηελ κλήκε ηνπ 
επεμεξγαζηή έηζη ψζηε λα απνθεπρζνχλ κειινληηθέο θαζπζηεξήζεηο 
ζηελ εθηέιεζεο ιφγσ αζηνρηψλ ζηε κλήκε δεδνκέλσλ. 

Η ηδηαηηεξφηεηα ησλ ζθαικάησλ ζηνπο κεραληζκνχο απηνχο έγθεηηαη ζην γεγνλφο 
φηη επεξεάδνπλ απνθιεηζηηθά ηελ απφδνζε ηνπ επεμεξγαζηή θαη φρη ηελ νξζφηεηα 
ηεο εθηέιεζεο. Καηά ζπλέπεηα, ε εθηέιεζε ελφο πξνγξάκκαηνο κπνξεί λα 
θαζπζηεξήζεη λα νινθιεξσζεί εμαηηίαο ησλ ζθαικάησλ ζηνπο κεραληζκνχο 
αχμεζεο ηεο απφδνζεο. Τα πεηξακαηηθά απνηειέζκαηα ππνδειψλνπλ φηη έλα 
κεγάιν πιήζνο ζθαικάησλ ζηνπο πξναλαθεξζέληεο κεραληζκνχο επεξεάδνπλ 
ηελ απφδνζε ηνπ επεμεξγαζηή (έσο ην 96% ησλ κφληκσλ ζθαικάησλ αλαιφγσο 
ην κεραληζκφ θαη ην εθηεινχκελν πξφγξακκα). Παξάιιεια, ε επίδξαζε ησλ 
ζθαικάησλ ζηελ απφδνζε ηνπ ζπζηήκαηνο κπνξεί λα είλαη θαηαζηξνθηθή. Γηα 
παξάδεηγκα, ζθάικαηα ζην κεραληζκφ εθ ησλ πξνηέξσλ πξνζθφκηζεο 
δεδνκέλσλ κπνξεί λα επηβαξχλεη ηελ απφδνζε ελφο ζπζηήκαηνο σο 26%. 

Εθηφο απφ ηελ αμηνιφγεζε ησλ κφληκσλ ζθαικάησλ ζηνπο κεραληζκνχο αχμεζεο 
ηεο απφδνζεο, πξνηάζεθαλ ηερληθέο γηα ηελ αλίρλεπζε θαη αλνρή κφληκσλ 
ζθαικάησλ πιηθνχ ζηνπο κεραληζκνχο πξφβιεςεο δηαθιάδσζεο. Εηδηθφηεξα, ε 
αλίρλεπζε επηηπγράλεηαη κέζσ ηεο αμηνπνίεζεο ηεο απηφκαηεο δηφξζσζεο ησλ 
κεραληζκψλ πξφβιεςεο δηαθιάδσζεο, ελψ ε αλνρή κέζσ ηεο αλαδηακφξθσζεο 
ηνπ πιηθνχ. Τα πξσηφηππα πεηξακαηηθά απνηειέζκαηα απηήο ηεο δηδαθηνξηθήο 
δηαηξηβήο θαζηζηνχλ εκθαλή ηε ζεηηθή επίπησζε ησλ πξνηεηλφκελσλ κεραληζκψλ 
γηα ηελ αλίρλεπζε θαη αλνρή ζθαικάησλ πιηθνχ. 

Τα ππνινγηζηηθά ζπζηήκαηα έρνπλ δηεηζδχζεη, πεξηζζφηεξν απφ πνηέ, ζηηο 
θαζεκεξηλέο δξαζηεξηφηεηεο ηεο θνηλσλίαο καο. Παξφια απηά, νη ηερλνινγηθέο 
εμειίμεηο, ηφζν ζηελ ηερλνινγία πιηθψλ φζν θαη ζηελ αξρηηεθηνληθή ππνινγηζηψλ, 
πνπ καο νδεγνχλ ζε απηά ηα αμηνζαχκαζηα επηηεχγκαηα, απμάλνπλ ηελ 
αλαμηνπηζηία ησλ ππνινγηζηηθψλ θπθισκάησλ ζέηνληαο, ηαπηνρξφλσο, ζε 
θίλδπλν ηελ θνηλσλία καο. Σπλεπψο, ηφζν νη εηαηξίεο θαηαζθεπήο 
νινθιεξσκέλσλ θπθισκάησλ φζν θαη ε αθαδεκατθή θνηλφηεηα είλαη αλαγθαίν λα 
εθεχξεη λέεο ιχζεηο θαη λα αλαπηχμεη θαηλνηφκεο ηερληθέο πνπ λα αληηκεησπίδνπλ 
ην θξίζηκν πξφβιεκα ηεο αλαμηνπηζηίαο ησλ ζχγρξνλσλ αιιά θαη κειινληηθψλ 
επεμεξγαζηψλ. Εηδηθφηεξα, νη κειινληηθέο αξρηηεθηνληθέο ππνινγηζηψλ ζα πξέπεη 
λα δηεπθνιχλνπλ φζν ην δπλαηφλ πεξηζζφηεξν ην έιεγρν νξζήο ιεηηνπξγίαο ελφο 
ππνινγηζηηθνχ θπθιψκαηνο ζε φιεο ηηο θάζεηο ηηο ζρεδηαζηηθήο αιπζίδαο. Απηή ε 
δηδαθηνξηθή δηαηξηβή απνηειεί έλα ζεκαληηθφ βήκα πξνο απηή ηελ θαηεχζπλζε. 
Εηδηθφηεξα, πξνηείλνληαη λέεο κεζνδνινγίεο βαζηδφκελεο ζηηο αθφινπζεο 
ζεκειηψδεηο ζρεδηαζηηθέο πξνδηαγξαθέο: (α) ρακεινχ θφζηνπο ιχζεηο ζε ελέξγεηα 
αιιά θαη πνιππινθφηεηα θαη (β) απηνκαηνπνίεζε, κε ζθνπφ ηελ αληηκεηψπηζε 
ησλ πξνθιήζεσλ ηνπ ειέγρνπ αμηνπηζηίαο ησλ θπθισκάησλ ζε νιφθιεξν ηνλ 
θχθιν δσήο ηνπο. 

Τα εξεπλεηηθά απνηειέζκαηα απηήο ηεο δηδαθηνξηθήο δηαηξηβήο αλνίγνπλ 
δηάπιαηα ην δξφκν ζε λέεο εξεπλεηηθέο δξαζηεξηφηεηεο. Εηδηθφηεξα, ζηα πιαίζηα 
ηνπ silicon debug, νη κειινληηθέο ηερλνινγίεο εληνπηζκνχ θαη δηφξζσζεο 
ζθαικάησλ ζα πξέπεη λα επηθεληξσζνχλ ζηελ απηνκαηνπνίεζε θαη ζηελ 
ηππνπνίεζε ηεο δηαδηθαζίαο αλίρλεπζεο θαη  απνζθαικάησζεο ζρεδηαζηηθψλ 
ζθαικάησλ.  Επηπξφζζεηα, απηή ε δηδαθηνξηθή δηαηξηβή απέδεημε ηελ 
απνηειεζκαηηθφηεηα ηεο πηνζέηεζεο ηνπ ινγηζκηθνχ απηφ-δνθηκήο ζηελ 



 

 

επηηάρπλζε ηνπ manufacturing testing δηαηεξψληαο έλα εμαηξεηηθά πςειφ 
πνζνζηφ θάιπςεο ειαηησκάησλ. Η επηηπρία απηήο ηεο κεζφδνπ ζα κπνξνχζε λα 
απνηειέζεη κία θαηεχζπλζε γηα ηνπο κειινληηθνχο κηθξνεπεμεξγαζηέο. 
Επηπξφζζεηα, ε ζπλερψο απμαλφκελε αλάγθε γηα ππνινγηζηηθά ζπζηήκαηα 
πςειψλ επηδφζεσλ σζεί ηνπ αξρηηέθηνλεο επεμεξγαζηψλ ζηελ πξνζζήθε 
πνιιψλ κεραληζκψλ αχμεζεο ηεο απφδνζεο ζηε ζρεδίαζε ελφο επεμεξγαζηή. 
Ωζηφζν, ε νξζή ιεηηνπξγία απνηειεί πξσηαξρηθφ ζηφρν έσο ηψξα έλαληη ηεο 
ζσζηή ιεηηνπξγίαο αιιά ζηα αλακελφκελα ρξνληθά πεξηζψξηα. Απηή ε 
δηδαθηνξηθή δηαηξηβή θαηέδεημε κε εκθαηηθφ ηξφπν φηη ηα ζθάικαηα πιηθνχ ζηα 
ηκήκαηα ηεο ινγηθήο πνπ ζπκβάινπλ ζηελ αχμεζε ηεο απφδνζεο κπνξνχλ λα 
νδεγήζνπλ ζε ζεκαληηθή απφθιηζε ηεο απφδνζεο ηνπ επεμεξγαζηή ζε ζρέζε κε 
ηελ αλακελφκελε ζπκπεξηθνξά ηνπ. Σπλεπψο, νη κειινληηθνί επεμεξγαζηέο 
πξέπεη λα ελζσκαηψζνπλ έλα πιήζνο κεραληζκψλ γηα ηνλ ζπλερή έιεγρν ηεο 
επίδνζεο ελφο ζπζηήκαηνο θαη λα είλαη ζε ζέζε λα αληηκεησπίδνπλ πεξηπηψζεηο 
αζηνρίαο. Τέινο, κία ζεκαληηθή κειινληηθή εξεπλεηηθή θαηεχζπλζε απνηειεί ν 
εληνπηζκφο ηερληθψλ νη νπνίεο λα κπνξνχλ λα εθαξκνζηνχλ ζε φια ηα ζηάδηα ηεο 
ζρεδηαζηηθήο αιπζίδαο, απφ ηα πξσηφηππα κνληέια ελφο επεμεξγαζηή κέρξη ηελ 
θαλνληθή, παξαγσγηθή, επηρεηξεζηαθή, εκπνξηθή ηνπ ιεηηνπξγία. 

Σπκπεξαζκαηηθά, κηα δσηηθήο ζεκαζίαο πξφθιεζε ησλ κειινληηθψλ ηερλνινγηψλ 
απνηειεί ε θαηαζθεπή ππνινγηζηηθψλ ζπζηεκάησλ ηα νπνία ζα ιεηηνπξγνχλ κε 
αμηνπηζηία ζχκθσλα κε ηηο πξνδηαγξαθέο θαηαζθεπήο ηνπο. Απηή ε δηδαθηνξηθή 
δηαηξηβή πξνηείλεη θαηλνηφκνπο κεραληζκνχο απνζθνπψληαο ζηε βειηίσζε ηεο 
απνδνηηθφηεηαο ηεο επαιήζεπζεο ηεο ιεηηνπξγίαο ελφο κηθξνεπεμεξγαζηή ζε φιε 
ηελ δηάξθεηα ιεηηνπξγίαο ηνπ, κε δηηηφ ζηφρν, ήηνη ην πςειφ πνζνζηφ θάιπςεο 
ζθαικάησλ  θαη ηε κηθξφηεξε δπλαηή επηβάξπλζε ζηε ζρεδίαζε ηνπ 
ππνινγηζηηθνχ ζπζηήκαηνο. Ειπίδνπκε φηη ζπλεηζθνξέο πνπ παξνπζηάδνληαη ζην 
πιαίζην απηήο ηεο δηδαθηνξηθήο δηαηξηβήο λα πξνσζήζνπλ αθφκε πεξηζζφηεξν 
ηελ έξεπλα ζηελ αλάπηπμε αμηφπηζησλ ππνινγηζηηθψλ ζπζηεκάησλ. Παξάιιεια, 
λα βξνπλ επξεία απήρεζε ζηνπο κειινληηθνχο επεμεξγαζηέο. 
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1. INTRODUCTION 

Information and Communication Technology (ICT) systems are growing 
exponentially powered by the progress in semiconductor technology and in 
computer architecture. Semiconductor innovation has repeatedly provided more 
transistors (Moore‟s Law [73]) for roughly constant power and cost per chip 
(Dennard Scaling [35]), while computer architects took these rapid transistor 
budget increases and discovered innovative techniques to scale processor 
performance. A recent study [31] measured that technology scaling and 
architecture improvements contributed almost equally to computer performance 
growth, with architecture credited with ~80x improvement since 1985. Thus, the 
combined effect of technology and computer architecture makes microprocessors 
the most complex and immensely powerful application of the electronics. 

The same path that is leading technology toward these remarkable achievements 
is also making microprocessors increasingly unreliable posing a threat to our 
society. Device integration, design complexity along with the compelling 
requirement to diminish the Time-to-Market (TTM) are expected to dramatically 
reduce semiconductor product quality: as the transistors and wires shrink and the 
circuits complexity increases, microprocessors are becoming more prone to 
failures, show larger differences in behaviour although they are designed to be 
identical and have higher susceptibility to environmental-induced phenomena. 
The vital challenge of future technologies is to build dependable systems. That is 
the goal of this thesis; to provide solutions to the dependability challenges posed 
from the current and future microprocessor products. 

1.1 The ecosystem of a microprocessor 

Nowadays, the pervasiveness of microprocessors in our society goes far beyond 
the wildest imagination, from their humble beginning (on 1971‟s Intel introduced 
the first commercial processor, Intel 4004 [33]). Worldwide combined shipment of 
electronic devices (such as, Desktop PCs, Portable PCs, Smartphones and 
Tablets) is projected to reach 2.5 billion units until 2017 (Figure 1). Global connected device shipment forecast (in million units)

 

Figure 1: The evolution of global connected electronic devices. Desktop PC, portable PC, 
smartphone, and Tablet shipment through past to present and the forecast for the future 
(source: IDC, www.idc.com). 
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Chip manufacturers have been striving to increase microprocessor‟s performance 
by cramming more and more transistors into a silicon die. Throughout the last 
decades, transistors have conducted electricity along a planar surface of a silicon 
wafer. Today, tri-gate or multi-gate transistors mark a major change in 
semiconductor technology. Three dimensional transistors deliver superior levels 
of scalability extending the life of Moore‟s Law. Currently the feature size of the 
most new chips in massive production is in the range of 22nm and some chips 
are starting to use 14nm technology (Intel‟s, code-name Broadwell [55], 
microarchitecture will be shipped during the second half of 2015). The 
miniaturisation process of transistor technology is set to continue and we expect 
more than 61 billion transistors (Figure 2) in a single die by 2020 (3x increase 
compared to the design density we have today). 

Millions of Transistors/Chip 61,707

38,873

24,488
15,427

9,718

6,122
3,857

2,430

1,020

2004 2006 2008 2010 2012 2014 2016 2018 2020
year  

Figure 2: Current and future projections of design density, measured in millions of 
transistors per chip (source: International Technology Roadmap for Semiconductors, ITRS, 
2008 update, Mentor Graphics). 

As manufacturing technology provides higher transistor density, microprocessors 
exploit the additional transistors to boost their efficiency. Figure 3 shows the 
growth in processor performance since the mid-1980s. An arsenal of performance 
enhancement techniques, such as aggressively speculative mechanisms (e.g.: 
sophisticated branch prediction units, data and instruction prefetch mechanisms, 
value predictors), higher capacity caches, resource-, data-dependency handling 
structures and massively parallel pipelined processing elements allocate the 
additional area in silicon estate to exploit the available Instruction-, Thread-, and 
Data-Level  Parallelisms (ILP, TLP, DLP, respectively). To be so powerful, 
processors have become extremely complex systems, making the design and 
manufacturing of these devices a major challenge for the semiconductor industry. 
Major semiconductor companies such as Intel, AMD, ARM and IBM are forced to 
dedicate hundreds of engineers to continue to advance microprocessor 
technology and deliver better performance to end-users. 
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Figure 3: Growth in processor performance since the mid-1980s. This chart plots 
performance relative to the VAX 11/780 as measured by the SPECint benchmarks. Prior to 
the mid-1980s, processor performance growth was largely technology driven and averaged 
about 25% per year. The increase in growth to about 52% since then is attributable to more 
advanced architectural and organizational ideas. Since 2002, processor performance 
improvement has dropped to about 22% per year due to the following hurdles: (a) heat 
dissipation, (b) little Instruction-Level Parallelism (ILP) left to exploit, and (c) limitation lay 
by memory latency. These obstacles signal historic switch from relying solely on ILP to 
Thread-Level Parallelism (TLP) and Data-Level Parallelism (DLP) [47]. 

As microprocessor designs grow in complexity, it becomes increasingly harder to 
verify them and ensure that they operate properly. Design houses report [93] that 
today verification efforts significantly overweight design activities, since the ratio 
between the size of the design and debug teams has reached 2:1. We can only 
expect the situation to exacerbate with future performance demands, to the point 
that high-quality verification of microprocessors will no longer be possible with 
traditional means. Unless the verification demands of the modern microprocessor 
are answered, chips released to the public will become more and more unreliable 
containing significant numbers of design bugs and manufacturing defects. 
Clearly, an efficient verification process can make the difference between the 
success and the failure of a microprocessor product. 

Putting it all together, a modern microprocessor has the following characteristics: 
(a) billions of transistors, (b) integrates complex micro-architectures, and (c) is 
implemented on top of unreliable fabrics. Meanwhile, users expect a 
microprocessor to remain reliable and to continue to deliver the rated 
performance. This challenge will undoubtedly require a major paradigm shift in all 
aspects of microprocessor design – fabrication, design, debug, and testing. This 
thesis provides solutions to the dependability challenges posed throughout the 
life-cycle of a microprocessor product. 

1.2 Design life-cycle of a microprocessor 

The aggressive transistor scaling and the ever-growing design density have 
enabled microprocessors performance to boost at a dramatic pace; however, the 
required effort to manufacture modern microprocessors is continuously 
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increasing. The microprocessor life-cycle consists of the following high-level 
phases (Figure 4). 

 

Figure 4: The life-cycle of a microprocessor product. The design flow is comprised of a 
series of steps that considers the design planning, the development of the specified 
functionalities and the implementation of the silicon die. Along with the development flow, 
the design is progressively verified (reliability estimation, pre-silicon verification, silicon 
debug, manufacturing testing, and in-field verification), to ensure that, the microprocessor 
adheres to the design specification. 

Design planning: Computer architects define the microprocessor product design 
and manufacturing strategy. In particular, product requirement analysis, targeted 
market segment, technology selection, design methodology and tool selection 
constitute the vital tasks of design planning. For example, the architecture team 
explores the feasibility of diverse core architectures and verifies whether they 
provide the expected benefits, in terms of functionality, performance and power 
budget. In addition, the design team tests out new circuit ideas with test chips, 
and evaluate radical modifications in circuit and layout process. Table 1 illustrates 
three key product requirements specified within design planning.  

Table 1: Microprocessor product requirements analysis specified during design 
planning phase. 

Market 
Segment 

Product Requirement 

Server High throughput server Performance, reliability 

Desktop High performance desktop Performance 

Mainstream desktop Balanced performance and cost 

Low-cost desktop 
Lowest cost at required 
performance 

Embedded Smartphone Ultra-low power budget 

Development: Within this phase the microprocessor is developed and 
manufactured based on the design specifications set on the design planning 
phase. The development process starts with the definition of the microprocessor 
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features that are visible to the Operating System (OS) and to user applications, 
such as the Instruction Set Architecture (ISA). 

Table 2: The architecture-related features of a microprocessor defined within 
development phase. 

Features Possible choices 

Operand types Register, Register/Memory, Memory 

Data formats Integer, Floating-point, SIMD 

Data addressing modes 
Absolute, Register indirect, 
Displacement, Indexed 

Instruction encoding 
Fixed or Variable, #of registers, 
Immediate size 

Then, during microarchitecture development process the detailed implementation 
of the specified architectural features (i.e. assembly instructions), various logic 
elements (such as, functional, control and memory blocks) as well as the 
interaction among them are developed. Microarchitectural modifications can 
noticeably improve performance, while remaining transparent to the higher level 
of the system stack. Microprocessor characteristics and functionalities are 
described through an architectural model of the device, typically written in a high-
level programming language, such as C++. This model represents the first 
formalized reference of the final system‟s behaviour. Then, the logic design aims 
at generating a formal description of the logical behaviour of all the components 
and the interaction among them. A Hardware Description Language (HDL), such 
as Verilog or VHDL, is exploited to describe and simulate the hardware design. 
Depending on the level of abstraction a hardware description language can range 
from the behaviour level (i.e. maps major microprocessor events without the time 
notion), the Register-Transfer Level – RTL (i.e. models the processor clock along 
with the detailed description of the events occurred in each clock phase) to the 
structural level (i.e. the gate-level implementation of the design). The last phase 
on the development cycle of a microprocessor incorporates the circuit and layout 
design process. The former generates the transistor-level specification of the 
logic modelled through the HDL, while the latter maps transistors and wires on 
the different layers of the material to make up the circuit. The layout step 
constitutes the transition between a simulation-based to the silicon-based design 
implementation. 

Production: On silicon ramp the first silicon prototypes are manufactured and 
thoroughly validated. Design fixes that adjust microprocessor performance and 
functionality according to design specifications are applied. Then, the massive 
volume production starts. 

Runtime: The last phase on the design life-cycle of a microprocessor, where the 
product is shipped into the market. The manufactured microprocessor is 
functional and adheres to the design specifications. From this point onwards, the 
design teams have no interaction with the developed design. 

1.3 Dependability life-cycle of a microprocessor 

Dependability – the trustworthiness of a computing system which allows reliance 
to be justifiably placed on the service it delivers [39] – constitutes an integral part 
of computer architecture. Dependable operation of computing systems is a key 
challenge for the whole information and communication technology since almost 
every human activity relies largely or even completely on computing systems. 
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Computer architects are facing progressively more challenges in ensuring 
microprocessor products to be free of design bugs and hardware errors, due to 
the ever-growing design complexity and the continuously shortening time-to-
market. Design bugs and hardware errors are detected either before chips 
fabrication, during pre-silicon verification, or after fabrication, during silicon debug. 
Without major breakthroughs, microprocessor verification will be a non-scalable, 
a show-stopping barrier to further progress in the semiconductor industry. 

The development of a microprocessor is coupled with a sequence of verification 
tasks. Throughout this process, validation engineers utilize a multitude of 
verification tools to ensure that the design adheres to its specifications. 
Microprocessor dependability tasks can be grouped into five categories, based on 
where they intervene in a microprocessor‟s lifecycle (Figure 4): 

Reliability Estimation: Early assessment of the expected reliability of a 
microprocessor is a critical task which steers the design decisions related to the 
required mechanisms for the in-field error detection and protection. Such fault 
tolerance mechanisms may impose significant area, power and performance 
overheads. Straightforward guard-banding of the system with inaccurate 
knowledge of the effect of hardware faults can easily make the costs of protection 
against hardware faults excessive. For example, typical memory error detection 
and protection techniques can have a cost (in terms of added memory capacity) 
which ranges from 1% to 125% depending on the detection and protection 
capabilities of each technique [80]. Clearly, the selection of the most appropriate 
protection technique depends on the required reliability levels and studies of its 
inherent resiliency to hardware faults. Detection and protection mechanisms 
against any fault model must be decided as early as possible to avoid costly re-
design cycles for late integration of such mechanisms. However, early decisions 
on the protection mechanisms are hard to make because during the early stages 
of a system design a formalized model of the system is missing. 

Pre-Silicon Verification: it is mainly based on simulation at different levels of 
abstraction [13]. Despite its maturity and the tremendous utilization of computing 
resources, it is impossible to guarantee that all design bugs have been fixed 
before tape-out [62] because only a small number of functional scenarios can be 
simulated during pre-silicon verification. Statistics show that 12% of design bugs 
slip into first silicon prototypes and almost 50% of microprocessor chips require 
extra unplanned tape-outs due to bugs found in the first manufactured chips [4]. 
During pre-silicon verification, simulation-based tests, run on RTL model, are 
compared to those of the known-correct (or “golden”) architectural model and 
discrepancies, indicators of design bugs, are identified and fixed. In addition, pre-
silicon verification engineers employ formal methods, which can check 
correctness of a design using mathematical proofs and can thus guarantee the 
absence of certain types of errors. Unfortunately, formal methods cannot handle 
complex RTL models due to their limited scalability; therefore, their usage is 
limited to a few small critical blocks.  

Silicon debug: it targets to ensure that a chip‟s actual silicon implementation fully 
matches its specification, that is, the planned intended behaviour of the device. 
Silicon debug – the process of validating and debugging a new microprocessor 
design on its first silicon prototype chips – has evolved to a critical, time-
consuming, and labour-demanding step in a chip‟s development flow [2]. The 
underlying reasons for this unmanageable complexity lie in the inability of 
validation techniques to keep pace with the highly integrated microprocessors. 
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Recent trends [37] show that the time spent from the arrival of the first silicon 
prototype chips to high volume production is steadily growing, while the ratio 
between the size of the design and the debug teams has reached 2:1. Thus, 
efficient silicon debug approaches that promptly detect and eliminate the majority 
of design bugs before volume production can make the difference between 
success and failure of a microprocessor product [82]. During silicon debug a 
comprehensive suite of test programs (such as automatically generated random 
test programs, legacy tests and real world applications) covering many test 
scenarios are executed on the prototype chips to detect any abnormal behaviour 
that stems from a design bug. The application of automatically generated random 
test programs on the prototype microprocessor chips is one of the most effective 
parts of silicon debug [20]. When a bug is found at this stage, the RTL model is 
modified to correct the issue and the chip must be manufacturing again. 
Furthermore, volume production may be further prolonged due to bugs that lurk 
behind other bugs. These blocking bugs stall the execution of the subsequent 
tests, since no workaround exists and therefore additional re-spins are needed. 

Manufacturing testing: Manufacturing testing constitutes an integral part on 
microprocessor verification cycle. The reason for that is the existence and 
effectiveness of test metrics such as stuck-at coverage, transition fault coverage 
and N-detect coverage. When a sufficient level of defect coverage is reached the 
microprocessor design enters the production stage, where a last quality control is 
performed to detect any manufacturing defect. Manufacturing testing techniques 
aim at maximizing the fault coverage (i.e. the population of hardware faults 
detected through fault simulation), while minimizing test costs, in terms of time 
and resources. Overall, the manufacturing testing methods applied to this step 
attempt to achieve the target defective parts per million (DPPM) rate that high-
quality product development demands. High-volume manufacturing (HVM) [107] 
testing of microprocessors incorporates both functional and structural test 
approaches. The functional testing methods, such as the Software-based Self-
testing (SBST) utilize the on-chip programmable resources to apply at-speed the 
test stimuli and collect the test responses from memory to make the pass/fail 
decision. On contrast, the structural test approaches exploit the knowledge of the 
circuit structure and the corresponding fault model to generate the test patterns. 
For example, scan-based testing, replace the storage elements with scan cells, 
and connecting them into shift registers to provide access to the internal state of 
the circuit. Structural testing usually places the circuit in specific self-test mode 
and cause excessive test power consumption, over-testing, and thus may lead to 
yield loss, compared to functional testing. 

In-field Verification: Technology miniaturization, design complexity, shrinking 
time-to-market windows, wear-out effects and the environmental impact increase 
the failure probability of modern design and steer microprocessor manufacturers 
to integrate numerous in-field verification mechanisms. Dual- and triple-modular 
redundancy are traditional in-field fault tolerance techniques, which can detect 
and correct hardware errors, but only at high costs. Others in-field fault tolerance 
technique to protect memories, buses or other microprocessor array structures 
are the parity mechanism and the error correction codes (ECC). In the literature, 
several in-field verification techniques have been proposed for SRAM caches [5] 
[28] [8] as well as mechanisms to protect pipeline flip-flops and combinational 
logic [23] [84] [94]. 
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Figure 5: Design bugs and hardware errors distribution throughout microprocessor’s life-
cycle. 

1.4 The nature of a failure 

Throughout the lifetime of a microprocessor product, its silicon fabric is subject to 
a variety of failure mechanisms that can cause device failures. As the transistor 
dimensions scale to smaller sizes, the silicon failure mechanisms get aggravated. 
The types of failures that are expected throughout the life-cycle of a 
microprocessor (Figure 5) are the following: 

Design bugs: Logic, electrical and process-related bugs [16] [29] may be 
introduced into microprocessor products during design specification and 
implementation phase. Follows an analysis on the common sources of bugs [50]: 
The limited capacity and performance of verification techniques, which do not 
keep pace with the growth in the amount and complexity of the developed code, 
along with the growth in design complexity increase the trend of having 
inadequately or incorrectly specified and implemented designs. Furthermore, 
synthesis tools may hamper the accuracy of the synthesized design. As a result, 
discrepancies between the intended and the developed functionality may exist. 
Place and route process is another source of bugs. For instance, the physical 
specification requirements may partial be achieved during the layout process. In 
addition, the combination of process variation and smaller design margins prevent 
microprocessor products from functioning at the intended frequency, while 
dynamic power consumption and crosstalk effects may randomly flip values of 
memory cells. Technology scaling, model inaccuracies and the lack of efficient 
design-rule-checking tools may increase these sources of bugs. 

Several years of experience of microprocessor manufacturers have shown that 
numerous important design bugs escape (so called, errata bugs) in production 
silicon despite the extremely large efforts of the verification team. All 
microprocessors have known errata bugs (some of them are presented on Table 
3 while the rate of bug escapes has more than doubled in the latest generation of 
Intel processors [29]. Furthermore, more than half of design bugs that slip into 
volume production have no fixes and for those that a fix exists, the in-field 
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workaround is often too costly [12]. Thus, effective verification methods are 
needed to ensure that forthcoming architectures will not suffer from severe bug 
escapes. 

Table 3: A list of errata bugs on popular microprocessor. 

Microprocessor Description 

Intel Pentium® FDIV bug was a bug in the Intel P5 Pentium floating 
point unit. Certain floating point division operations 
produced incorrect results. According to Intel, there were 
a few missing entries in the lookup table used by the 
divide operation algorithm [83]. 

Intel Pentium® On Pentium 4, If a cache hits on modified data (HITM) 
while a snoop is going on, and there are pending 
requests to defer the transaction and to re-initialize the 
bus, then the snoop is dropped, leading to a deadlock 
[52].  

AMD OpteronTM AMD64 processors led to incorrect results in certain 
situations when a REP MOVS instruction was executed. 
An incorrect address size, data size or source operands 
segment might be used or a succeeding instruction 
might be skipped. This occurred only under certain 
conditions and led to production of incorrect results or 
system‟s freeze [53]. 

IBM PowerPC® 750GX processor bug caused some instructions to 
execute at lower frequencies (933Mhz compared to 
1Ghz) [54]. 

Intel CoreTM In the 6-series chipsets, of Sandy Bridge 
microarchitecture, the Serial-ATA (SATA) ports within 
the chipset degraded over time, potentially impacting the 
performance or functionality of SATA-linked devices 
such as hard disk drivers and DVS-drivers [56]. 

One of the primary driving forces to develop failure detection techniques is the 
cost that a company experiences as a result of fixing a bug. Figure 6 shows that 
the relative cost of fixing a bug increases over time. In particular, during the early 
stages of a project, changes do not require much rework. Only the Register-
Transfer Level (RTL) is affected, so the cost is very low. Later in the design cycle, 
changes to RTL cause schematic change and layout changes, so the cost starts 
rising. After the part is send to the fab, the cost of changing the design to fix bugs 
includes the cost of building new masks and manufacturing new parts. After parts 
start being sold a serious bug may require a recall of parts at a significant 
expense to the company, an expense that grows with the number of parts sold. 
Obviously, there is a huge advantage in finding bugs as early as possible in the 
design process. This reduces the amount of modifications later in the process, 
yielding a lower cost of development. 
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Figure 6: Relative cost of detecting bugs throughout microprocessor’s life-cycle [37]. 

