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ABSTRACT
Dynamic adaptation is a post-silicon optimization technique that
adapts the hardware to workload phases. However, current adaptive
approaches are oblivious to implicit phases that arise from operat-
ing on irregular data, such as sparse linear algebra operations. Im-
plicit phases are short-lived and do not exhibit consistent behavior
throughout execution. This calls for a high-accuracy, low overhead
runtime mechanism for adaptation at a fine granularity. Moreover,
adopting such techniques for reconfigurable manycore hardware,
such as coarse-grained reconfigurable architectures (CGRAs), adds
complexity due to synchronization and resource contention.

We propose a lightweightmachine learning-based adaptive frame-
work called SparseAdapt. It enables low-overhead control of con-
figuration parameters to tailor the hardware to both implicit (data-
driven) and explicit (code-driven) phase changes. SparseAdapt is
implemented within the runtime of a recently-proposed CGRA
called Transmuter, which has been shown to deliver high perfor-
mance for irregular sparse operations. SparseAdapt can adapt con-
figuration parameters such as resource sharing, cache capacities,
prefetcher aggressiveness, and dynamic voltage-frequency scaling
(DVFS). Moreover, it can operate under the constraints of either (i)
high energy-efficiency (maximal GFLOPS/W), or (ii) high power-
performance (maximal GFLOPS3/W).

We evaluate SparseAdapt with sparse matrix-matrix and matrix-
vector multiplication (SpMSpM and SpMSpV) routines across a suite
of uniform random, power-law and real-world matrices, in addition
to end-to-end evaluation on two graph algorithms. SparseAdapt
achieves similar performance on SpMSpM as the largest static con-
figuration, with 5.3× better energy-efficiency. Furthermore, on both
performance and efficiency, SparseAdapt is at most within 13% of
an Oracle that adapts the configuration of each phase with global
knowledge of the entire program execution. Finally, SparseAdapt
is able to outperform the state-of-the-art approach for runtime
reconfiguration by up to 2.9× in terms of energy-efficiency.
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1 INTRODUCTION
Sparse linear algebra operations are key components of a plethora of
modern applications, from graph analytics to scientific computing
and machine learning [4, 5, 9, 10, 23, 50, 55, 64, 65, 68–71]. Many
graph analytics algorithms, such as breadth-first search, shortest
path, etc. can be represented as sparse linear algebra operations, as
encapsulated by the GraphBLAS framework [30]. Two important
kernels belonging to BLAS levels 2 and 3, respectively, are sparse
matrix – sparsematrixmultiplication (SpMSpM) and sparsematrix –
sparse vector multiplication (SpMSpV). These are highly inefficient
on traditional computing platforms such as CPUs and GPUs, as
they are heavily memory-bounded and thus bottlenecked on data
movement rather than compute [40].

Recent work have led to a myriad of proposals on optimizing
sparse computation through fixed-function accelerator designs [3,
40, 57, 58, 72]. While these demonstrate energy-efficiency improve-
ments of the order of 100 of times over a GPU, there is an important
trade-off in terms of loss of flexibility, i.e. such designs are only
applicable to a few kernels. One class of solutions that propose to
close this gap between flexibility and efficiency are coarse-grained
reconfigurable architectures (CGRAs) [15, 25, 29, 39, 41, 49, 52, 62].
CGRAs incorporate word-granular operations to overcome the en-
ergy inefficiency of field-programmable gate arrays (FPGAs), while
retaining programmability. They allow for hardware reconfigura-
tion at the granularity of the processing element (PE) array, network
fabric, or the memory subsystem. A key challenge, however, lies
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with efficient mapping of sparse kernels onto CGRA hardware.
Typically, the CGRA configuration is determined at compile-time
by extracting a dataflow graph (DFG) from the application code,
mapping it onto the PEs, and rewiring the on-chip memory and
interconnect. There are two drawbacks of compile-time mapping.
• Real-world sparse datasets are seldom uniform, e.g. in graph
analytics workloads, the input graphs are often clustered and
follow power-law distributions [16, 33]. Thus, determining the
best configuration requires intimate knowledge of the input,
beyond its shape and number of nonzeros (NZEs), which is not
feasible at compile-time without convoluted pre-processing.

• Compile-time optimizations fail if the dataset evolves over time,
since no accurate estimations can be made for the distribution
of non-zeros even with data pre-processing. This is common in
the world of social networks, for instance, where connections
between users form and break in real-time, which translates to
dynamic changes in the underlying data structures [14, 21].
In order to tackle these challenges, we propose an adaptive run-

time framework, SparseAdapt, that reconfigures a CGRA to adapt
to evolving phases in sparse computation kernels. SparseAdapt es-
tablishes a feedback loop between the software (running on a host)
and the CGRA hardware, that enables fine-grained introspection,
i.e. the hardware exposes performance counters to the runtime soft-
ware, which periodically collects this data to determine when and
how to reconfigure the hardware, thus catering to transitions in
both implicit (data-driven) and explicit (code-driven) phase changes.
SparseAdapt is oblivious to the underlying program binary, and
thus requires no programmer intervention.

We implement SparseAdapt as an extension to the runtime of
a recently-proposed reconfigurable CGRA called Transmuter [41],
however it is applicable to any CGRA system that exposes simi-
lar hooks from the hardware to the runtime. SparseAdapt is de-
signed to be deployed on both cloud and edge scenarios, which
have drastically different power-performance requirements. As
such, SparseAdapt can operate in one of two optimization modes,
an Energy-Efficient mode that optimizes for maximal giga floating-
point operations executed per second per Watt (GFLOPS/W), and a
Power-Performance mode that optimizes for maximal GFLOPS3/W.

SparseAdapt is primarily evaluated on SpMSpM and SpMSpV in
this work. However, it is applicable to arbitrary algorithms, since
the technique is oblivious to the running software. We additionally
demonstrate SparseAdapt on two popular graph algorithms, namely
breadth-first search (BFS) and single-source shortest path (SSSP) [24,
63], which are representative irregular real-world workloads.

In summary, this work makes the following contributions:
• Identifies the existence of hardware reconfiguration opportuni-
ties associated with phase transitions during execution for sparse
algebra routines, both due to (i) change in code, i.e. explicit phases,
and (ii) evolving sparsity patterns, i.e. implicit phases.

• Proposes a framework called SparseAdapt that uses low-cost
hardware performance monitoring to adapt to phase changes and
reconfigure the underlying hardware configuration. SparseAdapt
is integrated with the runtime of a recent reconfigurable acceler-
ator, Transmuter [41].

• Proposes a predictive model based on an ensemble of decision
trees, and a heuristic-based, reconfiguration cost-aware policy
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Figure 1: Left. Illustration of outer product (OP) SpMSpM
showing implicit phase changes due to switch from dense
to sparse outer products (column × row). Right. Execution
timeline of OP-SpMSpMon a 128×128, 20% densematrix and
its transpose. Shown are the gains achieved using a dynamic
scheme that adapts the hardware to these phase transitions.

that allows for hardware reconfiguration at fine granularities (∼
500−5k floating-point instructions), while reducing the frequency
of reconfiguration penalties.

• Demonstrates improvements in energy-efficiency and perfor-
mance metrics on sparse linear algebra routines (SpMSpM and
SpMSpV) and graph algorithms (BFS and SSSP). The evaluation
is done across a suite of random, power-law and real-world ma-
trices, and the proposed scheme is compared with various oracle
adaptive control mechanisms.
In terms of evaluation, SparseAdapt achieves similar perfor-

mance as the largest static configuration with 5.3× better energy-
efficiency on SpMSpM. When compared to an Oracle scheme that
exploits full knowledge of the entire program duration, SparseAdapt
achieves within 13% performance and 5% efficiency in the Power-
Performance optimization mode. Finally, in comparison to a prior
adaptive control scheme byDubach et al. [20], SparseAdapt achieves
average gains of up to 2.9× and 2.8× in terms of energy-efficiency
and performance, respectively.

2 MOTIVATION AND RELATEDWORK
This section discusses the challenges and opportunities associated
with dynamic reconfiguration, and prior work.

2.1 Existence of Implicit and Explicit Phases
Phases arise naturally during the execution of any non-trivial code.
The obvious phase changes occur due to control flow from the pro-
gram structure. We term these as explicit phase transitions. Explicit
phase changes are relatively simple to detect, even at compile-time.
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However, computation involving sparse datasets introduce another
type of phase change owing to the irregularity in the data. Such
phase changes may be correlated with instantaneous properties of
the data, such as spatial locality. We define these phase transitions
to be implicit. Real-world matrices have sparsity patterns that vary
spatially across the matrix, thus introducing implicit phase changes
during computation. Thus, a clever adaptation framework needs
to incorporate runtime reconfigurability and cater to both implicit
and explicit phase changes.

We illustrate the phenomenon of phase changes through the
example of outer product (OP) based SpMSpM. We simulate the OP-
SpMSpM algorithm (described in prior work [40, 42, 43]) on a tiled
manycore architecture (details in Section 3) with two processing
tiles. At a high level, OP-SpMSpM decomposes the computation
into two explicit phases, namelymultiply andmerge (Figure 1 – left).
We demonstrate this on a synthetic matrix generated with dense
columns separating eight sparse strips to motivate our work. Similar
structures of alternating dense and sparse row/column clusters ex-
ist in real-world datasets from graphs, optimization and economics
problems, etc. [17]. We report the energy-efficiency (GFLOPS/W),
instantaneous clock frequency, L2 cache bank size, and utilized
memory bandwidth, with a dynamic reconfiguration scheme ver-
sus the best static hardware configuration in Figure 1. We first note
the presence of the two explicit phases, corresponding to the multi-
ply phase (ending at ∼ 3.5 ms) and merge phase of OP-SpMSpM.
The dynamic control scheme observes the off-chip bandwidth uti-
lization to be∼100% duringmultiply (Figure 1 – bottom), and acts by
applying DVFS to lower the clock speed and balance the compute-
to-memory ratio of the system. This improves the multiply phase
energy-efficiency over the baseline by ∼2×.

