This is the final peer-reviewed accepted manuscript of:

J. Chen, I. Loi, E. Flamand, G. Tagliavini, L. Benini and D. Rossi, "Scalable Hierarchical
Instruction Cache for Ultralow-Power Processors Clusters," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 31, no. 4, pp. 456-469, April 2023

The final published version is available online at:

https://doi.org/10.1109/TVLSI.2022.3228336

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://doi.org/10.1109/TVLSI.2022.3228336

arXiv:2309.01299v1 [cs.AR] 4 Sep 2023

Scalable Hierarchical Instruction Cache for
Ultra-Low-Power Processors Clusters

Jie Chen, Igor Loi, Eric Flamand, Giuseppe Tagliavini, Member, IEEE, Luca Benini, Fellow, IEEE,
Davide Rossi, Member, IEEE,

Abstract—High Performance and Energy Efficiency are critical requirements for Internet of Things (loT) end-nodes. Exploiting
tightly-coupled clusters of programmable processors (CMPs) has recently emerged as a suitable solution to address this challenge.
One of the main bottlenecks limiting the performance and energy efficiency of these systems is the instruction cache architecture due
to its criticality in terms of timing (i.e., maximum operating frequency), bandwidth, and power. We propose a hierarchical instruction
cache tailored to ultra-low-power tightly-coupled processor clusters where a relatively large cache (L1.5) is shared by L1 private caches
through a two-cycle latency interconnect. To address the performance loss caused by the L1 capacity misses, we introduce a next-line
prefetcher with cache probe filtering (CPF) from L1 to L1.5. We optimize the core instruction fetch (IF) stage by removing the critical
core-to-L1 combinational path. We present a detailed comparison of instruction cache architectures’ performance and energy
efficiency for parallel ultra-low-power (ULP) clusters. Focusing on the implementation, our two-level instruction cache provides better
scalability than existing shared caches, delivering up to 20% higher operating frequency. On average, the proposed two-level cache
improves maximum performance by up to 17% compared to the state-of-the-art while delivering similar energy efficiency for most

relevant applications.

Index Terms—Instruction cache, ultra-low-power, parallel, prefetch, energy efficiency.

1 INTRODUCTION

WITH the increasing demand for edge computing ca-
pabilities driven by the momentum of the Internet
of Things (IoT), performance and power consumption are
becoming stringent constraints for edge computing plat-
forms. On the one hand, increasing performance reduces
the processing latency for intensive workloads with strict
timing constraints (e.g., neural network inference for drone
navigation [1]). On the other hand, low-power operation
extends the battery lifetime, guaranteeing low maintenance
costs and lower environmental impact.

In recent years, multi-core architectures have been pro-
posed to improve the computational capabilities of edge
systems using parallel processing architectures, limiting the
operating frequency to that available in the near-threshold
operating region to combine performance with energy ef-
ficiency [2]]. These architectures usually adopt a symmetric
multiprocessing (SMP) approach characterized by multiple
cores cooperating in the same memory space. SMP sys-
tems are common in the literature on computer design,
also widely adopted in the embedded systems domain [3].
From a computational perspective, this template promotes
the adoption of a programming approach where all cores
execute the same code on different parts of the input dataset.
This paradigm is referred to as single-program multiple-
data (SPMD) [4]. In addition, these architectures can feature

e J. Chen, G. Tagliavini, L. Benini and D. Rossi are with University of
Bologna, Italy. L. Benini is with ETH Zurich, Switzerland. |. Chen, 1. Loi
and Eric Flamand are with GreenWaves Technologies, Grenoble, France.
E-mail: jie.chen2@studio.unibo.it

This work was supported in part by EU Horizon 2020 Research and In-
novation projects The European Pilot under Grant 101034126, in part by
WiPLASH under Grant 863337, in part by ECSEL Horizon 2020 project
AI4DI under Grant 826060 and in part by GreenWaves Technologies.

specialized hardware extensions to reduce the paralleliza-
tion overhead (e.g., hardware-assisted synchronization), the
memory footprint and the number of cycles per processed
data item (e.g., packed-SIMD operations).

The instruction cache design plays a crucial role in
obtaining high performance and energy efficiency in the
parallel execution scenario. In high-performance multi-core
clusters, instruction caches’ area and power consumption
are small, often negligible, compared to the large and
power-hungry processors and fully-coherent data caches. In
contrast, in the ultra-low-power domain, the contributions
from data memories and cores are significantly reduced
due to lower frequencies and smaller datasets. In this con-
text, instruction cache increase is an important parameter
and can consume up to 50% of the total power and area,
becoming one of the main efficiency bottlenecks [5]. In
addition, their power consumption is largely influenced by
memory implementation. P. Meinerzhagen et al. propose
the adoption of latch-based standard cell memories (SCMs)
[6] and a private model (i.e., one instruction cache instance
per core). This design does not introduce critical paths in
the cache subsystem and guarantees a single-cycle access
latency coupled with low power consumption. However,
private caching implies that even if a single instruction
stream is executed in SPMD, it will be cached multiple times
(i.e., one cached copy for each core in the cluster). Thus,
small configurations suffer from heavy miss penalties (up to
80% performance degradation with 256B instruction caches
compared to an ideal cache) [7]. At the other extreme, for
configurations with large capacity, the multiple private I-
caches tend to dominate the cluster area [7].

To tackle the issues described above, Loi et al. [7] pro-
posed two alternative designs of shared multi-banked in-

struction caches that avoid multiple private copies, thereby
offering a larger capacity when running SPMD code (i.e.,
8x w.r.t. a private model, where 8 is the number of cores
in the target platform). The single-port (SP) shared cache
introduces connections between each core and all the cache
banks. This solution still guarantees a single-cycle access
latency but suffers from congestion when several cores
simultaneously access the same cache bank. Unfortunately,
this adverse condition is not sporadic but frequently oc-
curs in executing parallel applications based on the SPMD
paradigm since cores fetch the same code by construction.
Moreover, this design introduces a critical path between
the cores and the cache banks through the interconnect,
impacting the maximum achievable frequency and limit-
ing performance accordingly. Multiple-Ported (MP) shared
caches are a brute-force alternative to reduce the number of
cycles required to access the banks, relieving the congestion
issue. Nevertheless, this solution severely impacts the cache
area, so it is suitable only for small cache capacities. Last but
not least, also MP caches suffer from timing issues when the
number of cores scales up.

To solve the scalability issue of the shared caches, we
introduce a hierarchical instruction cache design targeting
the scalability challenges of ultra-low-power multi-core ar-
chitectures. The proposed instruction cache is still based
on latch-based memories to improve energy efficiency and
voltage scalability over power-hungry SRAM memories [6].
This hierarchical approach, along with optimization to the
cluster’s cores and adoption of well-known prefetching
techniques, reduces both access conflicts and critical path
while guaranteeing a low miss rate. To guarantee a minimal
impact on the area, the capacity of this cache level is limited
by design (e.g., to 512 B). Introducing an additional cache
level increases the total capacity to that of the other shared
cache solutions (e.g., 4 KB).

The main contributions of our work are:

o The design of a two-level instruction cache combin-
ing private (L1) caches with a shared (L1.5) cache
to relax the timing constraints while achieving an
expected latency very close to single-cycle. The pro-
posed architecture marries the benefits of traditional
private caches (fast design with a short critical path)
with the capacity benefit of shared caches for SPMD
programs.

e A 128-bit next-line prefetching unit with cache probe
filtering (CPF) in the L1 and out-of-order L1-to-L1.5
interconnect to recover the performance drop caused
by the L1 capacity miss. The prefetching unit can
be enabled or disabled by software to fit different
application requirements.

e An optimization of the core instruction fetch stage
(IF) to better fit the functional characteristics of the
proposed hierarchical cache and to reduce the la-
tency from the cores to L1 caches, improving the
operating frequency by 15% w.r.t. the baseline im-
plementation.

e Synthesis and implementation of the proposed so-
lution in GF 22nm FD-SOI technology. The cache
modules are integrated into the Parallel Ultra-Low-
Power Platform (PULP), an 8-core cluster based on

2

an SMP architectural template. We performed an
extensive and comprehensive exploration using a set
of synthetic benchmarks to compare our solution
with state-of-the-art alternative designs in terms of
area, power, performance, and energy efficiency.

o The experimental assessment of a set of real-life
applications in the areas of digital signal processing
(DSP) and convolutional neural networks (CNN) to
evaluate the performance and energy efficiency.

The proposed architecture overcomes the main bottle-
necks of existing shared caches solutions, providing 20%
higher operating frequency when integrated on a tightly-
coupled cluster of RISC-V cores, and better scalability. In-
deed, when moving from a baseline 8-core cluster to a 16-
cores cluster, the operating frequency decreases by only 7%,
from 22% to 26% higher than 16-cores clusters built around
shared caches. On average, when executing a set of real-
life low-miss rate IoT applications on an 8-core cluster, the
proposed two-level cache improves maximum performance
by up to 17% compared to the state-of-the-art, delivering
similar energy efficiency.