Manufacturing defects [86]: Moving into deeper nanometer scale manufacturing 
process, an increased amount of manufacturing-related defects will be introduced 
into the designs. Optical proximity effects, airborne impurities, and processing 
material defects can all lead to the manufacturing of faulty transistors and 
interconnects. Moreover, deep-submicron gate oxides have become so thin that 
manufacturing variations can lead to currents penetrating the gate, rendering it 
unusable. Manufacturing defects are also affected by the immense complexity of 
current and forthcoming microprocessor designs. Design complexity makes it 
more difficult to test for defects during manufacturing. Semiconductor industry is 
forced to either spend more time with parts on the tester, which reduces profits by 
increasing time-to-market, or risk the possibility of untested defects escaping to 
the field. 

In-field errors [86]: Integrated circuits are implemented in miniaturized and 
inherently unreliable technologies. This leads to products that are more prone to 
transient, intermittent and permanent errors. Single-Event Upsets caused by 
neutrons and alpha particles that strike the bulk silicon portion of the die. 
Although SEUs do not break the silicon their effect in a logic glitch that can 
potentially corrupt computational logic or state bits. Hard errors, on the other side, 
appear either because of manufacturing defects that escape high-volume 
production manufacturing testing or because of material aging and wear-out 
effects. Finally, another source of hardware errors is the process variation, i.e. 
variations in device characteristics. In particular, process variation can cause 
large fluctuation in performance and power consumption in the manufactured 
chips. Current microprocessors show large differences in behaviour although they 
are designed to be identical. Process variation is expected to be amplified in the 
forthcoming microprocessor designs. 

1.5 Contributions of this thesis 

The evolution of semiconductor technology and computer architecture has 
radically transformed our world throughout the last decades. However, the 
combination of technology scaling and extreme chip integration, along with the 
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compelling requirement to diminish the time-to-market window, has rendered 
microprocessors more prone to design bugs and hardware errors. The goal of this 
thesis is to provide solutions to the validation challenges posed from the 
microprocessor products starting from the first silicon prototypes till in-field 
operation of the chip. The contributions of this thesis are the following: 

    Silicon debug: The validation step that detects the vast majority of design 
bugs is the one that stresses the silicon prototypes by applying huge 
numbers of random tests. Despite its bug detection capability, this step is 
constrained by the extreme computing needs for random test program 
simulation (to extract the bug-free memory image to compare with the 
actual silicon image). Moreover, another major bottleneck and source of 
“noise” of this phase is that large numbers of random test programs fail 
due to the same or similar design bugs. This redundant behaviour adds 
long delays in the debug flow since each failing random program must be 
separately examined, although it does not usually bring new debug 
information. This thesis addresses both challenges of silicon debug. A 
self-checking methodology [10] is proposed for generating random test 
programs (exploiting the ISA diversity property) that detect bugs by 
comparing the results of equivalent instructions combined with a 
technique to group the failing test programs into categories (the failing test 
programs are grouped into categories depending on the microprocessor 
hardware components that need to be deconfigured for a random test 
program to be correctly executed) [8]. The proposed framework: (a) 
improves bug detection efficiency, (b) reduces the redundant debug 
session, and thus accelerates silicon debug. 

     Manufacturing testing: Functional self-testing forms an integral part of 
manufacturing test flow due to its at-speed testing and non-intrusive 
nature. Multithreaded (MT) SBST methodology [11] proposes a novel self-
test optimization strategy for multithreaded, multicore microprocessor 
architectures. The proposed self-test program execution optimization aims 
to: (a) take maximum advantage of the available execution parallelism 
provided by multiple threads and multiple cores, (b) preserve the high 
fault coverage that single-thread execution provides for the processor 
components, and (c) enhance the fault coverage of the thread-specific 
control logic. MT-SBST methodology significantly speeds up self-test 
time, while at the same time it improves the overall fault coverage.  

     In-field verification: The combination of design complexity, shrinking 
time-to-market windows, and wear-out effects increases the failure 
probability of modern design and leads microprocessor manufacturers to 
integrate numerous runtime verification mechanisms. Modern 
microprocessors use a noticeable silicon estate to implement various 
control and data flow speculative hardware. In this thesis, an analysis on 
the performance degradation of control flow predictors and data 
prefetchers based on projected rates of faults in future technologies is 
presented [2] [5] [6]. Then, low-cost microarchitectural techniques to 
diagnose predictor faults and recover the performance loss are presented. 
The proposed techniques exploit the self-verification property of predictors 
to achieve performance recovery at lower cost than comparable 
techniques. The presented solutions manage to recover almost all IPC 
lost, virtually eliminate performance variability among cores. 
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Modern microprocessors implement extremely complex architectures, making the 
validation process a major challenge for the semiconductor industry. This thesis 
introduces various novel methodologies to address the validation challenges 
posed throughout the life-cycle of a chip. The proposed techniques make the 
validation process more efficient and are easily applicable to the existing 
industrial flow. 

1.6 Thesis outline 

The remainder of this thesis is organized as follows: 

Chapter 2 presents the proposed mechanisms for silicon debug. In particular, the 
employed self-checking random test programs along with the deconfigurable 
microprocessor architecture to avoid the time-consuming simulation step and 
triage the redundant debug sessions are analysed. 

Chapter 3 presents MT-SBST, a novel self-test optimization strategy for 
multithreaded, multicore architectures for accelerating manufacturing testing and 
improving fault coverage. 

Chapter 4 introduces the performance impact of hard errors on a core's 
speculative structures along with a low-cost microarchitectural technique to 
diagnose predictor faults and recover the performance loss. 

Finally, Chapter 5 presents the concluding remarks and discusses directions for 
future work. 
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2. SILICON DEBUG 

Aggressive technology scaling and extreme chip integration, combined with the 
compelling requirement to diminish the time-to-market window have rendered 
microprocessors more prone to design bugs than ever before. As a result, silicon 
debug – the process of validating and debugging a new microprocessor design 
on its first silicon prototype chips – has evolved to a critical, time-consuming, and 
labour-demanding step in a chip‟s development flow [2]. The pressure on the 
debug team to deliver a correct design in the marketplace on time is higher than 
ever although the combination of correctness and timeliness seems almost 
infeasible given the complexity of modern microprocessor designs (the validation 
space is practically “infinite”) and the available time-to-market windows [64] [72].  
In fact, the share of silicon debug in chip‟s development cycle is steadily 
expanding, while design to debug team ratio has reached 2:1[50]. As a result, an 
efficient silicon debug approach that promptly detects and eliminates the design 
bugs before volume production can make the difference between success and 
failure of a microprocessor product [82].  

Pre-silicon verification techniques are mainly based on simulation at different 
levels of abstraction [13]. Despite their maturity and the tremendous utilization of 
computing resources, the low simulation speed is the inherent weakness of this 
step. Simulation-based techniques are orders of magnitude slower than the actual 
processor speed. As a result, it is impossible to verify every test scenario prior to 
tape-out [62], since only short number of functional scenarios can be exercised, in 
a reasonable time, compare to the enormous validation space of a modern 
microprocessors. In fact, statistics show that 12% of design bugs slip into first 
silicon prototypes and almost 50% of microprocessor chips require extra 
unplanned tape-outs [4]. An ineffective silicon debug process easily leads to 
product delays or even product recalls and a severely tarnishing in the reputation 
for the company. 

Silicon debug starts with the arrival of the first silicon prototypes and often 
continues well after a product has gone to volume production. A comprehensive 
suite of test programs (such as automatically generated random test programs, 
legacy tests and real world applications) covering many test scenarios are 
executed on the prototype chips 24 hours per day for up to a year at various 
frequency, voltage, and temperature operating ranges to detect anything that may 
lead to incorrect operation: logic bugs, electrical or process-related bugs and 
mask-related manufacturing defects. Every time a bug is detected the debug 
team is fed with the failure data. Subsequently, for each failing test program (one 
that does not execute correctly due to a bug), separately, a systematic debug 
phase is performed by the debug engineers to identify the root cause of the 
failure. When a sufficient number of bugs are detected and fixed, a new batch of 
prototypes is manufactured and debug continues on the new samples. 

Massive application of automatically generated random test programs (each 
consisting of a few thousand instructions) on the prototype microprocessor chips 
is one of the most effective parts of silicon debug [20]. All major microprocessor 
manufacturers have built efficient random test generators that produce trillions of 
test programs aiming to cover all possible test scenarios defined by the design 
and debug teams together. Despite its bug detection efficiency, this step is 
constrained by extreme computing needs for random tests simulation to extract 
the bug-free memory image for comparison with the actual silicon image. Another 
major bottleneck in this phase is that large number of random test programs fail 
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due to the same or similar design bugs [62] [61] [99]. This redundant behaviour 
prolongs silicon debug phase since each failing random test program must be 
exclusively root-cause analysed, although it does not usually bring new debug 
information. Finally, volume production may be further prolonged due to bugs that 
lurk behind other bugs. These “blocking bugs” stall the execution of the 
subsequent tests, since no workaround exists for the initial bug and therefore 
additional re-spins are needed (new prototype chips must be manufactured 
without the initial bug). 

This thesis introduces a silicon debug methodology for microprocessors with two 
major objectives: (a) increase the validation coverage by applying more tests to 
silicon prototypes; and (b) reduce debug time by triaging the redundant failing 
random test programs. The methodology does so by exploiting (1) the inherent 
diversity of microprocessor instruction sets (existence of equivalent ways to 
perform operations) to eliminate the very expensive and time consuming 
simulation step by employing self-checking tests; and (2) the property that allows 
hardware components to be deconfigured (virtually “turned off” without 
compromising microprocessor‟s functional completeness) to bucketing the 
redundant failing test programs. 

2.1 Silicon debug challenges 

Effective silicon validation methods are needed to ensure that forthcoming 
architectures do not suffer from severe bug escapes due to the following 
challenges (Table 3). By effectively addressing these challenges the number of 
escaping bugs is expected to be reduced. 

Simulation Limitations – Simulation offers excellent control and monitoring 
capabilities throughout the entire design, but the limited simulation throughput has 
always been a bottleneck in the microprocessors industry. Expensive server 
farms devote huge amounts of time and energy for simulation but only a small 
portion of the different modes of operation can be thoroughly excited before 
silicon. Table 4 summarizes the throughput of simulation, emulation and actual 
hardware execution [40]. 

Table 4: Compare simulation, emulation and silicon execution throughput. 

Approach Throughput (instructions/sec) 

System simulation ~103 

RTL simulation 101 – 103 

Emulation ~105 

FPGA prototyping ~106 

Silicon 107 – 109 

Validation tests applied to prototype chips range from random instruction tests 
(RIT) [20] to user applications [19]. The silicon debug phase that is based on RITs 
contributes tremendously to the detection of design bugs; 71% of the bugs in 
Intel‟s CoreTM 2 Duo found in first silicon prototypes are detected by RITs [20]. In 
a RIT-based validation a huge number of random instruction sequences (trillions 
of random instructions in total) are executed and aim to cover all possible 
architectural and micro-architectural scenarios defined by the programmer‟s 
reference manual.  

Unfortunately RIT-based silicon validation is tightly coupled with a necessary 
simulation step and thus suffers from the simulation throughput problems [91]. A 
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typical RIT-based validation flow involves the execution of tests on a golden 
reference model, which is often an instruction-level accurate model of the 
processor (an architectural simulator for example) to produce the correct (golden 
or expected) responses. Correct responses must be known to compare them with 
the actual prototype responses; in case of a mismatch, bug-hunting begins.  

Effective silicon debug of future microprocessors must mitigate the simulation of 
random instruction tests to save time, resources, and budget while not limiting 
their bugs detection capability. How does one know in a simulation-less method 
(without needing “golden responses”) that a random test ran correctly in the 
silicon prototype? The proposed methodology contributes to this challenge 
proposing a self-checking technique, i.e. one that does not require pre-simulated 
golden responses. 

At this point, it is important to emphasize on a fundamental requirement that the 
proposed methodology adheres: keeping original random tests unmodified. 
Several methods for the generation of effective random instruction tests have 
evolved throughout the last years [4] [3] [15]. Important problems in random tests 
generation have been addressed, such as avoidance of the creation of fixed 
patterns, which introduce interference into the test. Interference can spoil the test 
scenario and may hinder creation of more general patterns, thus reducing bug 
detection coverage. An example of interference is the case where a data 
processing operation (e.g. integer addition) is always paired with a data 
movement instruction (e.g. data loading). In this case, there is a high probability 
that the fixed instruction sequence spoils the contents of caches and leads to 
cache misses that the validation scenario is not expecting. The proposed 
methodology leaves original RITs unmodified to fully utilize their bug detection 
capabilities. 

Redundant random test programs – The wide-spread adoption of random 
instruction test generation methods by the main industry players proves the 
importance of this phase of silicon debug. However, the random nature of the test 
suites results in the generation of multiple test programs that actually detect the 
same or similar design bugs [62] [61] [99]. While the same debugging information 
is shared among all these failing test programs, in the traditional RIT-based flow 
the debug engineers need to analyse each of them separately, wasting valuable 
human effort as well as other project resources such as compute time in high 
performance workstations used for design simulation. Thus, it is crucial to 
eliminate or reduce the “dirty” or “misleading” debugging records inside them and 
cluster common failure modes more effectively before the debug process begins. 
How can the random tests execution in a self-checking method provide more 
useful validation data to the debug engineers? This thesis contributes to this 
challenge by proposing a hardware mechanism to triage the failing random test 
programs along with the detailed information about the offending instructions. 

Blocking Bugs – Another major issue of silicon debug is dealing with blocking 
bugs. Mostly in the first stages of silicon validation (first prototypes), there are 
several bugs with blocking behaviour [60]. A bug is a blocking one, if it can 
potentially mask out the discovery of other bugs, by stalling the execution of the 
subsequent tests (the rest of the debug plan goes wasted), because no 
workaround is possible for that bug. In such a case, silicon debug proceeds only 
after bug-fixing, re-design, and new silicon prototypes arrive to the debug teams 
[32]. Volume production may be seriously delayed and the overall development 
cycle and time-to-market will be prolonged if multiple such silicon re-spins are 
necessary before a design is considered sufficiently bug-free. How can a self-
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checking RIT-based method help reducing the effect of blocking bugs? This 
thesis contributes to this challenge by providing equivalent instructions 
workarounds for the offending instructions. 

2.2 Self-checking validation by exploiting ISA diversity 

Microprocessor design validation is a time consuming and costly task that tends 
to be a bottleneck in the release of new architectures. The validation step that 
detects the vast majority of design bugs is the one that stresses the silicon 
prototypes by applying huge numbers of random test programs. Despite its bug 
detection capability, this step is constrained by extreme computing needs for 
random tests simulation to extract the bug-free memory image for comparison 
with the actual silicon image. 

2.2.1 Scope of the self-checking validation 

The proposed methodology is applied during the silicon debug phase of the 
microprocessor dependability cycle for the detection of logic and electrical bugs. 
The proposed approach aims to detect failures in silicon prototypes through the 
comparison of equivalent instructions responses. Furthermore, it refines the 
validation data provided to the debug process, by replaying the failing random 
tests. The contributions of the proposed methodology are the following: 

1. A novel methodology for the generation of enhanced random instruction 
tests able to detect design bugs by comparing the results of equivalent 
instruction sequences is introduced. The methodology is therefore self-
checking (does not need golden responses to compare with). A bug can 
make either an instruction or its equivalent to fail but a mismatch in the 
comparison denotes the existence of a bug in either case. Bugs can 
escape only when they affect the equivalent instructions in the same 
way, which is an extremely unlikely case. By generating equivalent 
instructions that do not activate the same hardware areas in the 
processor logic we minimize this probability. The identification of 
equivalent instruction sequences is a key enabler for the execution of 
subsequent random tests despite the existence of bugs, so our method 
inherently supports bypassing of blocking bugs. When an offending 
instruction is identified and while debug engineers look for fixes before 
new prototypes are produced, RIT-based validation can continue 
normally by avoiding the use of the problematic instruction and replacing 
it with its equivalent. 

2. A light-weight hardware mechanism that records the mismatch between 
the results of two equivalent instructions to support subsequent 
identification of the offending instruction is proposed. Furthermore, the 
hardware mechanism contributes to the reduction of validation data 
forwarded to the debug engineers. After it records the mismatch location, 
the mechanism replays the RIT replacing the offending instruction by its 
equivalent sequence to take full advantage of the RIT‟s failure detection 
capabilities: it allows continuation of the RIT execution and identification 
of additional failures (thus avoids blocking bugs). By utilizing the 
information about the exact location of mismatches, the debug engineer 
can identify instructions or instruction classes that fail often and focus 
root cause analysis to particular structures of the microprocessor. Note 
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that the hardware mechanism is complementary to the bug detection 
method (checking of equivalent instructions) and is optional. 

We evaluate the methodology experimentally on an x86-64 model with a 
comprehensive bug injection campaign. Our methodology successfully detected 
all injected bugs in the experiments while the traditional RIT-based approach and 
the two self-checking methods we compared with failed to do so. Furthermore, 
the proposed methodology accelerates the silicon debug process, compared to 
the traditional simulation-based flow, by increasing the prototype utilization. To do 
so, it introduces the concept of ISA-diversity, self-checking test programs to 
mitigate the simulation bottleneck. 

2.2.2 ISA Diversity analysis 

The bug detection philosophy is based on the existence of inherent equivalences 
(i.e. diversity) within modern instruction sets. ISA diversity is the extent to which 
operations of an ISA can be performed equivalently by more than one different 
ways. If the same input data are applied to equivalent instructions or instruction 
sequences, they will produce identical results, although they activate different 
logic paths in the processor logic. It is exactly this activation of different parts of 
the processor that enables bug detection by comparison (self-checking).  

To identify the extent of ISA diversity in microprocessors, an analysis on four 
popular instruction set architectures: ARM, MIPS, PowerPC, and x86 along with 
examples of diversity and statistics for each ISA is presented in following section. 

2.2.3 Diversity examples 

Table 5 to 8 list examples of equivalent instruction sequences for ARM, MIPS, 
PowerPC, and x86 ISAs, respectively. In most cases, more than one equivalent 
instruction sequences exist for each original instruction, but only one alternative 
appears in the following Tables. We use the actual assembly instruction 
mnemonics of each ISA to describe the equivalent code. For uniformity, we use 
the same generic names (RA, RB, RC, etc.) for general purpose registers. Note 
that whenever an equivalent code modifies a register – which is not affected by 
the original instruction – its value has to be saved before and restored after the 
execution of the equivalent code (the save and restore instructions are omitted). 

Table 5: ARM ISA diversity. 

Original Instruction Equivalent Sequence Description 

mvn RA, RB 
move not 

sub RC, RC, RC 
sub RC,RC,#1 
eor RA, RC, RB 

Uses exclusive OR operation 
and an all 1‟s mask stored in 
RC to invert the bits of RB. 

mlas RA, RB, RC, RD 
multiply and accumulate 

mul RA, RB, RC 
adds RA, RA, RD 

Splits the complex operation 
into a multiplication and an 
addition. 

smuad RA, RB, RC 
dual 16-bit signed 
multiply with add 

smulbb RA, RB, RC 
smultt RD, RB, RC 
add RA, RA, RD 

Executes two signed 16-bit 
multiplications in the bottom 
and top halves of the source 
registers (RB, RC); then adds 
the intermediate products. 

stmia RA!, {RB-RD} 
store multiple increment 
after 

str RB, [RA] 
str RC, [RA, #4]! 
str RD, [RA, #4]! 

Executes multiple single 
register store instructions 
which (except the first one) 
update the index. 
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Table 6: MIPS ISA diversity. 

Original Instruction Equivalent Sequence Description 

slt RA, RB, RC 
set on less than 

sub RD, RB, RC 
srl RA, RD, 31 

Executes subtraction and 
checks if the result is 
negative (R0 = zero register). 

lw RA, addr(RB) 
load word 

lhu RA, addr(RB) 
lhu RC, (addr+2)(RB) 
sll RC, RC, 16 
or RA, RA, RC 

Executes two load half-word 
unsigned instructions and 
places the second half-word 
to upper bytes. 

lui RA, imm16 

load upper  
immediate 

addi RB, R0, 0xFFFF 
and RA, RA, RB 
addi RB, R0, imm16 
sll RB, RB, 16 
or RA, RA, RB 

Resets the upper half of RA 
and then uses add and shift 
instructions to load the 
constant (R0 = zero register). 

srlv RA, RB, RC 
shift word right 

rotrv RA, RB, RC 
sub RC, R0, RC 
addi RC, RC, 32 
sllv RB, RB, RC 
xor RA, RA, RB 

Rotates right instruction and 
then left shift to mask upper 
bits in the rotated result (R0 = 
zero register). 

Table 7: PowerPC ISA diversity. 

Original Instruction Equivalent Sequence Description 

eqv RA, RB, RC 
equivalent 

andc RD, RB, RC 
andc RE, RC, RB 
nor RA, RD, RE 

Executes the logic 
operation:  
¬ ((RB & ¬RC) | (¬RB 
& RC)) 

rldimi RA, RB, SH, MB 
rotate left doubleword 
immediate then mask 
insert 

rldicr RC, RB, SH,63-SH 
clrldi RC, RC, MB 
rldicl RB, RB, MB,63-SH 
rotrdi RB, RB, MB 
or RA, RB, RC 

Performs successive 
rotate and mask 
operations using other 
rotate instructions. 

lwaux RA, RB, RC 
load word algebraic with 
update indexed 

lwzx RA, RB, RC 
add RB, RB, RC 
extsw RA, RA 

Loads word first, then 
update RB with the 
new address and 
finally extend sign. 

cntlzd RA, RB 
count leading zeros 

addi RA, 0, 0 
Loop:  add RA, RA, 1 
rldcl RC, RB, RA, 63 
beq Loop 
addi RA, RA, -1 

Implements a loop that 
rotates and masks 
operations to count 
leading zeros. Each 
iteration rotates RB 
left by RA locations 
and clears the 63 
upper bits (and update 
flags). If the result is 
zero continues, 
otherwise exits. 
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Table 8: x86 ISA diversity. 

2.2.4 Diversity Statistics 

We classify the instructions of the ARM, MIPS, PowerPC, and x86 ISAs in 3 
categories. 

 Full Equivalence: instructions for which there are one or more equivalent 
ways to realize their operation. This category includes the vast majority 
of arithmetic and logic instructions, data transfer instructions, compare 
instructions, and a large number of control flow instructions. 

 Partial Equivalence: instructions which cannot completely diversified. No 
equivalent way exists to mimic entirely the original operation. This is due 
to: (i) different modes of operation for these instructions some of which 

Original Instruction Equivalent Sequence Description 

add RA, [m32] 
integer addition 

fild [m32] 
mov m32, RA 
fiadd [m32] 
fistp m32 
mov RA, [m32] 

Moves data from integer 
register file to FP-stack and 
uses the FP addition instead 
of integer addition. 

mov RA, [m32] 
load data from memory 
into register 

push [m32] 
add ESP, 0x4 

Next instruction that uses 
RA operand should load the 
data from the stack. Restore 
stack pointer (ESP). 

clc 
clear carry flag 

 

mov RA, 0x0 
bts  RA, 0x0 

Sets RA to zero and 
performs a bit test and set 
instruction which clears the 
carry flag. 

jmp target 
jump to target address 

mov RA, 0x1 
cmp RA, 0x1  
je target 

Sets RA to a value and 
performs a compare 
instruction which activates 
the ZF flag. The conditional 
jump (je) is then used 
instead of jmp. 

cvtdq2pd RA, [m64] 
convert packed dword 
integers to packed 
double-precision FP 
values 

cvtsi2sd RA, [m64low] 
cvtsi2sd RB, [m64high] 
movlpd m64, RA 
movhpd m64, RB 
movlpd RA, [m64] 
movhpd RA, [m64] 

Executes two convert dword 
integer to scalar double 
precision FP values 
instructions followed by two 
load operations. The 
intermediate results (low 32-
bits, high 32-bits) are 
merged into the same 
register. 

fadd [m64] 
floating-point addition 

movlpd RA, [m64] 
fst m64 
movhpd RA, [m64] 
mov m64low, 0x0 
mov m64high, 0x0 
haddpd RA, [m128] 
movlpd m64, RA 
fld [m64] 

m64low and m64high are 
consecutive memory 
addresses filled with zeros. 
Modifies operands values 
and replaces the floating 
point operation by a packed 
double-fp horizontal 
addition. 
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cannot be realized differently (e.g. various addressing modes), (ii) 
inherent loss of accuracy in the operation of an instruction (e.g. floating-
point conversions). This category includes some of the instructions not 
included in the previous category, a number of floating point instructions, 
and some data transfer instructions that involve system storage areas. 

 No Equivalence: instructions with no equivalences. This category 
includes mainly the privileged instructions that access system resources, 
complex control operations, input and output instructions, interrupts, 
exceptions and complex arithmetic instructions (mainly in CISC 
architectures). 

Figure 7 shows the statistics of our analysis for the four popular instruction set 
architectures where all instructions are classified in the three categories. For each 
ISA, our statistics present the percentage of different instruction mnemonics that 
fall in each category and not the different opcodes. In many cases (particularly in 
x86) the same mnemonic includes several tens of different opcodes. For the x86 
ISA, we focused on the general purpose instructions set and not the special ISA 
extensions (our intuition is that a study on the entire x86 instruction set, includes 
tens of thousands of instructions, will increase the amount of instruction on the full 
equivalence). It is evident from Figure 7 that all four ISAs have a large amount of 
instructions in the full equivalence category. 
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Figure 7: Diversity statistics of four popular ISAs. 

2.2.5 Self-checking architecture 

The proposed self-checking silicon debug methodology consists of four stages:  

1) Generation of the ISA diversity database. 

2) Generation of enhanced random instruction tests. 

3) Hardware replay mechanism. 

4) Post-processing.  
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We propose a novel, self-checking, diversity-based, hardware supported 
framework to accelerate silicon validation and improve its quality. An overview of 
the framework is shown in Figure 8, where our major contributions are 
highlighted. A detailed analysis of each feature of the methodology follows. 
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Figure 8: The proposed silicon debug framework. 

(1) ISA Diversity Database Generation: The fundamental first step of the 
proposed methodology is the identification of ISA diversity, i.e. microprocessor 
instruction equivalences. Identification of equivalent instruction sequences and 
population of the ISA diversity database strongly depends on the designer‟s 
knowledge about the underlying architecture (detailed knowledge of the 
architecture, micro-architecture and microcode of the design). For this reason it is 
very likely to provide high quality results given the insights that the design team 
has on the microprocessor architectural details. The database contains for each 
instruction a list of equivalent instructions or instruction sequences. 

(2) Generation of Enhanced Random Instruction Tests. The validation flow is 
fed with effective Random Instruction Tests (RITs) already generated (but not 
simulated) by sophisticated random generators that all microprocessor 
companies internally use. We pair each RIT with an Equivalent RIT (ERIT), to 
implement our basic bug detection concept: bugs are detected in our method by 
comparing the execution results of a RIT and its ERIT (a mismatch indicates a 
potential silicon bug). An ERIT is automatically generated from a RIT replacing its 
instructions with their equivalent counterparts that have been stored in the ISA 
diversity database. When the database contains more than one entry with 
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equivalent instructions for an original instruction, our approach randomly picks 
one of the alternatives. Instructions without equivalents are simply duplicated (in 
this case, only electrical bugs related to these instructions can be detected, since 
a logic bug will uniformly affect both equivalent ways to perform the particular 
operation). 

Figure 9 presents the structure of the enhanced RITs that our methodology 
automatically generates. Each enhanced RIT consists of the following:  

a)   An original RIT which is left unmodified; we assume each RIT consists of a 
few thousands of instruction cycles as reported in the literature (each RIT 
we use in our experimental evaluation consists of 4K instruction cycles). 

b)   An equivalent RIT (ERIT) generated as described above using the ISA 
diversity database. For each instruction in the RIT, an equivalent 
instruction or instruction sequence is inserted. 

c)   A checking code that compares the stored results of the original RIT and 
the equivalent RIT to identify mismatches as indications of potential silicon 
bugs. 

/*Original RiT code starts here.*/

1. add RA, [m32]               
2. st RA //storei

3. mov RB, [m32]

4. st RB                         //storei+1

…

/*Equivalent RIT (eRiT) code starts here.*/

5. fild [m32]
6. mov m32, RA
7. fiadd [m32] 

8. fistp m32
9. mov RA, [m32]

10. st RA                          //estorei

11. push [m32]
12. add ESP, 0x4

13. pop                   RB
14. st RB //estorei+1

…

/*Checking code starts here. Compare RiT to eRiT responses*/

15. cmp [m32], [m32]         //storei = estorei

16. cmp [m32], [m32] //storei+1 ≠  estorei+1

…  

Figure 9: The structure of an x86 assembly enhanced RIT. 

Bug detection in our method takes place by recording mismatches during silicon 
execution (through the checking code); therefore our method provides immediate 
bug detection. On the contrary, in a typical RIT-based flow, mismatches (due to 
bugs) are only detected very late and off-line when dedicated servers (i.e. 
validation host machines) compare the memory dumps (i.e. memory locations 
that are accessed or modified by the test, register files and any other data 
structures that can be scanned out from the silicon prototype) of the actual silicon 
execution with the expected memory dump contents from simulation. Figure 10 
outlines the bug detection concept for the traditional and the proposed RIT-based 
silicon validation flow for microprocessors. 
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Figure 10: Traditional (left) vs. proposed (right) RIT-based validation flow. 

(3) Hardware Support for Validation. In our method we take advantage of the 
fast bug detection that takes place during RIT execution on the prototype chip, 
and we support it with a hardware mechanism that is part of the microprocessor 
design (Figure 8). The hardware mechanism records the failing comparisons and 
points the execution points where mismatches happen. Moreover, when a 
mismatch is detected, the hardware mechanism allows replay (re-execution) of 
the RIT by replacing the execution of the offending instruction with its equivalent. 
If the offending instruction is the original one and its equivalent is bug-free the 
enhanced RIT replay produces the useful logging information we want. If this is 
not the case (i.e. the equivalent instruction is the offending one) the enhanced 
RIT replay does not produce useful logging information. Bugs in the instructions 
of the ERIT will be identified subsequently by other RITs that are explicitly 
generated to test them.  

With our hardware replay (Figure 11), the test can continue execution and more 
bugs can be detected. Replay can happen several times for a single enhanced 
RIT as long as it detects more mismatches (potential bugs). In a typical RIT-
based flow (without our modifications), after the first mismatch the remaining 
execution of the test is most probably useless since many subsequent responses 
are corrupted (since an output value of one operation can propagate to the input 
value of the subsequent operations). Other bugs that could possibly be detected 
by the remaining of the test are left undetected. In the replaying of the test using 
our hardware mechanism, the mismatch is bypassed, subsequent responses are 
not corrupted and if the remaining test can detect another mismatch (more bugs) 
it is allowed to do so. The last execution of the enhanced RIT is mismatch-free 
and detailed logging information is available for post-processing. 
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To demonstrate the hardware mechanism, we assume that an enhanced RIT 
(original RIT + ERIT + checking code) will be executed on the prototype chip. The 
original RIT includes k store instructions that write the results of the computation 
to the memory. For a typical RIT of ~4K instructions, it is realistic to assume that k 
is somewhere between 500 and 1000. Similarly, the ERIT includes k store 
instructions that write the results of the equivalent computations. The checking 
code compares the results stored by instruction store[i] and estore[i], where 
store[i] is the ith store of the RIT and estore[i] is the ith store of the ERIT, with i = 
1…k.  

The basic concept of the mechanism is that when a mismatch is detected 
between store[i] and estore[i], during replay, instead of executing the “buggy” 
code between store[i–1] and store[i], the processor executes the equivalent code 
between estore[i–1] and estore[i]. The mismatch has been just bypassed. 

