
Exploiting data locality
in cache-coherent NUMA systems

Isaac Sánchez Barrera
Barcelona, 2022

Advisors:
Marc Casas Guix
Department of Computer Sciences
Barcelona Supercomputing Center

Miquel Moretó Planas
Department of Computer Architecture
Universitat Politècnica de Catalunya

Department of Computer Sciences
Barcelona Supercomputing Center

A thesis submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

in the Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Amis abuelos,
Adela, Alonso, Manuel y Mercedes.

Abstract

The end of Dennard scaling has caused a stagnation of the clock frequency
in computers. To overcome this issue, in the last two decades vendors have
been integrating larger numbers of processing elements in the systems,
interconnecting many nodes, including multiple chips in the nodes and
increasing the number of cores in each chip. The speed of main memory
has not evolved at the same rate as processors, it is much slower and there
is a need to provide more total bandwidth to the processors, especially with
the increase in the number of cores and chips.

Still keeping a shared address space, where all processors can access the
whole memory, solutions have come by integrating more memories: by
using newer technologies like high-bandwidth memories (HBM) and non-
volatile memories (NVM), by giving groups cores (like sockets, for example)
faster access to some subset of the DRAM, or by combining many of these
solutions. This has caused some heterogeneity in the access speed to main
memory, depending on the CPU requesting access to a memory address and
the actual physical location of that address, causing non-uniform memory
access (NUMA) behaviours. Moreover, many of these systems are cache-
coherent (ccNUMA), meaning that changes in the memory done from one
CPU must be visible by the other CPUs and transparent for the programmer.

These NUMA behaviours reduce the performance of applications and can
pose a challenge to the programmers. To tackle this issue, this thesis pro-
poses solutions, at the software and hardware levels, to improve the data
locality in NUMA systems and, therefore, the performance of applications
in these computer systems.

The first contribution shows how considering hardware prefetching sim-
ultaneously with thread and data placement in NUMA systems can find
configurations with better performance than considering these aspects sep-
arately. The performance results combined with performance counters are
then used to build a performance model to predict, both offline and online,
the best configuration for new applications not in the model. The evalu-
ation is done using two different high performance NUMA systems, and the

V

performance counters collected in one machine are used to predict the best
configurations in the other machine.

The second contribution builds on the idea that prefetching can have a
strong effect in NUMA systems and proposes a NUMA-aware hardware
prefetching scheme. This scheme is generic and can be applied to multiple
hardware prefetchers with a low hardware cost but giving very good results.
The evaluation is done using a cycle-accurate architectural simulator and
provides detailed results of the performance, the data transfer reduction
and the energy costs.

Finally, the third and last contribution consists in scheduling algorithms for
task-based programming models. These programming models help improve
the programmability of applications in parallel systems and also provide
useful information to the underlying runtime system. This information is
used to build a task dependency graph (TDG), a directed acyclic graph that
models the application where the nodes are sequential pieces of code known
as tasks and the edges are the data dependencies between the different tasks.
The proposed scheduling algorithms use graph partitioning techniques
and provide a scheduling for the tasks in the TDG that minimises the data
transfers between the different NUMA regions of the system. The results
have been evaluated in real ccNUMA systems with multiple NUMA regions.

VI

Resum

La fi de la llei de Dennard ha provocat un estancament de la freqüència de
rellotge dels computadors. Amb l’objectiu de superar aquest fet, durant les
darreres dues dècades els fabricants han integrat més quantitat d’unitats
de còmput als sistemes mitjançant la interconnexió de nodes diferents, la
inclusió de múltiples xips als nodes i l’increment de nuclis de processador
a cada xip. La rapidesa de la memòria principal no ha evolucionat amb el
mateix factor que els processadors; és molt més lenta i hi ha la necessitat
de proporcionar més ample de banda als processadors, especialment amb
l’increment del nombre de nuclis i xips.

Tot mantenint un sistema d’adreçament compartit en el qual tots els pro-
cessadors poden accedir a la memòria sencera, les solucions han estat al
voltant de la integració de més memòries: usant tecnologies modernes
com les memòries d’alt ample de banda (high-bandwidth memories, HBM)
i memories no volàtils (non-volatile memories, NVM), fent que grups de
nuclis (com sòcols sencers) tinguin accés més ràpid a un subconjunt de la
DRAM o amb la combinació de solucions. Tot això ha provocat una hetero-
geneïtat en la velocitat d’accés a la memòria principal, en funció del nucli
que sol·licita l’accés a una adreça de memòria en particular i la localització
física d’aquesta adreça, fet que provoca uns comportaments no uniformes
en l’accés a la memòria (non-uniform memory access, NUMA). A més, molts
d’aquests sistemes tenen memòries cau coherents (cache-coherent NUMA,
ccNUMA), la qual cosa implica que qualsevol canvi fet a la memòria des
d’un nucli d’un processador ha de ser visible pels altres nuclis de manera
transparent per als programadors.

Aquests comportaments NUMA redueixen el rendiment de les aplicacions i
poden suposar un repte per als programadors. Per abordar el problema en
qüestió, a la tesi s’hi proposen solucions, a nivell de programari i maquinari,
que milloren la localitat de dades als sistemes NUMA i, en conseqüència, el
rendiment de les aplicacions en aquests sistemes informàtics.

La primera contribució mostra que, quan es tenen en compte alhora la
precàrrega d’adreces de memòria amb maquinari (hardware prefetching) i

VII

les decisions d’ubicació dels fils d’execució i les dades als sistemes NUMA, es
poden trobarmillors configuracions que quan es condieren ambdós aspectes
per separat. Una combinació dels resultats de rendiment i dels comptadors
disponibles al sistema s’utilitza per construir un model de rendiment per fer
la predicció, tant per avançat com també en temps d’execució, de la millor
configuració per aplicacions que no es troben al model. L’avaluació es du
a terme mitjançant dos sistemes NUMA d’alt rendiment, i els comptadors
mesurats en un sistema s’utilitzen per predir les millors configuracions a
l’altre sistema.

La segona contribució es basa en la idea que el prefetching pot tenir un
efecte considerable als sistemes NUMA i proposa un esquema de precàrrega
a nivell de maquinari que té en compte els efectes NUMA. Aquest esquema
és genèric i es pot aplicar a diferents algorismes de precàrrega existents amb
un cost de maquinari molt baix però amb molt bons resultats. Els resultats
s’avaluen amb un simulador arquitectural acurat a nivell de cicle i proporci-
ona resultats detallats del rendiment, la reducció de les comunicacions de
dades i els costos energètics.

Per últim, la tercera i darrera contribució consisteix en algorismes de pla-
nificació per models de programació basats en tasques. Aquests models
simplifiquen la programabilitat de les aplicacions paral·leles i proveeixen
informació molt útil al sistema en temps d’execució (runtime system) que
en controla el funcionament. Aquesta informació s’usa per construir un
graf de dependències entre tasques (task dependency graph, TDG), un graf
dirigit i acíclic que modela l’aplicació i en el qual els nodes són fragments de
codi seqüencial, coneguts com a tasques, i els arcs són les dependències de
dades entre les diferents tasques. Els algorismes de planificació proposats
fan servir tècniques de particionat de grafs i proporcionen una planificació
de les tasques del TDG que minimitza la comunicació de dades entre les
diferents regions NUMA del sistema. Els resultats han estat avaluats en
sistemes ccNUMA reals amb múltiples regions NUMA.

VIII

Resumen

El final de la ley de Dennard ha provocado un estancamiento de la frecuencia
de reloj de los computadores. Con el objetivo de superar este problema,
durante las últimas dos décadas los fabricantes han integrado más unidades
de cómputo en los sistemas mediante la interconexión de nodos diferentes,
la inclusión de múltiples chips en los nodos y el incremento de núcleos
de procesador en cada chip. La rapidez de la memoria principal no ha
evolucionado con el mismo factor que los procesadores; es mucho más lenta
y hay la necesidad de proporcionar más ancho de banda a los procesadores,
especialmente con el incremento del número de núcleos y chips.

Aun manteniendo un sistema de direccionamiento compartido en el que
todos los procesadores pueden acceder al conjunto de la memoria, las solu-
ciones han oscilado alrededor de la integración de más memorias: usando
tecnologías modernas como las memorias de alto ancho de banda (high-
bandwidth memories, HBM) y memorias no volátiles (non-volatile memories,
NVM), haciendo que grupos de núcleos (como zócalos completos) tengan
acceso más veloz a un subconjunto de la DRAM, o con la combinación de
soluciones. Esto ha provocado una heterogeneidad en la velocidad de acceso
a la memoria principal, en función del núcleo que solicita el acceso a una
dirección de memoria en particular y la ubicación física de esta dirección, lo
que provoca unos comportamientos no uniformes en el acceso a la memoria
(non-uniform memory access, NUMA). Además, muchos de estos sistemas
tienen memorias caché coherentes (cache-coherent NUMA, ccNUMA), lo
que implica que cualquier cambio hecho en la memoria desde un núcleo
de un procesador debe ser visible por el resto de procesadores de forma
transparente para los programadores.

Estos comportamientos NUMA reducen el rendimiento de las aplicaciones
y pueden suponer un reto para los programadores. Para abordar dicho pro-
blema, en esta tesis se proponen soluciones, a nivel de software y hardware,
que mejoran la localidad de datos en los sistemas NUMA y, en consecuencia,
el rendimiento de las aplicaciones en estos sistemas informáticos.

IX

La primera contribución muestra que, cuando se tienen en cuenta a la vez
la precarga de direcciones de memoria mediante hardware (o hardware
prefetching) y las decisiones de la ubicación de los hilos de ejecución y los
datos en los sistemas NUMA, se pueden hallar mejores configuraciones que
cuando se consideran ambos aspectos por separado. Con una combinación
de los resultados de rendimiento y de los contadores disponibles en el
sistema se construye un modelo de rendimiento, tanto por avanzado como
en en tiempo de ejecución, de la mejor configuración para aplicaciones que
no están incluidas en el modelo. La evaluación se realiza en dos sistemas
NUMA de alto rendimiento, y los contadores medidos en uno de los sistemas
se usan para predecir las mejores configuraciones en el otro sistema.

La segunda contribución se basa en la idea de que el prefetching puede
tener un efecto considerable en los sistemas NUMA y propone un esquema
de precarga a nivel hardware que tiene en cuenta los efectos NUMA. Este
esquema es genérico y se puede aplicar a diferentes algoritmos de precarga
existentes con un coste de hardware muy bajo pero que proporciona muy
buenos resultados. Dichos resultados se obtienen y evalúan mediante un
simulador arquitectural preciso a nivel de ciclo y proporciona resultados
detallados del rendimiento, la reducción de las comunicaciones de datos y
los costes energéticos.

Finalmente, la tercera y última contribución consiste en algoritmos de pla-
nificación para modelos de programación basados en tareas. Estos modelos
simplifican la programabilidad de las aplicaciones paralelas y proveen in-
formación muy útil al sistema en tiempo de ejecución (runtime system)
que controla su funcionamiento. Esta información se utiliza para construir
un grafo de dependencias entre tareas (task dependency graph, TDG), un
grafo dirigido y acíclico que modela la aplicación y en el ue los nodos son
fragmentos de código secuencial, conocidos como tareas, y los arcos son las
dependencias de datos entre las distintas tareas. Los algoritmos de planifica-
ción que se proponen usan técnicas e particionado de grafos y proporcionan
una planificación de las tareas del TDG que minimiza la comunicación de
datos entre las distintas regiones NUMA del sistema. Los resultados se han
evaluado en sistemas ccNUMA reales con múltiples regiones NUMA.

X

Acknowledgements

Aquesta tesi és el resultat de més de cinc anys de feina, amb moments més
tranquils i d’altres més durs. Estic content amb tot el que m’ha aportat fer
el doctorat: he après moltes coses noves i he fet noves amistats. També
puc dir que estic desencantat amb alguns aspectes del món de la recerca,
segurament el tenia massa idealitzat i me l’esperava més centrat en fer
avançar el coneixement.

Però no m’extendré més amb lamentacions que ara mateix no solucionen
res, perquè no hauria de ser l’objectiu d’aquests paràgrafs. No puc més
que començar agraint-vos, Miquel i Marc, que m’hàgiu dirigit la tesi. Hi ha
hagut moments en els quals m’heu hagut de perseguir (com perquè acabés
d’escriure això) o alguna vegada que ha passat al revés, però no ha estat
gaire sovint. I també moments de dubtes existencials i de qüestionar-me
que el que intentava fer pogués funcionar o servís de res, però que heu
pogut salvar gràcies a la vostra experiència i la confiança que m’heu donat.

Molt importants sou tots els de RoMoL i Til·lers 3. En particular, Adrián, no
conozco a nadie más dedicado y trabajador que tú, aunque ya te lo he dicho
más de una vez. Atrás quedan nuestros ratos de quejarnos de todo, yo creo
que con motivo, y espero que estés disfrutando por Cambridge, que debes
tener un tiempo más parecido al de tu tierruca que en Barcelona, aunque te
falte el mar.

Vladimir, you are a great man (pun intended). Very few people take so much
care in what they do as you do, and I think you deserve the best for being
such a nice guy. We should do another group Serbian dinner the next time
we meet, I enjoyed it a lot the last time we went to that Serbian bar in
Barcelona.

XI

Cristóbal, poca relación tuvimos al principio más allá de que alguna vez
usaba tu preciado POWER 8 (y luego usamos aquel POWER 9 que sacaron
del clúster para poder hacer cosas raras). Pero tu cambio de oficina en el
Nexus II cambió las cosas. ¡Te mando fuerzas para que puedas terminar con
lo tuyo! Si yo he podido, tú también.

Guillem, Rubén i Víctor, espero que l’experiència del doctorat us vagi molt bé
i la resta de la vida també. Juntament amb el Cristóbal, bons moments vam
passar dinant al Vèrtex que amb la pandèmia es van convertir en diumenges
jugant al pinturillo, petant la xerrada o comentant pel·lícules a cada qual
més estrambòtica. Mai us desfareu dels meus acudits. I espero que el gem5
no us deixi amb mal cos.

Obviamente, Constan, parece que no nos podemos deshacer el uno del otro,
pero supongo que será una buena señal. Antes nos veíamosmás en la oficina,
que estábamos sentados delante uno del otro, a ver si en poco tiempo nos
volvemos a ver en la oficina (aunque sea solo algún día a la semana), porque
eso significará que la pandemia ha mejorado. Así podremos tener también
alguna discusión sobre si hacer algo de cierta manera o de otra tiene sentido,
que con una pizarra y de cara es mejor que virtualmente.

De ti no me olvido, Calvin, que aunque quizá no te lo parezca, también me
has ayudado mucho en estos años de tesis. A ver si un día nos volvemos a
ver en la oficina y, por supuesto, a ver si se da otra ocasión para comer con
Vladimir y Constan.

Xubin, it was great having you in the office and I’m happy you are still in
Barcelona. I think your work is the one that was the clearest exponent of
the runtime-aware architectures. I was happy to see you when you visited
my home town, and I must say I walked a lot that day!

Paul and Dimitrios, thank you also for everything that I have learnt from
both of you, many things I have built upon have started with some basic
stuff you provided me. Luc, I hope you are doing great in France (if you’re
still there). Your tools for conference dates have been really useful, and your
base LATEXtemplate for the BSC presentations has served me a lot.

XII

Sicong, ens vam conèixer al BSC, vam parlar algun cop i ens vam ajudar en
alguna cosa. Ara hem estat treballant uns mesos junts i ha estat un plaer!

Adrià i Lluc, gràcies a vosaltres també perquè, encara que no heu participat
directament en la meva tesi, sí que m’heu ajudat, tant amb el gem5 com amb
temes més generals de la recerca. Y gracias a ti también, Santi, que aunque
hemos coincidido poco tiempo, tu granito de arena me has aportado.

No em vull oblidar de mencionar l’Helena, el Iulian i el César, y tampoco
me olvido de ti, Emilio, espero que a tots vosaltres us estigui anant bé allà
on sigueu! And finally, I must mention Alex, Asaf, Francesc, Jon, Louis, Max,
Robin, Vatistas and Yorgos. I hope I can join you the next time you (probably
Robin) organise a group dinner!

Moltes gràcies Josep, Ramon i Sara pels comentaris que em vau fer a la
predefensa de la tesi. Em van resultar molt útils i crec que el document ha
millorat considerablement gràcies a vosaltres. Em vaig sentir molt còmode
en aquella presentació, i això no sempre és fàcil.

Gracias también a ti, Bea, por la confianza para las prácticas de docencia
en el DAC. I gràcies també a tots els professors d’IC per haver-me rebut i
ajudat aquests anys fent les pràctiques de docència.

Gràcies, Alex, per interessar-te en allò que vaig començar amb el miniAMR i
que s’hagués quedat al calaix si no fos per tu. La veritat és que vaig gaudir
col·laborant en l’article.

Aprovecho para mandar un abrazo a Helena, Vicente, Mari y el resto de
personal del Vèrtex. Muchísimas veces he comido allí durante los años que
he estado con el doctorado, salvo este último, y eso es porque la comida, el
trato y el precio se lo merecían. No dudo en que volveré a comer allí si estoy
por la zona entre semana.

Tack så mycket till alla på UART! (I hope I’ve written this correctly, I haven’t
advanced in Swedish as much as I’d have to). Nevertheless, one main
contribution of this thesis comes frommy research visit there. Mihail, as I’ve
told you more than once, you were a great mentor and I’m happy we still
keep in touch. It would have been great to have physical thesis defences, so

XIII

that you could visit Barcelona for that occasion, but you are still invited to
visit the city any other time. And David, if UART is such a great group it is
your fault in great measure! It was very good for me going to Uppsala. And
I miss doing Fika with all of you, Anastasia, Chris, Gustav, Hassan, Johan,
Kim, Marina, Mehdi, Paul, Per and Ricardo. The mug you gave me is in a
privileged place at home.

Marta, mama, papa, es muy típico decir que no habría podido hacer esto
sin vuestro apoyo, pero es que es verdad. Sé que en algún momento durante
todo el proceso de la tesis no solo he estado desquiciado sino que he sido
desquiciante, pero ya se termina y esto es una parte del resultado. Y la cosa
es que tampoco habría podido sin mi Ada, mi Otto y mi Frida. Siempre digo
que sois muy pesados (Ada, pobrecita, tú ya no), pero especialmente este
último par de años se habrían hecho mucho más duros sin vosotros por
casa.

Yaya, avi, abuela, abuelo, ya lo digo al principio de esta tesis, pero va por
vosotros. Sé la ilusión que os hace incluso si no entendéis nada de lo que hay
en el documento. Pero el mismo orgullo que sentís, lo siento yo dedicándoos
este trabajo.

Alberto, qué te voy a decir a ti que no sepas ya. Entre que estás lejos y la
pandemia, poco nos hemos podido ver (en persona) este último par de
años, pero eres seguramente con quien más rato he estado hablando. Se
acerca ya el final de nuestro último proyecto en común, con el que hemos
aprendido bastante los dos, pero estoy seguro de que vamos a encontrar
excusas para hablar y que yo me vaya por los cerros. I com que parlo amb
l’Alberto, aprofito i et dic, Laura, que encara no he tastat els paparajotes.
Quan sigui tot més normal i us passeu per aquí un altre cop, us dono fulles
de llimoner, que els vull tastar!

Guillermo, estos años habrían sido bastante más difíciles sin ti. Ir al teatro
no deja de ser una excusa para estar luego hablando de la vida, quejarnos de
los políticos, de la sociedad, de lo bueno y lo malo del trabajo... Tenemos que
recuperarlo (ahora que está todo un poco más fácil de nuevo) y mantenerlo,
porque como se dice, a mí me da la vida.

XIV

No acabaré sense esmentar l’ERIE de Recerca i Rastreig amb Gossos de la
Creu Roja i la Coral l’Amistat de Premià de Mar. Tots aquests anys formant
part del grup dels gossos (juntament amb el meu pare) i aquest últim gairebé
any i mig a la coral m’han ajudat a desconnectar de les obligacions. I és
totalment necessari per poder aguantar-ho tot.

All this work does not come for free. I have been partially supported
by the Spanish Ministry of Education, Culture and Sport under fellow-
ship number FPU15/03612, and by the Spanish Ministry of Science, In-
novation and Universities under fellowship number EST18/00799. This
thesis has also been supported by the Spanish Government (Severo Ochoa
grant SEV2015-0493), by the Spanish Ministry of Science and Innovation
(contract TIN2015-65316-P), by the Generalitat de Catalunya (contracts
2017-SGR-1414 and 2017-SGR-1328), by the RoMoL ERC Advanced Grant
(grant agreement 321253) and the European HiPEAC Network of Excel-
lence. The Mont-Blanc project has received funding from the EU’s H2020
Framework Programme (H2020/2014-2020) under grant agreement num-
bers 671697 and 779877.

XV

Contents

1. Introduction 1
1.1. Thesis objectives and contributions 2

1.1.1. Performance and configuration models for interac-
tions between NUMA and hardware prefetchers . . . 3

1.1.2. Hardware prefetching for NUMA systems 3
1.1.3. Task-based applications in NUMA systems 4

1.2. Thesis structure . 4

2. Background and related work 7
2.1. Parallel computing, shared memory and NUMA 7

2.1.1. Virtual memory: allowing multiprogramming and
larger main memory capacity 9

2.2. Caches and the memory hierarchy 10
2.2.1. Cache coherence and ccNUMA 11
2.2.2. Hardware prefetching 11

2.3. Parallel programming in shared-memory systems 13
2.3.1. Task-based programming 15
2.3.2. Work scheduling and data placement in NUMA systems 17

2.4. Holistic performance optimisation and runtime-aware archi-
tectures . 20
2.4.1. Using models to drive configurations 21
2.4.2. Runtime-aware architectures 22

3. Experimental methodology 25
3.1. Real NUMA systems . 25

3.1.1. Large ccNUMA systems 26
3.2. Simulation of NUMA Systems 27

XVII

Contents

3.3. Workloads . 29
3.3.1. Fork-join parallel applications 30
3.3.2. Task-based parallel applications 35

4. Performance and configurationmodels for interactions between
NUMA and hardware prefetchers 39
4.1. The relevance of NUMA and prefetcher configurations in

performance . 40
4.2. Search space . 43

4.2.1. NUMA configurations 43
4.2.2. Prefetcher configurations 45

4.3. Characterisation . 45
4.3.1. Experimental setup 46
4.3.2. Performance opportunities 46
4.3.3. NUMA+Prefetcher configuration diversity 47
4.3.4. Takeaway . 48

4.4. Prediction model . 48
4.4.1. Machine learning models 49
4.4.2. Model generation and inputs 50

4.5. Prediction results . 53
4.5.1. Model evaluation . 54
4.5.2. Comparing machine learning methods 57
4.5.3. Reaction-based performance counters improve mod-

elling . 59
4.5.4. Takeaway . 60

4.6. Optimising applications online 61
4.6.1. Online profiling and optimisation 61
4.6.2. Whole-application optimisation 62
4.6.3. Per-region NUMA optimisation 65

4.7. Summary . 66

5. Hardware prefetching for NUMA systems 67
5.1. Introduction . 67
5.2. Motivation . 69

5.2.1. Background on hardware prefetchers 69

XVIII

Contents

5.2.2. Opportunity for NUMA-aware prefetchers 70
5.3. Proposal: NUMA-aware prefetching 72

5.3.1. The NUMA-aware stride prefetcher 73
5.3.2. Other considerations 75

5.4. Methodology . 76
5.4.1. Simulation environment 76
5.4.2. Design space exploration 77

5.5. Results and evaluation . 78
5.5.1. Design space exploration 79
5.5.2. Performance evaluation 79
5.5.3. Comparison with the state of the art 85
5.5.4. Making other prefetchers aware of NUMA 87
5.5.5. Cost evaluation . 88

5.6. Summary . 90

6. Task-based applications in NUMA systems 91
6.1. Graph partitioning . 92

6.1.1. Graph partitioning algorithms 93
6.2. Exploiting the task dependency graph to mitigate NUMA effects 95

6.2.1. Dependency easy placement (DEP) 95
6.2.2. Considerations about applying graph partitioning on

applications’ TDGs 96
6.2.3. Runtime informed partitioning (RIP) 97
6.2.4. Benefits of graph partitioning 100
6.2.5. Assumptions of the proposals 102

6.3. Experimental environment 102
6.3.1. Manual scheduling and graph windows 103

6.4. Evaluation . 104
6.4.1. SGI Altix UV100 . 105
6.4.2. Atos Bull bullion S16 106
6.4.3. Reduction of coherence traffic within the bullion S16

Machine . 110
6.4.4. Load imbalance and overhead 111
6.4.5. Adding page migration mechanisms 112