We further note the presence of implicit phases arising from
the computation of dense columns with corresponding dense rows
during the first phase (Figure 1 – left). These implicit phases are
adapted to by adjusting the dynamic L2 cache capacity, based on
observation of a combination of hardware counters (not shown in
figure). Exploiting both types of phase changes leads to an overall
speedup of 22% and energy savings of 1.5× over the static baseline.

In summary, this simple example illustrates the opportunities
associated with dynamic reconfiguration, which we seek to exploit
with our proposed framework, SparseAdapt.

2.2 Related Work
A few prior work have explored run-time adaptation for improving
the efficiency of existing hardware architectures.

2.2.1 Adaptation for Traditional Hardware. Dubach et al. [19, 20]
propose a maximum likelihood estimation (MLE) predictive model
that adapts the sizes of microarchitectural structures in a single-
threaded, out-of-order processor. CHARSTAR [51] uses a multilayer
perceptron (MLP) model that accounts for the clock hierarchy and
topology, and proposes a mechanism that jointly optimizes for both
dynamic voltage-frequency scaling (DVFS) and clock-aware power
gating. Both of these work are proposed only for single-core sys-
tems. Tarsa et al. [61] propose an adaptive CPU based on Intel Sky-
Lake that uses random forests to dynamically adjust the issue width
of a clustered core. These work explore hardware adaptation for
traditional workloads that only have explicit phases. SparseAdapt,

on the other hand, is designed for manycore hardware, and caters
to workloads that have both explicit and implicit phases. Moreover,
these prior techniques rely on SimPoint [45] for fast generation
of offline profiling data. However, SimPoint fails when workloads
have diverse implicit phases, arising from unstructured sparsity,
throughout program execution. Our work instead considers end-to-
end simulations, as no assumptions can be made about the nature
of the input matrices.

Lukefahr et al. [36] introduce Composite Cores, that uses a linear
regression based reactive online controller to switch execution be-
tween big and little µengines in a heterogeneous system. Flicker [46]
is an adaptive multicore architecture designed to adapt to varying
allocated power constraints. SOSA [18] is a resource manager that
targets manycore systems and dynamic workloads using rule-based
reinforcement learning (RL). The heavyweighted RLmodel requires
additional acceleration, which the authors demonstrate on an FPGA.
Sartor et al. [53] propose anMLPmodel coupled with a polymorphic
VLIW processor that is trained at design-time and predicts at run-
time. However, this framework predicts a static configuration for a
kernel when the kernel is re-executed, whereas SparseAdapt adapts
to the dynamic phase changes during run-time. Yukta [48] applies
the structured singular value (SSV) control for EDP optimization on
a multicore big.LITTLE system. Imes et al. [27, 28] propose a run-
time system called POET that uses control theory and optimization
techniques to minimize energy consumption while meeting soft
real-time constraints, demonstrated on both big.LITTLE systems-
on-chips (SoCs) and multicore server-class systems. However, these
approaches do not explore configuration parameters associated
with CGRAs, as well as workloads with varying implicit phases.

2.2.2 Adaptation for CGRAs. CGRAs have gained traction recently
as they promise to deliver near-ASIC level performance with post-
fabrication adaptation [35]. Earlier work have considered only
compile-time CGRA reconfiguration for simplicity and ease-of-
use [1, 13, 22, 49]. More recent work have alluded to the limitations
with static adaptation, especially for irregular workloads like sparse
linear algebra. Recent techniques have thus adopted dynamic sched-
uling and dataflow techniques to harness parallelism, however work
on dynamic hardware reconfiguration that caters to both implicit
and explicit phases in the workload has been comparatively lacking.
Chen et al. [12] propose high-level synthesis techniques to map
dynamic algorithms onto FPGAs. SparseAdapt, instead, generates
configuration sequences at runtime to optimize for performance and
energy on an existing CGRA. Dadu et al. [15] use network and PE-
level decomposability to partition coarse resources for acceleration
of different datatypes. In contrast, SparseAdapt operates by power-
gating and using DVFS for performance and energy optimization,
and tuning the uncore for performance. Nowatzki et al. [39] pro-
pose a CGRA where the control core and dispatcher are respon-
sible for issuing work and enforcing dependencies (correctness).
In SparseAdapt, the controller (host) instead performs heuristic-
based resource management (performance/efficiency). Voitsechov
et al. [66] propose a CGRA architecture that our framework can be
adapted to, but is an orthogonal contribution.

2.2.3 Comparison with ProfileAdapt. The technique proposed in
this paper is closely related to the work by Dubach et al. [20] (re-
ferred to as ProfileAdapt in this work) in terms of the offline training,
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Figure 2: Simplified illustration of the Transmuter architec-
ture and feedback loop between the host and Transmuter.

hardware telemetry and inference methodologies on the predictive
model. However, there are several key differences. ProfileAdapt ex-
ecutes in the following order: detection of a new phase, execution
of the new phase in a profiling configuration (where each reconfig-
urable parameter takes its maximum value) for a certain duration,
hardware telemetry, inference on the predictive model, followed
by reconfiguration and execution on the predicted configuration.

Since ProfileAdapt reconfigures at coarse phase boundaries, it
cannot adapt to short-lived implicit phases due to the reconfigura-
tion cost associated with switching to the profiling configuration.
In contrast, our approach removes the need for a profiling configu-
ration and instead directly feeds back the hardware configuration
parameters as inputs to the predictive model. This enables us to
reconfigure at a finer granularity with low-overhead, which is nec-
essary to adapt to the implicit phases in sparse computation. Addi-
tionally, the evaluation in [20] relies on an external phase detection
mechanism (e.g. SimPoint), whereas we assume that such a mech-
anism is not feasible for implicit phases. Our approach considers
hardware reconfiguration at fixed epochs, guided by our predictive
model and reconfiguration-cost aware heuristics.

3 HARDWARE DESIGN
We provide background on the Transmuter architecture [41], fol-
lowed by the configuration parameters that we explore and imple-
ment in this work. We then discuss the performance counters that
we implement, and the cost of reconfiguration.

3.1 Architectural Background
SparseAdapt is integrated with the runtime of a recently-proposed
CGRA called Transmuter [41, 56, 67]. This section provides a brief
overview of Transmuter, followed by a discussion of the config-
uration parameters that are considered. It concludes with some
details on a set of proposed microarchitectural enhancements to
implement the reconfigurability features.

Transmuter is a tiled CGRA design supporting runtime recon-
figuration, as shown in Figure 2. It is composed of a sea of pro-
grammable, asynchronous general-purpose processing elements
(GPEs), implemented as simple in-order cores. An M×N system
consists of M processing tiles, where each tile has a group of N
GPEs that are managed by a control plane processor called the

Table 1: Hardware configuration parameters that are tuned
for the Transmuter design evaluated in this work.

Type Parameter Values Assumed Count

Categorical
L1 R-DCache type† Cache, SPM 2
L1 sharing mode Shared, private 2
L2 sharing mode Shared, private 2

Ordinal

L1 R-DCache bank capacity‡ 4 kB → 64 kB : 2∗ 5
L2 R-DCache bank capacity 4 kB → 64 kB : 2∗ 5
System clock frequency 31.25 MHz→ 1 GHz : 2∗ 6
Prefetcher aggressiveness 0 (off), 4, 8 3

Total Count 3, 600
†Only this parameter is configured at compile-time. ‡ Not varied for SPM mode.

local control processor (LCP). The GPEs within a tile are interfaced
with an L1 cache-crossbar layer, and multiple tiles are connected
via crossbars to an L2 cache layer. The L2 interfaces to multiple
high-bandwidth memory (HBM) channels. Transmuter incorpo-
rates reconfigurability along the dimensions of on-chip memory
type (cache, scratchpad memory – SPM, or FIFO+SPM), resource
sharing (private or shared), and dataflow (demand-driven or spatial).
These features are enabled using the flexible cache-crossbar hierar-
chy, composed of reconfigurable data-cache (R-DCache) banks and
crossbars (R-XBars).

In this work, we enhance the Transmuter architecture and im-
plement a feedback loop between a host CPU and the Transmuter
device, as shown in Figure 2 (bottom). The host executes Python
code and is responsible for offloading parallelizable kernels to Trans-
muter for accelerated execution. The first step associated with ker-
nel dispatch consists of selecting a version of the code to execute
on the target. This algorithmic selection is dependent on the prop-
erties of the input data, and the kernel itself. The next steps involve
allocation of input and output buffers in the HBM, streaming data
out, triggering Transmuter to start, waiting for it to finish while ex-
ecuting runtime routines, streaming data back in, and de-allocating
memory. In this work, we assume shared physical memory between
the host and Transmuter.

During execution, Transmuter sends performance counters to
the host at continuous intervals (epochs). Using this information,
the host makes a decision about when and how the architecture
should be reconfigured. Actual reconfiguration is handled by dedi-
cated blocks incorporated in the design.

3.2 Configuration Parameters
In this work, we consider seven hardware configuration parameters,
namely, L1 R-DCache type, L1 R-DCache capacity, L2 R-DCache ca-
pacity, L1 sharing mode, L2 sharing mode, system clock frequency,
and prefetcher aggressiveness. The values considered for these
parameters are listed in Table 1. While much of prior work (Sec-
tion 2.2) focuses on reconfiguration of the core microarchitecture,
our work delves into reconfiguration of the interconnect, memory
and dynamic voltage-frequency scaling (DVFS).

We next discuss the microarchitectural aspects and overhead of
reconfiguring each selected hardware parameter.

3.2.1 Dynamic Voltage-Frequency Scaling (DVFS). We implement
a simple clock divider composed of N flip-flops that enables gener-
ation of clocks with frequencies of f /2, f /4, . . . , f /2N , where f is
the frequency of the system clock. For circuit-level simplicity, we
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consider global DVFS, i.e. the same clock feeds into each microar-
chitectural block, as opposed to per-core or per-block DVFS. The
overheads and switching times can be kept small through the use
of on-chip regulators [31], or dual-voltage rail designs [37, 47] at
the expense of a small area overhead.