2 RELATED WORK
2.1 Instruction Memory in ULP SoCs

The instruction fetch hierarchy is one of the most critical
issues for ultra-low-power systems-on-chip as it can con-
sume up to 50% of the overall system energy [5]]. A standard
methodology to reduce energy consumption is to adopt
advanced memory technologies. A few notable examples
are presented below.

Oboril et al. [8] show that a hybrid combination (SRAM
for the L1-data cache, SOT-MRAM for both L1 instruction
cache and L2 cache) can reduce the energy consumption by
60% while the performance increases by 1% compared to
an SRAM-only configuration, targeting a 65 nm technology
node. Kuan and Adegbija [9] show that an energy-efficient,
highly adaptable last-level STT-RAM cache can reduce the
average energy consumption by 60% in a quad-core system
while introducing marginal latency overhead. Myers et al.
[10] introduce a Cortex MO+ based system with two 4KB 10T
SRAM optimized for sub-threshold operation. Ickes and al.
[11] present a 10 p]/cycle 32-bit microprocessor SoC with 1
KB (8 x 128B) instruction cache based on latch-based SCMs
o]l [12].

Replacing or combining state-of-the-art memory tech-
nologies is one of the most efficient ways to reduce in-
struction cache power consumption and improve system
energy efficiency. PULPv2 [2] uses SCMs instead of SRAMs
in the instruction cache, increasing the SoC energy efficiency
by 38%. SCMs present extremely interesting features for
small memory size, low-voltage, and energy-efficient de-
signs, since (i) they can operate with very low voltage,
even lower than 10T SRAMs optimized for low voltage [6],
and (ii) their energy per access is significantly smaller than
SRAMs. Nevertheless, although the controlled placement of
standard cells memory array reduces area overhead [12],
there is still 2x area penalty with respect to the same size
SRAMs-based memory. Thus, it is clear that since there is
a solid motivation to use energy-efficient but low-density

memories for instruction caching, there is a strong push
to maximize the capacity of the caches through sharing
schemes.

2.2 Improving Instruction Fetch Efficiency

The idea of sharing memory is not new, and the trade-off
between shared and private caches is well-known [13]. For
instance, in the context of data caches for high-end cache
coherent systems, Chun Liu et al. [14] proposed a shared
L2 cache architecture improving performance by more than
40% over the private organization. While this computa-
tional pattern is common in general-purpose architectures,
a more common computational pattern in digital signal
processing is data-parallelism with multi-banked scratch-
pad memories. A notable example of high-end computing
platforms exploiting this pattern is that of General Purpose
Graphic Processing Units (GP-GPU). From an instruction
fetch perspective, in GP-GPUs, the compute units in each
multiprocessor execute their threads in lock-step following
the order issued by the instruction dispatcher, which is
shared among all of them [15]. However, Single Instruc-
tions Multiple Threads (SIMT) architectures like GP-GPUs
are much less flexible than SPMD architectures. Executing
control code and data-dependent conditional code causes
significant performance degradation and efficiency since
thread divergence is avoided by sequentializing the execu-
tion of the conflicting parts. For instance, a code executing
an if-then-else statement will force the dispatcher to execute
the then part first, and then proceed to the else part. Unfortu-
nately, this is a common scenario in many IoT applications.

Dynamic cache reconfiguration (DCR) is another effec-
tive technique to optimize energy consumption in many-
core architecture [[16] [17]. Dynamically tuning the appropri-
ate cache parameters (such as associativity and cache line
size) can satisfy the memory access behavior of different
applications to improve the cache fetch efficiency and save
a significant amount of energy. In our work, we propose an
orthogonal approach, fixing cache line and associativity pa-
rameters at design time for low-area overhead while exploit-
ing instruction cache sharing to leverage SPMD nature of
the target applications. The fully balanced shared-memory
solutions proposed by Loi et al. [7] leverage the larger
capacity of shared caches exploiting the SPMD pattern of
the applications. However, in [7]], as shared cache banks are
connected to the cores through a single-cycle interconnect
or multiple ports, long paths and heavily congested design
limit the frequency when the number of cores and memories
scale up. In this work, we overcome these limitations by
proposing a hierarchical, low-latency design that improves
the operating frequency and system performance both for
typical and large cluster configurations (i.e., 8- and 16-cores).

23

Prefetching is a conventional approach to mitigate the im-
pact of cache misses. Next-line prefetching [13] is an efficient
method to improve performance for sequential execution,
loading the block of instructions following the current one
in memory. However, it is unsuitable for non-sequential
execution paths caused by jumps, conditional branches,

Instruction Cache Prefetching

3

and system calls. Despite these shortcomings, it is still an
effective strategy to reduce cache misses by 20-50%.

Fetch-directed instruction prefetching (FDP) [18] sep-
arates the branch predictor and the instruction cache so
that the branch predictor can run ahead of the instruction
cache fetch. Using Cache Probe Filtering (CPF) to remove
useless prefetch requests in the Fetch Target Queue (FTQ),
the branch fetch blocks can be predicted accurately, thereby
saving bus bandwidth to the L2 cache. FDP relies on accu-
rate branch predictors and a sufficiently large Branch Target
Buffer (BTB) to cover the control flow.

Temporal prefetching [19]- [20] is based on the fact that
the stream of instruction cache misses is repetitive and
eliminates the future instruction cache misses directly by
tracing these temporally correlated streams. Based on that,
RAS-directed instruction prefetching (RDIP) [21] correlates
instruction cache misses with the program context captured
from the Return Address Stack (RAS). It stores these misses
in a Miss Table that is looked up using the signatures
formed from the contents of the RAS. However, the main
shortcoming of temporal prefetching is its high storage
budget requirements, larger than 60 KB. From an industrial
perspective, Ishii et al. [22] propose an effective FDP-base
frontend design with only 195 bytes of hardware overhead.
It has two enhancements, taken-only branch target history
and post-fetch correction, to overcome its previous issues.
This solution outperforms the 1st Instruction Prefetching
Championship (IPC-1) winners with a 128 KB storage bud-

get.

2.4 Discussion

In general, most state-of-the-art two-level caches and
prefetching techniques are designed for high-performance
processors operating at high frequency (ie., > 1 GHz),
where large SRAM-based L1 caches work in conjunction
with complex branch predictors to hide the large refill la-
tency towards L2 memories. While the SRAM-based caches
and complex prefetching techniques require negligible area
overheads when integrated into high-performance proces-
sors due to the large silicon area of other blocks, they might
become area- and power-dominant in a ULP context if not
adequately managed at the system level. In the proposed
work, we employ a 4 kB energy-efficient [12]] latch-based
shared cache coupled with small 512 B L1 caches, also
implemented with latches. L1 caches are coupled to a simple
(< 1 kGates) sequential next-line (128-bit) prefetcher to hide
the 2-cycle access latency to the L1.5 memory (improving
performance by 7% on average) without jeopardizing the
area and energy efficiency of the system. Furthermore,
we integrate cache probe filtering (CPF) to improve the
efficiency of L1 to L1.5 bandwidth and an out-of-order
interconnect to maximize L1 to L1.5 bandwidth.

Finally, it is noteworthy to mention that most recent
work on instruction caches for multi-core architectures pro-
poses alternative replacement policies suitable for specific
application domains [23] [24] or interference-free techniques
for real-time systems [25] [26]. Our work is focused on the
architectural design and practical trade-offs of integrating
a hierarchical cache in an ultra-low-power multi-core plat-
form.

Cluster Domain
(Cluster CLK, Cluster VDD)

SoC Domain
(SoC CLK, SoC VDD)

ock =
— FiFos
TCOM
DMA Bank Bank Bank
2 - ¢ # # e #16
Memory :P
s [1 [
ROM g
s - Low latency
= d Logarithmic Interconnector
s £
s g o
5
2 Sle—|3%
- S¢
: 3
£ &g
£ -
-] ?
/o —

Private
Instruction Cache

Fig. 1: Baseline SoC architecture, featuring an 8-core cluster
with private instruction cache, the cache is shown in green.

3 BACKGROUND

3.1 Cluster Architecture

The baseline system we consider in this work is a tightly
coupled cluster of processors dedicated to parallel accel-
eration, including eight 32-bit RISC-V cores (RI5CY [27]).
RI5CY was selected as baseline core for the proposed archi-
tecture thanks to its high energy efficiency coupled and its
open source nature allowing to easily modify the internal
micro-architecture, contrarily to closed source cores such
as ARM Cortex M4. The RISC-V core is based on an in-
order, single-issue, four-stage pipeline micro-architecture
without branch prediction, improved with extensions tar-
geting energy-efficient near-sensor data analytics. These
extensions include hardware loops, load/store instructions
with pre/post increment, SIMD operations, with the aim
to increase throughput and energy efficiency in parallel
signal processing workloads [27]. No data cache is present;
the architecture uses explicit Direct memory access (DMA)
transfers to move data between L1 and L2 memory avoiding
memory coherency overhead and additional area and power
penalties [28]. Thus, the data memory is implemented as
a word-level interleaved multi-bank Tightly Coupled Data
Memory (TCDM) [29]. The cores share a 128 KB single-
cycle latency TCDM and a DMA coupled to the TCDM as
well [30]. A banking factor of 2 is kept to reduce banking
conflict probability. The instruction cache and DMA are
connected to an AXI4 cluster bus for fetching off-cluster
data. To increase the throughput of each core, a next-line
prefetch buffer of one cache line (16 B for 128-bit interface)
is instantiated between each core and the instruction cache.
Finally, thanks to the low-voltage SRAMs for L2 memory
(1 MB) of the SoC domain and cluster TCDM, the supply
voltage of the SoC and cluster can scale down to near-
threshold 0.65 V in the 22 nm FD-SOI target technology. In
the SoC domain, a Fabric Controller (FC) core is responsible
for executing the sequential tasks and orchestrating the
cluster parallel acceleration.