6.5. Summary . 113

XIX

Contents

7. Conclusions 115
7.1. Goals and contributions . 115

7.1.1. Performance and configuration models for interac-
tions between NUMA and hardware prefetchers . . . 116

7.1.2. Hardware prefetching for NUMA systems 117
7.1.3. Task-based applications in NUMA systems 117

7.2. Future work . 118
7.3. Publications . 120
7.4. Financial and technical support 120

Bibliography 123

XX

List of Tables

3.1. Common characteristics of the simulated systems. 29
3.2. Summary of inputs for fork-join parallel applications. 34
3.3. List of codelets for each fork-join parallel application. 35
3.4. Summary of inputs for task-based parallel applications . . . 38

4.1. Comparison of speedups between different optimisation
searches against an optimised default (pages: locality, threads:
scatter, prefetchers: on). 47

4.2. Prediction model parameters. Single/multi-label models use
the same parameters. 50

4.3. Best model parameters for each ML method, including the
reaction-based performance counters selected as the two
profile inputs. 56

4.4. Execution times (billions of cycles) of BT and SP region con-
flicts and online profiling. The overhead is quickly amortised
since each region is called hundreds of times. 64

6.1. Load balance (LB), runtime overheads (OH) and graph par-
titioning overheads (GP) in the SGI Altix UV100 using three
sockets (as percentages, %). 112

XXI

List of Figures

3.1. Measured memory latencies in milliseconds as we increase
the working set size with LMbench lat_mem_rd. 26

3.2. High-level diagram of the simulated gem5 system. 27
3.3. Latencies of the memory hierarchy in a simulated environ-

ment and a real system . 28

4.1. Normalised cycles (lighter is faster) for BT using two NUMA
configurations. 41

4.2. Normalised speedups (lighter is faster) of parallel regions
showing complex sensitivities to NUMA+Prefetcher config-
urations on a Sandy Bridge system. 42

4.3. Maximum attainable speedup with respect to the number of
configurations. 48

4.4. Diagram showing how the model training scheme works. . . 51
4.5. 10-fold cross-validation of the predicted results. 54
4.6. Geometric mean performance gains of the most effective

prediction model for each Machine Learning method. _s/_m
refer to single label/many-labelled training. 58

4.7. Single-configuration profiling vs. the best Reaction-based
performance counter approach (Tree_s React.). 60

4.8. Online evaluation of different configurations. 61
4.9. Overheads and execution times for online and offline profiling. 63
4.10. Execution cycles for rhs from SP. 65

5.1. Execution times of a microbenchmark with local and remote
accesses under different configurations. 68

5.2. Generic diagram of the NUMA-aware prefetching scheme. . 73

XXIII

List of Figures

5.3. Sample pseudo-assembly code for explaining the proposal.
On the left, the PC (program counter) is shown. 74

5.4. Speedups of standard stride prefetcher configurations and
our proposal. 80

5.5. Speedups vs. total number of issued prefetches (both norm-
alised to stride 8) at all cache levels. 81

5.6. Level 1 data cache misses per 1000 instructions. 82
5.7. Geometric mean of the percentage of unused cache lines

coming from prefetches in the L1 for different prefetcher
configurations. 83

5.8. Speedups for various 2-socket systems with local latency of
80ns and different remote latencies. 84

5.9. Comparison of state of the art prefetchers with our proposal. 85
5.10. Extending AMPM prefetcher with NUMA-aware capabilities. 87
5.11. Average transferred data in the memory hierarchy, includ-

ing snoop packages, for different prefetcher configurations
(normalised to stride 8). 88

5.12. Normalised energy consumption in the sockets (cores, L1,
L2 and L3) for the different prefetchers. 89

6.1. Diagram showing how RIP-MW works over time. The most
relevant parameters for RIP-MW are represented. 99

6.2. Task and data allocations into two sockets (dark and light)
on the first iteration of Gauss-Seidel (8 × 8 grid). 100

6.3. Task dependency graph corresponding to three iterations
of the Gauss-Seidel code comparing a uniform distribution
placement with locality awareness (DEP) to a programmer-
given partition and the RIP-DEP technique in a two-socket
system. 101

6.4. Speedup results in the SGI Altix UV100 using 3 sockets, 24
cores. DFIFO is locality-unaware, SA is manual, the rest are
automatic methods. 106

6.5. Speedup results in the bullion S16 using 4 sockets, 32 cores.
DFIFO is locality-unaware, SA is manual, the rest are auto-
matic methods. 107

XXIV

List of Figures

6.6. Speedup results in the bullion S16 using 8 sockets, 32 cores.
DFIFO is locality-unaware, SA is manual, the rest are auto-
matic methods. 108

6.7. Speedup results in the bullion S16 using all 16 sockets, 288
cores. DFIFO is locality-unaware, SA is manual, the rest are
automatic methods. 109

6.8. Coherence traffic to and from the BCS for selected applica-
tions using 32 cores in 8 sockets in the bullion S16. 110

6.9. Speedup results in the SGI Altix UV100 using 3 sockets, 24
cores, with page migration mechanisms (marked as pm). . . 113

XXV

Chapter 1.

Introduction

The end of Dennard scaling has caused a stagnation of the CPU clock fre-
quency. A solution to keep increasing the peak performance of high per-
formance computing (HPC) systems has been to integrate more and more
computing units in the systems, achieved with the interconnection of many
nodes (like in supercomputers and clusters), the inclusion of multiple chips
in each node and the increase of the number of cores in each chip. This
increase in the computing capacity also requires an increase in the memory
capacity and bandwidth to be able to feed data to the computing units.
However, the speed of memory has not evolved as fast as the speed of
processors, causing what is called the memory wall [160]. In the case of
HPC systems, the increase in memory bandwidth has been achieved by
providing local DRAM memories for each processor node with coherent
communications between nodes, but also using newer technologies such as
non-volatile memories (NVM) or high-bandwidth memories (HBM). These
memories increase overall bandwidth, but result in non-uniform memory
access (NUMA) behaviours: latency and bandwidth depend both on the
node accessing the data and the node where the data is stored. In some
cases, like in cache-coherent NUMA (ccNUMA) systems, there is coherence
in the memory hierarchy inside the nodes of the system.

This heterogeneity in memory access time poses many challenges and re-
quires solutions at the various levels of the computer stack. Moreover, it
also worsens the programmability in the systems: when programmers have
to take into account more and more characteristics of the system where

1

Chapter 1. Introduction

the applications are going to be executed to improve the performance, the
time for developing and maintaining the applications may increase. This
can have an impact in the portability of the code, its complexity and its
quality: it is not the same to have all accesses with the same latency or
with different latencies. Because of this, one of the trends in the last years
has been to develop approaches to abstract the programmer from having
to consider the hardware specificities of the underlying systems. Many of
the solutions specific for NUMA rely on the OS or runtime system level:
automatic page or thread migration by the kernel [43], workload scheduling
taking into account the physical location of the data [117, 144, 152] or hybrid
solutions [49]. Other more general solutions can be used in systems not
showing NUMA effects, like adding hardware structures in the cache hier-
archy for prefetching data in advance, known as hardware prefetchers [77,
78].

In this regard, one of the most recent trends to overcome the identified chal-
lenges consists in doing a holistic design of the hardware and the runtime
system software, that is, designing both simultaneously [150]. One option
can be the use of special hardware units that contain information useful
for the runtime system, allowing it to make informed decisions or change
some hardware configurations and improve the execution performance [28].
This holistic approach with the hardware and the runtime system software
can relieve the programmers from having to take the hardware character-
istics into account and has been used in many of the recent proposals for
improving the performance of software applications in HPC systems.

1.1. Thesis objectives and contributions

This thesis has the goal of improving the performance of applications in
systems that show NUMA behaviours by improving the data locality of the
applications, all in a seamless way for the programmer. In order to reach
this goal, we propose various approaches at the runtime software and the
hardware level that affect scheduling of the workloads and prefetching of
their data.

2

1.1. Thesis objectives and contributions

1.1.1. Performance and configurationmodels for interactions
between NUMA and hardware prefetchers

In the first contribution, we study how optimising the NUMA scheduling
(the placement of threads and data) or the data hardware prefetcher config-
urations separately gives results that fall away from the optimal. We present
the performance benefits of optimising both for the NUMA scheduling and
the data hardware prefetcher configurations in NUMA systems by means of
offline modelling and online profiling. To address the large design space, we
propose a prediction model that reduces the amount of input information
needed and the complexity of the prediction required. We do so by select-
ing a subset of performance counters and application configurations that
provide the richest profile information as inputs, and by limiting the output
predictions to a subset of configurations that cover most of the performance.

The proposed model is robust and can choose near-optimal NUMA schedul-
ing and prefetcher configurations for applications from only two profile runs.
We further demonstrate how to profile online with low overhead, resulting
in a technique that delivers an average of 1.68× performance improvement
over a locality-optimised scheduling baseline with all prefetchers enabled.

1.1.2. Hardware prefetching for NUMA systems

Extending on the relevance of optimising not just the scheduling of NUMA
applications but also the hardware prefetcher configurations, the second
contribution proposes a generic hardware prefetching scheme that leverages
the NUMA characteristics to enhance system performance. This knowledge
is used to prefetch datamore aggressively depending on the physical location
of the predicted accesses. The extra latency when accessing non-local data
is effectively hidden by prefetching this data to the last-level of cache, which
has enough capacity to store such data.

This approach is evaluated using gem5, a cycle-accurate architectural simu-
lator, in a modelled multi-socket NUMA system, proposing a simple hard-
ware prefetcher that is aware of NUMA effects. We achieve a 1.30× speedup

3

Chapter 1. Introduction

on average when compared to a standard stride prefetcher. We also get
a 1.10× speedup against the best-performing state-of-the-art prefetcher.
Finally, we show that the ideas can be applied to other hardware prefetchers,
obtaining a 1.06× speedup over the NUMA-unaware version.

1.1.3. Task-based applications in NUMA systems

In the last contribution, we propose scheduling techniques at the runtime
system level to further mitigate the impact of NUMA effects on parallel
applications’ performance. We leverage the runtime system metadata ob-
tained when using a task-based programming model, which can model the
application in terms of a task dependency graph, where nodes are pieces of
serial code and edges are control or data dependencies between them, to
efficiently reduce data transfers.

This new approach, based on graph partitioning methods, adds negligible
overhead and is able to provide performance improvements up to 1.52×
and average improvements of 1.12× with respect to the best state-of-the-art
approach when deployed on a 288-core shared-memory system. Moreover,
using the graph partitioning-based scheduling approach reduces the coher-
ence traffic by 2.28× on average with respect to the state-of-the-art solutions.

1.2. Thesis structure

The contents of this thesis are organised as follows:

• Chapter 2 presents the background and state-of-the-art in the hard-
ware and software topics upon which this thesis builds.

• Chapter 3 presents the experimental methodology used within the
three contributions of this thesis. To evaluate our proposals, we con-
sider both real HPC platforms and a cycle-accurate simulator, as well
as representative HPC applications and benchmarks.

4

1.2. Thesis structure

• Chapter 4 presents the first contribution of this thesis, which develops
performance and configuration models that consider the interaction
between NUMA and hardware prefetchers in HPC systems.

• Chapter 5 presents the second contribution of this thesis, which
presents a hardware prefetching scheme that alleviates NUMA effects
in large HPC systems.

• Chapter 6 presents the third contribution of the thesis, which analyses
how a runtime system can be used to reduce coherence traffic in a
very large cache coherent NUMA system by leveraging the semantic
information available in task-based parallel applications.

• Finally, chapter 7 concludes by summarising the contributions of this
thesis, listing the publications resulting from it and considering what
future potential research directions it suggests.

5

Chapter 2.

Background and related work

This chapter presents the previous work related with the topics discussed
in the thesis. Section 2.1 introduces parallel and shared-memory systems.
Section 2.2 describes caches and the memory hierarchy, together with im-
provements like hardware prefetching. Section 2.3 presents the options for
writing and executing parallel software in shared-memory systems. Finally,
section 2.4 gives an overview of holistic approaches to optimising perform-
ance in parallel systems and the path towards runtime-aware architectures.

2.1. Parallel computing, sharedmemory and NUMA

One of the early observations in the history of digital computers is that
some actions or computations can be executed simultaneously, also called
in parallel. This can be done at different levels of abstraction. Parallelism
starts at the bit level, with computers like the Whirlwind [1], from the 1950s,
being among the first to consider numbers as a group of bits (parallel
representation) instead of a sequence of bits (serial representation) [2]. This
has been standard in computers since then.

Parallelism can also be at the instruction and data levels. Flynn [58] describes
a classification of computer architectures considering these levels. Single
instruction, single data (SISD) architectures are those that allow executing a
single instruction on a single data source at a time. Flynn also considers some
parallelism in this case when single-CPU computers decode one instruction

7

Chapter 2. Background and related work

at a time but the pipeline is segmented in such a way that allows for multiple
instructions to be in flight. An example is the IBM System/360 Model 91,
from 1964 [68]. Single instruction, multiple data (SIMD) architectures can
execute the same instruction for different groups of operands. For such an
architecture, one of the first proposals was SOLOMON (in 1962, not built),
later superseded by the ILLIAC IV, in 1966, which was the first built computer
to support SIMD [139]. Multiple instruction, single data (MISD) architectures
are not common, but they refer to architectures that can execute multiple
instructions on the same input simultaneously. Finally, multiple instruction,
multiple data (MIMD) architectures can execute multiple instructions, each
workingwith their own data, simultaneously. Modern systemswithmulticore
processors are in this group, although such kind of systems have long existed,
with the IBM System/360 Model 65, from 1965 [68], being one of the first
existing examples.

There is also parallelism at the program level. The architectures that allow
this type of parallelism are a particular case of MIMD: they allow executing
multiple sequential programs simultaneously, each with their own instruc-
tions and data. An evolution is the parallelism at the thread level, which also
allows for a single program to divide the execution in various simultaneous
threads.

MIMD architectures can be further classified depending on how the memory
is interconnected with the CPUs. In a shared memory system, the memory
has a single address space and all CPUs can access the whole memory (they
are also called multiprocessors). Such an early example is again the IBM
System/360 Model 65. This is in contrast with distributed memory systems,
in which each CPU has its own private memory, not accessible by the other
CPUs (in this case, to share results the CPUs have to explicitly copy the data
between them using messages). For example, supercomputers and clusters
of computers fall within this category, although each of the components
could be considered as a shared memory system as well.

Despite the first multiprocessors with shared memory were built in the mid
1960s, it was not until a couple of decades later when they became more
general. However, they could not scale much more due to the contention

8

2.1. Parallel computing, shared memory and NUMA

caused by the multiple processors trying to access the same memory re-
sources. This was solved by giving each CPU or group of CPUs its own local
memory whilst sharing the address space (allowing all CPUs to access the
whole memory), with examples early like the DASH Multiprocessor from
Stanford [90] and the SGI Origin [88]. Themain effect of this was the unequal
access latency to memory depending on the CPU that needed the data and
the physical location of that data, with lower latencies for the local accesses.
This is the reason why these systems are known as non-uniform memory
access (NUMA) systems, in contrast with the uniform memory access (UMA)
systems, as the previous ones became known.

In NUMA systems, the remote accesses to memory can have different laten-
cies as well, making them even more non-uniform. For example, an SGI Altix
UV100 [138] system with 12 CPU sockets can have three different remote
latencies, apart from the local access latency. To deal with these differences
in the latencies, there have been various proposals for programming parallel
systems as explained in section 2.3.

2.1.1. Virtual memory: allowingmultiprogramming and larger main
memory capacity

Before main memory became cheaper and with large capacity, there was a
need to have an auxiliary memory (with more capacity but much slower) to
be able to store the programs and the data [45]. This is without considering
the storage of applications that are not executing and their data. Having
to manage the main and auxiliary memories from within the applications
themselves, moving the instructions and the data from one to the other de-
pending on the needs, lowers the programmability of the systems. Moreover,
running multiple applications with overlapping addresses can cause prob-
lems, and there would be the need to make sure the compiled applications
used different spaces.

A solution to these issues is virtual memory. In broad terms, applications
use addresses that might overlap with other applications’ and there is a
translation mechanism, supported by the operating system, to convert these

9

Chapter 2. Background and related work

addresses (called virtual) to the real addresses (called physical) [45, 46]. In
terms of security, this also has the benefit that untrusted applications cannot
know the physical addresses used by trusted applications, and with later
advances the operating systems can even protect the pages used by each
application or process. Another side effect is that applications can see a
larger memory capacity than truly available.

Early developments already decided to use fixed-size pages among other
options [46]. In this case, the memory is divided in pages of a specific size
(which can depend on the architecture and the operating system) and the
map between the virtual addresses and the physical memory is done in a
page-by-page basis. This reduces the amount of addresses that have to be
translated, needing less storage for the translations compared to translating
every single address.

In the case of NUMA systems, this has the benefit of allowing to move the
pages to a different physical location without changing the address seen by
the application. This also allows for advanced workload scheduling in the
system and to develop optimisations that consider the location of the data
and the CPUs in charge of doing the computations. This is further detailed
in section 2.3 and is one of the characteristics that some proposals studied
in this thesis benefit from.

2.2. Caches and thememory hierarchy

The different rate at which the speeds of processors and memory have
evolved have caused what is known as the memory wall [160]. In broad
terms, the memory in a system is much slower than the processors, causing
a bottleneck. Therefore, by just improving the computation speed of pro-
cessors the performance of the executed code would hit a limit that would
only be improved by making the memory faster. The way this has been
done is by creating a hierarchy for the memory: between the main memory
and the processors, there are some small capacity memories that act as
temporary storage and are faster to access. These memories are known as

10

2.2. Caches and the memory hierarchy

caches and store the data as lines, with multiple contiguous bytes in a single
line (a fixed number that depends on the microarchitecture).

With the idea of caches initially proposed by Wilkes [158] in 1965, the
first commercial computer to include a cache was the IBM System/360
Model 85 [68] in 1968. Later developments of caches, still used to date,
include the following: using multiple levels of cache, splitting data and in-
struction caches, predicting addresses before they are used (prefetching) or
using advanced replacement policies (what lines to remove from the cache
to insert new needed lines) [140].

2.2.1. Cache coherence and ccNUMA

One of the most relevant aspects when using caches is cache coherence [137].
Since caches store copies of the data to have faster accesses, there is a risk
that the data is not the same between multiple caches or between the cache
and the main memory. In some systems this can be solved manually by the
software, but many systems include hardware structures that implement
coherence protocols to make sure that any time amemory address is accessed
it is with the most updated contents. A particular case of coherent systems
are cache-coherent NUMA (ccNUMA) systems. As their name suggests, these
are NUMA systems that include hardware structures to keep coherence. In
the context of this thesis, all NUMA systems considered in the evaluations
are ccNUMA systems.

2.2.2. Hardware prefetching

Prefetching consists in predicting the addresses that are going to be accessed
and bringing the corresponding lines in advance to the cache. Prefetchers
can be implemented in software or directly in hardware, with more or less
complexity in the heuristics used for the prediction. They can also be tailored
to prefetching for data or for instructions. Mittal published a survey [106] in
2016 about prefetching in general, though this section will provide a high

11

Chapter 2. Background and related work

level view of hardware data cache prefetching and give some details on more
modern hardware prefetching techniques as well.

One of the simplest prefetchers is the next-𝑘 line prefetcher. When there is
a miss, or an access to a prefetched line, this prefetcher would bring the 𝑘
lines that come after that. This prefetcher, when used with a small buffer to
prevent polluting the cache with the prefetches before they are used, is the
stream prefetcher [78]. An evolution to this is the stride prefetcher [39]. In
this case, the hardware detects a stride 𝑠 between accesses to lines and, after
access to line 𝐿 it would prefetch lines 𝐿+𝑠, 𝐿+ 2 𝑠, 𝐿+ 3 𝑠, and so on. There
are more extensions to this, like allowing for different strides within a single
memory instruction (PC-correlated prefetchers) or correlating the stride in
one instruction with the previous strides to decide which will be the next
one (delta-correlated prefetchers). Variations on these two prefetchers are
usually implemented in current processor families like Intel’s Xeon [153] or
IBM’s POWER [14].

Some complex applications follow less trivial access patterns and the above
prefetching algorithms might not be adequate for these applications. One
of the proposals that can serve as a base for many other ideas is the global
history buffer (GHB) by Nesbit and Smith [107]. The GHB acts as a circular
queue to keep the lists of accesses needed to feed the prefetching algorithms
to decide the predictions. With this structure, a stride prefetcher can be
implemented but also other prefetchers that use Markov chains [77] or other
advanced techniques.

Modern advanced hardware prefetching

Regarding some recent hardware prefetchers, not included in Mittal’s sur-
vey [106], Ayers et al. [7] show a methodology for classifying access patterns
for prefetching, which allows to use different heuristics depending on the ac-
cess pattern. This idea might be implemented in some commercial systems,
since some hardware vendors have filed patents for similar proposals [64].
Peled, Weiser and Etsion [119] use a neural network for prefetching arbit-
rary access patterns, allowing for detecting more complex patterns. Still

12

2.3. Parallel programming in shared-memory systems

within machine learning, Hiebel, Brown andWang [63] use it to fine-tune
the parameters of existing hardware prefetchers by using the output of
some hardware counters. Ainsworth and Jones [3] propose a programmable
prefetcher, which can be seen as an array of small in-order cores that can
execute arbitrary prefetching algorithms, but at the cost of requiring a spe-
cial compiler or extra work for the programmer to manually build these
algorithms. Often, prefetchers are designed considering just sequential
executions, so Liu, Yu and Huang [95] propose the use of thread-aware
prefetching to reduce contention due to shared information.

Prefetchers for NUMA systems

Disabling all prefetching on NUMA systems can improve performance for
irregular access patterns [99]. Moreover, prefetching can also increase the
contention and hurt performance [93].

Not many works in the literature have tried to provide hardware prefetchers
for NUMA systems. Hardware vendors have registered patents for changing
the aggressiveness [65], throttling the prefetchers [70] or using different
thresholds [96], all of them depending on the type of memory or the source
memory. However, none of these ideas have been properly evaluated. A
recent proposal for a NUMA-aware hardware prefetching scheme [135] is
further discussed in chapter 5.

The importance of considering NUMA and prefetching simultaneously to im-
prove the performance of parallel applications has already been shown [134],
which explained in chapter 4. In general, considering multiple aspects sim-
ultaneously is key to optimise the performance of general-purpose parallel
systems. This is discussed in more detail in section 2.4.

2.3. Parallel programming in shared-memory systems

When using a parallel system, there are multiple computing resources that
can be used simultaneously. One widely used option is multiprogramming,

13

Chapter 2. Background and related work

which consists in executing different applications at the same time. However,
another widely used option are parallel applications, which are applications
that can use the different CPUs in the system to execute different parts of
their code at the same time. Operating systems provide support for executing
parallel applications by using threads, like POSIX Threads [141] in UNIX-like
systems (Linux, BSD, Mac OS...) or Win32 Threads [15] in Windows systems,
which are managed using system calls. Some programming languages and
frameworks provide wrappers or abstraction layers around these system-
provided options to ease code portability between systems.

To write parallel applications using the OS-provided threads or the basic
wrappers from languages, programmers need to take into account all as-
pects from their side: creating and destroying the threads, using locks to
prevent race conditions... To make programming easier, there are applica-
tion program interfaces (API) and libraries like OpenMP [113] and Threading
Building Blocks (TBB) [131] that implement the fork-join model.

In the fork-join model, there is a group of available threads (called a thread
pool), which can also be created an destroyed, the code has some regions
marked as “parallel” (meaning that can be executed by multiple threads)
and annotations on the visibility of the variables (whether they are private,
specific for each thread, or shared, when all threads use the same address for
that variable). Loops can be marked as parallel and their workloads are then
divided among all threads. To prevent race conditions, some code fragments
can be marked as exclusive and only one thread at a time can execute them.

In the case of OpenMP, widely used in HPC for shared-memory program-
ming, the annotations in the code are done using compiler directives. The
preprocessor and the compiler then transform these directives into the
corresponding API calls to then compile it before executing.

An alternative to these models is using a message-passing model such as
MPI [146], widely used in clusters and supercomputers with multiple nodes
and distributed memory, but also in shared-memory systems. In this case,
there are multiple instances of the application running simultaneously, each
doing its work and doing an explicit communication of the results to the

14

2.3. Parallel programming in shared-memory systems

other instances by means of a message-passing API. This model is often
combined with OpenMP or another model to build very large applications.
In the case of NUMA systems, an example of use is having one instance of the
application (called MPI rank or process) per NUMA node, using OpenMP
inside each NUMA node but communicating the results in the different
NUMA nodes with message-passing.

2.3.1. Task-based programming

One of the evolutions of OpenMP is the support for tasks since version 3.0,
driven by projects like OmpSs. Tasks are pieces of sequential or fork-join
parallel code that are executed by a thread or group of threads. With extra
additions like the support for dependencies since version 4.0 of the standard,
tasks can have annotations to indicate the data that is needed to execute
them and the data that they output. There is also support for nested task
parallelism, in which a task can create subtasks and are executed asynchron-
ously as well.