The hardware mechanism is shown in Figure 11 and operates as follows: 
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Figure 11: The structure of the proposed hardware mechanism. 

First run of the enhanced RIT. The checking code finishes with the first mismatch 
among the k responses of RIT and the k responses of ERIT stored in variable mid 
(mismatch id), with mid between 0 and k. If mid = 0 (i.e. the queue is empty), then 
there is no mismatch and the chip passes the enhanced RIT; validation continues 
with the next RIT. If mid > 0 (i.e. the queue is not empty) the enhanced RIT will be 
replayed because store[mid] and estore[mid] instructions generated different 
results. Moreover, during the first run of the enhanced RIT the addresses of all 
store instructions (of the RIT and the ERIT) are saved in the store-addr and 
estore-addr buffers of the hardware mechanism to facilitate replay. Each of these 
two structures has a size of k words (addresses) for a total of 2k words. The 
store-addr and estore-addr buffers record the address of the store instructions 
themselves and not the address they store the data to. The contents of the two 
buffers are needed to replay the enhanced RIT by manipulating the contents of 
the program counter – PC (or Instruction Pointer – IP) in hardware, as explained 
below. 

Subsequent runs of the enhanced RIT. Every mismatch produced in previous 
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runs is stored in an entry of the mids-queue. The hardware mechanism counts 
the number of stores (monitoring instruction decoding) in the new run of the RIT 
in a store-counter (which is reset at the beginning of each run of the enhanced 
RIT). When store-counter gets equal to mid – 1 (i.e. before execution of the 
corrupted sequence) where mid is the mismatch id at the head of the mids-queue 
a “bypass” must happen (managed by the bypass control component), i.e. 
execution of the RIT code between store[mid–1] and store[mid] must be 
“replaced” by the execution of the ERIT code between estore[mid–1] and 
estore[mid] (this is why store-counter must be equal to mid–1). The “replacement” 
is done on-the-fly as follows using the store addresses information saved in 
buffers store-addr and estore-addr: 

 After instruction store[mid –1] finishes, PC gets the address of the 
instruction following estore[mid–1]. 

 After the instruction before estore[mid] finishes, PC gets the address of 
instruction store[mid].  

Therefore, instead of executing the “buggy” code between store[mid–1] and 
store[mid], the processor executes the equivalent code between estore[mid–1] 
and estore[mid]. The mismatch has been bypassed. 

Table 9: The algorithm of the hardware replay mechanism. 

inputs:    Set of RITs: original random instruction tests 
  Set of ERITs: equivalent random instruction tests 
output:  Log information {mids-queue} 
 
for all RITs do  
  execute RIT; save store addresses to store-addr buffer; 
  execute ERIT; save store addresses to estore-addr buffer; 
  execute checking code; compare RIT/ERIT responses; 
  update mids-queue: add entry if mismatch found;          
  if (mid = 0) then 
    TestPassed; 
  else 
    while (mid > 0) do 
      store-counter = 0;   
      replay(RIT, ERIT); 
          if (store-counter hits a mid – 1 in mids-queue) then 
              PC  estore[mid – 1] + 4;   
              execute equivalent operation; 
              PC  store[mid]; 
          end if 
          execute checking code; compare RIT/ERIT responses;           
          update mids-queue: add entry if new mismatch found; 
    end while 
  end if 
end for 

During each replay run, this bypass process is repeated for each mid saved in the 
mids-queue. At the end of each “replay” run a new non-zero mid may be 
produced (in the checking code) and stored in the mids-queue. This means that in 
the subsequent replay execution one more bypassing will take place because the 
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RIT found one more mismatch. Eventually, the last “replay” (in which multiple 
bypasses took place) will produce a mid = 0 denoting a mismatch-free execution. 
Table 9 summarizes the operation of the hardware replay mechanism. 

The logging information produced for the debug engineer is the queue of the 
mismatch identifiers mids-queue. For example, if at the end of the execution of an 
enhanced RIT (including all replays) the mids-queue contains integers 10, 25, 
130, and 0, this means that mismatches have been detected between store[10] 
and estore[10], between store[25] and estore[25], and between store[130] and 
estore[130], and that the fourth “replay” was mismatch-free. With this logging 
information in hand, the debug engineer can directly locate the code portions with 
mismatches and focus on them for root-cause analysis. The debug engineer can 
also easily identify the RIT code replaced by the equivalent ERIT code for each 
bypass (it is of course the code before the stores with mismatches). We note also 
that the mids-queue contents must be also saved in memory so that after the end 
of the test they are passed as the methodology log to the debug team. Inside the 
hardware mechanism itself, mid information is passed by the checking code in 
one of the processor registers and the hardware mechanism records it in the 
mids-queue. 

The size of the hardware mechanism depends on the size of the store-addr and 
estore-addr buffers (we assume a maximum size of 1,000 address entries for 
each buffer;  equals to the average amount of store operations on 4K random test 
program), the size of the mids-queue (we assume a maximum of 10 entries; it is 
very unlikely for a single RIT to detect more bugs), the store-counter, and the 
bypass control logic that includes multiplexers and comparators. The hardware 
mechanism is deactivated after the end of silicon debug and thus it does not 
consume any power and does not affect performance in the field.  

(4) Post-processing. As we mentioned earlier, it has been reported in the 
literature that the same bug can corrupt a large number of RITs. When the debug 
engineer is fed with many failing RIT memory dumps that are due to the same 
bug (in the same instruction, operation, or structure) the debug phase takes 
unnecessarily long time in order to determine if that failure is unique. This is an 
inherent inefficiency of traditional RIT-based flow since mismatches are detected 
much later in the server that compares the memory dumps. Our method offers a 
very important advantage to the post-processing phase: validation data provided 
by our hardware mechanism can help clustering of failure modes. This can be 
achieved through post-processing of the enhanced logs generated by the 
hardware mechanism (list of mismatch identifiers, mids, i.e. stores that saved 
different results to memory). 

The list of mismatch identifiers (mids) is the log information our method provides. 
An integer m in the log (an entry in the mids-queue) means that: (a) the mth pair of 
stores produced a mismatch, i.e. store[m] and estore[m] produced different 
results; (b) the code between store[m–1] and store[m] has been replaced by the 
code between estore[m–1] and estore[m] and the RIT continued. These two 
pieces of information can help the debug engineer identify the offending 
instructions and work on them. 

Apart from the instruction bypassing realized by the hardware mechanism, our 
methodology and corresponding logging data provide a fast workaround solution 
necessary to allow validation to continue running subsequent RITs: buggy 
instructions can be avoided in subsequent RITs by using their bug-free 
equivalents from the ISA diversity database. 
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2.2.6 Experimental evaluation of the self-checking method 

We assess our validation methodology by performing a comprehensive bug 
injection experiments campaign on a superscalar, out-of-order, single-core x86-
compatible model in the PTLsim simulator [110]. PTLsim supports the full x86-64 
instruction set of Pentium 4 (and subsequent), Athlon 64, and similar machines 
with all extensions (x86-64, SSE/SSE2/SSE3, MMX, x87). 

For the experimental evaluation of our microprocessor validation methodology, 
we set up the tool chain outlined in Figure 12. Building a realistic experimental 
framework is an non-trivial task, since the available data regarding silicon debug 
models is limited. For instance, the insight on modelling real design bugs is 
limited due to the criticality of these data for the semiconductor industry. 

Enhanced Random Instruction 

Test Generator

Random 

Instruction  

Test

ISA Diversity 

database

Design Bugs 

database

x86 Simulator
Bug Injection 

Tool

Bug Injection Controller

 

Figure 12: Experimental setup and tool-chain to evaluate the effectiveness of the self-
checking methodology. 

The experimental framework consists of the following:  

a) The PTLsim architectural simulator for the x86 microprocessor. 

b) Our RIT enhancement tool described previously that gets original RITs 
and produces enhanced RITs applying the equivalence-based 
methodology utilizing the ISA diversity database. 

c) A bug injection tool that injects both logic and electrical bug at various 
locations throughout the entire processor. The bug injection tool uses our 
bug database which has been populated with bugs of either type. 

For a given set of bugs in the design bugs database and a given set of enhanced 
RITs produced by our methodology, the experimental framework executes the 
enhanced RITs and records if a bug is detected or not.  

We have injected both logic and electrical bugs to model different design bug 
conditions throughout the entire x86 architecture. For electrical bugs injection, we 
follow [70] which assumes that an effective and realistic way to model electrical 
bugs is to model them as transient bit flips at the microprocessor‟s flip-flops. In 
particular, on our experiments electrical bugs are models as a bit-flip (either for „0‟ 
to „1‟ or vice versa) in a random simulation clock cycle of a randomly selected 
memory element. On the other hand, logic bugs have a permanent effect and we 
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model them through a modification in the semantic correctness [102] of the 
architectural simulator‟s source code. Table 10 summarizes the types of the 
injected logic bugs. 

Table 10: A list of logic bugs types that are injected into the simulator. 

Semantic Modification Correct Instance Buggy Instance 

Wrong operator a = b + c a = b – c 

Wrong conditional statement  if ( a > b ) if ( a ≥ b ) 

Wrong signal assignment a ← b + c a ← d 

Conceptual error 
if ( a > b ) then  

a ← c 
if ( a > b ) then  

a ← c + b 

Wrong constant assignment a = 0x000F a = 0x0002 

Table 11 presents a summary of the logic and electrical bugs we injected. In total, 
1,025 design bugs were injected, 802 of them are logic and 223 are electrical, 
covering all pipeline stages and hardware components of the x86-64 
microprocessor model. We injected electrical bugs mostly in the components that 
integrate large memory arrays, i.e. branch prediction unit, register file, etc. 
because the memory-dominated modules are more vulnerable to electrical bugs 
due their high density. The bit-flips are activated randomly in any position of a 
data structure. On the other hand, we injected logic bugs mostly in the control-
related components where design errors in the complex conditional decisions are 
more likely to occur. 

Table 11: Injected design bugs distribution in the components of the x86-64 processor 
model. 

Pipeline Stage Component Logic bugs  Electrical bugs Total bugs 

Fetch/ 

Decode  

Branch Predictor 

Prefetcher 

Instruction Decoder 

Microcode 

Instruction Buffer 

71 

29 

100 

62 

– 

16 

12 

– 

– 

18 

87 

41 

100 

62 

18 

Issue/ 

Execute  

Integer Arithmetic 

FP Arithmetic 

Jump logic 

Load/Store logic  

Issue Queue 

Scheduler 

Register File 

95 

97 

46 

66 

42 

32 

61 

– 

– 

– 

21 

– 

– 

63  

95 

97 

46 

87 

42 

32 

124 

Retire Reorder Buffer  101 41 142 

Instruction & Data – 52 52 

     Total 802 223 1025 

We compare our methodology with the traditional RIT-based validation flow. 
Moreover, we perform the same set of experiments for two other self-checking 
validation approaches presented in the literature that also aim to mitigate the 
time-consuming simulation step of RIT-based validation: (a) Reversi [105], 
according to which each instruction is followed by a reverse instruction; a bug is 
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detected when the final result is not equal to the initial one (i.e. it has not been 
reversed correctly); (b) QED or instruction duplication [48], according to which 
each instruction is duplicated and electrical bugs are detected when execution of 
duplicated instructions gives different results. For each of the three methods 
(Reversi, QED, and ours), we use the same original RIT as input and we enhance 
it according to the basic idea of each method.  

Each of the original RIT sequences we use as an input consists of 4K instruction 
cycles and was generated by the tool generously provided to us by the authors of 
[105]. In our experiments we used 154 original RITs produced by the RIT 
generator, thus we ran a total of 616K random instructions in the simulator for 
each of the 1,025 injected bugs. Our RIT enhancement methodology increases, 
on average, the RIT code size by 6 times compared with the original RIT size 
(min = 4.3X, max = 9X, for the 154 RITs). The total number of instructions for the 
full campaign of 154 enhanced RITs (includes the original RITs, the equivalent 
RITs, and the checking code) is 3.7M of x86 instructions. The corresponding 
increase in RIT size by Reversi is on average 4 times (i.e. total number of 
instructions is approximately 2.5M instructions) and by QED is on average 3 
times (i.e. total instructions is approximately 1.9M). 

The results of our bug injection experiments are shown in Figure 13. Our 
methodology detects all 1,025 bugs injected into the simulator (bug coverage 
100%) because we stopped generation of more RITs when all the injected bugs 
were detected. The traditional silicon validation flow detects 928 bugs (coverage 
90.54%). This difference, against the proposed method, is explained by the 
activation of more hardware areas by the equivalent RIT. The instruction 
reversing method (Reversi) detects 903 bugs (coverage 88.10%) because there 
are cases where an instruction cannot be inverted. Furthermore, the flexibility of 
the ISA diversity concept to deploy equivalent instructions which activate totally 
different path in processor‟s logic provides us with the ability to avoid bug 
masking conditions (e.g. integer addition and subtraction happen on the same 
module, while in our method the equivalent addition take place on the floating 
point logic). Finally, the duplicated instructions approach (QED) detects 210 bugs 
(coverage 20.49%) because it can only detect electrical bugs, since a logic bug 
will act in an identical way in both original and duplicated instruction. 

Traditional

RIT-based flow

Reversi QED Proposed

928

903

210

1025

Detected Bugs
100%

20.49%

88.10%
90.54%

 

Figure 13: Design bugs coverage (1,025 bugs injected in total) for the four different 
methods. 
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For a complete validation plan (trillions of instructions), we expect our approach to 
have the same bug detection capability with the traditional RIT-based flow since 
our bug detection capability relies on the original RITs which are carefully 
generated by sophisticated industrial random generators. The advantage of our 
method is that mitigating the time-consuming simulation step it is able to apply 
more RITs and thus detect potential bugs earlier. Our methodology compares 
favourably with the other two self-checking approaches Reversi and QED. This is 
because Reversi is based on instructions whose effect can be reversed; this is 
not possible in many cases, and thus a number of bugs are not detected. QED on 
the other hand is based on instruction duplication and is very effective only for 
electrical bugs but not for logic ones. 

Another advantage of the proposed method is that, it refines the validation data 
using the hardware replay mechanism. During our bug injection experiments, we 
observed that the average number of different bugs that were detected by a 
single RIT is about 4. Therefore, we integrated the hardware replay mechanism in 
the PTLsim simulator and conducted a second set of experiments: we injected all 
the bugs at the beginning of the simulation and executed all RITs with the highest 
bug detection capability. The proposed hardware mechanism detected all the 
injected bugs (through bypassing the offending instructions with their equivalents 
in the replay executions). This is a significant benefit of the proposed framework 
compared to the traditional flow which requires more tests to detect the same 
number of bugs.  

Table 12 presents a comparison in terms of validation time (all timing 
measurements are on an Atom N270 with 1 GHz clock frequency) for the 
traditional RIT-based flow, Reversi, QED and the proposed method. Note that in 
silicon debug stage numerous (hundreds of millions for almost a year) random 
tests are generated; therefore Table 12: Validation times from the application of 
the traditional-based flow, Reversi, QED, and the proposed method. represents 
only a snapshot of the whole process. We discuss the different parts of the total 
validation time in the following. 

Table 12: Validation times from the application of the traditional-based flow, Reversi, QED, 
and the proposed method. 

Time (sec) Traditional RIT Reversi  QED Proposed  

Generation 4.460 6.310 5.530 7.680 

Simulation  51.000  – – – 

Execution  0.027  0.110  0.071  0.176  

Total 55.487  6.420 5.601 7.856 

In a typical microprocessor the total validation time of the first silicon prototypes 
consists of the following parts.  

 Generation time: The time required to generate the random tests in the 
host machine. In our experiments, we generate 154 random tests, each 
one consisting of 4K instructions (summing up to 616K instructions for 
the traditional RIT flow, 2.4M instructions for Reversi, 1.8M instructions 
for QED, and 3.7M instructions for the proposed method). 

 Upload time: The time required to upload the test from the host machine 
to the prototype for execution. This is typically performed through a 
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standard PCIe interface (or any other host debug interface). Given that 
the size of a random test is only a few kilobytes the PCIe throughput 
guarantees a nearly zero upload time and we do not include this time in 
Table 12. 

 Simulation time: Only the traditional RIT-based flow needs to be 
simulated, since the other three approaches are self-checking. 

 Execution time: The actual silicon execution time. 

 Download time: The time required to download the responses (memory 
locations affected by the random test) of the test from the prototype to 
the host machine using the PCIe or other host interface. For the three 
self-checking methods the responses are downloaded only in the case of 
a failing RIT, while for the traditional RIT-based flow responses' 
downloading always follows each test execution. Since PCIe throughput 
guarantees a nearly zero download time for such small RITs, we don‟t 
include it in Table 12. 

 Compare time: The time required to compare the actual responses with 
the expected ones (golden signatures). This is again very fast and we do 
not include it in Table 12.  

The timing measurements demonstrate that the proposed method is much faster 
than the traditional RIT-based flow: more RITs can be applied in the same time. 
In addition, the longer test execution time of the proposed method compared to 
the two self-checking alternatives is due to the longer random tests it uses. 
However, this is alleviated by the improved bug detection capability of our method 
as shown in Figure 13.  

Note that the speedup offered by our methodology by the mitigation of simulation 
applies only to the validation of instructions that have equivalents (more than 
three quarters of the ISAs). For the remaining instructions, the classic simulation-
based RIT flow must be followed and thus our methodology is complementary to 
current industry practice. 

Figure 14 roughly visualizes the timing of a traditional RIT-based flow and the 
timing of the proposed flow to give a clear idea of the timing advantages of the 
proposed method. In the host machine, we assume that generation (G) of random 
tests, uploading (U), simulation (S), downloading (D) and comparison (C) of the 
actual responses with the expected can take place in parallel. The prototype 
starts execution of legacy tests available from pre-silicon verification (or from 
previous architectures) and then executes the newly generated random tests. 
Although, in our experiments the upload, download and compare times are 
negligible because of the high throughput of PCIe interface, in Figure 14 we 
include them for demonstration purposes. The upload and download times can be 
significant if a slower interface than PCIe is used or if the size of the tests is much 
larger than a few kilobytes. 
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Figure 14: Traditional vs. proposed RIT-based silicon debug flow. 

Figure 14 shows that the proposed methodology mitigates the simulation phase 
and also downloads only the responses of the failing RITs to the host machine. In 
a sense, the silicon prototypes are better utilized with our method and they 
execute more random tests during the same time. For example, Figure 14 shows 
that the proposed flow executes five random tests in the worst case (all failing) 
and seven random tests in the best case (all passing) while the traditional RIT-
based flow executes only three. Thus, it accelerates silicon debug significantly. 
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2.3 Triage by exploiting deconfiguration ability 

A critical step in silicon debug is triage, the process of analysing failing test 
programs and grouping them in “buckets” according to their failure mode. An 
effective triage process makes actual debug (the process of finding the root 
cause of the failure) much easier for the debug engineers and allows them to 
focus on dominant failure modes instead of spending expensive man power on 
test programs that fail due to the same underlying issue (the same bug). 

Random test program flow constitutes a mature and efficient technique to detect 
bugs, however randomness is the inherent weakness of this part of the process. 
Random test program-based silicon debug results in the generation of many 
redundant test programs that fail due to the same or similar bugs. Every failing 
random test program consumes several hours or days of man and computational 
power. This debugging “noise” and overhead is expected to get worse in the 
future with the increasing design complexities. Clearly, the identification of 
dominant failure modes among the random test programs that can triage them 
into categories with common failure modes will significantly reduce the number of 
debug sessions and will therefore speed silicon debug up by several weeks or 
months. 

The proposed methodology optimizes the triage process by exploiting the 
following property of many hardware components of microprocessors: a 
component can be “turned off” or deconfigured while the microprocessor remains 
functionally complete (i.e. processor‟s baseline functionality is guaranteed despite 
the absence of the component).  
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Figure 15: Silicon debug and component deconfiguration. 

Our silicon debug methodology utilizes such deconfigurable microprocessor 
architectures and supports them by a dedicated hardware mechanism for 
dynamic deconfiguration of components during runtime. Random test programs 
are grouped in categories based on the set of components that need to be 
deconfigured for the test program to be correctly executed. Deconfigured 
components are pinpointed as potential hosts of bugs and just a few member of 



Architectures for Dependable Modern Microprocessors 

N.Foutris 
72 

each failing test programs category can be debugged for the identification of the 
failure root cause. 

As a high-level quantitative example, Figure 16 outlines the issue of redundant 
test programs in a flow without (left) and with (right) a triage method. We assume 
that during a time interval a prototype chip executes 1 million random test 
programs. Among them, 1 out of 10.000 fails due to a design bug (failure rate) 
and 1 out 10 failing test program is redundant to another (redundant test program 
rate). The silicon debug flow without a triage method results in 100 debug 
sessions (one for each failing test program), while for the flow with a triage 
method, which is able to detect all the redundant test programs, the amount of 
debug session is reduced to only 10 (i.e. 100 failing test programs grouped into 
10 categories). 
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Figure 16: Redundant test program triaging concept. 

As our experimental results section shows in detail (Section 2.3.7), we performed 
a set of experiments to calculate the degree of redundancy among the random 
test programs in a test suite. The experimental results show that on average 5 
every 1000 failing random test programs detect the same design bug. 

This thesis propose a silicon debug methodology for microprocessors with the 
major objective to automatically triage the failing random test programs of an 
overnight run in as small as possible number of “buckets” of failing tests with 
common failure modes. This triage obviously leads to less test programs to be 
debugged, and thus accelerates the overall silicon debug phase. 

2.3.1 Scope of the triage methodology 

The proposed methodology is applied at the silicon debug phase of the 
microprocessor dependability cycle for the triage of design bugs and aims to 
deliver a minimal set of failing tests groups after an overnight random programs 
campaign without manual intervention. The proposed methodology detects 
design bugs with the following characteristics: (a) their excitation does not depend 
on the operational conditions (temperature, voltage, frequency); and (b) they 
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continue to manifest themselves despite the deconfiguration of components from 
the overall design. The contributions of the proposed methodology to silicon 
debug are the following:  

1. We propose the employment of deconfigurable microprocessor 
architectures along with self-checking random test programs to reduce 
the redundant debug sessions and make the triage step of silicon debug 
more efficient. Several hardware components of high performance 
microprocessor micro-architectures can be deconfigured while keeping 
the functional completeness of the design. This is the property we exploit 
in our silicon debug methodology for the triaging of random test 
programs.  

2. We support our methodology by a hardware mechanism dedicated to 
silicon debug that groups the failing test programs into categories 
depending on the microprocessor hardware components that need to be 
deconfigured for a random test program to be correctly executed. 
Identical deconfiguration sequences for multiple test programs indicate 
the existence of redundancy among them and group them together. This 
grouping significantly reduces the number of failing tests that must be 
debugged afterwards. 

The proposed methodology has been evaluated in an x86-64 microprocessor 
model of a publicly available architectural simulator. Experimental results prove 
both the validity of the claim that many random test programs fail due to the same 
bug, and also the large reduction in the debug time that is achieved by the 
effective triaging of failing tests using the proposed silicon debug methodology.  

2.3.2 Microarchitectural transparency and deconfiguration opportunities 

Throughout microprocessors evolution computer architects have devised 
numerous techniques to improve performance. Superscalar executions paths, 
multiple functional units, simultaneous multi-threading operating modes, out-of-
order execution, dynamic scheduling, branch prediction, data and instruction 
prefetching are some examples of performance-enhancing mechanisms. All these 
techniques share a common attribute: microprocessor baseline functionality is 
guaranteed even without them. For instance, a core will continue to be 
functionally-complete even when its branch predictor is turned off or a cache 
memory bank is disabled. Therefore, the integration of these techniques in the 
hardware of a microprocessor is transparent to the instruction set architecture. 
Because of their sophisticated implementation such components are prone to 
design bugs. Our methodology aims to triage random test programs that fail due 
to bugs in such deconfigurable components. 

The emergence of the previous techniques in modern microprocessor designs 
have also contributed to the evolution of Instruction Set Architectures. 
Sophisticated extensions of the instructions sets have been deployed, targeting to 
grasp the maximum performance speedup from the enhanced designs. These 
extensions are essentially built upon a basic set of primitive operations, such as 
arithmetic and logical operations and memory transactions. For example, the 
SIMD extension provides the ability to execute multiple arithmetic operations on a 
data vector, which is essentially comprised of a group of primitive operations. 
Therefore, equivalent instruction sequences exist (as this work has demonstrated 
so far), which can be used interchangeably to perform the same operation and at 
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the same time these modifications are transparent to the semantic correctness of 
an application. 

It is evident that microprocessor architectures built around deconfigurable 
components which can be “turned off”, either directly by dedicated hardware at 
the micro-architecture level or indirectly by software through equivalent instruction 
sequences. Such deconfigurations will not compromise the functional-
completeness of the microprocessor. We employ such architectures in this work 
to facilitate the triage step of the silicon debug process. 

We studied Intel‟s Nehalem micro-architecture [57] [58] to estimate the size of 
logic that is redundant to the baseline functionality of a processor and can be 
transparently deconfigured through hardware or software. 

Table 13: Nehalem’s deconfigurable components. 

Components Size/Instances Deconfiguration 

L1 Instr. Cache 32KB Hardware 

L1 Data Cache 32KB Hardware 

L2 Cache 256KB Hardware 

First level iTLB 128 entries Hardware 

Second level iTLB 512 entries Hardware 

Instruction Queue 18 entries Hardware 

Branch Target Buffer 2 Hardware 

Conditional Branch Predictor 2 Hardware 

Return Address Stack 16 entries Hardware 

Simple Decoder 
(simple, frequent instructions) 

3 Software 

Complex Decoder  
(complex instructions) 

1 Software 

MS-ROM 1 Software 

Instruction Decode Queue 28 entries Hardware 

Loop Stream Detector 1 Hardware 

Micro-fusion 1 Hardware 

Macro-fusion 1 Hardware 

Reorder buffer 128 entries Hardware 

Reservation Stations 36 entries Hardware 

Integer Functional Units 9 Either 

Floating Point Functional Units 3 Either 

Load Buffer 48 entries Hardware 

Store Buffer 32 entries Hardware 

Table 13 contains the following information: the first column presents the 
components of the Nehalem core architecture that can be potentially 
deconfigured. The second column shows the component size in bytes or number 
of entries (e.g.: iTLB, caches), or the number of instances (e.g.: integer functional 
units). The last column states the way that a component can be deconfigured 
(hardware-, software-assisted or both). Singleton microprocessor components, 
modules for which no other candidate component exists to replace its 
functionality, can exclusively be deconfigured through the ISA diversity technique. 
It is evident that a very large number of Nehalem‟s components, 35 in total, can 
be potentially deconfigured from the design. 



Architectures for Dependable Modern Microprocessors 

N.Foutris 
75 

It is evident from Table 13 that a very large number of microprocessor 
components, 35 in total, can be potentially deconfigured from the design either 
directly in hardware or indirectly through software or either way. Some storage 
elements cannot be completely deconfigured. A small part of them must remain 
enabled to guarantee the baseline functionality of the design. For example, a 
single entry store buffer, or a 4-entries instruction queue are enough to have a 
functionally complete design. 

In this work, we focus on the hardware-based deconfiguration of the 
microprocessor components and the triage support it offers. Various [10] [106] 
[48] have developed self-checking random test programs that can be used for the 
detection of bugs in microprocessors. Any such method for the development of 
self-checking random programs can be employed in our methodology. 

2.3.3 Triage methodology 

The proposed triage methodology dynamically deconfigures several 
microprocessor modules during the execution of a failing random test program 
until it is correctly executed: i.e. the bug that causes the failure is masked by the 
deconfigurations. In particular, the triage methodology consists of the following 
steps: 

1. A self-checking random test program is loaded for execution on the 
silicon prototype. The outputs of self-checking random test programs do 
not need to be compared with golden responses (from pre-silicon 
simulation) but rather generate a pass/fail indication at the end of their 
execution. This is a key requirement of the proposed methodology that 
facilitates re-execution of the test program without external intervention 
during uncontrolled overnight silicon debug runs. 

2. If the test program fails, a hardware mechanism (deconfiguration 
controller) decides (based on a pre-defined sequence or dynamically) to 
deconfigure one of the deconfigurable components of the 
microprocessor. 

3. The hardware mechanism arranges for the re-execution of the test 
program. 

4. If the test program fails again, another deconfigurable component is 
“turned off” and the test program is re-executed. 

5. Finally, if the test program is executed correctly (i.e. bug has been 
“masked” by the sequence of deconfigurations) the set of components 
that have been deconfigured is used as a label for a “bucket” of failing 
tests in the triage process. All test programs that eventually execute 
correctly after the same sequence of deconfigurations are grouped in the 
same “bucket”. Intuitively, the bug that causes the failure most probably 
resides within the components that have been deconfigured. 

The main requirements for the proposed triage methodology to happen during an 
uncontrolled overnight run of huge numbers of random tests are the following: 

 Software requirement: the random test programs must be self-checking 
so that the failure indication of a test is known to the hardware right at 
the end of its execution. 

 Hardware requirement: the deconfigurable processor must be equipped 
with a mechanism which, in case of a failing test program, can: (i) 
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gradually (one at a time) “turn off” its components and (ii) re-execute the 
failing self-checking test program.  

Alternatively, deconfiguration and re-execution can be partly implemented in 
software (by setting control register values). However, we focus on a hardware 
implementation because it can collect run-time information from hardware 
performance counters (existing or new) and it only requires a small part of the 
microprocessor (our deconfiguration controller explained below) to be bug-free.  

The proposed deconfigurable architecture is outlined in Figure 17 and consists of 
the following elements: 
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Figure 17: Proposed deconfigurable architecture. 

 Deconfiguration controller. This is the main hardware element of the 
proposed architecture. It interfaces with all the deconfigurable 
components of the microprocessor (can be several tens of components 
as shown in the previous subsection) and takes dynamic decisions about 
the components to be deconfigured during each execution of a random 
test program. 

 Bypass network. Controlled by the deconfiguration controller and 
performs the actual deconfiguration of the hardware components. 

 Profiler. Each of the deconfigurable components communicates with this 
module which collects dynamic execution statistics of the random test 
programs to be considered in the deconfiguration actions. For example, 
for a memory element the number of write and read operations or for a 
functional unit the amount of activations can be suitable statistics. 

After a self-checking random test fails (mechanism not shown in Figure 17), the 
deconfiguration controller takes the following actions: 

 It selects the deconfigurable component that is considered most 
susceptible to contain a bug and turns it off. This decision is based on a 
bug susceptibility model discussed below. 

 It arranges for the re-execution of the failing test program; no manual 
intervention is required.  
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 If the test program fails again, the deconfiguration controller repeats the 
previous two steps until the program executes correctly or there are no 
remaining components to be deconfigured. 

The outcome of the operation of the deconfiguration controller for each self-
checking random test program is a list of components that have been 
deconfigured. The interpretation of the list provides the following triage-related 
information. 

1. Empty list. The random test program was correctly executed. No failure 
detected; no debug action required in the morning. 

2. List contains a subset of the deconfigurable components. The random 
test program was correctly executed after components {Ck, Cn, Cm, Cq} 
have been deconfigured. The list of components indicates a “bucket” of 
failing test programs. All test programs ending with the same list of 
deconfigurations are grouped together. The bug that is the root cause of 
the failures most likely resides within the deconfigured components. If a 
deconfigurable component contains more than one uncorrelated bugs 
the debug engineers will most probably diagnose them through during 
root cause analysis using simulation. Even if this does not happen, the 
execution of the subsequent test programs will detect and pinpoint the 
buggy component again. 

