
Facultat d’Informàtica de Barcelona

Master in Innovation and Research in Informatics

High Performance Computing

PRISM: an intelligent adaptation of prefetch
and SMT levels

Author: Cristobal Ortega

Advisors: Miquel Moretó
Barcelona Supercomputing Center (BSC)

Computer Architecture Department, UPC

Marc Casas
Barcelona Supercomputing Center (BSC)

Date: October 20, 2016

UPC

2

Abstract

Current microprocessors include hardware to optimize some specifics workloads.

In general, these hardware knobs are set on a default configuration on the booting

process of the machine. This default behavior cannot be beneficial for all types of

workloads and they are not controlled by anyone but the end user, who needs to

know what configuration is the best one for the workload running. Some of these

knobs are: (1) the Simultaneous MultiThreading level, which specifies the num-

ber of threads that can run simultaneously on a physical CPU, and (2) the data

prefetch engine, that manages the prefetches on memory. Parallel programming

models are here to stay, and one programming model that succeed in allowing pro-

grammers to easily parallelize applications is Open Multi Processing (OMP). Also,

the architecture of microprocessors is getting more complex that end users cannot

afford to optimize their workloads for all the architectural details. These architec-

tural knobs can help to increase performance but it is needed an automatic and

adaptive system managing them. In this work we propose an independent library

for OpenMP runtimes to increase performance up to 220% (14.7% on average)

while reducing dynamic power consumption up to 13% (2% on average) on a real

POWER8 processor.

i

UPC

ii

Acknowledgments

I would like to thanks to my advisors, Miquel Moretó and Marc Casas, for their

continued guidance and help in this work. I would not be writing this without

them.

And thanks to Ramon Bertran, Alper Buyuktosunoglu and Pradip Bose for every-

thing I learned when working with them.

Also, I want to thank my colleagues from RoMoL at BSC and from UPC.

And finally, thanks to my family for their help through all my life.

This work has been supported by the Spanish Government (Severo Ochoa grants

SEV2015-0493), by the Spanish Ministry of Science and Innovation (contracts

TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051

and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the

European HiPEAC Network of Excellence.

iii

UPC

iv

Contents

Abstract i

Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 3

1.3 Thesis organization . 4

2 Planning 7

3 State of the art 9

3.1 Simultaneous MultiThreading . 9

3.2 Data prefetch . 12

3.3 Programming models . 14

4 libPRISM 19

4.1 Design overview . 20

4.1.1 Wrapping mechanism . 21

4.1.2 libPRISM driver . 27

4.2 Parallel regions . 29

4.2.1 Dividing work . 30

4.2.2 Tasks . 30

v

UPC CONTENTS

4.3 Policies implemented . 31

4.3.1 Oracle . 32

4.3.2 Exploration . 35

5 Experimental framework and methodology 41

5.1 POWER8 processor . 41

5.1.1 POWER8 reconfigurability 44

5.1.1.1 SMT . 45

5.1.1.2 Data Stream Control Register 46

5.2 Metrics . 48

5.2.1 Performance . 48

5.2.2 Power and energy . 49

5.3 Benchmarks . 50

5.3.1 NAS . 51

5.3.2 SPEC OMP 2012 . 51

5.3.3 CORAL . 52

6 Evaluation 55

6.1 Results . 57

6.1.1 NAS . 57

6.1.2 SPEC OMP 2012 . 62

6.1.3 CORAL Benchmarks . 65

7 Conclusions and future work 69

7.1 Future work . 70

Bibliography 77

vi

List of Figures

1.1 Processor technology alone can no longer provide the price/perfor-

mance gains necessary to sustain Moore’s Law [17] 3

3.1 Example of a SMT processor fetching and executing from 4 threads 10

3.2 Hyperthreading performance (SMT technology by Intel) [12] 11

3.3 Runtime for different configurations for the prefetcher of a POWER8

processor (these options are explained in detail in section 5.1.1.2)

[25] . 13

4.1 libPRISM position on the execution stack for an application 20

4.2 libPRISM software design . 21

4.3 Using LD PRELOAD in a OpenMP application 25

4.4 libPRISM workflow . 32

4.5 Overhead for managing threads . 34

4.6 Hierarchical design used for the characterization of the different knobs 37

4.7 Abstract algorithm used to characterize a knob 37

4.8 Performance curve when increasing the SMT level 38

4.9 libPRISM configuring CG on runtime 39

5.1 POWER8 socket architecture . 42

5.2 POWER8 microarchitecture . 43

5.3 AMESTER connection scheme . 50

6.1 Performance comparison when using static SMT levels (ST, SMT8,

Best Static Per Application) and dynamic SMT levels (Best Static

per Parallel Region and libPRISM) 56

vii

UPC LIST OF FIGURES

6.2 Overheads produced by libPRISM 57

6.3 Performance using libPRISM in NAS suite with C and D inputs. . . 59

6.4 Power contribution of NAS suite D Input. Values are normalized to

the 100% consumption when running with default configuration . . 61

6.5 Energy consumption with libPRISM for the NAS suite with the D

input . 62

6.6 Performance using libPRISM in SPEC OMP 2012 suite with native

input . 63

6.7 Power contribution of SPEC OMP 2012 suite with the native input.

Values are normalized to the 100% consumption when running with

default configuration . 64

6.8 Energy consumption with libPRISM for SPEC OMP 2012 suite . . 65

6.9 Performance using libPRISM in CORAL benchmarks 66

6.10 Power contribution of CORAL benchmarks. Values are normalized

to the 100% consumption when running with default configuration . 67

6.11 Energy consumption with libPRISM 68

viii

List of Tables

4.1 Stored data with libPRISM . 29

4.2 Best SMT level and its execution time for different parallel regions

in the workload BT . 34

5.1 DSCR register layout [18] . 46

5.2 NAS Benchmarks description . 51

5.3 SPEC OMP 2012 Benchmarks description 52

5.4 Selection of CORAL benchmarks 53

ix

UPC LIST OF TABLES

x

Listings

4.1 Example not changing number of threads in GNU OpenMP imple-

mentation (GOMP) . 22

4.2 Example changing number of threads in GOMP 22

4.3 Hello world in OMP . 23

4.4 Symbol table from Hello World . 23

4.5 Example of number of existing threads 24

4.6 Example of the dlsym usage for the GOMP wrapper 26

4.7 Example of the GOMP wrapper for libPRISM 27

4.8 Entry point to libPRISM . 28

xi

UPC LISTINGS

xii

Chapter 1

Introduction

1.1 Motivation

Nowadays, Moore’s Law seems to be ending due to the traditional ways to increase

performance are getting more difficult, for example frequency cannot be increased

or the transistor size cannot be reduced as it was possible in the last years. But,

anyway, actual processors still get more performance each generation by increasing

their complexity with diverse techniques within a limited power budget: adding

more cores to the processor, using Simultaneous MultiThreading (SMT), smarter

data prefetching to improve latency with memory, dynamic voltage scaling, etc.

The techniques just mentioned above were developed to try to overcome different

problems found in computer science lately:

• Memory wall. The gap between processing data in the processor and access-

ing data to memory is huge, and in most programs more than 20% of the

instructions are references to memory, to avoid having the processor in idle

there are mechanisms such data prefetching to alleviate this problem [41].

• Power wall. As hardware vendors reduced the transistor size and added more

transistors to add functionalities to processors power and power density went

up; processors have a limited cooling factor (thermal design power), therefore

processors cannot dissipate more power than their design allows.

1

UPC CHAPTER 1. INTRODUCTION

• Instruction Level Parallelism (ILP) wall. Traditionally, one way to speedup

workloads were to overlap instructions if they had no dependencies. In the

present, finding enough ILP to keep a single-core busy all the time is increas-

ing (because actual processors are faster). Several techniques try to reduce

this problem such as adding more cores to the processors, out-of-order exe-

cution, instruction pipelining, etc.

But, even more, increasing the complexity of processors lead us to another problem:

• Programmability wall. Getting the peak performance of a processor is a

tedious task, because the problem has to be solved having in mind all the

architecture details the processor contains: multiple cores, multiple threads

per core, data prefetching, dynamic voltage and frequency scaling, etc.

Also, almost all theses techniques that a processor uses are not conscious of the

configurations of other techniques. Intuitively we can think that they are not

independent, e.g. increasing the number of threads available in the system (number

of cores and number of threads per core) will lead to more petitions to memory.

And in the case we are prefetching data that can cause cache pollution, stalled

threads due to a busy memory, etc.

Having all these into account, one approach that comes to our minds is to profile

the workload and then set the different architecture settings to an optimal con-

figuration, but this has 2 problems: (1) we would need a considerable amount of

time to profile correctly the workload due to the existence of several settings to

tune in present architectures and (2) the workload can have different phases, and

probably each phase will need a different hardware configuration.

In order to get the most performance that a processor can offer we need a dynamic

coordinated management of the hardware configuration, which is challenging due

to the complex interaction between knobs, different intra and inter workload de-

mands, system constraints, large design space options and the difficulty in finding

generic solutions as opposed to ad-hoc solutions.

For all the reasons exposed, we need a piece of software/hardware able to tune all

the different architecture details of a processor without exposing that complexity

to the programmer; something similar to what an operative system does with the

2

1.2. GOAL UPC

Figure 1.1: Processor technology alone can no longer provide the price/perfor-
mance gains necessary to sustain Moore’s Law [17]

hardware: it exposes the hardware to the user, who does not have to worry on

how the hardware behaves or it is controlled.

One solution could be to leave this complexity to a runtime [7, 38]; which takes

responsibility of the execution. In figure 1.1 we see an example of this trend in the

industry, where software is needed to achieve good performance.. Actually almost

all parallel programming models are using a runtime software, if these runtimes

that are being already used could get the most performance of a processor would

be a smooth transition: increased performance, no need to re-code applications

and no architecture dependence.

1.2 Goal

The goal of this thesis is to contribute to solve the problems previously mentioned.

We will tune different hardware knobs: SMT level and the data prefetcher, which

we think they offer the most performance and the operative system does not any-

thing with these settings:

1. SMT is exposed to the operative system as the extra threads per core are

3

UPC CHAPTER 1. INTRODUCTION

a real physical CPU, not having into account that is better to use all the

physical cores of the machine before starting to use the SMT in a single core.

2. Data prefetcher is not even taken into account. Usually the processor sets

the data prefetcher in the boot process to a default behavior and it remains

as it.

Even more, in some processors SMT and data prefetcher are not possible to change

once the operative system has booted, this is a reason to use the platform we

explain in detail later in section 5.1 that allows us to change these setting among

others.

SMT level and data prefetch techniques have evolved in a decoupled manner for

different reasons: (1) less complexity if they are designed separated and (2) differ-

ent timescale granularities, SMT level affects only on how many processes can run

simultaneously but data prefetch is affecting individually to all the processes.

Also it is important to see how they interact: a system with a lot of processes

running and an aggressive data prefetch can impact performance negatively and

maybe, running less processes would be more beneficial for performance. There-

fore, their independent actuation can lead to conflicting decisions that jeopardize

system power-performance efficiency: a robust coordination protocol is necessary.

We will focus on parallel workloads coded in OpenMP, which is the de-facto pro-

gramming model to parallelize applications. OpenMP works in almost all compiler

and all platforms.

In order to achieve our objective we created libPRISM, an auto-tunning library

for the SMT and the data prefetch. libPRISM is aware of the machine where is

running and it is able to interact with the OpenMP runtime and reconfigure the

architecture in order to reduce the execution time and power consumption.

1.3 Thesis organization

This thesis document is structured in the following way: Chapter 1 (this chapter)

is the introduction and describes the motivation and goal of this thesis. Chapter

4

1.3. THESIS ORGANIZATION UPC

2 gives the planning followed for this work. Chapter 3 summarizes the state of the

art for the different technologies used in this work. Chapter 4 explains in detail

the libPRISM library, how is designed and how it works. Chapter 5 introduces

our experimental platform: processor used, metrics we collected and the evalu-

ated benchmarks. In chapter 6 we evaluate libPRISM with different benchmarks.

Finally, chapter 7 presents the conclusions and the final work.

5

UPC CHAPTER 1. INTRODUCTION

6

Chapter 2

Planning

This work started in July 2015 with a 3 months internship at IBM Thomas J.

Watson Research Center to Pradip Bose’s group (Reliability-Aware Microarchitec-

tures) as part of a collaboration between the Barcelona Supercomputing Center

and IBM.

The development of our library could be separated in the following tasks as we

can see in the Gantt chart:

• Develop a prototype, which needs to be able to do all the desired functions

with a small overhead

• Test the infrastructure we developed

• Develop an oracle policy in order to see possible benefits in using the library

• Code a smart policy, here we can differentiate several tasks:

◦ Develop and test the SMT level

◦ Develop and test the data prefetcher knob

◦ Later, we saw that we needed to treat task parallelism different

• Benchmarking, carry out different tests in order to check that everything

works fine

7

UPC CHAPTER 2. PLANNING

During the internship we developed and tested the infrastructure we used in this

thesis.