Listing 2.1 shows an example of a task-based parallelisation for a Cholesky
matrix decomposition written in C using compiler directives (#pragma) spe-
cific for OpenMP. The depend clause is used to indicate the data depend-
encies, indicating whether each data block is used as input or output and,
optionally, its size. The sequential code is split into four task types: spotrf to
calculate the Cholesky decomposition of the diagonal blocks, strsm to solve
the linear systems that define the below-the-diagonal blocks, and sgemm and
ssyrk to do matrix multiply and rank S operations to update the rest of the
matrix.

A task-based code with data dependencies can be represented as a directed
acyclic graph (DAG), as shown in the graph accompanying listing 2.1. In this
graph, known as the task dependency graph (TDG), nodes represent tasks
and edges express dependencies between them. This graph is usually built
and maintained by the runtime system to orchestrate the parallel execution.
Thanks to the automation given by the runtime system, instead of having to
explicitly manage the communications between threads and their schedule,

15

Chapter 2. Background and related work

void cholesky(int T, float *A[T][T], int S) {
// each A[i][j] has size S*S
for (int k = 0; k < T; ++k) {

#pragma omp task depend(inout: A[k][k][:S*S])
spotrf(A[k][k]);
for (int i = k + 1; i < T; ++i) {

#pragma omp task depend(in: A[k][k][:S*S]) \
depend(inout: A[k][i][:S*S])

strsm (A[k][k], A[k][i]);
}
for (int i = k + 1; i < T; ++i) {

for (int j = k + 1; j < i; ++j) {
#pragma omp task depend(in: A[k][i][:S*S], A[k][j][:S*S]) \

depend(inout: A[j][i][:S*S])
sgemm(A[k][i], A[k][j], A[j][i]);

}
#pragma omp task depend(in: A[k][i][:S*S]) \

depend(inout: A[i][i][:S*S])
ssyrk(A[k][i], A[i][i]);

}
}

}

19 2021

spotrf
strsm
sgemm
ssyrk

ti
m
e

Listing 2.1.: Task-based Cholesky decomposition using OpenMP 4 annota-
tions and its corresponding TDG when T = 5.

the programmer can just express the dependencies and the runtime system
will be in charge of managing the execution.

Using task-based programming can improve the programmability of the
applications and allow for getting better performance easily. For example,
Rico et al. [133] show how using a task-based approach for amesh refinement
application instead of fork-join or message passing in a shared-memory
system can substantially improve the performance of the execution, even
without advanced scheduling of the tasks.

Task scheduling

A key aspect of task-based programming models is the scheduling of the
tasks. When using tasks, the programmer is relieved of having to manage
how they will be distributed in the system. However, this flexibility can come
at the cost of reducing the execution performance if the scheduling is done
blindly. One of the simplest methods is assigning the tasks of the graph to a
CPU using a first-in, first-out (FIFO) algorithm: once a task can be executed
because all the input dependencies are resolved, it is inserted at the end of

16

2.3. Parallel programming in shared-memory systems

a queue and the runtime system will assign the first task of the queue to any
available CPU to execute.

From this basic scheduling technique, there are various advanced propos-
als derived from it. One simple addition is, instead of using a normal
FIFO queue, to include priorities in the tasks and using a priority queue
when storing the ready tasks. Built upon this, Chronaki et al. [40] propose
the criticality-aware task scheduler (CATS) for heterogeneous systems: the
runtime system decorates the tasks with priorities trying to find the crit-
ical path for the execution in the TDG, and then uses this information to
schedule the tasks in slower or faster CPUs.

2.3.2. Work scheduling and data placement in NUMA systems

In order tomitigate NUMA effects, techniques formigrating threads, memory
pages or both already exist [43, 49, 147]. These techniques consist in moving
computation near to data or vice versa with the goal of reducing memory
access times. One benefit of these approaches is that they are agnostic
of the application. However, this comes at the cost of not exploiting any
application-specific information to predict the accesses to memory. As
such, these proposed OS-level thread or page migration techniques only
take action when the application is already suffering from remote memory
accesses, which can give suboptimal results in many cases. Oppositely,
other approaches transfer the NUMA management responsibility to the
programmer [111, 151], exploiting information at the application source
code level to carry out NUMA-aware scheduling decisions. The main issues
with these approaches are that they may require significant code refactoring
and programmer effort to be effective as well as the reduction in portability.

Offline methodologies can allow programmers to decide how to tackle with
configurations when executing the applications, by means of some per-
formance counters or execution traces. Diener et al. [50] characterise the
communication and memory usage of applications to tune thread and data
placement in systems. Beniamine et al. [13] show a tool to create a visu-
alisation of their behaviour and help decide how to fix the performance

17

Chapter 2. Background and related work

issues. Similarly, Trahay et al. [148] present a tool to understand the evolu-
tion of memory access patterns. Popov et al. [123] and Popov, Jimborean
and Black-Schaffer [125] use the CERE framework to build codelets, which
make the evaluation of configurations faster and allow doing a simultaneous
exploration of multiple thread and page mappings using offline methods.

Radojković et al. [128, 129] evaluate how different thread placement policies
perform, and Durillo et al. [55] evaluate the benefits of using higher or
lower parallelism. Diener et al. published a survey [48] with details on both
data and thread placement and scheduling in NUMA systems. Many of the
evaluated works make use of certain runtime information and hardware
counters and are analysed in section 2.4.

Task scheduling in NUMA systems

Techniques that take advantage of shared memory systems which integrate
different memory devices have been studied for long time. For instance,
Yan et al. [162] present the hierarchical place trees (HPT), in which the
programmer describes the memory hierarchy as a tree and the tasks are
distributed on the tree leaves (where the workers reside) programmatically
on the source code of the application. Similarly, Chatterjee et al. [37] show a
domain-specific language that allows the programmer to include the locality
information using affinity groups for the tasks in a file separated from the
application source code, making the approach more portable.

Drebes et al. [53, 54], as well as Virouleau et al. [152] later, present a schedul-
ing technique that can be seen as a NUMA-aware FIFO algorithm. They
propose scheduling the tasks initially with a FIFO scheme, or some other
technique, but as new tasks become ready, they are scheduled in a CPU that
is in the same NUMA node as most of its data dependencies (so that most
local access will be local). To prevent starvation of CPUs or load imbalance,
they implement a work-stealing approach. This means that a CPU that is
idle can execute a task initially assigned to be executed by a CPU in another
NUMA node when all CPUs from that node are busy.

18

2.3. Parallel programming in shared-memory systems

Since the application can be modelled as a (directed acyclic) graph, graph
algorithms can be applied to the TDG, or to the partial TDG available at a spe-
cific point in time during the execution. One example of algorithm is graph
partitioning, which has been used statically in message-passing applications
since they can be easily represented with an undirected graph [120]. This
has been done mostly in two ways: i) dividing a graph where each vertex
corresponds to a block of data and the edges represent simultaneous use of
data by several processes, and ii) considering a process graph, mainly related
to message-passing programming models, where each vertex corresponds
to one of the processes and the edges represent communications between
them. Our work is the first to dynamically apply graph partitioning to reduce
NUMA effects on shared-memory systems, whereas prior proposals partition
the graph statically or focus on load balancing distributed memory systems.

One recent development to guide load balancing via graph partitioning
techniques in task-based applications is SPAWN by Papin et al. [117]. With
SPAWN, the programmer adds geometric information to the task decom-
position of the problem (which has the shape of a structured mesh, where
edges are not directed, instead of a DAG). This approach assigns the tasks to
the CPUs and other processing elements, like GPUs or accelerators, by using
a Voronoi tessellation of the mesh. During the execution, the processing
elements get an electrical charge value depending on the amount of work
they have and the tessellation is thus updated. Afterwards, they move on the
task mesh by means of Coulomb’s law and the tessellation is updated. This
implies the need to have a correspondence between the problem domain
and a metric space.

There have been previous results in partitioning directed acyclic graphs using
standard partitioners: Tanaka and Tatebe [144] used the multiple-constraint
capabilities of METIS (that do the partition in a multidimensional space) to
schedule workflows, which are typically more coarse-grained than shared-
memory codes. The first use of graph partitioning to directly partition the
TDG and use the partition for scheduling the tasks in a NUMA system was
presented in 2018 [136]. Chapter 6 has a detailed view of this proposal.

19

Chapter 2. Background and related work

2.4. Holistic performance optimisation and
runtime-aware architectures

The end of Dennard scaling, with a halt in the frequency increase, derived in
the integration of more and more computing units. This has been possible
thanks to the reduction of the transistor size as predicted by Moore’s law.
However, since physical limits exist, the size reduction rate is decreasing
and new approaches are needed to obtain better performance from these
systems until new electronic technologies (like alternatives to silicon) or
computer paradigms (like quantum computers) evolve and can be used
successfully.

Using performance metrics and other details available at execution time, as
well as some application-specific information, allow making more informed
decisions when scheduling and executing applications. In order for these
methodologies to be effective, the profiling and metric extraction must have
low overhead. Otherwise, the overhead could hinder the optimisation gains.

Wu and Martonosi [159] consider activating or deactivating prefetchers to
prevent execution interferences inside applications using some performance
counters as a metric. Khan et al. [85] introduce a runtime framework that
combines software and hardware prefetching to maximise the throughput
of multicore processors by sampling some performance metrics. Chasapis
et al. [35] show how the runtime system can be used to model the power dif-
ferences in processor manufacturing and propose a task-based scheduling
algorithm in power-restricted NUMA systems. Jiménez et al. [76] evaluate
some prefetching configurations at runtime to build an adaptive prefetching
algorithm that automatically selects the best prefetcher configuration. Simil-
arly, Ortega et al. [114, 115] propose using a runtime-level library to modify
the hardware configuration knobs (like prefetcher and SMT) at execution
time using performance counters. Broquedis et al. [20] and Dashti et al. [43]
profile and make optimisation decisions in the scheduling as the application
runs.

20

2.4. Holistic performance optimisation and runtime-aware architectures

Other options that use runtime information from the applications, without
using performance counters, allow to speed up the execution of task-based
parallel applications. Caheny et al. [24, 26] propose executing with a NUMA-
aware runtime to reduce the cache coherence traffic. Brumar et al. [21] use
the runtime information about the dependencies to build a memoisation
approach to approximate the computations of executions and reduce the
execution time. Jaulmes et al. [72–74] evaluate the use of runtime systems
in reliability and fault tolerance.

2.4.1. Usingmodels to drive configurations

Performance prediction models use input features to predict the best config-
uration [89, 157]. Some of the most commonly used features include thread
access patterns [47], performance counters [94, 155], static code proper-
ties [157], and page, thread or inter-thread communication and sharing [50].

Wang, Davidson and Soffa [155] use integer programming (optimisation
using integer variables) to predict bandwidth usage and thread allocation
across different degrees of NUMA nodes, while Denoyelle et al. [47] add
thread and page mappings. They build performance prediction models and
conclude that performance counters and thread access patterns provide
similar results as inputs. In both cases, inputs are collected by executing the
application. Liao et al. [94] propose a tuning framework that predicts the
best prefetching based on performance counters. Hiebel, Brown andWang
[63] extend this prediction to target more fine-grained phases of execution
inside applications. Chasapis et al. [36] derive mathematical formulas to
predict power consumption due to manufacturing variability and change
the scheduling to meet power budgets.

Performance counters and sampled executions can be used to buildmachine
learning models that allow to choose combined configurations of NUMA
and prefetchers at execution time for applications not in the model [134].
This also shows that finding a good prefetcher configuration together with
an adequate thread and data placement in NUMA systems cannot be done

21

Chapter 2. Background and related work

independently if the goal is to obtain the best performance. Further details
are given in chapter 4.

2.4.2. Runtime-aware architectures

Runtime-aware architectures, proposed by Valero et al. [150], are a paradigm
that follows the path of taking a holistic approach. In these architectures,
both hardware and software are designed together and are managed thanks
to the use of a runtime system. As shown previously, taking an approach that
considers multiple factors at the same time can provide with more perform-
ance and further optimisation options than considering them separately.
Casas et al. [28] build on this idea and propose designing special hardware
that can be driven by the runtime system and changes the behaviour using
the available information of the system (like using hardware counters or
storing some information used by the runtime system in new hardware
units).

Both Garcia et al. [59] and Papaefstathiou et al. [116] propose using the
runtime information about dependencies to prefetch data blocks. On the
other hand, Manivannan et al. [100, 101] use the dependency and task
information to predict dead blocks that can be substituted in the caches.
Dimić et al. [52] design cache insertion policies managed by the runtime
system based on the use of re-reference intervals. Dimić et al. [51] also
propose a runtime-aware methodology to manage the computation of re-
ductions in the cache hierarchy. Alvarez et al. [4, 5] use compiler information
and the runtime system to manage the coherence of scratchpad memories.
Caheny et al. [25] use runtime information to selectively deactivate cache
coherence. Barredo et al. [12] propose a compaction-restoration unit to
join sparse predicated vector instructions into denser vectors. Later, they
propose a near-memory accelerator to rearrange sparse memory regions
into dense blocks to benefit from locality [11]. Castillo et al. [30] propose
scaling the voltage and frequency of processors using task criticality inform-
ation and storing part of the metadata in hardware structures. Jaulmes et al.
[75] present a runtime-driven configuration for error-correcting codes in

22

2.4. Holistic performance optimisation and runtime-aware architectures

DRAM. As more general solutions, Castillo et al. [29], Etsion et al. [57], Kumar,
Hughes and Nguyen [87] and Tan et al. [142, 143] evaluate the inclusion of
hardware structures to implement part of the runtime system.

Runtime-aware architectures show a great deal of options for the evolution
of computers. They provide flexibility to the programmer and achieve a
performance level that would not be possible otherwise. Within this topic,
the goal of this thesis is to improve the performance of parallel applications
in NUMA systems.

23

Chapter 3.

Experimental methodology

This chapter describes the experimental methodology used in the devel-
opment of this thesis. Part of the work presented here has been evaluated
using real machines. In some cases, a simulation environment is needed
to evaluate the proposals. Various sets of representative applications and
benchmarks have been executed in the experiments. Section 3.1 describes
the real systems used in the experiments of chapters 4 and 6. After this,
section 3.2 gives an overview of the simulated systems used in chapter 5.
Finally, section 3.3 lists the different benchmarks used in this thesis.

3.1. Real NUMA systems

Many of the experiments in this thesis have been executed in real NUMA
systems, comparing the performance of the proposed ideas in the different
systems. We consider four different x86-64 platforms with processors built
by Intel. For the performance and configuration models for NUMA and
prefetchers, presented in chapter 4, we use two systems. The first system
is a four-socket Intel Xeon E5-4650 (Sandy Bridge-EP) with 128GB of RAM,
with the sockets interconnected using Intel QPI (Quick Path Interconnect);
the second system is a dual-socket Intel Xeon Platinum 8168 (Skylake-SP)
with 188GB of RAM and sockets interconnected using Intel UPI (Ultra Path
Interconnect). Both systems run Ubuntu 18.04 with Linux 4.19 LTS kernel.

25

Chapter 3. Experimental methodology

SGI Altix UV100
0

115
230
345
460
575
690

la
te

n
cy

 (
n

s)

Atos Bull bullion S16

Local QPI System Sys. (distant)

Figure 3.1.: Measured memory latencies in milliseconds as we increase the
working set size with LMbench lat_mem_rd.

3.1.1. Large ccNUMA systems

The other experiments executed on real machines are for the scheduling
of task-based applications in NUMA systems, detailed in chapter 6. The
first machine is an SGI Altix UltraViolet 100 with 3 IRU (internal rack units)
interconnected with SGI NUMAlink at 15GB/s. Each IRU contains two IP93
blades with two 8-core Intel Xeon E7-8837 CPU (Westmere-EX) at 2.66GHz
and 24MB of shared last-level cache, and 16 DIMM of 16GB DDR3 RAM.
Sockets in the same blade communicate via Intel QPI. The system runs SUSE
Linux Enterprise Server 11 with Linux 2.6.32 kernel. The second machine is
an Atos Bull bullion S16 with 8 modules, each one with two 18-core Intel
Xeon E7-8890 v3 sockets (Haswell) at 2.50GHz and 45MB of shared last-
level cache. Each socket has 512GB of local RAM and is connected via Intel
QPI to the other socket in the module; modules are interconnected using
the Bull Connecting Box and communicate via the BCS2 (Bull Coherence
Switch 2) [6]. The system runs Red Hat Enterprise Linux 6.5 with Linux 2.6.32
kernel.

We use lat_mem_rd from LMbench [102] to measure the true memory laten-
cies, shown in figure 3.1, and pass that information to the partitioning library.
In the Altix, accesses within the same blade have an increased latency of
17% compared to local memory, while there is a significant latency penalty
of 200% to access data in other IRUs, and close to 240% in the most distant
sockets. In the bullion S16, the access latency via QPI has an extra penalty
of 79% and of 260% for remote accesses via the BCS2.

26

3.2. Simulation of NUMA Systems

socket L3

L2

L1
I

L1
D

core

local
remote

system
bus

DRAM socket 0 DRAM socket 1

socket L3

L2

L1
I

L1
D

core

socket 0 socket 1

L2

L1
I

L1
D

core

L2

L1
I

L1
D

core

L2

L1
I

L1
D

core

L2

L1
I

L1
D

core

L2

L1
I

L1
D

core

L2

L1
I

L1
D

core

Figure 3.2.: High-level diagram of the simulated gem5 system.

3.2. Simulation of NUMA Systems

For the design and evaluation of the NUMA-aware prefetcher presented
in chapter 5, we have executed simulations using the gem5 simulator, ver-
sion v20.1.0.2 [97] and the classic memory model. The gem5 simulator is a
cycle-accurate simulator that allows simulating a full system architecture at
different levels of detail. It provides the infrastructure to simulate complete
systems with real instruction set architectures (ISA). The full-system simu-
lation includes a five-stage architecture, options to run multicore systems,
with a cache hierarchy and various memory devices.

We have extended gem5 to be able to account for the different latencies in
NUMA systems. We model and simulate the NUMA behaviour by adding
some extra delays at the system bus crossbar, which interconnects the last-
level cache with the memory controllers that manage the main memory
space. These additional delays depend on the requesting port and the
destination physical address: if the requesting port comes from a CPU that
is not local to the destination address, the access will take longer. This allows
for a simple but effective modelling of a real NUMA system. A high level
diagram of this implementation is shown in figure 3.2.

27

Chapter 3. Experimental methodology

remote local

64 K256
 K 4 M

array size (B)

0
20
40
60
80

100
120
140
160

la
te

nc
y

(n
s)

L1 L2 L3

mem

(a) Gem5 (4 cores/socket)

32 K 1 M 33 M

array size (B)

0
20
40
60
80

100
120
140
160

la
te

nc
y

(n
s)

L1 L2 L3

mem

(b) Intel Skylake (24 cores/socket)

Figure 3.3.: Latencies of the memory hierarchy in a simulated environment
and a real system

Latencies of the different cache levels up to main memory in a dual-socket gem5 simulated
environment and a real Intel Xeon Platinum 8160 (Skylake) system. Latencies measured
using lat_mem_rd from LMbench.

If the extra latency that is added for remote accesses matches with that of a
real system, our implementation shows a realistic behaviour. For example,
figure 3.3 shows the latency measurements with respect to the array size
according to lat_mem_rd from LMbench [102] for both gem5 (with an extra
latency of 60ns for remote accesses) and a real dual-socket system with Intel
Xeon Platinum from the Skylake family (where remote accesses cost 60ns
more than local accesses). The accesses in the simulated system are more
stable and show less noise compared to the real system, and the sizes of the
caches (shown with the array size and the jumps in latency) are different
to accommodate for the different number of cores, but the behaviours are
comparable.

The OS inside the simulated environment sees the NUMA characteristics
thanks to the devicetree description, written following the NUMA binding
description [108]. The crossbar does the delays using the same addresses as
defined in the /memory nodes in the devicetree file. The common character-
istics for the simulated systems, using 4 sockets, are detailed in table 3.1.

28

3.3. Workloads

Table 3.1.: Common characteristics of the simulated systems.
System details

Sockets 4 quad-core identical sockets
Page size 4KiB
Cache line size 64B
Latency to memory 80ns (local), 160ns (near socket), 240ns (far sockets)

Socket details

Cores 4 single-threaded, out-of-order cores
L3 shared cache 8 banks, 512KiB/bank, 16-way, 1port/bank

Core details

L1 inst. cache 32KiB, 2-way, single port
L1 data cache 64KiB, 2-way, single port
L2 cache 256KiB, 8-way, single port
Load-store queues 48 load entries, 48 store entries
Instruction queue 92 entries
Reorder buffer 192 entries
Branch predictor Tournament predictor

Prior works have simulated NUMA systems using execution traces. In order
to run these simulations, detailed traces that contain different hardware
counters and machine status information are stored and then parsed with a
different software that makes some modifications depending on the expec-
ted behaviour of the target system. For example, Daoudi et al. [42] develop
sOMP, a simulator that uses traces obtained through the OMPT [56] interface
to simulate task-based OpenMP applications with NUMA effects. However,
they are not modelling the level 1 and 2 caches. Another trace-based altern-
ative is TaskSim [132], which has been used to model current and future
systems at various levels of detail [60, 62] (from cache to inter-node com-
munication). It could potentially be used to model systems like the ones we
use, but we would not get the level of detail that we are looking for.

3.3. Workloads

In this thesis we have evaluated our proposals with different benchmarks and
applications, programmed using both fork-join and task-based programming

29

Chapter 3. Experimental methodology

models. This section gives the details of the various benchmarks and the
reasoning behind the decision of using them.

3.3.1. Fork-join parallel applications

As presented in section 2.3, one of the main approaches for programming
parallel shared-memory systems is the fork-join programming model, with
OpenMP being one of the most used options nowadays. Many applications
and benchmarks for HPC and scientific computing use this programming
model and many of them suffer from NUMA effects. For this reason, we
do the performance evaluation of the interactions between prefetchers and
thread and page mappings in NUMA systems (further detailed in chapter 4),
and also the NUMA-aware prefetchers (explained in chapter 5), using fork-
join applications.

NAS Parallel Benchmarks

One widely used benchmark suite is the NAS Parallel Benchmarks suite [8, 9].
Most of these benchmarks are derived from computational fluid dynamics
applications. In the case of BT, LU and SP, they are pseudo-applications that
represent a system derived from the 3D Navier-Stokes equations.

The Block tri-diagonal solver (BT) is a pseudo-application that solves
multiple independent block-tridiagonal systems using blocks of size 5 × 5.

The Lower-upper Gauss-Seidel solver (LU) is another pseudo-application
that solves a sparse linear system by splitting it into block lower-upper
triangular systems. It uses the symmetric successive over-relaxation method
(SSOR) to get the solution.

The Scalar penta-diagonal solver (SP) is the third pseudo-application,
in this case it solves a system with scalar pentadiagonal bands of linear
equations.

This suite also has various kernels that are widely used in computational
fluid dynamics applications.

30

3.3. Workloads

Conjugate gradient (CG) is a kernel to find the smallest eigenvalue of sparse
positive-definite matrices.

The discrete 3D fast Fourier transform (FT) performs three one-dimensional
fast Fourier transforms, one per spatial dimension, and stresses one-to-one
communications.

Multi-grid (MG) is a memory-intensive kernel that is applied to a sequence
of meshes to compute the solution of the 3D scalar Poisson equation.

There are other synthetic benchmarks in the suite, like an integer sort (IS),
which does not use any floating point arithmetic, and an embarrassingly
parallel computation (EP). We use all these benchmarks for both the mod-
elling of interactions between prefetchers and thread and page mappings in
chapter 4 and the performance evaluation of NUMA-aware prefetching in
chapter 5.

For the interactions between prefetchers and thread and page mappings,
instead of the official Fortran implementation, we use a C implementation [9,
124] based on version 3.0 of the benchmarks.

Rodinia benchmarks

In our evaluation, we include some benchmarks from Rodinia [38], which
gathers benchmarks that have versions for heterogeneous computers. In our
case, we just use the OpenMP versions for general-purpose architectures.

Breadth-first search (BFS) is a benchmark that implements a parallel ver-
sion of the classic breadth-first graph traversal algorithm.

CFD solver (CFD) is solver for the 3D Euler equations for compressible
flows, in a finite volume and using an unstructured grid.

Hotspot and Hotspot 3D are used to estimate processor temperature by
means of the floor plan and simulated power measurements. The 3D version
is for 3D integrated circuits.

31

Chapter 3. Experimental methodology

K-means is a clustering algorithm used to find 𝑘 clusters. It uses the mean
values as centroids for the clusters, updating the centroids at each iteration.
The algorithm is iterative and finishes once no point changes of cluster.

LU decomposition (LUD) is another version of the LU decomposition of a
matrix. This is implemented for dense linear algebra, in contrast with the
version from the NAS Parallel Benchmarks.