RISCY
CORE

I1$ BANK

Read TAG

Read DATA

Cache
Controller

28bit cache lin

Write DATA

Write TAG

AXI4
Fig. 2: Cache bank subsystem

3.2 Legacy I$ Architectures

This section introduces the different instruction cache ar-
chitectures considered as a baseline for the exploration per-
formed in the paper. We thereby describe more traditional
private caches as well as two different types of shared
caches. All the variants described in the following are imple-
mented with SCMs for improved energy efficiency in near-
threshold processors. Although the analysis was performed
using RI5CY core, similar results would be expected with
other low-power processors with shallow pipelines such as
IBEX or ARM Cortex M4.

3.2.1 Private cache

The baseline cluster features private instruction caches
(Fig. 2). Each private cache bank comprises three elements:
the TAG array, the DATA array, and a cache controller. The
core’s 128-bit next-line prefetcher described in the previous
section exploits a request-grant handshake protocol to fetch
128-bit cache lines through the controller. A pseudo-random
(PRAND) policy is used for replacement. If a cache miss
occurs, the cache fetches a new cache line from L2 memory
through the 64-bit AXI4 bus. Private caches are typically fast
(i.e., one-cycle latency) and simple (i.e., low-power) [14]. On
the other hand, data replication and high miss penalty are
the major drawbacks of the private instruction cache. This
aspect, along with the latch-based implementation that im-
proves energy efficiency but increases the area [12], leads to
a decrease in their performance, area efficiency, and energy
efficiency when dealing with SPMD workloads in tightly
coupled clusters as soon as the footprint of the application
exceed the size of the L1 cache [31].

3.2.2 Single-Port Shared Cache

To overcome the described limitations of private caches, two
different shared cache architectures have been presented by
Loi et al. [31]. The first one, called Single-Port (SP) shared
cache, is shown in Fig.|3a] It leverages a multi-banked cache
architecture connected to the instruction fetch stage of the
cores through a low-latency logarithmic interconnect similar
to the one described in [29]. SPMD applications can benefit
from the fact that the whole cache is shared among all
the cores. Hence, all the cores see on their address space

| I\ _|]L0Buffer (|
(128bits)

Prefetch
interface

=

15 sam amm 1$

b b

| Instruction Bus (AXI4) |

(a) Single-port shared cache

#n
Lo Bufrer [TI11
(128bits)

Prefetcl
interfac

ache Cache
ntroller Controller

2

=
FITTFFT

|
1 [| -
: interconnect 8 x 1 B

" = MMM

DATA
&

~8
-

Req & Resp
Buffer

TAG Master TAG

Cache
Controller

\|_64

| Instruction Bus (AX14) |

(b) Multi-port shared cache

Fig. 3: Shared instruction cache architectures and their critical paths shown in the red arrow.

the whole cache capacity as opposed to private caches,
where each core can only use the whole capacity divided
by the number of cores. On the other hand, the interconnect
between the cores and the cache banks poses considerable
timing pressure on the cluster being on its critical path.
More precisely, the critical path starts from the output of the
cache bank’s tags back to the IF stage of the core through
the response tree of the interconnect and then again in the
arbitration tree of the interconnect towards the IF stage of
the other cores. This long path is necessary for guaranteeing
the single-cycle behavior of the network. Since each cache
bank can serve one refill request at a time, this design also
causes congestion when several cores access the same cache
banks on the same cycle for parallel applications [31].

3.2.3 Multiple-port Shared Cache

To overcome some of the limitations of SP cache, reduc-
ing congestion to the cache banks, a second architecture
was proposed in [31]. The Multi-Port cache exploits a few
memory banks, still based on latches, featuring multiple
private read ports, one per core. TAG and DATA memories
are shared while keeping the cache controllers private for
each core and close to the core fetch interfaces (Fig. [Bb).
This architecture solves the access congestion issue of SP,
since each core has its own read port on the shared banks.
Moreover, the critical path of the design does not cross a
large interconnect as in the case of SP. On the other hand,
TAG and DATA memories with a large number of ports
cause significant placement and routing congestion during
physical implementation, leading to severe timing, area, and
power overheads. As a result, it is suitable only for cache
sizes up to a few KB.

4 Two-LEVEL INSTRUCTION CACHE

The goal of the proposed work is to create an instruction
cache architecture overcoming the physical implementation
issues (long critical path and high routing congestion) of
SP and MP architectures given by the presence of the long
interconnect for SP (Fig. and multiple read ports for

CORE nen mmm

il
[T T]]L0Buffer 111

|
Prefetc (128bits)
interface i 1“i 128
r | -.-——— = - - - - e -
15 L1 1$

#1 #n

s =
Request 28 28
and
Respon
Buffer
28 8

| |
| 1
I 1
I 1
|]
| I
| Read-Only Logarithmic 1
| ‘ interconnect n x m 1
i 1
I 1
| 1
| 1
| 1
| 1
| 1
| 1

128 128
L1.5 an ans
shared shared
Is mmE mmm Is
Eal #m

f b

[Instruction Bus (AX14) |

Fig. 4: Two-level Instruction cache combines private cache
with single read-port shared cache. The critical paths shown
in the red arrow.

MP (Fig. Bb), respectively, still being able to tolerate the
pressure of large-footprint applications. To accommodate
these requirements, we propose a two-level instruction
cache, described in Fig.] composed of a small private
cache (L1) tightly coupled to a larger shared cache (L1.5),
similarly to the SP, connected through a single clock latency
interconnect. This approach cuts the long critical paths from
the core to the interconnect and back to the core (Fig.
while benefiting from the low latency access time from the
core to the L1 and from L1 to L1.5.

As shown in Fig. |4} there are 8 private caches, and each
features 1/8 cache capacity of SP. To reduce the L1 cache
miss rate, the L1.5 features the same cache capacity as SP.
Unlike the 8 shared banks adopted by SP, the L1.5 cache has
only 2 shared banks with an 8x2 logarithmic interconnect
to reduce the area since the critical path is not from the L1
cache to the L1.5 cache. This approach significantly reduces

CORE - CORE
#n
[N 1fo Buter 1
128bits)
prefetct
inl:erlace_! qg_ 128
1$ ‘ L1 15

128 \L\iolefetch

ARBITER

#
aco ooc
123\1*mefetcn

ARBITER
I

I
Request
and
Response {2z
N 128

| Out of Order |
Interconnect n x m

g e e Q
\lfid

[Instruction Bus (AX14) |

r
|
I
I
|
|
|
|
I
I
I
I
|
|
|
|
I

AL R |

(a) Two-level cache with L1 prefetch, the critical
path is highlighted by the red arrow, arbiter and
out of order interconnect is highlighted.

RISCY
CORE

Read TAG

128

Read DATA

PREFETCH
UNIT

etetching? fy)
-

Branch

128

128

Write TAG

ARBITER

128
L1.5

(b) L1 cache bank with an additional prefetch control
unit and dual-port latched-based TAG memories for TAG
Lookup.

Fig. 5: Two-level cache with L1 next-line prefetching

the complexity of the interconnect removing the critical path
present in the SP. Moreover, it does not suffer the congestion
issues related to the multiple ports of the MP. The width of
the fetch interface and the cache line are 128 bits. Between
the L1 and L1.5, the proposed hierarchical cache features an
optional request buffer and a response buffer (i.e., it can be
enabled with a System Verilog parameter) to cut potentially
critical paths from L1 to L1.5. Since the response buffer is
sufficient in the presented cluster implementation to avoid
critical paths from L1 to L1.5, the request buffer has been
disabled in the experiments performed in this work. On
the other hand, this buffer is a powerful knob to improve
the system scalability towards high-end clusters optimized
for frequency or featuring a larger number of cores, taking
advantage of the hierarchical structure of the cache.

In the proposed architecture, the access time of L1 and
L1.5 is one cycle and two cycles, respectively. In the case
of banking conflicts in the L1.5 cache, the access time can
be larger than two cycles depending on the number of
parallel requests. However, the contention on the L1.5 banks
decreases significantly with respect to SP thanks to the
presence of the L1 banks filtering many requests to L1.5.
Compared to a private cache, the two-level cache perfor-
mance can improve largely for high-footprint SPMD appli-
cations as it avoids replication in the L1.5 cache, thereby
increasing actual capacity. Still, the presence of relatively
small single-cycle L1 caches may lead to an increase in cycle
count to execute a program with respect to the shared cache
architectures [32]. To overcome this issue, in this work, we
propose a cache prefetching between the L1 and L1.5.