3. List contains all deconfigurable components. The random test program 
fails even after all deconfigurable components are turned off. No triage 
grouping information; the random test must be separately debugged. 

The bug susceptibility model on which the deconfiguration controller decisions are 
based is a flexible model that the silicon debug engineers can tune according to 
the stage of the silicon debug (early or late), the pre-silicon information available 
and the run-time statistics that can be collected by the profiler.  

For each deconfigurable component Ci of the microprocessor, the deconfiguration 
controller calculates a bug susceptibility value Si (higher value means a more 
bug-prone component). When a new component must be turned off before a 
failing test program is re-executed, the component with the highest Si value that 
has not been deconfigured yet, is selected and turned off. The information that 
the deconfiguration controller can use for the calculation of the Si values of the 
deconfigurable components is static or dynamic. 

Static bug susceptibility information comes from the pre-silicon (simulation-based) 
debug process. When a microprocessor component Ci is new in a design or if a 
large number of design bugs have been already found before silicon debug (given 
that in pre-silicon verification each component has not been exhaustively studied 
due to the simulation throughput bottleneck, there is a higher probability that more 
design bugs exist in its design), the debug team can assign it a large bug 
susceptibility value Si

static. Moreover, static bug susceptibility assignments can be 
based on the size of the components, on their complexity (larger and more 
complex components are more bug prone) etc., and the deconfiguration controller 
can be updated with new values before a new overnight run starts. 

Dynamic bug susceptibility information is collected during the execution of 
random test programs by the profiler component of the proposed architecture. 
The information may contain activity monitors (from existing or new hardware 
performance counters or other signals of the design) that show if a component is 
intensively activated by the particular test program. If this is the case, this is a 
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useful indication that the component is more susceptible to contain the bug that 
causes the failure of the test program. Therefore, the dynamic bug susceptibility 
value Si

dynamic  of the component Ci must be higher than others with smaller 
activity during the execution of the failing test program. 

In total, the deconfiguration controller calculates an aggregate bug susceptibility 
value for each component that can be potentially deconfigured: 

Si = a * Si
static+ (1 – a) * Si

dynamic 

Parameter a can be tuned (values between 0 and 1) so that decisions lean more 
towards the static pre-silicon information (large a values) or more towards the 
dynamic run time statistics (small a values). 

The component with the highest susceptibility value Si is selected to be turned off 
in the next re-execution of the failing random test program. Bug susceptibility is a 
metric that can be finely tuned, is based on both dynamic and static information, 
and bounds the amount of possible test programs re-executions avoiding useless 
deconfigurations of microprocessor components.   

At the end of the repetitive re-executions the failing test is characterized by the 
set of components that have been deconfigured and have the highest bug 
susceptibility values. It is therefore, very likely, that the failure of the test is due to 
a bug inside these components. Triaging failing random test programs in 
“buckets” according to their list of deconfigured components provides useful 
insight to the debug teams that will start debugging the tests in the morning after 
an intensive overnight run. 

2.3.4 Cost Implications of the Methodology 

Before analysing the different deconfiguration mechanisms that can be employed 
in our methodology we discuss the cost implications of the methodology. 

Costs related to the deconfiguration infrastructure of the architecture. The 
components listed in Table 13 (all very common to x86 architectures) can be 
potentially turned into deconfigurable ones so that the proposed silicon debug 
methodology is applied. Therefore, the extra hardware adds to the complexity of 
the design. In the case of some storage elements the need to keep at least some 
of their entries active while the rest of the component is deconfigured, adds 
further design modification costs. These hardware modifications come with a 
positive aspect: the existence of the deconfiguration infrastructure is an added 
value for the microprocessor because it can be used in the field for the permanent 
“shut down” of components when they are diagnosed with hard errors. 
Employment of deconfiguration (at different granularities) for fault tolerance in the 
field has been reported in the past [6] [22] [23] [84] [90] [97] [101]. Finally, the 
cost of deconfiguration depends also on the granularity it is applied. If subsets of 
entries of a component are separately deconfigured the cost may become high 
(both for the deconfiguration controller and the bypass network and profiler). We 
believe that the deconfiguration granularity given in Table 13 (common for x86 
microprocessors) is suitable for the needs of silicon debug. If debug engineers 
are supplied with the information that a short list of 3-4 components have been 
deconfigured before a test is correctly executed, their debug job is much easier 
and focuses on the list of these components. In most cases, the list is expected to 
consist of just one component which is very likely the one with the bug. 

Costs related to the dynamic collection of statistics. The profiler component 
dynamically collects run time statistics when random tests are executed. This 
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feature requires design effort and also increases the area of the microprocessor. 
If the design team decides to rely on the run time statistics the investment in the 
design of the profiler and the utilization of its outputs by the deconfiguration 
controller justifies the cost. However, if the debug team decides to use the 
deconfiguration controller with a priory known susceptibility values from the pre-
silicon effort, the cost of the profiler is saved. 

Timing overheads and time savings. The proposed methodology adds a time 
overhead to the random test phase of silicon debug: each failing random test is 
repeated one or more times. However, this minimal time overhead is absolutely 
justified by the large savings in the debugging time of the failing tests. For 
example, consider an overnight campaign of random test programs executions 
that is prolonged by a relatively small amount of time (measured in minutes or an 
hour for the entire campaign), required for the re-executions of the failing test 
programs. Even, assuming a large percentage of failing tests (1%) and an 
average number of re-executions equal to 5 (i.e. 5 components are deconfigured 
and a failing test program is repeated 5 times on average) the time overhead for 
the overnight run will be around 5% (1% times 5 re-executions). In other words, 
approximately 5% less random test programs will be applied during the night. 
Even in the worst case, where all available components have to be deconfigured 
(based on the study we perform on Nehalem‟s architecture, the total number of 
deconfigurable components is 35) the extra overhead from the re-executions 
remains small compared to the expected debug sessions savings. The successful 
application of the methodology will reduce the number of failing test programs 
that will need to be debugged from several thousands to just a few tens. This 
saving is measured in days or weeks of debug time and is the major contribution 
of the method to silicon debug. 

2.3.5 Deconfigurable architecture 

In this section, we review the mechanisms reported in the literature that can be 
employed to deconfigure the components of a high performance microprocessor. 
Furthermore, we discuss simple deconfiguration schemes for branch predictors 
and prefetchers. The deconfiguration granularity can be flexibly tuned and is only 
limited by the cost implications. Previous research [6] [22] [23] [84] [97] [101] 
proposed various techniques to deconfigure components with permanent faults 
from a microprocessor design.  

The circularly-accessed arrays, the directly-accessed arrays and the functional 
units comprise the list of processor modules that are often duplicated or contain a 
high degree of regularity and can be deconfigured. The circularly-accessed 
arrays, such as the instruction fetch queue, the reorder buffer or the load and 
store queues, are augmented with a fault map. The fault map communicates with 
the pointer advancement logic, forcing it to skip an entry that is marked as faulty 
(“buggy” in silicon debug).  

For the cases of functional components and directly-accessed memory arrays, 
the available deconfiguration solution is to mark the components or memory 
entries as permanently busy, preventing the microprocessor from issuing further 
requests to them.  

In silicon debug the aforementioned deconfiguration techniques are clearly 
applicable. However, the deconfiguration granularity could be more coarse-
grained (for example, deconfigure half of the reservation stations, or the entire L1 
data cache and not parts of it), since localizing a bug at the level of micro-
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architecture components carries enough information for the debug engineers to 
root cause the failure. 

Modern microprocessors integrate numerous performance-increasing 
components. Among them, the branch predictors and the data and instruction 
prefetchers are the most widely used ones. These modules can be deconfigured 
from the design, since they do not contribute to its functional completeness. 
Regarding the branch predictors, a simple deconfiguration mechanism can be 
used, where the component can be bypassed by setting the predictor‟s state 
machines permanently to not-taken state. A similar deconfiguration mechanism 
can be applied to the data and instruction prefetchers. In particular, the 
prefetcher‟s queue, where all prefetching requests are buffered, can set 
permanently the overflow flag. Therefore, all prefetching requests will be dropped 
and the prefetcher is effectively deconfigured. 

2.3.6 Deconfigurable controller design 

The main structure of the proposed microprocessor architecture is the 
deconfiguration controller. The controller can calculate dynamically, at runtime, 
the susceptibility value of each deconfigurable module and decides the module 
for the next deconfiguration (i.e.: the module with the higher probability to be the 
source of the failure). Figure 18 outlines the structure of the deconfiguration 
controller in the general case where both static pre-silicon susceptibility 
information and dynamic run time susceptibility information is utilized.  

The deconfiguration controller consists of three memory elements and a 
combinational part implementing the proposed deconfiguration model. The 
memory elements are implemented through the allocation of memory-mapped 
space in the main memory of the prototype. The deconfiguration controller 
accesses these structures for write/read operations. 

bypass network

Profiler

deconfiguration mechanism

deconfiguration unit

activity 

array

component

buffer

pipeline

controller

 

Figure 18: Deconfiguration controller block diagram. 

A bug-proneness array is updated with the susceptibility value of each 
deconfigurable module as assessed from the designer from pre-silicon data. The 
array is updated at the initialization phase of the silicon prototype chip during test 
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program uploading. A single entry for each deconfigurable component is reserved 
in the bug-proneness array. 

A second array, the activity array, is accessed by the profiler and stores the 
activity (existing or new performance counters and other signals values) of each 
deconfigurable module during execution of a test program. At the end of test 
program execution the utilization array is updated with the value of the 
performance counters. The activity array can contain more than one entry for 
each deconfigurable component depending on the counters and signals that need 
to be monitored for the component for a more elaborate decision at run time. 
Therefore the array may have a size of a few hundreds words. 

The deconfiguration unit parses the two memory arrays (bug-proneness and 
activity) to find the component with the largest value of bug susceptibility Si as 
described previously. This component is assumed to be the one with the highest 
probability to be the source of the failure.  

The deconfiguration unit output is written to the component buffer of the 
deconfiguration controller. Each entry of this array saves the id of the component 
that will be deconfigured. In every re-execution of the random test program the 
deconfiguration unit increases the pointer of the component buffer, writes the id of 
the next component to deconfigure and activates the relevant bypass logic.  

At the end of the multiple hardware-enabled test program re-executions, the 
component buffer contents are downloaded along with the remaining memory 
image of the prototype on the workstation (a server that controls the validation 
process for a particular prototype) for further analysis in the morning. Before each 
re-execution of a test program the arrays are reset, since only the components 
that have not been already deconfigured should be considered in the estimation 
of the susceptibility model. Figure 19 visualizes the timeline of the operation of 
the proposed deconfiguration controller. 
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Figure 19: Methodology timeline for each test program. 

2.3.7 Experimental evaluation of the triage mechanism 

In this section we evaluate the proposed triage methodology. We first describe 
the experimental framework. Subsequently, we measure the degree of 
redundancy among the random test programs generated by our generator (which 
has been developed following guidelines that major microprocessor companies 
provide in the literature) for an x86-64 microprocessor using PTLsim architectural 
simulator [110]. Finally, using the same framework we demonstrate the benefits 
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of module deconfiguration in random test program triaging for silicon debug 
acceleration. 

For the experimental evaluation of the proposed silicon debug methodology, we 
set up the tool chain shown in Figure 20 (dashed components are implemented 
from scratch to evaluate our methodology). The experimental framework consists 
of the following main modules:  
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Figure 20: Experimental framework for the triage methodology. 

Random Test Program Infrastructure: This module generates random, x86 
assembly test programs enhanced with a self-checking capability (i.e. not needing 
golden responses to compare with in order to conclude about the detection of a 
design bug). We adopted the method presented in [10] which exploits the 
diversity property of microprocessor ISAs. The input of the random test program 
generator is a set with the basic x86 instruction templates. For example, the 
template of an addition operation is the following: add, <operand1>, [<operand2> 
| <memory>]. Registers selection, operands value initialization, data memory 
initialization and instructions sequence are completely randomized. The output of 
random test program generator is x86 assembly random test programs of 4K 
instructions each. 
Design Bug Infrastructure: Similar to [10], the bug injection tool injects design 
bugs at various locations of an x86-64 superscalar, out-of-order, single-core 
design modelled through PTLsim architectural simulator (Figure 20). The design 
bug database is populated with a set of logical and electrical bugs that model 
different design bug conditions in the entire x86-64 architecture ([70] [102]). Table 
14 summarizes the numbers of logic and electrical bugs injected in the 
components of the x86-64 microprocessor model. In total, 1K design bugs were 
injected, 500 logical and 500 electrical respectively, covering all pipeline stages 
and the majority of hardware components of the x86 microprocessor model. 
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Table 14: Injected design bugs distribution in the x86-64 microprocessor components. 

Component Electrical Bugs Logic Bugs Total 

Instruction Fetch Queue 50 - 50 

Branch Prediction Unit 50 50 100 

Simple Decoder - 100 100 

Complex Decoder - 100 100 

Register Renaming 50 50 100 

Issue Queues 100 - 100 

Scheduler - 100 100 

Functional Unit - 50 50 

Load/Store Queue 100 - 100 

Reorder buffer 150 50 200 

   Total 500 500 1000 

Deconfiguration Infrastructure: The x86-64 microprocessor modelled in the 
PTLsim simulator integrates various structures that can be deconfigured while the 
processor remains functionally complete. Table 15 lists the deconfigurable 
components (first column) and the techniques from section 2.3.5 that have been 
used to implement the deconfiguration on the simulator (second column). The 
third column presents the initial size of each component, while the last column 
demonstrates the selected deconfiguration granularity. The deconfiguration 
granularity must not violate the basic functionality of the microprocessor. For 
example, the default size of instruction fetch queue is 32 entries (in our 
configuration) out of which 28 (at maximum) can be deconfigured (the baseline 
fetch width of the microprocessor must be guaranteed. In our case, the baseline 
fetch width is 4-way). As well as, only the redundant ALU can be also 
deconfigured .  

Table 15: Deconfigurable microprocessor modules in the x86-64 model of the PTLsim 
simulator. 

Component 
Deconfigurable 

Mechanisms 
Initial 

Size/ Entities 
Deconfigurable 

Granularity 

Instruction 
Fetch Queue 

Fault-map 32 entries/– 
28 entries 
altogether 

Return Address Stack Stuck-at 16 entries/– 
16 entries 
altogether 

Conditional Predictor Stuck-at –/2 2 

Instruction Prefetcher Stuck-at –/1 1 

Data Prefetcher Stuck-at –/1 1 

Branch Target Buffer Stuck-at 4K/– 
4K entries 
altogether 

Register 
Renaming Table 

Fault-map 16x256 16x128 

Issue Queue Fault-map 16 entries 
8 entries 

altogether 

ALU Busy mode –/2 1 



Architectures for Dependable Modern Microprocessors 

N.Foutris 
84 

FPU Busy mode –/2 1 

Load Queue Fault-map 48 entries/– 
44 entries 
altogether 

Store Queue Fault-map 32 entries/– 
28 entries 
altogether 

Re-order Buffer Fault-map 128 entries/– 
124 entries 
altogether 

Our deconfiguration infrastructure in the experimental framework integrates a 
simple profiler component that monitors the activity of the deconfigurable modules 
and provides the dynamic bug susceptibility data to the deconfiguration controller. 
We have not implemented all details of the profiler because the analysis we 
provide in the following subsection does not depend on the type of bug 
susceptibility that the deconfiguration controller considers (static or dynamic). 
Future work can analyse the efficiency of different dynamic run time statistics 
collection by the profiler as well as their exact hardware costs. 

The experimental evaluation of the proposed methodology is divided into two sets 
of experiments: 

First set of experiments. The random test program infrastructure and the design 
bug infrastructure are used to quantify the degree of redundancy among the 
random test programs. We need this first set of experiments to support our claim 
about redundancy which is the main motivation of our work. 
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Figure 21: Number of failing test programs (among 10,000 executed) for each of the 1,000 
injected design bugs. 
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For a given set of 1K design bugs defined in the design bug database and a given 
set of 10K random tests programs generated by the random test program 
generator, the experimental framework executes each random test program with 
a single design bug injected at a time and records if the bug is detected or not 
(test program fails). The graph of Figure 21 shows the number of test programs 
that fail for each injected bug. The vertical axis shows all the 1K design bugs 
injected into PTLsim simulator, while the horizontal axis shows the number of 
failing random test programs for each bug. 

The large numbers of redundant test programs are evident in Figure 21. In 
particular: on average 52 test programs (0.52% of all 10K applied test programs) 
detect the same design bug (fail due to the bug existence), the maximum number 
of test programs that fail due to a single bug is 515 (5.15% of all 10K test 
programs) and the minimum is 2 (0.02% of all 10K test programs). Only 27% 
(273) of the 1000 injected bugs are detected by more than 30 of the 10K random 
tests (0.3% of the tests). 

Clearly, the motivating observation of this work is valid. If this set of experiments 
is extrapolated for an overnight run of massive numbers of random test programs, 
the debug team will have to deal with a very large number of failing tests. Each 
and every failing test will probably need to be separately debugged a process that 
may take several days. 

Second set of experiments. Aims to demonstrate the benefits of the 
deconfiguration mechanism for RIT triaging. Towards this aim, we have selected 
a set of 10 hard-to-detect logic bugs from the initial set of injected bugs (all 10 
bugs are detected by a small number of test programs; smaller than the average 
case) distributed among the deconfigurable modules of PTLsim simulator.  

We repeated the experiments only for the subset of the initial 1K random test 
programs that are affected from them (derived from the first set of experiments); 
these are 341 test programs. A critical difference in this set of experiments is that 
all 10 design bugs are together injected from the beginning of the bug injection 
campaign, as an attempt to model more accurately the silicon debug environment 
where all bugs can co-exist in the prototype chip. In this set of experiments, of 
course, the deconfiguration infrastructure shown in Figure 20 is enabled.  

Table 16: Details for the 10 hard-to-detect design bugs. 

Bug ID 
Microprocessor 

Component 
Failing Test 
Programs 

1 Conditional Predictor 45 

2 Return Address Stack 10 

3 Issue Queue1 32 

4 Issue Queue2 21 

5 Floating Point Unit 50 

6 Data cache 17 

7 Load Queue 47 

8 Store Queue 29 

9 Reorder Buffer 48 

10 Reorder Buffer 42 

     Total 341 
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Table 16 presents details about the selected design bugs. First column is the id of 
each bug, while the second column gives the microprocessor component in which 
the bug resides. Issue Queue1 and Issue Queue2 refer to different components in 
the microprocessor design (Issue Queue1 for the integer cluster, and Issue 
Queue2 for the floating point cluster). The third column shows the number of test 
programs affected by each design bug when injected individually (from the first 
set of experiments). For example, the design bugs injected in Issue Queue2 
cause 21 of the initial 10K test programs to fail. Error! Not a valid bookmark 
self-reference. describes the 10 bugs. 

Table 17: Design bugs description. 

Microprocessor 
Component 

Bug Description 

Conditional Predictor 
Update fetch address on branch 
misprediction fails 

Return Address Stack Incorrect push to stack 

Issue Queue1 
Dependent uop issued, while producer is 
waiting in ready to write-back state 

Issue Queue2 
Entry not get flushed on a branch 
misprediction 

Floating Point Unit Incorrect rounding operation 

Data cache Valid array logic; invalid data read 

Load Queue Load to store aliasing 

Store Queue Store data before address gets valid 

Reorder Buffer Commit entry more than once 

Reorder Buffer Invalid control bit activation 

Figure 22 shows the results from the execution of a subset of random test 
programs for the set of 10 hard-to-detect design bugs (all 10 bugs injected 
together – just like in a real prototype chip). In particular, it shows the different 
“buckets” of failing random test programs that are formed when the proposed 
methodology is applied (horizontal axis). The vertical axis shows the number of 
failing test programs of each bucket. In this set of experiments, the 
deconfiguration sequence is statically determined assuming pre-silicon bug 
susceptibility data is provided to the deconfiguration controller. The 
deconfiguration controller deconfigures the microprocessor modules for each 
pipeline stage starting from instruction fetch. Thus, the sequence of 
deconfigurations is the following: {Conditional Predictor, RAS, Issue Queue1, 
Issue Queue2, FPU, Data Cache, Load Queue, Store Queue, ROB}. When all the 
deconfigurable components from one stage are deconfigured it continues to the 
next stage. This process is repeated until the test program is executed correctly 
or all deconfigurable microprocessor components have been deconfigured. 
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Figure 22: Failure categories for the 341 failing test programs. 

The application of the proposed methodology, with the deconfiguration 
mechanisms enabled, results in a triaging of the 341 random test programs in 9 
different failure categories shown in Figure 22. Some observations from this 
second set of experiments: 

 Failure categories 1, 2, 3, 4, 6, 7, and 8 group the test programs that are 
affected exclusively from the design bugs in the following microprocessor 
components: Conditional Predictor, RAS, Issue Queue1, Issue Queue2, 
Data Cache, Load and Store Queues, respectively. As a result, when the 
deconfiguration controller turned the corresponding microprocessor 
component off, the bug is “masked” and the test program execution is 
correct. For example, the design bug in data cache unit, which 
manifested through the propagation of an incorrect data value, was 
masked when the data cache block was deconfigured from the design. 
Furthermore, the design bug in the load queue manifested as an invalid 
forwarding of loaded data to a dependent instruction. As a result, 
deconfiguring the load queue entries that hold that buggy information 
result in a correct execution of the test program. 

 Failure category 5 groups 53 random test programs, while the expected 
number of test programs affected from a design bug in the FPU unit is 
50. The reason for that is that these particular test programs (3 from 
Issue Queue2) were able to detect more than one design bugs (design 
bugs injected both in the Issue Queue  and the FPU). As a result, only 
when both buggy microprocessor components were deconfigured the re-
execution of the test program results in a correct execution. 

 Failure category 9 includes the test programs that fail due to bugs 9 and 
10 injected in the Reorder Buffer‟s logic. The deconfiguration 
mechanisms were unable to distinguish these design bugs into different 
categories, since both of them were inside the deconfiguration 
granularity of the ROB structure. Specifically, these bugs reside in 
neighbouring entries of the re-order buffer and manifest themselves as 
invalid dependency re-dispatching when a mispeculation happens. 
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Therefore, the same sequence of deconfiguration results in masking 
both bugs. This is still very effective because the debug team will 
certainly focus on the ROB component and it is very likely that it will 
identify the root cause of both bugs. 

In a traditional silicon debug flow, without the proposed triage mechanism, the 
number of failing test in this set of experiments would be 341. This would be 
exactly the number of debug sessions that the debug team will need to examine 
starting the next morning. On the contrary, if the proposed deconfiguration-based 
silicon debug methodology is adopted, the number of failing tests remains the 
same (341) but the number of debug sessions would be only 9 (less than 3% of 
the traditional flow).  

Clearly, the proposed flow has a profound impact on the effectiveness of silicon 
debug and greatly accelerates root cause analysis by removing the “noise” of 
redundant random tests that fail due to the same underlying bug. Figure 23 
visualizes this reduction in the number of debug sessions when our methodology 
is applied. 
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Figure 23: Number of debug sessions (number of failing test programs that must be 
debugged) in the traditional and the proposed flow. 

2.4 Related Work 

There is no work in the literature that reports employment of: (i) deconfigurable 
microprocessor architectures along with (ii) self-checking random test programs 
for the optimization of silicon debug.  

Self-checking methods: Previous studies [105] [87] have proposed the generation 
of reversible test programs, where the program‟s final state is known a priori, as a 
way to avoid the simulation step of golden signature production. However, 
generating reversible operations is not always an easy task and in some cases is 
partially or totally infeasible, like in the case of floating point operations. Another 
recent approach [48] targets to minimize the error detection latency of electrical 
bugs by duplicating instructions. 

Software diversity: Previous approaches have adopted the concept of software 
diversity, as a zero-overhead alternative of design diversity, to build fault-tolerant 
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systems.  The key idea is to modify the executed code when a hard fault is 
present, without spoiling the original code functionality [71]. Independent 
generation of programs has been also proposed as a fault tolerant approach [26]. 
Construction of programs with duplicated instruction and diverse data operands 
has been proposed as a way to detect temporal and permanent faults in the field 
[76]. Software implemented fault tolerance aims to provide soft error tolerance by 
instruction duplication [18]. Our method, for first time, utilizes the concept of ISA 
diversity for efficient silicon debug. 

Triage: In [99] a static grouping of random test programs at generation time 
through the application of correlation, statistical and pattern recognition analysis 
methods is proposed. Differently, our methodology dynamically triages the test 
programs in runtime, based on the bug susceptibility of each component. The 
proposed framework provides enhanced log information to the debug engineers, 
facilitating the post-processing analysis of the failing self-checking test programs. 
On the contrary, the proposed methodology systematically addresses the issue of 
triaging through the introduction of hardware mechanisms capable to deconfigure 
a microprocessor design. 

Debug [2] [25] [32] [50] [60] [61] [79]: Many proposals introduce various design-
for-debug hooks into a design to monitor test execution and extract logging 
information to facilitate failure analysis. On the contrary, the proposed method 
acts proactively, in the silicon debug process, reducing the amount of test 
programs that need to be debugged, by detecting dominant failure modes among 
the failing random test programs. Furthermore, the massiveness of the silicon 
debug phase, both in test program execution throughput and in bug detection 
capabilities, encourages the adoption of high-level debug solutions. The proposed 
method addresses this challenge, in contrast to the existing research proposals 
that operate in a very fine granularity. It provides a unified solution for localizing 
the malfunctioning component throughout the microprocessor design. Obviously, 
the proposed methodology contributes to the acceleration of the root cause 
analysis through an improved triaging stage, and complements other silicon 
debug methods used in the industry. 

Online bug detection: Previous approaches propose the use of dedicated 
hardware to detect and recover from bugs in the field [93] [29] [11] [102] [106]. 
Semiconductor industry needs bugs detected as soon as possible before massive 
production of the microprocessor chip. The proposed silicon debug methodology 
aims to satisfy this requirement. 

Fault tolerance [6] [23] [22] [71] [84] [90] [97] [101]: Design deconfiguration is a 
well-known concept for tolerating hard errors in the field. The proposed 
methodology employs for first time the concept of deconfiguration in the silicon 
debug setup and in particular the random test program triaging step; as it is 
shown throughout this work, this is not a straightforward task. 

2.5 Findings summary 

Effective silicon debug for modern microprocessor architectures must minimize 
the simulation bottleneck and reduce the redundant debug sessions of random 
test flows to save time, resources, and budget while not limiting bug detection 
efficiency. We have proposed a novel, self-checking, hardware supported 
framework to accelerate and improve the quality of silicon debug by exploiting 
ISA diversity and the property of microprocessor components to be deconfigured 
without compromising the function completeness. Our analysis for ARM, MIPS, 
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PowerPC, and x86 instruction sets shows that despite their differences, modern 
ISAs can perform an operation with many equivalent ways. We take advantage of 
this ISAs property to generate random tests that detect bugs by comparing results 
of equivalent instructions. Moreover, several hardware components of high 
performance microprocessors can be “turned off” or deconfigured while the 
functional completeness of the design remains unaffected. We combine this 
property of microprocessor architectures with carefully developed self-checking 
random test programs to deliver a silicon debug methodology with an optimized 
triage stage. Redundant failing random test programs during an overnight random 
test programs execution campaign are grouped in classes each containing test 
programs that most likely fail due to the same underlying bug. This is decided 
based on the set of hardware components that need to be deconfigured so that 
each of the random tests programs is correctly executed. Experimental results, in 
an x86-64 microprocessor model prove the high bug detection efficiency, and 
also the large savings in debug time due to avoiding the simulation step of 
random test programs and by the effective triaging of failing tests using the 
proposed silicon debug methodology. 
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3. MANUFACTURING TESTING 

The physical limits of semiconductor-based microelectronics have become a 
major concern in manufacturing technology. The diminishing gains in processor‟s 
performance due to the increasing gap between processor and memory speed 
(memory wall), the absence of enough parallelism in single instruction streams 
(ILP wall) and the exponential escalation in power consumption (power wall) 
motivate computer architects and designers to look at different directions for next 
processor generations. 

Current industry trend is orientated towards the development of chip 
multiprocessors (CMP) and chip multithreaded (CMT) processors which although 
may operate at lower frequencies are able to deliver higher performance 
exploiting thread-level (intra-core) or processor-level (inter-core) execution 
parallelism. However, test technology has to explore the transfer from the 
uniprocessor era to the multiprocessor era (CMP and CMT architectures) of all 
test techniques, that have been recently devised to deal with the emerging 
reliability problems of modern microprocessors. The main objective of this 
transfer of techniques to multithreaded multiprocessors should be the exploitation 
of the execution parallelism of the new processor architectures to avoid excessive 
scaling of the overall test time and therefore improve time-to-market but without 
degrading the effectiveness of the technique in terms of fault coverage. 

Software-Based Self-Testing (SBST) [80] [27] [30] [81] [38] [42] [46] [68] [109] is a 
testing method that has gained increasing acceptance with major microprocessor 
vendors and today forms an integral part of the manufacturing test flow of single-
threaded processors [85]. The key idea of SBST is to exploit the instruction set 
architecture and on-chip programmable resources to execute self-test programs. 
The use of SBST methodologies contributes to the reduction of yield loss (avoids 
over-testing), while its non-intrusive nature does not require any processor 
hardware modification. In addition, at-speed testing ability enables screening of 
timing defects that do not manifest themselves at lower frequencies.  

The effective application of SBST to multithreaded multicore architectures poses 
significant challenges: (i) porting of existing self-test programs from the single-
threaded, single-core case to efficiently test all the individual cores; (ii) providing 
sufficient fault coverage for the thread-specific control logic, that constitutes a 
significant portion of the control logic in the new multithreaded architectures and 
schedules the execution of threads on it; and (iii) exploitation of thread-level and 
core-level parallelism to reduce test/validation execution time.  

We present a complete multithreaded software-based self-testing (MT-SBST) 
methodology that targets both the optimization of test execution time and the 
improvement of the fault coverage of the thread-specific control logic. First, we 
assess the impact of test routine scheduling in the fault coverage of hard-to-test 
control structures (i.e. difficult to be controlled through test program stimuli): the 
thread switch logic inside each processor core and the thread-specific control 
logic of the shared components out of the processor cores. Subsequently, we 
propose a multithread scheduling algorithm that achieves a very efficient trade-off 
between test execution time and fault coverage of the thread-specific control 
logic, and is only based on easy-to-obtain run-time statistics of the single-
threaded execution of the self-test program.  
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3.1 Scope of the MT-SBST 

The proposed methodology is applied at the manufacturing testing phase of the 
microprocessor dependability cycle for the last quality control before chips are 
shipped to customers for integration in a system. Our proposed MT-SBST 
methodology performs the following: 

 Test program development for all the functional units of a CMT 
multiprocessor architecture.  

 Test program profiling for the single-threaded single-core execution for 
manufacturing testing (execution from on-chip cache memory). 

 Assessment of the impact of the multithreaded execution of test program 
on the fault coverage of the thread-specific control logic.  

 Test program scheduling to take maximum advantage of thread-level 
parallelism and speedup execution of its test routines for the core-
internal functional units, and core-level parallelism to speedup the 
execution of its test routines for the core-external shared functional units. 
At the same time, our scheduling improves the fault coverage for those 
structures that are sensitive to the thread scheduling. 