K-nearest neighbours (NN) finds the 𝑘 neighbours that are nearest to a given
point, using the surface of a sphere and latitude and longitude for calculating
the Euclidean distances. The data is represented as an unstructured set.

Needleman-Wunsch (NW) is a non-linear method for finding global optim-
ums, using dynamic programming, of DNA sequence alignments.

Pathfinder finds the path with the smallest weight from the bottom row
to the top in a 2D grid, where each step, always moving upwards either
diagonally or vertically, has an associated weight.

Streamcluster is a clustering algorithm that, for a stream of points, uses
the median to find the centre of the cluster that minimises the distance. In
comparison with K-means, the number of clusters is given by a range and is
not a single number, so it can create a new centre (or cluster) if it minimises
the distance.

Other benchmarks

We also include applications from other sources, including the CORAL-2
Benchmarks1 suite, provided by the Advanced Simulation and Computing
programme in the Lawrence Livermore National Laboratory (LLNL).

Black-Scholes, from the PARSEC benchmark suite [16, 17] executes in
parallel various instances of a solver for the Black-Scholes partial differential
equation. This equation models how the price of an asset updates the value
of an option.

1https://asc.llnl.gov/coral-2-benchmarks

32

https://asc.llnl.gov/coral-2-benchmarks

3.3. Workloads

CLOMP [19] is from CORAL-2 and is the C version of the Livermore OpenMP
benchmark. It measures OpenMP and threading overheads. Its behaviour
tries to approximate typical scientific workloads with strong scaling.

HACCmk is a standalone code from Argonne National Laboratory that serves
as a strong-scaling benchmark for the short-force evaluation kernel of HACC
from CORAL-2. The original HACC application simulates how structure can
be formed in fluids without collision, under the influence of gravity, in an
universe that is expanding.

LULESH [66, 80], a standalone benchmark from LLNL, models an hydro-
dynamics application and approximates the equations using a mesh to
divide the space, using an unstructured hex mesh.

Quicksilver, also from CORAL-2, is a proxy application for the Mercury
application from LLNL that solves a simplifiedMonte Carlo particle transport
problem, where particles are transported by different kinds of radiations.

Evaluated inputs

In order to properly evaluate the NUMA effects, the selected inputs need to
be large enough that they do not fit in the cache and the latencies due to
NUMA are not hidden by the cache capacity. Table 3.2 includes a summary
of the inputs used in the fork-join parallel applications.

Accelerating the evaluation with codelets

As executing the full applications for the complete set of NUMA+Prefetcher
configurations is impractical, in chapter 4 we use a technique called codelet
execution [109, 124] instead. Codelet execution extracts hot regions from the
application as small, representative codelets and uses them to characterise
the application’s performance. Codelets are on average 66× faster [125] to
evaluate than running the full application.

Codelet execution is faster because it only executes a few instances of each
region (instead of hundreds during the original run). To ensure that the

33

Chapter 3. Experimental methodology

Table 3.2.: Summary of inputs for fork-join parallel applications.
benchmark input description

NAS Parallel Benchmarks input class A (limited iterations)
Ro
di
ni
a
be
nc
hm

ar
ks

BFS graph of one million nodes with degrees between
3 and 6 (graph1MW_6.txt)

CFD missile.domn.0.2M
Hotspot 1024 × 1024 grid, 2 iterations

Hotspot 3D 1024 × 1024 grid per layer, 1 layer/thread, 100
iterations

k-means KDD Cup data set (494 020 points, 35 dimensions)
into 5 centres

LUD 8000 × 8000matrix
NN 5 nearest neighbours for default input database,

latitude 30°, longitude 90°
NW 2048 × 2048 size, penalty 10

Pathfinder width of 100 000 elements, 100 steps
Streamcluster 1 ⋅ 106 points of 128 dimensions, handled in

chunks of size 2 ⋅ 105, clustered into 10 to 20
centres, using 5000 intermediate centres

CO
RA

L-
2 CLOMP 32 threads, 16 parts, 400 zones per part, 32 bytes

per zone
Quicksilver Problem #2 for the CORAL-2 benchmarks, 1331

mesh elements per node (Coral2_P2_1.inp)

Black-Scholes 10million inputs (in_10M.txt)

HACCmk default strong-scaling input

LULESH cube mesh of length 40

codelet executionmatches the behaviour of the regionwithin the application,
codelets implement a short warm-up phase that configures the system state
(e.g., caches) to match the application’s native execution.

Codelets have been shown to be accurate enough for bothmicro-architectural
evaluation [110] and NUMA configuration studies [125]. This is because
parallel regions typically exhibit similar behaviour [148]. For our fork-join
applications, we extract codelets for instances of each important OpenMP
parallel region. This results in 57 codelets, which take approximately 2 days
to execute across all configurations, but would take over 4 months with full
executions.

The list of codelets for each application is detailed in table 3.3.

34

3.3. Workloads

Table 3.3.: List of codelets for each fork-join parallel application.
benchmark list of codelets

BFS BFS 1, BFS 2
Black-Scholes Black-Scholes

CFD Euler 3D flux, Euler 3D time step
CLOMP CLOMP do barrier, CLOMP mod 1, CLOMP mod 2.1, CLOMP mod 2.2,

CLOMP mod 3.1, CLOMP mod 3.2, CLOMP mod 3.3, CLOMP mod 4.1,
CLOMP mod 4.2, CLOMP mod 4.3, CLOMP mod 4.4

HACCmk HACCmk
Hotspot Hotspot

Hotspot 3D 3D
K-means K-means

LUD LUD
LULESH LULESH cont, LULESH energy, LULESH eval, LULESH force,

LULESH kinematics, LULESH press 1, LULESH press 2,
LULESH stress

NN NN
NPB BT BT x_solve, BT y_solve, BT z_solve
NPB CG CG iter, CG residual
NPB FT FT step 1, FT step 2, FT step 3
NPB IS IS main, IS rank
NPB LU LU rhs, LU ssor
NPB MG MG ps inversion, MG residual
NPB SP SP rhs, SP x_solve, SP y_solve, SP z_solve

NW Needle 1, Needle 2
Pathfinder Pathfinder
Quicksilver QuickSilver

Streamcluster Streamcluster gains 1, Streamcluster gains 2

3.3.2. Task-based parallel applications

As mentioned earlier in section 2.3.1, task-based parallel programming
provides high flexibility when programming and allows for achieving a higher
performance. One key aspect is the possibility of seeing the application
as a directed acyclic graph: it allows to apply graph algorithms on it to do
optimisations at execution time, as we study in chapter 6.

The task-based Conjugate gradient (CG) is an iterative method for solving
linear symmetric positive-definite systems of equations, represented with
sparse matrices. It computes the solution by building a basis of orthogonal
vectors in each iteration. This benchmark is not the one from the NAS

35

Chapter 3. Experimental methodology

Parallel Benchmarks suite presented in the previous section: we use a sparse
matrix version with the task decomposition described by Jaulmes et al. [72].

Gauss-Seidel is an algorithm solving the stationary heat diffusion prob-
lem using the iterative Gauss-Seidel method with a 4-element stencil (top,
bottom, left, right). In this algorithm, the top and left elements used for
calculating the current block are from the same iteration, whilst the right
and bottom elements are from the previous iteration. The graph follows a
wavefront shape and various iterations can be run simultaneously, as long
as the dependencies between blocks of different iterations are preserved.
The implementation is based on a task decomposition given by tiles with the
tile contents contiguous in memory (instead of the rows) and halos between
the tiles of the matrix to communicate the borders of the tiles. The use of
the halos for communicating improves the data locality in the cache and
reduces the amount of data that might need to be communicated between
NUMA nodes.

The Integral histogram computes a cumulative histogram for each pixel
of an image, using a cross-weave scan as described by Porikli [126]. This
algorithm is used as a kernel for some image recognition methodologies.
In our case, the calculations of the histograms of different images are over-
lapped to increase parallelism.

Jacobi solves the stationary heat diffusion problem using the iterative Jacobi
method with an implementation derived from the Charm++ project [34, 79].
This implementation uses a 5-element stencil (top, bottom, left, right, centre)
and a task decomposition given by blocks of rows. The double-buffer nature
of Jacobi gives an embarrassingly parallel algorithm inside every iteration
with a very symmetric TDG, hence it becomes simple to partition in contrast
to the Gauss-Seidel code that solves the same problem.

NStream is a synthetic benchmark to measure memory bandwidth based
on STREAM [103]. This task-based parallel implementation works with 𝑁
independent arrays (a multiple of the number of threads, usually). Its task
graph is made of 𝑁 isomorphic connected components, so partitioning it
should be as easy as assigning every component to one NUMA domain.

36

3.3. Workloads

The QR factorisation of a matrix 𝐴 is a product 𝐴 = 𝑄𝑅 where 𝑄 is ortho-
gonal and 𝑅 is upper triangular. This kind of factorisation can be applied to
any kind of matrix, it is not required that the matrix is square or invertible.
Another good property of this factorisation is that, since 𝑄 is orthogonal, its
matrix inverse is obtained just by transposing it. We use a task-based imple-
mentation of the tiled algorithm, using LAPACK as described by Buttari et al.
[23], which saves the 𝑅 matrix and the Householder reflectors (to compute
𝑄) in-place.

Red-Black is the third algorithm for solving the stationary heat diffusion
problem. The data decomposition is exactly the same as for Gauss-Seidel,
but the task graph is more similar to Jacobi; the red sub-iterations are fully
parallel (by tiles) and so are the black sub-iterations. This happens because
at each iteration, the red tiles depend on the black tiles of the previous
iteration and, similarly, the black tiles depend on the red tiles of the current
iteration.

Symmetric matrix inversion (SMI) is used to compute the inverse of a
symmetric matrix in a fast way by using a Cholesky factorisation. One use-
case for this algorithm is when dealing with some variance matrices. We use
the tiled task decomposition of the dense linear algebra version as described
by al-Omairy et al. [111], using LAPACK.

Evaluated inputs

Table 3.4 includes a summary of the inputs used in the task-based applica-
tions in the two different systems. The inputs are chosen to stress the NUMA
behaviour of the system, by using large data sets that do not fit in the caches,
and a large number of tasks to stress the parallelism and communications.

37

Chapter 3. Experimental methodology

Table 3.4.: Summary of inputs for task-based parallel applications
benchmark input in SGI Altix UV100 input in Atos Bull bullion S

Conjugate gradient matrix Hook_1498.mtx,
divided into 45 blocks

synthetic Poisson 3D matrix,
7-point stencil,
480 × 480 × 480

Gauss-Seidel 6144 × 6144-element stencil
divided into blocks of
512 × 512 elements

30720 × 30720-element
stencil divided into blocks of
1024 × 1024 elements

Integral histogram 10 images of 12288 × 12288
elements divided into blocks
of 512× 512 elements, sorted
into 32 bins

10 images of 32768 × 32768
elements divided into blocks
of 512× 512 elements, sorted
into 32 bins

Jacobi 15000 × 15000-element
matrix divided into 150
blocks of columns

50000 × 50000-element
matrix divided into 500
blocks of columns

NStream arrays with
𝑁 = 768 ⋅ 1024 ⋅ 1024

arrays with
𝑁 = 9216 ⋅ 1024 ⋅ 1024

QR factorisation 23040 × 23040matrix
divided into blocks of size
1280 × 1280

53760 × 53760matrix
divided into blocks of size
1280 × 1280

Red-Black 6144 × 6144-element stencil
divided into blocks of
512 × 512 elements

30720 × 30720-element
stencil divided into blocks of
1024 × 1024 elements

Symmetric matrix
inversion

36000 × 36000matrix
divided into blocks of size
1800 × 1800

53760 × 53760matrix
divided into blocks of size
1280 × 1280

38

Chapter 4.

Performance and configurationmodels
for interactions between NUMA and
hardware prefetchers

This chapter presents the performance benefits of optimising both NUMA
scheduling (threads and data placement) and prefetcher configuration at
runtime through careful modelling and online profiling. Optimising NUMA
scheduling and prefetcher configurations together leads to a large and com-
plex design space that has previously been impractical to explore at runtime.
To address the large design space, we propose a prediction model that re-
duces the amount of input information needed and the complexity of the
prediction required. We do so by selecting a subset of performance counters
and application configurations that provide the richest profile information
as inputs, and by limiting the output predictions to a subset of configurations
that cover most of the performance. Our model is robust and can choose
near-optimal NUMA+Prefetcher configurations for applications from only
two profile runs. We further demonstrate how to profile online with low
overhead.

The contributions in this chapter are:

• Demonstrating that the co-optimisation of NUMA and prefetcher
configurations can lead to a 1.77× average speedup over a locality-
optimised NUMA baseline with all prefetchers enabled (section 4.3),

39

Chapter 4. Performance and configuration models

but that it requires the impractical evaluation of 288 distinct configur-
ations per parallel region (section 4.2).

• The design of a prediction model (section 4.4) that requires the evalu-
ation of only 2 distinct configurations and achieves an average of 1.68×
(95% of the optimal performance) speedup over a locality-optimised
NUMA baseline with all prefetchers enabled (section 4.5).

• A methodology for applying our model at runtime that handles inter-
region configuration conflicts (section 4.6).

4.1. The relevance of NUMA and prefetcher configurations
in performance

For both NUMA and prefetching, appropriately configuring the system can
lead to significant performance gains. NUMA optimisations have been ex-
plored extensively [43, 49, 50, 104, 147] and focus on adjusting the thread
and data placement across the nodes to minimise latency and maximise
bandwidth. These optimisations are typically done via the operating sys-
tem’s memory manager and thread scheduler. Configuring prefetchers via
hardware registers [76, 85] improves performance by adjusting where data is
prefetched and how aggressively it is fetched to match the application and
system cache hierarchy.

However, previous prefetcher studies have assumed fixed NUMA configura-
tions, and, likewise, previous NUMA studies have assumed fixed prefetcher
configurations. This leaves open the question as to what benefits can be
achieved by co-optimising for both NUMA (thread and data placement) and
prefetchers.

To appreciate the complexity of optimising for both aspects simultaneously,
consider figure 4.1, which shows how part of the BT benchmark [9] is af-
fected by prefetcher configurations (16 squares) depending on the NUMA
configuration (left: all data in one node, right: optimised for locality). As the
figure shows, while the middle row of prefetcher configurations improves

40

4.1. The relevance of NUMA and prefetcher configurations in performance

00 01 11 10
L1 prefetchers

00

01

11

10
L2

 p
re

fe
tc

he
rs

N
or

m
al

iz
ed

 cy
cl

es

1.00

1.03

1.05

1.08

1.10

(a) All data in one node

00 01 11 10
L1 prefetchers

00

01

11

10

L2
 p

re
fe

tc
he

rs

N
or

m
al

iz
ed

 cy
cl

es

1.00

1.10

1.20

1.30

1.40

(b) Optimised for locality

Figure 4.1.: Normalised cycles (lighter is faster) for BT using two NUMA
configurations.

For the x_solve codelet from BT, these two heatmaps of normalised cycles show opposite
effects of prefetchers depending on NUMA configuration, using 32 contiguous threads. There
are 16 prefetcher configurations, set up with four bits (0 enabled, 1 disabled).

performance with the left NUMA configuration, the same prefetcher con-
figurations hurt performance for the right NUMA configuration. The full
complexity of this problem is shown in figure 4.2: 16 prefetcher configura-
tions for each of 4 page mappings across 5 combinations of thread or node
parallelism, and mapping for 57 parallel benchmark regions. It is clear from
this figure that, while the benchmarks exhibit diverse behaviours across
the NUMA+Prefetcher configurations, there are clear patterns that we can
leverage for efficient optimisation.

To address this large search space we develop models that can choose near-
optimal NUMA+Prefetcher configurations for applications. Our models
use input profiles (performance counter values) collected by executing
parallel regions from the application under a few specific NUMA+Prefetcher
configurations. This provides valuable information about the applications
(as they are profiled on multiple NUMA+Prefetcher configurations) at low
cost (as only a few configurations need to be profiled). We demonstrate
through cross-validation that the resulting models are capable of accurately
predicting good NUMA+Prefetcher configurations for unseen applications,
and we show how they can be gathered online at runtime.

41

Chapter 4. Performance and configuration models

rem
ote

loc
ali

ty
sin

gle

inter
lea

ve

bal
an

ce

loc
ali

ty
sin

gle

inter
lea

ve

bal
an

ce

loc
ali

ty
sin

gle

inter
lea

ve

bal
an

ce

loc
ali

ty
sin

gle

inter
lea

ve

bal
an

ce
K-means

FT step 3

BT z_solve

BT x_solve

BT y_solve

MG residual

BT rhs

SP rhs

LULESH force

LULESH cont.

IS rank

CG iter

Hotspot

Streamcluster ga 2

LU rhs

FT step 1

FT step 2

3D
LUD

Kernel CPU-2

Kernel CPU

Pathfinder

LULESH kinem.

LULESH stress

Black-Scholes

HACCmk

IS main

Needle 2

LU ssor

BFS 1

BFS 2

QuickSilver

Euler 3D flux

NN
Euler 3D time step

Streamcluster ga 1

SP z_solve

SP y_solve

SP x_solve

CG residual

CLOMP do barrier

LULESH press. 1

LULESH eval

LULESH press. 2

LULESH energy

Needle 1

MG ps inversion

CLOMP mod 4.2

CLOMP mod 3.1

CLOMP mod 4.1

CLOMP mod 1

CLOMP mod 3.3

CLOMP mod 4.4

CLOMP mod 3.2

CLOMP mod 2.1

CLOMP mod 2.2

CLOMP mod 4.3

loc
ali

ty

Thread mapping

Page mapping

8 th.
1 node

16 threads
2 nod. scatter

16 threads
2 nod. contig.

32 threads
4 nod. scatter

32 threads
4 nod. contig.

Figure 4.2.: Normalised speedups (lighter is faster) of parallel regions show-
ing complex sensitivities to NUMA+Prefetcher configurations
on a Sandy Bridge system.

The regions are clustered according to similar speedup behaviours. Each vertical line on a
NUMA configuration (thread and page mapping) is 1 of 16 prefetcher configurations.

42

4.2. Search space

4.2. Search space

Themain challenge in optimising applications for both NUMA and prefetch-
ing carrying out an efficient exploration of the large number of configurations
in order to build the models. In this work we consider 18 (or 20, depend-
ing on the system) state-of-the-art NUMA optimisations for thread- and
page-placement together with the 16 hardware prefetcher configurations
available on our system. This leads to a search space of 288 (or 320) NUMA+
Prefetcher (thread+page+prefetching) configurations, which would take over
4 months of execution time to explore directly for our benchmarks. For this
reason, we use codelets as presented in section 3.3.1, in order to obtain the
performance metrics needed to build the models.

4.2.1. NUMA configurations

We focus on standard fork-join parallel HPC applications, e.g., OpenMP
paralleled for-loops, as this results in predictable thread assignments. The
applications are those presented in section 3.3.1The threadmapping defines
how the application’s execution threads are assigned to the hardware cores
available in the system1. Similarly, the page mapping defines how the
application’s memory pages are assigned to the processor nodes’ DRAM.

Except in the case of a single-node system, where all NUMA configurations
are equivalent, the different combinations of thread- and page-mapping
can give very different results in terms of data locality, performance, and
energy consumption for each application.

Thread Mapping

We consider three thread mapping parameters: degree of parallelism (num-
ber of threads used), NUMA degree (number of NUMA nodes used), and
assignment algorithm (how threads are assigned to cores on the nodes).
We consider two thread assignments: contiguous and scattered. Both evenly
1We ignore hardware multithreading in our policies and experiments for simplicity.

43

Chapter 4. Performance and configuration models

distribute the threads across the nodes. However, scattered uses round-
robin to place the threads (e.g., if using 4 threads and 2 nodes, threads 1
and 3 are mapped to the first node and threads 2 and 4 to the second) while
contiguous places them iteratively (e.g., if using 4 threads and 2 nodes,
threads 1 and 2 are mapped to the first node and threads 3 and 4 to the
second). For the configurations where we use only a subset of the cores,
the remainder are idle. We pin the threads to the specific cores to keep the
mappings stable throughout the execution.

Page Mapping

We consider 7 different page mappings, some of which require detailed
profiler/programmer information and others which can be applied auto-
matically by the system.

The automatic policies include: first touch (each page is allocated on the
node that first accesses it), single node (all pages are allocated on one single
node), and interleaved (pages are distributed in a round-robin fashion
among the available nodes). We additionally consider two additional policies
when all threads are in a single node: local (pages are allocated on the
same node), and remote (pages are allocated on a different node from the
execution). Remote mapping is typically a bad configuration because it
increases access latency and reduces bandwidth, but is useful for exposing
NUMA sensitivity. It is important to note that even though the first touch
policy does not require any profiling or support from the programmer, the
result of this mapping is highly-dependent on the application code, the
thread mapping, and the scheduling algorithm.

The mappings that require detailed profiler/programmer support include:
locality (each page is allocated in the node of the cores that will access the
page the most), and balance (pages are spread across the nodes in such a
way that the total amount of memory accesses to each node is approximately
the same). These mappings require profiling the application’s access pattern
and implicitly assume that the patterns are reasonably stable across different

44

4.3. Characterisation

runs and inputs, which has been shown to be a fair assumption for these
benchmarks [124, 148].

4.2.2. Prefetcher configurations

The hardware prefetcher configurations provided by Intel2 for post-Nehalem
microarchitectures provide 4 bits (16 combinations) to control four prefetch-
ers [41, 63, 94]:

• DCU IP-correlated prefetcher: A stride prefetcher that brings data
from the L2 into the L1 (data cache unit, or DCU) by correlating
prefetches with the instruction pointer (IP, or program counter).

• DCU prefetcher: A next-line L1 cache prefetcher.

• L2 adjacent cache line prefetcher: For every access it brings the
previous or next line (64B) that completes a memory block aligned to
128B.

• L2 streamer prefetcher: Detects data streams and fetches the next
predicted lines to the L2 cache. Similar to the DCU IP-correlated
prefetcher, but not using the instruction pointer.

4.3. Characterisation

To understand how we can simplify the search space, we first explore all
NUMA+Prefetcher configurations via codelet execution. This brute-force
exploration allows us to identify common behaviours across codes and
configurations, which we can then use to build efficient models for choosing
the best configuration.

2See https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-
control-on-some-intel-processors

45

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

Chapter 4. Performance and configuration models

4.3.1. Experimental setup

For our experiments we use two machines: a four-node Intel Sandy Bridge
EP E5-4650 with 128GB of RAM and a dual-node Intel Skylake Platinum
8168 with 188GB of RAM.

All speedups presented in this chapter are against an execution using all
cores (32 for the Sandy Bridge and 48 for the Skylake), scattered among all
nodes, and a locality-optimised page mapping with all prefetchers on. This is
an optimised configuration which tries to increase the bandwidth (scattered
thread mapping and locality page mapping) and reduce the latency (locality
page mapping and prefetcher activation) over a simple first touch policy.

4.3.2. Performance opportunities

We first look at the overall speedups that can be obtained from optimising
NUMA and/or prefetching in table 4.1. NUMA optimisations alone (1.66×
on average between Sandy Bridge and Skylake) are more significant than
prefetcher optimisations alone (1.19× on average). The reduced NUMA
sensitivity on Skylake is likely due to its faster interconnection links between
nodes. Moreover, Sandy Bridge has more nodes, further increasing the sever-
ity of NUMA effects. Interestingly, the benefit from optimising prefetchers is
the same for both systems.

A greedy optimisation for NUMA and prefetching (e.g., choosing one first,
then picking the best choice for the second) delivers still better performance,
but the best order depends on the system. Exploring all combinations of
NUMA and prefetcher configurations (i.e., a coupled optimisation) delivers
slightly higher performance of 1.77× vs. 1.72× for the greedy NUMA-first
optimisation (on average). However, the majority of this benefit comes
from one benchmark, K-means, which is able to find a particularly efficient
configuration with the coupled optimisation.

Figure 4.2 shows the per-region (rows) speedups (lighter is faster), across
all NUMA and prefetcher configurations (columns), for Sandy Bridge. The

46

4.3. Characterisation

Table 4.1.: Comparison of speedups between different optimisation searches
against an optimised default (pages: locality, threads: scatter,
prefetchers: on).

Speedup (geometric mean)
Optimisation Sandy Bridge Skylake Average

Only NUMA 1.73 1.59 1.66
Only prefetchers 1.19 1.19 1.19

First NUMA, then prefetchers 1.78 1.66 1.72
First prefetchers, then NUMA 1.75 1.67 1.71

Coupled search 1.82 1.73 1.77

results for Skylake follow a very similar structure. On the left side, the regions
have been clustered usingWard’s method on the normalised speedup vectors,
showing that many regions share very similar speedup patterns across the
configurations.