4.1 L1 to L1.5 Next-line Prefetching

Instead of introducing much extra storage budget, we use a
simple L1 next-line (128-bit cache line) prefetching (Fig.[5) to
deal with L1 capacity misses. Since the prefetch-on-miss is
insufficient to hide the latency for small L1, we always use

fetch_req _/_\ / \
fetch_gnt _/_\

fetch_addr{31:0] ZZ%

=L

CORE

fetch_valid

refill_req

refill_gnt

refill_addr{31:0)

refill_valid

1->115

~ prefetch_req

prefetch_gnt

prefetch_addr[31:01 7

prefetch_valid

Fig. 6: Timing diagram of L1 to L1.5 prefetch. The upper
timing diagram describes the core fetching from L1 with one
cycle latency when hit (first fetch) and three cycles latency
when miss and hit in the L1.5 (second fetch). The bottom
timing diagram describes L1 refill and prefetch to the L1.5
with two cycles latency when hit. Once there is a core fetch,
prefetch starts in the next cycle.

prefetching. Once there is a fetch request from the core, a
prefetch request is issued immediately. To avoid redundant
prefetching, we use cache probe filtering (CPF) with the help
of dual-port TAG memories, implemented with latches for
parallel fetch and prefetch cache LOOKUP (Fig. [5b). Thanks
to the CPF, the bandwidth from L1 to L1.5 slightly increases
only when non-sequential sequences occur.

To avoid cache pollution, we store only valid prefetch
cache lines in the cache. When performing the cache lookup,
if the fetch address hits the prefetch buffer (shown by the
signal Branch in Fig.[Bb), the prefetch buffer responds to the
core directly. Besides, if the target prefetching is not finished,

the fetch unit waits until the end of the prefetching (shown
by the signal Prefetching in Fig. and writes the prefetch
cache line to the cache.

Nevertheless, there is a speed mismatch between core
fetch and prefetch due to the different refill latency of each
memory level. As a result, two different conditions might
occur, shown in Fig. [6}

e Prefetch is faster than core fetch, shown in the first
fetch_valid. In this case, prefetch waits for the next
valid core fetch to trigger again. If the next core fetch
hits, we say prefetch succeeds. If not, we know that
there is a branch. The prefetch control unit waits for
the branch’s valid fetch and restarts from the new
address shown in the second fetch_req. The branch
address is 0xC0 instead of 0xB0, and prefetch restarts
from next address - 0xDO.

o Prefetch is slower than core fetch. Even though the
prefetch is valid, core fetch still has a miss since
prefetch is in doing. However, if the control logic
knows that a valid prefetch is ongoing, the fetch can
Wait for the Unfinished Prefetch (WUP) or directly
use the prefetch data to save at least one cycle (red
arrow) for TAG LOOKUP indicated by the signal
is_prefetch in Fig. The third core fetch indicates
a miss from the TAG LOOKUP while finding a valid
prefetch, then the refill to L1.5 is canceled, and the
cache responds directly.

4.2 Out-of-order Interconnect

In Fig.|5b} the fetch and prefetch control units issue requests
to L1.5 cache through an arbiter to share the bandwidth,
and this useful prefetch increase bandwidth a little only
when branches happen. Instead of increasing 2x ports for
the interconnect, which will bring more congestion and
delay, we support out-of-order transfer for the fetch and
prefetch. The prefetch can start directly without waiting
for the unfinished fetch or vice versa. To identify the order
of valid responses for fetch and prefetch from the shared
banks, a transfer identifier field has been introduced in the
arbiter. If the two responses come in the same cycle, we
omit the prefetch data without interfering with the normal
fetch. In real practice, when there is no miss in the L1 cache
(always sequential fetch without branch), the bandwidth is
almost 100% occupied by the total 2x8 requests from the
fetch and prefetch. With the presented prefetch scheme, we
improve the performance without influencing normal fetch
with minimal area overhead, including the prefetch control
unit, additional read port for TAG, and out-of-order inter-
connect to improve the performance and keep the energy
efficiency.

4.3

As mentioned before, the caches with the legacy 128-bit
instruction fetch stage have limited frequency due to some
long combinational paths through the instruction fetch stage
(IF) described below. There are two types of paths shown
in Fig. pa} 1) The path from fetch_valid or fetch_data to
fetch_req and back with fetch_gnt to the core. It exists
because the IF does prefetch depending on the previous

Instruction Fetch Stage Optimization

CORE CORE

e I

prefetc
mler‘facle 32]_ l32
r 0] oo R
= L1 s

#
123*1prerelcn 128 +1~

ARBITER

I

I

I

I

I

I I
| and

| rsponce Jio
I

I

I

I

I

I

I

ARBITER

| A‘herconnecrt : :(m |
| |

164_ — 1‘64

| Instruction Bus (AXI4) |

Fig. 7: Two-level cache with L1 prefetch after IF optimization
with 4x32bit ring FIFO buffer and additional conditional
branch pipeline. Critical path is shown by the red arrow.

PIPELINE A0
A2

Cco

C2 7

C4 7

DO

BRANCH 77777
fetch_req _/

fetch gnt [
fetch_addr{31:0] 77/

fetch_valid /

Fig. 8: Instruction fetch and branch in RI5CY core with 4-
stage pipeline.

fetched (unaligned or non-unaligned, compressed or non-
compressed) instruction to fetch the next instruction as soon
as possible. Besides, the fetch_req is acknowledged by
fetch_gnt back to the core. These port-to-port paths cause
another critical path for the L1 cache, from the fetch_valid
of the L1 cache’s TAG or DATA arrays to fetch_reg, then
back to it when TAG LOOKUP. This path gets worse when
logarithmic interconnect is used, such as in SP cache. 2)
The path from the instruction execution stage (EX) to the
IF fetch_req until the cache has conditional branches. As
shown in Fig. 8] instruction 0xAQ is an unconditional jump
taken directly from the ID stage to instruction 0xCO0, so it
is not in the critical path. Then, instruction 0xCO0 is a con-
ditional branch taken directly from EX stage to instruction
0xDO, instruction 0xA2, 0xC2 and 0xC4 are dropped. This
critical path from EX to fetch_req is to improve the fetch
efficiency to save one cycle. However, it limits the frequency.

To cut the first type of critical path, we integrate a
4x32-bit ring FIFO buffer to simplify the cores” instruction
fetch (Fig. [7). The small ring FIFO buffer has the following
features: 1) the core can send non-blocking fetch requests
when the FIFO is not full; 2) the FIFO is empty when the

write pointer equals the read pointer; 3) the ring FIFO helps
act as a primary cache when the short branches hit the ring
FIFO. To cut the second type of critical path from EX for the
conditional branch, we must insert a pipeline or implement
a branch predictor in the IF/ID stage. However, the branch
predictors with branch addresses registering for diverse
branches take huge extra area and power. Besides, branch
predictors” index searching is also in the critical path to the
fetch_req. In the end, we choose to delay the conditional
branch one cycle to increase the frequency.

Fig. [7] shows the two-level cache after IF optimization,
and we can see that a small 4x32-bit ring FIFO buffer is
used to issue the fetch_req without dependence on other
signals. Besides, a 128-bit LO buffer is still used to avoid
heavy request traffic to the L1 cache control unit. As a result,
it brings more power than the legacy 128-bit IF with the
extra ring FIFO buffer. In the end, the final remaining path
(red arrow) starts from the L1 caches’ DATA array to the
cores’ inner instruction decompression logic, which is small.

5 PHYSICAL IMPLEMENTATION RESULTS

This section presents a comprehensive physical exploration
of timing, area, and power for all the configurations shown
in Table [1| to characterize the performance and energy ef-
ficiency of alternative instruction cache architectures. The
comparison includes the three instruction cache variants de-
scribed in section B} private caches (PR), single-port shared
caches (SP), and multi-port shared caches (MP), along with
four cache configurations proposed in this work. They are
the baseline hierarchical cache with prefetcher disabled
(HIER) and enabled (HIER_PRE), and the hierarchical cache
with optimized core’s pipeline with prefetcher disabled
(HIER_OPT), and enabled (HIER_OPT_PRE). Table (1| also
shows the number of cycles required to refill from L2 for the
different configurations, which is useful for understanding
the results presented in the evaluation sections. In this work,
we mainly consider shared and hierarchical caches featuring
a size of 4 KB in the last level, providing a good trade-off
between performance, area, and efficiency. Furthermore, we
consider a cluster with 8 512 B private caches as the baseline.
More insight on performance/area trade-offs for different
private (PR) and shared cache sizes (SP, MP) can be found
in [31].

5.1 Experimental Setup

To perform a detailed analysis of the trade-offs among
the discussed cache architectures in terms of performance,
energy, and area, we consider a single cluster with eight
cores and an instruction cache with 4 KB (8 KB has the
same characteristics as 4 KB as shown in previous work
[32]). Besides, the size of the TCDM is fixed to 128 KB.
Table [1| shows all the architectures used in the proposed
experiments. A 4-way set associative configuration with a
cache line of 16 bytes (4 words in 32-bit) is used, providing
a well-balanced trade-off between performance and area
overhead for low-power multi-cores [31]].