Once we could guarantee that the infrastructure worked, we started to test a simple

algorithm to check the possible gains we were able to obtain.

After the internship we started to select more benchmarks that had bigger inputs

and were more used by the community, the suites we used are explained in section

5.3. This task has been the most time-consuming by far, as explained later, some

benchmarks used have as a purpose to test High Performance systems, therefore

input sets are big and one execution of a benchmark can take several hours.

Once we successfully compiled the selected benchmarks we proceed to start to

develop our smart policy for the different knobs we were trying to optimize: the

SMT level and the data prefetcher.

While benchmarking our library we saw that we were not able to obtain speedup

in some benchmarks due to their nature: they were task-based benchmarks. We

came up with one solution to fix it and be able to do obtain the final results.

2015 2016
7 8 9 10 11 12 1 2 3 4 5 6 7

Library development

Testing

Oracle policy

Smart policy

Thesis writing

SMT

Prefetcher

Tunning

Tasks parallelism

8

Chapter 3

State of the art

In this chapter we analyze the different technologies we use in this work are done

nowadays and the different contributions in the field.

3.1 Simultaneous MultiThreading

SMT is a hardware technique that permits several independent running threads

to issue instructions to the execution stage on the processor, therefore multiple

threads can being executed at the same time.

Nowadays, it is implemented in several microprocessors such as IBM POWERPC,

Intel Core i Series or UltraSPARC. [12,24,27]

The objective of SMT is to not stop the execution of instructions because of

possible long accesses to memory or the lack of parallelism at thread level without

the need to perform any hardware switch [37]. As seen in 3.1, the processor fetches

instructions from different software threads and put them on the instruction queue.

Then, in the execution stage all threads executes at the same time.

The trend in processor design has been towards increasing the SMT capabilities.

Today, processors implement up to a SMT level of 8 concurrent threads executing

on a IBM POWER8 processor [27] (previous version of the IBM processor had

only up to a SMT level of 4 threads [34]).

9

UPC CHAPTER 3. STATE OF THE ART

Figure 3.1: Example of a SMT processor fetching and executing from 4 threads

The design of SMT processors are done based on the wide issue technique, which

fetches more than 1 instruction of a execution thread from memory to the execution

stage. These fetched instructions will have more instruction parallelism since they

come from different threads, and ideally, the processor will have enough functional

units to execute them all.

In SMT processors, the different threads running simultaneously have to compete

for the shared hardware resources, ideally, those threads should not interfere with

each other, leading to a performance boost because of a better utilization of the

hardware resources (i.e. increasing the total Instructions Per Cycles). One example

of this performance boost is in figure 3.3, where 3 different workloads get more

performance with the Hyperthreading technology (SMT implementation by Intel)

But in a bad scenario, those competitor threads can interact poorly. For example,

if the running threads use a large portion of the cache they may cause a lot of cache

misses because they can evict data from another threads, if the threads issue more

floating point instructions than the available functional units, etc. This would

harm the overall performance.

Also, we need to take into account that SMT is flexible when varying the thread

count. If the running threads are low, their performance per-thread will be high

and, if the number of threads are high, their performance per-thread will be lower.

While SMT is considered beneficial to increase performance in general, this incre-

ment gain is variable due to the current workload the machine is running, because

10

3.1. SIMULTANEOUS MULTITHREADING UPC

Figure 3.2: Hyperthreading performance (SMT technology by Intel) [12]

as said before, the workload specific characteristics can benefit or harm our per-

formance.

One of the reasons for the loss in performance and fairness is the fact that oper-

ative system (OS) perceive the physical core and the hardware contexts (e.g. the

different threads a SMT core can run) as virtual cores, which implies that when the

OS schedules a process to an available core it has not into account if that core is

part of a more busy physical core than other physical core. Therefore, the OS can

think is doing a good job scheduling, but actually it could be hurting performance

by occupying a single physical core, while there are others idle.

Then, even thread placement is important for performance [26], some workloads

can run with higher performance in some specifics hardware threads because of

how the SMT was implemented.

Fairness in SMT systems have attracted researchers to find a solution to run dif-

ferent workloads at the same time without degrading too much their performance.

Cazorla et al. tried different mechanism to improve performance and fairness [8,9]

Research by Boneti et al. seeks a better utilization of the hardware resources at a

thread level to reduce load imbalance, therefore increasing performance [2–4]

Lately, researchers have focused on how adjust the SMT level per different work-

11

UPC CHAPTER 3. STATE OF THE ART

loads to avoid performance losses. Tembey et al. propose a mechanism for change

the SMT level in order to get same performance but reducing the power en-

ergy. [36], something similar Vega et al. do but also using dynamic voltage and

frequency reduction [39, 40]. Moseley et al. [29], Snavely et at [35] and Feliu et

al. [14, 15] tried to predict IPC when running in a SMT processor and schedule

applications accordingly.

Most of the previous work have been developed for serial applications or a com-

bination of serial applications, but little research has been done when referring

to parallel workloads. And because the behavior of parallel applications, where

usually all the threads are doing the same type of task, it is more probably that

exists more conflicts due to threads waiting to be able to use the functional units.

Zhan et al. propose a loop scheduler for SMT processors to obtain performance

[42, 43], Heirman et al. try to do automatically choose the best SMT level [19].

Creech et al. implemented a mechanism to address fairness in SMP systems [11],

managing the number of threads each application can have; which is similar to

managing the number of threads in a SMT system.

3.2 Data prefetch

Nowadays almost all the processors that are made include a data prefetch engine

because it is a proven and powerful technique to reduce the problem with memory;

as said in section 1.1, memory is becoming the main bottleneck in performance.

A microprocessor can execute an instruction in nanoseconds, but memory needs

microseconds to serve data. This difference can affect negatively the performance

of our microprocessor and therefore, of our application.

One of the solutions for the memory wall is bring more data than asked and keep

it near the microprocessor (e.g. caches), this is done by the data prefetch engine;

hardware architects try to do a good design in order to reduce at minimum the

waiting for memory.

Of course, there are workloads that have no benefit at all from the prefetcher,

even, it can harm the performance.

12

3.2. DATA PREFETCH UPC

Figure 3.3: Runtime for different configurations for the prefetcher of a POWER8
processor (these options are explained in detail in section 5.1.1.2) [25]

If a workload needs no data prefetch can get worse performance due to the data

prefetch engine doing automatically access to memory, even worse, because those

data prefetches without any benefit for the workload will cause more bandwidth

consumption and more energy waste. In figure ?? we see how choosing a different

prefetcher configuration can boost performance or slowdown the execution time in

a POWER8 processor (the same we will be using).

Also it can happen that a workload reuse data previously prefetched but, between

the 2 accesses the data has been evicted. Again, a bad use for data prefetching.

We can say that the right configuration ultimately depends on the specific char-

acteristics of the workload running. But the algorithm for the data prefetching

is hardcoded in the processor design; there was no possibility to modify it, ven-

dors often added instructions to let the programmer or the compiler do software

prefetching; this adds a step in the optimization process of a code.

Current processors give to the user or programmer some freedom to tune the

hardware prefetcher (e.g. IBM POWER8 [27]). Usually, the user is able to do

prefetches on loads, but it can be configured to do it also for stores, or bring more

lines to the caches, etc. This can save time in the optimization process (i.e. we

13

UPC CHAPTER 3. STATE OF THE ART

just need to profile the workload with different prefetcher configurations once the

code is optimized) and in some cases save bandwidth and energy.

As said, data prefetching is workload dependent, this is the reason researchers

have investigating how detect different workloads (or phases inside a workload) to

adapt the prefetch behavior.

Jimenez et al. have been working in detecting phases of applications in runtime

and change the data prefetch accordingly [21, 22]. Minghua Li et al. applied

machine learning to smart prefetching depending on different workloads [25] based

on performance counters. Hur et al. observe the spatial locality of workloads to

apply a better prefetching [20]. Casas et al. evaluated how memory resources

behave on HPC applications and how this interacts with the increasing number of

cores per chip [5, 6].

Even there is some work in another aspects of the memory hierarchy such as the

work done by Moretó et al. where the shared caches are dynamically partitioned

to improve performance [28]. Bitirgen et al. go further and try to increase perfor-

mance managing different aspects of the memory hierarchy with machine learning

techniques [1].

All this previous work was done around serial workloads; but less attention was

given to parallel workloads.

Previously to this thesis, we focused on parallel task workloads implementing a

smart data prefetch mechanism as a part of the a task-based runtime [32].

3.3 Programming models

As discussed before, the number of programmable cores in our systems is growing,

therefore if we want to get the full potential of an architecture we must be able to

coordinate all the system to work in a given problem.

Even nowadays, solving a problem using parallel system is challenging due to

different parameters we have: memory accesses, shared data, race conditions, syn-

chronization points, etc. To avoid this tedious and huge work there are software

14

3.3. PROGRAMMING MODELS UPC

specialized to run codes in parallel, which are known as runtimes.

These runtimes are used as an abstract layer in the software stack to make parallel

pieces of code. Usually, they need compiler support to translate from keywords to

real code that will be executed: the programmer just needs to use a specific key-

word to spawn all the desired threads, share the data among them or synchronize

the threads. This is a very good way to avoid bugs in our codes and speed up the

consuming-time task of coding.

When parallelizing a code in a shared-memory system, we can apply different

strategies:

• Data decomposition. Once we identify the data on which computations are

performed we partition this data among our available threads. The program-

mer needs to decide what data is partitioned: the input, the output, or even

create an intermediate state. This decision can affect to the performance of

the parallel algorithm.

• Exploratory decomposition. If the problem to solve involves the exploration

or search of a state space of solutions we may want to use this strategy, where

each thread will work in a possible solution. One intuitive example would

be how to solve a sudoku, where we try to fit a number in a square and a

thread will continue as it that number actually fits (leading to a complete

puzzle or a unfinished puzzle).

• Recursive decomposition. When using a divide-and-conquer algorithm it can

be useful to assign each division to a thread, because divisions should not

be affected for the others divisions, which is good because it will have not

shared data with others threads.

• Hybrid decomposition. We can combine different strategies mentioned before

to increase performance.

If we need more performance (and we are using all the resources of one machine) we

can use more than one computer, i.e. a distributed memory system. Usually, when

working distributed memory systems is to use message passing between nodes with

the same strategies explained.

15

UPC CHAPTER 3. STATE OF THE ART

Once we know how to code our algorithm we need to choose a mechanism to run

our parallel work:

• Threads. Here the programmer takes full responsibility for controlling the

threads: create and destroy them, synchronization points, etc. It is a way

to have maximum control of the code but also, it increases the possibility of

introducing a bug due to the programmer is the only one working in that

code.

• Runtime. If we choose to use a runtime because its advantages: easier to

code, existing code is (usually) reviewed by the community or a company,

more documentation, etc. and there are several runtimes available to use:

◦ OpenMP. Actually, it is a standard for shared-memory programming.

The OpenMP Architecture Review Board (ARB) publish an API for

anyone willing to implement it. There are different runtimes based on

this API, normally each compiler implement their own runtime, there-

fore there is one runtime for The GNU Compiler Collection (GCC), icc

(Intel Compiler), xl (IBM compiler), etc. [31] The programmer needs to

declare where wants to use parallel code with explicitly directives that

later will be translate to calls to the OpenMP runtime routines.

◦ Threading Building Blocks (TBB) by Intel. Runtime by Intel similar

to OpenMP standard but with some extra features as concurrent data

structures or scalable memory allocator, but it lacks of others as affin-

ity support or static scheduling. [33] TBB and OpenMP can be used

together.

◦ Chapel by Cray. It aims to make easier the coding task of large-scale

computer, trying to keep the performance or improve it respect other

programming models mentioned in this section. [10] It separates paral-

lelism and locality, it enables to describe how run things and how store

things. Also it is capable to use parallelism beyond intra-node (e.g. it

can do message passing)

◦ OmpSs by BSC. OmpSs extends OpenMP tasking functionalities, since

this runtime is based on task parallelism. Here the programmer just

16

3.3. PROGRAMMING MODELS UPC

needs to explicitly declare the inputs and outputs of the tasks, then

the runtime will solve at run time the dependencies, executing first

the task with outputs needed for another tasks. [13] This has a lot of

potential since, ideally, the run time can accelerate the critical path in

the dependency graph. Also since it supports the OpenMP standard it

is very easy to translate code written in OpenMP to OmpSs

17

UPC CHAPTER 3. STATE OF THE ART

18

Chapter 4

libPRISM

Our proposed solution for the mentioned problematic in the introduction is libPRISM:

an external library that takes care to adjust the hardware configuration to obtain

the best performance without any interaction by the final user and without the

need to recompile any other library on the system as it could be the OpenMP

library. libPRISM was named after the words: library, Prefetcher and Intelligent

SMT. Mainly, because the prefetcher and the SMT level are our main targets

when developing this library.