In our DVFS model, the target voltage is calculated based on the
formula f ∝ (VDD −Vth )

2/VDD , where f is the clock frequency,
VDD is the supply voltage, and Vth is the threshold voltage. Given
a target frequency ftarдet , the target supply voltage is calculated
based on the following equation:

f
ftarдet

=

(VDD−Vt )2
VDD

(Vtarдet −Vt )2

Vtarдet

, Vtarдet =

{
Vtarдet Vtarдet ≥ 1.3Vt
1.3Vt otherwise

The nominal supply voltage VDD , nominal frequency f and the
threshold voltage Vt are constants and are derived from empirical
measurements. The minimal target voltage allowed for correct
functionality is set to be 30% higher than Vt . The target voltage
Vtarдet calculated is then used to scale down the total power of the
system by (Vtarдet ÷VDD )

2.
DVFS allows for lowered dynamic power consumption, at the

cost of some performance. However, the performance loss is neg-
ligible if the system is memory-bounded, which depends on the
amount of compute resources, external memory bandwidth, and
crucially, the application and its input data.

3.2.2 Cache Capacity. We re-implement each R-DCache bank as
a set of sub-banks, i.e. each logical R-DCache bank is composed
of a set of physical SRAM and tag arrays. There is a small combi-
natorial logic overhead to select between different set-index and
tag bits, depending on the active cache capacity value. A larger
cache allows for fewer misses, at the cost of increased latency and
energy per access. Adaptable cache sizing has been explored in
the past and shown to improve energy-efficiency in traditional
architectures [60].

3.2.3 Sharing Mode. Transmuter is composed of swizzle-switch
network based crossbars [54] that are augmented with crosspoint
control units (XCUs). XCUs incorporate the ability to reconfigure
the L1 and L2memory between a shared and a private configuration,
across the GPEs within a tile for the L1 and tiles for the L2.

The choice of sharing mode can have either a positive or negative
effect on performance. On one hand, the shared R-XBar configura-
tion incurs larger access latency, due to the overhead of arbitration
between different requesters accessing the same resource(s), but
allows for data sharing, which can lead to better hit-rates and im-
proved reuse. On the other hand, the private mode offers a fixed,
1-cycle access latency, but privatizes the memory resource to the
requester. Privatization can reduce cache pollution if the system
encounters thrashing, but also causes duplication for shared data.

3.2.4 On-Chip Memory Type. We consider reconfiguration be-
tween two on-chip memory types, cache and scratchpad memory
(SPM). SPM consumes lower power than an equivalent cache by
power-gating the tag array and other unused logic. SPM is also
faster when there is reuse across a set of arbitrary (but known)

Table 2: List of hardware performance counters in this work.

Hardware Block Performance Counters

R-DCaches

Cache/SPM access throughput, i.e. number of accesses per unit
time, cache occupancy, i.e. fraction of valid tags in the bank,
overall miss rate, number of prefetches issued per cache access,
current cache capacity.

R-XBars
Contention-to-Access Ratio, i.e. ratio of number of contentions
across all output ports to the number of accesses through the
crossbar.

LCP/GPE Cores Floating-point instructions per cycle (including loads and
stores), overall instructions per cycle (IPC), clock speed.

Memory Controller Read and write memory bandwidth utilization, i.e. used band-
width normalized to available bandwidth.

memory locations. It thereby takes advantage of a tailored replace-
ment policy at the cost of additional instructions to orchestrate data.
In contrast, a cache trades-off the flexibility of SPM by implicitly
managing data, and thus generally outperforms for regular memory
accesses or when there is low reuse.

3.2.5 Prefetcher Aggressiveness. The L1 and L2 layers in Trans-
muter consist of a stride prefetcher based on a PC-based index
table. We incorporate the ability to switch between different de-
grees of prefetching, i.e. the number of cachelines to prefetch ahead.
The usefulness of this prefetcher is correlated with the amount of
structure in the non-zeros within the input matrices. For highly
unstructured data, turning off the prefetcher can lead to minimum
performance degradation while saving power.

3.3 Performance Counters
We implement low-overhead performance counters in the hardware
that are reset after they are queried. These counters are listed in
Table 2. The telemetry data is averaged both spatially (across all
replicated hardware blocks) and temporally (normalized to the
elapsed cycle count of the epoch) by the runtime. The runtime
routine performs lightweight pre-processing upon receiving the
telemetry data, such as normalization and feature set augmentation.

The performance counters are hand-picked based on architec-
tural knowledge and correlation studies, such that we select those
that have small cross-correlations and are oblivious to the code
being executed. At the same time, they are designed with low
hardware overhead considerations. The performance counters for
GPE/LCP cores are available off-the-shelf. The remainder are con-
structed as simple saturating counters that poll on existing wires,
with the exception of the crossbar contention-to-access-ratio for
which dedicated wiring is used to detect contention for memory
banks or a downstream crossbar channel. Overall, we estimate the
storage overhead to be < 1 kB for the evaluated 2×8 Transmuter
system, and ∼ (42.5 ·M · N ) B for largeM×N systems.
Query Mechanism. The performance counters in our implemen-
tation are memory-mapped and accessed by the host using a PCIe-
like protocol. The counter data is queried and streamed out to
DRAM, before being loaded by the host. These steps take place in
the shadow of the workload executing on the device.

3.4 Cost of Telemetry and Reconfiguration
We estimate the decision-making and communication process to
cost on the order of 50–100 host clock cycles. The greater runtime
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(a) Overview of SparseAdapt illustrating how the predictive model
is used to read performance counter (PC) feedback and predict the
best configuration for the remainder of the program phase.
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(b) Timing of SparseAdapt compared to ProfileAdapt considering
A. fixed epochs, and B. epoch size equal to program phase size.
SparseAdapt alleviates the overhead of switching to the profiling
configuration. Energy benefits of avoiding the switch to the profil-
ing configuration are not shown.

Figure 3: Overview of the functionality of SparseAdapt.

reconfiguration cost arises from the overhead to flush caches, as we
pessimistically assume that the entire cache hierarchy is dirty prior
to reconfiguration. The prediction problem is further complicated,
because not all configuration changes incur the same cost, as not
all configuration changes require cache flushing, or require local
flushes only (i.e. from L1 to L2). As such, we introduce the following
taxonomy of our configuration parameters.
• Coarse-Grained. Hardware parameters that require substan-
tive change in the code running on the GPE and LCP cores, in
addition to cache flushing. Both the memory type and dataflow
configuration changes belong to this category.

• Fine-Grained. Parameters that require at most a cache flush,
but do not impact the code executed on the cores.

• Super Fine-Grained. Parameters that incur a small, fixed recon-
figuration cost and can be reconfigured without impacting the
code or even necessitating a cache flush.
We assume in this work that the L1 memory type parameter

is selected by the compiler and use SparseAdapt to predict for
the remaining six parameters (Table 1). This is done to avoid the
cost of checkpointing and rollback that would be incurred while
switching between the cache and SPM modes for L1 memory. For
fair comparisons in our evaluation, we compare against distinct
static configurations that each perform best for the cache and SPM
modes, respectively.

4 PREDICTIVE MODEL
We illustrate the functionality of the proposed SparseAdapt frame-
work in Figure 3a. SparseAdapt partitions the program execution
intomultiple epochs. An epoch finishes when the number of floating-
point operations (FP-ops) executed (inclusive of loads and stores),

averaged across spatial hardware instances, exceeds a fixed value.
We consider FP op-based epochs in this work, because SparseAdapt
reacts to changes in the distribution of FP non-zeros in the inputs.
Time-based epochs cause an imbalance in the number of reconfigu-
rations across epochs that are executed with different clock speeds;
op-based epochs count non-FP (e.g. bookkeeping) operations, which
may differ for different NZEs; cycle-based epochs additionally add
a dependency on the variable main memory access latency.

At the end of each epoch, a sequence of three operations is
performed, namely, (i) hardware telemetry, (ii) inference using a
predictive model, and (iii) reconfiguration of the hardware.

First, a set of performance counter registers in the Transmuter
design are polled and their values are streamed through the off-
chip interface to the host processor. Then, the predictive model
is invoked on the host, and it is responsible for predicting the
parameters of the hardware configuration that it deems to be the
best for the next epoch of execution.

In contrast, the state-of-the-art ProfileAdapt, switches to a pro-
filing configuration before the hardware telemetry is performed. It
further assumes that the hardware has the ability to dynamically
predict phases at runtime. This is a highly non-trivial task, particu-
larly for real-world datasets in sparse computation, that produce
implicit phase transitions during execution. We thus illustrate two
versions of ProfileAdapt [20] in Figure 3b. A. represents the worst-
case scenario that relies on reconfiguration at epoch-granularity
when phases cannot be determined through other mechanisms. B.
shows the execution timeline assuming phase changes could be
known in advance, which is idealistic given the irregular nature of
the sparse workload.

As we will see in the evaluation (Section 6.4), our approach is
superior to both A. and B., by virtue of eliminating the back-and-
forth switch to the profiling configuration. While this may be of
limited importance if the program phases are relatively stable and
sufficiently long, it helps achieve significant savings for bursty
program behavior consisting of unique implicit phases, such as
with the SpMSpM example shown in the motivation (Figure 1). The
rest of this section is dedicated to the predictive model.

4.1 Model Construction
The predictive model (Figure 3a) can be formulated as a function
f : ®X → ®Y where ®X is a tuple of selected performance counter
values, and ®Y is the set of configuration parameter values. Similar to
ProfileAdapt, we consider each configuration dimensionYi ∀ i ∈ ®Y
to be conditionally independent given the values of performance
counters ®X , in order to simplify the model. The predictive model is
thus an ensemble of independent functions fi , i ∈ M where M is
the space of the configuration parameters (Table 1).