This representation allows us to see which regions benefit from similar
NUMA+Prefetcher optimisations. For instance, BT (x_solve, y_solve and
z_solve) has very similar behaviour to MG residual, as they have similar
access patterns (when the pages are appropriately mapped). As a result,
they are clustered together. Similarly, all CLOMP regions, except the barrier,
show similar sensitivities and are grouped together (figure 4.2, top 10 rows).

Our clustering shows that many benchmarks share common behaviours,
suggesting that clustering behaviours or optimisations may be effective.

4.3.3. NUMA+Prefetcher configuration diversity

Figure 4.2 showed that there is significant similarity in region behaviour
across the NUMA+Prefetcher configuration space. In figure 4.3 we explore
the similarity of optimised NUMA+Prefetcher configurations across the
parallel regions. This figure shows the speedup we can achieve with a limited
number of configurations compared to the full exploration. Here we see that,
by only allowing the subset of the 11 best NUMA+Prefetcher configurations,
we can achieve over 98% of the maximum speedup, and when considering
the best 13, we can achieve 99%. These results come about for two reasons:

47

Chapter 4. Performance and configuration models

Speedup Full exploration

1 2 3 4 5 6 7 8 9 10 11 12 13
Num. different configs.

1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

(a) Intel Sandy Bridge

1 2 3 4 5 6 7 8 9 10 11 12 13
Num. different configs.

1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

(b) Intel Skylake

Figure 4.3.: Maximum attainable speedup with respect to the number of
configurations.

the first is that regions have similar behaviours, as seen previously, and the
second is that in many cases different NUMA+Prefetcher configurations give
essentially the same performance benefit.

4.3.4. Takeaway

Our analysis shows that many benchmarks behave in similar ways and that
we can achieve nearly all of the speedup potential with a very small set
of NUMA+Prefetcher configurations. This suggests that it will be possible
to build a model that can recognise application behaviours (since there
is a limited number of them) and predict very good NUMA+Prefetcher
configurations (as only a few are needed to cover most of the benefit).

4.4. Predictionmodel

A brute-force approach to optimising NUMA+Prefetcher configurations
would take as input the performance of all possible configurations and
choose the best one as output. This guarantees the best performance but
comes with the very high overhead of evaluating all configurations. To
address this overhead, we train a prediction model that takes far fewer
configurations as input but can still choose among a large enough subset

48

4.4. Prediction model

of all possible NUMA+Prefetcher configurations as output to achieve good
performance.

Building an effective model requires co-designing the subset of the input
configurations to evaluate and the output configurations to choose from
while training the model to accurately map between them. The subset of in-
puts reduces the profiling overhead but still allows us to observe application
differences, while the subset of output configurations allows us to simplify
the model, while still obtaining high performance.

4.4.1. Machine learningmodels

Weuse the Python scikit-learn [118] package to trainmultiple types ofmodels
(Artificial Neural Network (ANN), Logistic Regression (LR), Decision Tree
(Tree), Support Vector Machine (SVM), and Clustering) using the parameters
in table 4.2. From section 4.3 we saw that:

1. Only 13 NUMA+Prefetcher output configurations are needed to cover
99% of the potential performance gains (section 4.3.3).

2. Many codes behave in a similar way across different NUMA+Prefetcher
optimisations (section 4.3.2).

These two observations guide our training of different types of models. To
take advantage of 1), we use supervised learning (ANN, LR, SVM, Tree) to
directly predict from among only the 13 overall most efficient configurations,
instead of across all possible configurations (288 for Sandy Bridge and 320
for Skylake). We also train Tree and ANN models using multi-labels: all
configurations that performwithin 95% of the best configuration are labelled
as best, instead of just labelling the best one.

To take advantage of 2), we use unsupervised clustering to group regions by
similar optimisation choices. Unlike supervised learning, clustering cannot
directly assign a configuration to a code. Therefore, we select the centroid
of each cluster (in the feature space) and use its configuration across all
the other regions within the same cluster. We expect efficient features to

49

Chapter 4. Performance and configuration models

Table 4.2.: Prediction model parameters. Single/multi-label models use the
same parameters.
Model Parameter

ANN lbfgs, alpha=0.0001, hidden_layer_sizes=(7,)
Tree —
SVM gamma=scale, decision_function_shape=ovo
LR random_state=0, solver=lbfgs, multi_class=multinomial

Clustering Hierarchical Ward (Euclidean distance)

gather together regions that share the same optimal configuration. During
validation we measure the features of the new regions and assign them to
an existing cluster, and use its centroid-selected configuration.

Finally, we note that some models take much more time to train than others.
For example, creating a single-label Tree model is 100× faster than a multi-
labelled ANN. This directly affects the number of input feature pairs we can
explore in training.

4.4.2. Model generation and inputs

As shown in figure 4.4, the models we train take as input hardware perform-
ance counter values for a region executed with different NUMA+Prefetcher
configurations and predict the best NUMA+Prefetcher configuration for
that region. We identify the best configuration (correct prediction) through
brute-force measurement a of the execution time for all NUMA+Prefetcher
configurations for each region (see section 4.2). Our training input features
consist of hardware performance counter measurements for each region for
all NUMA+Prefetcher configurations b . With these input features c and
the correct prediction data d , we can train a variety of models e to predict
the best NUMA+Prefetcher configuration3.

3We do not consider first touch as a possible page mapping because it assigns pages based
on how the developer designs the first accesses rather than on fixed rules. Therefore,
first touch page allocation strategy differs across applications, making it an inconsistent
choice for our model.

50

4.4. Prediction model

Codes

Performance counters Configurations Features

×
L3 miss rate

Remote BW

#Local accesses
Memory size

NUMA A
prefetchers 1

NUMA B
prefetchers 1

NUMA C
prefetchers 2

(…)

Configurations
NUMA A

prefetchers 1
NUMA B

prefetchers 1
NUMA C

prefetchers 2
(…)

NUMA A
prefetchers 1
L3 miss rate

NUMA A
prefetchers 1
Remote BW

NUMA A
prefetchers 1

#Local accesses
(…)

Evaluate
execution

time
Best configuration

per application

(…)

a

b

Subseing
features

Best configuration
per application

Subsets of
two features Machine

learning
algorithm

Machine
learning

algorithm

Machine
learning

algorithm

(…)

(…) (…)

Prediction
model X

Prediction
model Y

Prediction
model Z

c

d

e

Figure 4.4.: Diagram showing how the model training scheme works.

Top: Training data collection, including brute-force evaluation of execution time for all
configurations. Bottom: Training each machine learning method across multiple subsets of
the input features to identify the best combination of input features and model.

Model inputs

Hardware performance counters provide precise information on the interac-
tion between the application and system. However, while these metrics are
valuable for characterising applications, they are not standard across sys-
tems. To address this, we use Likwid 3.0 [149] to abstract them to higher-level
performance groups. We select memory-system related measurements, res-
ulting in 19 performance counters from the Likwid NUMA, L2 CACHE, and
L3 CACHE groups, as well as energy/power measurements from RAPL [44].

However, using only 19 data points for each application obtained with a
single NUMA+Prefetcher configuration is not sufficient to train an accurate
model (see analysis in Section 4.5.3). We therefore collect performance
counter data for all NUMA+Prefetcher configurations, which increases our
training set by a factor of 288. This is particularly valuable as we observe that

51

Chapter 4. Performance and configuration models

the same performance counter profiled with different NUMA+Prefetcher
configurations can return significantly different values, giving us information
on the impact of changing the NUMA+Prefetcher configuration.

This technique of amplifying application data by changing the execution
environment and observing the reaction is inspired by previous work in
compilers [33, 156]. That work measured execution times across different
compiler settings and built models to predict configurations based on the
programs’ reactions. We extend this concept by considering more diverse
metrics given by the hardware performance counters (e.g., local accesses,
bandwidth). This allows us to feed our prediction model with more di-
verse information to improve its accuracy. We call the resulting features
reaction-based performance counters as they show the reaction of hard-
ware performance counters to NUMA+Prefetcher configurations.

Unfortunately, while using reaction-based performance counters as input
features to our models increases our data for training, collecting them can
require up to 5472 executions for each region (19 counters × 288NUMA+Pre-
fetcher configurations)4 to measure the features and another 288 per code
for measuring the performance. However, these executions are a one-time
cost for generating training data for the model.

We can reduce the need for profiling by using the features from one system to
train models for another system. For instance, we can use the reaction-based
performance counter input features from Sandy Bridge together with the
ground truth (best configuration execution time) from Skylake to develop a
model for Skylake. This reduces the overhead to only the 288 performance
measurements to train the Skylake model. We demonstrate the accuracy of
this cross-training in section 4.5.1.

4On Intel machines this is reduced to 1440 executions as Likwid and RAPLmeasure multiple
counters at the same time. For codelets we require an initial warm-up execution prior to
the profiling execution [109].

52

4.5. Prediction results

Feature selection and generation (subsetting features)

To reduce the input needed for themodel, we trainmodels using only a subset
of the input features for each region, specifically, two sets of performance
counters and NUMA+Prefetcher configurations5. This allows us to benefit
from the additional information provided by the reaction-based performance
counters while keeping the profiling cost low: only two runs are required. To
identify which subset of two features is most effective (i.e., contains helpful
information for choosing configurations), we train models for many subsets
of 2 input features and select the most efficient one. For each machine
learning method, choosing the best model requires training for 20.4 million
subsets6. As part of training, we use a standard 10-fold cross-validation
(section 4.5.1) to validate our models’ robustness.

4.5. Prediction results

We now evaluate the ability of our models to predict configurations for new
regions. We use the same system setup and regions presented in section 4.3.1:
we collect the reaction-based performance counters (model input features)
on Sandy Bridge and do a brute-force execution time exploration for all
configurations on both Sandy Bridge and Skylake. With this data (input
features and execution times), we train models for predicting NUMA+Pre-
fetcher configurations for Sandy Bridge and Skylake. We then evaluate
the resulting predictions on both systems vs. the ground-truth brute-force
execution time exploration.

5We empirically observed that two features provide good results from our models. Adding
more features may achieve higher accuracy but causes a combinatorial explosion of the
exploration space. We tried to only use subsets of many features collected within a single
NUMA+Prefetcher configuration, but did not achieve good results.

6Theexploration considers 21NUMA configurations instead of 18, separating single, balance
and interleave in 1-node settings, giving a total of 21 ⋅ 16 = 336 NUMA+Prefetcher
configurations, with 19 counters giving 336 ⋅ 19 = 6384 total features. This results in
(63842) ≈ 20.4M subsets of 2 features.

53

Chapter 4. Performance and configuration models

Predicted configuration Best configuration

1 2 3 4 5 6 7 8 9 10
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee
du

p

(a) Intel Sandy Bridge
1 2 3 4 5 6 7 8 9 10

1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee
du

p

(b) Intel Skylake

Figure 4.5.: 10-fold cross-validation of the predicted results.

This validation shows robust prediction across unseen regions and close to optimal predic-
tions. Skylake results are trained with Sandy Bridge profiles. See also feature selection in
section 4.4.2.

4.5.1. Model evaluation

In this section, we evaluate the performance of the predicted configurations
for each model and validate that the model gives good results.

Model validation

Each model takes as input two features and provides a prediction of the best
configuration. To evaluate the quality of themodels, we quantify the perform-
ance loss between the model-predicted configuration and the brute-force
best configuration on unseen codes with cross-validation. Cross-validation
shuffles all codes and splits them into groups (folds) of similar size. Each fold
is then separately used as validation set for the model trained over remaining
codes. If the training accuracy is consistently high across the different folds,
then it indicates that the model is able to effectively generalise to unseen
codes.

54

4.5. Prediction results

Cross-validation

We illustrate in this section how cross-validation evaluates a model. We
take as an example our best model for both Sandy Bridge and Skylake, Tree
single-label (see table 4.3).

Figure 4.5a presents the cross-validation for Sandy Bridge. It shows the
results of training the model on the benchmarks in the other folds and then
using the resulting model to predict the best configuration for the remaining
fold. Here all but 2 folds (6 and 9) show small differences between the
model prediction and the brute-force best choice, indicating that the model
has generalised well. The comparison of the predicted configuration to the
best configuration (dark) shows the model is effective, obtaining 95% of
the possible speedup. The reason why folds 6 and 9 show worse prediction
results is because CG residual and K-means, respectively, have distinct
behaviours (see figure 4.2), and they were not included in the benchmarks
used for training in these cases. However, the predicted configuration is
still equivalent to or better than just optimising for NUMA (page and thread
mapping), and we expect that these mispredictions would be addressed by
training on more codes.

Figure 4.5b shows the validation of the model which predicts configurations
on Skylake based on performance counters collected from Sandy Bridge:
i.e., the two input features are from reaction-based performance counters
on Sandy Bridge, with only the output configuration performance measured
on Skylake. This model has higher variability between the folds and the best
configuration, indicating the model is less-well generalised, and slightly less
effective (92% of the possible speedup). This is likely due to Skylake-specific
behaviour that is not visible in the Sandy Bridge performance counters used
for training, and shows the trade-off for reducing the training overhead by
reusing the Sandy Bridge input data.

Our models’ geometric mean performance gains, over a locality-optimised
baseline with all prefetchers enabled, are 1.76× (Sandy Bridge) and 1.60×
(Skylake) across all the folds. This shows that our best models provide
significant speedups while remaining robust across new unseen benchmarks.

55

Chapter4.
Perform

ance
and

configuration
m
odels

Table 4.3.: Best model parameters for each ML method, including the reaction-based performance counters selected as the
two profile inputs. (Thread mappings: remote, locality, single, interleave, balance, contiguous. Number of model
evaluations in the 2-day training period.) While the DRAM Power performance counter was selected for many of
the models, the second performance counter (and the NUMA+Prefetcher configurations) varied significantly.

First feature (best model) Second feature (best model)

NUMA configuration NUMA configuration

Sy
st
em

ML method
Perf.

counter HW pf. # th. # nodes Th. map. Page map.
Perf.

counter HW pf. # th. # nodes Th. map. Page map.
Model
speedup

eval.
models

Sa
nd

y
Br
id
ge

Tree_s Package pow. 1111 8 1 — local Package pow. 1011 16 2 contig. balance 1.76 20 368 k
LR_s DRAM pow. 0110 8 1 — local Package pow. 1011 32 4 scatter locality 1.43 3349 k

Clustering DRAM pow. 0001 8 1 — remote DRAM pow. 1101 8 1 — remote 1.56 641 k
ANN_m DRAM pow. 1011 8 1 — remote Rem. DRAM BW 1011 16 2 scatter interl. 1.65 146 k
ANN_s DRAM pow. 0101 8 1 — local Energy 0001 32 4 scatter interl. 1.66 284 k
SVM_s Core pow. 0100 8 1 — local Core pow. 1010 8 1 — local 1.70 20 043 k
Tree_m Energy 1100 16 2 scatter single Package pow. 1010 32 4 contig. locality 1.74 11 075 k

Sk
yl
ak
e

Tree_s Package pow. 1101 16 2 contig. locality L3 miss ratio 1110 16 2 scatter single 1.60 20 368 k
LR_s DRAM pow. 1101 8 1 — remote Package pow. 1011 8 1 — local 1.40 3349 k

Clustering DRAM Pow. 1001 8 1 — local L2 miss ratio 1111 8 1 — local 1.40 643 k
ANN_m DRAM pow. 1100 8 1 — local L2 miss ratio 0110 32 4 contig. locality 1.51 144 k
ANN_s DRAM pow. 0111 8 1 — remote DRAM pow. 1101 32 4 scatter locality 1.53 293 k
SVM_s DRAM pow. 1001 8 1 — remote Loc. DRAM BW 1001 16 2 scatter balance 1.52 20 236 k
Tree_m Energy 1111 16 2 contig. interl. Rem. DRAM vol. 1010 8 1 — local 1.59 11 094 k

56

4.5. Prediction results

For Skylake, the selected input features are L3 Miss Ratio and Package
Power, but with very different prefetcher and NUMA configurations (see
table 4.3). Package Power measures the power consumption of an entire
node, including cores, last level cache, and memory controller. It is interest-
ing to note that for Sandy Bridge the selected input features also measure
Package Power, but profile it on two very different configurations (i.e., dif-
ferent prefetchers, core counts or nodes). In other words, the performance
change across configurations is a useful information to guide the config-
uration prediction. This illustrates how the reaction-based performance
counters allow us to include sensitivities to system configurations as model
inputs.

4.5.2. Comparingmachine learningmethods

The various machine learning methods give different models with different
performance. Moreover, some of the models using some methods are faster
to evaluate than using other methods and, given a time budget, it is possible
to choose among more models.

Performance gains

We evaluate the 7 different machine learning methods described in sec-
tion 4.4.1. For each method and system, figure 4.6 reports the geometric
mean performance gain across all folds of the most efficient model.

For performance analysis we provide two baselines that use our brute-force
evaluation to pick the best configuration across subsets of the whole NUMA+
Prefetcher search space. We define best of 2 and best of 13 as optimisation
strategies to compare with. Best of 13 selects the best optimisation for
each region from the 13 output NUMA+Prefetcher configurations that our
models choose among. As illustrated in figure 4.3, best of 13 provides similar
performance to a full brute-force exploration and is therefore used as oracle.
Best of 2 picks the best configuration from only the two most efficient overall
configurations. That is, best of 2 has the same input overhead as our models:

57

Chapter 4. Performance and configuration models

Predicted conf. Best of 2 confs. Best of 13 confs.

Clu
ste
r
LR
_s

AN
N_
m
AN

N_
s
SV
M_

s

Tre
e_mTre

e_s
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee
du

p

(a) Intel Sandy Bridge

Clu
ste
r
LR
_s

AN
N_
m
AN

N_
s
SV
M_

s

Tre
e_mTre

e_s
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee
du

p

(b) Intel Skylake

Figure 4.6.: Geometric mean performance gains of the most effective pre-
diction model for each Machine Learning method. _s/_m refer
to single label/many-labelled training.

the user runs two configurations and picks the best one. This allows us to
separate out the contribution of the model from the choice of model inputs.

Figure 4.6 shows that there is a significant difference across the the models:
1.2× between the best (Tree) and worst (Logistic Regression). However, the
methods show similar relative results across the systems. In both cases,
Tree (both single and many-labelled) gives the most efficient model while
Logistic Regression is the worst. Finally, SVM and Tree outperform the
best of 2 brute-force approach on both systems, demonstrating our model
capabilities.

Understanding why somemethods aremore efficient

To understand why Tree is the most efficient method, we need to describe
in details how we train. Each method iterates over the subsets of 2 input
features, trains a model for those input features, and then does a cross-
validation for the resulting model. For each method, the best performing set
of input features is chosen. This process takes longer for methods that are
slower to train, which therefore limits the number of input feature subsets
that can be evaluated. For each method we allocated a budget of 2 days of
training per system. This limits the number of input subsets explored for
the methods that take longer to train. table 4.3 shows the size of this effect.

58

4.5. Prediction results

We observe that Tree_s was able to evaluate the whole search space of input
subset features, thus exploring 100×more input subsets than ANN many-
labelled in the 2 day training time. As a result, it is possible that the more
time-consuming methods did not have a chance to evaluate some particu-
larly good combinations of performance counters. To partially mitigate this,
we explored over 10 000 random subsets, as well as trying the best input
subset from Tree_s with the ANN. Unfortunately, these approaches did not
improve the performance, suggesting that input features need to be selected
together with the method for best efficiency. This is particularly interesting as
we see that some performance counters such as DRAM Power (included in
5 out of 7 models) carry valuable information, but are not used in Tree_s.

We conclude that Tree is not necessarily the bestmethod, but its combination
of faster training time and good prediction allows it to beat other models
that may be more accurate, but take longer to train. Therefore, investing
more time to train more time consuming methods such as ANN may further
improve the gains7.

4.5.3. Reaction-based performance counters improvemodelling

In the previous results, our models were all trained using the reaction-based
performance counters (e.g., inputs were a performance counter measured
on a specific NUMA+Prefetcher configuration). To quantify the value of
this measuring the performance counter on the default NUMA+Prefetcher
configuration, we compare our results with models that are only allowed to
choose their 2 input features from a single NUMA+Prefetcher configuration.

Single-configuration profiling drastically reduces the number of model in-
puts to only 19 ⋅ 19 = 361. As a result, each machine learning model was
able to evaluate all possible 2-input feature subsets. Figure 4.7 compares
single-configuration-trained models8 to our reaction-based performance

7We did not consider Deep Neural Networks due to our small input training set of only 57
parallel regions.

8Single-configuration for Sandy Bridge: 32 threads, 4 nodes, scatter, locality, and all prefetch-
ers on.

59

Chapter 4. Performance and configuration models

Cluster LR_s ANN_m ANN_s SVM_s Tree_m Tree_s
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p

Single Conf. Profiling Tree_s (React.)

Figure 4.7.: Single-configuration profiling vs. the best Reaction-based per-
formance counter approach (Tree_s React.).

counter models. We see that training on only a single configuration signific-
antly hurts performance (down to 93% of the Reaction-Based Performance
Counter approach for Tree_s), even thought it is able to explore all possible
input combinations. This showcases that the overhead of having to evaluate
codes on multiple configurations pays off in better modelling, which leads
to better performance.

4.5.4. Takeaway

We have shown that our Tree-based model can robustly predict combined
NUMA+Prefetcher configurations that deliver a geometric mean speedup of
1.74× (compared to 1.82× for an oracle), even against a locality-optimised
baseline with all prefetchers enabled. We observe that the Tree model wins
out due to combination of faster training (which allows greater exploration
of input combinations) and good prediction accuracy. Further, we have
shown that the reaction-based performance counters provide significant
benefits by exposing sensitivity to system configurations.

In this study we also observed that the Package Power performance counter
appears to provide the best indication of overall configuration fitness, as it
is chosen as an input to the best-performing machine learning models. This
choice is unexpected, as IPC (instructions per cycle) or MPKI (misses per
thousand instructions) are typically chosen to represent overall performance.
Our analysis is that Package Power performs better as it takes into account
both CPU activity (as IPC does) and cache behaviour (as MPKI does), as well
as CPU idle times, link utilisation, and DRAM accesses, making it a robust
overall metric.

60

4.6. Optimising applications online

Address
Trace

Migration
conf. 1

Warmup
conf. 1

Profile
conf. 1

Migration
conf. 2

Warmup
conf. 2

Profile
conf. 2

Migration
conf. A

A A AACode
region
Exec.
step

Optimized
execution

AA

(a) Obtaining the best configuration of a region with a single run.

Migration
conf. A

Warmup
conf. A

Warmup
conf. A

Profile
conf. A

Profile
conf. A

Migration
conf. B

Warmup
conf. B

Warmup
conf. B

Profile
conf. B

Profile
conf. B

Migration
best conf.

A A B A BB A BCode
region
Exec.
step

Optimized
execution

A

(b) Optimising whole applications based on the per-region configurations. A and B
conflicts are addressed by cross-evaluating their configurations and selecting
the best one overall.

Figure 4.8.: Online evaluation of different configurations.

4.6. Optimising applications online

4.6.1. Online profiling and optimisation

The method described up until now makes predictions using information
from offline profiling: first, extract codelets of the OpenMP regions and
execute them with the two selected NUMA+Prefetcher configurations while
recording the appropriate hardware performance counters, then use the
model to predict the best NUMA+Prefetcher configuration. However, as the
application itself consists of repeated executions of the OpenMP regions,
we can move this profiling online by carefully setting the NUMA+Prefetcher
configurations between the OpenMP region executions as the application
runs and profiling online. Doing so allows us to collect the required input
information online with only the overhead of changing the configuration
for the two regions and appropriate warm-up.

Figure 4.8a illustrates the online profiling of OpenMP region A as the applic-
ation executes. The first instance of region A is used to collect the access
patterns (Address Trace) needed for the NUMA locality and balance policies9.
We then need to execute the region for each of the two input NUMA+Pre-
fetcher configurations required for the model (conf. 1 and conf 2. in the

9The overhead of collecting this information can be reduced to 12% [148], but in this work
we use Pin directly, which is around 10× slower.

61

Chapter 4. Performance and configuration models

Figure). However, this incurs two sources of overhead: First, we may need to
migrate threads and pages if the current configuration does not match the
configuration we need to measure. And, second, we execute the OpenMP
region once before measuring to warm-up the caches, and this execution
may experience significant cache misses due to the migration. After that
setup, we profile the next execution of the region (Profile) and use the model
to predict the best configuration. With the model prediction, we migrate
pages and threads as needed (Migration), and then execute with the chosen
configuration (Optimised execution). This approach assumes that parallel
regions have similar behaviour, which is quite common in our benchmark
applications [124, 148].

4.6.2. Whole-application optimisation

While our prediction model finds the most efficient configuration for each
parallel region, it does not consider how regions interact. This is a problem
if the NUMA page optimisations for one region hurt the performance of
another region as explicit page migration between regions is generally too
costly [98]. Prefetching and thread configurations can be changed with little
overhead between regions, making them less problematic.