As it can be seen in the figure 4.1 our idea is to be part of the runtime, but one

of our goals is to be independent of the runtime, leaving to the user the choice of

which runtime use; this is why we will use library interposition: (1) to be (at some

level) part of the runtime, (2) be independent on the choice of runtime and (3) be

architecture independent.

We will focus on the OpenMP specification [31] mainly for 2 reasons:

• It is the de-facto standard for parallel programming on shared memory sys-

tem

• GCC has a fully functional OpenMP implementation

19

UPC CHAPTER 4. LIBPRISM

Figure 4.1: libPRISM position on the execution stack for an application

4.1 Design overview

In order to keep the design simple, usable and extendable; libPRISM is divided in

2 main parts as we can see in the figure 4.2:

• Wrapper, which is the code responsible for the library interposition. It will

translate calls to different OpenMP runtimes to libPRISM. Explained with

more details in section 4.1.1

• Driver, which is the main part of the library. It has to treat data from hard-

ware sensors, apply the algorithms to find the best hardware configuration

and change it. Explained with more details in section 4.1.2

Following this design we can achieve (1) modularity: add different OpenMP wrap-

pers keeping the same underlying algorithm, change the wrapper from OpenMP

to another type (e.g. based on time), add or change different algorithms without

affecting how the library interposition or how data is obtained from the hardware

is done. And (2) usability: a new libPRISM user will only have to code a new

wrapper and only if he wants to use a different OpenMP implementation than the

one provided by GCC; which is GNU OMP (GOMP as we will refer from now on).

20

4.1. DESIGN OVERVIEW UPC

Figure 4.2: libPRISM software design

4.1.1 Wrapping mechanism

As said before, we will focus to do library interposition with the GCC OpenMP

implementation. For this task we need to check the OpenMP specification [31]

and the code generated from GCC.

We want to be able to profile the loops and, as the specification says, there are

some details to consider:

1. There is no method to change the number of threads when we are inside

a parallel region. Meaning that we have to change the number of threads

(therefore the SMT level) before entering a parallel region

2. Following the previous rule, once inside in a parallel region if we encounter

another parallel region (nested parallelism) changing the number of threads

will affect the nested parallel region.

For example: in the code 4.1 we are not changing the number of threads

available in the outer loop, therefore the number of threads used in the nested

parallel region will be 4 (each existent thread will create 4 more threads).

But in the code 4.2 we change the number of threads before entering the

21

UPC CHAPTER 4. LIBPRISM

nested #pragma omp parallel, therefore each existent thread will generate 8

threads (i.e. 4 (threads of the outer loop) x 8 (threads))

1 #OMP_NUM_THREADS =4

2 #pragma omp parallel for

3 // Here will be 4 threads

4 #pragma omp parallel for

5 /* Each thread of the outer parallel region

6 * will create another 4 threads

7 * 4 threads x 4 threads = 16 threads */

Listing 4.1: Example not changing number of threads in GOMP

1 #OMP_NUM_THREADS =4

2 #pragma omp parallel for

3 // Here will be 4 threads

4 omp_set_num_threads (8);

5 #pragma omp parallel for

6 /* Each thread of the outer parallel region

7 * will create another 8 threads

8 * 4 threads x 8 threads = 32 threads */

Listing 4.2: Example changing number of threads in GOMP

3. When inside a parallel region, if there are a pragma #pragma omp task to

create tasks we cannot control the number of tasks spawned nor the existing

threads that execute them because of the points 1 and 2.

Having in mind those points, we can proceed to code the wrapper for the OpenMP

implementation by GCC.

We need to know that the OpenMP specification provides the functions needed to

be compliant with the standard, and then the different compilers on the market

provides a function to their library with a different name. First of all, we need

to know what are the function names we need to intercept, to do this we just

need a binary file compiled with GCC (and ideally, the source code of the binary

file to know how the different pragmas translates to the different functions). For

example, we will use a Hello world, which is shown on the code 4.3 to test it:

22

4.1. DESIGN OVERVIEW UPC

1 #include <omp.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 int main (int argc , char *argv []) {

6 int th_id , nthreads;

7

8 #pragma omp parallel private(th_id)

9 {

10 th_id = omp_get_thread_num ();

11 printf("Hello World from thread %d\n", th_id);

12

13 #pragma omp barrier

14 if (th_id == 0) {

15 nthreads = omp_get_num_threads ();

16 printf("There are %d threads\n",nthreads);

17 }

18 }

19 return EXIT_SUCCESS;

20 }

Listing 4.3: Hello world in OMP

After compiling we obtain a binary file from we can read its symbol table in

the listing 4.4. The symbol is part of the Executable and Linkable Format (ELF)

format, and the section (usually with the name .dynsym) holds the dynamic linking

symbol table used for the dynamic linking.

readelf -s hello_world_omp

Symbol table ’.dynsym ’ contains 12 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND GOMP_parallel_start@GOMP_1 .0 (2)

3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND GOMP_barrier@GOMP_1 .0 (2)

4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND GOMP_parallel_end@GOMP_1 .0 (2)

5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND omp_get_thread_num@OMP_1 .0 (3)

6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND printf@GLIBC_2 .2.5 (4)

7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2 .2.5 (4)

8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND omp_get_num_threads@OMP_1 .0 (3)

9: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

11: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

Listing 4.4: Symbol table from Hello World

As we can see the information that is useful for us is:

23

UPC CHAPTER 4. LIBPRISM

• GOMP parallel start@GOMP 1.0, it indicates when a parallel region is about

to start

• GOMP barrier@GOMP 1.0 (2), it is a synchronization point for all the

threads

• GOMP parallel end@GOMP 1.0 (2), it indicates when a parallel region is

about to end

• omp get thread num@OMP 1.0 (3), function that returns the thread id (from

0 to N, where N is the number of threads created)

• omp get num threads@OMP 1.0 (3), function that returns the total number

of threads that are or will be created

In our experiments we have seen something interesting when changing the number

of threads, when using the GOMP library the threads are created at the beginning

of the parallel region and usually after the parallel region ends the threads remain

created and sleeping, waiting for more work to do. But, if between 2 parallel regions

the number of threads is changed, in the second parallel region the existing threads

will be adapted to the new number of threads: creating or destroying threads. This

is important to have in mind since it will difficult how we track and profile the

workload. In the listing 4.5 we clarify this concept.

1 omp_set_num_threads (4); // Existing threads

2 //4 threads will be the limit //1

3 #pragma omp parallel //4

4 // work

5

6 omp_set_num_threads (8);

7 #pragma omp parallel //8 (4 created)

8 // work

9

10 omp_set_nu_threads (5);

11 #pragma omp parallel //5 (3 destroyed)

12 // work

Listing 4.5: Example of number of existing threads

The last thing we need is to know how to do library interposition. For that purpose

we will use the mechanism in Linux LD PRELOAD.

24

4.1. DESIGN OVERVIEW UPC

Figure 4.3: Using LD PRELOAD in a OpenMP application

With this mechanism we can fake a function from a shared object with a function

coded by ourselves. This implies that an application linked against that shared

object (in our case the shared OpenMP library) will actually call and execute our

coded function as it were the real one.

The existing library in Linux that provides library interposition is: dlfcn.h, Dy-

namic Linking, which declares the following functions:

• void *dlopen(const char *, int);

• void *dlsym(void *, const char *);

• int dlclose(void *);

• char *dlerror(void);

In our case we just need to use the dlsym function, which allow us to find the next

address for a given name function.

For example, if we do: dlsym(RTLD NEXT, “GOMP parallelStart”), it will return

us a pointer with the address of the next function called GOMP parallelStart, which

the next function is solved in the same order as we specify with the LD PRELOAD

variable. Since we will be calling this function inside our wrapper, the next function

25

UPC CHAPTER 4. LIBPRISM

will be the one located in the OpenMP library.

And if we want to create a parallel region for a given code, we just need to jump

to that address (with the corresponding parameters). Therefore, we need to find

all the addresses of the functions we need to intercept before anything else. Our

wrapper will do at the initialization as we can see in the listing 4.6

After applying this mechanism our scheme when running an application that uses

the OpenMP library will be as shown in the figure 4.3

We will use this mechanism to be between the application and the OpenMP run-

time, in this way we will be able to know when a parallel region starts or ends and

we will be able to adjust the hardware configuration on time. Therefore, we need

to code a wrapper for the different calls to the OpenMP runtime that our binary

files link.

1 /* Obtain @ for GOMP_parallel */

2 GOMP_parallel_real =

3 (void (*)(void*,void*,unsigned ,unsigned)) \

4 dlsym (RTLD_NEXT , "GOMP_parallel");

5

6 /* Obtain @ for GOMP_parallel_start */

7 GOMP_parallel_start_real =

8 (void (*)(void*,void*,unsigned)) dlsym (RTLD_NEXT , "GOMP_parallel_start");

9

10 /* Obtain @ for GOMP_parallel_end */

11 GOMP_parallel_end_real =

12 (void (*)(void)) dlsym (RTLD_NEXT , "GOMP_parallel_end");

Listing 4.6: Example of the dlsym usage for the GOMP wrapper

And then, of course, we need to code our wrap call to the different real functions

as we show in the listing 4.7.

26

4.1. DESIGN OVERVIEW UPC

1 extern "C" void GOMP_parallel_start (void *p1, void *p2, unsigned p3)

2 {

3 int r_PC = -1;

4

5 // Use the PC of POWERPCs as identifier

6 #if defined (__powerpc64__) || defined(__powerpc64__)

7 r_PC = mfspr (8);

8 #endif

9

10 // Follow only master thread

11 if (syscall(SYS_gettid) != master){

12 GOMP_parallel_start_real(p1,p2 ,p3);

13 return;

14 }

15

16 // Call to libPRISM

17 PRISM_parallelStart(r_PC , 1);

18

19 // Call to the real GOMP_parallel_start

20 GOMP_parallel_start_real (p1, p2 , p3);

21 }

Listing 4.7: Example of the GOMP wrapper for libPRISM

4.1.2 libPRISM driver

Once we can do the library interposition against GOMP, we need a software that

controls the OpenMP runtime based on the behavior of the workload running on

the machine, the hardware and the runtime itself.

We want to keep the software simple and modular, for this, we have different

modules as we can see in the figure 4.2. These modules are:

• Actuators, they are the responsible to change the underlying hardware (at

this moment we just need to set the data prefetcher and the SMT level)

• Sensors, here are the objects that take care of measure the performance in

different ways. We use from Performance Monitor Counters to Wall time

from the special registers on the POWER8.

• Policies, we want to test different ideas to see which one is the best, for

that we create an heritable object from where different policies will easily be

27

UPC CHAPTER 4. LIBPRISM

created.

All those object will be controlled by the libPRISM driver, which will be called

directly from the wrapper we defined in section 4.1.1 as we can see in the listing

4.7. The libPRISM driver will be an interface to access to the different modules

we coded and as shown in the listing 4.8

1 void PRISM_parallelStart (int PC, int nthreads) {

2 ++level;

3 if(max_level == -1 || level <= max_level) {

4 timingStart ();

5

6 int num_threads = _policy ->getNumThreads ();

7

8 // Call policy module

9 _policy ->parallelStart(PC ,num_threads ,level);

10

11 timingEnd ();

12 }

13 }

Listing 4.8: Entry point to libPRISM

For the sensors objects we will use basically 2:

• In order to read the different PMCs we need we use the perfmon 2 library

(libpfm version 4.7.0), which let us read from the standard Linux perf event

interface groups of PMCs, in this way we can read all the PMCs at once and

then we will be able to correlate their data between them.

• Also for reading the time wall that we spend in parallel regions we will use

the timebase special register in the POWER8 architecture, 512000000 ticks

of this register are equivalent to 1 second.

For the different actuators, which will be 2 also:

• In order to modify the SMT level we can (1) change the number of threads

(POWER8 processor automatically goes to its corresponding SMT level) or

(2) set the SMT level by writing in a register (see section 5.1.1.1) libPRISM

keeps record of the number of threads that are actually running at the mo-

ment to enter the parallel region (in case we want to restore the state once

28

4.2. PARALLEL REGIONS UPC

For each parallel region For each parallel region executed

Program Counter (PC) Number of threads used
Number of times executed Start time

End time
SMT configuration used
Data prefetch configuration used
Data from PMCs

Table 4.1: Stored data with libPRISM

we exit the parallel region) and the number of threads we run inside the

parallel region. Changing the number of threads will require a call to the

OpenMP runtime: omp set num threads(int nthreads)

• To set the value of the data prefetch is needed to write in a special file as we

will detail in the section 5.1.1.2

And the different policies implemented are described in the section 4.3

To achieve a good and modular design we need to keep record of everything we

read or do in every parallel region, for that we will store every piece of information

we read with the different sensors and the actions we took. Therefore, every time

we enter in a parallel region we start the different sensors and when we exit the

parallel region we read from the sensors and store the data read in different data

structures. We identify each parallel region by its Program Counter and, in case

of we encounter the same parallel region multiple times, by the number of times

we have executed the parallel region.