We describe the methodology we use to determine the “best”
architectural configuration, where “best” refers to the one that
achieves the highest GFLOPS/W (in Energy-Efficient mode) or
GFLOPS3/W (in Power-Performance mode). This is illustrated in
Figure 4a, assuming three configuration parameters,Y0,Y1 · · ·Ym−1
withm = 3, for ease of illustration. It involves the following steps:
(1) Random Sampling. We first sample K unique configurations

from the space of all architectural configurations. Then, given
a program phase P and input dataset D, we execute the code
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(b) The training dataset uses both the current configuration tu-
ple ®YD,P,S and the performance counters ®XD,P,S , given an in-
put dataset D , program phase P , and sampled configuration S .
The predictive model {f0, f1, · · · , fm−1 } learns the mapping of
{ ®YD,P,S , ®XD,P,S } → ®YD,P,sweep .

Figure 4: Methodology of constructing the training dataset
used for the predictive model in SparseAdapt.

on each of the K configurations. We record the “best” among
these K configurations as ®YD,P,rand .

(2) Neighbor Evaluation.We next evaluate the configurations in
them-dimensional hyper-sphere surrounding ®YD,P,rand , and
record the “best” one as ®YD,P,neiдh .

(3) Dimension Sweep. Finally, startingwith ®YD,P,neiдh , we sweep
each configuration dimension in isolation and record the “best”
points as ®y∗0 , ®y

∗
1 and ®y∗2 (orange dots in Figure 4a). Thus, given our

conditional independence assumption, the point ®YD,P,sweep =

{®y∗0 , ®y
∗
1 , ®y

∗
2} (starred in figure) denotes the “best” configuration

given D and P .

4.2 Dataset Construction and Training
Our approach differs from the ProfileAdapt approach [20] in howwe
construct the training dataset that is used for training our predictive
model. Our key insight is to use the values of configuration parameter
of the last epoch as inputs to the predictive model. This gives us access
to vastly more amount of training data, since for each program
phase P we can construct K examples containing performance
counter inputs that should trigger reconfiguration to the “best”
hardware configuration (Figure 4b). This approach also helps the

model generalize and learn to predict from any configuration to the
best configuration, rather than just from the profiling configuration
to the best configuration.

4.3 Choice of Predictive Model
We pose the following requirements from an ideal model.
• Accuracy. The model should have high accuracy in predicting
the best configuration parameters for the next epoch given the
performance counter values of the current epoch.

• Generalizability. The model should generalize and predict for
counter values that it has not been trained with.

• Overhead. The inference overhead should be sufficiently low
such that the time cost of executing telemetry, inference, and
reconfiguration ≪ the epoch size. This is necessary to enable
fine-grained reconfiguration, in order to adapt to the short-lived
implicit phases.
We experimented with four machine learning models, namely

decision trees, random forests, linear regression, and logistic re-
gression. We found similar inference accuracies between decision
trees and random forests, whereas the linear and logistic regression
models gave us poor accuracies. We thus selected decision trees
(with pruning) as our predictive model, since they adhere to the
aforementioned constraints the best.

4.4 Reconfiguration Cost-Aware Prediction
As discussed earlier, some architectural parameters incur a higher
reconfiguration cost. While the super fine grained parameters incur
relatively lower cost (Section 3.4), frequent reconfiguration for
other parameters, such as cache capacity, can lead to performance
degradation even if the prediction is accurate. In order to prevent the
model from switching high-cost parameters too frequently, we add
a degree of hysteresis through a set of heuristic-based schemes:
• Conservative. The predictor does not perform reconfiguration
for a parameter that incurs more than a fixed cost.

• Aggressive. A scheme where the predictor always chooses to
reconfigure based on its decision, regardless of the cost.

• Hybrid. For each configuration parameter, the predictor only re-
configures if the time cost of reconfiguring along that dimensions
is within a certain percentage of the previous epoch’s elapsed
time. We consider this instead of an absolute threshold on the
reconfiguration time, so as to penalize frequent bursts of recon-
figuration within short periods (shorter epoch times), but allow
for them when they occur occasionally (larger epoch times). The
threshold is selected empirically based on our experiments.

5 EXPERIMENTAL SETUP
This section describes our training data collection and system
modeling methodologies, followed by descriptions of the baseline
schemes used for our evaluation.

5.1 Data Collection and Model Training
The ideal training dataset should produce a high variability in the
program behavior in order to stimulate a wide range of performance
counter values. For this purpose we select a set of sparse matrices
with a broad range of input working set sizes, ranging from 1.5 kB
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Table 3: Parameter sweeps to generate training data.

Kernel Algorithm Matrix Matrix Memory
Name Variant Dimension Density Bandwidth (GB/s)

SpMSpM Cache, SPM 128 → 1k : 2∗ 0.2 → 13% : 2∗ 0.01 → 100 : 10∗
SpMSpV Cache, SPM 256 → 8k : 2∗ 0.2 → 13% : 2∗ 0.01 → 100 : 10∗

to 67 MB. We further vary the external memory bandwidth so as to
stimulate the systemwith both memory-bound and compute-bound
scenarios. Overall, we generate ∼ 360k training examples (total for
two modes of operation) by sweeping the parameters in Table 3
and running them on ∼ 285 discrete hardware configurations.

We consider uniform random datasets as our inputs, so that
we can safely consider the entire program phase to have uniform
behavior. Each training example is generated by running a program
phase P until the program behavior stabilizes, terminating it, and
sampling the performance counter values. For outer product based
SpMSpM, there are two program phases, multiply and merge, while
for SpMSpV the multiply and merge steps happen in tandem.
Predictive Model Training. We train a decision tree classifier
for each of our configuration parameters. While a clear advantage
of our choice of decision trees as the predictive model lies in its
explainability, decision trees are prone to overfitting [8]. We thus
train our decision trees using k-fold cross-validation [2] with k = 3,
while sweeping the hyperparameters of criterion, max_depth,
and min_samples_leaf using Python and Scikit-learn [44].

5.2 System Modeling
We used gem5 [6, 7] to model the Transmuter system based on
the architectural specification in [41]. A power estimator is con-
structed using a combination of RTL synthesis reports for crossbars,
Arm specification document for the cores, and CACTI [38] for the
caches and SPM. The estimates are scaled to 14 nm across the eval-
uated systems. We made additional modifications to the simulator
and power estimator to model the microarchitectural changes to
Transmuter (discussed in Section 3.2).

For workload simulation, we do not use SimPoint in this work,
as we evaluate for matrices with arbitrary sparsity structures (Sec-
tion 2.2). This limits the maximum sizes of matrices we can simulate
within a reasonable time, since we simulate each input-kernel com-
bination with different hardware configurations. Due to these con-
straints, we consider a relatively small Transmuter system on which
we exercise sparse linear algebra kernels with moderate dataset
sizes which are much larger than the on-chip memory. Specifically,
we consider a Transmuter system that has 8 GPEs (8 L1 cache banks)
per tile, and 2 tiles (2 L2 cache banks). We also assume a reduced
off-chip memory bandwidth of 1 GB/s in order to maintain similar
compute-to-memory ratio as the full system in [41].
Reconfiguration Cost. Following the taxonomy in Section 3.4,
we model variable penalty for reconfiguration of each parameter.
Changes to the super fine grained parameters are assigned a fixed
cost of 100 cycles. An increase in cache capacity also incurs this
fixed cost, as our cache implementation (Section 3.2.2) allows for it.

For reconfiguration of the fine-grained parameters, we pessimisti-
cally assume that all the cache lines are dirty. We thus assign a
penalty equal to the time to flush all the R-DCache banks in a layer
to the next level of hierarchy, i.e. L1 to L2 (100–961k cycles, up to

Table 4: Specifications of baseline Transmuter hardware.

Config Name L1 Bank L1 Mode L2 Bank L2 Mode Clock Pref.
Size (kB) Size (kB) (MHz) Agg.

Baseline 4 Shared 4 Shared 1000 4
Best Avg (L1: cache) 4 Private 4 Shared 1000 0
Best Avg (L1: SPM) 4 Private 32 Private 500 8
Maximum 64 Shared 64 Shared 1000 8

Table 5: Properties ofmatrices used for evaluation: synthetic
(top) and real-world [17, 34] (bottom).
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tion 2.2). This limits the maximum sizes of matrices we can simulate
within a reasonable time, since we simulate each input-kernel com-
bination with different hardware configurations. Due to these con-
straints, we consider a relatively small Transmuter system on which
we exercise sparse linear algebra kernels with moderate dataset
sizes which are much larger than the on-chip memory. Specifically,
we consider a Transmuter system that has 8 GPEs (8 L1 cache banks)
per tile, and 2 tiles (2 L2 cache banks). We also assume a reduced
off-chip memory bandwidth of 1 GB/s in order to maintain similar
compute-to-memory ratio as the full system in [41].
Reconfiguration Cost. Following the taxonomy in Section 3.4,
we model variable penalty for reconfiguration of each parameter.
Changes to the super fine grained parameters are assigned a fixed
cost of 100 cycles. An increase in cache capacity also incurs this
fixed cost, as our cache implementation (Section 3.2.2) allows for it.

For reconfiguration of the fine-grained parameters, we pessimisti-
cally assume that all the cache lines are dirty. We thus assign a
penalty equal to the time to flush all the R-DCache banks in a layer
to the next level of hierarchy, i.e. L1 to L2 (100–961k cycles, up to
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Config Name L1 Bank
Size (kB) L1 Mode L2 Bank

Size (kB) L2 Mode Clock
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Pref.
Agg.

Baseline 4 Shared 4 Shared 1000 4
Best Avg (L1: cache) 4 Private 4 Shared 1000 0
Best Avg (L1: SPM) 4 Private 32 Private 500 8
Maximum 64 Shared 64 Shared 1000 8
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ID U1 U2 U3 P1 P2 P3
Type Uniform Uniform Uniform Power-Law Power-Law Power-Law
Dim.
NNZ

8,192
25,000

8,192
50,000

8,192
100,000

8,192
25,000

8,192
50,000

8,192
100,000

ID
Matrix Name

Matrix Dimension, NNZ
Application Domain

Plot

R01
California
(9.7K, 16.2K)
(Directed Graph)

R02
Si2
(0.8K, 17.8K)
(Quant. Chemistry)

R03
bayer09
(3.1K, 11.8K)
(Chemical Simulation)

R04
bcsstk08
(1.1K, 13.0K)
(Structural Problem)

R05
coater1
(1.3K, 19.5K)
(Comp. Fluid Dyn.)