To obtain the physical characteristics of each design (i.e.,
power, area), we synthesized and implemented the designs
in 22nm FD-SOI technology (full place and route). We used

Mnemonic Type Refill Description
Cycles
PR Private 15 512B I$ bank per core
SP Shared 17 8x 512B I$ banks, single-port
MP Shared 19 2x 2048B I$ banks, 8-port
HIER Private 19 512B I$ bank per core
Shared 2x 2048B I$ banks, single-port
with Response buffer
HIER_PRE Private 19 512B I$ bank per core with prefetch
Shared 2x 2048B I$ banks, single-port
with Response buffer
HIER_OPT Private 19 512B I$ bank bank per core
Shared 2x 2048B I$ banks, single-port
with Response buffer
HIER_PRE_OPT Private 19 512B I$ bank per core with prefetch
Shared 2x 2048B I$ banks, single-port

with Response buffer

TABLE 1: 4KB Instruction Cache Architectures Explored in
this work.

u Others Instruction Cache

0.60

0.50
F0.40
E
< 0.30
%020

0.10

0.00

& 8 f & & & &
7 Y Y
& &
Q/
Q\\Q»
I-Caches

Fig. 9: Cluster area breakdown for the different cache archi-
tectures.

Cadence Genus-19.10 to synthesize the design and Cadence
Innovus-18.10 for the place and route.

To characterize the power consumption, we used the TT,
25°C, 0.65V corner, commonly used for parallel low-power
architectures. First, we simulate the tests with a post-layout
netlist in 200Mhz operating frequency (we scale the cluster
dynamic power to the actual maximum operating frequency
of each architecture). Then, for each test, we back-annotate
the switching activity traces in Value Change Dump (VCD)
format with Questasim 10.7b only in the third execution
to avoid cold boot. Next, we pass it with the parasitic
file (in SPEF format) of a specific RC corner to Synopsys
PrimePower M-2019.12 to achieve an accurate cluster power
estimation. Finally, by considering the L2 memory power,
we calculate the total system power and energy.

5.2 Area and Timing

One of the main points for designing a hierarchical cache
leads to improved timing behaviour and scalability with
the number of cores over the shared cache while preserving
the capability to provide large capacity with a small area
overhead. Fig. Q]illustrates the silicon area costs for all cache
architecture configurations. Thanks to the private cache’s
simpler structure, it is smaller than other caches. The two-
level cache is bigger than SP since it always has more 4 KB
(8 x 512 B) L1 memory than SP, and MP has the largest area
because of the multiple reading ports.

The two-level caches feature an area falling between that
of SP and MP. Compared to SP, the area increases due to the

Type Max frequency Speed up vs. PR
8-core 16-core 8-core 16-core
PR 378 MHz 363 MHz - -

MP 357 MHz 306 MHz -5.6% -15.7%

SP 350 MHz 320 MHz -7.4% -11.8%

HIER 372 MHz 354 MHz -1.6% -2.5%
HIER_PRE 372 MHz 354 MHz -1.6% -2.5%
HIER_OPT 429 MHz 399 MHz +13.5% +9.9%
HIER_PRE_OPT 429 MHz 399 MHz +13.5% +9.9%

TABLE 2: Results of the Static Timing Analysis.

small private L1 caches, despite the smaller timing pressure
on the low-latency interconnect thanks to the decoupled
combinational path between the cores and the shared cache
banks, reducing its area as well. One interesting point is
that according to the proposed prefetch scheme, the prefetch
in a two-level cache brings little additional area, about
1%, which keeps the same power as a simple two-level
cache. Besides, no extra critical path is introduced since the
prefetch logic is only inside the L1 cache controller. It is
the same for HIER_OPT and HIER_PRE_OPT, which keep
almost the same area.

Table [2| shows the results of the static timing analysis
for all the cache architectures, implemented in clusters of
8 cores or 16 cores to highlight the better scalability of
the proposed cache. Not surprisingly, the clusters featuring
shared caches (SP, MP) have worse maximum frequency
due to the long critical path between the core and the
interconnect and the high congestion of the multiple reading
ports, respectively. For a system with 8 cores, the caches
with simple L1 private cache have the best timing, keeping
about 6% timing improvement compared to shared caches.
When we increase the system core number to 16, we observe
that MP and SP have about 19% and 15% maximum fre-
quency drop compared to HIER_OPT, respectively. For the
MP, 16-port memory banks cause serious wire congestion,
leading to worse timing results. The same issue arises for SP:
increasing the number of channels also increases the levels
of logarithmic interconnect, and the critical paths become
worse due to the combinational dependency between the
request and response channels. Thus, the two-level cache
with a non-blocking fetch interface has better timing and
scalability by eliminating the long paths in the request and
response channels.

5.3 Parallel Performance and Power Characterization

This section presents a detailed performance and power
characterization of the presented instruction cache architec-
tures to provide a direct comparison between the different
solutions as well as to create an analytical model for power
estimation of real-life applications.

Obtaining the power of the whole cluster system with
different instruction caches for real-life applications running
for millions of clock cycles on a post place and route
database is not feasible, both due to the long simulation time
and size of the VCD traces required to annotate the switch-
ing activity of the design. Moreover, real-life applications
often have complex and unpredictable behaviours, making
it difficult to understand the functional and power trends
of the cache. To model the presented caches and provide
more insight into their behaviour regarding power (and

Algorithm 1 Parallel Synthetic Benchmark
Require: BUFFER _SIZE = 8192

Require: TOTAL_CORE =38
Require: STEP = 32

start < core_id x BUFFER_SIZE | TOTAL_CORE
end < start + BUFFER_SIZE | TOTAL_CORE

for i = start;i < end;i+ = STEP do
cli] « ali] x bli]
cli] «+ ali + 1] x bi + 1]

c[i+STEP—1] + a[i+ STEP—1]xbli+STEP —1]
end for

energy) consumption, we propose a methodology based on
a synthetic benchmark where we artificially modulate the
instruction locality.

We created a synthetic test performing a parallel vector
multiplication between 8192 elements, we distribute the
workload evenly over TOTAL_CORE number of cores,
and we use loop unrolling to control the size of the
batch of instructions executed by the processors (controlled
through variable STEP, as shown in algorithm (I} The
BUFFER _SIZE is fixed to 8192 while STEP changes
among 32, 64, 128, 256, 512, and 1024, producing loops
iterating over a loop body of 0.375 KB, 0.75 KB, 1.5 KB,
3 KB, 6 KB, and 12 KB, respectively. Since the applications
executed by the cores have an IPC close to 1, the only stalls
of the cores are those caused by cache misses, decreasing
the whole cluster system’s activity and reducing its power
consumption. On the other hand, the power consumption
of the L2 memory increases with the miss rate due to
the increasing number of refills. To take into account this
significant contribution, we characterized the energy con-
sumption of every refill from L2 and the overall L2 leakage
power and added them to the system power. We used this
methodology to characterize the behaviour of the seven
architectures, summarized in equation We obtain the
parameters L2_leakage_power and L2_per_read_energy
from the L2 SRAM'’s datasheet. The parameters cycles and
L2_miss_refill_number can be read from the hardware
counters implemented inside the instruction cache with the
cycle-accurate simulation. With a specific system frequency,
we only need to find the cluster_power to have the total
energy.

Total_energy

= (cluster_power + L2_leakage_power) - time + L2_read_energy

= (cluster_power + L2_leakage_power) - cycles/ frequency

+ L2_miss_refill_number - L2_per_read_energy O

Summarized performance, power, and energy results are

presented in the following. Results are normalized to the
8-core PR configuration using the version of the synthetic
benchmark featuring a loop body as large as 0.375 KB, which
we consider as a baseline for our exploration. In all the
experiments, the caches are warmed-up before measuring
the throughput.

EPR =MP =SP
1.20

HIER s HIER_PRE =HIER_OPT mHIER_PRE_OPT

-
1=
=3

e
%
=3

Normalized Throughput
= =
'S N
S =

=
9
S

e
=
S

10

=PR m=MP =SP
1.20

HIER ®=HIER PRE ®=HIER OPT ®=HIER PRE_OPT

-
13
S

e
%
S

Normalized Throughput
=] =]
'S 2
=] =]

&
19
S

e
13
S

3KB 6KB
Instruction Size

0.375KB 0.75KB 1.5KB 12KB Avg.

(b) With maximum frequency

Fig. 10: Throughput of tests normalized to PR with 0.375 KB cache size.

0.375KB 0.75KB 1.5KB 3KB 6KB 12KB Avg.
Instruction Size
(a) With fixed frequency, 200MHz
mL2 LEAK L2_DYN ®Cluster Others ® Cluster I$

9.00

8.00

7.00 |} = .
= 6.00
z |
E 5.00
]
£ 4.00

|

£ 3.00 |
2.00
1.00
0.00

1$ 1$ 1$ 1$

0.375KB 0.75KB 1.5KB 3KB

Instruction Size

(a) Power

EPR =MP =SP
1.20

HIER =HIER PRE =HIER_OPT mHIER PRE_OPT

1.00

1

= 0.80

Normalized Energy
o o
- =)
> =

e
D
S

e
o
S

0.375KB 0.75KB 1.5KB 3KB

Instruction Size

6KB 12KB Avg.