4.2 Parallel regions

As described previously, libPRISM works on parallel regions, which in OpenMP

are defined with: #pragma omp parallel. This pragma spawns the required threads

and put them to work.

In general there are 2 methods to parallelize a code with OpenMP, which we need

to know in order to be able to capture the behavior and profile them:

29

UPC CHAPTER 4. LIBPRISM

• Divide work. #pragma omp parallel defines a new parallel region where all

the threads will execute the same code and there is the #pragma omp parallel

for for loops that automatically spawns the desired threads and each of this

new threads start to work in a portion of the dataset the for loop is iterating.

• Creating tasks. OpenMP 3.0 introduced the concept of tasks: the program-

mer can create work tasks and then the threads will work on those tasks.

4.2.1 Dividing work

Usually, they are defined with a #pragma omp parallel or with a #pragma omp

parallel for, the code that is inside those pragmas will be done by all the threads.

In the case of just using the keyword parallel the programmer needs to ensure

that threads are not actually working on the same data or use synchronization

mechanisms.

Here, we proceed as following: once our wrapper for library interposition captures

one of those pragmas we read the PC and call to libPRISM. Therefore we have a

clear entry and exit point of the parallel region.

4.2.2 Tasks

There are 2 methods to create and work on tasks:

• All the threads create and execute tasks.

The pattern for this scheme is with a #pragma omp parallel and inside

there is a #pragma omp task. Therefore, all the threads will encounter that

pragma, they will create the task and execute it.

libPRISM treats this method as the mentioned before in section 4.2.1. It

just need to support nested pragmas (which it does), then the master thread

will be capturing the different tasks it is generating and processing.

There is only one limitation: created tasks go directly to a task pool and

then threads pick tasks from the pool. This means that the number of tasks

30

4.3. POLICIES IMPLEMENTED UPC

we see from the master’s perspective (which is the thread libPRISM tracks)

are not the total number of tasks generated.

This limitation actually it is not a problem, because the reading realized for

the different tasks will be meaningful because all the threads will be working

on tasks.

• Only the master threads create tasks.

Code for this scheme is as follows: first there is a #pragma omp parallel to

spawn all the threads, then there is a #pragma omp single in order to make

that region only executable by one thread. Inside that last pragma the only

working thread will encounter the different #pragma omp task.

In this case we cannot proceed as the previous method: here the non-master

threads go directly to a synchronization point where they will fetch for work

from the task pool, while the master thread creates tasks.

This is actually an important limitation: the master thread will only work on

tasks when encounters a synchronization point, and when that happens we

cannot get good performance readings: the synchronization point contains

the fetch and work function but from outside the runtime we see only the

synchronization point.

In order to sort this out we wait for the synchronization point, and before re-

ally enter on it we spend some time to measure the performance (Instructions

Per Cycle). This way of measuring performance introduces more overhead

than previous methods since we are taking a thread that could be doing

useful work to do performance measurements.

4.3 Policies implemented

The modular design of libPRISM explained previously allows to implement a policy

only coding a few functions that will be called before and after a parallel region

executes (as shown in the workflow of libPRISM in figure 4.4), after the execution

of the parallel region we will have available all the information libPRISM stores

31

UPC CHAPTER 4. LIBPRISM

Figure 4.4: libPRISM workflow

per parallel region (see table 4.1).

We coded 2 different policies, the first one purely for showing possible advantages

with the approach we are following and the second one, which is the smart policy

tries to find the optimal configuration for the hardware by itself.

4.3.1 Oracle

This policy is based on an offline profiling and it was developed to check how much

speedup we can obtain when running with libPRISM.

The idea behind this policy is after ran the application with the different hardware

configurations in static mode, collect the data generated and then add everything in

a file to be read in a next execution. In this file we will store data per parallel region

in order to identify what is the best static configuration in terms of performance.

Finally, when running with the Oracle policy we will feed the profile file to the

policy, which will set the configuration per each parallel region to the optimal one

found in previous executions. Ideally, with this policy we will obtain the maximum

32

4.3. POLICIES IMPLEMENTED UPC

speedup possible in each application ran, but in the process of testing this policy

we detected problems with setting the different configurations:

• Overhead due to setting the number of threads. As we described previously

in section 4.1.1, GOMP creates and destroy threads to adapt to the number

of threads specified by the user, therefore when a parallel region is executed

and does not last enough to make up for changing the number of threads we

will have an overhead. For example, in figure 4.5 we run multiple times with

libPRISM the BT workload (explained in detail in section 6.1.1):

◦ In the X axis we have the different parallel regions (identified by their

PC) the workload has.

◦ In the Y axis we have the execution time normalized to the Best exe-

cution time for the parallel region.

◦ Per each parallel region we have done several experiments:

∗ Run the whole experiment with ST, SMT2, SMT4 and SMT8 and

change the SMT level only for the parallel region we are inspecting

∗ Run the whole workload with the best SMT level for the parallel

region we are inspecting

◦ Run the whole experiment dynamically changing the SMT level to the

best in all the parallel regions (our oracle policy)

Here we can see that the last parallel region identified by 0x1000b6a0 takes

more time to finish when we are running the whole workload with a number

of threads different of its best. This is due to the overhead of changing the

number of threads that GOMP has. It is possible to see in table 4.2 that

only we can observe a real overhead when the parallel region last around

0,0062 seconds.

• Overhead when setting the prefetcher. As we will explain in section 5.1.1.2,

we need to write in a file to set the prefetcher, and because we need to go

through the operative system, this can produce an overhead. What we do

is discard small region (as in the previous point) and in case of doing more

aggressive prefetching increase our performance we require that increment to

33

UPC CHAPTER 4. LIBPRISM

0x100072b4 0x10008254 0x100091b4 0x1000b474 0x1000b6a0
Parallel region identified by its PC

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ex
ec

ut
io

n
tim

e
(N

or
m

al
iz

e
to

 B
es

t S
M

T
le

ve
l)

ST to Best
SMT2 to Best

SMT4 to Best
SMT8 to Best

Oracle
Best

Figure 4.5: Overhead for managing threads

Parallel region Best SMT level
Best execution time

(seconds)

0x100072b4 4 0,107
0x10008254 4 0,1698
0x100091b4 4 0,1715
0x1000b474 4 0,1715
0x1000b6a0 1 0,0062

Table 4.2: Best SMT level and its execution time for different parallel regions in
the workload BT

34

4.3. POLICIES IMPLEMENTED UPC

be at least of 0.0015 seconds, due to is our required time to set the prefetcher.

4.3.2 Exploration

This approach is based on the typical behavior of High Performance Computing

applications, usually these applications have a main loop that is repeated hundreds

of times.

libPRISM takes advantage of this behavior and tries to learn what is the best

configuration for the different parallel regions existing in the applications. The

idea is to spend a few iterations of an overall of hundreds training libPRISM to

know what configuration is the best for the different parallel regions (ideally, we

spend a little percentage of iterations to do the training, trying to reduce the

overhead to 0). Of course, at the moment that a parallel region is not repeated

enough we will not be able to get the best performance for that parallel region.

The first though it came to our mind is that we have 2 knobs to configure, there-

fore we need to think which of the knobs will be characterize first or if we will

characterize both at the same time. Characterizing both at the same time can

produce a lot of overhead since we will need to spend more iterations because the

number of combinations grow faster:

• SMT levels are 4 (ST, SMT2, SMT4, SMT8)

• Prefetcher has a several bits to configure. In previous experiments realized,

we saw that not all the bits affect the same to the performance (all names

are as refereed in section 5.1.1.2):

◦ Disabling/enabling the prefetcher usually increases the most the per-

formance

◦ Depth (how many cache lines the prefetcher brings) offers a performance

increment

◦ StrideN (the prefetcher will try to recognize simple data access patterns)

also offers a performance increment, sometimes bigger than depth

◦ Stores, (bring to the nearest cache data when the processor makes a

35

UPC CHAPTER 4. LIBPRISM

store), can speed up the performance but usually less than depth or

strideN

If we want to try combinations of both of them, we see that:

4 SMT levels x 4 prefetcher fields (just using the default depth and the maximum

depth) gives us 16 iterations. That without having in account possible repetitions

of the configuration to avoid noise and have a more accurate average of time.

Some codes that we will use have between 75 and 500 iterations of the same parallel

region, at the moment we want to get an average, we will increasing the overhead

a lot, if we limit the calculation for the average to 3 iterations, then we get 48

iterations wasted in training libPRISM (with the possibility of affecting in a bad

way the performance) and 48 iterations translates to a 64% of the iterations in the

worst case and 1% in the best case.

In previous experiments we were able to identify that SMT level is the main

knob affecting the performance by far. This is the reason we chose a hierarchical

exploration for our policy, we will first choose the best SMT level and then the

best prefetcher, doing this we can avoid performance loses due to be in a SMT level

that is harmful for our performance. The final design can be seen in the figure 4.6

and in the figure 4.7 is a simple view of how we characterize both modules.

The basics of the algorithm are the following: we explore each option until we

can observe that we are not gaining performance (or even losing it), then we stop.

This also is based on previous experiments, which showed that exists a curve in the

performance when increasing the SMT level. When starting with X configuration

can happen 2 things:

• Configuration X+1 gives a speedup, in this case we keep X+1 as the best

configuration or the new X, and proceed to inspect the new X+1 (or what

is the same: the old X+2)

• Configuration X+1 decreases or does not increase the performance, in this

case we keep the best configuration (X) and stop the characterization for

that hardware knob.

Given these 2 possibilities, the curve of performance is something similar to what

36

4.3. POLICIES IMPLEMENTED UPC

Figure 4.6: Hierarchical design used for the characterization of the different knobs

Figure 4.7: Abstract algorithm used to characterize a knob

37

UPC CHAPTER 4. LIBPRISM

ST SMT2 SMT4 SMT8
0.0

0.5

1.0

1.5

Sp
ee

du
p

(R
ef

er
en

ce
 ti

m
e

ST
)

Figure 4.8: Performance curve when increasing the SMT level

it can be seen in figure 4.8, we can observe that usually higher SMT level is better

for the performance, that give us a hint in how explore the different configurations:

going for the higher SMT level. We have seen few applications where Single Thread

(ST) is the best SMT level.

There are several optimizations applied to the algorithm for reducing the overhead

of libPRISM:

1. Avoid small parallel regions. Due to the overheads seen in section 4.3.1 we

do not set the SMT level nor the prefetcher for parallel regions that last less

than 0,01. Instead, we execute the parallel region with the current SMT

level and prefetcher configuration.

2. Phase detection. During experimentation we observed a behavior in our

workloads: the initialization phase is usually different to the computing

phase, even in the same parallel region; parallel regions are shorter at the

beginning of the execution. This is the main reason to implement a phase

detector in our algorithm. Every N iterations of a parallel region we start

to characterize the behavior again, N should be not to large to be able to

capture different phases correctly but also not to small to not produce over-

38

4.3. POLICIES IMPLEMENTED UPC

Figure 4.9: libPRISM configuring CG on runtime

heads.

3. Number of repetitions to characterize a parallel region reduced to 1. If we

detect that the last execution time of a parallel region differs more than 5%

of the best execution time (with the correct SMT and prefetcher configura-

tion) we start to characterize its behavior again. It allows us to reduce the

number of repetitions of a parallel region to 1, which decreases the overheads

when characterizing. Parallel regions with small number of iterations benefit

tremendously from this.

The result of these mechanics are shown in figure 4.9. In this figure we show the

main consuming-time parallel region of the benchmark CG from NAS (see section

5.3.1 for further information), in the X axis we show the number of times the

parallel region is executed, and in the Y axis we show the SMT level, prefetcher

aggressiveness and execution time.

libPRISM starts the most aggressive possible for SMT and data prefetcher, first

it selects the best SMT level. Once we know the optimal SMT level for that pre-

established prefetcher libPRISM tries to find out the best configuration for the

prefetcher. As we can see, it selects to turn off the prefetcher, then libPRISM

needs to know if changing the prefetcher had some impact on the best SMT level,

and as we can see in the figure the best SMT level for the prefetcher disabled is

8. Then, libPRISM enters in a steady phase until the moment the execution time

for a parallel region differs too much from its usual execution time.