R06
gemat12
(4.9K, 33.0K)
(Power Network)

R07
p2p-Gnutella08
(6.3K, 20.8K)
(Directed Graph)

R08
spaceStation_11
(1.4K, 19.0K)
(Optimal Control)

ID
Matrix Name

Matrix Dimension, NNZ
Application Domain

Plot

R09
EX3
(1.8K, 52.7K)
(Comp. Fluid Dyn.)

R10
Oregon-1
(11.5K,46.8K)
(Undirected Graph)

R11
as-22july06
(23.0K, 96.9K)
(Undirected Graph)

R12
crack
(10.2K, 60.8K)
(2D/3D Problem)

R13
kineticBatchReactor_3
(5.1K, 53.2K)
(Optimal Control)

R14
nopoly
(10.8K, 70.8K)
(Undirected Graph)

R15
soc-sign-bitcoin-otc
(5.9K, 35.6K)
(Directed Graph)

R16
wiki-Vote_11
(8.3K, 103.7K)
(Directed Graph)

157 µJ energy), and L2 to main memory (100–122k cycles, up to
22 µJ energy) with 1 GB/s off-chip memory bandwidth. In reality,
these overheads are expected to be lower due to fewer dirty lines,
since only the partial products and bookkeeping data structures
incur read-modify-write operations whereas the rest can be written
directly to main memory. The host selects the optimal clock speed
for cache flushing based on the mode of operation, i.e. Energy-
Efficient or Power-Performance, based upon a lookup table that is
indexed by the operational mode, L1 capacity per bank, and L2 ca-
pacity per bank. A significant amount of energy savings is obtained
by power-gating the cores, ICaches, work and status queues, and
the synchronization SPM while caches are being flushed. Finally,
the coarse-grained parameter decision is assumed to be made at
compile-time, and so does not impact the runtime.

5.3 Comparison Points
We consider several comparison points for evaluating the improve-
ments achieved using SparseAdapt:
• Baseline. A non-reconfiguring Transmuter system that achieves
the best average metric value across the broad set of applications
(dense and sparse) evaluated in the prior work [41].

157 µJ energy), and L2 to main memory (100–122k cycles, up to
22 µJ energy) with 1 GB/s off-chip memory bandwidth. In reality,
these overheads are expected to be lower due to fewer dirty lines,
since only the partial products and bookkeeping data structures
incur read-modify-write operations whereas the rest can be written
directly to main memory. The host selects the optimal clock speed
for cache flushing based on the mode of operation, i.e. Energy-
Efficient or Power-Performance, based upon a lookup table that is
indexed by the operational mode, L1 capacity per bank, and L2 ca-
pacity per bank. A significant amount of energy savings is obtained
by power-gating the cores, ICaches, work and status queues, and
the synchronization SPM while caches are being flushed. Finally,
the coarse-grained parameter decision is assumed to be made at
compile-time, and so does not impact the runtime.

5.3 Comparison Points
We consider several comparison points for evaluating the improve-
ments achieved using SparseAdapt:
• Baseline. A non-reconfiguring Transmuter system that achieves
the best average metric value across the broad set of applications
(dense and sparse) evaluated in the prior work [41].
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• Best Avg. A non-reconfiguring system that achieves the best
average metric for the SpMSpM and SpMSpV kernels on the
datasets considered in this work.

• Max Cfg. A non-reconfiguring system that has maximum values
for each ordinal configuration parameter, and that uses shared
caches in both the L1 and L2.

• Ideal Static. A non-reconfiguring system (from our sampled
space) that achieves the best averagemetric for the given program
and dataset.

• Ideal Greedy. A system that dynamically reconfigures during
execution of the routine. It greedily selects the configuration that
is optimal for the next epoch.

• Oracle. A system that dynamically reconfigures assuming full
knowledge of the entire program execution. It selects the se-
quence of configuration changes that result in the maximum
average metric value. We model this as a dynamic programming
problem and solve it using amodified Dijkstra algorithm to derive
the globally optimal sequence for the sampled configurations.

We note that Ideal Static, Ideal Greedy and Oracle are configurations
that cannot be determined at runtime, and thus are hypothetical
systems used for upper-bound studies in this work. All the static
configurations are specified in Table 4.

5.4 Choice of Dataset and Parameters
We evaluate SparseAdapt on SpMSpM and SpMSpV kernels using a
variety of input datasets. While SparseAdapt can work with other
algorithms, such as inner product with compression [26], we limit
our evaluation to OP-based sparse matrix multiplication as it has
been shown to be superior for the density levels considered in
this work (see Section 8.1 in [41]). Without loss of generality, we
perform our evaluation on square matrices, stored in compressed
sparse column (CSC) for MatrixA and compressed sparse row (CSR)
for Matrix B (or as an array of index-value tuples for vector B).
Synthetic Dataset.We generate uniform-random matrices using
the SciPy library and for power-law matrices, we use the R-MAT
generator [11] with parameters A = C = 0.1 and B = 0.4. The
properties of these matrices are listed in Table 5 (top). They are
selected to show trends across increasing NNZ count with a fixed
dimension (U1 to U3 and P1 to P3).
Real-World Dataset. We derive real-world matrices for our eval-
uation from two popular sparse matrix collections, namely SuiteS-
parse [17] and Stanford’s SNAP [34]. The properties of each of these
matrices is described in Table 5 (bottom).

We evaluate SpMSpM for matrices R01-R08, and SpMSpV using
R09-R16. We select comparatively more modest matrix sizes for
SpMSpM since it is computationally more expensive to simulate
than SpMSpV. Sizes of this order provided us a balanced trade-off
with the resources required to perform cycle-accurate simulations.

We use a small epoch size of 500 FP-ops for SpMSpV in order
to capture implicit phases at runtime. This was determined based
on a sweep of epoch size from 250-4k FP-ops across a set of rep-
resentative matrices. For the same epoch size, SpMSpM generates
significantly more performance counter data than SpMSpV. In order
to consume tractable amount of data with the given resources, we
use a larger epoch size of 5k FP-ops for SpMSpM. However, we
note that SparseAdapt itself is not limited to any specific workload

3.10
Energy-Eff. ModePower-Perf. ModePower-Perf. Mode

Figure 5: Gains over Baseline for SpMSpV on synthetic ma-
trices for Power-Performance (left, middle) and Energy-
Efficient (right) modes for L1 as cache.

or epoch size, and the benefits reported in this section are represen-
tative of larger datasets. Finally, unless otherwise noted, we assign
the conservative policy for SpMSpM and hybrid policy with 40%
tolerance for SpMSpV, as these gave us the best results across a set
of sweep studies on the real-world datasets.

6 EVALUATION
We evaluated our proposed framework first against the Baseline,
Max Cfg and Best Avg configurations, followed by upper-bound
studies. We then present insights into our predictive model. This
is followed by comparison against ProfileAdapt [20]. We conclude
with studies on the impact of SparseAdapt policies and the gains
achieved across memory bandwidth sweeps.

6.1 Comparison with Standard Configurations
We discuss our analysis of improvements over the Baseline, Max
Cfg and Best Avg systems here.

6.1.1 Analysis on Synthetic Dataset. We report evaluation of SpM-
SpV on our synthetic dataset against a uniform-random vector of
density 50%. We omit our analysis of SpMSpM on the synthetic
dataset, for brevity.
Power-Performance Mode. Figure 5 shows the performance in
GFLOPS (left) and energy efficiency in GFLOPS/W (middle) of Base-
line, Best Avg, Max Cfg and SparseAdapt. In this mode, SparseAdapt
delivers average performance gains of 1.8× over Baseline. In this
mode, the energy efficiency achieved is 3.5× better than Max Cfg,
while the average performance remains within 34%. Although
SparseAdapt achieves only 6% better efficiency than Best Avg, it
delivers 1.6× better performance.
Energy-Efficient Mode. As seen in Figure 5 (right), SparseAdapt
achieves an average energy-efficiency gain of 1.5–1.9× over the
Baseline. The gains for both the power-law and uniform randomma-
trices are observed to roughly saturate with increasing the density,
as SparseAdapt follows the Oracle decisions more closely, particu-
larly for the clock frequency and L2 mode. The Max Cfg configura-
tion is 2.9× less energy efficient than Baseline despite being faster.
In comparison, the Best Avg achieves 1.1× over the Baseline.

6.1.2 Analysis on Real-World Dataset. We present our analysis of
SpMSpM on matrices R01-R08 in Table 5. Each matrix is multiplied
with its transpose, i.e. C = A · AT , where A is the input matrix and
C is the result matrix.
Power-Performance Mode. The gains for this mode are shown
in Figure 6. The scope of performance improvements over Baseline
is smaller than in the case of SpMSpV (for our synthetic dataset),

1013



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Pal, et al.

Power-Perf. Mode Energy-Eff. ModePower-Perf. Mode

Figure 6: Improvements over Baseline for SpMSpM on real-world matrices in Power-Performance (left, middle) and Energy-
Efficient (right) modes for L1 as cache.
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Figure 7: Improvements over Baseline for SpMSpV on real-
world matrices in Power-Performance mode.

and SparseAdapt achieves similar performance as Best Avg (within
8% of Max Cfg). However, SparseAdapt delivers this performance at
1.3× less energy compared to Best Avg, and is 5.3× more efficient
than Max Cfg.
Energy-EfficientMode. Figure 6 (right) shows the efficiency gains
with SparseAdapt, which are significantly higher (1.8×) than Base-
line, and is better than Best Avg by (1.6×).