(b) Energy efficiency

Fig. 11: Power and energy efficiency of tests normalized to PR with 0.375 KB cache size, 200MHz. Each I$ in Fig. (a)
represents different I-Caches. I$ = {PR MP SP HIER HIER_PRE HIER_OPT HIER_PRE_OPT}

Fig. shows the normalized throughput of the syn-
thetic tests running on the different architecture configura-
tions, assuming that all the configurations are running at the
same operating frequency, providing an insight into their
functional performance. When the loop body is smaller than
the size of L1 of the HIER caches (0.5 KB), the throughput
of all the configurations is the same since they always hit in
L1. When increasing the size of the loop body to 0.75 KB,
the performance of the PR cache drops significantly (~55%)
since each cache miss is refilled from L2, implying 15 cycles
of latency. On the other hand, the HIER configurations
feature only a slight drop in performance (~15%) thanks
to the low latency of the refills from the 4 KB L1.5, which is
almost completely recovered when activating the prefetcher.
When the loop body is larger than 4 KB (size of shared
configuration and L1.5 of the HIER configuration), the per-
formance of these configurations also starts dropping due to
capacity miss.

Fig. shows the normalized throughput when each
configuration run at the maximum operating frequency.
It is possible to note that HIER PRE_OPT improves the
performance by ~16% for all the benchmarks with respect to
shared caches, thanks to the similar functional performance
and much higher maximum operating frequency. In partic-
ular, most of the gain is thanks to the optimized instruction
fetch stage of the RISCY core described in section [£.3}

Fig. shows the power of all synthetic tests measured
on different architecture configurations. The PR configura-

tion is the one consuming less power in all configurations,
thanks to the simple and straightforward implementation
for loop bodies below 0.5 KB; for larger loop bodies, the
power of the PR configuration drops due to the high miss
rate. In general, SP is the configuration featuring the small-
est power consumption. However, we note that for the test
with the 0.375 KB loop body (smaller than the L1 cache
capacity), HIER_PRE still has less power than SP. Despite
the better functional performance, the prefetcher brings
additional power consumption. This is evident by looking at
HIER_PRE configurations, consuming 3% more power than
HIER on average. Besides, HIER_OPT and HIER_PRE_OPT
have one more ring buffer FIFO described in section[d.3|than
HIER, so they bring 2% and 3% more power than HIER on
average, respectively.

Fig. shows the energy efficiency (Energy—') of all
synthetic tests measured on the different architecture con-
figurations. In general, the SP is the cache providing the best
trade-off between performance and power, delivering better
energy efficiency on these synthetic benchmarks. Besides,
two-level caches are penalized due to the higher power
consumption caused by their two-level nature. The versions
without a prefetcher are further penalized by the worse
functional performance, which is recovered by enabling the
prefetcher to bring 10% to 20% better performance with only
~3% increase of power.

To validate the power model, we analyze the error rate
between LUT and exhaustive power estimation on three of

the smallest real-life applications considered in this work.
The previous work [32] selected several relatively small
applications and estimated the error rate between power
estimation using PrimeTime and LUT evaluation model,
with a maximum error smaller than 6%. Since we only care
about the relationship of each cache, so all power results
are normalized to PR. Finally, we use this accurate power
estimation to make a detailed comparison. This model poses
the basis for evaluating larger real-life applications that
cannot be executed in a reasonable time on post-layout
netlists.

6 BENCHMARKING
6.1 Description of Parallel Benchmarks

To analyze in-depth the behaviour of the presented instruc-
tion cache architecture, we use a set of benchmarks relevant
for several application domains in the market of IoT proces-
sors [33] such as image, audio, and vibration processing. The
applications are based on full-fledged optimized OpenMP
[34] applications and four CNN applications [35]], each one
featuring a different behaviour in terms of access patterns
to the instruction memory subsystem, as well as diversified
memory footprints and execution time.

Table|shows the detailed characteristics of each applica-
tion, including the code size and the number of instructions
executed. Since cache performance is influenced strongly by
code locality and size, we classify the applications into three
groups. The short-Jump class includes BFS and CNN kernel-
based applications, which are loop-based applications with
most loop bodies smaller than four lines of cache. The sec-
ond class, long-Jump, groups all the loop-based applications
with loop bodies greater than four cache lines or based
on extensive control flow instructions, including CT, FAST,
and SLIC. Finally, the library includes HOG, SRAD, and
FFT. These kernels use support libraries to manage floating-
point emulation and fixed-point arithmetic, with the specific
purpose of generating significant stress in the cache [31].
In the IoT domain, these functions are typically inlined or
supported in hardware; however, we included them in the
benchmark set to put an upper bound on average recurrency
and size of program counter’s jumps.

The above applications are fairly complex and long-lived
(millions of instructions in most cases), so it takes too much
time to explore with RTL simulation. For this reason, we
analyze the performance based on measures coming from
RTL-equivalent FPGA implementations mapped on Xilinx
Zynq ZCU102 FPGA using Vivado 2019.2. The FPGA emu-
lation allows executing at up to 50 MHz, enabling near-to-
real-life execution time. The performance analysis is based
on statistics collected by hardware counters implemented
inside the instruction cache. Then we calculate the miss
rate of each application and use the power model described
in section to estimate the absolute power and energy
efficiency for each cache architecture.

6.2 Parallel Performance and Power Benchmarking

Table |4 shows the miss rate of real-life applications for
the considered cache architectures. PR, SP, and MP only
report L1 cache misses, while the two-level cache reports

11

APP Size [KB] Class Description
BFS 59.2 Short-Jump Breadth-First Search
CT 28.2 Long-Jump Color Tracking
FAST 28.6 Long-Jump Machine-generated corner Detection
SLIC 26.1 Long-Jump Simple Linear Iterative Clustering
HOG 333 Library Histogram of Oriented Gradients
SRAD 31.6 Library Speckle Reducing Anisotropic Diffusion
FFT 41.2 Library Fast Fourier transform
CIFAR10 37.5 CNN Object Recognition
MNIST 379 CNN Handwritten digits Recognition
KWS 30.1 CNN Keyword spotting
CNNDronet 713 CNN Detector for Real-Time UAV Applications

TABLE 3: Parallel benchmark details

% PR MP SP HIER HIER_PRE HIER_OPT HIER_PRE_OPT
L1 L15 L1 L15 L1 L15 L1 L15
Short BFS 0.5 00 00 05 0.0 0.2 0.0 0.6 0.0 0.1 0.0
CNN CIFART0 2.8 0T 02 28 2.8 0.9 2.1 29 2.6 0.5 25
MNIST 3.8 00 00 38 038 145 036 39 0.5 0.7 0.5
Kws 12 0.0 00 12 0.1 0.6 00 129 005 037 0.02
DRONET 9.3 00 01 93 0.2 3.3 0.2 9.4 0.2 3.2 0.2
Long CT 0.6 0.0 00 06 02 0.2 0.0 0.7 03 0.2 0.1
FAST 5.8 01 04 62 2.1 2.3 13 55 18 16 2.3
SLIC 0.5 0.0 00 05 15 0.2 12 0.6 18 0.2 0.7
Library HOG 200 00 01 195 01 6.2] 0.1 203 0.1 6.5] 0.1
FFT 548 01 03 547 02 307, 0.1 598 02 267] 0.1

SRAD 545 01 05 543 02 275 02 576 02 20:7,L 0.2

TABLE 4: Miss rate of real-life applications. The L1 prefetch
decreases the L1 miss rate significantly.

L1 miss rate and L1.5 miss rate. It can be noted that while
the PR and the L1 of HIER feature a reasonable miss rate
for short jump, CNN, and long jumps applications, they
suffer a significant miss rate when running library-based
applications. Not surprisingly, the two-level caches (SP and
MP) always feature the lowest miss rate thanks to their
large capacity (4kB). On the other hand, it can be noted
that the 4kB L1.5 of the HIER cache significantly reduces the
miss rate thanks to its higher capacity. Finally, the impact of
prefetching is especially relevant for library-based applica-
tions. Indeed, as highlighted by the arrows in 4| for library-
based applications, HIER_PRE and HIER_PRE_OPT reduce
the L1 miss rate by about 50% with respect to hierarchical
caches without prefetching. In the following, to ease the
comparison, we separate the applications into two groups
according to L1 miss rate: the high L1 miss rate applications
(library applications) and the low L1 miss rate applications
(CNN, Short-Jump, Long-Jump).

Fig. shows the functional performance of the pro-
posed cache architectures running at the same operating
frequency and normalized to PR. In general, since shared
caches and two-level caches can remove capacity miss
with relatively larger cache size, they always have better
performance than PR. Besides, HIER has two more cy-
cles refill when L1 miss and L1.5 hit than SP, so it loses
2% performance compared with shared caches. When we
compare the performance of the low L1 miss rate applica-
tions, HIER_PRE can achieve the same performance with
shared caches and always improve performance compared
with HIER. HIER_PRE_OPT functional performance is, on
average, smaller by 5% with respect to HIER and shared
caches due to the stall caused by the pipeline stage added to
unconditional branches to improve the operating frequency
of the design. For always hit applications such as BFS, CT,
and SLIC, the functional performance drop is 3.5% smaller
than PR, on average. Finally, for the high L1 miss rate
applications, even though HIER_PRE and HIER_PRE_OPT
reduce the L1 capacity miss and improve the performance
by 7% on average compared with HIER and HIER_OPT,
their functional performance is about 20% smaller compared

mPR =MP =SP w»HIER =wHIER PRE mHIER OPT m=HIER PRE OPT

Normalized Throughput

BFS SLIC

Short

CIFAR10 MNIST
CNN

KWS DRONET CT FAST

Long Avg.