39

UPC CHAPTER 4. LIBPRISM

40

Chapter 5

Experimental framework and

methodology

5.1 POWER8 processor

For demonstrating purposes we evaluate our solution in a real POWER8 processor

(model 8247-42L) with the following hardware specifications:

• Reduced instruction set computing architecture

• 2 sockets, each socket has 12 cores

• 64 GB CDIMM @ 1600 MHz

• L1 64 KB

• L2 512 KB

• Shared L3 48 MB

• Up to 128 MB eDRAM L4 (off-chip)

• Bandwidth with memory of 230 GB/s

• Peak on Input/Output of 96 GB/s

• SMT modes available are SMT1 or ST, SMT2, SMT4 and SMT8

41

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

Figure 5.1: POWER8 socket architecture

This model is a scale out system, consisting of a Dual Chip Module (DCM).

This means that a DCM fills 1 socket and a DCM has 2 scale out chips. A

POWER8 chip contains 6,8,10 or 12 chiplets (our model contains 6 chiplets). A

chiplet consists of one core, 512 KB of SRAM L2 cache and 8 MB of L3 eDRAM

shareable among all chiplets as it can be seen in the figure 5.1.

For our experiments we limited the number of cores used to 6 cores (one chip

of the 2 available chips) pinning the threads to the processors, the reason for

the limitation is to ensure the data is always local, because of how the cores are

distributed accesses from one core to another core located in the other chip have

different latency and avoid thread migrations. Therefore the experiments will be

more repeatable.

Each physical core has the architecture we can see in the figure 5.2 with the

following specifications:

• CPU clock rate between 2.5 GHz to 5 GHz

• 16 execution pipes

42

5.1. POWER8 PROCESSOR UPC

Figure 5.2: POWER8 microarchitecture

◦ 2 Fixed-point units (FXU)

◦ 2 Load/Store units (LSU)

◦ 2 Load units(LU)

◦ 4 Floating-point units(FPU)

◦ 2 Vector units for SIMD (VMX)

◦ 1 Cryptographic unit (Crypto)

◦ 1 Decimal floating-point unit(DFU)

◦ 1 Condition unit (CR)

◦ 1 Branch unit (BR)

The software stack used in all the experiments is:

• Operative system Ubuntu: 14.04

• Compiler: GCC 4.9

• OpenMP library: libGOMP OMP 4.0

43

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

◦ As described in the section 4.1.1, we will develop our inter-positioning

calls for these specific library. Changing the OMP library should be

as easy as just rename the functions to the new OpenMP library, for

example, GOMP has the prefix “GOMP” for all the functions, if another

OpenMP library has another prefix, we would just need to change the

prefix.

5.1.1 POWER8 reconfigurability

The POWER8 processor have different knobs to control different hardware com-

ponents: the SMT level, thread priorities, how the data prefetch behaves, etc. As

said before, we will focus on the SMT level and how the data prefetch behaves;

in order to control these knobs the POWER8 processor exposes different writable

registers per each virtual core to the operative system [18]

From previous experiments, we saw that the main knob affecting to the perfor-

mance is the SMT level and secondly, the configuration for the data prefetcher,

due to this, we tested different parallel suites to see the different impact of these

knobs on real applications.

Our requirements are very simple: the parallel applications have to be programmed

with the OpenMP model and we should be able to compile them with gcc 4.9 to

do library interposition with the GNU OMP library; this last requirement is to

avoid coding different wrappers.

In Linux, the representation of a core of a machine can be seen in the directory

/sys/devices/system/cpu/, in the POWER8 we can see from the folder cpu0 to

the folder cpu191 (all the physical cores from both sockets and their virtual cores,

these last are the extra threads because of the SMT capabilities). Each of those

folders have files representing information or registers about the core and some of

them are writable. To manage our knobs we need to modify the following files:

online file, only the virtual cores have this file and can be used to turn off the

virtual core if we write a 0, or to turn it up if we write a 1. But, thanks to the

POWER8 firmware, this is not always needed; POWER8 processor automatically

44

5.1. POWER8 PROCESSOR UPC

enables or disables virtual cores depending on how many threads are running on

the machine.

DSCR file, it describes with a numerical value how the data prefetch should act,

the different values to take into account are described in the section 5.1.1.2.

5.1.1.1 SMT

The operative system sees 192 cores (SMT8 level x 12 cores x 2 sockets), but

actually, a group of 8 consecutive cores are representing 1 physical core, i.e. the

cores 0,1,2,3,4,5,6,7 correspond to 1 physical core, this representation of a physical

core depends of the actual processor (Intel usually uses 0,2,4,etc. as one physical

core).

But, the hardware does not behave in the same way when using the first 8 virtual

cores (1 physical core) than when using 8 physical cores (with one thread per

physical core: cpu 0, cpu 8, cpu 16, etc.) this is because SMT offers more thread

capacity but with the disadvantage that those threads will run slower due to the

hardware resources are shared.

The trade off for a parallel application is:

• run with more threads, therefore higher SMT level and slower threads

• run with less threads, thus lower SMT level and faster threads.

As we will see in the section 6.1 it really depends on the applications and if the

parallel application is CPU-bound or memory-bound.

In order to tweak this knob there are 2 possibilities:

• Change the number of threads running in a physical core. POWER8 firmware

automatically goes to the SMT level corresponding to the number of threads

running in a core (e.g. when running 2 threads on a physical core, it will go

to SMT 2).

This is used in libPRISM for outer parallel regions.

• Manually enable or disable virtual cores. As said before we can enable or

45

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

disable a core by writing a 1 or 0 in the online file corresponding to the core.

Each physical core are presented to the OS as 8 virtual cores, if we disable

0, 4, 6 or 7 the firmware will force a SMT level of 8, 4, 2 or ST.

This is used in libPRISM for nested parallel regions or tasks.

5.1.1.2 DSCR

Another knob we will be using in our experiments is the DSCR, it controls how

the data prefetcher behaves. It contains different fields that are activated writing

a 1 or a 0 in the register as seen in table 5.1:

SWTE HWTE STE LTE SWUE HWUE
UNT

CNT
URG LSD SNSE SSE DPFD

0:38 39 40 41 42 43 44 45:54 55:57 58 59 60 61:63

Table 5.1: DSCR register layout [18]

Where:

• 39 Software Transient Enable (SWTE)

Applies the transient attribute to software-defined streams

• 40 Hardware Transient Enable (HWTE)

Applies the transient attribute to hardware-detected streams

• 41 Store Transient Enable (STE)

Applies the transient attribute to store streams.

• 42 Load Transient Enable (LTE)

Applies the transient attribute to load streams.

• 43 Software Unit count Enable (SWUE)

Applies the unit count to software-defined streams.

• 44 Hardware Unit count Enable (HWUE)

Applies the unit count to hardware-detected streams.

46

5.1. POWER8 PROCESSOR UPC

• 45:54 Unit Count (UNITCNT)

Number of units in data stream. Streams that exceed this count are termi-

nated.

• 55:57 Depth Attainment Urgency (URG)

This field indicates how quickly the prefetch depth can be reached for hardware-

detected streams.

• 58 Load Stream Disable (LDS)

Disables hardware detection and initiation of load streams.

• 59 Stride-N Stream Enable (SNSE)

Enables hardware detection and initiation of load and store streams that

have a stride greater than a single cache block

• 60 Store Stream Enable (SSE)

Enables hardware detection and initiation of store streams.

• 61:63 Default Prefetch Depth (DPFD)

Supplies a prefetch depth for hardware-detected streams and for software-

defined streams

• 55:57 Depth Attainment Urgency (URG)

This field indicates how quickly the prefetch depth can be reached for hardware-

detected streams. Values and their meanings are as follows:

◦ 0: Default

◦ 1: Not urgent

◦ 2: Least urgent

◦ 3: Less urgent

◦ 4: Medium

◦ 5: Urgent

◦ 6: More urgent

◦ 7: Most urgent

47

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

There is little information about what these bits are really used for, we did a

previous research on data prefetch based on some previous work [21,22,32] and we

found out that the bits that impact the most on performance are:

• LDS: If this bit is 0 there will be no data prefetch for loads

• SNSE: When an application is accessing non-consecutive data with a fix

stride, enabling this bit makes the data prefetch bring cache blocks that

have a distance of the stride

• SSE: When this bit is enabled and an store instruction is executed the data

prefetcher will bring to the L1 cache the cache block corresponding

• URG: With minor impact on performance, these bits indicates how many

cache blocks the data prefetch is going to bring to the L1 cache of the core, the

default one corresponds to bring 4 caches blocks. In some cases, increasing

the number of blocks to be brought can reduce the execution time. In the

other hand, in some cases, decreasing the number of blocks to be brought

can affect positively to the bandwidth wasted in data that later will not be

accessed

5.2 Metrics

In this work we will analyze 2 metrics to evaluate performance of libPRISM: exe-

cution time and power. We expect to reduce execution time and power by doing a

smarter utilization of hardware resources, but our believe is that power consump-

tion will be more affected by setting the configuration of the data prefetcher. At

some point the data prefetcher configuration can use more power due to be more

aggressive or in the extreme case that the prefetcher is disabled it will be using

much less power.

5.2.1 Performance

In order to measure execution time libPRISM gathers different data (as explain in

section 4.1.2) and one of them is elapsed time.

48

5.2. METRICS UPC

libPRISM reads from the timebase register in our platform, in the case of POWER

processors this is the special register 268. This register allow us to measure elapsed

time spent since starting the execution to the end with a small overhead cost.

This time measurement is done for the whole execution of the workload and per

each parallel region in the workload, having more fine-grain knowledge about the

characteristics of the workload and how good libPRISM behaves.

5.2.2 Power and energy

Even libPRISM is already reducing energy consumption due to shorter execution

times, we want to measure the power consumption to see if there is any benefit

in terms of power using libPRISM; setting the SMT level is affecting in how the

workloads behave, therefore it is probably that the processor changes its power con-

sumption. Also, tunning the data prefetcher can affect to the power consumed by

the memory, this effect should be more notable when disabling the data prefetcher.

For this purpose we will use a tool from IBM called AMESTER (Automated Mea-

surement of Systems for Energy and Temperature Reporting) [16]. This is a re-

search tool to remotely collect power, thermal and performance metrics from IBM

servers. AMESTER is a non-intrusive tool that does not use any of the processing

cycles of the system connected to, therefore has no impact on the performance

and it does not need any support from the operative system. Also, it allows to use

scripts to capture and transcribe the read data to local files.

In order to use it, we will connect to the Flexible Service Processor (FSP) located

in the IBM machine (in our case a POWER8) using our laptop, to not disturb

performance, and execute a script to read the different sensors we need for our

experiments: power for the core, uncore and memory.

49

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

Figure 5.3: AMESTER connection scheme

5.3 Benchmarks

This section describes the different workloads used in this thesis. If possible, we

have chosen a full group of workloads predefined and accepted by the community

as suite benchmarks.

The suites chosen for the purpose of testing our library are based on several re-

quirements:

• Have to be written in OpenMP. As explained, libPRISM works with OpenMP

runtimes.

• Enough execution time to be able to observe different phases and reduce

noise between experiments.

• Different input size. To prove that our solution works fine with different

inputs and execution times.

• In the best scenario, we do not need message passing workloads since we will

just use one machine.

• Ideally, workloads can be compiled in a Power architecture without having

to re-write a lot of code.

All the selected suites are tested for the community. The following sections provide

information about the selected suites, the workloads part of the suites and the

different inputs used.

50

5.3. BENCHMARKS UPC

5.3.1 NAS

The NAS Parallel Benchmarks (NPB) were designed to help evaluate the per-

formance of parallel computers. The suite contains different benchmarks with

different predefined problem sizes indicated as classes.

All of them are written in Fortran except for one of them, written in C (IS).

We will be using the NAS version 3.3.1, which includes the benchmarks in MPI,

OpenMP and serial versions [23]. From all the benchmarks included, we will just

analyze the following benchmarks coded in OpenMP:

Benchmark Description

IS Integer Sort, random memory access

EP Embarrassingly Parallel

CG Conjugate Gradient, irregular memory access and communication

MG Multi-Grid on a sequence of meshes, long- and short-distance com-

munication, memory intensive

FT Discrete 3D fast Fourier Transform, all-to-all communication

BT Block Tri-diagonal solver

SP Scalar Penta-diagonal solver

LU Lower-Upper Gauss-Seidel solver

Table 5.2: NAS Benchmarks description

We only analyze classes C and D, from all the classes: A,B,C,D,E,S (from smaller

to bigger input). We picked those 2 because of time (long enough to avoid noise

and short enough to run different times) and to prove that with different inputs

the applications can have different behavior in terms of performance depending on

the SMT level.