We provide full demonstration of the proposed methodology in the most complex 
publicly available CMT processor architecture, OpenSPARC T1 [77]. Our 
experimental results show that the proposed multithread scheduling algorithm 
speeds up the execution time of test program at both core-level (up to 3.6X) and 
processor-level (up to 6.0X) compared with the single-threaded execution. 
Furthermore, compared with a straightforward multithreaded execution of the test 
program the proposed multithreaded schedule reduces test execution time at 
core-level and processor-level more than 33% and 20%, respectively. On top of 
these significant improvements in test time, and despite its shorter execution 
time, the proposed MT-SBST schedule improves the fault coverage of the thread 
switch logic of each core by about 10% compared with the straightforward 
multithreaded version. Overall, our methodology guarantees high stuck-at fault 
coverage levels: more than 91% for the functional units (all integer functional 
units of the eight cores and the shared floating point unit) and more than 88% for 
the logic of the entire processor (including the functional units, the thread switch 
logic and the interconnection networking, which count about 1.5M logic gates). 

3.2 SBST of single-threaded processors 

The basic concept of software-based self-testing (SBST) [37] for a single-
threaded single-core processor is depicted in Figure 24. Test program is 
executed by the processor at normal mode of operation. Test instruction 
sequences usually load test patterns from memory (or generate them internally) 
and apply the appropriate operations to excite faults in hardware components; for 
example, in Figure 24 the test code loads two operands (test vectors of the adder 
circuit) and adds them to excite a hardware fault in the adder module. Finally, in 
order to propagate the fault effect to observable locations the test code moves the 
test responses from the register file to data memory. The first hard task in SBST 
is to generate test instruction sequences that can adequately test the processor 
modules achieving high fault coverage. Several recent works propose efficient 
test program generation methodologies targeting different modules of single-
threaded microprocessor cores, such as integer functional units [27] [30] [81] 



Architectures for Dependable Modern Microprocessors 

N.Foutris 
93 

floating-point units [109], pipeline and control logic [42] [38] and speculative 
mechanisms [46]. 
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Figure 24: Software-based self-testing concept for single-threaded microprocessors. 

The main advantages of SBST are: 

 Non-intrusiveness. SBST operates in normal functional mode and does 
not require extra hardware. 

 At-speed testing. SBST application and response collection are 
performed at the processor‟s full speed which enables screening of delay 
defects that do not manifest themselves at lower frequencies.  

 No over-testing. SBST avoids test overkill and thus detection of defects 
that will be never manifested during the normal processor operation; this 
leads to significant yield increase. 

SBST is a reusable, all-around solution for checking the microprocessor‟s 
integrity throughout its life cycle; self-test software can be executed during 
manufacturing testing, and periodic online testing. The role of SBST in a 
manufacturing test flow is complementary since it does not aim to replace the 
other traditional testing approaches. On the contrary, SBST improves the overall 
test quality combining the benefits of the other approaches: self-test program can 
be developed targeting low-level structural fault models and applied in native 
functional mode.  

Figure 25 presents a typical SBST flow for manufacturing testing which comprises 
three steps: (1) test code and data are downloaded into on-chip instruction and 
data caches, respectively (for simplicity caches are not shown separately), using 
a low-speed, low-cost tester. Test data downloading is performed via a cache 
load interface at low-speed; (2) test program is executed by the processor at full 
speed and test responses are stored back to on-chip data cache; and (3) tester 
responses are uploaded into the tester memory via the low-speed cache interface 
for external evaluation. Self-test programs must be developed so that no cache 
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misses occur during test execution, a scheme called cache-resident testing [14], 
[80]. This allows reducing the total test cost by (i) reducing test execution time 
avoiding external (main) memory access cycles, and (ii) eliminating the need for 
expensive high-speed functional testers that would handle the memory 
transactions. 
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Figure 25: Manufacturing testing SBST setup. 

3.3 MT-SBST preliminaries and experimental setup 

For the application of SBST in a multithreaded multicore architecture, we assume 
the following experimental setup:  

 The test program consists of a set of test routines that target all the 
private functional units of each processor core (i.e. functional units in the 
execution pipeline of each core such as ALU, multiplier, divider and 
shifter) and the shared functional units (i.e. a floating-point unit that all 
cores of T1 share).  

 A single copy of the test program (test code and data) is stored in 
memory (either on-chip cache or main memory depending on the setup) 
instead of a separate copy for every core; this reduces the memory 
storage requirements. All processor cores have to execute the same test 
program to detect faults in their private units while the self-test program 
for the shared units must be executed once (in one core or split in more 
cores). 

 Each processor core generates a set of separate test responses; this 
assumption enables the diagnosis of faulty core (the alternative is to 
compact all responses from all processors loosing the diagnosis 
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capability). This is important for manufacturing testing since it allows the 
binning of partially “good” chips (those containing some faulty cores) 
[104]. 

In order to reduce the execution time in an MT-SBST approach, we need to take 
advantage of both the available thread-level and core-level parallelism, visualized 
in Figure 26. Let assume four test routines for the functional units FU1, FU2, FU3 
and FU4 of the processor core (these routines must be executed be each core) 
and one test routine for a shared-functional unit (this routine must be executed 
once). Exploitation of core-level parallelism enables the parallel execution of the 
test routines FU1, FU2, FU3 and FU4 by all n processor cores and speeds up the 
execution of the shared-FU test routine. If execution parallelism is not exploited, 
the overall test application time will scale with the number of processor cores (8 in 
T1 multiprocessor). Instead of having a single core to execute the shared-FU 
routine (top of Figure 26), the routine is split into n subroutines which can be 
executed in parallel (middle of Figure 26). We can schedule in a different way the 
test routines in the n cores to achieve the optimum utilization of the common 
memory subsystem and the interconnection network [9]. Next, we exploit thread-
level parallelism to speedup the execution of the test routines in each core; 
assuming that each core supports four hardware threads in an interleaved 
multithreading fashion, all 4 threads are used to execute the test routines as 
shown in Figure 26 (bottom). The overlap of the idle intervals of one thread (i.e. 
due to a long latency operation or a cache miss) by another active thread is the 
key point for the efficient parallelization of test routines. 
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Figure 26: Exploiting MP and MT parallelism in the execution of the test program. 

3.4 Proposed MT-SBST Methodology 

When normal applications are developed for a multithreaded architecture the 
main focus is the maximization of the application throughput and processor‟s 
resource utilization. The tuning of the application workload depends on its specific 
characteristics. However, self-test programs do not belong to a specific class of 
commercial workloads with common characteristics, and thus require separate 
performance analysis. We aim to tune self-test programs to the characteristics of 
the multithreading technology to achieve the maximum speedup, that – as our 
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experiments reveal – a naïve, straightforward multithreading scheduling cannot 
reach. The necessity for effective self-test scheduling algorithms as the one 
proposed in this thesis is therefore revealed. 

The main objectives of the proposed methodology are: (a) to assess the test 
program execution characteristics for its efficient tuning towards a multithreaded 
architecture; (b) to analyse how the multithreaded execution of the test program 
affects the fault coverage of the thread-specific control logic (which is not 
explicitly targeted by the test routines for the functional units); and (c) to propose 
an efficient scheduling algorithm which reduces test program execution time 
without degrading its effectiveness in terms of fault coverage for the related logic. 
Overall, the main goal of our methodology is to achieve the best trade-off 
between self-test time reduction and self-test effectiveness for the thread-specific 
control logic. The steps of the methodology are summarized in Figure 27 and 
individually analysed in the following subsections. 
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Figure 27: Proposed MT-SBST Methodology. 

3.5 Test Program Development 

Our demonstration vehicle is the open-source CMT processor model, 
OpenSPARC T1, which integrates eight 64-bit SPARC V9 processor cores, each 
one supporting four hardware threads [77]. Figure 28 shows the organization of 
the OpenSPARC T1 processor. Each CPU core implements a six-stage, single-
issue execution pipeline and has a 16KB L1 instruction cache and a 8KB L1 data 
cache. An on-chip unified 3MB L2 cache divided in four banks is shared among 
all CPU cores. A crossbar switch handles communication between the CPU cores 
and the shared memory while at the same time provides access to a shared 
floating-point unit. OpenSPARC T1 uses fine-grain multithreading technology: it 
switches among the available threads at every cycle giving priority to the least 
recently executed thread. 
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Figure 28: OpenSPARC T1 architecture. 

The first step of the proposed methodology is the development of test routines 
that target all the complex functional units of the SPARC V9 core: ALU, shifter, 
integer multiplier, integer divider, stream processing unit (SPU – used for 
cryptography operations), and floating-point frontend unit (FFU). The test routines 
for these six functional units must be executed by all processor cores. We also 
develop separate test routine for the components of the off-core floating-point unit 
(FPU) of OpenSPARC T1 which must be executed only once (FP adder, FP 
multiplier, FP divider). 

For a few functional units, like the shifter and the multiplier we adopted proven 
effective optimized test sets from previous SBST approaches [81] [38] for other 
single-core models and tune them to the functional units of SPARC V9 core. For 
the other modules, we either developed customized test routines (like in the 
cases of the ALU and the divider) or used the regression tests of the modules 
(like in the cases of FFU and SPU) included into OpenSPARC T1 verification 
suite and enhanced them with more test patterns. It is important to note that this 
first step of self-test program development does not affect the operation of the 
subsequent steps. This means that any self-test program for the individual integer 
and floating-point units can be used. One of the important part of this work is that 
our experiment work stress the limits of MT-SBST on OpenSPARC T1 using as 
efficient as possible self-test programs for the individual units. 

Table 18 summarizes the characteristics of the functional units of the SPARC V9 
core and the corresponding test routines. Second column presents the gate count 
of the functional units and third column demonstrates the fault coverage achieved 
by the corresponding test routines in a single-thread execution (results are based 
on the stuck-at fault model and have been calculated using Synopsys‟ TetraMAX 
tool). 
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Table 18: Functional units and corresponding test routines of each SPARC v9 core. 

Functional 
units 

Gate count  
(K gates) 

Fault coverage 
(stuck-at %) 

Single-thread execution time  
(K cycles) 

Manufacturing testing 

Shifter 5.9 97.5 14.4 

ALU 6.2 92.7 32.5 

Divider 11.4 97.3 54.5 

Multiplier 54.2 96.4 8.6 

FFU 16.6 72.1 9.9 

SPU 18.5 86.9 33.1 

Total 112.8 91.2 153.0 

The rightmost column show the test routine execution time in a single thread for 
manufacturing testing (execution from on-chip shared L2 cache). The execution 
time of the test routines depends on: the number of test patterns, the latency of 
the corresponding instructions and the development style (which affects the 
instruction-level parallelism of the routines – loops, etc.). Our test program 
achieves more than 91% fault coverage in total for all the functional units which is 
the highest structural fault coverage that has been ever reported by a software-
based testing approach on a real open-source industrial processor such as 
OpenSPARC T1. Note that, the low fault coverage of the FFU is due to the partial 
activation of the component from the single-thread test programs, while combined 
with the scheduling algorithm the fault coverage is increased. 

In Table 19 we present the effectiveness of the FPU routine in terms of stuck-at 
fault coverage only to the execution pipelines (adder, multiplier, divider) included 
in the shared floating-point unit. We deal with the control part of the floating-point 
unit later. The developed FPU routine achieves more than 92% stuck-at fault 
coverage on average for this complex functional unit. The total execution time of 
FPU routine is 2.6M clock cycles when executed from on-chip shared L2 cache. 

Table 19: Modules of the shared FP unit and the corresponding test routines. 

Modules 
Gate count 
(K gates) 

Fault coverage 
(stuck-at %) 

Single-thread 
execution time (K cycles) 

Manufacturing testing 

FP Add. 33.7 91.7 1300.1 

FP Multiplier 60.1 92.9 520.4 

FP Divider 13.6 91.0 780.2 

Total 107.4 92.3 2600.7 

The fault coverage of the functional units is not affected when the corresponding 
test routines are executed in a multithreaded fashion. However, this is not the 
case for the control logic, either the thread-specific control logic of the core or the 
shared FPU control logic. 
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3.6 Test Program Profiling 

The second step of the methodology is the high-level profiling of the single-thread 
version of the test program that allows us to quickly assess its scaling 
characteristics to a multithreaded environment. All test routines are executed in a 
single hardware thread of a SPARC V9 core having exclusive access to the core 
while the other three threads are parked (i.e. exclusive single-thread 
performance).  

Figure 29 shows the exclusive single-thread performance of all test routines for 
the manufacturing testing SBST setup (see explanation for the different routines 
of each type at the end of this section). Each bar represents the fractions of time 
the state machine of the hardware thread, executing the corresponding test 
routine, is in one of the five possible states: ready, run, wait, speculative ready 
and speculative run. The SPARC V9 core switches among the available threads 
at every cycle (i.e. fine-grain multithreading technology). A thread can be 
scheduled (is available) when it is in one of the following states: ready (i.e. the 
hardware thread is available for selection by the scheduler), speculative ready 
(i.e. data dependencies are expected to be resolved and the thread will soon be 
available), run (i.e. the hardware thread has been selected), and speculative run 
(i.e. the hardware thread will be selected by the scheduler) . On the other hand, a 
thread enters the wait state due to one of the following reasons: I-cache fill, store 
buffer full, long latency operation, and resource conflict (i.e. concurrent requests 
to a shared resource). Therefore, when executing the test routines in a single-
threaded core, the core enters a wait state when the thread is unavailable. To 
collect runtime statistics for the thread state we used the functionality of the 
thread monitor unit of SPARC V9 core. 
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Figure 29: Test program profiling for manufacturing testing. 

Test program profiling shows that the total core utilization is very low since the 
core is waiting for long time intervals because the thread is unavailable. In the 
case of manufacturing testing (Figure 29) the thread is in wait state for the 62% of 
the total execution time of the test program. Hence, the test program profiling 
stage designates the ability for performance gains when routines scheduled in 
multithreaded environment. 

We further analysed test routine profiles to identify different execution phases, 
such as CPU-bound or memory-bound intervals, within a test routine execution 
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and then we split it into more subroutines based on these phases. This splitting 
procedure enabled us to schedule more efficiently the test routines into the 
hardware threads achieving better exploitation of TLP. In our case study, routines 
Div, FFU and SPU, present different runtime statistics and are split into two 
subroutines each, Div1 (24.2 K) and Div2 (30.3 K), FFU1 (9.4 K) and FFU2 (0.5 K) 
and SPU1 (23.8 K) and SPU2 (9.3 K), respectively (parentheses show the 
execution time from L2 cache in clock cycles). 

3.7 Fault coverage-driven test routine splitting 

At this section, we study how the multithreaded execution of test routines affects 
the fault coverage of the on-core (thread switch logic) and off-core (shared FPU) 
control logic.  

On-core control logic (thread-switch logic). Thread-switch logic fault coverage 
increases with the activity of the four thread state machines (and therefore, the 
number of state evaluations and thread selections that the thread-switch logic 
performs). Thus, if we want to keep the fault coverage of the thread-switch logic 
high, we should avoid decreasing the number of state transitions of the thread 
state machines by forcing the four threads to enter more times in the wait state. 
However, this target contradicts with the test execution time reduction goal since 
increasing the number of resource conflicts (i.e. concurrent requests to a shared 
resource) will adversely affect the exploitation of CMT technology.  

We start considering two routines from our basic core test program that can 
cause resource conflicts due to their long latency operations: multiplier and 
divider routines. We performed a set of fast, high-level experiments to quantify 
the speedup achieved if we split these test routines into two or four time-balanced 
subroutines and schedule two or four hardware threads to execute them in 
parallel. In Table 20, we compare the time of the single-threaded execution 
versus the multithreaded execution for these two routines for execution from L2 
cache. 

Table 20: Single-threaded execution vs. multithreaded execution (ET: Execution Time). 

Testing setup Routines 

1-thread 2-threads 4-threads 

ET (A) 
K cycles 

ET (B) 
K cycles 

Speedup  
(A/B) 

ET (C)  
K cycles 

Speedup  
(A/C) 

Manufacturing  
testing 

Multiplier 8.6 5.7 1.5 5.4 1.6 

Divider 54.5 37.1 1.5 35.9 1.5 

The experimental results show that the two-threaded execution achieves 
significant speedup, 1.5X times, over the single-threaded execution. However, the 
speedup saturates at two threads since using more than two threads reduces 
slightly the execution time. Therefore, to improve the fault coverage of the thread-
switch logic during the multithreaded execution we split the long-latency routines 
into subroutines that causes resource conflicts when executed in multithreaded 
mode. However, to achieve the best trade-off between execution time reduction 
and fault coverage of the thread-switch logic the number of subroutines must not 
exceed the number of threads at which the speedup saturates. The output of this 
step is a number of sets each one containing the appropriate number of 
subroutines that must be executed in parallel to cause resource conflicts. In our 
case study two sets are created: {Div1, Div2} and {Mult1, Mult2}. 
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Off-core control logic (shared FPU). We exploit core-level parallelism to 
execute the test routines for the off-core shared FPU. In order to determine an 
efficient multicore, multithreaded execution of FPU test routine we study how the 
execution time and the fault coverage scale with the number of cores and 
threads. Thus, we split FPU test routine into 4, 8, 16 and 32 subroutines and 
schedule them to different number of processor cores: 1, 4 or 8 cores each 
running 1 or 4 threads. Table 21 presents total execution time and combined 
stuck-at fault coverage of the two FPU control sub-modules: FP input that 
multiplexes the FPU requests from multiple cores and FPU output that arbitrates 
the results of FP pipelines for the single FPU-crossbar connection. Table 21  
presents results for both the execution from L2 cache. Our experiments 
demonstrate that the fault coverage is affected by the execution of FPU test 
routine by multiple cores and multiple threads. This happens because the FPU 
control modules carry thread and core id specific information. The results suggest 
that the most efficient FPU routine schedule in terms of speedup and fault 
coverage in both setups is 8 cores each running 4 threads: a total of 32 threads 
executing in parallel 32 FPU time-balanced subroutines. Thus, in our proposed 
test scheduling the FPU test subroutines are executed in parallel by all processor 
cores – separately from basic core test routines – occupying all 32 threads of the 
CMT architecture. 

Table 21: Multicore, Multithreaded execution of FPU test routine (ET: Execution Time, FC: 
Fault Coverage of the FPU control logic). 

Schedule 
1 thread 4 threads 

ET (K cycles) FC (%) ET (K cycles) FC (%) 

Manufacturing Testing 

1 core 2600.7 61.9 1400.1 62.7 

4 cores 920.1 89.9 490.3 91.0 

8 cores 519.2 90.9 437.4 91.6 

3.8 Test Scheduling Algorithm 

We propose an algorithm that schedules a set of test routines {R1, R2, …, RN} into 
k hardware threads targeting the best trade-off between test execution time and 
fault coverage. The proposed algorithm is presented in Table 22. 

The first part of the algorithm partitions test routines into two groups: GL which 
contains routines having waiting time fraction (WT) less than the average waiting 
time fraction (WTavg) of all test routines and GH which contains routines having 
WT more than WTavg. Then, the two groups are sorted in descending order 
according to the execution time (ET) of their routines. 

The second part of the algorithm picks up test routines from the two groups and 
assigns them into threads in an iterative manner. The longest test routines (with 
the higher ET) are scheduled first in order to produce a time-balanced scheduling. 
When a routine that belongs to a resource conflict group (RCG) (an RCG 
contains routines that perform concurrent requests to a shared resource) is 
selected then all the other elements of the group are scheduled in parallel. If there 
are routines that cannot be scheduled in parallel due to resource limitations they 
are not selected in the current loop iteration. For instance, in our case study, 
routines SPU1 and SPU2 cannot be executed in parallel since the co-processor 
implementing the SPU operations supports one outstanding SPU operation per 
core. 
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Table 22: Test Scheduling Algorithm. 

 

Inputs: k: number of threads 

 Basic core test routines: S = {R1, R2, …, RN} 

 Single-threaded test program profiling results: 

   ETi: execution time of routine Ri 

  WTi: waiting time fraction of routine Ri 

  WTavg: average waiting time fraction of all test routines 

    Routines groups causing resource conflicts: RCG1, …, RCGM 

Restrictions: Routines cannot be executed concurrently due to limited resources (i.e. 
SPU1, SPU2) 

Output: Scheduled test routines in k threads: {SRth1, SRth2, … SRthk} 

// Partition routines into two groups: GL (low WT fraction) and GH ( high WT fraction) 

for i = 1, 2, …, N do 

       if WTi < WTavg  insert Ri to GL ; 

  else insert Ri to GH ; 

end for 

Sort GL and GH in descending order according to ETi  

ETth1, ETth2, … ETthk = 0 ; // Accumulated ET of routines assigned to threads 1…k 

SRth1, SRth2, … SRthk = Ø ; // Set of routines scheduled to threads 1…k  

CXR = Ø ;            // Set of currently executed routines by all k threads 

while (GL, GH not empty) do 

             select thread j with shortest ETthj;  

             remove the last routine of SRthj from CXR ; 

             if (GH empty) OR  

       ((GL not empty) AND (#routines in CXR with low WT < # of routines in CXR 
with high WT)) then 

   select the longest routine Ri from GL that does not have restriction with any 
routine of CXR ; 
   remove Ri from GL ; 

      end if 

             if (GL empty) OR  

    ((GH not empty) AND (# of routines in CXR with low WT  # of routines in CXR 
with high WT)) then 

   select the longest routine Ri from GH that does not have restriction with any 
routine of CXR ; 

  remove Ri from GH ; 

      end if 
      insert Ri to SRthj ; 
      insert Ri to CXR ; 

      if Ri belongs to an RCGm then  
  remove Ri from RCGm ; 

 while (RCGm not empty) do 

 select next longest routine Ri from RCGm ; 

 select thread j with shortest ETthj ; 

 remove the last routine of SRthj from CXR ; 

 remove routine Ri from its group (GL or GH) ; 

 insert Ri to SRthj ; 

 insert Ri to CXR ; 

 end while 

     end if  

end while 
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The algorithm satisfies two scheduling criteria: (a) routines causing resource 
conflicts (belong to a resource conflict group, RCG) are executed in parallel; and 
(b) at any time the set of currently executed routines (CXR) contains equal 
number of low-WT and high-WT test routines. The first criterion targets to the 
improvement of the fault coverage of the thread-specific control logic and the 
second criterion targets to overlap the “long” waiting intervals of the half routines 
with the “running” intervals of the other half routines. The algorithm output is k 
sets SRth1, SRth2, … SRthk that contain the routines scheduled to each thread. 

3.9 MT-SBST experimental results 

We applied the proposed scheduling algorithm to the test routines of functional 
units of the OpenSPARC T1 for manufacturing testing setup. For the sake of 
comparison, we also set up a naïve (straightforward) multithreading approach that 
assigns routines with the same characteristics to the same thread, i.e. routines 
using the multiplier (SPU and Mult), divider routines (Div), short latency 
operations (ALU and Sft) and floating-point operations (FFU and FPU). Both 
naïve and proposed multithreading approaches are based upon the same 
requirement: to avoid resource conflicts that degrade test program performance. 
Therefore, naïve approach constitutes a fair alternative of the proposed approach. 

We first analyse core-level thread scheduling without considering testing of the 
shared FPU. The generated test routine schedules for manufacturing testing 
setup and the naïve scheduling approach are shown in Table 23. Each column 
includes the test routines scheduled in each thread of the core. Notice that the 
proposed schedules for the two SBST setups are different which is due to the 
different test program profiling. 

Table 23: Schedules of core test routines. 

 Routines per Thread Assignment 

Naïve 
scheduling 

Thread 0 Thread 1 Thread 2 Thread 3 

SPU1 

SPU2 

Mult1  

Mult2 

Div1 

Div2 

ALU 

Sft 

FFU1 

FFU2 

Proposed 
scheduling 

Manufacturing Testing 

Thread 0 Thread 1 Thread 2 Thread 3 

ALU Div1 

Mult2 

FFU1 

Div2 

SPU2 

SPU1 

Mult1 

FFU2 

Sft 

In Table 24 we compare the proposed multithreaded scheduling with the single-
threaded and naïve scheduling approaches in terms of execution time and stuck-
at fault coverage of the thread-switch logic (recall that the coverage for the 
functional units is more than 91% – see Table 18 – since the coverage does not 
depend on the multithreaded execution). The speedup of the multithreaded 
approach is calculated against the test execution time of the single-threaded 
execution. The speedup achieved by the proposed multithreaded scheduling is up 
to 3.3X, very close to the ideal theoretical 4X speedup, which means that it 
exploits the TLP very efficiently, using only easy-to-obtain run-time statistics from 
the single-threaded execution and avoiding time consuming simulations. 
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Compared with the naive scheduling (that achieves a speedup only up to 2.2X), 
our methodology reduces the test time by 33%. 

Table 24: Comparison of core level scheduling approaches (FC: Fault Coverage of thread 
switch logic). 

 Single-threaded Naïve scheduling Proposed scheduling 

Execution time  
(K cycles) 

153.0 69.2 46.1 

Speedup – 2.2 3.3 

FC (%) 32.6 67.6 75.5 

Furthermore, the proposed scheduling does not degrade the fault coverage of 
thread-specific control logic of the core but on the contrary (due to the elaborate 
routines scheduling) it improves it up to about 10% compared with the naïve 
scheduling, thus achieving an excellent trade-off between speedup and fault 
detection capability. 

From this point onward, we include the testing of the control part of the shared 
FPU (recall that the coverage for the FPU adder, multiplier and divider is more 
than 92% – see Table 19) in our scheduling. In naïve scheduling the FPU routine 
is split into 8 subroutines (FPUi/8) which are executed by thread 3 of each core 
shown in bold in Table 25. In our approach the FPU test routine is split into 32 
time-balanced subroutines (FPUi/32) which are executed by all four threads of 
each core before the basic core test routines: all 32 threads of the architecture 
are occupied to execute in parallel the FPU subroutines. Note that Table 25 
presents only the schedules of processor core 0 for the naïve (straightforward) 
approach and our proposed approach for manufacturing testing. The schedules 
for all processor cores can be produced directly from Table 23 scheduling the 
FPU subroutines before the core test routines. 

Table 25: Schedules of core test routines plus shared FPU routine at processor level. 

Routines per Thread Assignment 

Naïve scheduling 

Thread 0 Thread 1 Thread 2 Thread 3 

SPU1 

SPU2 

Mult1 

Mult2 

Div1 

Div2 

ALU 

Sft 

FFU1 

FFU2 

FPU1/8 

Proposed  

Scheduling 

Manufacturing Testing 

Thread 0 Thread 1 Thread 2 Thread 3 

FPU1/32 

ALU 

FPU2/32 

Div1 

Mult2 

FFU1 

FPU3/32 

Div2 

SPU2 

FPU4/32 

SPU1 

Mult1 

FFU2 

Sft 

Table 26 summarizes test execution time of single-threaded, naïve scheduling 
and proposed scheduling approaches and the speedup achieved by the 
multithreaded approaches over the single-threaded one. Compared with the 
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naïve scheduling, the proposed scheduling reduces the test execution time of the 
entire processor by up to 18%. 

Table 26: Comparison of scheduling approaches including FPU routine. 

 Single threaded Naïve scheduling Proposed Scheduling 

Execution time  
(K cycles) 

2753.7 588.4 483.5 

Speedup – 4.6 5.6 

Finally, Table 27 presents the fault coverage for the targeted logic (about 1.5M 
gates of logic) of the OpenSPARC T1, which includes all the integer functional 
units and the on-core control logic (thread switch logic and integer pipeline control 
logic) of all eight CPU cores, the shared FPU (including the execution units and 
the thread-specific control logic) and also the interconnection network (this is not 
explicitly targeted by test routines). The total fault coverage for all functional units 
(both integer and floating-point) is 91.3%, while the total fault coverage for the 
entire processor is 88.6%. 

Table 27: Fault coverage (IFUs: Integer functional units, FPU: Floating-point unit, CCL: 
Core control logic, INN: Interconnection network, FUs: Functional units of processor). 

Components 
Gate count  
(K gates) 

Fault coverage (stuck-at %) 

Single 
threaded 

Naïve 
scheduling 

Proposed 
scheduling 

Core (x8) 
IFUs 8  112.8 91.2 91.2 91.2 

CCL 8  28.4 62.2 71.8 82.8 

Off-core 
FPU 115.8 86.7 88.8 92.3 

INN 259.5 14.9 79.9 82.7 

Total (FUs) 1018.2 90.7 90.9 91.3 

Total (Processor) 1504.9 73.4 86.1 88.6 

3.10 Related work 

There is no work in the literature that studies (a) the impact of SBST test 
optimization strategy on a multicore, multithread architecture; and (b) measures 
the fault coverage of thread-specific control logic. 

Multithreading: Bayraktaroglu et al. [14] proposed the conversion of existing 
legacy tests, either hand-written or randomly-generated to test the multithreaded 
cores of the CMT architecture of UltraSPARC T1. They described how a 
software-based cache-resident test methodology can be utilized during the 
manufacturing test flow of a commercial multicore chip, UltraSPARC T1, and 
applied by a low-cost external tester. In [14], the CPU cores of the CMT 
architecture execute the test program sequentially while the other cores are 
disabled; this scheme eliminates the need for replicating the test program for 
each processor core but it does not exploit either the core-level parallelism or the 
thread-level parallelism of the architecture, thus, it does not satisfy the main 
objective of a multithreaded SBST methodology. Apostolakis et al. [9] considered 
the application of SBST to bus-based CMP architectures consisting of simple 
single-threaded cores. They proposed a scheduling methodology for the test 
routines to exploit core-level execution parallelism and minimize the time 
overheads coming from the memory subsystem in order to reduce the total test 
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execution time. However, [9] focuses only on the execution parallelism among 
different cores in order to improve test program performance for the processor.  

Multiprocessor: A first approach on studying the application of SBST in CMT 
architecture for manufacturing testing, was proposed in [10] where thread-level 
parallelism is exploited to reduce self-test execution time. 

3.11 Findings summary 

We present the application of SBST in multithreaded, multicore architectures as a 
natural extension to single-core, single thread SBST. The proposed MT-SBST 
methodology leverages the existing thread-level parallelism (TLP) for test 
optimization. We analyse the impact of multithreaded test execution on fault 
coverage and propose a methodology to speed up the test execution time by 
exploiting execution parallelism without degrading the fault coverage of the 
control logic (but on the contrary improving it). Comprehensive experiments on 
OpenSPARC T1 demonstrate that our methodology speeds up the test time of a 
4-threaded core by 3.3. Compared with a straightforward multithreaded 
scheduling the proposed methodology achieves significant time reduction, 33% at 
the core-level and 18% at the processor-level. Overall, our methodology 
guarantees high fault coverage, more than 91% fault coverage for the functional 
units and more than 88% for the entire OpenSPARC T1 processor logic (more 
than 1.5M gates of logic). 
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4. IN-FIELD VERIFICATION 

High-performance microprocessor architectures consolidate all available design 
techniques towards a single aim: delivery of the highest performance given the 
power constraints of an individual market segment. Towards this aim, a 
continuously increasing number of transistors are integrated in microprocessor 
chips along with sophisticated circuit design and architectural techniques to 
improve performance. Chip manufacturing technologies, however, have already 
entered an era where permanent, intermittent, and transient hardware faults have 
unacceptably high rates due to manufacturing defects, process variation, 
environment impact, and device wear-out and aging [74]. Under these 
circumstances, the microprocessor chip manufacturing cost is seriously affected 
by reduced yield levels and the inevitable overheads for fault tolerance.  

Silicon technology process scaling has been shown to increase the rate of hard 
faults in microprocessor SRAM arrays [59] [18] [21]. One of the most important 
trend for reducing processor power consumption is low voltage operation which 
further increases the rate of hard faults in SRAM arrays [28] [1] [108]. Several 
hard fault tolerance techniques for SRAM caches have been proposed [5] [28]  
[66] [89] [100] as well as mechanisms to protect pipeline flip-flops and 
combinational logic [23] [84] [94] [71] [90] [95] [41] [75]. However, many non-
cache structures such as those in control and data flow speculative hardware are 
also implemented using large SRAM arrays (e.g. branch target buffer size is 2.5K 
entries in AMD‟s Jaguar core [92], which equals to 9% of the non-cache core 
area, accounting for 44% of the non-cache SRAM area). 