(a) Low L1 miss rate applications.

12

mPR =MP =SP =HIER =sHIER PRE ®=HIER OPT ®=HIER PRE OPT

b
n
S

Normalized Throughput
N
2
3

SRAD

HOG FFT

Library

(b) High L1 miss rate applications.

Fig. 12: Throughput of real-life applications normalized to PR, 200MHz.

EPR mMP =SP HIER ®HIER PRE w®HIER_OPT mHIER_PRE_OPT

Normalized Throughput
o
5

e =
L 2
a3

b
15
=

BFS KWS DRONET CT FAST SLIC

Short

CIFAR10 MNIST

CNN

Long Avg.

(a) Low L1 miss rate applications.

mPR =MP m=SP w=HIER sHIER PRE sHIER OPT mHIER PRE_OPT

3.50

Normalized Throughput
- ~
n =3
= S

=
13
S

=
in
S

SRAD

HOG FFT

Library Avg.

(b) High L1 miss rate applications.

Fig. 13: Throughput of real-life applications normalized to PR at maximum frequency.

mPR =MP =SP ~HIER ®=HIER PRE = HIER OPT mHIER PRE_OPT

I
2
S

Normalized Enegy*
e 2 e = I
®x & b 2 o = M
G & & 2 & = o

e
%
S

BFS
Short

CIFAR10 MNIST
CNN

KWS DRONET CcT FAST SLIC

Long Avg.

(a) Low L1 miss rate applications.

mPR =MP =SP =~HIER =HIER PRE =HIER OPT ®=HIER PRE OPT

Normalized Enegy!
[ad N
g 2

I
n
S

=
2
S

e
H

SRAD

HOG FFT

Library

(b) High L1 miss rate applications.

Fig. 14: Energy efficiency of real-life applications normalized to PR, 200MHz

to shared caches mainly due to the additional latency re-
quired to refill from L2.

Fig. [13| shows the performance results of the different
cache architectures when operating at the maximum op-
erating frequency, highlighting the better scalability of the
hierarchical solutions, especially the one with optimized
IF. Results are normalized to the performance of PR. The
HIER_PRE_OPT improves the performance by 17% com-
pared with private cache and shared cache for the low L1
miss rate applications. For the high L1 miss rate applica-
tions (which are again not common in the IoT domain),
HIER_PRE_OPT delivers 2.4x better performance than the
private caches and only about 5% smaller performance than

shared caches.

Fig. [14| shows the results of energy efficiency with fixed
frequency, which are normalized to PR, as well. For the
low L1 miss rate applications (Fig. [14(a)), the improvement
of efficiency of HIER over PR is limited, since the L1
cache suffers less capacity miss. Moreover, the additional
power brought by the prefetcher in HIER_PRE is more or
less equivalent to the improvement of performance, which
keeps the same energy efficiency compared with HIER.
The same applies when we compare HIER_PRE_OPT with
HIER_OPT. HIER_OPT and HIER_PRE_OPT consume more
power than HIER because of the additional 4x32-bit ring
FIFO bulffer to cut the critical path. Since most of real-life IoT

Type A Max Frequency Low L1 miss rate High L1 miss rate
8-core T6-core MxP P 1I/E MxP

PR 1.00 1.00 1.00 100 1.00 100 1.00 1.00 1.00

MP 1.25 0.95 0.84 1.02 110 098 247 110 238

sp 1.06 093 0.88 099 104 103 243 106 248

HIER 117 0.99 0.98 1.06 1.00 1.07 203 1.01 199

HIER_PRE 117 0.99 0.98 1.06 101 107 216 1.04 211
HIER_OPT 1.18 114 1.10 116 101 100 222 1.05 1.87
HIER_PRE_OPT 1.18 1.14 1.10 117 102 1.00 237 1.07 1.95

TABLE 5: Summary of Area (A), Maximum frequency and
Maximum Performance (MxP), Power (P), and Energy Effi-
ciency (1/E) of the instruction caches normalized to PR.

applications have a low L1 miss rate, HIER's small L1 cache
takes advantage of lower power and relatively high energy
efficiency without losing much performance compared with
shared caches (Fig.[14](a)). As a result, HIER and HIER_PRE
feature, on average, 7% better energy efficiency than all
other caches. Besides, the decision to use the prefetch feature
in a two-level cache should be considered by software for
the low L1 miss applications. For the high L1 miss rate
applications (Fig. [14(b)), HIER_PRE has the same energy
efficiency as HIER, which means the additional power
gain is equal to the performance gain. Finally, HIER_PRE
brings a 7% improvement in performance while keeping the
same energy efficiency compared with HIER. Nevertheless,
shared caches remove capacity miss with large L1, so they
have about 20% gain in energy efficiency compared with
two-level caches. However, since HIER_OPT isolates the
critical path from the cores to instruction caches, it brings
better scalability for multi-core systems regarding the num-
ber of cores per cluster and maximum operating frequency.

6.3 Discussion

To put the experimental results in perspective, we collect
them in Table |5l We separate the results into two groups,
the low and the high L1 miss rate applications(i.e., Library-
based). For the high L1 miss rate applications, which are
not common in the IoT domain, both shared and two-level
caches feature 2x better performance than private cache
thanks to the large cache capacity. Single-port shared cache
features the best energy efficiency, and multi-port shared
cache has the maximum performance. Still, the two-level
cache performance and energy efficiency are not so far from
that of shared caches, and the prefetcher can mitigate the
performance drop by reducing it to 5% at the cost of some
more power.

For the low L1 miss rate applications, we note that the
two-level cache with optimized instruction fetch subsys-
tem delivers significant maximum performance, up to 17%
larger than private and shared caches. This large advantage
in performance is mainly achieved thanks to its higher op-
erating frequency with respect to other solutions. However,
this performance increase comes at the cost of an additional
area with respect to private caches. While in shared solu-
tions the area overhead is caused by high timing pressure
on the interconnect, and multiple read ports and routing
congestion for SP and MP, respectively, for the hierarchical
cache the overhead in area is structural, due to its 2-levels
structure. Its 2-level structure also causes a larger power
consumption with respect to all other solutions, caused by
the need to fetch every line of cache 2 times inside the
cluster (i.e., both from L1 and L1.5). The baseline two-level

13

cache has the best energy efficiency, 7% and 4% better than
private cache and single-port shared cache, respectively. It is
interesting to note the trade-off between the optimized fetch
unit and the legacy one, the one performing better efficiency
thanks to the larger 128-bit interface requiring less control
overhead for refills, and the other one significantly relaxing
the critical path through the core by means of a more
straightforward implementation leading to higher operating
frequency for the cluster, particularly when scaling up the
number of computing cores.

7 CONCLUSION

This work proposes a two-level instruction cache to improve
performance while delivering similar energy efficiency with
respect to a shared cache, an effective prefetch scheme to
reduce performance degradation caused by capacity misses
in the small first level of cache, and a timing optimization
of the core instruction fetch stage. We explored various in-
struction cache architectures in an energy-efficient and cost-
effective tightly coupled cluster with several signal process-
ing and CNN applications that feature diverse instruction
memory access patterns. Results show that the prefetch
feature constantly improves the performance up to 7% while
keeping the same energy efficiency in the two-level cache.
After timing optimization of the core instruction fetch stage,
the two-level cache improves the maximum performance
up to 17% compared with private and shared caches. Fi-
nally, the two-level instruction cache with software-enabled
prefetch and up to 20% timing improvement adapts to real-
life IoT applications to achieve the highest performance and
balanced energy efficiency.

REFERENCES

[1] A. Loquercio ef al., “Dronet: Learning to fly by driving,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 1088-1095, 2018.

[2] D.Rossietal., “Energy-efficient near-threshold parallel computing:
The pulpv2 cluster,” IEEE Micro, vol. 37, no. 5, pp. 20-31, Sep. 2017.

[3] L. Karam et al., “Trends in multicore DSP platforms,” IEEE signal
processing magazine, vol. 26, no. 6, pp. 38-49, 2009.

[4] M.]. Flynn, “Some computer organizations and their effective-
ness,” IEEE transactions on computers, vol. 100, no. 9, pp. 948-960,
1972.

[5] D. Rossi et al., “A 60 gops/w, -1.8v to 0.9v body bias ulp cluster
in 28nm utbb fd-soi technology,” Solid-State Electronics, vol. 117, 11
2015.

[6] P. Meinerzhagen et al., “Benchmarking of standard-cell based
memories in the sub-vydomain in 65-nm cmos technology,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1,
no. 2, pp. 173-182, June 2011.