Such inter-region configuration conflicts have been shown to have a small
impact on overall performance10. Popov, Jimborean and Black-Schaffer [125]
reported that only a few applications in the NAS and Rodinia benchmarks,
such as BT ans SP, are significantly affected, and the overall reduction in
speedup when accounting for inter-region conflicts was only 6%. We there-
fore evaluate the impact of inter-region conflicts on our online profiling
approach for both BT and SP.

Our approach is similar to the one proposed by Popov, Jimborean and
Black-Schaffer [125]. First, we select the best configuration for each re-
gion individually. We then check the configurations for conflicts (i.e., pages
mapped to different nodes). If conflicts are found, we cross-evaluate the

10Speedups reported so far are for regions and do not include these effects. In this section
we evaluate two applications where these effects are significant.

62

4.6. Optimising applications online

Migration Warmup Profile

First touch
(not optimized)

rhs x_solve y_solve z_solve
0

25
50
75

100
125
150

BT
 x

_s
ol

ve
 ti

m
e

(M
ill

io
n

cy
cl

es
) 195 256Online

A B C

First touch
(not optimized)

rhs x_solve y_solve z_solve

Offline

time

First touch
(not optimized)

rhs x_solve y_solve z_solve
0

25
50
75

100
125
150

SP
 y

_s
ol

ve
 ti

m
e

(M
ill

io
n

cy
cl

es
)

A B C

First touch
(not optimized)

rhs x_solve y_solve z_solve

Figure 4.9.: Overheads and execution times for online and offline profiling.

Left: Overhead costs of online cross-evaluation of the parallel regions x_solve (top) and
y_solve (bottom) across the best individually chosen configurations for regions rhs, x_solve,
y_solve, and z_solve. Cross-evaluation requires first migration A , then warm-up B , and
finally profiling C for each configuration. Right: Average execution time for the region when
optimised for each configuration offline. Similar online/offline results show the accuracy of
online profiling.

configurations of the conflicting regions and select the best overall perform-
ing configuration. Figure 4.8b shows the phases of this cross-evaluation:
migration, warming, and profiling A and B with A’s configuration (left) and,
similarly, migration, warming and profiling A and B with B’s configuration
(right).

The cost and accuracy of online cross-evaluation is shown in figure 4.9 for
the x_solve region in BT (top) and the y_solve region in SP (bottom). The
figures show cycle counts for each step in the cross-evaluation of those
two regions. From left to right: the region is first executed twice with first
touch to observe the non-optimised configuration behaviour, followed by
migration/warmup/execution of the region with the configurations for the
rhs, x_solve, y_solve and z_solve regions. For example, A / B / C in the
top figure show A the cycles for migrating pages for the rhs NUMA+Pre-
fetcher configuration, B the cycles for executing the x_solve region with the
rhs configuration for cache warm-up, and C the cycles for the profiling of
the x_solve region with the rhs configuration. The accuracy of the resulting
online profile can be seen by comparing the online measured execution

63

Chapter 4. Performance and configuration models

Table 4.4.: Execution times (billions of cycles) of BT and SP region conflicts
and online profiling. The overhead is quickly amortised since
each region is called hundreds of times.

Locality, 32 threads, Ignoring Offline best Online best
scatter (baseline) inter-region inter-region inter-region

BT 33.5 16.3 (2.1×) 22.9 (1.5×) 23.9 (1.4×)
SP 179.8 45.2 (4.0×) 53.5 (3.4×) 54.9 (3.3×)

time for the region with the different configurations to the offline profiled
one (e.g., for the rhs configuration, this is comparing the online measured
time in blue, left, to the offline measured time, blue, right).

Figure 4.9 shows that there are many more cycles spent in migration for BT
(top) than SP (bottom). This is because BT’s x_solve region has a different
access pattern from its y_solve and z_solve regions [98], causing more
pages to be migrated. Conversely, the three regions from SP all use a single
NUMA node optimisation, significantly reducing the migration cost.

For online profiling/optimisation to be effective, the overhead needs to
be less than the benefits. Our approach has three sources of slowdown:
migration, warm-up, and profiling11. These overheads are only paid once at
the beginning of the application and we find they are quickly amortised by
the speedups obtained.

Table 4.4 shows the execution time of the applications BT and SP with
four configurations: our locality-optimised baseline applied to the whole
application, ignoring inter-region conflicts and using each region’s best
configuration, the best overall configuration found offline, and the best
overall configuration found online, including profiling overhead. For both
applications there are enough page conflicts that the cost of migrating pages
between regions to use each region’s independently optimal configuration
is prohibitive. However, our online approach finds the overall best configur-
ation and delivers 95% of the offline performance.

11Note that the cross-evaluation profiling itself will incur slowdowns if the configurations
being cross-evaluated are a poor match for the region being evaluated. E.g., y_solve
takes over three times as long to complete when being profiled with the rhs configuration
(figure 4.9 bottom, “Profile rhs”).

64

4.6. Optimising applications online

Locality
(baseline)

Overall best
(x/y/z/rhs)

rhs
(thread+page)

rhs
(thread only)

0
3
6
9

12
15

Ex
ec

. t
im

e
(B

ill
io

n
cy

cl
es

)

Figure 4.10.: Execution cycles for rhs from SP.

Overall best is the best configuration for the whole application, thread only uses the rhs
optimal thread configuration with the overall best page mapping, and is only slightly slower
than the combination rhs optimal thread- and page-mapping, but can be achieved without
the overhead of migrating pages.

4.6.3. Per-region NUMA optimisation

The overhead of page migration makes it too expensive to adapt on a per-
region basis. However, it can be profitable to change the thread mapping
on a per-region basis, once the overall best page mapping has been chosen.
As an example, our method identifies a case in the SP benchmark where
different regions should have different degrees of parallelism. This is shown
in figure 4.10, for the case of the rhs region when executed on the Sandy
Bridge system.

In this case, the best configuration for rhs uses 32 threads and maps the
pages across the whole system, while x_solve, y_solve, and z_solve op-
timally use only 8 threads and map all pages to just one node. Changing
the page mapping between these regions costs more than the potential
gains, but the reconfiguration overhead of changing the thread mapping is
negligible. By reconfiguring threads, but not pages, we can avoid the costly
page migration while retaining many of the benefits from the better thread
mapping (3.9× improvement from changing just the thread-mapping on a
per-region basis vs. 4.4× for changing both thread- and page-mapping on
a per-region basis, compared to the overall best all-region configuration),
which also outperforms the baseline locality-optimised mapping. The end
result is that the page mapping is stable throughout the execution of the
application while we change the thread mapping on a per-region basis, at a
negligible cost.

65

Chapter 4. Performance and configuration models

A more sophisticated approach would be to consider which subsets of
threads, pages, and prefetchers should be optimised across conflicting con-
figurations, but we leave that for future work.

4.7. Summary

In this chapter we have shown that there is a significant performance be-
nefit from optimising the NUMA configuration (parallelism, thread-, and
page-placement) together with hardware prefetcher configurations (L1, L2).
However, this benefit comes at the cost of a very large design space to explore.
We tackled this problem by developing an efficient and robust performance
model. We reduce the overhead of collecting data for the model by identify-
ing two reaction-based performance counter configurations (combinations
of NUMA+Prefetcher and performance counters) which allow our model
to accurately predict the best configuration, and reducing the number of
configurations the model has to choose among by analysing how we can
reduce the configuration space without losing performance.

During training, we saw the importance of selecting the correct reaction-
based performance counters as inputs for each specific model type and
system and how we can do more efficient cross-system training by reusing
input data. We then demonstrated how this approach can be applied for
online profiling and optimisation to deliver an average of 1.68× perform-
ance increase over a NUMA-locality-optimised baseline with all prefetchers
enabled. Finally, we observed that in rare cases applications can suffer from
inter-region page-mapping conflicts. Using the best overall configuration
and changing parallelism across regions partly overcomes the performance
loss and improves over the already-optimised baseline.

66

Chapter 5.

Hardware prefetching for NUMA systems

5.1. Introduction

This chapter presents a generic hardware prefetching scheme that leverages
the NUMA characteristics to enhance system performance. As shown in
chapter 4, using adequate configurations for prefetchers and NUMA simul-
taneously is needed in order to achieve the highest performance possible.
Just considering the optimisation of prefetcher configuration ahs shown to
give worse results than tackling NUMA scheduling or both simultaneously.
However, prefetchers are generally unaware of NUMA effects in the sys-
tem, and adapting them to consider these aspects could provide higher
performance improvements.

In this contribution, the knowledge about NUMA in the system is used
to prefetch data more aggressively depending on the physical location of
the predicted accesses. The extra latency when accessing non-local data
is hidden by prefetching this data to the higher levels of cache, with more
capacity. The prefetching scheme is evaluated using gem5, a cycle-accurate
architectural simulator, in a two-socket NUMA system, proposing a simple
stride prefetcher that is aware of NUMA effects. Finally, we show that the
ideas are really generic and can be applied to other prefetchers.

All things considered, we propose a NUMA-aware hardware prefetching
scheme with the main goal of making all accesses as if they were local. The
contributions in this chapter are the following:

67

Chapter 5. Hardware prefetching for NUMA systems

no NUMA,
no pref.

NUMA,
no pref.

NUMA-aware pref.
(only L3)

0
1
2
3
4
5
6

ex
ec

ut
io

n
tim

e
(m

s)

local phase remote phase

Figure 5.1.: Execution times of a microbenchmark with local and remote
accesses under different configurations.

• A generic NUMA-aware hardware prefetching scheme. This scheme
is compatible with any L1 hardware prefetching algorithm that can
generate a list of predicted addresses. The main implementation is the
NUMA-aware stride prefetcher (NASP), a stride prefetcher in the L1
that fetches some lines in the L3 depending on the physical location
of the predicted addresses (and when they are expected to be used).

• An evaluation of NASP, with 1.10× performance speedup with respect
to a standard stride prefetcher in the L1 and 1.02× over a state-of-
the-art prefetcher in a 4 socket system. The evaluation includes also
details about the communications and cost.

• A comparison with different prefetchers from the state of the art and
a NUMA-aware implementation of one of them, using the ideas from
NASP. The evaluated prefetcher with NUMA-aware changes has an
average speedup of 1.04× with respect to the original implementation.

• Incidentally, an implementation of NUMA using gem5 with the classic
memory mode.

68

5.2. Motivation

5.2. Motivation

5.2.1. Background on hardware prefetchers

The latency gap between CPUs and memory has increased as CPUs have
become faster at a higher rate than memory. This been overcome with more
complex memory hierarchies, with multiple levels of cache memories that
store a small subset of the data to make accesses faster. To take advantage
of the lower latencies obtained by accessing the cache instead of main
memory, the data must be in the cache. This can happen both with data
reuse (temporal locality) or by bringing data into the cache in advance.

Hardware prefetchers are structures that serve as a solution for bringing data
into the caches. These structures model a heuristic that, given a memory
access, predicts a new address that will be accessed later. A simple heuristic
is the next-line prefetcher: if line 𝑛 memory is accessed, it predicts that the
next access will be to its contiguous line, 𝑛 + 1. It can also predict other
lines for later use, like 𝑛 + 2, 𝑛 + 3 and so on.

Another more complex heuristic is used by the stride prefetcher. Here, the
prefetcher records a number of consecutive memory accesses (by program
counter, or general for the whole system) and calculates the difference. If
this difference 𝑑 is constant after some accesses (a confidence threshold), it
considers 𝑑 as the stride and it can issue predictions for lines 𝑛 + 𝑑, 𝑛 + 2𝑑,
𝑛 + 3𝑑, etc. Other options are explored in section 2.2.2.

Since data accesses from the CPU happen in a hierarchical way, the data is
first checked on the lowest cache level or level 1 (L1), then on the L2 and so
on up until main memory. This has the effect that only the L1 observes all
accesses. This also means that a prefetcher in the L1 has more information to
recreate the access patterns for prefetching. However, doing the prefetches
just in the lowest-level cache may reduce the performance due to thrashing
(if data is requested too far in advance and it is removed before being used
due to capacity constraints) or lateness (if the data is requested later to avoid
thrashing but does not arrive soon enough). A natural way to overcome
these issues would be to bring more urgent lines (those that are going to be

69

Chapter 5. Hardware prefetching for NUMA systems

used in the nearer future) to the lower-level cache, and bring the less urgent
ones to a higher-level cache, with much more capacity1.

However, the latency gap between memory and the CPUs is not the only
issue. CPUs can be grouped in clusters (sockets), each cluster with their
local memory and an increased latency for accessing memory in remote
clusters. This results in a new problem: not all accesses cost the same in
terms of latency (a NUMA system), and having a cache miss for data that is
physically in a remote memory can have a huge impact in the performance
of the application.

5.2.2. Opportunity for NUMA-aware prefetchers

Hardware vendors are designing systems that are becoming more and more
complex, with more NUMA effects. For applications that present an em-
barrassingly parallel behaviour or good weak scaling, these effects can be
hidden more easily, but more complications arise for workloads with non-
trivial access patterns [67]. Moreover, the latencies and bandwidths can be
so different between local and remote accesses that the execution times are
greatly affected. Partly, some of the proposals from hardware vendors come
from taking into account how the underlying memory behaves. They are
considering prefetching technologies which behave differently depending
on the characteristics of the downstream memory [65, 70, 96], mainly chan-
ging the prefetcher algorithm depending on the remote memory after some
training.

A possible solution for the latency gap is being more aggressive when
prefetching data from remote memory to prevent these long-latency misses.
The problem is that careless prefetching would hide the benefits of prefetch-
ing and caching in general due to thrashing. This can also be solved by
storing these prefetched lines in the higher cache levels (with higher aggress-
iveness, the extra lines have a lower confidence because they are expected

1This should not be confused with the urgency parameter for prefetchers in IBM POWER 7+
processors. That parameter corresponds to how fast the maximum prefetch depth should
be reached by the prefetcher.

70

5.2. Motivation

to happen further in the future). If the data is finally going to be used, the
prefetcher would request it again later in the future and the data could be
moved from the higher-level cache to a lower-level cache. Since the data
from the remote memory is cached in a high-level cache, the NUMA effects
should be reduced.

In order to evaluate this, we have built a microbenchmark that runs in
a two-socket system with sockets A and B. The microbenchmark has the
following phases:

1. Allocation: allocate a contiguous array.

2. Initialisation: initialise the data using core 1 of socket A. Due to the
default first-touch policy in Linux systems, the data will be physically
stored in socket A.

3. Local operations (1): execute read and write operations on the array
at positions with a stride of one cache line using core 1 of socket A (all
accesses local). Repeat 𝑁 times.

4. Remote operations: execute the same operations using core 1 of socket
B (all accesses remote). Repeat 𝑁 times.

5. Local operations (2): execute the same operations again using core 1
of socket A (all accesses local). Repeat 𝑁 times.

We measure the execution times of the three operation phases (3, 4, 5) under
the following settings:

• In a system without NUMA effects and without a prefetcher.

• In a system with NUMA effects without a prefetcher.

• In a system with NUMA effects and a NUMA-aware prefetcher. This
is a stride prefetcher that observes accesses in the level 1 cache and
does the access predictions. However, instead of inserting predicted
addresses in the prefetch queue of the cache, only the predictions
for addresses in a remote NUMA node are considered, and they are
inserted in the queue for the L3 (instead of the L1).

71

Chapter 5. Hardware prefetching for NUMA systems

This is evaluated in a simulated system like the one presented in section 5.4.1,
with a remote latency 1.5× larger than local latency for the NUMA systems.
The results of this evaluation are shown in figure 5.1, which includes the
average execution time for local and remote phases in each system. In the
system without NUMA effects and without a prefetcher, the execution times
of local and remote phases is very similar. When NUMA effects are included,
the remote phase has a slowdown similar to the latency ratio between local
and remote accesses. Once we add a stride prefetcher that only brings lines
to the L3 cache (and only when they are remote), the resulting execution is
like if there were no NUMA effects.

Thus, designing a hardware prefetcher that is aware of the NUMA effects
in the system has the potential to improve the performance of parallel
applications.

5.3. Proposal: NUMA-aware prefetching

We propose a prefetching scheme that leverages the non-uniform latency of
the memory in NUMA systems. The proposal is generic and can be built on
top of existing prefetchers because it only needs three parameters:

• the CPU that executes the access that triggers the address prediction
or its NUMA node,

• the NUMA node containing the data of the predicted address, and

• how far in the future the access to the predicted address is expected
to occur.

Our scheme is a modification on the general behaviour of prefetchers that
internally use a queue to make the requests. It is also irrelevant whether the
cache is indexed by physical or virtual addresses, but the prefetcher should
be able to do prefetches across page boundaries, so the prefetcher would
benefit from using virtual addresses and having access to a TLB. Without
this, all the predicted addresses would fall on the same page as the triggering
address. For simplicity, our explanations focus on a stride prefetcher to

72

5.3. Proposal: NUMA-aware prefetching

Translation unit

Prediction
logic

program counter

virtual address

0x3142

0x10F00

physical address
0x32F00

if same page
 direct translation
else
 send to translation queue

pr
ed

ic
ti

on
 li

st
 (v

ir
t.

ad
dr

es
se

s)

1
2
3
4

6
5

7
8

0x10F40
0x10F80
0x10FC0
0x11000
0x11040
0x11080
0x110C0
0x11100

8
7
6

6

3
5

2
1

0x37100
0x370C0
0x37080

0x92080
0x92040
0x32FC0
0x32F80
0x32F40

4
5

8
7

0x37040
0x37000
0x92100
0x920C0

tr
an

sl
at

ed
 p

re
di

ct
io

ns
 (a

ls
o

ol
de

r
pr

ed
.)

eue selection unit

to pending translation queue

from translated addresses queue

order

to L1 prefetch queue

to L3 prefetch queue

ol
d

pe
nd

in
g

pr
ed

ic
ti

on
s

find predicted address in threshold table
if order ≤ L1 threshold
 send to L1 prefetch queue
else, if order ≤ L3 threshold
 send to L3 prefetch queue
else
 discard predicted address

Threshold table
range L1 th. L3 th.
0x00000-0x7FFFF

0x80000-0xFFFFF

4 0

4 8

local

remote

1

2

A

B

C

D

E

3

4

5

Figure 5.2.: Generic diagram of the NUMA-aware prefetching scheme.

build a NUMA-aware stride prefetcher (NASP), but the ideas should be
independent of the algorithm that is used to predict the addresses.

5.3.1. The NUMA-aware stride prefetcher

Figure 5.2 shows a generic diagram of our NASP proposal as described below.
In figure 5.3, we include an example code to explain the execution of our
proposal together with the diagram. This simple code is equivalent to a loop
that works with two vectors A and B and stores in A the sum of A and B.

Let us suppose the prefetcher is at the level 1 data cache and works with
virtual addresses, but the cache uses physical addresses. Moreover, the

73

Chapter 5. Hardware prefetching for NUMA systems

0x3140 cmp.lt r0, N ; index < N ?
0x3141 bz endloop ; end loop if false
0x3142 loop: r1 = A[r0] ; load operand 1
0x3143 r2 = B[r0] ; load operand 2
0x3144 r1 = r1 + r2 ; compute result
0x3145 A[r0] = r1 ; store result
0x3146 r0 = r0 + 1 ; increment index
0x3147 cmp.lt r0, N ; index < N ?
0x3148 bnz loop ; continue loop if true
0x3149 endloop: ; program continues

Figure 5.3.: Sample pseudo-assembly code for explaining the proposal. On
the left, the PC (program counter) is shown.

prefetcher does predictions correlated with the PC (program counter). Sup-
pose that we are using a system with pages of 4KiB and that A and B are
two arrays of 16KiB each (four pages), each element in the array occupies
one cache line and the cache lines are of 64B (i. e., each page is 64 cache
lines). Moreover, suppose also that A and B are aligned at the page level
(start virtual addresses 0x10000 and 0x20000, respectively), there are two
sockets and A is physically allocated completely in socket 0 and B in socket 1.
Finally, suppose that the code is executed by a CPU in socket 0, so accesses
to A are local and to B are remote.

Let us consider that, for both local and remote address predictions, the
L1 threshold is set to 4 prefetches and, only for remote predictions, the L3
threshold is set to 8. This means that, for any triggering address, the first
four predictions will be to the L1 and, if the predicted addresses are remote,
four predictions more will be added to the prefetch queue in the L3. This is
done this way to hide the latency of remote accesses.

Imagine we are at an iteration where r0 has a value of 60 and we are at
PC 0x3142, where the loop starts. The load will be of address 0x10F00 1 ,
and this will trigger the prefetcher to do eight predictions 2 , from 0x10F40

to 0x11100. The first three addresses, 0x10F40 to 0x10FC0, are on the same
physical page as the triggering address, so the translation is direct A and
the translation unit 3 inserts them in the translated predictions list. In the
threshold table 4 , they correspond to an address in the local range and

74

5.3. Proposal: NUMA-aware prefetching

their order is smaller than the L1 threshold, so the queue selection unit 5

sends them to the L1 prefetch queue B . The other five prefetches are on a
different page and are sent to the pending translation queue for the TLB to
respond, with their order attached C .

The execution continues, prefetches will be resolved when the system has
a slot to do the accesses. A point in time will arrive when the translations
are ready and inserted in the translated predictions list. Once they get to
the queue translation unit, the translation for 0x11000, corresponding to
the fourth prediction, will be stored in the L1 prefetch queue B because its
order is equal the L1 threshold. The other four addresses, corresponding to
the translations of 0x11040 to 0x11100, will be discarded D because they
are local to the executing CPU and farther in the future than the thresholds
for the L1 and L3 (their order is larger than both thresholds).

Similarly, once the load in PC 0x3143 is executed, the address 0x20F00

will trigger the prefetcher 1 . Like before, the prediction logic will give
eight predictions 2 , from 0x20F40 to 0x21100. The first three (0x20F40 to
0x20FC0) have a direct translation A , are below the threshold for the L1 4

and will be directly inserted into the prefetch queue of the L1 B .

However, there is a difference for the other five predicted addresses. Fol-
lowing the same process as with the previous load, once the TLB has the
translation for them, all of them will correspond to remote addresses. The
fourth, the translation for 0x21000, will go to the queue in the L1 due to the
threshold B . The last four are also remote, but their orders fall above the
threshold for the L1 and below the threshold for the L3 for remote addresses,
so the translations for 0x21040 to 0x21100 will be inserted in the queue for
the L3 E .

5.3.2. Other considerations

The number of parameters for the NUMA-aware decisions can be increased
to consider more options. For example, some prefetchers have a confidence
value and a threshold for this confidence before starting to do the predictions

75

Chapter 5. Hardware prefetching for NUMA systems

or to regulate the number of predicted addresses. A NUMA-aware prefetcher
could make an aggressive prefetching by bringing remote lines to the L3
if the confidence is still low to hide the latency of remote accesses. This
complicates the design, which is why we have not considered the parameter.
In any case, accesses that are expected in the short term will have higher
confidence than those expected to happen later.

Regarding other aspects like multithreading (i. e., SMT) or multiprogram-
ming (and the problems with context switching), where multiple threads are
sharing resources of a core, our proposal should not have a negative effect
and even have some benefits in general. NUMA-aware prefetching helps
reducing the number of prefetches in the L1 cache, thus reducing the risk of
thrashing due to having multiple threads running in the same core (higher
levels of cache have more capacity, and therefore thrashing is not such a
risk).

With respect to the use of the extra queues and buffers, their behaviour is
the same as for the already existing queues, flushing them or not in a context
switch according to the hardware implementation. Regarding the threshold
table 4 , in our evaluations the contents are hardcoded and not exposed to
the user. The thresholds could be exposed in a similar way to Intel’s MSR
x1A4 register or IBM’s DSCR to set up the prefetchers, that could have more
performance implications but that is left as future work.

5.4. Methodology

5.4.1. Simulation environment

We use the gem5 simulator with an environment as described in section 3.2.
We have modified the Prefetcher::Queued class in gem5 in order to include
the mechanism described in section 5.3, with two variants (one for the L1
cache and one for the higher-level caches). In the case of the version for
the L1 cache, if the prediction is for the same page as the triggering access,
the physical address is known by simple arithmetic and the prediction is

76

5.4. Methodology

stored either in the L1 prefetcher queue or communicated to the higher
levels according to criteria from section 5.3. If it is in a different page,
the prediction is pushed to the pending translations queue, and once the
translation is available the prefetcher decides whether it should go to the
L1 or a higher cache level. If the TLB does not have the translation, it is
simply discarded (no page walks are done), as defined in gem5 by default
for prefetches.

For the L2 and higher, the prefetcher itself just receives the messages from
the L1 prefetcher with the addresses that it should prefetch, so they are
simply pushed to the prefetch queue. The rest of the behaviour is like the
standard implementation in gem5.

To simplify the proposal, we will just consider prefetches to the L1 cache
and the last-level cache (in this case, L3).