Although these speculation mechanisms do not affect program correctness, faults 
that lead to extra mispeculations can significantly degrade performance [46] [44] 
[49] [63] [7]. The exact behaviour depends on the location of the fault (in an array 
entry or in the control part of the component) and the component-access pattern 
by an application or benchmark. Transient faults, such as those caused by high-
energy particle strikes, minimally affect performance because they incur few extra 
mispredictions and thus will not be investigated in this study. However, hard 
(permanent) faults can significantly reduce performance especially when faulty 
array entries are accessed frequently. 

Performance loss from faults reduces performance without corresponding 
reductions in power, decreasing overall efficiency. Performance variability across 
identical cores is undesirable in many settings including data centre and HPC 
deployments. For instance, estimation of the Total-Cost-of-Ownership (TCO) of a 
data centre can be done using estimation frameworks as the one reported in [45]; 
these frameworks show that, under certain configurations, performance variability 
increases both system cost and power consumption and worsens the system‟s 
environmental impact. Moreover, large parallel workloads running on HPC 
environments often execute at the speed of the slowest node [34] meaning that 
performance variability among nodes can substantially reduce the overall 
throughput of the system. Performance variability is also undesirable in the 
mobile and desktop markets [51] since it reduces the ability to provide 
performance guarantees in real-time systems. 

We measure the effect of permanent faults in the arrays and the control logic of 
performance components: branch predictors (BPs), branch target buffers (BTBs), 
the return address stack (RAS), and data and instruction prefetchers (DP and IP). 
Soft errors are exempt from this study, since their transient impact has 
insignificant effect on microprocessor‟s performance. Then, we propose a set of 
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low-cost hardware-based mechanisms for the detection, diagnosis and 
performance recovery in the BP and BTB structures. 

4.1 Scope of proposed techniques 

The reliability evaluation and proposed techniques are applied at in-field 
verification phase of the microprocessor dependability cycle. In particular, we 
perform the following tasks: 

 Classify the behaviour of microprocessor speculative mechanisms in the 
presence of faults in the four categories (output error, performance 
errors, benign errors and crash). 

 Demonstrate that faults such as those from low-voltage operation and 
process scaling can lead to substantial performance loss and variability 
in these structures. We assess the impact of hard faults in the 
conditional Branch Predictor (BP), the branch target buffer (BTB), and 
the return address stack (RAS), using expected rates of hard faults for 
future technologies and low-voltage operation.  

 We propose a set of low-cost hardware-based mechanisms for the 
detection, diagnosis and performance recovery in the aforementioned 
structures. Our objectives are to recover the fault-free execution time by 
mitigating the impact of faults on IPC, and to minimize variation among 
cores with different fault locations in control flow predictors. Our 
techniques leverage the observation that the inherent self-verifying 
nature of all these components offers an opportunity for low-cost 
diagnosis of faults. Therefore, we overload the self-verification 
mechanism to trigger hard fault detection and diagnosis in each 
predictor. Once a hard fault is identified, we employ limited spatial 
redundancy to minimize the number of additional mispredictions and 
recover performance. 

Our analysis delivers the following key insights. First, performance components 
with single permanent faults do not lead to functional errors and that most faults 
(44% to 96%) cause only performance fluctuation. Second, hard faults in a stride 
data prefetcher can affect microprocessor performance significantly (up to 26%) 
and increase inter-core performance variability (more than 4.5%). Likewise, in the 
branch prediction unit the performance loss (up to 13%) and variability (more than 
16%) can be significant. Finally, the low-cost hardware-based solutions for the 
detection, diagnosis and performance recovery of multiple hard faults in all front-
end speculation components (BPs, BTBs, RAS, BHR) achieves to mitigate almost 
the entire IPC loss due to faults. 

4.2 Background analysis 

4.2.1 Performance components 

The quest for higher performance at lower power continues as we keep stacking 
more transistors on a die. All major compute elements (CPUs, GPUs, etc.) 
employ an array of structures whose main (and, in some cases, only) purpose is 
to provide higher performance (caches, BPs, prefetchers, load/store speculation, 
execution units, out-of-order schedulers, hardware-based multi-threading, etc.). 
These mechanisms are used to hide the ever-increasing memory latency 
(caches, prefetchers, load/store speculation) and boost parallelism exploited 
either at the instruction level (OoO schedulers, execution units, BPs) or at the 
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thread level (multi-threading). The effect of permanent errors on some of these 
structures has been studied in the past [49] [17]. Most of the reliability studies 
have focused on structures based on the area they occupy (caches), their 
immediate performance impact (execution units), and their ability to influence 
functional correctness (caches, schedulers).   

We examine the impact of permanent faults on the front-end structures of high-
performance microprocessors. These include branch outcome predictors, BTB, 
and RAS. Modern microprocessors employ all these techniques in an effort to 
provide a continuous stream of instructions to their execution units. The accuracy 
of these mechanisms is a key metric in achieving high instruction-level parallelism 
(ILP). Permanent faults in their arrays or control logic can cause the mis-
prediction rate to fluctuate, leading to performance changes. High mis-prediction 
rates can cause additional memory traffic (especially for conditional and indirect 
branch prediction), which in turn can amplify the side effects on the core IPC and 
power. Independent of the actual nature of the workload (compute- or memory-
dominated), the steady supply of instructions to the back end of the core will 
remain critical in maintaining high performance at a low power cost. 

We also steer focus towards structures that affect performance only. A prefetcher 
is one such case. If not accurate enough, it can degrade performance (and 
increase power) by polluting the cache and by wasting shared resources (miss 
information/status handling registers (MSHRs), tag/DC and command/data bus 
bandwidth, victim buffers, etc.). If the prefetcher is accurate enough, it reduces 
the average memory latency and lowers the need for larger data caches. 
However, permanent faults can cause variations in the prefetched address 
stream, which in turn can lead to large IPC fluctuations if the prefetcher is 
accurate and the data working set of the application does not fit in the data cache. 
Permanent errors can change prefetcher coverage (by dropping pending prefetch 
requests and training opportunities), prefetch request timeliness (by issuing 
requests earlier or later than their error free equivalent), and prefetch accuracy 
(by perturbing prefetch address-generation logic). 

4.2.2 SRAM arrays failure probabilities 

Technology modelling in roadmaps predicts extremely small single-bit failure 
probabilities for combinational logic even beyond the 12nm node [74]. However, 
several orders of magnitude higher numbers of hard faults in SRAM arrays are 
expected in the following two contexts: 

 Chips manufactured in current and future technologies (e.g., 22nm) that 
operate at reduced voltage levels for power reduction purposes [28] [1] 
[108]. 

 Forthcoming chips manufactured in more defective technologies (16nm, 
12nm) [101]. 

In both contexts, the failure probability (Pfail) of a single SRAM cell is expected to 
fall between 10-6 and 10-4 [28] [74] [108], a substantial increase over the SRAM 
cell Pfail in 32nm, as shown in Table 28. 

Table 28: SRAM cell Pfail for four technology nodes [74]. 

Node SRAM cell Pfail Node SRAM cell Pfail 

32nm 7.30E-09 16nm 5.50E-05 
22nm 1.50E-06 12nm 2.60E-04 
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To put this in perspective, Figure 30 shows the expected number of faults in 
100Kbit and 300Kbit SRAM arrays (within range of  BP and BTB arrays used in 
commercial  processors; see Introduction) for the technology nodes of Table 28, 
expressed as a cumulative probability. As we can see in Figure 30, the average 
number of faults in a 100Kbit array in 32nm is only 0.001, while the same array in 
16nm is expected to have 5.5 faults on average. 

 

 

Figure 30: Cumulative probability of 1…k hard faults for 100Kbit (top) and 300Kbit (bottom) 
SRAM arrays. 

4.2.3 Fault classes 

We classify the outcomes of each fault injection simulation based on the impact of 
the fault on the simulated system. Follows the analysis of fault effects classes. 
These represent typical classes (and corresponding terminology) used in the 
reliability literature. 

 Output error: The fault causes data corruption at benchmark output, 
register values, or memory state (although this category is expected to 
be empty, we include it in our study and check the processor state at 
simulation end to verify that functional correctness is preserved). 

 Performance error (slowdown or speedup): The fault changes only the 
execution time of the benchmark.  

 Benign error: The fault does not cause an output or performance error. 
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 Crash: The fault produces an exception or system crash. 

4.3 Simulator and Microprocessor Model 

Our statistical fault injection campaign runs on top of the PTLsim x86 architectural 
simulator [110], which is used widely for performance measurements. We have 
enhanced the x86-64 microprocessor model of PTLsim so it resembles as much 
as possible a modern design that incorporates all the major performance 
components of our study. Table 29 summarizes all parameters of the enhanced 
x86-64 microprocessor model we used in our experiments. 

Table 29: Enhanced x8-64 model configuration. 

Parameter Setting 

Fetch//Issue/Commit 4/4/4 instructions per cycle 

Return address stack  16 entries  
Branch target buffer  
(Cond./Uncond. direct branches)   

4-way set associative, 1K sets  

Branch target buffer (Indirect 
branches)  

4-way set associative, 512 sets  

Combined predictor  Bimodal, Two-Level predictors 
16KB (65,536 entries, 2 bits per entry,  
16 bits history)  
Meta-predictor table: 65,536 entries  

Reorder buffer  128 entries  
Functional units  4 clusters (ALUs: 2 INT, 2 FPU)  
L1 instruction cache  32KB (64B cache line, 128 sets, 4 ways, 2 

cycles latency, 8 MSHRs)  

L1 data cache  16KB (64B cache line, 64 sets, 4 ways, 2 
cycles latency, 32 MSHRs, max.  
MSHR entries for prefetch requests: 20)  

L2 cache  256KB inclusive (64B cache line, 16 ways, 
12 cycles latency, 40 MSHRs)  

L3 cache  4MB inclusive (64B cache line, 32 ways, 40 
cycles latency, 40 MSHRs)  

Main memory  Infinite size (200 cycles latency)  
Prefetch input queue (PIQ)  8 entries  
Prefetch table  64 entries, 4-way set assoc., PC indexed   
Confidence size  3 bits  

Confidence threshold  3  
Stride size  5 bits  
Prefetch distance  1 (single step)  
Prefetch request queue (PQR)  8 entries  

First, we enhanced the branch prediction unit (Figure 31) with a new BTB model 
for conditional/direct branches (cBTB) with a misprediction penalty of 3 cycles. 
The cBTB is separate from the one PTLsim uses for indirect branches, which we 
label iBTB. Conditional and direct branches form the majority of instructions 
modifying control flow, so it is important to add the cBTB so the pipeline can 
maintain a steady stream of instruction supply to its execution units. In addition, 
simulating permanent errors to cBTB is more important than the iBTB since the 
cBTB predicts the targets of those branches. 
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Figure 31: Block diagram of the branch prediction unit. 

Second, we added a next-line instruction prefetcher (IP) to the instruction cache 
that shares the miss handling status registers (MHSR) with demand instruction 
cache miss requests from the processor (Figure 32). Instruction prefetching is an 
effective technique in hiding latency of the instruction cache misses that are non-
overlapping in time because instruction cache is typically a blocking cache. The 
instruction prefetcher works as follows: On miss, a prefetch request is added on 
the prefetch queue with the next sequential cache line. Then, the request is 
issued to the L1 instruction cache; in case of miss an entry on the miss buffer is 
allocated and the request is propagated to the lower level of the cache hierarchy. 
Finally, request that already exists on the miss buffer are dropped. 

Prefetch Queue Miss Buffer

L1 

Instruction 

Cache

demand-fetch

 

Figure 32: Block diagram of next-line instruction prefetcher. 
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Third, we added an L1 data cache stride data prefetcher (DP) that also shares the 
MSHRs with demand data cache miss requests (Figure 33). An address-training 
queue and a prefetch-request queue were also modelled to faithfully mimic the 
logic used to train the DP as well as the generation of prefetch requests before 
they are issued to the data cache (for hit/miss identification). The prefetch table 
consists of the following fields: (i) Tag: RIP of the x86 memory operation, (ii) Load 
Address: previous train address, (iii) Stride: most recently recorded stride, (iv) 
Confidence: m bit counter to indicate the occurrences of a particular stride, (v) 
Valid: indicates the existence of valid data; and (vi) LRU: replacement policy bits. 
The data prefetcher operates as follows: The load/store addresses produced by 
the address generation unit are buffered into the input queue to train the 
prefetcher. Repetitive memory operations with a linear stride generate prefetch 
requests with the prefetch distance shown on Table 29. The prefetch requests are 
then buffered in the request queue. Finally, null and off-range strides are 
dropped.  

tag (RIP) load address stride conf. valid

Prefetch Table

Input Queue

Request Queue

dynamic 

load/store

L1 D$

lru

 

Figure 33: Block diagram of the L1 data cache stride prefetcher. 

4.4 Statistical Fault Injection Framework 

We have developed a statistical fault injection framework, on top of PTLsim 
architectural simulator, to evaluate the impact of permanent faults on the 
performance of modern microprocessors (Figure 34). It consists of three main 
elements: a fault mask database, golden and faulty models of the 
microprocessor, and a post-processing analysis tool. The fault mask database is 
populated with the set of fault masks injected in both the arrays and the control 
logic of the microprocessor components. Each fault mask has the following fields: 

 Module_ID: The targeted microarchitectural array. 

 Entry_ID: The line inside a structure where a permanent fault is injected 
(for the set-associative components, a pair of entry/way is generated to 
define an array entry exclusively). 

 Position_ID: The bit location within an entry to inject a fault. 

 Fault_type: Stuck-at-0, stuck-at-1. 
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The fault mask database for the arrays is populated based on the statistical 
sampling technique of [67] (The method has been originally proposed for soft 
error injection; it computes the number of injection experiments in an array of 
given size under confidence level1 and error margin2 requirements. There is no 
mandatory temporal parameter in the sampling of [67] and it can be adopted for 
both transient and permanent faults by taking or not time into consideration, 
respectively). More details regarding the selected confidence level and the error 
margin will be presented in the following sub-sections. Further, the Entry_ID, 
Position_ID, and Fault_type attributes are randomly selected for each fault mask 
based on a normal distribution. The control faults are modeled by modifying the 
semantics of the simulator‟s source code that models the control logic of each 
microarchitectural component. We injected a total of 155 permanent faults in the 
control logic of the DP and the BPU. The selection of the 155 control-logic faults 
was done using only one criterion: maximum correspondence of the injected fault 
in the architectural simulator model and an actual single stuck-at hardware fault at 
the RT level assuming a generic logic design implementation of each sub-
component. 

GOLDEN PTLsim

enhanced model

{

Fault_Mask

Database

SPEC CPU2006 

Benchmark Suite

FAULTY PTLsim

enhanced model

Module_ID

Entry_ID

Position_ID

Fault_type

Fault Classification

Performance Impact 

Analysis

Post-processing Tool

 

Figure 34: Statistical fault injection framework. 

Each SPEC CPU2006 benchmark runs once on the golden (fault-free) model and 
once for each fault in the database on the faulty model (on each run, a single fault 
is injected). Figure 35 shows the timeline of a simulation run. At the beginning of 
the fault injection simulation, the framework reads the fault mask from the 
database and launches simulation. We warm up the microprocessor for an 
interval of 20 million committed x86 instructions (no checkpoint captured). At the 
end of the 20 million instructions, the fault is injected and executed for 80 million 
more committed instructions (i.e., each simulation lasts 100 million committed x86 
instructions). At the end of each run, a checkpoint of the simulator state is 
extracted for further off-line analysis. 

We present our experimental results in three parts: 

 The first part classifies the behaviour of data and instruction prefetcher 
sub-components (arrays and control) in the presence of faults in the four 
categories (output error, performance error (slowdown or speedup), 
benign error, and crash) and then we measure the performance impact 
(IPC) due to them. 

                                            

1
 Probability that the observed sample contains the measured attribute‟s real mean in the full 

population. 
2
 Maximum expected difference between the population's mean value and a sample‟s mean value 

of the measured attribute. 
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 The second part classifies the behaviour of the branch prediction unit 
sub-components (arrays and control) in the presence of faults in the four 
categories (output error, performance error (slowdown or speedup), 
benign error, and crash) and quantify the performance impact (IPC) due 
to them. 

 Third part presents a low-cost microarchitectural mechanism that detects 
and tolerates the performance impact of hardware faults in the branch 
prediction unit.  

Fault Injection Run
Launch

Benchmark

End of Simulation

 (100M committed 

x86 instructions)

Warm-up Interval

(20M committed 

x86 instructions)

Hard Fault Injected

 (either sa0 or sa1)

}

Simulation Interval

(80M committed 

x86 instructions)

}

 

Figure 35: Fault injection simulation timeline. 

4.5 Resiliency of data prefetcher 

4.5.1 Classification of faults 

In this sub-section, we present the fault classification of the prefetcher sub-
components. For confidence (95%) and error margin (5%), 2,604 faults masks 
are sampled and injected into the arrays (Table 30). 

Table 30: Distribution of the injected faults on the prefetcher. 

Component Field 
#Injected  

faults 

Data prefetcher  
array  

Load address  571  
Tag   571  
Stride  216  
Confidence  149  
LRU  128  
Valid  58  
PRQ – Load Address  289  
PIQ – Load Address  289  

Data prefetcher 
control  

Prefetcher table index-generation logic  15  
Prefetcher table tag-search logic  4  
Prefetcher table replacement logic  4  

Stride calculation logic  5  
Confidence calculation logic  5  
Output logic to issue a prefetch request   2  
PRQ - CAM multi-hits  3  
PRQ - Head/Tail pointer   3  
PIQ - Head/Tail pointer  3  

Instruction  
prefetcher   Fetch address  289 

Total 2,560 array faults + 44 control faults  2,604 
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The following tables break down the fault classifications for each field of the 
prefetcher. We separately present results for the arrays and the control parts. No 
output error has been observed in our experiments and thus we have omitted 
columns for output errors (all are 0%); this is an expected result that matches 
intuition for the components we studied. 

Table 31 shows that faults in the arrays of the data prefetcher either cause only 
performance errors or are benign. Faults in its arrays that are excited can lead to 
cache pollution, which causes performance fluctuations. For example, when a 
fault resides in the load address field of the data prefetcher and the 
corresponding entry is activated (trained, locked on a stride, and actively issuing 
prefetches), this will lead to modification of the number of issued prefetch 
requests and/or corruption of the load address of a prefetch request. Thus, in 
both cases, the cache will be polluted and performance will slow. 

Table 31: Data prefetcher array fault classification (Average per component for all 
benchmarks and all injected faults). 

Field 
Slowdown 
error (%) 

Speedup 
error (%) 

Benign 
error (%) 

Load Address  23.4 27.3 49.2 

Tag   20.4 18.2 61.3 

Stride  23.9 26.5 49.6 

Confidence  16.1 29.5 54.4 

LRU  27.0 16.1 56.9 

Valid  22.2 8.7 69.1 

PRQ – Load Address  44.7 3.8 51.5 

PIQ – Load Address  66.3 24.0 9.7 

Average 30.5 19.3 50.2 

The high concentration of benign faults in our experiments is because faults occur 
in entries that are not activated. To verify this, we studied the behaviour of a few 
benign faults from the execution of several benchmarks (bzip2, games, zeusmp); 
our finding is that the number of prefetch requests remains stable (i.e., equal to 
the golden run) because all these faults are not excited throughout the simulation 
runs. 

The different fields of the data prefetcher arrays behave as Table 31 shows: 
benign errors range roughly between 10% and 70% across fields, while the 
performance errors category takes from about 30% to about 90% of the fault 
population. On average, 49.8% of the faults in the arrays of the data prefetcher 
lead to performance errors (30.5% slowdowns and 19.3% speedups) and 50.2% 
are benign. Finally, there are no crashes or exceptions generated by faults in the 
DP because prefetch requests to invalid/illegal addresses are dropped in our 
system; thus we do not include a crash column in the Table 31. 

 

Table 32 shows that faults in the control part of the data prefetcher lead to many 
more performance faults (greater than 76%) than faults in the arrays (Table 31). 
Slowdown errors occur much more frequently than speedups, and are more 
massive compared to the array. A fault in the output logic that issues prefetcher 
requests actually disables the data prefetcher. 
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Table 32: Data prefetcher control fault classification. 

Field 
Slowdown 
error (%) 

Speedup 
error (%) 

Benign 
error (%)  

Prefetcher table index-generation logic 32.9 14.9 52.2 

Prefetcher table tag-search logic 50.0 36.2 13.8 

Prefetcher table replacement logic 48.3 34.5 17.2 

Stride calculation logic 31.0 44.8 24.1 
Confidence calculation logic 51.7 29.0 19.3 
Output logic that decides whether to 
issue Prefetch or not 

100.0 0.0 0.0 

PRQ - CAM multi-hits 33.3 25.3 41.4 

PRQ - Head/tail pointer 43.7 27.6 28.7 

PIQ - Head/tail pointer 42.5 40.2 17.2 

Average  48.2 28.1 23.7 

Table 33 shows that more than 80% of the faults in the instruction prefetcher 
array (eight buffers holding addresses to be prefetched) are not activated. This is 
in line with the corresponding large percentage of benign faults in the arrays of 
the data prefetcher (Table 31). A next-line instruction prefetcher will not utilize 
more than a few entries because it generates a prefetch on an Icache miss. 

Table 33: Instruction prefetcher array fault classification. 

Field 
Slowdown  

Error 
Speedup  

Error 
Benign  
Error 

Instruction prefetcher array 17.5% 0.8% 81.7% 

4.5.2 Benchmark profiling: prefetch-friendly and –neutral 

We profile the full set of SPEC CPU2006 benchmarks to measure the IPC impact 
of a fault-free L1 cache-stride data prefetcher. Table 34 presents the IPC 
speedup for each benchmark due to the stride data prefetcher. On average, the 
data prefetcher boosts IPC by 6.85%. However, performance improvement varies 
and depends on the stream of memory access patterns generated by each 
benchmark. For that reason, we classify benchmarks into two major categories: 
prefetch-friendly, in which the IPC change is greater than the average speedup 
across all SPEC CPU2006 benchmarks, and prefetch-neutral, in which the 
change is less than the average speedup. Eleven benchmarks are classified as 
prefetch-friendly and 18 are classified as prefetch-neutral. The impact of faults on 
performance significantly differs between the two groups of benchmarks. 
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Table 34: Per benchmark IPC speedup provided by the L1 data prefetcher (*milc IPC is 
slowed). 

Prefetch-friendly 
benchmarks 

IPC (%) 
speedup 

Prefetch-neutral 
benchmarks 

IPC (%) 
speedup 

bzip2 19.99 perlbench 2.58 
bwaves 10.14 gcc 1.89 
gamess 21.51 mcf 0.16 

zeusmp 9.10 milc –4.11* 
leslie3d 7.55 gromacs 2.86 
dealII 9.61 cactusADM 0.49 
soplex 9.50 namd 0.34 

GemsFDTD 19.66 gobmk 0.60 
libquantum 17.20 povray 0.42 
tonto 15.91 calculix 4.73 
wrf 34.59 hmmer 0.62 
average 15.887 sjeng 0.07 
  h2564ref 0.96 
  lbm 4.66 
  omnetpp 0.07 
  astar 3.01 
  sphinx3 0.67 

  xalancbmk 3.80 
  average 1.780 

Overall average (%) 6.85 

4.5.3 Performance impact of faults 

In this section, we measure the performance impact of hard faults injected only 
into the data prefetcher. Figure 36 shows the average and maximum IPC 
slowdown (due to faults) when one, three, and five faults are injected in the 
prefetch table along with the standard deviation; the upper diagram shows 
prefetch-friendly benchmarks and the lower diagram shows prefetch-neutral 
benchmarks. Figure 36 presents the average performance loss across all 
benchmarks (i.e., the prefetch-friendly benchmarks show a combined 3.049% IPC 
loss if we average the maximum IPC loss over all single fault runs per 
benchmark, 5.759% IPC loss over all triple faults, and 9.271% IPC loss over all 
quintuple faults). Thus, an L1 cache-stride data prefetcher can severely degrade 
microprocessor performance, up to 9.271% on average for the prefetch-friendly 
and up to 0.733% on average for the prefetch-neutral benchmarks, when the 
prefetcher table‟s SRAM cells suffer multiple hard faults. 
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Figure 36: IPC loss for prefetch-friendly (upper graph) and –neutral (lower). 

Table 35 shows the average (upper) and maximum (lower) normalized IPC 
slowdown for each SPEC CPU2006 benchmark when one, three, and five faults 
are injected. The benchmarks are grouped into prefetch-friendly (upper half) and -
neutral (rt half), to identify any correlation between workloads and performance 
loss. The colours on each column depict the additional IPC loss relative to the 
fault-free model from the injection of one, three, and five faults. For example, on 
bzip2, the maximum IPC loss is 4.5% for a single injected fault, 4.8% for triple 
faults, and 17.1% for quintuple faults (i.e., the aggregation of single, triple, and 
quintuple IPC losses). As expected, the prefetch-friendly benchmarks show a 
greater IPC impact with the same number of faults compared to the prefetch-
neutral. In particular, a fault-free prefetcher improves execution time of 
GemsFDTD by 20% and sphinx3 by 0.6% (Table 34). GemsFDTD suffers a 
maximum 17% IPC slowdown, while sphinx3 loses only 0.06% when quintuple 
faults are injected. 

By further analysing the internal behaviour of the prefetcher, we found that the 
extent of the performance impact depends on the distribution of the training input 
addresses across the prefetch table entries. For example, Table 37 presents the 
activity of each prefetcher table entry for two benchmarks, bzip2 and gcc, and 
shows very different sensitivities to data prefetching (17% and 0.06%, 
respectively). gcc shows a much more uniform usage of the entries of the table, 
while bzip2 trains only seven entries (95% of training occurs on only three entries 
and the remaining four are trained only marginally). Thus, in gcc, the majority of 
the training addresses remain unaffected by the injected faults; even if they do 
access a faulty entry, the IPC impact is relatively small because of the lower 
average dynamic usage frequency. In bzip2, if the fault occurs in one of the 
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heavily used entries, the majority of training is affected, and so the IPC loss due 
to faults is much greater. 

Table 35: Average, maximum, and standard deviation of IPC loss across all SPEC CPU2006 
benchmarks when one, three, and five faults are injected into the prefetcher table. The 11 
upper-most rows show the prefetch-friendly benchmarks, the next 18 show the prefetch-

neutral benchmarks and the last row show the averages for the two categories. 

Benchmark 

IPC (%) slowdown 

1-fault 3-faults 5-faults 

Avg Max Stdev Avg Max Stdev Avg Max Stdev 

P
re

fe
tc

h
 f

ri
e
n

d
ly

 

bzip2 2.182 4.536 2.518 3.490 4.835 1.790 3.905 17.101 1.409 

Bwaves 0.261 0.087 0.405 0.278 0.934 0.491 0.294 0.974 0.499 

Gamess 0.009 0.506 0.005 0.668 7.728 3.447 1.035 18.533 4.246 

Zeusmp 0.003 1.350 0.060 0.019 1.424 0.060 0.083 1.512 0.060 

leslie3d 0.097 1.234 0.272 0.332 1.644 0.465 0.690 2.750 0.623 

dealII 0.033 0.168 0.011 0.035 3.291 0.020 0.041 4.446 0.028 

Soplex 0.442 0.572 0.001 0.688 0.981 0.242 0.696 2.543 0.350 

GemsFDTD 0.471 11.425 1.948 1.740 12.093 3.673 2.920 17.301 4.492 

libquantum 1.124 2.207 0.934 1.455 7.992 0.889 1.827 13.793 1.467 

tonto 0.615 7.176 2.012 0.865 15.515 2.312 1.160 15.524 2.613 

wrf 0.122 4.282 0.322 0.630 6.922 1.175 1.339 7.508 1.768 

Average 0.487 11.425 0.771 0.927 15.515 1.324 1.271 18.533 1.595 

P
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fe
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h
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e
u
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perlbench 0.098 1.110 0.171 0.224 1.442 0.227 0.259 1.465 0.245 

gcc 0.009 0.033 0.006 0.016 0.047 0.013 0.021 0.065 0.018 

mcf 0.007 0.031 0.004 0.009 0.070 0.005 0.009 0.079 0.006 

milc 0.181 0.739 0.000 0.211 1.704 0.000 0.310 2.243 0.001 

gromacs 0.118 1.016 0.252 0.433 1.092 0.306 0.549 1.618 0.322 

cactusADM 0.161 0.204 0.124 0.241 0.396 0.127 0.268 0.723 0.150 

namd 0.008 0.019 0.007 0.009 0.084 0.006 0.009 0.148 0.007 

gobmk 0.010 0.018 0.009 0.011 0.021 0.008 0.012 0.028 0.008 

povray 0.007 0.132 0.006 0.011 0.146 0.008 0.013 0.488 0.008 

calculix 0.062 0.161 0.081 0.068 0.306 0.083 0.077 0.318 0.090 

hmmer 0.036 0.081 0.010 0.039 0.111 0.022 0.048 0.199 0.034 

sjeng 0.007 0.018 0.003 0.008 0.024 0.006 0.009 0.028 0.006 

h2564ref 0.007 0.028 0.007 0.008 0.028 0.007 0.009 0.156 0.007 

lbm 0.218 0.978 0.364 0.278 1.074 0.399 0.366 2.564 0.418 

omnetpp 0.025 0.088 0.027 0.031 0.286 0.021 0.036 0.681 0.019 

astar 0.013 0.219 0.028 0.026 0.261 0.042 0.047 0.273 0.069 

sphinx3 0.005 0.008 0.001 0.006 0.029 0.006 0.011 0.056 0.013 

xalancbmk 0.026 0.054 0.008 0.040 0.578 0.080 0.058 2.070 0.115 

Average 0.055 1.110 0.065 0.092 1.704 0.075 0.112 2.564 0.085 

Overall average 0.219 11.176 0.331 0.409 15.515 0.549 0.555 18.533 0.658 

To clarify the severity of the performance loss due to the faulty data prefetcher, 
Table 36 shows the actual IPC of the prefetch-friendly (upper half) and prefetch-
neutral (lower half) SPEC CPU2006 benchmarks for the following CPU core 
configurations: (a)  L1 cache stride data prefetcher disabled, (b) fault-free L1 
cache stride data prefetcher enabled, and (c) faulty data prefetcher with  1, 3, and 
5 faults injected into the prefetch table array (maximum IPC loss for each fault 
class). In particular, 8 out of 29 benchmarks (31%) lost the performance 
improvement gained from integrating the data prefetcher in the baseline CPU 
design. For example, on bzip2 the IPC without the data prefetcher was 1.074. 
When quintuple faults were injected into the prefetch table array, IPC was 
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reduced to 1.064 (similar behaviour was seen in: gamess, GemsFDTD, 
libquantum, tonto, cactusADM, povray, sjeng and omnetpp). 

Table 36: IPC values for prefetch-friendly and –neutral benchmarks, without data 
prefetcher, with the data prefetcher enabled and with 1, 3 and 5 faults injected into the 

prefetch table array. 