6.1.3 Analysis on Graph Algorithms. We implement two popular
graph algorithms, namely BFS and SSSP. Our implementations
map vertex programs to iterative SpMSpV operations, similar to
GraphMat [59]. The end-to-end improvements in traversed edges
per second (TEPS) per Watt are reported in Table 6, showing that
SparseAdapt delivers gains of up to 1.5× over Baseline (1.3× over
Best Avg). The largest gains are observed on graphs with highly
power-law behavior, for instance, R10, R11 and R14. In contrast, the
scope of improvement over Best Avg is small for R09, as it consists
of local connections only and thus the non-zeros are distributed
roughly uniformly along the diagonal (Table 5).

6.1.4 Analysis with Cache/Scratchpad L1 Memory. As noted in Sec-
tion 3.4, we assume that the choice of L1 mode (cache or SPM) is
made at compile-time. We thus have two configurations for the
two L1 modes, listed in Table 4. The results for Power-Performance
mode on SpMSpV for our real-world dataset (R09-R16) are shown

Table 6: TEPS per Watt gains over Baseline for two graph
algorithms in Energy-Efficient mode with L1 as cache.

R09 R10 R11 R12 R13 R14 R15 R16 GM

BFS Best Avg 1.26 1.14 1.11 1.07 1.17 1.13 1.17 1.24 1.16
SparseAdapt 1.28 1.32 1.44 1.34 1.15 1.40 1.27 1.27 1.31

SSSP Best Avg 1.21 1.13 1.10 1.03 1.13 1.05 1.15 1.18 1.12
SparseAdapt 1.21 1.43 1.45 1.27 1.17 1.31 1.29 1.21 1.29

in Figure 7. The performance gains are larger for L1 SPM (1.9× over
Best Avg) compared to L1 cache (1.3× over Best Avg). This is 1.2×
better than Max Cfg for cache and 1.2× better than Max Cfg for
SPM, while being 4.3× and 6.2× more energy-efficient for the two
L1 modes, respectively. The cache mode benefits are 1.5× better
over Baseline, albeit with 20% greater energy due to the predictor
selecting large L2 cache sizes.

6.1.5 Insights from Configuration Choices. We observe that the
model applies DVFS based on the bandwidth requirement of the
explicit phase (Section 2.1), and selects faster clocks when there is
greater data locality. The L1 size choice is correlated to the cache
occupancy, however the number of reconfigurations are curbed
based on our hybrid policy for fine-grained knobs (Section 4.4).
In comparison, the prefetcher aggressiveness and L2 capacity are
reconfigured more often, in response to implicit phases.

The L1 mode choice is highly data-dependent for SpMSpV; for
SpMSpM, we observe the multiply phase to be amenable to shared
L1 while merge performs better on private L1, which are consistent
with the description in prior work [40]. When the L1 is configured
as SPM, the model selects larger L2 sizes to accommodate auxil-
iary data structures (those not mapped to SPM) and spill variables.
Finally, the model shows preference for larger L1 and L2 capaci-
ties for the Power-Performance mode, and for smaller sizes in the
Energy-Efficient mode.

6.2 Comparison against Ideal and Oracle
We perform upper-bound studies to evaluate SparseAdapt and com-
pare it with Ideal Static, Ideal Greedy and Oracle. Figure 8 shows the
results for SpMSpM on real-world matrices R01-R08 (L1 as cache).

The gaps between each of these and SparseAdapt convey dif-
ferent insights; Ideal Static represents the gains achievable if we
had an ideal compile-time predictor that can select the best aver-
age configuration. Ideal Greedy represents our SparseAdapt ap-
proach if the predictive model was ideal, and Oracle shows the

Figure 7: Improvements over Baseline for SpMSpV on real-
world matrices in Power-Performance mode.

and SparseAdapt achieves similar performance as Best Avg (within
8% of Max Cfg). However, SparseAdapt delivers this performance at
1.3× less energy compared to Best Avg, and is 5.3× more efficient
than Max Cfg.
Energy-EfficientMode. Figure 6 (right) shows the efficiency gains
with SparseAdapt, which are significantly higher (1.8×) than Base-
line, and is better than Best Avg by (1.6×).

6.1.3 Analysis on Graph Algorithms. We implement two popular
graph algorithms, namely BFS and SSSP. Our implementations
map vertex programs to iterative SpMSpV operations, similar to
GraphMat [59]. The end-to-end improvements in traversed edges
per second (TEPS) per Watt are reported in Table 6, showing that
SparseAdapt delivers gains of up to 1.5× over Baseline (1.3× over
Best Avg). The largest gains are observed on graphs with highly
power-law behavior, for instance, R10, R11 and R14. In contrast, the
scope of improvement over Best Avg is small for R09, as it consists
of local connections only and thus the non-zeros are distributed
roughly uniformly along the diagonal (Table 5).

6.1.4 Analysis with Cache/Scratchpad L1 Memory. As noted in Sec-
tion 3.4, we assume that the choice of L1 mode (cache or SPM) is
made at compile-time. We thus have two configurations for the
two L1 modes, listed in Table 4. The results for Power-Performance

Table 6: TEPS per Watt gains over Baseline for two graph
algorithms in Energy-Efficient mode with L1 as cache.

R09 R10 R11 R12 R13 R14 R15 R16 GM

BFS Best Avg 1.26 1.14 1.11 1.07 1.17 1.13 1.17 1.24 1.16
SparseAdapt 1.28 1.32 1.44 1.34 1.15 1.40 1.27 1.27 1.31

SSSP Best Avg 1.21 1.13 1.10 1.03 1.13 1.05 1.15 1.18 1.12
SparseAdapt 1.21 1.43 1.45 1.27 1.17 1.31 1.29 1.21 1.29

mode on SpMSpV for our real-world dataset (R09-R16) are shown
in Figure 7. The performance gains are larger for L1 SPM (1.9× over
Best Avg) compared to L1 cache (1.3× over Best Avg). This is 1.2×
better than Max Cfg for cache and 1.2× better than Max Cfg for
SPM, while being 4.3× and 6.2× more energy-efficient for the two
L1 modes, respectively. The cache mode benefits are 1.5× better
over Baseline, albeit with 20% greater energy due to the predictor
selecting large L2 cache sizes.

6.1.5 Insights from Configuration Choices. We observe that the
model applies DVFS based on the bandwidth requirement of the
explicit phase (Section 2.1), and selects faster clocks when there is
greater data locality. The L1 size choice is correlated to the cache
occupancy, however the number of reconfigurations are curbed
based on our hybrid policy for fine-grained knobs (Section 4.4).
In comparison, the prefetcher aggressiveness and L2 capacity are
reconfigured more often, in response to implicit phases.

The L1 mode choice is highly data-dependent for SpMSpV; for
SpMSpM, we observe the multiply phase to be amenable to shared
L1 while merge performs better on private L1, which are consistent
with the description in prior work [40]. When the L1 is configured
as SPM, the model selects larger L2 sizes to accommodate auxil-
iary data structures (those not mapped to SPM) and spill variables.
Finally, the model shows preference for larger L1 and L2 capaci-
ties for the Power-Performance mode, and for smaller sizes in the
Energy-Efficient mode.

6.2 Comparison against Ideal and Oracle
We perform upper-bound studies to evaluate SparseAdapt and com-
pare it with Ideal Static, Ideal Greedy and Oracle. Figure 8 shows the
results for SpMSpM on real-world matrices R01-R08 (L1 as cache).

The gaps between each of these and SparseAdapt convey dif-
ferent insights; Ideal Static represents the gains achievable if we
had an ideal compile-time predictor that can select the best aver-
age configuration. Ideal Greedy represents our SparseAdapt ap-
proach if the predictive model was ideal, and Oracle shows the
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Figure 8: Comparison against Ideal Static, Ideal Greedy and Oracle for SpMSpM on real-world matrices in Power-Performance
(left, middle) and Energy-Efficient (right) modes for L1 as cache. Gains are shown compared to Baseline.
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Figure 9: Effect of complexity of predictive model on the
gains with SparseAdapt in Power-Performance mode for
SpMSpV with L1 as cache.

gains achievable if the predictor had full knowledge of the fu-
ture. While the performance gains are comparable between Or-
acle over Ideal Static (Power-Performance mode), we note the high
scope of improvements with dynamic reconfiguration (1.3–1.8×)
for GFLOPS/W. Compared to Oracle, SparseAdapt is within 13% per-
formance for Power-Performance mode, and just 5% efficiency for
both the modes. SparseAdapt achieves an energy efficiency within
3% of Ideal Greedy (Energy-Efficient mode), but interestingly the
gains are 11% and 6% better for performance and efficiency, respec-
tively, in Power-Performance mode. This is made possible by the
policies introduced in Section 4.4, which generate inertia toward
frequent reconfiguration changes along costly dimensions. When
disabled, i.e. for the Aggressive scheme (not shown), the gains drop
to 9% worse compared to Ideal Greedy for performance and energy
efficiency, respectively.

Finally, for SpMSpV operation in the Power-Performance mode,
SparseAdapt has 1% better (4% worse) GFLOPS and is within 56%
(15%) in terms of GFLOPS/W compared to Oracle, for L1 as cache
(SPM). We omit detailed analyses due to space constraints.

6.3 Analysis of Model and Features
We discuss insights from our analysis of hyperparameter explo-
ration and feature selection for our predictive model.

6.3.1 Effect of Model Complexity. As decision trees tend to over-
fit, it is important to regularize them at training. We explore this
phenomenon by training decision trees with depths ranging from
2 → 26 : 4∗. We analyze the gains achieved while independently

Power-Perf. Mode Energy-Eff. Mode

Figure 10: Relative importance of each class of perfor-
mance counters for each trained model (x-axis) in Power-
Performance (left) and Energy-Efficient (right) modes with
L1 as cache.

varying the depth of the tree corresponding to each of the config-
uration parameters one-at-a-time, while using the original trees
for the remaining. Here, original trees refer to the trees trained
using the methodology in Section 5. The improvements over the
Baseline in Power-Performance mode, for the case of SpMSpV with
two matrices, P1 and P3, with a 50% dense vector, are shown in
Figure 9. Given that our Power-Performance mode gives greater
importance to performance optimization, GFLOPS is more sensitive
to model complexity compared to GFLOPS/W.