5.4.2. Design space exploration

We evaluate our ideas by selecting some configuration points that cover
different scenarios:

• All prefetches go to the L1 cache (default).

• All prefetches go to the L3 cache.

• Some prefetches go to the L1 cache and some go to the L3 cache,
combining the following:

– For predicted local addresses, we set two constants 𝑘loc and 𝑘L1loc.
The first 𝑘L1loc predictions go to the L1 and the rest (𝑘L1loc+1,… , 𝑘loc)
go to the L3.

– For predicted remote addresses, we also set two constants 𝑘rem
and 𝑘L1rem. The first 𝑘L1rem predictions go to the L1 and the rest
(𝑘L1loc + 1,… , 𝑘loc) go to the L3.

In our executions, we set values such that 𝑘L1 ≔ 𝑘L1loc = 𝑘L1rem and 𝑘loc = 0
(only prefetching remote lines in the L3 cache, not lines in the local DRAM).

77

Chapter 5. Hardware prefetching for NUMA systems

We use the notation NASP 𝑘L1:𝑘rem to refer to these prefetching schemes.
Similarly, we use stride 𝑘L1 for a stride prefetcher in the L1. For example, in
NASP 8:64 and stride 8, we have 𝑘L1 = 8 (and 𝑘rem = 64 for NASP).

Evaluated benchmarks

We evaluate the performance of the NAS Parallel Benchmarks, presented in
section 3.3.1, in NUMA and non-NUMA simulated systems with different
prefetcher configurations. In the case of NUMA systems, using 4 sockets,
the latency for accessing data the local DRAM is 80ns. Accesses to data in
the non-local DRAM is 80ns greater for the neighbour socket, and 160ns
greater for the two farther sockets. In non-NUMA systems, all accesses have
the same latency as local accesses in the NUMA systems.

For the evaluation of the prefetchers in the NUMA system, we consider
the default configuration (all prefetches go to the L1) and our proposal
where part of the prefetches go to the L1 the rest go to the L2, depending on
different parameters. We compare the performance of these systems against
a non-NUMA system with the default prefetcher configuration, to see how
much improvement we get with our NUMA-aware scheme.

In all simulations, the MSHR queue size has at least 24 positions for the L1
and L2, and 32 for the L3, with the value increased to the prefetcher queue
size if it is larger. The queue size for the prefetcher is set to the maximum
prefetch degree plus 8, and for NASP in the L3 it is set to 𝑘rem − 𝑘L1 + 4 for
each cache slice.

5.5. Results and evaluation

In this section we show the results of the evaluation of our proposal. We start
with the results of the design space exploration presented in section 5.4.2
(section 5.5.1). We continue with the performance evaluation, not only
in terms of execution time but also of reduction in the misses and how
the proposal is affected by the NUMAness (section 5.5.2). After the general

78

5.5. Results and evaluation

performance evaluation, we do a comparison with different prefetchers from
the state of the art (section 5.5.3), we extend one of these prefetchers to use
our ideas (section 5.5.4) and finish with the evaluation of the communication
and energy costs incurred by the proposal (section 5.5.5).

5.5.1. Design space exploration

We have developed a microbenchmark that does sequential accesses to the
data in a controlled manner, using both “local” and “remote” CPUs, to evalu-
ate how the different parameters affect the executions. Thismicrobenchmark
is presented in section 5.2.

Initially, we intended to do the parameter exploration with the microbench-
mark. However, the results were unsuccessful for various reasons, mainly
due to the density of memory instructions (one memory read/write every six
instructions) and expected miss rate in a system without hardware prefetch-
ing (50% of all accesses). This forces the L1 prefetcher to do prefetches
very far in advance, which at the same time causes thrashing in the cache.
Considering the prefetches in the L3 for remote accesses, the amount of
prefetches needs to be very large (starting from 128 prefetches, the NUMA
effects are completely hidden), which are the results in figure 5.1.

When evaluating more complex applications, with many threads running
simultaneously, the stride prefetcher in the L1 already starts to give some
performance improvements. The results are detailed further in the following
section.

5.5.2. Performance evaluation

Figure 5.4 shows the performance results of the different NAS Parallel Bench-
marks (NPB) with input class A in a 4-socket NUMA system where the
latency of accesses to local DRAM is 80ns, accesses to the DRAM of the
nearby socket are 160ns (2× the local latency) and, finally, accesses to the
DRAM of the farthest sockets is 240ns. The results are normalised to stride 8.

79

Chapter 5. Hardware prefetching for NUMA systems

NPB BT
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

sp
ee

du
p

0.6
8

NPB CG

0.2
8

NPB FT NPB LU

0.7
5

NPB MG

0.3
4

NPB SP

0.5
7

geom. mean

0.5
4

stride 8
stride 24

stride 48
stride 64

NASP 8:48
NASP 8:64

NASP 8:96
NASP 24:48

NASP 24:64
NASP 24:96

no pref.
ideal

Figure 5.4.: Speedups of standard stride prefetcher configurations and our
proposal.

For the standard stride prefetchers, everything is prefetched to L1. Speedups are normalised
to stride 8 (stride prefetcher that brings 8 lines to the L1 cache). Executions are in a simulated
NUMA system like the one in table 3.1.

For most applications, except for MG, all prefetchers are far from hiding the
NUMA effects.

When we consider the standard stride prefetcher in the private L1 caches (the
first group of bars), in general there is some speedup already for stride 24
(1.06× on average) with up to 1.07× on average for stride 64. However,
bringing 64 lines to the L1 cache can be unnecessarily aggressive.

In most cases, the NASP 8:64 scheme, which does a standard stride 8 in
the L1 and brings up to 64 remote lines (1 page) to the L3, gives very good
results. It is the best on average with 1.10× speedup over stride 8 and also
has some speedup over stride 64. In comparison, NASP 24:64 has an average
speedup of 1.09× over stride 8, although for some benchmarks it gives better
performance than NASP 8:64.

Only in the case of the MG benchmark all evaluated NASP configurations
underperform the best L1 stride prefetcher, which matches the ideal case
without NUMA. In particular, NASP 8:64 (the best on average) has a spee-
dup of 1.35× while the stride 64 (best stride on average) has a speedup of
1.42× and NASP 24:64 has a speedup of 1.39×. This is because the memory
access pattern for MG is well predicted by stride prefetchers and aggressive
prefetching in the L1 improves performance without causing thrashing.

80

5.5. Results and evaluation

2 4
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

sp
ee

du
p

NPB BT

2.5 5.0

NPB CG

2 4

NPB FT

2 4

NPB LU

2.5 5.0

NPB MG

2 4

NPB SP

2 4

geom. mean

normalized issued prefetches

stride 8
stride 24

stride 48
stride 64

NASP 8:48
NASP 8:64

NASP 8:96
NASP 24:48

NASP 24:64
NASP 24:96

ideal

Figure 5.5.: Speedups vs. total number of issued prefetches (both normalised
to stride 8) at all cache levels.

In a single-socket environment, NASP 8 would behave like stride 8 and
NASP 24 would behave like stride 24, no matter the threshold for remote L3
prefetches (as long as all data is local). When manufacturing a system with
NASP, it could be set so that the threshold is 0 for the L3 when there is only
one NUMA node in the system to prevent spurious calculations.

Reduction of the issued prefetches

The purpose of our proposal is not only to have higher speedups. With NASP
there is an effective reduction in the total amount of predictions that are
issued by the prefetchers to the caches compared with other prefetchers
that achieve the same speedup. This is shown in figure 5.5, which has the
speedups of each prefetcher configuration in the 𝑌 axis against the number
of issued prefetches for all cache levels (normalised to stride 8) in the 𝑋
axis. If we only considered the prefetches issued for the L1, the NASP 8 and
NASP 24 schemes issue the same number as stride 8 and 24, respectively,
since they basically act as a stride prefetcher when not considering the
prefetches into the L3 cache.

What we take from the plots in figure 5.5 is that, on average, NASP can obtain
a similar speedup as stride 64 with just issuing 3/4 of the prefetches (using
NASP 8:64 or NASP 24:64). This is thanks to bringing remote lines to the L3,
instead of bringing all lines. Moreover, most of these prefetches will go to

81

Chapter 5. Hardware prefetching for NUMA systems

NPB BT
0

10
20
30
40
50
60
70
80
90

100
L1

 d
at

a
ca

ch
e

M
PK

I

NPB CG

12
7

NPB FT

21
5

NPB LU NPB MG

11
5

NPB SP geom. mean

stride 8
stride 24

stride 48
stride 64

NASP 8:48
NASP 8:64

NASP 24:48
NASP 24:64

no pref.
ideal

Figure 5.6.: Level 1 data cache misses per 1000 instructions.

the L3 cache instead of the L1 cache, improving the total communications
as shown in section 5.5.5.

The results are not always the same, however. For CG, the NASP configura-
tions that have similar results to the best stride prefetcher (stride 24) issue
more prefetches than that stride prefetcher. However, the difference is small
enough not to mean a big increase in the number of issued prefetches.

Reduction of the L1 cachemisses and unused prefetches

Another key result, as figure 5.6 shows, is that there is a reduction in the
misses per 1000 instructions in the L1 cache (considering only the misses
due to actual accesses from the executed code). Using NASP, just bringing 8
lines to the L1 (the NASP 8 schemes) we get MPKI values similar to bringing
24 lines using a normal stride prefetcher, and even lower in some cases. We
do not show such results for the L3 cache because the values are generally
low.

Figure 5.6 is a proof for the complex access patterns for CG and FT, compared
to the rest of the applications: they show a large number of misses per 1000
instructions in the L1 cache for any of the prefetcher configurations. In the
case of CG, it is a sparse linear algebra application. This means that memory
accesses within the application are generally irregular and stride prefetchers
make bad predictions. For this reason, prefetching too aggressively in the L1
cache can cause thrashing and NASP 8 has a lower MPKI value than NASP 24
or aggressive stride prefetchers. The high MPKI rate of stride 8 is hidden by

82

5.5. Results and evaluation

0
10
20
30
40
50
60
70

%
un

us
ed

 p
re

fe
tc

he
s i

n
L1

stride 8
stride 24

stride 48
stride 64

NASP 8:48
NASP 8:64

NASP 24:48
NASP 24:64

Figure 5.7.: Geometric mean of the percentage of unused cache lines coming
from prefetches in the L1 for different prefetcher configurations.

NASP 8 thanks to the prefetches in the L3 cache, which reduce the latency
between L1 and memory.

On the opposite side, there is MG with a very low number of misses thanks
to the regularity of its memory access patterns. The memory accesses in this
application are very regular. However it is very memory intensive as well.
As figure 5.4 showed and we mentioned in section 5.5.2, the performance
results for NASP in this application do not follow the same trend as the rest
of the applications. Being so memory intensive can mean that data needs
to arrive earlier to the L1 cache to be used, requiring a more aggressive
prefetching approach in the L1 to have the data in time. This is supported
by the L1 MPKI for MG, which in general shows fewer misses for aggressive
stride prefetchers (stride 64) than for NASP 8.

Figure 5.7 shows that NASP reduces the ratio of prefetches that are evicted
from the cache before being used (those that arrive too early to the cache or
are mispredictions) when compared to stride configurations that achieve the
same speedup. In particular, the NASP 8 configurations have less unused
prefetches (in the L1) than stride 24 and both NASP 8 and NASP 24 fall
below stride 64. This is expected because the total number of lines that are
prefetched to the L1 cache is much lower. These ratios are calculated just
considering the lines that are marked as coming from the prefetcher in the
L1. Unlike in figure 5.5, the predicted lines that are already in the cache are
not accounted for in the total prefetched lines. However, these results come
with a caveat as we explain in section 5.5.2.

83

Chapter 5. Hardware prefetching for NUMA systems

remote 140 ns
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

sp
ee

du
p

remote 160 ns remote 240 ns remote 400 ns

stride 8
stride 24

stride 64 NASP 8:64
NASP 24:64

NASP 48:128
NASP 64:128

Figure 5.8.: Speedups for various 2-socket systems with local latency of 80ns
and different remote latencies.

Each system is normalised to its execution with stride 8.

Reducing prefetches in the L1

One key observation is that reducing the latency between the L1 cache and
main memory means that prefetches arrive earlier to the cache. This has
the effect of allowing to reduce the aggressiveness of the L1 prefetcher (the
maximum prefetch depth in the case of the stride prefetcher), but at the
same time it can be a requirement to do so. Otherwise, there could be
thrashing in the cache or some prefetched lines might be discarded before
being used.

This is the reason why our NASP proposal can have lower performance
when the prefetch depth in the L1 is high compared to a standard stride
prefetcher with the same depth in the L1 for lower latencies. For instance,
figure 5.8 shows that NASP 64:128 has worse performance than stride 64 for
all latencies, when the data prefetched into the L1 should be roughly the
same among both prefetchers. This is also one of the reasons why, when we
fix the number of lines prefetched into the L1 and we increase the number
for the L3, we can see a reduction in the speedups we obtain. For reference,
figure 5.7 shows that while calculating the same amount of prefetches for
the L1 (NASP 8 or NASP 24), when increasing the prefetches in the L3 it can
happen that the proportion of unused prefetches in the L1 increases as well.

84

5.5. Results and evaluation

NPB BT
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

sp
ee

du
p

NPB CG NPB FT NPB LU NPB MG NPB SP geom. mean

stride ML 8:48
stride ML 8:64

stride ML 24:48
stride ML 24:64

AMPM
DCPT

IMP
ISB

SPP
NASP 8:64

no pref.
stride 8 basel.

Figure 5.9.: Comparison of state of the art prefetchers with our proposal.

Sensitivity to the NUMAness

There are systems in which the remote accesses have even higher latency
than in the system we have evaluated. This can often happen in systems
with more than two NUMA nodes [26, Table 2], [136, Figure 4]. Figure 5.8
shows the sensitivity of different stride and NASP prefetcher configurations
to increasing remote latencies in a dual socket system. While at small
latency differences the speedups obtained by NASP with respect to a stride 8
prefetcher are just 1.05× and not far from stride 24, as the latency grows the
benefits of using a NUMA-aware prefetcher like NASP become clearer. In
a NUMA system with various latencies, one approach like NASP can help
improve the performance as we have shown in the previous sections: the
prefetches to NUMA nodes with smaller latencies will not suffer from using
this approach and those to farther nodes can greatly benefit from it.

5.5.3. Comparison with the state of the art

Up until now, all the comparisons in this chapter have been with a standard
stride prefetcher, which is one of the prefetching techniques implemented
by vendors in a general manner. We have also evaluated our proposal against
various state-of-the-art prefetchers: access map pattern matching (AMPM)
by Ishii, Inaba and Hiraki [69], best-offset prefetcher (BOP) by Michaud [105],
delta-correlating prediction tables (DCPT) by Grannaes, Jahre and Natvig
[61], indirect memory prefetcher (IMP) by Yu et al. [163], irregular stream
buffer (ISB) by Jain and Lin [71], and signature path prefetcher (SPP) by Kim

85

Chapter 5. Hardware prefetching for NUMA systems

et al. [86]. For all prefetchers we use the implementation available on gem5
without further customisation. The results are shown in figure 5.9. BOP is
for the L2 cache, so we combine it with the stride prefetcher in the L1. The
results, however, do not show any benefit for us when compared with the
standard stride prefetchers in the L1 (without BOP in the L2). For this reason,
we have included a comparison against a multilevel prefetcher, similar to
those implemented by hardware vendors and analysed in section 5.5.3.

The prefetchers that could be contenders for NASP (1.10×) are the stride
multilevel prefetchers (1.10× for stride ML 8:64), AMPM (1.08×), and, in
some cases like the LU benchmark, SPP (0.87× on average). The rest of the
prefetchers generally show worse performance than a stride prefetcher. As
for AMPM, having a performance more on par with NASP, it has a much
more complex logic behind its ideas. Interestingly, for the MG benchmark
the performance of AMPM falls way behind NASP, achieving only 1.13×
speedup, much lower than the 1.35× speedup of NASP.

We have not compared against the programmable prefetcher by Ainsworth
and Jones [3] due to the complexity of adapting it to executions with mul-
tiple cores. With some core changes, we believe it could be reasonable to
implement NUMA-aware algorithms in this prefetcher, but this falls out of
the scope of the thesis.

Comparing with a NUMA-unawaremultilevel stride prefetcher

One of the prefetcher options implemented by vendors is to make some
of the prefetchers in the higher cache levels. Our NUMA-aware proposal
is very similar to this, with the exception that only prefetches to remote
addresses go to the last-level cache. To show that most of the benefits come
from prefetching the remote addresses and not from using the L3 cache, we
have executed experiments comparing against a multilevel stride prefetcher
(stride ML) that is like NASP but disregarding the NUMA distance of the
predicted addresses. The results are shown in figure 5.9, together with the
state of the art.

86

5.5. Results and evaluation

NPB BT
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

sp
ee

du
p

NPB CG NPB FT NPB LU NPB MG NPB SP geom. mean

AMPM NA-AMPM 4:48
NA-AMPM 4:64

NA-AMPM 8:48
NA-AMPM 8:64

NASP 8:64 no pref.

Figure 5.10.: Extending AMPM prefetcher with NUMA-aware capabilities.

In most cases, the difference between bringing just remote lines or bringing
all lines to the L3 is around 1%, needing more than three significant digits
for the speedup. This means that, in practice, NASP can give the same
performance as a stride prefetcher that brings lines to multiple cache levels
but issuing less prefetches: the number of issued prefetches is reduced
by 15% by using NASP 8:64 instead of stride ML 8:64. Only for MG the
performance of stride ML is better, the reason being that MG has very good
predictability for stride as explained in the analysis in section 5.5.2.

5.5.4. Making other prefetchers aware of NUMA

We mentioned earlier that the NUMA-aware prefetching scheme can be
applied to extend other prefetchers that generate multiple predictions. We
have extended the AMPM prefetcher, which is the best in the state of the art
for our benchmarks, to a NUMA-aware AMPM prefetcher or NA-AMPM: in
it, only some prefetches go to the L1 and the rest of the prefetches go to the
L3, but only if the predicted addresses are remote. The results are shown in
figure 5.10.

Just like AMPM performs slightly worse than NASP (1.08× vs. 1.10×) on av-
erage, the NA-AMPM proposal shows an improvement, with 1.12× speedup
with respect to stride 8. However, the results are very different depending
on the benchmark; three example cases are CG, MG and FT. For the first
one, AMPM has a performance better (1.10×) than NASP 8:64 (1.03×), but
any of the NA-AMPM 4 configurations gives 1.28× speedup, showing great

87

Chapter 5. Hardware prefetching for NUMA systems

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

no
rm

al
iz

ed
 b

yt
es

stride 8
stride 24
stride 64

AMPM
NA-AMPM 4:64
NA-AMPM 8:64

NASP 8:64
NASP 24:64
no pref.

L3 memory
L2 L3
L1 L2

Figure 5.11.: Average transferred data in the memory hierarchy, including
snoop packages, for different prefetcher configurations (norm-
alised to stride 8).

improvements thanks to being NUMA-aware. For MG the improvement of
NA-AMPM with respect to a standard AMPM prefetcher in the L1 is lower
(1.19× to 1.28×), and NASP shows much better performance thanks to the
use of the stride prefetcher underneath. Finally, FT does not show any
improvement with using a NUMA-aware AMPM with respect to AMPM, al-
though NASP gives some performance benefits to a simple stride prefetcher
in the L1.

To summarise, with these benchmarks the use of a NUMA-aware prefetcher
does not make the performance worse than a NUMA-unaware prefetcher,
on average there is some improvement and in some cases the results are
much better.

5.5.5. Cost evaluation

Data transfer

One of the goals of NASP is reducing unnecessary data transfers to obtain
a higher speedup at a lower cost. Figure 5.11 shows the normalised bytes
transferred in the memory hierarchy, on average for all the evaluated applic-
ations, and using a selection of prefetchers including NASP, stride, the best
of the state of the art (AMPM) and its NUMA-aware version (NA-AMPM).
The reduction of transferred bytes for NASP compared against prefetchers
with similar performance is very clear. NASP 8:64 transfers slightly more

88

5.5. Results and evaluation

NPB BT
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

no
rm

al
ise

d
en

er
gy

NPB CG
3.0

0
(s+

d)

NPB FT NPB LU NPB MG

2.3
1

(s+
d)

NPB SP geom. mean

1.6
1

(s+
d)

stride 8
stride 24
stride 48

stride 64
NASP 8:48
NASP 8:64

NASP 8:96
NASP 24:48
NASP 24:64

NASP 24:96
no pref.

dynamic energy
static energy

Figure 5.12.: Normalised energy consumption in the sockets (cores, L1, L2
and L3) for the different prefetchers.

bytes than stride 8 (1.05×), and that is expected because it explicitly brings
more data to the L3 cache. However, stride 24 and stride 64 bring much
more data (1.21× and 1.72×, respectively) and they generally have worse per-
formance than NASP 8:64. The same happens when considering the AMPM
prefetcher in the L1 (1.25×), which also has the disadvantage of requiring
more complex data structures. The NUMA-aware versions, NA-AMPM 4:64
and NA-AMPM 8:64, transfer more bytes than NASP 8:64 (1.11× and 1.17×,
respectively), but still less than AMPM.

In a similar way to NASP 8:64 and stride 8, the results show that NASP 24:64
brings slightly more data than stride 24 (1.27× with respect to stride 8, com-
pared to 1.21× of stride 24), but the average improvement in the performance
is better than the increase in the amount of transferred data. As it would be
expected, using no prefetcher has the least amount of communications, but
the reduction in data transfer is not that much compared to the extremely
reduced performance of the applications when not using a prefetcher even
as simple as stride 8.

Energy consumption

The results of the energy consumption evaluation can be found on figure 5.12.
The modelling has been done with McPAT [91] (and CACTI-P [92], used by
McPAT) including the modifications proposed by Xi et al. [161]. We have
considered a 22nm process technology. In the modelling, we include the

89

Chapter 5. Hardware prefetching for NUMA systems

different capacities of the queues used by the prefetchers as well as all the
communications incurred by them in the cache hierarchy. The total area
considering both sockets and the L3 caches is 45mm2 (or 27.6mm2 not
considering the L3), with a negligible difference in size between the different
evaluated prefetchers.

The results show that, in general, the energy consumed by the socket when
using NASP is not higher than for the stride prefetchers. This is not the
case for the power, as NASP has a higher power consumption. However,
this higher power consumption is hidden in the energy by the much faster
execution times as the results show. On average, NASP 8:64 and NASP 24:64
consume the same energy as stride 8, but stride 64, the stride with the best
speedup, consumes 1.02×.

5.6. Summary

In this chapter we have shown that using aNUMA-aware hardware prefetcher
can improve the performance in systems with a high NUMAness. The
ideas presented here are simple and generic and can be implemented for
different hardware prefetchers at a low cost and with simple logic. However,
prefetches are not perfect and NUMA effects cannot be completely hidden
with our proposal. Moreover, not all applications perform equally with the
same prefetcher parameters. In this regard, future work could go in the
direction of exposing the parameters to the user. With the adequate runtime
system, this could enable choosing the parameters by the runtime, like many
proposals for existing hardware have done already.

90

Chapter 6.

Task-based applications in NUMA
systems

This chapter proposes techniques at the runtime system level to further
mitigate the impact of NUMA effects on parallel applications’ performance.
Both scheduling and prefetching have a major impact in the performance
of parallel applications in NUMA systems, as shown in chapter 4. And
even though considering both aspects simultaneously achieves the best
performance, scheduling plays a major role in this improvement. This
means that doing an adequate scheduling, using the available information
from the system and modern programming models can further improve the
results.

This contribution leverages system metadata expressed in terms of a task
dependency graph, introduced in section 2.3.1, to efficiently reduce data
transfers. The presented approach adds negligible overhead and considers
the information contained in this TDG data structure to drive two techniques
applied at the runtime system level; they apply advanced graph partition-
ing algorithms to break down the TDG into several pieces or parts. These
partitions aim at minimising data transfers across the parallel system.

In summary, the contributions presented in this chapter are the following:

• Two schemes that dynamically perform graph partitioning over the
TDG: The runtime-informed partitioning with dependency easy place-
ment (RIP-DEP) and the runtime-informed partitioning with moving

91

Chapter 6. Task-based applications in NUMA systems

window (RIP-MW). Both approaches partition an initial subgraph con-
taining the firstly created tasks but propagate this partition in different
ways: RIP-DEP exploits information regarding the allocation of tasks’
input data while RIP-MW repartitions the initial TDG subgraph as new
tasks are added.

• A complete performance evaluation of the proposed techniques against
3 other methods: an expert programmer-driven policy, a locality-
unaware distributed first-in-first-out (DFIFO) approach and an imple-
mentation of a state-of-the-art technique [53, 54, 152], dependency
easy placement (DEP), that automatically schedules tasks depending
on where their input and output data are allocated. Our evaluations
consider 8 different OpenMP codes and 2 different parallel systems
with up to 288 cores. Our proposals incur minimal runtime system
overhead while keeping the parallel workloads well balanced. Our
experiments show how RIP-DEP achieves speedups of up to 1.52× and
average improvements of 1.12× on 288 cores with respect to DEP, the
best state-of-the-art approach.