Benchmark 
IPC 

w/o data 
prefetcher 

w/ data 
prefetcher 

1-fault 
3-

faults 
5-

faults 

P
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h
 f
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e

n
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bzip2 1.074 1.284 1.226 1.221 1.064 

bwaves 0.648 0.714 0.713 0.707 0.707 

gamess 1.743 2.118 2.107 1.954 1.725 

zeusmp 0.971 1.059 1.045 1.044 1.043 

leslie3d 0.784 0.844 0.834 0.830 0.821 

dealII 0.988 1.083 1.081 1.047 1.035 

soplex 0.547 0.599 0.596 0.593 0.584 

GemsFDTD 0.528 0.634 0.561 0.558 0.525 

libquantum 0.395 0.463 0.453 0.426 0.395 

tonto 1.601 1.855 1.722 1.567 1.567 

wrf 0.793 1.068 1.022 0.994 0.988 

P
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tc

h
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e
u
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perlbench 1.663 1.705 1.686 1.680 1.680 
gcc 0.693 0.707 0.707 0.707 0.707 
mcf 0.208 0.209 0.209 0.209 0.209 
milc 0.757 0.726 0.721 0.714 0.710 
gromacs 0.944 0.971 0.961 0.960 0.955 
cactusADM 1.457 1.464 1.461 1.458 1.453 
namd 1.550 1.555 1.555 1.554 1.553 
gobmk 1.234 1.242 1.242 1.242 1.242 
povray 1.130 1.135 1.134 1.133 1.129 
calculix 1.127 1.181 1.179 1.177 1.177 
hmmer 1.169 1.176 1.175 1.175 1.174 
sjeng 1.180 1.181 1.181 1.181 1.180 

h2564ref 1.549 1.563 1.563 1.563 1.561 
lbm 0.686 0.718 0.711 0.710 0.700 
omnetpp 0.505 0.505 0.505 0.504 0.502 
astar 0.914 0.941 0.939 0.939 0.938 
sphinx3 1.365 1.374 1.374 1.374 1.373 

xalancbmk 1.102 1.144 1.143 1.137 1.120 

By further analysing the internal behaviour of the prefetcher, we found that the 
extent of the performance impact that faults have, depends on the distribution of 
the training input addresses across the prefetch table entries (apart from the 
prefetch-friendliness of the workload). 
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Table 37: Training activity (X) of the prefetch table entries. Number of prefetch table entries 
that handle less than 50%, less than 75% and 100% of the memory traffic training the 

prefetcher. 

Benchmark 
Prefetch Table Entries Training Activity 

X ≤ 50% X ≤ 75% X =100% 

P
re

fe
tc

h
 f

ri
e

n
d

ly
 

bzip2 1 2 7 
bwaves 4 7 12 
gamess 17 17 17 
zeusmp 9 25 62 
leslie3d 9 17 47 

dealII 1 2 24 
soplex 8 18 63 
GemsFDTD 4 7 32 

libquantum 1 2 5 
tonto 3 6 40 
wrf 12 22 59 

Average 6 11 33 

P
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h
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e
u
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l 

perlbench 3 4 63 
gcc 7 20 64 
mcf 3 5 47 
milc 1 2 23 
gromacs 12 22 58 
cactusADM 4 6 11 

namd 2 8 57 
gobmk 3 9 64 
povray 6 14 64 
calculix 4 8 63 
hmmer 6 10 59 
sjeng 3 6 64 
h2564ref 8 20 64 
lbm 1 2 32 
omnetpp 1 2 31 
astar 4 6 47 
sphinx3 1 2 57 
xalancbmk 2 3 62 

Average 4 8 51 

Table 37 presents the activity of each entry of the prefetcher table for the 
prefetch-friendly (upped half) and prefetch-neutral benchmarks (lower half). For 
example, in GemsFDTD, 4 entries are trained by 50%, 7 entries by 75%, and 32 
entries by 100% of the load/store address traffic (GemsFDTD speedup is 20.07%, 
while slowdown is up to 17.30% when quintuple faults are injected). The 
observations from Table 37 are the following:  

1. When a fault occurs in heavily used entries, the majority of training will 
be affected, and so the maximum IPC loss will be much greater. For 
example, in libquantum, a single entry is trained by 50%, 2 entries by 
75%, and 5 entries by 100% of the load/store address traffic (libquantum 
speedup is 17.20%, while slowdown is up to 13.80% when quintuple 
faults are injected). 
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2. Benchmarks with uniform usage of the prefetch table entries have lower 
probability of massive IPC loss. For example, the training address 
stream generated by gcc is distributed across the entries of the prefetch 
table (7 entries are trained by 50% of the traffic while all 64 entries are 
trained by 100% of the memory traffic. Therefore, the probability of 
polluting the majority of the training addresses by a given number of 
injected faults is low leading to a very low max IPC loss (-0.065% with 5 
faults; see Table 4) 

3. Table 38 shows the number of issued prefetch requests per 1,000 
committed instructions and the L1 cache miss rate (misses per 1,000 
committed instructions, or MPKI) for the fault-free and faulty cases for 
each group of injected faults. As we can observe in Table 38, the faulty 
prefetcher is throttled because the faults reduce the number of training 
events. As a result, the number of issued prefetch requests drops for all 
benchmarks (on average, the number of issued prefetch requests drops 
from 22 to 20 per 1,000 committed instructions); therefore, performance 
gains due to prefetching are lower (the average L1 cache miss rate 
roughly increases from 26 to 27 MPKI in the quintuple injected fault 
scenario). The data in Table 6 also illustrate the greater performance 
sensitivity of the prefetch-friendly benchmarks to faults. Faults in the 
prefetch table change the prefetch addresses sent to memory, which in 
turn increases the L1 cache miss rate and hurts IPC. 

We also looked at a variety of microarchitectural events that can be used to 
identify when faults in the data prefetcher lead to IPC loss. We found that the 
number of off-range strides is such an event and is triggered when the difference 
between the trained address and a new memory address is outside the legal 
stride limits. As a result, the incoming memory address is dropped and fails to 
train the stride data prefetcher. 
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Table 38: Average L1 cache miss rate and average prefetch issue rate with one, three, and 
five faults injected. 

Benchmark 

fault-free 1-fault 3-faults 5-faults 

Prefetch 
Issue Rate 

Miss 
Rate 

Prefetch 
Issue 
Rate 

Miss 
Rate 

Prefetch 
Issue 
Rate 

Miss 
Rate 

Prefetch 
Issue 
Rate 

Miss 
Rate 

P
re

fe
tc

h
 f

ri
e
n

d
ly

 

bzip2 3.81 16.15 3.80 16.42 3.65 16.44 3.56 16.45 

bwaves 22.88 121.27 22.20 121.65 21.50 121.84 17.65 121.98 

gamess 9.84 6.02 9.84 6.03 9.68 6.30 9.51 6.57 

zeusmp 45.54 15.12 44.15 15.33 42.50 15.41 40.49 15.51 

leslie3d 18.04 26.84 18.00 26.85 17.65 26.88 17.24 26.90 
dealII 6.43 4.57 6.41 4.57 6.38 4.58 6.37 4.59 

soplex 8.44 16.61 8.21 16.62 8.00 16.73 7.91 16.88 

GemsFDTD 40.65 43.01 38.91 42.34 37.76 42.63 37.21 42.95 

libquantum 25.22 14.28 24.84 14.31 24.10 14.36 23.37 14.40 

tonto 39.22 16.64 38.90 16.80 38.35 17.09 37.74 17.33 

wrf 32.96 7.64 32.70 7.70 32.12 7.86 31.44 8.05 

Average 23.00 26.20 22.54 26.24 21.97 26.37 21.14 26.51 

P
re

fe
tc

h
 n

e
u

tr
a
l 

perlbench 14.70 2.82 14.58 2.89 14.31 2.89 14.17 2.92 

gcc 16.22 11.54 15.99 11.54 15.98 11.55 15.76 11.56 

mcf 8.05 219.37 7.88 219.37 7.80 219.39 7.39 219.39 

milc 35.15 38.96 34.39 39.37 33.64 40.04 32.40 40.74 
gromacs 4.33 31.49 4.30 31.67 4.21 31.68 4.12 31.70 

cactusADM 11.07 0.001 11.02 0.001 10.90 0.001 10.01 0.001 

namd 0.07 0.31 0.07 0.31 0.07 0.31 0.06 0.31 

gobmk 7.18 6.92 7.02 6.92 6.88 6.93 6.79 6.93 

povray 3.91 37.82 3.83 37.83 3.76 37.85 3.74 37.86 

calculix 45.74 9.45 45.18 9.45 43.84 9.45 43.27 9.46 

hmmer 19.08 6.29 18.84 6.36 18.54 6.43 17.97 6.59 

sjeng 100.20 4.03 100.02 4.05 99.86 4.06 99.19 4.06 

h2564ref 13.40 5.41 13.14 5.41 12.74 5.41 12.72 5.41 

lbm 17.69 42.00 17.44 42.04 17.03 41.90 16.60 41.98 

omnetpp 0.63 52.01 0.63 52.05 0.62 52.06 0.61 52.07 
astar 10.85 0.38 10.85 0.38 10.83 0.38 10.81 0.38 

sphinx3 3.01 0.83 2.93 0.83 2.93 0.83 2.90 0.83 

xalancbmk 57.92 23.82 55.30 23.98 55.30 24.06 54.31 24.18 

Average 20.51 27.41 20.27 27.47 19.96 27.51 19.61 27.58 

Overall average 21.76 26.95 21.41 27.00 20.96 27.08 20.37 27.17 

Table 39,Table 40 present the number of off-range stride events per 1K 
committed instructions for the fault-free and the faulty microprocessor models (i.e. 
1, 3 and 5 faults injected into the prefetch table array). In particular, multiple 
permanent faults increase the amount of off-range stride events up to 25% for the 
prefetch-friendly benchmarks (off-range stride rate increased from 118.7 to 148.3 
per 1K commits), up to 8% for the prefetch-neutral benchmarks (ranging from 
231.3 to 249.3 per 1K commits) and across all SPEC CPU2006 benchmarks up 
to 14% (from 175.0 to 198.8 per 1K commits). The number of off-range strides 
increases for two reasons: 

 Faults injected in tag field can result in unexpected table hits. Therefore, 
memory instructions with completely different access patterns are 
compared and produce out-of bound strides. 

 Faults in the previous load address sub-field increase the amount of off-
range stride occurrences. 
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Table 39: Number of off-range stride events for the prefetch-friendly benchmarks with a 
fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch table. 

Off-range stride (per 1K commits) 
Prefetch-friendly 

benchmarks 
fault-free 1-fault 3-faults 5-faults 

bzip2 80.668 84.456 90.826 98.275 
bwaves 199.938 215.250 217.930 232.224 
gamess 0.619 8.729 14.790 21.116 
zeusmp 58.051 62.352 69.640 78.678 
leslie3d 162.893 164.042 173.872 183.859 
dealII 161.653 167.454 185.109 197.482 
soplex 185.109 197.482 253.957 256.547 
GemsFDTD 231.682 238.504 249.156 257.502 

libquantum 199.884 210.384 226.992 240.348 
tonto 7.225 12.792 22.158 34.330 

wrf 19.070 22.450 26.061 31.600 

Average 118.799 125.808 139.135 148.360 

Table 40: Number of off-range stride events for the prefetch-friendly benchmarks with a 
fault-free data prefetcher and with 1, 3, 5 faults injected in the prefetch table. 

Off-range stride (per 1K commits) 
Prefetch-neutral 

benchmarks 
fault-free 1-fault 3-faults 5-faults 

perlbench 175.905 179.268 184.975 190.678 
gcc 451.466 454.177 463.396 474.071 

mcf 29.761 33.629 47.334 60.829 
milc 126.264 131.267 139.166 149.406 
gromacs 305.408 305.732 311.365 317.117 
cactusADM 154.198 155.932 161.514 170.552 
namd 345.105 346.445 348.692 352.429 
gobmk 322.921 325.778 331.724 336.996 
povray 344.224 346.796 350.445 357.719 
calculix 56.477 57.814 62.998 68.642 
hmmer 219.894 226.234 239.336 250.625 
sjeng 113.718 128.047 141.591 151.138 
h2564ref 181.039 181.074 188.750 195.844 
lbm 413.886 414.130 417.924 421.734 

omnetpp 314.216 315.534 321.305 327.514 
astar 106.356 120.792 125.509 133.075 

sphinx3 309.220 310.852 315.971 321.027 
xalancbmk 194.846 201.784 207.318 208.105 

Average 231.383 235.293 242.184 249.305 

The severe impact of faults on the performance of SPEC CPU2006 benchmarks 
indicates the need to integrate fault detection schemes for stride prefetchers. 
Figure 37 presents the average percentage of increase on the off-range stride 
occurrences (y-axis) to the amount of injected faults (x-axis). It is evident that the 
number of off-range stride events linearly correlates to the number of faults in the 
prefetcher and therefore to IPC loss. Monitoring the behaviour of off-range 
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occurrences throughout workload execution, can steer the implementation of 
permanent error detection mechanisms. 
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Figure 37: Correlation of off-range (%) increment with 1, 3 and 5 faults injected. 

Apart from the prefetch table fault injections and analysis, we performed a similar 
injection campaign in the input and request queues of the data prefetcher (PIQ 
and PRQ). Due to the small size of PIQ and PRQ (8 entries each), we injected 
only single faults in them. This was sufficient to demonstrate the severe impact on 
performance that hard faults on these queues can have on IPC. Figure 38 shows 
the maximum and average IPC slowdowns and the standard deviation for single 
faults injected into the PIQ and PRQ per benchmark. 
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Figure 38: Average and maximum IPC slowdowns and standard deviations for the fault-free 

and faulty (a) PIQ and (b) PRQ when single faults are injected. 

Across all 29 benchmarks, the average IPC loss (1.5% and 2.5% for PIQ and 
PRQ, respectively) and maximum IPC loss (24.3% and 26.3% for PIQ and PRQ, 
respectively) are significantly higher than that of the prefetch table because a 
large number of training addresses (buffered in PIQ) and prefetch requests 
(queued in PRQ) are likely to be polluted by a single hard fault. Table 41 shows 
the IPC change for the prefetch-friendly (upped half) and prefetch-neutral 
benchmarks (lower half). It is evident that having a faulty PRQ or PIQ severely 
slows-down performance (13 benchmarks out of the 29 lost the speedup gained 
by the data prefetcher due to a faulty PRQ and 11 due to a faulty PIQ). 
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Table 41: Average IPC for prefetch-friendly and –neutral benchmarks, without the data 
prefetcher, with a fault-free data prefetcher and with single faults injected into the prefetch 

input and request queue. 

Benchmark 
Average IPC  

w/o data 
prefetcher 

w/ data 
prefetcher 

1-fault 
PIQ 

1-fault 
PRQ 

P
re

fe
tc

h
 f

ri
e

n
d

ly
 

bzip2 1.074 1.289 1.041 1.000 

bwaves 0.648 0.714 0.707 0.706 

gamess 1.743 2.118 1.819 1.866 

zeusmp 0.971 1.059 0.964 0.965 

leslie3d 0.784 0.844 0.802 0.821 

dealII 0.988 1.083 1.069 1.048 

soplex 0.547 0.599 0.571 0.547 

GemsFDTD 0.528 0.632 0.477 0.507 

libquantum 0.395 0.463 0.378 0.341 

tonto 1.601 1.855 1.569 1.567 

wrf 0.793 1.068 0.868 0.824 

P
re

fe
tc

h
 n

e
u

tr
a
l 

perlbench 1.663 1.705 1.679 1.666 

gcc 0.693 0.707 0.702 0.702 
mcf 0.208 0.209 0.208 0.208 
milc 0.757 0.726 0.701 0.657 
gromacs 0.944 0.971 0.947 0.943 
cactusADM 1.457 1.464 1.454 1.453 
namd 1.550 1.555 1.554 1.551 
gobmk 1.234 1.242 1.240 1.239 
povray 1.130 1.135 1.133 1.133 
calculix 1.127 1.181 1.179 1.174 
hmmer 1.169 1.176 1.174 1.163 
sjeng 1.180 1.181 1.179 1.178 
h2564ref 1.549 1.563 1.538 1.556 
lbm 0.686 0.718 0.714 0.698 

omnetpp 0.505 0.505 0.504 0.504 
astar 0.914 0.941 0.930 0.928 
sphinx3 1.365 1.374 1.372 1.372 
xalancbmk 1.102 1.144 1.098 1.113 

The fault location determines the extent of the performance impact. Figure 39 
shows the average utilization of each entry of the PRQ and PIQ (% of times a 
given entry of the queue is utilized). In particular, the PIQ entries are utilized 
uniformly across all benchmarks with the exception of the top 2 entries. On the 
contrary, the top three entries in PRQ are utilized 95% of the time across all 
benchmarks. Therefore, faults that reside in the rear entries of the queue have 
minimal impact on performance. A different entry allocation scheme (e.g. advance 
a write pointer every time we insert a new prefetch request in the PRQ) can 
distribute the payload uniformly for each of the queues and reduce the IPC loss. 
Detecting faults in the PIQ could be done by monitoring off-range strides (they 
should increase) while detecting faults in the PRQ can be accomplished by 
monitoring addresses that cross the 4k page boundary. 
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Figure 39: Utilization of the PIQ and PRQ entries across all SPEC CPU2006 benchmarks. 

4.5.4 Performance Variability 

In this section, we examine the performance variability across identical CPU 
cores in the presence of multiple faults in their data prefetchers. Our findings 
(resulting from the performance impact analysis and the detailed results of the 
previous subsection) are the following: 

 There is a large variation of IPC loss even under the presence of 
different single faults (up to 7% for single faults in the prefetch table, 
24% for the PIQ, and 26% for the PRQ) in the data prefetcher. This 
finding holds when all cores are affected by the same number of faults. 

 The difference in IPC slowdown for different numbers of faults (1 to 5) 
across the cores ranges between 0.005% and 17% compared to the 
fault-free IPC, when considering only faults in the prefetch table. The 
same range is 0.01 to 24% for PIQ faults and 0.02% to 26% for PRQ 
faults. 

 The difference between the best- and worst-case performance for single 
and multiple faults is not due to outlier behaviour. The standard deviation 
of the IPC loss on the prefetch-friendly benchmarks due to faults in the 
prefetcher table is 0.7%, 1.3%, and 1.6% for single, triple, and quintuple 
faults, respectively.  

As Table 35 shows, certain benchmarks have even larger stdev values: for 
example the stdev of bzip2 benchmark with single fault injected is 2.5%, while the 
gamess benchmark stdev is 3.4% and 4.2% for triple and quintuple faults, 
respectively.  

The standard deviation of IPC loss for the prefetch-neutral benchmarks is 0.06%, 
0.07%, and 0.08% (Table 35). The standard deviation of the IPC drop for all 
single faults injected into PIQ and PRQ is 2.0% and 2.4%, respectively. The key 
message here is that hard faults in data prefetchers significantly increase inter-
core performance variability. 
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4.6 Resiliency of branch prediction unit 

4.6.1 Classification of faults 

In this sub-section, we present the fault classification in the branch prediction unit 
component (we pick a representative component from each structure of 
predictors integrated into the BPU). For confidence (95%) and error margin (5%), 
2,604 faults masks are sampled and injected into the arrays (Table 42). 

Table 42: Distribution of the injected faults on the branch prediction unit. 

Component Field 
#Injected  

faults 
Branch predictor 
array  

Bi-modal predictor  660  
cBTB – Branch address  662  

cBTB – Tag  660  

RAS  403  
Branch predictor   
control  

Bi-modal/Two-level/Meta-predictor 
index-generation logic  

64  

Bi-modal/Two-level direction counter 
adder  

2  

Global history register shift operation to 
append new values  

2  

Meta-predictor selection logic  2  
Meta-predictor update logic  2  
RAS head/tail pointer value  10  
RAS head/tail pointer update logic  5  
RAS annulment bit  2  
RAS overflow bit  2  
RAS underflow bit  2  
cBTB index-generation logic  10  
cBTB tag-search logic  2  
cBTB replacement logic  2  

Global BPU logic  4  

Total 2,385 array faults + 111 control faults  2,495 

The following tables break down the fault classifications for the most 
representative sub-components of the branch prediction unit (Bimodal Predictor, 
cBTB, RAS). We separately present results for the arrays and the control parts. 
No output error has been observed in our experiments and thus we have omitted 
columns for output errors (all are 0%); this is an expected result that matches 
intuition for the components we studied.  Table 43 shows that more than 55% of 
the faults in the BPU arrays are performance faults; about 43% are benign, while 
the RAS exhibits the only case in which crashes are reported (6.1%) due to the 
generation of illegal addresses. A similar behaviour was expected for the faults in 
the cBTB array (tag and address) for the same reason (invalid address 
generation). In our experiments, we have not observed such cases in the cBTB, 
most likely because the BTB array is significantly larger than the RAS array. It is 
therefore probable that the injected faults leading to invalid addresses in the BTB 
array are not excited by the benchmarks. 
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Table 43: Branch predictor unit array fault classification. 

Field 
Slowdown 

Error (%) 
Speedup  
Error (%) 

Benign  
Error 

Crash 

Bi-modal Predictor  40.3 34.4 25.3 0.0 

cBTB – Branch Address  9.0 43.3 47.7 0.0 

cBTB – Tag  19.8 31.0 49.2 0.0 

RAS  36.0 8.5 49.4 6.1 

Average  26.3 29.3 42.9 1.5 

Table 44 shows that faults in the control part of the BPU, which lead to more 
performance faults (greater than 60%) than faults in the arrays (Table 43). 
Slowdown errors occur much more frequently than speedups, and are more 
massive compared to the array. Furthermore, RAS-related control logic can lead 
to simulator crashes because they generate invalid addresses, which is also the 
case in the RAS array (Table 43).   

Table 44 Branch Predictor Unit Control Fault Classification. 

Field 
Slowdown 
Error (%) 

Speedup 
Error (%) 

Benign 
Error (%) 

Crash 
(%) 

Bi-modal/Two-level/Meta-
predictor index generation 
logic 

29.3 16.0 54.7 0.0 

Bi-modal/Two-level direction 
counter adder  

100.0 0.0 0.0 0.0 

Global history register shift 
operation to append new 
values  

98.3 1.7 0.0 0.0 

Meta-predictor selection logic  84.5 10.3 5.2 0.0 
Meta-predictor update logic  27.6 20.7 51.7 0.0 
RAS head/tail pointer value  76.6 7.6 13.8 2.1 
RAS head/tail pointer 
increment/ decrement 
logic  

2.1 2.1 29.7 66.2 % 

RAS annulment bit  7.4 88.9 3.7 0.0 
RAS overflow bit  22.4 6.9 70.7 0.0 
RAS underflow bit  6.9 89.7 3.4 0.0 

cBTB index-generation logic 71.6 0.9 27.6 0.0 
cBTB tag-search logic  0.0 0.0 0.0 100.0 
cBTB replacement logic  1.7 0.0 98.3 0.0 
Global BPU logic  46.9 53.1 0.0 0.0 

Average  41.1 21.3 25.6 12.0 

4.6.2 Performance Impact of faults 

In this section we measure the performance loss and variability due to hard faults. 
According to the analysis of Section 4.2.2, we inject multiple faults of different 
group sizes (1 and 5 to 25 in steps of 5 faults) in the five large arrays (Bimodal, 
Two-level, Meta predictors, cBTB and iBTB) while for the two smaller structures 
(RAS and  BHR) we inject single faults. 
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Figure 41 shows the AVG and max IPC slowdown for the five arrays. Each graph 
shows the average across all 11 benchmarks with up to 25 faults injected. Using 
[67] we compute fault populations for 99% confidence and 3% error margin. The 
calculations lead to a total of 1176 different single faults which are used for the 
injections (110 faults for each of the Bimodal, Two-level, Meta; 490 for the cBTB; 
290 for the iBTB ; 50 for the RAS; and 16 for the BHR). In multiple fault injections 
we apply sets of randomly selected faults to each component with the exception 
of RAS and BHR where we inject single faults because of their small size. Each 
group is constructed by randomly selecting (uniform distribution) from the set of 
1176 single faults. For each multiple fault group size (5, …, 25) we run 1200 
different injection experiments for a total of 6000 multiple fault injections. All faults 
are injected in different array entries because our mechanisms can protect from 
any number of faults per entry. 

Table 45: Mispredictions per 1K instructions in fault-free BP and BTBs (* = very few 
misses). 

Benchmark  Branch predictor cBTB iBTB 

perlbench 1.39 0.11 0.02 
bzip2 6.49 0.00* 0.00* 
gcc 12.98 0.14 0.00* 
mcf 30.39 0.16 0.00* 
gobmk 20.00 0.07 0.00* 
dealII 1.71 0.00* 0.00* 
soplex 14.02 0.00* 0.00* 
povray 5.86 0.06 0.00* 
lbm 0.05 0.00* 0.00* 
omnetpp 5.85 0.03 0.00* 
xalancbmk 3.53 0.10 0.00* 

Average 9.30 0.06 0.00* 

To better interpret the multiple fault injection graphs of Figure 41, Table 45 shows 
the number of mispredictions per 1K instructions for BP, iBTB and cBTB while 
Table 46 shows the branch dynamic frequencies. 

Table 46: Dynamic branch instructions per 1K instructions that use the Bimodal predictor, 
Two-level predictor, cBTB and iBTB (*= very low activity). 

benchmark  Bimodal Two-level cBTB iBTB 

perlbench 179.79 28.31 245.5 12.81 

bzip2 136.35 34.46 181.9 0.00* 
gcc 223.39 78.82 364.7 7.65 
mcf 367.29 193.46 625.4 0.00* 
gobmk 210.38 95.21 350.8 0.00* 

dealII 36.40 35.52 96.42 0.32 
soplex 271.86 43.52 326.7 0.00* 
povray 85.49 59.82 195.9 8.50 
lbm 8.44 2.89 63.95 0.00* 
omnetpp 154.15 63.68 264.8 7.08 
xalancbmk 193.75 43.88 269.7 20.97 

Average 169.75 61.78 271.4 5.21 

Among the three components of the branch predictor (Bimodal, Two-level, Meta) 
multiple faults in the Bimodal and Meta lead to severe IPC loss (first and third 
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diagrams of Figure 41). For the Bimodal, the IPC impact is high because it drives 
the prediction decision 78% of the time. The Two-level predictor is less frequently 
used and thus faults in it have smaller impact on IPC (second diagram). Faults in 
the Meta predictor, consistently have a large IPC impact because it is always 
used. As Table 45 shows, the frequency of fault-free mispredictions in the two 
BTBs is very small so the impact of faults is negligible too. 

Figure 42 shows the extra mispredictions due to faults over the fault-free case in 
the predictors (an n % point means that if the fault-free case has a k % 
misprediction ratio, the faulty has k+n %). Multiple faults in the Bimodal and the 
Meta predictor lead to significantly higher misprediction ratios and IPC loss as 
shown in Figure 41. Multiple faults in the two-level predictor lead to very limited 
IPC loss because it is used infrequently by the Meta predictor. 
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Figure 40: Extra misprediction ratio (%) (on top of fault-free case) caused by multiple faults 
in BTBs. 

The BTBs are minimally affected by faults, as the last graphs of Figure 41 show, 
due to the low number of extra mispredictions (Figure 40). The iBTB‟s lack of IPC 
sensitivity is due to low frequency of indirect branches (Table 46) and fault 
masking in the high order bits of the target address which does not change often. 
Although the cBTB is much more frequently used (Table 46), IPC is less sensitive 
to cBTB mispredictions because (a) only a small number of cBTB entries are 
utilized (Table 47), (b)  as in iBTB, a lot of faults are masked due to infrequently 
changing high address bits and (c) the cBTB misprediction penalty is much lower 
than that of the BP because the targets of conditional and unconditional-direct 
branches are verified in the front end of the processor. 

Despite the small impact of faults in the Two-level predictor and the two BTBs, we 
include them in our evaluation because in workloads with a larger code footprint, 
the impact of multiple faults will be higher. Table 48 shows the max and average 
IPC slowdown for single faults in the RAS and BHR. The results clearly justify the 
need for protection. A single faulty cell in the RAS seriously degrades its 
prediction accuracy; IPC slowdown can be more than 16% when the call stack 
depth is low because of high reuse of the same faulty entry. Similarly, a single 
faulty bit in the BHR degrades performance significantly by affecting the accuracy 
of branch predictors. 
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Figure 41: Average and maximum % IPC loss (over the fault-free case) with 1…25 faults per 
component

3
. 

 

                                            

3
 The 6.4% IPC slowdown for single fault in the Bimodal predictor has been measured for gcc 

benchmark which heavily accesses the single faulty entry for the SimPoint sample with the largest 
weight. Similarly high IPC loss has been observed even for single faults in gobmk and omnetpp. 
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Figure 42: Extra misprediction ratio (%) (on top of the fault-free case) caused by multiple 
faults in BP. 

Table 47: cBTB entry utilization per benchmark. 

Benchmark cBTB % utilization  
perlbench 44.82 
bzip2 0.53 
gcc 2.24 
mcf 0.12 

gobmk 6.68 
dealII 1.17 
soplex 9.81 
povray 3.36 
lbm 0.00 
omnetpp 1.39 
xalancbmk 17.92 
Average 8.00 

Table 48: Max and average IPC slowdown (%) for single faults in the RAS and the BHR. 

Component Avg IPC slowdown (%) Max IPC slowdown (%) 

RAS 1.03 16.12 

BHR 2.26 8.27 

4.6.3 Performance variability 

Our simulations show large performance variability across cores in the presence 
of faults. Our findings are the following: 

 The max IPC slowdown even for single faults (Table 48, Figure 41) can 
be up to 6.45% for the Bimodal, 8.21% for the Meta, and 16.12% for the 
RAS, there is a large variation of IPC loss. This is observed when all 
cores are affected by the same number of faults. 

 The difference in IPC slowdown for different number of faults (1…25 
faults; Figure 41) ranges for the Bimodal between 1.3% and 6.5% over 
the fault-free IPC on the average (6.5% to 11.3% for worst case) and for 
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the Meta predictor between 5.5% and 7.7% over fault-free IPC on 
average (8.2% to 13.0% for the worst case). This is observed when the 
cores are affected by different number of faults. 

 The difference between the best and worst case performance for single 
and multiple faults is not due to outlier behavior. The standard deviation 
(stdev) of the IPC change for single faults in Bimodal, Meta and RAS is 
shown in Table 49. Similarly, Table 50 summarizes the stdev of IPC drop 
for all multiple fault group sizes (5 to 25) in the Bimodal predictor.  

Together, the data of Table 49 and Table 50 demonstrate the large variability of 
the IPC impact for all fault group sizes. In 6 out of the 11 benchmarks the stdev of 
IPC loss over the fault-free case ranges between 3.5% and 9.6%, and the 
average stdev across all benchmarks is more than 3% for all fault group sizes. 

Table 49: Stdev of IPC change over the fault free case for single fault runs in Bimodal, Meta 
and RAS. 

Stdev of IPC change (%) for single fault runs 
benchmark  Meta  Bimodal RAS 

perlbench 1.648 0.181 1.079 
bzip2 8.261 0.643 0.475 

gcc 6.510 3.211 1.236 
mcf 0.464 0.045 1.014 
gobmk 3.457 3.483 0.581 
dealII 0.612 0.055 0.516 
soplex 0.308 0.662 0.062 
povray 4.969 0.464 1.268 
lbm 0.050 0.513 0.578 
omnetpp 4.184 4.179 2.785 
xalancbmk 3.223 3.073 1.885 

Average 3.062 1.500 1.043 

Table 50: Stdev of IPC drop over the fault free case for multiple faults in the Meta predictor. 