6.3.2 Feature Importance. Scikit-learn computes feature impor-
tance as the total reduction of criterion (i.e. function to measure the
quality of a split in the tree) brought by that feature, also known
as Gini importance. The feature importances of our performance
counters in determining the decisions of the learned predictive
model are shown in Figure 10. The counters are grouped into cat-
egories for ease of illustration. Overall, we observe that counters
probing the L1 R-DCache block and the memory controller are the
most important across the models for each configuration parameter.
Interestingly, the LCP counters (IPC and FP-IPC) are given more
importance than GPE counters in the trained models for most cases.
This can be attributed to the fact that because LCPs are responsible
for scheduling work and load-balancing, they have a “global” view
of the activity within each tile, compared to any individual GPE
core. Overall, this analysis is useful to reason about which counters
are the most critical to have in order to balance prediction accuracy
with hardware requirements.
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Matrix P3

Matrix R12

Matrix P3

Figure 11: Left. Gains with different SparseAdapt policies
(Power-Performance mode). Right. Impact of sweeping ex-
ternal memory bandwidth in Energy-Efficient mode. Both
are for SpMSpV with L1 as cache.

6.4 Comparison with ProfileAdapt Scheme
We compare SparseAdapt with a prior runtime reconfiguration
scheme, ProfileAdapt [20]. ProfileAdapt triggers a reconfiguration
into a “profiling” configuration at every epoch (naïve) or phase
boundary (ideal) as illustrated in Figure 3, which can lead to large
overheads especially for fine-grained phases. We implement Pro-
fileAdapt by adding the cost to reconfigure to and from the profil-
ing configuration into our Oracle sequence for each epoch (naïve),
and for epochs following which there is a change in configuration
(ideal). Furthermore, it would be unfair to compare ProfileAdapt
and SparseAdapt at the same epoch size, since ProfileAdapt is de-
signed to work with much larger epoch sizes. We, therefore, per-
form an epoch size sweep and select operational points for Pro-
fileAdapt where the metric-of-interest is maximum, which is 6k
FLOPS for the Power-Performance mode and 5k FLOPS for the
Power-Performance mode. This is compared with SparseAdapt con-
sidering the chosen epoch sizes in Section 5.4.

We evaluate the SparseAdapt scheme against ProfileAdapt for
SpMSpV in cache mode on the real-world dataset. Compared with
the naïve ProfileAdapt scheme, which switches to the profiling con-
figuration at each epoch, SparseAdapt achieves significant improve-
ments of 2.8× and 2.0× in GFLOPS and GFLOPS/W, respectively for
the Power-Performance mode, and 2.9× gain in GFLOPS/W for the
Energy-Efficient mode. The ideal ProfileAdapt relies on a SimPoint
based external phase detection mechanism which is unrealistic for
workloads with implicit phases. Despite this idealistic assumption,
SparseAdapt with its ability to efficiently reconfigure at implicit
phase boundaries achieves GFLOPS/W gains of 1.7× and 1.1× in
Power-Performance mode, and 2.4× in Energy-Efficient mode.

6.5 Effect of Parameter Sweeps
Cost-Aware Reconfiguration Policies. In Section 4.4, we intro-
duced our conservative, aggressive, and hybrid prediction policies
for reconfiguration-cost aware prediction. We evaluate the efficacy
of each of these on SpMSpV execution (epoch size 500) on represen-
tative matrices from the synthetic and real-world datasets, P3 and
R12. The results are shown in Figure 11 (left). The conservative and
hybrid schemes with small tolerance for reconfiguration penalty

R01       R02  R03      R04       R05    R06      R07   R08   GM

Figure 12: GFLOPS/W gains in Energy-Efficient mode for
SpMSpM (R01-R08; L1 as cache) while varying the tile and
GPEs per tile counts (fixed 1 GB/s bandwidth).

overly restrict the system from reconfiguring across implicit phases
during execution, resulting in limited gains. As the tolerance is
increased, the reconfiguration cost starts dominating over the ben-
efit achieved from switching to the new configuration. The ideal
tolerance values are observed to be between 10-40% across most of
our inputs, given this epoch size and kernel.
Memory Bandwidth. SparseAdapt can be deployed without re-
training in scenarios where there is sharing of bandwidth across
concurrent kernel executions, or if the device is interfaced to a
different type of main memory. We study the impact of these sce-
narios by sweeping the external memory bandwidth. Figure 11
(right) shows the energy-efficiency gains with SparseAdapt (in
Energy-Efficient mode) for SpMSpV. The trend of gains deviates
from a smooth curve for smaller bandwidth values, because the re-
configuration cost increases, thus increasing the impact of discrete
parameter choices. When the system is memory-bounded, as is
generally true for sparse computation, SparseAdapt achieves large
energy-efficiency gains of >3× over both Baseline and Best Avg. It
selects smaller cache sizes and slower clocks to recover both static
and dynamic energy, with negligible performance hit. Even at the
other end of compute-boundedness, it is 1.1× better than Best Avg.
System Size. Figure 12 shows our gains over Baseline when scaling
(i) the number of tiles and L2 banks (M), and (ii) the number of GPEs
and L1 banks per tile (N ), for anM×N system. We observe mean
GFLOPS/W gains of 1.7-2.0× across the four systems, obtained
using the predictive model trained for a 2×8 system (no re-training)
and an epoch size of 5k . As the system size grows, the benefits with
DVFS dominate, particularly for the multiply phase of OP-SpMSpM.
These gains demonstrate the scalability of our framework.

7 DISCUSSION
Adaptation to Different Hardware and Algorithms. This pa-
per evaluates the SparseAdapt framework for sparse linear algebra
operations. However, SparseAdapt is designed for programmable
CGRAs (Transmuter in this work) and thus can be extended to
additional kernels beyond SparseBLAS. This would simply require
collection of additional training data using simulations for the
new kernels, and re-training the predictive model. Since our per-
formance counters are workload-agnostic, we expect no need for
additional counters. Additionally, our approach can be adapted to
any hardware with knobs for resource-sharing control, bank-level
power gating, and so on.

While the proposed technique is evaluated with irregular work-
loads, it is applicable to regular applications as well. Our offline
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analysis, however, shows minor differences (< 5%) between Ideal
Static and Oracle for two regular kernels, GeMM and Conv [41].
We thus conclude that a dynamic control mechanism, while useful,
may be an overkill if targeted exclusively for regular applications.
Bridging the Gap with Oracle. Ideal Greedy is a fundamental
upper bound for the SparseAdapt approach in the Aggressive mode
of operation. However, there is additional scope for improvement
even between Oracle and Ideal Greedy in Section 6.2. An extension
to SparseAdapt will explore using telemetry data from multiple
past epochs to learn a history-based pattern of program execution,
borrowing ideas from branch prediction and prefetching.
Memory Mode Reconfiguration.We assume that the choice of
L1 mode (cache or SPM) is made at compile-time, since this deter-
mines the version of code executed. This leaves out some scope for
optimization when different parts of the program show amenability
to a cache or SPM. Dynamic cache-to-SPM reconfiguration can be
enabled using existing hardware techniques, such as Stash [32],
that map sections of the SPM to global memory.

8 CONCLUSION
This work proposed a dynamic control scheme called SparseAdapt
that targets changes in phase due to evolving properties of the data
in irregular workloads (implicit), in addition to those due to change
in code (explicit). This requires fine-grained reconfiguration with
low overhead, for which SparseAdapt uses runtime telemetry of
hardware performance counters. SparseAdapt uses an ensemble of
decision trees and a set of reconfiguration cost-aware heuristics to
make decisions about configuration parameters of the hardware.

We evaluated SparseAdapt on key SparseBLAS kernels (SpM-
SpM and SpMSpV) in both Energy-Efficient and Power-Performance
modes of operation, that predict for the best values of GFLOPS/W
and GFLOPS3/W, respectively. Our analysis on SpMSpM with real-
world datasets show performance and energy-efficiency improve-
ments of 1.1× and 1.5× over the baseline static configuration (simi-
lar performance as Max Cfg with 5.3× better efficiency) in Power-
Performance mode, and 1.7× better efficiency in Energy-Efficient
mode. Finally, the SparseAdapt technique achieves average gains
of 1.7–2.8× in performance and 1.1–2.0× in energy-efficiency over
a state-of-the-art control scheme for runtime adaptation.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact evaluation demonstrates the performance and energy
efficiency benefits of using SparseAdapt across different sparse
kernels and datasets on the Transmuter architecture, in addition
to the scalability of SparseAdapt across different reconfiguration-
aware policy and memory bandwidth values.

The artifact is packaged as a Docker image and contains: (i)
gem5 model to simulate Transmuter, (ii) application source code
for SpMSpM and SpMSpV on Transmuter, (iii) dataset used for
training SparseAdapt’s predictive models and pre-trained models,
(iv) wrapper scripts to run the simulator using the various predictive
schemes. Unfortunately, we could not make the artifact publicly
available. For the artifact evaluation effort, we gave the evaluator(s)
access to a private GitHub repository containing the infrastructure
necessary to reproduce the results in the rest of this section.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: SparseAdapt uses decision trees to predict the best set
of configuration parameters given a set of performance counter data.
Additionally, hysteresis schemes discussed in Section 4.4 are applied.

• Program: Outer product based SpMSpM and SpMSpV run on simulated
hardware using gem5.

• Compilation: g++ 5.5.0, arm-linux-gnueabihf-g++ 5.4.0, Python 3.7.
• Binary: Binaries for SpMSpM and SpMSpV are generated using the
arm-g++ compiler.

• Model: The proposed predictive model consists of decision tree models,
one for each configuration parameter (Section 3.2).

• Data set: The training dataset is generated using the methodology in
Section 4.2. Input datasets are obtained as mentioned in Section 5.4.