5.3.2 SPEC OMP 2012

The SPEC OMP 2012 benchmarks are designed for measuring performance using

applications based on the OpenMP 3.1. It contains 14 scientific and engineering

51

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

application codes covering a wide range of domains. [30] They are written mostly

in C and Fortran, and one of them in C++.

The benchmarks analyzed are:

Benchmark Language Application domain

350.md Fortran Physics: Molecular Dynamics

351.bwaves Fortran Physics: Computational Fluid Dynamics (CFD)

352.nab C Molecular Modeling

357.bt331 Fortran Physics: Computational Fluid Dynamics (CFD)

358.botsalgn C Protein Alignment

359.botsspar C Sparse LU

360.ilbdc Fortran Lattic Boltzmann

362.fma3d Fortran Mechanical Response Simulation

363.swim Fortran Weather Prediction

367.imagick C Image Processing

370.mgrid331 Fortran Physics: Computational Fluid Dynamics (CFD)

371.applu331 Fortran Physics: Computational Fluid Dynamics (CFD)

372.smithwa C Optimal Pattern Matching

376.kdtree C++ Sorting and Searching

Table 5.3: SPEC OMP 2012 Benchmarks description

All the benchmarks have been run with the reference input (the largest one) in

order to try to reflect the large HPC applications.

5.3.3 CORAL

As a part of a collaboration between Argonne National Laboratory, Lawrence

Livermore National Laboratory and Oak Ridge National Laboratory different rep-

resentative workloads in the HPC world were selected to study performance in

large computers.

The CORAL suite contains different benchmark categories: Scalable science Bench-

marks, throughput benchmarks, data centric, skeleton and micro benchmarks;

52

5.3. BENCHMARKS UPC

the total number of existing benchmarks are above 30, not all the codes are in

OpenMP, therefore the number of benchmarks we can use is less than 30. Due

to this we selected a reduced number of them (see table 5.4) trying to pick one

of each category to be fair, but we could not afford to pick one of the “Scalable

science” category because of time to run them.

Benchmark Category Comments

LULESH Throughput Shock,hydrodynamics for unstructured meshes. Fine-grained loop level threading.

HACCmk Microkernel Single,core optimization and SIMD compiler challenge, compute intensity.

graph500 Data-Centric Scalable,breadth-first search of a large undirected graph.

AMGmk Microkernel Three,compute intensive kernels from AMG.

Table 5.4: Selection of CORAL benchmarks

53

UPC CHAPTER 5. EXPERIMENTAL FRAMEWORK

54

Chapter 6

Evaluation

First of all, we need to check how our exploration policy performs (see section

4.3.2) performs against an ideal execution (see section 4.3.1). With this purpose

we used the NAS suite (see section 5.3.1) mainly because the execution time is

more affordable than with the other suites. Figure 6.1 displays this comparison.

It shows the performance when running in:

• ST

• SMT8

• BSA. Best Static per Application (i.e. run the benchmark with the best

SMT level)

• BSPR. Best Static per Parallel Region: After profiling the application we

select the best configuration for each parallel region, this information is fed

to our oracle policy, which runs the benchmark with the best configuration

for each parallel region.

• libPRISM. Using our exploration policy.

Results confirm that our exploration policy is close to the ideal execution. We can

highlight some behaviors:

• CG, EP, FT have no improvement in reconfiguring the hardware and libPRISM

has no degradation

55

UPC CHAPTER 6. EVALUATION

BT CG EP FT IS LU MG SP
NAS C Input

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p

ST SMT8 BSA BSPR libPRISM

Figure 6.1: Performance comparison when using static SMT levels (ST, SMT8,
Best Static Per Application) and dynamic SMT levels (Best Static per Parallel
Region and libPRISM)

• BT, IS, LU and SP have an improvement because of the reconfiguration of the

SMT level and libPRISM is able to automatically reconfigure the hardware.

With libPRISM we have a degradation in IS and SP with respect to the Best

Static per Parallel Region: IS has only 11 iterations of a parallel region, this

produces a greater overhead when doing the exploration. SP has hundreds

of iterations but the behavior of the iterations change over the time and

libPRISM needs more time to capture that behavior, leading to a 4% drop

in the speedup with respect to the default SMT8 level

• MG actually shows a degradation in performance when using a Best Static

per Parallel Region or libPRISM. The reason have been already commented

in the previous section 4.3.1; there are small parallel regions where reconfig-

uring the number of threads has more overhead than the actual work to do

inside the parallel region.

Next thing we have to check is the overheads produced by the use of libPRISM.

We run libPRISM but this time, libPRISM is not carrying out any hardware

reconfiguration; we should appreciate the overheads of the different mechanism we

56

6.1. RESULTS UPC

BT CG EP FT IS LU MG SP
Suite NAS with D input

0.96

0.98

1.00

1.02

1.04

O
ve

rh
ea

d
w

it
h

lib
PR

IS
M

Figure 6.2: Overheads produced by libPRISM

are using. The benchmarks will run as they were with the default configuration

SMT8 and prefetcher enabled but with libPRISM’s infrastructure. This is shown

in figure 6.2, which proves a maximum overhead of 2%.

6.1 Results

6.1.1 NAS

Figure 6.3 shows the results for the NAS suite in terms of speed up with respect

to SMT8 level and prefetcher enabled (i.e. bars of SMT8 will be always 1). Plots

(a) and (b) show the behavior for C and D input respectively. Again, we show ST

mode and Best Static per Application for reference purposes.

At first sight we can see a difference between C and D input: this confirms that the

hardware configuration should not be specific for application but for application

and input data; which makes more important the runtime that handles this recon-

figuration in order to free the programmer to know every detail of the hardware

architecture.

57

UPC CHAPTER 6. EVALUATION

Looking at the C input we can see some behaviors:

• BT: with a static SMT level (BSA) is enough to achieve the best performance.

libPRISM gets the same performance (15%).

• CG: default configuration is the best configuration. libPRISM does not get

any slowdown.

• EP: default configuration is the best configuration. libPRISM does not get

any slowdown.

• FT: default configuration is the best configuration. libPRISM does not get

any slowdown.

• IS: with a static approach the BSA configuration does not reduce execution

time, but libPRISM can get up to 18% speedup. The reason for this we

found in how the benchmark works, it has 2 parallel regions that have a

different optimal SMT level (SMT4 and SMT8) at the moment we set a static

configuration the speedup from a parallel region is not reflected because of

the slowdown in the other parallel region.

• LU: as in the BT benchmark, a static configuration is enough to get the best

performance and again libPRISM is able to detect it and not lose perfor-

mance.

• MG: in this case libPRISM is getting a slowdown of 5%. This is due to the

libPRISM keeps resettings it exploration phase because the irregularity of

the input.

• SP: again a static approach for the hardware configuration is enough. libPRISM

gets a slowdown of 2% compared to the BSA because of resetting the explo-

ration phase as in the MG benchmark, but in this case SP has more iterations

to be able to reduce the impact of it.

Then, analyzing the data for the D input we can observe differences:

• BT: a static approach is enough to get the best performance, which is a 10%

speedup in SMT4 level.

• CG: a static approach is enough to get the best performance, which is a 39%

58

6.1. RESULTS UPC

BT CG EP FT IS LU MG SP MEAN
(a) C Input

0.0
0.2
0.4
0.6
0.8
1.0

Sp
ee

du
p

BT CG EP FT IS LU MG SP MEAN
(b) D Input

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

ST SMT8 BSA libPRISM

Figure 6.3: Performance using libPRISM in NAS suite with C and D inputs.

speedup in SMT8 level and the data prefetcher disabled.

• EP: default configuration is the best configuration. libPRISM does not get

any slowdown.

• FT: this is an example where there are parallel regions with different optimal

configuration (SMT4 and SMT8): with a static approach we get a 62%

speedup, but with libPRISM we can increase that speedup to 71%

• IS: default configuration is the best configuration. libPRISM does not get

any slowdown.

• LU: a static approach with a SMT4 gets a 6% speedup, but libPRISM can

get a 8% speedup.

• MG: default configuration is the best configuration. libPRISM does not get

any slowdown.

• SP: as explained in the C input, libPRISM loses a 1% of speedup with respect

to the BSA corresponding to SMT4 (6% speedup) because of the exploration

phase.

59

UPC CHAPTER 6. EVALUATION

In terms of power we show the contribution for the core and memory to the total

dynamic power consumption using the default configuration and with libPRISM

in figure 6.4 (only D input). Values are normalize to the default configuration.

Generally, there are no big differences in the power breakdown, but there are

several important points to highlight:

• Logically, the benchmarks were libPRISM changes nothing on the hardware

configuration the power breakdown it is the same.

• BT: libPRISM change the hardware configuration, therefore we can see this

reflected in the power consumption. The total dynamic power consumption

is reduced by a 10% with respect to the default configuration, which 7% is

reduced from memory and 3% from the core

• CG: In this benchmark, libPRISM can turn off the prefetcher, but interest-

ingly, power consumption for memory increases. Actually, with the if we do

not turn off the prefetcher, the best SMT level is 4 with a speedup of 2%, but

at the moment we turn off the prefetcher the best SMT level is 8. It seems a

problem where threads cannot access memory if the prefetcher brings more

than the actual and needed line.

• FT: This benchmarks benefits a lot from libPRISM in terms of execution

time, but it has a side effect on power. Power consumption of the memory

goes down a 5%, but the dynamic power consumption of the core goes from

a 66% contribution to the total power to a 75% (9% difference in dynamic

power).

• LU: even libPRISM sets the hardware to a different configuration we cannot

appreciate a real difference in terms of power consumption.

• SP: again libPRISM reconfigures the hardware to obtain a speedup in terms

of execution time and in terms of power this translate to a reduction of 8%,

2% from memory and the other 6% from the core.

In Figure 6.5 we show the energy consumption with libPRISM normalized to the

default hardware configuration. We can observe only a change of the energy con-

sumption when libPRISM can increase performance in terms of execution time:

60

6.1. RESULTS UPC

DEFAULT libPRISM
BT

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

77% 74%

23% 16%

DEFAULT libPRISM
CG

80% 88%

20%
28%

DEFAULT libPRISM
EP

97% 96%

3% 3%

DEFAULT libPRISM
FT

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

66% 75%

34% 29%

DEFAULT libPRISM
IS

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

81% 81%

19% 19%

DEFAULT libPRISM
LU

61% 60%

39% 38%

CORE MEMORY

DEFAULT libPRISM
MG

67% 66%

33% 33%

DEFAULT libPRISM
SP

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

53% 47%

47% 45%

D
yn

am
ic

 p
ow

er
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

 t
o

th
e

de
fa

ul
t

co
nf

ig
ur

at
io

n)

Figure 6.4: Power contribution of NAS suite D Input. Values are normalized to
the 100% consumption when running with default configuration

• BT: LibPRISM reduces energy by reducing the execution time and reducing

the total power consumption by a 12%.

• CG: The reduction comes mainly by the fact that we can speedup up the

execution by turning off the prefetcher, even this implies an increase in the

dynamic power consumption of memory.

• FT: In this case power consumption with libPRISM increases, but then

libPRISM speedups the execution time. This translates to an energy savings

of 78%.

• LU: Energy is reduced a 18% with respect the default configuration.

• SP: LibPRISM reduces energy by reducing the execution time and reducing

the total power consumption. This gives us an energy savings of 10%.

61

UPC CHAPTER 6. EVALUATION

BT CG EP FT IS LU MG SP0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
En

er
gy

 c
on

su
m

ed
 n

or
m

al
iz

ed
 t

o
th

e
de

fa
ul

t
co

nf
ig

ur
at

io
n

Figure 6.5: Energy consumption with libPRISM for the NAS suite with the D
input

6.1.2 SPEC OMP 2012

Respect to SPEC OMP 2012 suite, results are display in figure 6.6. We can see

that almost all the benchmarks work great with the default configuration and

libPRISM has to change the hardware in few benchmarks:

• Botsalgn: The static approach gets a 9% speedup while libPRISM achieves

a 7% speedup. This loss is due to the variability in execution time of tasks

(usually smaller and higher variability than normal parallel for regions),

therefore for tasks we needed to increase the exploration phase to reduce

noise. This benchmark benefits of changing the SMT level to 4.

• Botsspar: Both of the static approach (BSA) and libPRISM get a 25%

speedup. This benchmark as Botsalgn has only 1 parallel region, which

gets the optimal performance with SMT4 and default prefetcher.

• Ilbdc: a static approach for the hardware configuration gets the best per-

formance for this benchmark. BSA and libPRISM get a 12% speedup. The

best configuration for Ilbdc is SMT4 with the default prefetcher.