 Stdev IPC drop (%) [#faults in Meta] 
benchmark [5] [10] [15] [20] [25] 

perlbench 1.843 1.901 2.891 2.755 2.863 

bzip2 8.851 8.987 9.644 9.344 9.399 
gcc 6.756 6.612 6.891 6.954 6.901 
mcf 0.672 0.681 0.788 0.712 0.764 

gobmk 3.912 3.935 4.576 4.398 4.411 
dealII 0.759 0.814 0.988 0.911 0.932 
soplex 0.390 0.400 0.691 0.600 0.609 
povray 5.112 5.231 5.958 5.921 5.932 
lbm 0.050 0.051 0.077 0.074 0.076 
omnetpp 4.352 4.472 4.989 4.981 4.984 
xalancbmk 3.499 3.618 4.273 4.247 4.251 

Average 3.290 3.336 3.796 3.717 3.738 

4.7 Mechanisms to detect and tolerate hard faults 

We propose low-cost hardware-based mechanisms that can detect and diagnose 
any number of hard faults in front end speculation components and recover the 
performance loss. The basic detection mechanism is based on enhancing the 
inherent self-verifying property of the predictors with a write-read-compare (WRC) 
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flow, while the performance recovery techniques exploit spatial redundancy to 
isolate, replace, or remap the faulty entries. 

4.7.1 Fault detection and diagnosis 

All front end predictors generate on-the-fly a response  during the self-verification 
stage. We exploit this property to trigger fault detection and diagnosis. Even 
though our study focuses on control flow predictors (assuming that no parity or 
ECC protection exists) the proposed techniques can easily be ported to other 
self-verified speculation structures such as load address, value, memory 
dependence predictors, etc. 

The top part of Figure 43 shows a traditional self-verifying flow of a speculation 
component while the bottom part shows the same flow enhanced with the WRC 
mechanism. During the normal self-verifying flow, the array is updated upon a 
misprediction (in some cases the predictor is always updated, e.g. in BP). Our 
enhanced self-verifying flow is activated only on a misprediction and operates as 
follows:  

1. Write: This is the normal update step to the predictor. 

2. Read: The newly written value is read from the prediction array in the 
next cycle. 

3. Compare: The newly read data from the prediction array is compared 
against the ones used to update it (held in a register). In case of 
mismatch, a permanent (or intermittent) fault is detected (it can‟t be 
transient/soft since the entry was just updated). On a match, we assume 
a fault-free entry. 

 

Figure 43: Self-verifying flow enhanced with WRC flow. 

The WRC flow requires a comparator to detect the existence of a fault (if the 
SRAM array supports MBIST, the comparator of MBIST logic can be reused) and 
extra control logic. Furthermore, array entries are extended with a faulty bit that is 
set when the entry is diagnosed as faulty. The “faulty” bit is later used by the 
recovery mechanisms.  

The WRC flow will stall fetch during the Read step cycle, only if the front end 
needs to read the same SRAM bank for a new prediction in that cycle (we model 
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these stalls assuming an 8KB bank for the BPs and BTBs). We experimentally 
show that WRC flow overhead is very small. 

In Table 51, we show the IPC overhead in fault-free runs when fault detection via 
the WRC flow is enabled for all predictors. The IPC loss is due to the WRC 
overhead. Compared to the IPC loss we observe in the runs with multiple faults, 
the WRC overhead is very small.  The WRC overhead can be further minimized if 
it is enabled only when the CPU core operates in low voltage (i.e. more 
susceptible to errors). Follows a detailed analysis of the protection mechanisms 
for each component. 

Table 51: IPC (%) loss per benchmark due to fetch stalls in fault-free processor when 
predictor WRC is enabled. 

Benchmark  IPC loss 

perlbench 0.164 

bzip2 0.209 
Gcc 0.819 
Mcf 0.327 
gobmk 1.227 
dealII 0.118 
soplex 0.459 
povray 0.331 
Lbm 0.000 
omnetpp 0.097 
xalancbmk 0.074 

Average 0.348 

BTB detection/diagnosis: For every cBTB or iBTB read access (target address 
prediction) the pipeline verifies the predicted target. If the prediction is correct 
then the BTB entry, used to make the prediction, is fault-free. If the target is 
mispredicted, then the misprediction happens either due to aliasing or due to a 
fault. In either case, we trigger the WRC flow and detect if a permanent or 
intermittent fault has occurred, thus protecting BTB write accesses. Figure 44 
illustrates the concept. 

 

Figure 44: BTB with WRC flow support. 

BP detection/diagnosis: A correct conditional branch execution verifies that the 
2-bit counter used in the prediction is fault-free. A misprediction could be due to a 



Architectures for Dependable Modern Microprocessors 

N.Foutris 
140 

fault, aliasing, Meta predictor wrong decision or due to random branch behaviour. 
Even though, unlike BTBs, BP arrays are always updated, we still trigger a WRC 
flow only when the predictor mispredicts. The WRC flow for the BP predictors is 
shown in Figure 45. 

 

Figure 45: Branch predictor with WRC flow support. 

RAS detection/diagnosis: Typically, a RAS is written on every push and read on 
every pop operation. It is also written when we resolve a misprediction and 
restore the contents of one of its entries with the correct branch target. Protecting 
the RAS on read operations can be done when the return instruction is executed 
using the default verification mechanism. If no misprediction is found then we 
safely assume that the RAS entry used to make the prediction is fault-free. If a 
misprediction occurs then we trigger a WRC flow when restoring the RAS entry 
contents. We also trigger a WRC flow when we push into the RAS after fetching a 
call instruction. On either occasion, we store the target address to both the RAS 
and a register. Then, we read the same RAS entry (using a secondary write 
pointer) and compare the value with the register. If no mismatch is found then 
there is no fault. If a mismatch is found then a permanent/intermittent fault has 
been detected (Figure 46). Small structures such as the RAS are typically 
implemented with flip-flops instead of SRAM but our protection techniques apply 
to both cases. 

 

Figure 46: RAS with WRC flow support. 
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BHR detection/diagnosis: The fault detection mechanism for a N-bit Branch 
History Register is based on adding a log2(N)-bit up/down, saturating counter, 
which operates as follows: the counter is incremented every time a „1‟ is shifted 
into the BHR and decremented every time a „1‟ is shifted out. So at any point in 
time, the counter tracks the number of 1‟s in the BHR. If the counter underflows, 
then at least one stuck-at-1 fault has been detected. A stuck-at-1 fault at slot X of 
an N-bit BHR will propagate to the remaining slots X+1, …, N since the BHR is a 
shifting structure. That will eventually cause the counter to underflow because we 
will decrement (shift out 1) more often than we would increment (shift in 1). In the 
event of constantly shifting 1‟s (for example when a BHR encounters a stream of 
taken conditional branch instances inside a loop) then it is possible that no fault 
will be detected for a period of time. This is not an issue though because the fault 
is essentially masked. On the contrary, the counter overflows, when the BHR 
experiences at least one stuck-at-0 fault. A stuck-at-0 fault at slot X will propagate 
to the remaining slots X+1, …, N and will eventually cause the counter to overflow 
because it will increment (occasionally shift in 1s) but never decrement (shift out 
only 0s). Upon a BP misprediction, the BHR contents could be restored to a 
previous value in order to improve prediction accuracy. In this case, the counter is 
set to be equal to the number of 1s in the restored BHR value. Figure 47 
illustrates the hardware support for detecting hard faults in the BHR. Once a fault 
is detected, diagnosis of the fault happens without stalling instruction fetch as 
follows (the predictor keeps using the BHR contents): 

 Stuck-at 1 (0): We load BHR with 0s (1s), set the counter to N (0) and 
gradually decrement. This mode ends when the counter underflows 
(overflows) or when we see the first „1‟ („0‟) at the BHR output before the 
counter underflows (overflows). If we detect a „1‟ („0‟) then we have 
verified that the stuck-at-1 (stuck-at-0) fault is hard and the faulty location 
is at the (N-M)-th slot of the BHR where M is the value of the counter at 
detection time and N is the BHR‟s length (M<N). If we don‟t detect a „1‟ 
(„0‟) at the BHR output by the time the counter underflows (overflows) 
then no fault is detected and normal operation proceeds by resetting the 
BHR and the counter. 

 
Figure 47: BHR fault detection mechanism. 

4.7.2 Performance recovery alternatives 

The low-cost fault detection/diagnosis mechanisms discussed in the previous 
subsection are based on the inherent self-verifying operation of the speculation 
components and are the major reason towards minimizing performance impact. 
Once we detect the faulty entries we can minimize the performance impact by 
avoiding accessing them. Different schemes can be employed towards this goal. 
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We describe here some indicative mechanisms to recover performance in the BP, 
RAS and BHR. Similar techniques can be applied to the BTBs but we do not 
include them for space reasons.  

Potential recovery techniques for the BP arrays include: 

1. Single-bit counter: A faulty 2-bit direction counter (Figure 48) can be 
converted to a 1-bit counter when a single stuck-at fault is detected 
(instead of disabling it altogether). We propose adding a small 
associative table (which we call fault map) that holds the array index of 
faulty entries, and a 2-bit mask marking the location of the fault. We then 
use the mask to make a prediction using the fault-free bit or update the 
counter‟s fault-free bit. The size of the fault map is dictated by the 
maximum, estimated number of faults that can occur in a SRAM array 
under a given technology node and operating voltage. 
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Figure 48: Single-bit counter protection scheme. 

2. Static prediction outcome: detect faulty counters with a fault map and 
predict a branch that accesses a faulty counter as always not-taken or 
always taken (Figure 49). We experimented with a default prediction of 
not-taken. The results show that performance does not improve and in 
some cases IPC was further decreased. This happens because the 
faulty design can provide higher prediction accuracy, since there is a 
high probability that a fault is masked. 
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Figure 49: Static prediction outcome protection scheme. 
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3. Spare cells: we re-map faulty entries to fault-free ones (Figure 50). The 
spare cells can fully recover the performance loss induced from hard 
faults, as long as the amount of concurrent active hard faults doesn‟t 
exceed the amount of the available spares. However, the logic to provide 
online repair for spare cells lies on the read and write critical paths of the 
SRAM array and can increase access time [43].  
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Figure 50: Space cells protection scheme. 

A potential recovery mechanism for the RAS would be to disable the faulty 
entries: the top-of-stack pointer logic arithmetic can be modified to bypass all 
entries with the faulty bit being set. 

Finally, a potential recovery mechanism for the BHR would be to use bypass 
multiplexers: Once a fault is located, through the up/down saturating counter, the 
contents of the faulty BHR slot are masked in the index generation logic. Further, 
a bypass mechanism avoids fault propagation to the rest of the BHR. The BHR 
slot bypass logic is implemented through the addition of a 2:1 mux between any 2 
successive BHR flops. Multiplexer inputs come from the preceding flop of the 
BHR and the preceding multiplexer to implement the bypass path (Figure 51). 
The diagnosis mechanism feeds the multiplexers control signals. The faulty BHR 
slot is bypassed based on the control signals driving the multiplexers that change 
only when detecting a fault during BHR update. 

 

Figure 51: BHR performance recovery mechanism. 

4.7.3 Timing implications of the protection mechanisms 

There is no timing impact for the WRC flow since we the Read and Compare step 
are done in a separate cycle from that of the Write step. Our performance 
recovery solutions for the cBTB/iBTB do not lie on the critical prediction path (they 
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are triggered on the update flow of the structure) and thus have no effect on the 
cycle time.  

BHR protection can have an impact in the case of multiple, successive, faulty flip-
flops but the probability of that happening is extremely small due to the size of the 
BHR. Alternatively, we can assume that the position and number of multiplexers 
is such that no cycle violations occur when all bypass paths are activated (e.g. 
protect every other flip flop in the BHR). The protection mechanism for the RAS 
can be on the critical path but there is plenty of slack when updating the 
Read/Write pointers to transition to the next, fault-free RAS entry.  

BP fault protection lies on the critical path of making a branch outcome prediction 
and could put pressure on the clock cycle. In order to alleviate this pressure, 
control flow can be redirected, one cycle after making a prediction with a faulty 
counter, once we identify the fault and its position and only if the alternative 
prediction differs. The redirection leads to a 1 cycle fetch stall. 

4.7.4 Existing repair techniques 

SRAM arrays can be protected against faults circuit level techniques such as 
wordline boosting [78] which reduces the effect of process variations and failures; 
however, such techniques add complexity and area to SRAM array design and 
only address write failures, which are a subset of all hard faults. 

ECC is an architectural-level technique for transient and permanent error 
detection and correction, typically employed in SRAM arrays which affect 
functionality. ECC adds area and design overhead proportional to the SRAM 
array size and number of faults that we want to detect and correct (in the 
experimental section we compare our solutions to ECC). 

Hardware redundancy techniques such as spare SRAM rows/columns have a 
significant area overhead and can increase access latency [43]. Such techniques 
won‟t scale (in terms of circuit complexity and size) in more defective 
technologies where large numbers of spare rows and columns are required. 

Existing SRAM protection/repair techniques are costly and are best used to 
protect architectural arrays since the cost is justified. For control flow predictors, 
which do not affect correctness (and thus the cost of expensive techniques is not 
justified), we propose adopting low cost detection and protection techniques 
which can recover the performance loss due to the extra mispeculations that hard 
faults cause. 

4.7.5 Comparing with ECC/parity-based protection 

SRAM arrays can be protected by parity or ECC. Parity-based protection provides 
fault detection but no fault diagnosis (e.g., soft vs. hard determination) or 
performance recovery, masking or mitigation of the fault effect. 

ECC provides fault detection and correction but no diagnosis which means that 
ECC bits can be used to protect against soft errors whose performance impact is 
negligible. Furthermore, an ECC correction flow lies on the critical path for array 
reads and will impose a 1-cycle fetch stall overhead just like our proposed 
solutions for the BP arrays. The ECC generation flow for array writes has the 
same time overhead per write operation as our WRC flow since it requires a 
Read-Modify-Write (RMW) flow. The total number of times the ECC RMW flow 
will be triggered for the BP predictor (and thus the potential for fetch bandwidth 
loss) will be higher than in our WRC flow solution because ECC is updated for 
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every write operation, not just in case of a misprediction (as with WRC). Table 52 
shows the IPC overhead in fault-free runs of each benchmark when using ECC in 
the BP arrays. 

Table 52: IPC (%) loss per benchmark due to fetch stalls in fault-free processor when 
predictor ECC is enabled. 

benchmark  IPC loss 

perlbench 12.806 
bzip2 4.357 
gcc 10.762 
mcf 2.302 
gobmk 9.047 
dealII 3.483 
soplex 3.411 

povray 5.462 
lbm 0.346 
omnetpp 3.671 
xalancbmk 12.290 

Average 6.176 

Compared to the WRC IPC loss (Table 51), the ECC IPC loss is almost 6% larger 
on average (and can be more than 12% in some cases). ECC overhead on writes 
for the RAS, cBTB and iBTB is similar to the proposed mechanisms. Table 53 
compares the area overhead of parity, ECC [69] and our 1-bit counter BP 
protection solution, assuming 32 bits (16x2-bit counters) per BP entry. 

Table 53: BP area overhead of error detection and correction techniques [69]. 

Protection Technique  Area Overhead  

Parity 3.12% 
SEC-DED 21.9% 
DEC-TED 40.6% 

WRC+1-bit (proposed) 0.68% 

The extra silicon estate required by our proposed BP error protection solution is a 
fault map (Figure 45) to identify the faulty entries. We reuse the comparator and 
register for the WRC flow from the BP Memory BIST logic. We assume a 25-entry 
fault map to deal with the max number of faults across all 4 technology nodes 
(Figure 30). Each fault map entry consists of a 16-bit index and 2-bit fault mask 
for a total of 450 bits of storage (0.68% area overhead) which clearly provides the 
best trade-off among all solutions. 

4.7.6 Performance recovery results 

In this section, we provide results for the components that suffer the largest IPC 
slowdown: Bimodal predictor, Meta predictor, RAS, BHR. We have also 
implemented and evaluated the protection mechanisms for the Two-level 
predictor and the two BTBs and results are in line with the ones presented here.  

Figure 52 shows the average IPC loss, over all benchmarks, when a varying 
number of faults are injected in the Bimodal and the Meta predictors. The 
“unprotected” lines show the IPC loss for the unprotected, faulty core, and the 
“protected” lines show the IPC loss when the 1-bit counter protection mechanism 
is used. 
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Figure 52: Unprotected vs. protected (1-bit counter) IPC slowdown (%) for Bimodal and 
Meta predictors. 

We recover 94.1% of the IPC loss in the Meta predictor (IPC loss of 0.453% with 
protection compared to 7.687% IPC loss without protection) and 93.6% of the IPC 
loss in the Bimodal predictor (IPC loss of 0.414% with protection compared to 
6.452% without protection). Our mechanisms also virtually eliminate performance 
variability due to faults. The unrecovered IPC loss is due to the WRC flow 
overhead and the use of 1-bit vs. 2-bit counters. The protected cores achieve 
performance that is almost the same as the fault-free core despite the large 
number of permanent faults. 

Figure 53 shows the performance recovery for single faults in the RAS and BHR; 
we compare the unprotected and protected structures. More than 94% of IPC loss 
due to a single fault in the RAS and more than 92% in the BHR are recovered. 
The remaining IPC loss over the fault-free case (0.057% for RAS, 0.169% for 
BHR) is due to the reduced sizes of the faulty, protected structures. 
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Figure 53: Unprotected vs. protected RAS and BHR average IPC slowdown (%) due to 
single faults. 

4.7.7 Variability recovery and TCO improvement 

In this section we discuss the impact on performance variability due to hard faults 
in front end predictors by measuring the Total Cost of Ownership (TCO). Let us 
assume a data centre installation with 1000 cores in 16nm. Using the SRAM 
failure probabilities of Table 1 and an SRAM array of 150K bits (approximately the 
size of each of the three predictor arrays in our experiments), Figure 54 shows 
the number of cores that are expected to contain k hard faults in the SRAM array 
(k is on the x-axis). The number of faults k ranges from 0 to 25 faults. 
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Figure 54: Number of 16nm cores in a 1000-core data centre containing k hard faults in a 
150Kbit predictor. 

Figure 54 clearly demonstrates that in this 1000-core configuration the numbers 
of faults in the predictor array varies significantly. For example, 210 of the 1000 
cores are expected to contain more than 10 faults, while 11 of the 1000 cores are 
expected to contain more than 15 faults. Assuming 150Kbits in the Meta predictor 
array, 210 of the 1000 cores (those with more than 10 hard faults) will suffer (if 
left unprotected) an average IPC loss of more than 5.893% (max IPC loss 
10.231%); as the third diagram of Figure 4 shows. Similarly, 11 of the 1000 cores 
(those with more than 15 hard faults) will suffer an average IPC loss of more than 
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5.952% (max IPC loss 11.452%). IPC loss translates to an effective lower clock 
frequency. For example, a 3.0 GHz core suffering a 6% IPC loss due to faults in a 
predictor array operates at the same performance level as a 2.82 GHz core due 
to a 180 MHz frequency degradation. 

 If the aforementioned IPC loss for the 210 cores, with >10 faults, or the 11 cores, 
with >15 faults, renders these cores unusable (given an expected minimum 
performance requirement) then the system must provide spare cores to recover 
the throughput loss; this increases the overall TCO. 

Table 54 shows the TCO increase due to the degraded performance (on average 
5.9% and 6.0% IPC loss based on Figure 13; or PVF – performance vulnerability 
factor – according to [44] [45]) in cores with more than 10 and 15 hard faults on 
the Meta predictor array. When our protection mechanisms are employed to 
recover the performance loss (on average the un-recovered IPC slowdown is only 
0.4% both for >10 and >15 faults), the TCO of the system remains almost 
unaffected. We apply the TCO calculations on the original ISPASS paper [45] 
data centre configuration: the HPE (high performance) server configuration 
provided in the tool of [111] with 1000 cores, and for three different utilization 
levels: (a) low (20%), (b) medium (50%) and (c) high utilization (90%). 

Table 54: TCO with fault-free, unprotected faulty Meta predictor, and faulty protected cores. 

 (TCO=$/Month) 

Average Server Utilization 
0.2 

(low) 
0.5 

(medium) 
0.9 

(high) 

Initial TCO 7.848M 8.018M 8.246M 

TCO with PVF4=5.9% 
 

8.373M 
(+6.7%) 

8.555M 
(+6.7%) 

8.798M 
(+6.7%) 

TCO with PVF=6.0% 
 

8.384M 
(+6.8%) 

8.566M 
(+6.8%) 

8.808M 
(+6.8%) 

TCO with our protection 
mechanisms (PVF=0.4%) 

7.880M 
(+0.4%) 

8.051M 
(+0.4%) 

8.297M 
(+0.6%) 

The TCO increase due to performance loss from a faulty Meta predictor ranges 
from 6.7% to 6.8% for three different utilization levels of the server farm. When 
our protection techniques are employed, TCO is marginally affected by only 0.4% 
to 0.6%. 

4.8 Related work 

There is no prior work in the literature that: (1) classifies and measures the 
performance overhead and variability of hard fault in speculative structures; and 
(2) proposes low-cost fault detection and performance recovery for the front-end 
predictors.  

Speculative arrays: Hardy et al. [44] propose an analytical model called 
performance vulnerability factor to predict IPC loss due to faults in non-
architectural arrays. The method‟s accuracy depends on having a fixed 
misprediction penalty in each structure, which is not always true in modern 

                                            

4
 The PVF (Performance Vulnerability Factor) parameter of the TCO tool corresponds to the 

performance (IPC) loss. 
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microarchitectures. Karimi et al. [63] evaluated the impact of faults in branch 
predictors but the study has limited scope and does not make broad conclusions. 
Finally, Hsieh et al. [49] discussed the importance of detecting hard faults that 
only lead to performance degradation to improve microprocessor yield. 

A few works address the detection (but no protection) of hard faults in speculative 
structures. These include Almukhaizim et al. [7], Hatzimihail et al. [46], and 
Bhattachatya et al. [17] (branch predictor). None of these works evaluates the 
IPC recovery and cost of the techniques. 

Architectural SRAM arrays: Several works examine the impact of and propose 
remediation techniques for hard faults in caches [5] [8] [66] [89] [100]. Caches 
affect functionality and their error protection solutions are entirely complementary 
to our work; we expect cores to need protection in all SRAM arrays, including 
caches. 

Pipeline/Core logic: Using the inherent microarchitectural and/or architectural 
redundancy to detect and/or repair hard faults has been studied extensively [23] 
[84] [94] [71] [90] [95] [41] [75]. The focus is to gracefully salvage single or 
multicore processor chips which contain hard faults in the processor pipeline. 

4.9 Findings summary 

We presented a detailed classification and quantification of the impact of 
permanent faults in the performance components of modern microprocessors. 
The analysis relies on a comprehensive statistical fault injection framework built 
on top of a cycle-accurate x86-64 based architectural simulator and the latest 
SPEC CPU2006 CPU benchmarks. Our analysis verifies that performance 
components with permanent faults do not lead to functional errors and that most 
faults (44% to 96%) cause only performance fluctuation. Across the different 
components, performance slowdown ranges from 2% to 20% (faults in control 
components have more severe performance impacts). 

Furthermore, the existence of hard faults in a stride data prefetcher can affect 
microprocessor performance significantly and increase inter-core performance 
variability. Our detailed experimental analysis demonstrates that IPC loss due to 
hard faults in the prefetch table can be up to 17%, and up to 24% and 26% for the 
prefetch input queue and prefetch request queue, respectively. Also, performance 
variability across cores is increased: the standard deviation of IPC loss between 
benchmarks can be more than 4.5%. Similar behaviour was measured in 
microprocessor front end predictors. The experimental resuts show that: (a) IPC 
loss due to faults can be more than 16% over the fault-free IPC; and (b) 
performance variability across faulty cores with the same number of faults each 
can lead to more than 8% of IPC difference over the fault-free case. The IPC loss 
stdev for different number of faults per benchmark, ranges between 3.5% and 
9.6% for most of the benchmarks, while the stdev of IPC loss across benchmarks 
is almost 4%. 

To tolerate the large performance drop and variability we have proposed a 
coherent suite of low-cost hardware-based solutions for the detection, diagnosis 
and performance recovery of multiple hard faults in all front-end speculation 
components (BPs, BTBs, RAS, BHR). Our evaluation shows that almost the 
entire IPC loss due to faults is recovered by our solutions. The unrecovered IPC 
in all cases is within 0.5% of the fault-free IPC while the difference in IPC 
between cores with significantly different numbers of faults is virtually eliminated: 
always less than 0.07% of the fault-free IPC. Finally, we estimated the TCO 
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overhead due to hard faults in one front end predictor, assuming a server farm of 
1000 cores and an available TCO estimation model. Our findings show an almost 
7% TCO overhead that gets virtually eliminated if our protection mechanisms are 
used. 
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5. CONCLUSION AND FUTURE WORK 

Today, the pervasiveness of microprocessors, the most complex and immensely 
powerful product of electronics, in our society goes far beyond the wildest 
imagination. The same path that is leading technologies toward these remarkable 
achievements is also making them increasingly unreliable posing a threat to our 
society. Silicon technology process scaling trends, modern architecture 
complexity and the compelling requirement to diminish the Time-to-Market 
threaten to create a “validation wall”. As a result, semiconductor industry and 
academic researchers must explore radical solution and develop innovative 
techniques to address the dependability challenges of the current and the 
forthcoming microprocessors. This thesis introduced novel methodologies to 
address the validation challenges posed throughout different stages of the life-
cycle of a microprocessor. 

Microprocessor validation is grouped into three categories, based on where they 
intervene in a microprocessor‟s lifecycle: (a) silicon debug: the first hardware 
prototypes are exhaustively validated, (b) manufacturing testing: the final quality 
control during massive production, and (c) in-field verification: runtime error 
detection techniques to guarantee correct operation. This thesis introduces 
various techniques to tackle the challenges of microprocessor validation targeting 
to: (a) make the microprocessor‟s verification process more efficient; and (b) be 
easily applicable to the existing industrial flow. The contributions of this thesis are 
as follows: 

 Silicon debug: The share of silicon debug in the overall microprocessor 
chips development cycle is rapidly expanding due to the ever growing 
design complexity and the limited throughput of pre-silicon verification 
methods. Massive application of short random test programs on the 
prototype microprocessor chips is one of the most effective parts of 
silicon debug. Despite its bug detection capability, it is constrained by 
extreme computing needs for random test programs simulation to extract 
the bug-free memory image. Another major bottleneck and source of 
“noise” in this phase is that large numbers of random test programs fail 
due to the same or similar design bugs. This redundant behaviour adds 
long delays in the debug flow since each failing random test program 
must be separately examined, although it does not usually bring new 
debug information. We proposed the employment of self-checking 
random test programs along with a deconfigurable microprocessor 
architecture to avoid the time-consuming simulation step, triage the 
redundant debug sessions and thus accelerate silicon debug. To do so, 
we exploited the inherent diversity found in all popular Instruction Set 
Architectures (ISAs) and the ability to deconfigure hardware modules 
without affecting the functional completeness of a design. Detailed 
evaluation of the method on an x86 microprocessor model demonstrated 
its effectiveness in accelerating silicon debug. 

 Manufacturing testing: We presented an efficient multithreaded (MT) 
SBST methodology that optimizes self-test time taking maximum 
advantage of thread-level parallelism while at the same time enhances 
the self-test program error detection capability on the thread-specific 
control logic of the processor. The methodology contributed to the 
effective application of SBST in manufacturing testing. Our experiments 
on OpenSPARC T1 revealed that the proposed methodology improved 
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significant test execution time at both the core level (3.6 times) and the 
processor level (6.0 times) against single-threaded execution, while at 
the same time it improves fault coverage. Compared with a 
straightforward multithreading approach, it reduces the self-test time at 
both the core level and the processor level by 33% and 20%, 
respectively. Overall, our methodology guarantees high stuck-at fault 
coverage (88% for the entire processor, more than 1.5M logic gates), 
which is the highest coverage ever reported in the literature by a 
software-based functional test methodology in such a complex industrial 
microprocessor. 

 In-field verification: Aggressive technology scaling along with low 
voltage operation exacerbates the likelihood and rate of hard faults not 
only in large SRAM arrays (such as cache memories), but also in non-
SRAM microprocessor structures. Some of the largest non-cache SRAM 
structures support speculation such as the branch predictor tables, the 
branch target buffers, and the data prefetcher. Faults in these structures 
will not affect correctness, but can cause severe performance 
degradation and variability among otherwise identical cores. We  
accurately classified and quantified the performance impact of hard 
faults in non-SRAM structures over a set of CPU benchmarks. To do so, 
we applied a statistically safe fault injection campaign for single and 
multiple faults a modified version of the cycle-accurate x86 architectural 
simulator PTLsim running the SPEC CPU2006 suite. Our evaluation 
revealed significant differences in the effect of faults and their 
performance impacts across the components as well as within each 
component. In particular, we demonstrated that a very large fraction 
(44% to 96%) of hard faults in these components leads to performance 
fluctuation, Furthermore, faults in the data prefetcher degrade IPC by up 
to 26%, compared to fault-free operation, while faults on the branch 
prediction unit reduce IPC by more than 16%, respectively. Moreover, 
we found that faults in these components can substantially increase the 
performance variability across identical cores. Finally, we proposed low-
cost microarchitectural techniques to diagnose predictor faults and 
recover the performance loss. Our techniques exploited the self-
verification property of predictors to achieve performance recovery at 
lower cost than comparable techniques. We found that our solutions can 
recover almost all performance loss and virtually eliminate performance 
variability among cores. 

The research outcomes of this thesis open the door to several future directions. 
Future systems architectures must be designed to facilitate hardware validation. 
In particular, future solutions should have adhere to the following guideline 
principles: (a) low-power, (b) negligible area overhead, (c) scale with design 
complexity; and (d) highly automated. In the silicon debug domain, future 
research should focus on the automation and standardization of the design bug 
detection and root-cause analysis process. Furthermore, this thesis demonstrated 
the effectiveness of software-based techniques in accelerating manufacturing 
testing and guaranteeing a high level of fault coverage. This may be an indication 
that future microprocessors should devote valuable silicon estate in hardware 
hooks that enable the at-speed, low-cost testing. The growing demand for high-
performance computer systems push computer architects to integrate numerous 
performance mechanisms in the microprocessor designs. However, functional 
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correctness is prioritized over performance correctness. This work revealed that 
faults in performance components can lead to noticeable performance loss and 
variability in otherwise identical cores. Therefore, future designs must integrate 
mechanisms to continuously monitor the system performance health and applying 
contingency actions. Finally, a vital future research direction is to bridge the gap 
between silicon debug, manufacturing testing and in-field verification techniques 
through the development of cross-cutting solution that will operate throughout the 
entire life-cycle of a microprocessor.  

The vital challenge of future technologies is to build dependable systems. This 
thesis proposed various novel techniques to make the validation process, 
throughout microprocessor life-cycle, more effective in terms of bug/error 
detection efficiency, resource- and time-budget. We hope, that the contributions 
presented in this thesis will advance the research in manufacturing dependable 
microprocessor architectures and will find applicability in future commercial 
microprocessor products. 
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ACRONYMS 

 

ATPG Automatic Test Pattern Generation 

BIST Built-in Self-Test 

BTB Branch Target Buffer 

BP Branch Predictor 

cBTB Conditional/Unconditional direct Branch Target Buffer 

CMP Chip-Multiprocessors 

CMT Chip-Multithreading 

DFT Design for Testability 

DLP Data-Level Parallelism 

DP Data Prefetcher 

DPPM Defective Parts Per Million 

ERIT Equivalent Random Instruction Test 

HDL Hardware Description Language 

HVM High-Volume Manufacturing 

iBTB Unconditional indirect Branch Target Buffer 

ICT  Information and Communication Technology 

IC Integrated Circuit 

ILP Instruction-Level Parallelism 

ISA Instruction Set Architecture 

IP Instruction Prefetcher 

MHSR Miss Handling Status Registers 

MT-SBST Multithreading Software-Based Self-Test 

OS Operating System 

RAS Return Address Stack 

RIT Random Instruction Test 

RTL Register-Transfer Level 

SBST Software-based Self-Testing 

SEU Single Event Upset 

TLP Thread-Level Parallelism 

TTM Time-to-Market 
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