[7] L Loi et al., “Exploring multi-banked shared-11 program cache on
ultra-low power, tightly coupled processor clusters,” in Proceedings
of the 12th ACM International Conference on Computing Frontiers, ser.
CF’15. New York, NY, USA: ACM, 2015, pp. 64:1-64:8. [Online].
Available: http:/ /doi.acm.org/10.1145/2742854.2747288

[8] E Oboril et al., “Evaluation of hybrid memory technologies us-
ing sot-mram for on-chip cache hierarchy,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 3, pp. 367-380, March 2015.

[9] K. Kuan and T. Adegbija, “Halls: An energy-efficient highly
adaptable last level stt-ram cache for multicore systems,” IEEE
Transactions on Computers, vol. 68, no. 11, pp. 1623-1634, 2019.

[10] J. Myers et al., “A subthreshold arm cortex-m0+ subsystem in
65 nm cmos for wsn applications with 14 power domains, 10t
sram, and integrated voltage regulator,” IEEE Journal of Solid-State
Circuits, vol. 51, no. 1, pp. 31-44, Jan 2016.

http://doi.acm.org/10.1145/2742854.2747288

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

N. Ickes et al., “A 10 pj/cycle ultra-low-voltage 32-bit micro-
processor system-on-chip,” in 2011 Proceedings of the ESSCIRC
(ESSCIRC), Sep. 2011, pp. 159-162.

A. Teman et al., “Controlled placement of standard cell memory
arrays for high density and low power in 28nm fd-soi,” in The
20th Asia and South Pacific Design Automation Conference, 2015, pp.
81-86.

A.]J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14,
no. 3, p. 473-530, Sep. 1982. [Online]. Available: https:
//doi.org/10.1145/356887.356892

C. Liu et al., “Organizing the last line of defense before hitting the
memory wall for cmps,” in 10th International Symposium on High
Performance Computer Architecture (HPCA'04), 2004, pp. 176-185.
H. Wong et al.,, “Demystifying gpu microarchitecture through
microbenchmarking,” in 2010 IEEE International Symposium on
Performance Analysis of Systems Software, 2010, pp. 235-246.

C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
for low energy embedded systems,” ACM Trans. Embed. Comput.
Syst., vol. 4, no. 2, p. 363-387, may 2005. [Online]. Available:
https://doi.org/10.1145/1067915.1067921

W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfigura-
tion and partitioning for energy optimization in real-time multi-
core systems,” in 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2011, pp. 948-953.

G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in Proceedings of the 32nd Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, 1999, pp. 16-27.

M. Ferdman et al., “Temporal instruction fetch streaming,” in 2008
41st IEEE/ACM International Symposium on Microarchitecture, 2008,
pp. 1-10.

M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction
fetch,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2011, pp. 152-162.

A. Kolli et al., “Rdip: Return-address-stack directed instruction
prefetching,” in 2013 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2013, pp. 260-271.

Y. Ishii et al., “Re-establishing fetch-directed instruction prefetch-
ing: An industry perspective,” in 2021 IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pp. 172-182.
J. Diaz et al., “Near-optimal replacement policies for shared caches
in multicore processors,” The Journal of Supercomputing, vol. 77,
no. 10, pp. 11756-11785, 2021.

S. N. Ghosh et al., “SRCP: sharing and reuse-aware replacement
policy for the partitioned cache in multicore systems,” Design
Automation for Embedded Systems, vol. 25, no. 3, pp. 193-211, 2021.
J. Xiao, Y. Shen, and A. D. Pimentel, “Cache Interference-aware
Task Partitioning for Non-preemptive Real-time Multi-core Sys-
tems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 21, no. 3, pp. 1-28, 2022.

G. Cabo et al., “SafeSU: an extended statistics unit for multicore
timing interference,” in 2021 IEEE European Test Symposium (ETS).
IEEE, 2021, pp. 1-4.

M. Gautschi et al., “Near-threshold risc-v core with dsp extensions
for scalable iot endpoint devices,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713, Oct
2017.

L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012:
Building an ecosystem for a scalable, modular and high-efficiency
embedded computing accelerator,” in 2012 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2012, pp. 983-987.
A. Rahimi et al., “A fully-synthesizable single-cycle interconnec-
tion network for shared-11 processor clusters,” in 2011 Design,
Automation Test in Europe, 2011, pp. 1-6.

D. Rossi et al.,, “Ultra-low-latency lightweight dma for tightly
coupled multi-core clusters,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, ser. CF '14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online].
Available: https:/ /doi.org/10.1145/2597917.2597922

I. Loi ef al., “The quest for energy-efficient i$ design in ultra-
low-power clustered many-cores,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 4, no. 2, pp. 99-112, April 2018.

C. Jie et al., “Energy-efficient two-level instruction cache design for
an ultra-low-power multi-core cluster,” in Proceedings of the 23rd
Conference on Design, Automation and Test in Europe, ser. DATE "20.
San Jose, CA, USA: EDA Consortium, 2020, p. 1734-1739.

[33] GreenWaves

14

Technologies, “Gap9 product brief,” 2022,
https:/ /greenwaves-technologies.com/wp-content/uploads/
2022 /06/Product-Brief-GAP9-Sensors-General-V1_14.pdf.

[34] A. Marongiu et al., “Simplifying many-core-based heterogeneous

soc programming with offload directives,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 4, pp. 957967, Aug 2015.

[35] GreenWaves Technologies, “Gap8 auto-tiler manual,” 2018, https:

/ / greenwaves-technologies.com!

Jie Chen received Ph.D. from teh Department
of Electrical, Electronic and Information Engi-
neering at the University of Bologna in 2022. At
the same, he is working as ASIC designer for
Greenwaves Technologies, France. His research
activities are currently on ultra-low power multi-
core systems, memory systems hierarchy and
high speed memory interface.

Igor Loi received the PhD from the University
of Bologna, ltaly, in 2010. He has been a post
doc researcher in the Department of Electri-
cal, Electronic and Information Engineering at
the University of Bologna since 2006. His re-
search activities are currently focused on ultra-
low power multi-core systems, memory systems
evolution, and ultra low-latency interconnects. In
this field he has published more than 40 paper
in international peer-reviewed conferences and
journals.

Eric Flamand received the Ph.D. degree in com-
puter science from INPG, Grenoble, France, in
1982. He was a Researcher with CNET and
CNRS, Grenoble, France on design of low-power
parallel processors. He then held different tech-
nical management positions within the semi-
conductor industry with Motorola and ST Mi-
croelectronics. He is the co-founder and cur-
rently the CTO of Greenwaves Technologies, a
French startup developing an loT processor de-
rived from the PULP project.

Giuseppe Tagliavini received a Ph.D. degree
in Electronic Engineering from the University of
Bologna, Bologna, ltaly, in 2017. He is currently
an Assistant Professor with the Department of
Computer Science and Engineering (DISI) at the
University of Bologna. He has co-authored over
40 papers in international conferences and jour-
nals. His main research interests include par-
allel programming models for embedded sys-
tems, run-time and compile-time optimization for
multi/many-core platforms, HW/SW co-design of

emerging computing.

Luca Benini received the Ph.D. degree in elec-
trical engineering from Stanford University, Stan-
ford, CA, USA, in 1997. He is currently a
Full Professor with the University of Bologna,
Bologna, Italy. He has authored over 700 papers
in peer-reviewed international journals and con-
ferences, four books, and several book chapters.
His current research interests include energy ef-
ficient system design and multicore system-on-
chip design. Dr. Benini is a member of Academia
Europaea. He is currently the Chair of Digital

Circuits and Systems with ETH Ziirich, Zirich, Switzerland.

https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/1067915.1067921
https://doi.org/10.1145/2597917.2597922
https://greenwaves-technologies.com/wp-content/uploads/2022/06/Product-Brief-GAP9-Sensors-General-V1_14.pdf
https://greenwaves-technologies.com/wp-content/uploads/2022/06/Product-Brief-GAP9-Sensors-General-V1_14.pdf
https://greenwaves-technologies.com
https://greenwaves-technologies.com

Davide Rossi received the Ph.D. degree from
the University of Bologna, Bologna, ltaly, in
2012. He has been a Post-Doctoral Researcher
with the Department of Electrical, Electronic and
Information Engineering “Guglielmo Marconi,”
University of Bologna, since 2015, where he is
currently an Associate Professor. His research
interests focus on energy-efficient digital archi-
tectures. In this field, he has published more
than 100 papers in international peer-reviewed
conferences and journals.

15

	scalable hierarchical instruction copertina
	2309.01299
	Introduction
	Related Work
	Instruction Memory in ULP SoCs
	Improving Instruction Fetch Efficiency
	Instruction Cache Prefetching
	Discussion

	Background
	Cluster Architecture
	Legacy I$ Architectures
	Private cache
	Single-Port Shared Cache
	Multiple-port Shared Cache

	Two-Level instruction cache
	L1 to L1.5 Next-line Prefetching
	Out-of-order Interconnect
	Instruction Fetch Stage Optimization

	Physical Implementation Results
	Experimental Setup
	Area and Timing
	Parallel Performance and Power Characterization

	Benchmarking
	Description of Parallel Benchmarks
	Parallel Performance and Power Benchmarking
	Discussion

	Conclusion
	References
	Biographies
	Jie Chen
	Igor Loi
	Eric Flamand
	Giuseppe Tagliavini
	Luca Benini
	Davide Rossi