• Mgrid331: BSA gets a 113% speedup with respect to the default configura-

62

6.1. RESULTS UPC

App
lu3

31

Bot
sa

lgn

Bot
ss

pa
r

Bt3
31

Bwav
es

Fm
a3

d
Ilb

dc

Kdt
re

e
MD

Mgr
id3

31 Nab
Sw

im
MEA

N

SPEC OMP 2012, Native input

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ST SMT8 BSA libPRISM

Figure 6.6: Performance using libPRISM in SPEC OMP 2012 suite with native
input

tion, but libPRISM (changing the SMT level between 4 and 8) is able to get

10% more (123% with respect to the default configuration) because it has

parallel regions with different optimal hardware configuration.

In figure 6.7 we show the dynamic power consumption with the contribution to the

total dynamic power consumption for the core and memory hardware components.

In the cases where libPRISM can get an speedup we shall expect a variation on

the power consumption:

• Botsalgn: Lowering the SMT level to 4 produces a reduction in the dynamic

power consumption. Power goes down a 5% of the total dynamic power. The

reduction comes only from the core, since it is a benchmark that does not

use a lot of power for memory.

• Botsspar: libPRISM is able to get a reduction of a 12% of the total power

consumption. The contribution of the memory goes down to a 2% (libPRISM

reduced a 3%) and the core goes down a 9%.

• Ilbdc: Setting a different hardware configuration is only reflected on the

power consumption by a reduction of 2% of the core.

63

UPC CHAPTER 6. EVALUATION

DEFAULT libPRISM
Applu331

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

95% 95%

5% 5%

DEFAULT libPRISM
Botsalgn

98% 93%

2% 2%

DEFAULT libPRISM
Botsspar

95% 86%

5%
2%

DEFAULT libPRISM
Bt331

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

95% 95%

5% 5%

DEFAULT libPRISM
Bwaves

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

95% 95%

5% 5%

DEFAULT libPRISM
Fma3d

94% 94%

6% 6%

DEFAULT libPRISM
Ilbdc

89% 87%

11% 11%

DEFAULT libPRISM
Kdtree

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

97% 97%

3% 3%

DEFAULT libPRISM
Md

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

98% 98%

2% 2%

DEFAULT libPRISM
Mgrid331

97% 84%

3%
3%

CORE MEMORY

DEFAULT libPRISM
Nab

97% 97%

3% 3%

DEFAULT libPRISM
Swim

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

92% 92%

8% 8%

D
yn

am
ic

 p
ow

er
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

 t
o

th
e

de
fa

ul
t

co
nf

ig
ur

at
io

n)

Figure 6.7: Power contribution of SPEC OMP 2012 suite with the native input.
Values are normalized to the 100% consumption when running with default con-
figuration

• Mgrid331: Similar to Ilbdc benchmark. libPRISM lowers the power con-

sumption of the core by a 13%.

To finishing the analysis for the SPEC OMP 2012 suite we show the energy con-

sumption in figure 6.8. We see a similar trend to the NAS suite, where the energy

reduction mainly comes from the reduction on the execution time. As expected, if

the default hardware configuration is the best configuration there are no differences

in terms of energy, but libPRISM can actuate in several benchmarks:

• Botsalgn: The speedup obtained in execution time (7%) plus the reduction

on the power consumption for the core is from libPRISM gets the energy

reduction of a 8%.

• Botsspar: Energy is reduced a 23% with respect to the default execution.

• Ilbdc: Even getting a 1.12x speed up on execution time, energy is only

reduced by a 6%.

64

6.1. RESULTS UPC

App
lu3

31

Bot
sa

lgn

Bot
ss

pa
r

Bt3
31

Bwav
es

Fm
a3

d
Ilb

dc

Kdt
re

e Md

Mgr
id3

31 Nab
Sw

im
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

En
er

gy
 c

on
su

m
ed

 n
or

m
al

iz
ed

 t
o

th
e

de
fa

ul
t

co
nf

ig
ur

at
io

n

Figure 6.8: Energy consumption with libPRISM for SPEC OMP 2012 suite

• Mgrid331: In this case we can reduce to more than a half the execution time

and the energy. Energy is reduced to a 46% normalized to the execution

without libPRISM support.

6.1.3 CORAL Benchmarks

Running libPRISM with the CORAL benchmarks produce the results shown in

figure 6.9. In this figure we can observe a behavior for each benchmark:

• Lulesh: This is one example of great benefits, setting the correct hardware

configuration we can get up to a 1.55x speedup with a static approach.

libPRISM is able to capture the behavior and obtain the same speedup

automatically.

• HACC: This benchmark works fine with the default configuration with only

one detail, it is not using the prefetched data therefore libPRISM detects it

and disable the prefetcher.

• graph500: As we can see comparing the default configuration with SMT8

and the Best Static per Application (BSA) the best SMT level is 8. But

libPRISM can get a 5% speedup disabling the prefetcher because it produces

65

UPC CHAPTER 6. EVALUATION

LULESH HACC graph500 AMG MEAN
CORAL Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sp

ee
du

p

ST SMT8 BSA libPRISM

Figure 6.9: Performance using libPRISM in CORAL benchmarks

a slowdown in the benchmark. This is because is an algorithm traversing

a graph, therefore will not use the prefetched data (but still will have to

prefetch it)

• AMG: This benchmark with a static approach can get a 5% speedup, with

libPRISM we cannot achieve that because of the duration of the parallel

regions. AMG is composed by one small parallel region repeated thousands

of times and, as explained in section 4, libPRISM cannot capture this small

parallel regions because of the overhead produced by the GOMP runtime.

Power breakdown (core and memory components) for the CORAL benchmarks are

shown in figure 6.10, where we can see some new behaviors:

• Lulesh: Setting the SMT level to a lower level (SMT4) we can obtain a

general reduction on power. Power for the core is reduced 6% and memory

a 7%.

• HACC: As said previously, this benchmark is able to do all the computation

with data on the caches, therefore enabling, increasing aggressiveness or

disabling the prefetcher makes no difference. Also, we saw in the performance

figure (see 6.9) that HACC runs better with SMT8.

66

6.1. RESULTS UPC

DEFAULT libPRISM
LULESH

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

74% 68%

26%
19%

DEFAULT libPRISM
HACC

99% 97%

1% 1%

CORE MEMORY

DEFAULT libPRISM
graph500

63% 63%

37% 30%

DEFAULT libPRISM
AMG

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

73% 73%

27% 25%

D
yn

am
ic

 p
ow

er
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

 t
o

th
e

de
fa

ul
t

co
nf

ig
ur

at
io

n)

Figure 6.10: Power contribution of CORAL benchmarks. Values are normalized
to the 100% consumption when running with default configuration

• graph500: In this benchmark libPRISM is able to disable the prefetcher

to speedup the execution time, this is reflected in the drop of the memory

component (of 7%) when using libPRISM.

• AMG. Here libPRISM cannot actuate because the reasons stated before,

therefore the power breakdown is the same with libPRISM

Energy for the CORAL benchmarks is shown in figure 6.11 from these figures we

can observe how the reduction in execution time and power consumption translates

to the energy:

• Lulesh: Here we can save up to 37% of energy thanks to libPRISM, which

is able to reduce execution time and power.

• HACC: This benchmarks runs better with the default configuration, there-

fore libPRISM does not change the hardware configuration. No energy dif-

ferences are appreciated.

• graph500: Thanks to disable the data prefetcher and reduce the execution

time energy savings are reduced by a 8% with respect the default configura-

tion.

67

UPC CHAPTER 6. EVALUATION

LULESH HACC graph500 AMG0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
En

er
gy

 c
on

su
m

ed
 n

or
m

al
iz

ed
 t

o
th

e
de

fa
ul

t
co

nf
ig

ur
at

io
n

Figure 6.11: Energy consumption with libPRISM

• AMG: This benchmarks runs better with the default configuration, therefore

libPRISM does not change the hardware configuration. No energy differences

are appreciated.

68

Chapter 7

Conclusions and future work

As hardware gets more complex it will be needed an abstraction layer to offer to

programmers increase their workload performance (e.g. multicore processors can

be found in any place and thanks to parallel programming models such as OpenMP

we have been able to use them in our benefit).

Hardware vendors keep pushing new features in their processors to increase per-

formance while keeping in mind the current problems (e.g. memory and power

wall): data prefetch, SMT, thread priorities, etc.

All these techniques have been proved to increase performance if used correctly;

which means that programmers need to be aware of the architecture but also they

need to take care of the possible interactions between different techniques.

This programmability wall can have a huge effect on the efforts to develop and

maintain software: redesign if the architecture changes, add extra functionalities

in order to use new architecture changes, adapt the code if they want to run in a

different platform, etc.

In this thesis we contributed to this problematic with libPRISM: an intelligent

library that reconfigures the underlying hardware to increase performance and

reduce power consumption.

libPRISM does all the analysis of the executed workload and reconfigures the

different hardware knobs for the benefit of the end user, and because it runs on

69

UPC CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the top of the OpenMP runtime it also does it transparently to the programmer,

who just need to code with OpenMP as they were doing before. libPRISM just

needs to be able to do library interposition and that is something that almost all

operative system already have, in the specific case of Linux is done through the

environment variable LD PRELOAD.

We have tested libPRISM against major and accepted benchmark suites: NAS,

SPEC OMP 2012 and CORAL benchmarks. Through this testing we have seen

that workloads demands are not only based on the application but also based on

the data is processing, this characteristic makes possible intra-phases in the same

workload where the optimal configuration can differ from other phases. This fact

strongly suggest that we need to reconfigure the hardware per phase instead of

per workload: this can be done after a comprehensive profiling or with a runtime

mechanism such as libPRISM.

Also, we have seen that disabling the prefetcher helps more to increase performance

when the SMT level is higher. Good examples of this behavior is CG from the

NAS suite or graph500 from the CORAL suite.

libPRISM can get up to 2.22x speedup (1.15x in average) in execution time while

decreasing dynamic power consumption by a 13% (2% in average) by just recon-

figuring the SMT level and data prefetcher.

7.1 Future work

One behavior that we would have liked to see more is the relation between SMT

and data prefetcher: higher aggressiveness for the data prefetcher implies a lower

SMT level, and a lower aggressiveness of the data prefetcher would imply a higher

SMT level. We just saw the second behavior, the lowest aggressiveness of the data

prefetcher (disabled) with the highest SMT level gives the most performance.

And also related with data prefetcher, we could only apply 2 optimal prefetcher

configurations: default and disabled. Probably because the benchmarks tested

use a small percentage of bandwidth that our machine can support, therefore,

different prefetcher configurations have a very small impact to be noticed. We

70

7.1. FUTURE WORK UPC

could always increase the input size but we did not for 2 reasons: (1) we wanted to

use predefined and tested inputs in order to be able to verify at every moment we

were getting the desired output and (2) time constraints, as explained in section

5.3 some of the benchmarks have a reasonable time (NAS suite) but the others

already took a considerable amount of time to execute with the native input.

We would like to test different benchmarks where we can see those 2 behaviors

that we think we are missing, but the number of benchmarks coded in OpenMP

are fewer if we compare to benchmarks coded in another parallel programming

model such as pthreads, for example.

Another path to follow is to decrease the overhead in training our policy, we could

implement a machine learning policy where we train libPRISM before executing

applications. This idea can have a major impact in the granularity we have defined

(i.e. parallel regions) and we would might want to change it. But this idea could

have a negative aspect, as said before we think we are not seeing all the behaviors

we would like, then when training our algorithm we could potentially miss some

behaviors, therefore our algorithm would not be able to match correctly all the

possibilities.

Also, the processor used in this work have more knobs that can be reconfigured. We

would like to increase the possibilities of libPRISM to all the knobs in the machine,

coordinating all of the hardware at the same time in order to boost performance.

One idea that came to our mind was to use thread priorities to make possible to

coordinate different workloads to achieve their maximum speedup when they are

not running in isolated.

71

UPC CHAPTER 7. CONCLUSIONS AND FUTURE WORK

72

Acronyms

DCM Dual Chip Module. 42

DSCR Data Stream Control Register. vi, ix, 45, 46, Glossary: Data Stream

Control Register

ELF Executable and Linkable Format. 23

GCC The GNU Compiler Collection. 16, 19–22

GOMP GNU OpenMP implementation. xi, 22, 24, 26, 27, 33, 44

OpenMP Open Multi Processing. i, vii, 4, 16, 17, 19–22, 25–27, 29, 30, 43, 44,

50, 51, 53, 69–71, Glossary: OpenMP

PMC Performance Monitor Counter. 27–29, Glossary: Performance Monitor

Counter

SMT Simultaneous MultiThreading. i, vi, vii, ix, 1, 3, 4, 7–12, 19, 21, 27, 28,

33–36, 38, 39, 41, 44–46, 49, 51, 55–60, 62, 63, 65, 66, 69, 70, Glossary:

Simultaneous MultiThreading

ST Single Thread. 38, 41

73

UPC Acronyms

74

Glossary

Data Stream Control Register Register used to control the degree of aggres-

siveness of memory prefetching for load and store instructions. vi

OpenMP It is an application programming interface for shared memory proces-

sors based on the fork-join model. i

Performance Monitor Counter A set of special-purpose registers built into

moder microprocessors to store the counters of hardware-related events that

have happened in the system. The number and the possible events to record

are hardware dependent but usually a vendor always implement the same

events in its different CPUs. 27

Reduced instruction set computing It is a CPU design strategy based on the

insight that a simplified instruction set (as opposed to a complex set) pro-

vides higher performance when combined with a microprocessor architecture

capable of executing those instructions using fewer microprocessor cycles per

instruction. 41

Simultaneous MultiThreading Technique for improving the overall efficiency

of super scalar CPUs with hardware multithreading. SMT permits multi-

ple independent threads of execution to better utilize the resources trying

to fill all the different queues and execution units in a modern processor

architecture using more threads per core. i

75

UPC Glossary

76

Bibliography

[1] Bitirgen, R., Ipek, E., and Martinez, J. F. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine learn-

ing approach. In Proceedings of the 41st Annual IEEE/ACM International

Symposium on Microarchitecture (Washington, DC, USA, 2008), MICRO 41,

IEEE Computer Society, pp. 318–329.