• Run-time environment: Ubuntu 16.04; Docker image provided.
• Hardware: While the artifact was developed on a 16-core Intel Xeon

system, it can be evaluated on any commodity multiprocessor hardware.
• Execution: Bash and Python scripts are included for execution.
• Metrics: GFLOPS, GFLOPS/W gains over a non-reconfiguring system.
• Output: Terminal logs showing deviation of reproduced results with
reported results; tarballs containing raw CSV results and PDF plots.

• Experiments: Figures 5, 6 and 7 : comparison of SparseAdapt against
Baseline, Max Cfg and Best Avg for SpMSpV with synthetic dataset (L1
as cache), SpMSpM with real-world dataset (L1 as cache), and SpMSpV
with real-world dataset (L1 as cache and SPM). Section 6.4: comparison of
SparseAdapt against ProfileAdapt for SpMSpV with L1 as cache. Figure
11: comparison with Baseline across (a) a sweep of SparseAdapt policies,
and (b) different system memory bandwidth parameters.

• How much disk space required (approximately)?: Roughly 50-100
GB: 10 GB for the Docker image, and the remainder as temporary storage
of gem5 build and simulation data depending on number of parallel runs.

• Howmuch time is needed to prepare workflow (approximately)?:
Less than an hour to install and familiarize oneself with Docker, followed
by building the Docker image (20 mins with 16 cores).

• Howmuch time is needed to complete experiments (approximately)?:
Roughly 14 hours on a 16-core system with 64 GB of DRAM.

• Publicly available?: No

A.3 Description
A.3.1 How to Access. We have created a GitHub repository con-
taining a Docker image of our artifact. We have created an account
that the evaluators can use to clone this repository, and build and
run the Docker image. See A.4 for step-by-step instructions.
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A.3.2 Hardware Dependencies. Any commodity multicore CPU
with a decent RAM capacity is sufficient to run our Docker image.
We recommend a system with at least 4 cores and 16 GB of DRAM.

A.3.3 Software Dependencies. No additional software other than
Docker is required as the rest of the dependencies are present
within the provided Docker image. Docker can be downloaded
from https://docs.docker.com/get-docker/.

A.3.4 Data Sets andModels. No external datasets are required. The
datasets used to train our predictive model as well as the matrix
datasets used for evaluation are available in the Docker image.

We have provided trained models corresponding to each of the
microarchitectural parameters in the Docker image.

A.4 Installation
This section outlines the steps to download the code, build the
Docker image and run the image. Note that you may need to run
the Docker commands as sudo.
• Setting up Docker. Download Docker from https://docs.docker.
com/get-docker/ and start the Docker daemon. Verify that Docker
is working by running docker run -t hello-world.

• Cloning the Artifact Repository. We have created a GitHub
account that the evaluator(s) can use to clone the repository con-
taining our artifact. Run the clone command using the password
(access token).

• Building the Docker Image. Once the repository is cloned,
go into sparseadapt/ and build the image: docker build -f
docker/Dockerfile -t sadapt:micro21 . . It also builds the
simulator and takes a while to finish (∼ 20 mins with 16 cores).

• Start the Docker Shell Prompt. Now run the Docker image
using the command docker run --name micro21-ae -it -e
SADAPT_NPROC=16 sadapt:micro21. Set the SADAPT_NPROC pa-
rameter to the number of cores to be used for running our exper-
iments. This step should start a shell prompt. It is recommended
to start this inside a tmux or screen session.

A.5 Experiment Workflow
This section outlines the commands and scripts to be used to
reproduce the key results of this paper. Note that all directory
paths mentioned from here on are relative to /sparseadapt/sim/.
Once inside the Docker container, run the parent script as bash
rep_run.sh from scripts/. This script reproduces five key sets
of results in the paper. Each set of experiments is reproduced by a
corresponding child script, described below (approximate runtimes
with 16 cores are also mentioned).
• Figure 5. Gains for SpMSpV on synthetic dataset with L1 cache:
rep_fig_5.sh (∼ 60 mins)

• Figure 6.Gains for SpMSpM on real-world dataset with L1 cache:
rep_fig_6.sh (∼ 120 mins)

• Figure 7. Gains for SpMSpV on real-world dataset with L1 cache
and scratchpad: rep_fig_7.sh (∼ 170 mins)

• Section 6.4. Comparison of SparseAdapt against ProfileAdapt:
rep_sec_6.4.sh (∼ 110 mins)

Raw simulation data for ProfileAdapt is pre-packaged in the Docker image,
as it can take several days to simulate the datapoints required for this.
However, simulation can be force-run by un-setting $skip_sim in the script.

• Figure 11. Effect of SparseAdapt policy and bandwidth sweeps
for synthetic dataset with L1 cache: rep_fig_11.sh (∼ 380 mins)

A.6 Evaluation and Expected Results
After the runs are completed, run bash rep_check.sh from scripts/
to obtain the deviation from the original results obtained for the
paper for each of the experiments (in rep_data_orig/). The re-
sults from the artifact evaluation are stored as tarballs in the path
rep_data/. The tarballs can be copied back using scp or by run-
ning docker cp micro21-ae:/sparseadapt/rep_data ./ from
outside the container, for manual inspection of the data and figures.

The major source of variability between the data presented in
this work and that from the experiments run by the evaluators
arises due to differences in the compiled binaries. For instance,
the binaries can have different data layout of the inputs in main
memory (i.e. exact memory addresses that different data structures
are mapped to). This influences the memory access patterns as well
as the scheduling, and thus affects both the simulated runtime and
energy. For Figures 5-7, a small deviation (< ±5%) is expected, while
a deviation of ∼ ±20% is expected for the remaining experiments.
There may be slightly larger deviations if the predictive model
guides the configuration sequence in a different direction due to
the aforementioned variability.

In this artifact evaluation, we have set up the experiments to
reproduce the key results in this work. We have omitted the tasks
to reproduce the remaining results (Figures 8-10, 12 and Table 6)
as these simulation take of the order of weeks to run. However,
we have included the original data used to make the graphs/tables
within rep_data_orig/.

A.7 Methodology
We discuss in this section some details of the modeling and simula-
tion methodology used for this work.
(1) Simulating Baseline, Max Cfg, Best Avg and Ideal Static.

Each of these static (non-reconfiguring) systems are simulated
by running gem5 with the configuration parameters set accord-
ing to the static specifications (Section 5.3). The code that is run
on the simulated GPE and LCP cores is present in code/src/.
The system specifications are split between arguments to the
simulation script (scripts/run-gem5.py) and defines in include/.

(2) Training Dataset Construction. We construct the training
datasets for each L1 mode (cache and scratchpad) and opti-
mization mode (Energy-Efficient and Power-Performance) us-
ing the approach in Section 4.2. The training dataset is stored
in dataset/<opt_mode>/<l1_mode>/dataset-exp.csv. Each
training example consists of the current configuration param-
eter values, the current performance counter values, and the
“best” configuration parameters.

(3) Pre-Processing and PredictiveModel Training. The scripts
scripts/parse_dataset.py and scripts/fit.py are used to
pre-process the training data and construct the predictive mod-
els, respectively. We use the DecisionTreeClassifier class
and its methods from Scikit-learn for the latter. The original
models used to produce the data in this work are stored in
best_models/.
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(4) Performance Counter andMetric Collection. To construct
the ideal schemes (Section 6.2), the simulation data is collected
by randomly sampling S = 256 configurations from the space of
the explored configuration space (Table 1). Each configuration
is used to simulate the workload in its entirety. Furthermore, we
divide the workload into continuous intervals (epochs) during
simulation. At the end of each simulated epoch, we evaluate the
metrics-of-interest and collect the performance counter data,
and repeat this for each unique configuration state explored.

(5) SparseAdapt Construction. The segments of simulation cor-
responding to each epoch are stitched together to represent
a single dynamic evaluation. At the end of any given epoch,
the configuration for the next epoch is selected by running the
performance counter data through the predictive model, and
applying a pre-determined hysteresis scheme (Section 4.4). This
is handled by the simulation script (scripts/run-gem5.py). As
the next step, the reconfiguration cost to switch between any
two configurations is added and the metrics are re-evaluated.
This is encapsulated by scripts/build_oracle_pred.py. The
final step is the evaluation of the overall metrics-of-interest us-
ing scripts/gather_oracle_pred.py.

(6) Ideal Greedy Construction. The simulated epoch segments
are stitched together as in the previous paragraph, however in
the case of Ideal Greedy the next configuration is chosen as the
one that has the best metric-of-interest for the next epoch (among
the sampled points in (4)). The stitched profile is then modified
to include the reconfiguration costs across epoch boundaries.

(7) Oracle Construction. We mimic a scheme that selects the
sequence of configuration changes that optimizes the metric-
of-interest for the entire program. We map and solve this as a
dynamic programming problemwith an implementation follow-
ing Dijkstra’s algorithm. We first construct a weighted directed
acyclic graph. Each node is a configuration state Se that can
be chosen for a given epoch e . An edge between state Si and
Si+1 consists of the time and energy to execute the epoch with
the system configured as Si+1 while considering the penalty of
going from Si to Si+1. scripts/build_oracle_pred.py con-
structs this graph from the data in Step 4 and an external
program scripts/dijkstra.cpp outputs the shortest “path”
through the graph, i.e. the sequence of configuration choices
leading to the (approximate) global optimum.

(8) ProfileAdapt Construction. We implement ProfileAdapt by
emulating a transition to the profiling configuration before go-
ing to the next selected configuration (see Figure 3b). For pes-
simistic comparisons, we consider the ProfileAdapt scheme ap-
plied to our Ideal Greedy sequence for each epoch (Naïve), and
for epochs following which there is a change in configuration
(Ideal). We implement it by dividing the epoch in which there
is a change to the profiling configuration into two sections. The
first section is considered to be run in the profiling configura-
tion, and second is run in that selected by Ideal Greedy. Since
the execution of the workload in the profiling configuration also
contributes to useful work done, we calculate the metrics-of-
interest for the overall epoch by combining the metrics obtained
from the two sections.
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