[2] Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A.,

Cher, C. Y., and Valero, M. Software-controlled priority characteri-

zation of power5 processor. In Computer Architecture, 2008. ISCA ’08. 35th

International Symposium on (June 2008), pp. 415–426.

[3] Boneti, C., Gioiosa, R., Cazorla, F. J., Corbalan, J., Labarta,

J., and Valero, M. Balancing hpc applications through smart allocation

of resources in mt processors. In Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on (April 2008), pp. 1–12.

[4] Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. A dy-

namic scheduler for balancing hpc applications. In Proceedings of the 2008

ACM/IEEE Conference on Supercomputing (Piscataway, NJ, USA, 2008), SC

’08, IEEE Press, pp. 41:1–41:12.

[5] Casas, M., and Bronevetsky, G. Active measurement of memory re-

source consumption. In 2014 IEEE 28th International Parallel and Distributed

Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014 (2014), pp. 995–

1004.

[6] Casas, M., and Bronevetsky, G. Evaluation of HPC applications’ mem-

ory resource consumption via active measurement. IEEE Trans. Parallel Dis-

77

UPC BIBLIOGRAPHY

trib. Syst. 27, 9 (2016), 2560–2573.

[7] Casas, M., Moreto, M., Alvarez, L., Castillo, E., Chasapis, D.,

Hayes, T., Jaulmes, L., Palomar, O., Unsal, O., Cristal, A.,

Ayguade, E., Labarta, J., and Valero, M. Runtime-Aware Archi-

tectures. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 16–27.

[8] Cazorla, F. J., Fernandez, E., Raḿırez, A., and Valero, M. Im-

proving Memory Latency Aware Fetch Policies for SMT Processors. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 70–85.

[9] Cazorla, F. J., Knijnenburg, P. M., Sakellariou, R., Fernández,

E., Ramirez, A., and Valero, M. Predictable performance in smt pro-

cessors. In Proceedings of the 1st Conference on Computing Frontiers (New

York, NY, USA, 2004), CF ’04, ACM, pp. 433–443.

[10] Cray Inc. Chapel language specification, v 0.981, 2016.

[11] Creech, T., Kotha, A., and Barua, R. Efficient multiprogramming

for multicores with scaf. In Proceedings of the 46th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (New York, NY, USA, 2013),

MICRO-46, ACM, pp. 334–345.

[12] D. Marr, e. a. Hyperthreading technology architecture and microarchitec-

ture. IEEE Micro 6, 1 (February 2002).

[13] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L.,

Martorell, X., and Planas, J. Ompss: A proposal for programming

heterogeneous multi-core architectures. Parallel Processing Letters 21, 02

(2011), 173–193.

[14] Feliu, J., Eyerman, S., Sahuquillo, J., and Petit, S. Symbiotic job

scheduling on the ibm power8. In 2016 IEEE International Symposium on

High Performance Computer Architecture (HPCA) (March 2016), pp. 669–

680.

[15] Feliu, J., Sahuquillo, J., Petit, S., and Duato, J. Addressing

fairness in smt multicores with a progress-aware scheduler. In Parallel and

78

BIBLIOGRAPHY UPC

Distributed Processing Symposium (IPDPS), 2015 IEEE International (May

2015), pp. 187–196.

[16] Floyd, M., Ware, M., Rajamani, K., Gloekler, T., Brock, B.,

Bose, P., Buyuktosunoglu, A., Rubio, J. C., Schubert, B., Spruth,

B., Tierno, J. A., and Pesantez, L. Adaptive energy-management fea-

tures of the IBM POWER7 chip. IBM Journal of Research and Development

55, 3 (May 2011), 8:1–8:18.

[17] Gottschalk, K. Industry insights: Openpower roadmap toward coral ibm.

HPC Advisory Council Switzerland Conference, 2016.

[18] Hall, B., Bergner, P., Housfater, A., Kandasamy, M., Magno, T.,

Mericas, A., Munroe, S., Oliveira, M., Schmidt, B., Schmidt, W.,

et al. Performance Optimization and Tuning Techniques for IBM Power

Systems Processors Including IBM POWER8. IBM Redbooks, 2015.

[19] Heirman, W., Carlson, T. E., Van Craeynest, K., Hur, I., Jaleel,

A., and Eeckhout, L. Automatic smt threading for openmp applications

on the intel xeon phi co-processor. In Proceedings of the 4th International

Workshop on Runtime and Operating Systems for Supercomputers (New York,

NY, USA, 2014), ROSS ’14, ACM, pp. 7:1–7:7.

[20] Hur, I., and Lin, C. Memory prefetching using adaptive stream detection.

In 2006 39th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO’06) (Dec 2006), pp. 397–408.

[21] Jimenez, V., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., Ca-

zorla, F., and Valero, M. Increasing multicore system efficiency through

intelligent bandwidth shifting. In High Performance Computer Architecture

(HPCA), 2015 IEEE 21st International Symposium on (Feb 2015), pp. 39–50.

[22] Jiménez, V., Gioiosa, R., Cazorla, F. J., Buyuktosunoglu, A.,

Bose, P., and O’Connell, F. P. Making data prefetch smarter: Adaptive

prefetching on power7. In Proceedings of the 21st International Conference

on Parallel Architectures and Compilation Techniques (New York, NY, USA,

2012), PACT ’12, ACM, pp. 137–146.

79

UPC BIBLIOGRAPHY

[23] Jin, H.-Q., Frumkin, M., and Yan, J. The openmp implementation of

nas parallel benchmarks and its performance.

[24] Kongetira, P., Aingaran, K., and Olukotun, K. Niagara: a 32-way

multithreaded sparc processor. IEEE Micro 25, 2 (March 2005), 21–29.

[25] Li, M., Chen, G., Wang, Q., Lin, Y., Hofstee, P., Stenstrom, P.,

and Zhou, D. Pater: A hardware prefetching automatic tuner on ibm power8

processor. IEEE Computer Architecture Letters 15, 1 (Jan 2016), 37–40.

[26] Manousopoulos, S., Moreto, M., Gioiosa, R., Koziris, N., and Ca-

zorla, F. J. Characterizing thread placement in the ibm power7 processor.

In Workload Characterization (IISWC), 2012 IEEE International Symposium

on (Nov 2012), pp. 120–130.

[27] Mericas, A., Peleg, N., Pesantez, L., Purushotham, S. B.,

Oehler, P., Anderson, C. A., King-Smith, B. A., Anand, M.,

Arnold, J. A., Rogers, B., Maurice, L., and Vu, K. Ibm power8

performance features and evaluation. IBM Journal of Research and Develop-

ment 59, 1 (Jan 2015), 6:1–6:10.

[28] Moreto, M., Cazorla, F. J., Ramirez, A., and Valero, M. Mlp-

aware dynamic cache partitioning. In Proceedings of the 3rd International

Conference on High Performance Embedded Architectures and Compilers

(Berlin, Heidelberg, 2008), HiPEAC’08, Springer-Verlag, pp. 337–352.

[29] Moseley, T., Kihm, J. L., Connors, D. A., and Grunwald, D. Meth-

ods for modeling resource contention on simultaneous multithreading pro-

cessors. In 2005 International Conference on Computer Design (Oct 2005),

pp. 373–380.

[30] Müller, M. S., Baron, J., Brantley, W. C., Feng, H., Hacken-

berg, D., Henschel, R., Jost, G., Molka, D., Parrott, C., Ro-

bichaux, J., Shelepugin, P., Waveren, M., Whitney, B., and Ku-

maran, K. OpenMP in a Heterogeneous World: 8th International Workshop

on OpenMP, IWOMP 2012, Rome, Italy, June 11-13, 2012. Proceedings.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, ch. SPEC OMP2012

80

BIBLIOGRAPHY UPC

— An Application Benchmark Suite for Parallel Systems Using OpenMP,

pp. 223–236.

[31] OpenMP Architecture Review Board. OpenMP application program

interface version 4.5, Nov. 2015.

[32] Prat, D., Ortega, C., Casas, M., Moretó, M., and Valero, M.

Adaptive and application dependent runtime guided hardware prefetcher re-

configuration on the IBM POWER7. CoRR abs/1501.02282 (2015).

[33] Reinders, J. Intel Threading Building Blocks, first ed. O’Reilly & Associates,

Inc., Sebastopol, CA, USA, 2007.

[34] Sinharoy, B., Kalla, R., Starke, W. J., Le, H. Q., Cargnoni, R.,

Norstrand, J. A. V., Ronchetti, B. J., Stuecheli, J., Leenstra,

J., Guthrie, G. L., Nguyen, D. Q., Blaner, B., Marino, C. F.,

Retter, E., and Williams, P. Ibm power7 multicore server processor.

IBM Journal of Research and Development 55, 3 (May 2011), 1:1–1:29.

[35] Snavely, A., and Tullsen, D. M. Symbiotic jobscheduling for a simulta-

neous multithreaded processor. SIGARCH Comput. Archit. News 28, 5 (Nov.

2000), 234–244.

[36] Tembey, P., Vega, A., Buyuktosunoglu, A., da Silva, D., and

Bose, P. Smt switch: Software mechanisms for power shifting. IEEE Com-

puter Architecture Letters 12, 2 (July 2013), 67–70.

[37] Tullsen, D. M., Eggers, S. J., and Levy, H. M. Simultaneous multi-

threading: Maximizing on-chip parallelism. In Computer Architecture, 1995.

Proceedings., 22nd Annual International Symposium on (June 1995), pp. 392–

403.

[38] Valero, M., Moreto, M., Casas, M., Ayguade, E., and Labarta,

J. Runtime-aware architectures: A first approach. Supercomputing frontiers

and innovations 1, 1 (2014).

[39] Vega, A., Buyuktosunoglu, A., and Bose, P. Transparent cpu-gpu

collaboration for data-parallel kernels on heterogeneous systems. In Parallel

81

UPC BIBLIOGRAPHY

Architectures and Compilation Techniques (PACT), 2013 22nd International

Conference on (Sept 2013), pp. 245–256.

[40] Vega, A., Buyuktosunoglu, A., Hanson, H., Bose, P., and Ramani,

S. Crank it up or dial it down: Coordinated multiprocessor frequency and

folding control. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (New York, NY, USA, 2013), MICRO-46,

ACM, pp. 210–221.

[41] Wulf, W. A., and McKee, S. A. Hitting the memory wall: Implications

of the obvious. SIGARCH Comput. Archit. News 23, 1 (Mar. 1995), 20–24.

[42] Zhang, Y., Burcea, M., Cheng, V., Ho, R., and Voss, M. An adap-

tive openmp loop scheduler for hyperthreaded smps. In In Proc. of PDCS-

2004: International Conference on Parallel and Distributed Computing Sys-

tems (2004).

[43] Zhang, Y., Voss, M., and Rogers, E. S. Runtime empirical selection of

loop schedulers on hyperthreaded smps. In 19th IEEE International Parallel

and Distributed Processing Symposium (April 2005), pp. 44b–44b.

82

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal
	Thesis organization

	Planning
	State of the art
	Simultaneous MultiThreading
	Data prefetch
	Programming models

	libPRISM
	Design overview
	Wrapping mechanism
	libPRISM driver

	Parallel regions
	Dividing work
	Tasks

	Policies implemented
	Oracle
	Exploration

	Experimental framework and methodology
	POWER8 processor
	POWER8 reconfigurability
	SMT
	DSCR

	Metrics
	Performance
	Power and energy

	Benchmarks
	NAS
	SPEC OMP 2012
	CORAL

	Evaluation
	Results
	NAS
	SPEC OMP 2012
	CORAL Benchmarks

	Conclusions and future work
	Future work

	Bibliography