• An exhaustive evaluation of the coherence traffic triggered by all the
considered approaches. The evaluation includes categories like control
traffic, which is composed of messages carrying coherence protocol
signalling activities without a data payload, and data traffic, which
is composed of messages carrying a single cache line payload. Our
coherence traffic evaluation explains the performance benefits of
our techniques as it demonstrates that RIP-DEP achieves outstanding
coherence traffic reductions of 172.2× and 2.28× on average compared
to DFIFO and DEP, respectively.

6.1. Graph partitioning

Throughout the literature [22, Section 2], the graph partitioning problem is
defined as in problem 1.

92

6.1. Graph partitioning

Problem 1 (Graph partitioning). Given a positive integer 𝑘 and an undirected
graph 𝐺 = (𝑉,𝐸) with positive edge weights 𝜔 : 𝐸 ⟶ �+, find a partition 𝛱
of the set of vertices 𝑉 composed of 𝑘 parts 𝑉𝑖 with the following properties:

1. 𝑉1 ∪⋯ ∪ 𝑉𝑘 = 𝑉 (the parts cover all the vertices),

2. 𝑉𝑖 ∩ 𝑉𝑗 = ∅ if 𝑖 ≠ 𝑗 (the parts are disjoint).

In general, we want partitions that are balanced, that is |𝑉𝑖| ≤ (1 + 𝜀)⌈|𝑉|/𝑘⌉
for some 𝜀 ≥ 0, and such that some metric is minimal. If we define the
mapping 𝜑 : 𝑉 ⟶ 1,… , 𝑘 that assigns every vertex to the partition where it
belongs, or 𝜑(𝑣) = 𝑖 if 𝑣 ∈ 𝑉𝑖 in 𝛱, we want to minimise the function

(6.1) ∑
ᵆ𝑣∈𝐸

𝜑(ᵆ)≠𝜑(𝑣)

𝜔(𝑢𝑣).

This function (6.1) is known as the edge cut of the solution and corresponds
to the total weight of the edges connecting pairs of vertices from two different
parts in 𝛱.

Under these constraints, the problem is NP-hard, but there are known al-
gorithms and heuristics for approximating it [22]. Some of the commonly
used libraries in the HPC scenario are Metis [81, 82], SCOTCH [120, 121],
Zoltan [18] andMetapart [127]. These libraries aim at reducing data transfers
across parallel distributed memory systems by statically splitting input data
like meshes or matrices.

6.1.1. Graph partitioning algorithms

In this contribution we use standard graph partitioning tools for undirected
graphs to partition the TDG of applications, which are directed acyclic
graphs. In particular, we partition the TDG in 𝑘 parts, where 𝑘 equals the
number of NUMA regions (or sockets), and use the amount of transferred
data between parts as edge cut function. While there is a wide range of
graph partitioning algorithms (exact, recursive, greedy, local search...), this
thesis makes use of a multilevel approach combined with Dual recursive

93

Chapter 6. Task-based applications in NUMA systems

bipartitioning, Fiduccia-Mattheyses and Graph growing algorithms, which
are summarised below. Complete details of these and other approaches are
described in the literature [22].

Dual recursive bipartition is one of the most basic and used methods. It is a
recursive divide-and-conquer algorithm that consists in doing a 2-partition
of the set of parts, and a 2-partition of the set of vertices and map the last
two to the pair of sets of parts. The mapping is done recursively until what
is assigned is a set of tasks to a single part. The bipartitions are done using
some heuristics that use the information from the edge weights to make
good decisions.

Rather than a partitioning/mapping algorithm, Multilevel mapping is a
scheme to do the partition in an easier way or with higher quality. It coarsens
the input graph (makes it rougher, joining vertices), then applies the parti-
tioning algorithm to the coarsened graph, projects back the partition to the
original graph and refines it. This is well shown in SCOTCH User’s Guide [122,
Figure 3].

Fiduccia-Mattheyses is a local-search algorithm extended to not stall in a
local minimum, and it is an evolution of the Kernighan-Lin method (another
algorithm using local search). Starting with a given partition, it tries to
improve it by moving vertices from one part to another or by swapping
vertices in different parts. The selection is done with the vertices that make
the edge cut decrease the most.

Graph growing algorithms are based on a breadth-first search that starts
from some seed vertices and grows the parts greedily. The parts are grown
in an order such that the next part to get a vertex is always the smallest one.
Local search is then applied to balance the load of the parts, and new seed
nodes are selected for the next step.

The ways in which we use these methods are detailed in section 6.2.3, where
we introduce and explain our proposals for reducing NUMA effects based
on graph partitioning.

94

6.2. Exploiting the task dependency graph to mitigate NUMA effects

6.2. Exploiting the task dependency graph tomitigate
NUMA effects

In order to automatically orchestrate a parallel execution while optimally
mitigating NUMA effects on large shared memory nodes, we exploit the
information contained in the TDG of the application. To do so, we consider
either techniques that analyse the TDG by means of a simple heuristic or
techniques based on advanced graph partitioning algorithms.

In order to be able to apply the proposed techniques, throughout the rest
of the work, we assume a first-touch memory placement policy and page-
aligned memory blocks. This means that a data page is physically allocated
in memory the first time it is used, and the allocation is done in the NUMA
domain of the core making the access, which is the default behaviour in a
Linux system.

6.2.1. Dependency easy placement (DEP)

By dependency easy placement (DEP), we refer to the approach proposed
by Drebes et al. [53, 54] in terms of a dynamic task and data placement
policy based on two concepts: i) deferred allocation, which implies that the
memory to store task output data is not allocated until the task placement is
known, and ii) enhanced workpushing, whichmeans that tasks are scheduled
to the NUMA region where most of their data dependencies are allocated.
A similar method is proposed by Virouleau et al. [152]. In our context, the
enhanced workpushing mechanism is implemented by means of a table
to map the dependencies to sockets kept by the runtime system. The first
address of a data dependency is used as its identifier; this way, we avoid
invoking high cost system calls to figure out the sockets where the data is
allocated. Also, data dependencies are allocated in the socket where the
first task accessing them is executed, which is equivalent to the deferred
allocation mechanism.

95

Chapter 6. Task-based applications in NUMA systems

At the time of scheduling a task, the runtime explores its dependencies and
weights the sockets using the size of the allocated dependencies (input and
output), considering a virtual extra socket for unallocated data (also weighted
using the size). Then, the task is scheduled to the socket with the highest
weight. If the highest weight is for the virtual socket (unallocated data), the
final socket is chosen via a discrete uniform distribution considering all
the sockets available to the runtime system. In case of a tie, the socket is
chosen via a discrete uniform distribution among the tied ones. Observe
that DEP can also be seen as a propagation technique: once the data is
placed physically in memory (using some kind of heuristic), tasks can be
scheduled in cores that are near the data they use to be able to consume it
faster.

This thesis demonstrates in section 6.4 how techniques based on graph
partitioning achieve better performance and dramatically reduce the amount
of data transfers carried out by techniques like the one proposed by Drebes
et al. [54].

6.2.2. Considerations about applying graph partitioning on
applications’ TDGs

To exploit the structure of the application we use graph partitioning al-
gorithms. Considering the whole TDG is not an option because partitioning
schemes target undirected graphs, which implies that they typically split
TDGs with deep task paths in a way that all potentially concurrent tasks are
assigned to the same part. Intuitively, when the graph is wide rather than
tall, the partitioning algorithm will decide that it is better to cut the edges
(i.e., partition the graph) vertically because there will be fewer edges than
horizontally. Using hypergraph partitioning software packages does not help
in our context either since they use algorithms with high computational
cost [31, 32, 83, 84] that require large distributedmemory systems to run [18].
Also, since in practice the dependency graph is built simultaneously with the
execution, the complete TDG is never available at runtime. In this context,
the natural way to proceed is operating over small task subgraphs instead of

96

6.2. Exploiting the task dependency graph to mitigate NUMA effects

over the whole TDG, that is, partitioning subgraphs and then extrapolating
this partition to the upcoming tasks following a certain policy.

6.2.3. Runtime informed partitioning (RIP)

Under the runtime informed partitioning (RIP) family of policies, task
scheduling decisions are based on graph partitioning techniques. The TDG
is built at run time by leveraging information in terms of task dependencies.
The graph is updated every time new tasks are instantiated, and partitioned
once the execution goes through a barrier point or a limit in terms of the
total number of tasks contained in the graph—called thewindow size limit—
is reached. The partitioning algorithm uses the TDG as input, weights its
edges depending on the amount of bytes they represent and assigns tasks to
a particular part (corresponding with a specific socket) taking into account
the machine NUMA distances.

In order to partition the initial subgraph, we use the dual recursive bi-
partition, the multilevel mapping and the Fiduccia-Mattheyses methods
described in section 6.1.1, and available in the SCOTCH [121] graph parti-
tioning library, version 6.0.4. The graph growing algorithm, also described
in section 6.1.1, is available within the Metapart framework [127]. We rep-
resent the target architecture as a complete graph with as many vertices
as NUMA domains, and with edge distances proportional to the NUMA
distances measured as explained at the beginning of section 6.3. For doing
the partitions, the TDG is transformed to an undirected graph for SCOTCH.
Once the complete graph that defines the target architecture is set, the
initial partition is obtained by calling SCOTCH_graphMap with the default
settings. Such default settings make use of a multilevel approach with dual
recursive bipartitioning combined with the Fiduccia-Mattheyses local search
algorithm.

We partition the initial subgraph given by the first window size tasks. The
partitioning is done asynchronously while the runtime system creates new
tasks. Once the initial subgraph has been partitioned, we consider two pos-
sible options to proceed: the first one consists in propagating the partition

97

Chapter 6. Task-based applications in NUMA systems

across the whole execution following a memory-allocation-aware policy,
which corresponds to the RIP-DEP technique. The other alternative is to
keep partitioning the different subgraphs the runtime system generates as
the execution advances, which corresponds to the RIP-MW approach. The
first technique aims at reducing the overhead due to graph partitioning as
much as possible while RIP-MW aims at dynamically adapting the TDG
partition during the parallel run. The overhead of partitioning the initial sub-
graph is small enough to be overcome by the benefits of graph partitioning
(see section 6.4 and section 6.4.4 in particular, which provide performance
results accounting for task creation and scheduling, as well as partitioning
the TDG).

When tasks are ready to run (i.e., all their input dependencies are solved)
but the partition is not done yet, they are stored in a temporary queue.
Tasks are transferred to the ready queue as soon as they have been assigned
to a socket. The temporary queue is not used often since, in general, the
partition is obtained much before the tasks are ready.

RIP with dependency easy placement (RIP-DEP)

This technique based in graph partitioning consists in propagating the
partition obtained from the initial subgraph by taking into account where
the tasks data dependencies reside. More specifically, this approach uses
DEP to propagate the partition to the rest of the graph, already described in
section 6.2.1. The main difference between DEP and RIP-DEP is the way of
doing the initial partition: while DEP does the allocation using a uniform
distribution, RIP-DEP partitions the TDG.

RIP withmoving window (RIP-MW)

In this case, the graph partitioning is performed many times throughout the
execution of the program. Once the subgraph contains a particular amount
of tasks —the window size—, or a barrier point is reached, the partitioning
algorithm is run. Once a partition is obtained, the oldest tasks are flushed

98

6.2. Exploiting the task dependency graph to mitigate NUMA effects

in
it

ia
l w

in
do

w

w
in

do
w

w
in

do
wintersection

intersection

w
in

do
w

initialization tasks

ti
m
e

Figure 6.1.: Diagram showing how RIP-MW works over time. The most relev-
ant parameters for RIP-MW are represented.

from the subgraph and a new one is built. As it is shown in section 6.4.4, the
overhead of graph partitioning is minimal (1.18% on average). Moreover,
the partitions are scheduled asynchronously as tasks, effectively overlapping
the execution of the user-level tasks with the partitioning of new subgraphs.
The user can set up the window size, an initial extra amount of tasks for the
first window and the size of the intersection between two consecutive win-
dows. This intersection is used by the partitioner to reduce the algorithmic
complexity and preserve data locality from previous partitions.

Once the initial subgraph is partitioned in the way we describe above,
RIP-MWkeeps partitioning task subgraphs by calling themethod partitionGraphSCOTCHK
from Metapart, which uses the Graph growing algorithm with support for
fixed vertices [127] in a multilevel framework combined with Fiduccia-
Mattheyses. The reason for using Graph growing is that Dual recursive bi-
partitioning methods can perform badly under fixed vertex constraints [127,
Fig. 1]. Using fixed vertices is required to exploit information from previous
partitions and avoid as much as possible the mapping of tasks to NUMA
domains distant from the data they consume.

Figure 6.1 shows the way RIP-MWworks. First, an initial subgraph composed
of the initialisation tasks plus the first window is partitioned. After this, a
new subgraph is built, including the tasks in the intersection plus the new
ones, until the window size is reached. Then, a second partition with fixed

99

Chapter 6. Task-based applications in NUMA systems

(a) uniform distrib. (b) optimal (c) RIP

Figure 6.2.: Task and data allocations into two sockets (dark and light) on
the first iteration of Gauss-Seidel (8 × 8 grid).

vertex constraints is carried out. The following subgraphs are built and
partitioned in the same way.

6.2.4. Benefits of graph partitioning

While simple heuristics based on data locality, like DEP, are able to produce
good partitions in some scenarios, in other cases they fail to optimally
partition the graph. This is especially relevant as the number of NUMA
regions in the system increases. At the same time, automatic mechanisms
based on graph partitioning can make the codes more architecture-agnostic
and easier to program than manual assignment of the tasks to the sockets.

As an example, we consider the stationary heat diffusion problem using
the iterative Gauss-Seidel method with a 4-element stencil (top, bottom,
left, right) in an 8 × 8 regular grid, which corresponds to the Gauss-Seidel
application later described in section 6.3.1. Each task operates over one
cell of the grid. In each iteration, computations over every cell depend on
the data of the four neighbouring cells, the algorithm execution follows
a wavefront scheme in the direction of the main diagonal, and tasks in
the same anti-diagonal are independent between them. For this reason,
when targeting two sockets, the optimal partition consists in dividing the
domain along the main diagonal. As a result, at each instant, half of the
anti-diagonal can be executed in a different socket. Figure 6.2 shows the
allocation of the data and the corresponding tasks for Gauss-Seidel for a

100

6.2. Exploiting the task dependency graph to mitigate NUMA effects

(a) uniform distribution + DEP (b) programmer-given partition (op-
timal)

(c) RIP-DEP

Figure 6.3.: Task dependency graph corresponding to three iterations of the
Gauss-Seidel code comparing a uniform distribution placement
with locality awareness (DEP) to a programmer-given partition
and the RIP-DEP technique in a two-socket system.

discrete uniform placement (e.g., DEP), the explained optimal partition and
using a RIP method (equivalent for all RIP proposals in the case of the first
iteration).

Figure 6.3 shows the same partitions expressed at the TDG level on three
iterations of Gauss-Seidel. Clearly, data transfers among tasks assigned to
different sockets are minimised in the expert programmer-given partition
and the one obtained via graph partitioning (RIP-DEP): the graphs are cut
almost vertically, increasing parallelism while grouping neighbouring tasks
in the same socket. In contrast, the DEP approach produces a sub-optimal

101

Chapter 6. Task-based applications in NUMA systems

partition, with more edges connecting different parts. The implications of
these results in terms of the total performance are detailed in section 6.4.

6.2.5. Assumptions of the proposals

Our proposals make some general assumptions. First of all, the system
needs to have a first-touch policy with local allocation, the default in the
Linux kernel, and data blocks have to be initialised in page-aligned addresses
using tasks in order to take full benefit from this first-touch policy. In the
case of the RIP-MW techniques, barriers in the middle of a window of tasks
may reduce the quality of the subgraph to partition since no new tasks are
created after a barrier until all previous tasks have finished. As such, this
technique benefits from a reasonably high ratio of tasks per barrier point.
The RIP-DEP and RIP-MW methods need the user to set the window size
as a parameter for the runtime. This is simple to achieve as intuition and
experiments show that it is enough to include the initialisation tasks and the
first couple of computation phases of the application (iterations in the case of
iterative algorithms). An alternative solution is to apply existing techniques
of automatic detection of the phases [27] and use this information to decide
at execution time what is a correct window size. Another possible approach
is editing the application source code by making a call to the runtime system
API indicating that the partition must be done at the specific point of the
call.

6.3. Experimental environment

We do the evaluations in the large ccNUMA systems presented in sec-
tion 3.1.1. In all cases, we use the OpenMP programming model with a cus-
tomised Nanos++ v0.10 runtime system and the companion Mercurium 2.0.0
(rev. c5a91d5) compiler [10, 145]. In the case of programs that need LAPACK,
we use the open-source implementation from OpenBLAS 0.2.19 [112, 154]
compiled for each architecture. Threading of the library is disabled so as
not to interfere with OpenMP.

102

6.3. Experimental environment

6.3.1. Manual scheduling and graphwindows

This section describes the configuration for the scheduling of the paral-
lel codes considered in this chapter, as well as the annotations for the
programmer-driven scheduling using the Socket-aware (SA) scheduler, de-
scribed in section 6.4. We test our proposals by considering the task-based
benchmarks presented in section 3.3.1

For the Conjugate gradient (CG), the manual scheduling assigns tasks to
sockets in a round-robin fashion. The window size corresponds to all tasks
belonging to a single iteration. When applying the RIP-MW technique, the
intersection is equivalent to half iteration.

In Gauss-Seidel the graph follows a wavefront shape, as shown in figure 6.3.
The source-code-level annotations divide the columns contiguously into as
many groups as NUMA domains. The window size covers the tasks of three
iterations, with an intersection of a whole iteration for RIP-MW.

For Integral histogram, the vertical and horizontal halos used for the re-
duction of the histograms are allocated in a round-robin fashion, in both
dimensions. The image data and scan tasks are assigned to a socket in a
round-robin manner using the column identifier so that they match with
the corresponding vertical halos for the programmer-driven scheduling. For
the schedulers based on graph partitioning, the window size corresponds to
the tasks of two iterations, with an intersection of a whole iteration.

In Jacobi, the source code level annotations for assigning the blocks of
columns to a socket follow a round-robin approach. The double-buffer
nature of Jacobi gives an embarrassingly parallel algorithm inside every
iteration with a very symmetric TDG, hence it becomes simple to partition
in contrast to the Gauss-Seidel code that solves the same problem. The
window size includes the tasks of two iterations, with an intersection of a
whole iteration.

InNStream, the user-level annotations for the NUMA-aware scheduler assign
each array and the related tasks to a socket following a round-robin approach,

103

Chapter 6. Task-based applications in NUMA systems

effectively assigning every array to a single NUMA node. The window size is
5𝑁 and the intersection is 2𝑁.

The QR factorisation manual scheduling assigns the blocks in a round-robin
fashion using the row identifier, while the subsequent tasks are assigned
where most blocks reside (using the row identifier). The window size is
equivalent to the total number of blocks the matrix is broken into and the
intersection considered by RIP-MW corresponds to two rows of blocks.

ForRed-Black, the source-code-level annotations defining themanual schedul-
ing divide the columns contiguously into as many groups as NUMA domains,
like in Gauss-Seidel. Similarly, the window size is for the tasks of three itera-
tions, with an intersection of a whole iteration for RIP-MW.

Finally, for Symmetric matrix inversion (SMI) we use the tiled task decom-
position of the dense linear algebra version and the manual NUMA-aware
scheduling as described by al-Omairy et al. [111], using LAPACK. The win-
dow size corresponds to the tasks of the lower triangle of the matrix (it is
symmetric), with an intersection of half a triangle.

6.4. Evaluation

In this section we evaluate the performance of the proposed mechanisms
considering the eight applications and two platforms described in section 6.3.
Our evaluation considers five different scheduling techniques:

• Distributed First-In First-Out (DFIFO), unaware of data locality. In this
technique, each thread has its own ready queue and tasks are assigned
to threads in a round-robin manner. When the queue of a thread is
empty, it applies a work stealing mechanism to get tasks from other
threads.

• Socket Aware (SA) scheduler, which is driven by a partition expressed
in terms of annotations at the source code level done by an expert pro-
grammer. SA makes use of an API call that specifies the precise socket

104

6.4. Evaluation

where tasks should run. The specific annotations of each benchmark
are explained in section 6.3.1.

• The DEP approach, which is described in section 6.2 and represents
the current state-of-the-art. All results reported in this section are
normalised against DEP.

• Our two proposals based on graph partitioning algorithms: RIP-DEP
and RIP-MW.

For every application, platform and method we repeat each experiment
five times. In all speedup plots shown, values are averaged among the
different repetitions and normalised to DEP (horizontal line at 1.0). Bar
height represents the mean value, a horizontal thick line is the median,
and error bars show the standard deviation. For each system configuration
we include a plot of the geometric mean computed over the arithmetic
means of the eight benchmarks. Our experiments are run with the following
four configurations: On 24 cores of the UV100, using 8 cores per socket
and 3 sockets (2 in the same blade, 1 in a different blade); on 32 cores of
the bullion S16, using 8 cores per socket and 4 sockets (1 per module); on
32 cores of the bullion S16, using 4 cores per socket and 8 sockets (1 per
module), and, finally, on all 288 cores of the bullion S16, using 18 cores per
socket and 16 sockets (2 per module).

6.4.1. SGI Altix UV100

For the SGI Altix UV100 machine, we have done experiments using 3 sock-
ets and 24 cores in total. All parallel runs use two sockets in the same
blade (which communicate via QPI) and a third one from a different blade,
although not a distant one. Results are shown in figure 6.4. On average,
RIP-DEP achieves speedups of 1.03× over the DEP baseline, RIP-MW only
gets up to 0.84×, while the scheduling policies driven by an expert program-
mer (SA) provide a 1.13× speedup. On the other hand, the locality-unaware
scheduler DFIFO has a general underperformance (0.45×) except in the
Symmetric matrix inversion (1.10×). The relatively small benefits shown

105

Chapter 6. Task-based applications in NUMA systems

Conj. gradient
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.4 0.3

Gauss-Seidel
0.5

Integral histog.
0.4

Jacobi
0.3

NStream
0.3

QR factor.
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.7

1.5

Red-Black
0.5

Symm. mat. inv. Geom. mean
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.5

DFIFO RIP-MW RIP-DEP SA (expert progr.) DEP (baseline)

Figure 6.4.: Speedup results in the SGI Altix UV100 using 3 sockets, 24 cores.
DFIFO is locality-unaware, SA is manual, the rest are automatic
methods.

by RIP-DEP with respect to the DEP baseline are explained by the reduced
number of NUMA domains, just three, considered in the experiments run
in the UV100 machine.

However, even though the average benefits of RIP-DEP over DEP in the
UV100 machine are small, there are some specific cases for which they are
significant: for instance, in Jacobi the automatic partition using RIP-DEP
achieves a 1.19× speedup over DEP and RIP-MW goes up to 1.18×. The
benefit with RIP-DEP is more noticeable in larger machines such as the
bullion S16, presented in section 6.4.2, as the number of NUMA regions
increases.

6.4.2. Atos Bull bullion S16

In the case of the Atos Bull bullion S16 machine we provide experiments
considering 4 sockets (32 cores), 8 sockets (32 cores) and the full system
(16 sockets and 288 cores). Overall, the results in the Atos Bull bullion S16
system show how RIP-DEP provides average performance improvements of
1.08× on 4 sockets, 1.16× on 8 sockets and 1.12× on 16 sockets with respect
to the state-of-the-art. RIP-MW achieves very similar improvements on

106

6.4. Evaluation

Conj. gradient
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.6

Gauss-Seidel
0.5

Integral histog.
0.4

Jacobi
0.4

NStream
0.4

1.4 1.4

QR factor.
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.7

1.6

Red-Black
0.6

Symm. mat. inv.
0.7

Geom. mean
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.5

DFIFO RIP-DEP SA (expert progr.) DEP (baseline)

Figure 6.5.: Speedup results in the bullion S16 using 4 sockets, 32 cores.
DFIFO is locality-unaware, SA is manual, the rest are automatic
methods.

the experiments involving 4 and 8 sockets (i.e. 32 cores), as section 6.4.1
shows. In the case of 288 cores, RIP-MW provides worse performance
than RIP-DEP since the frequent graph partitions become a significant
performance bottleneck. For readability purposes, the RIP-MW technique
does not appear on the experiments regarding the Atos Bull bullion S16
system.

Using four sockets

Results using four sockets in the bullion S16 system are shown in figure 6.5.
Under this configuration, the average speedup obtained using RIP-DEP is of
1.08× with respect to DEP. As in the Altix machine presented in section 6.4.1,
the execution times of an expert programmer-driven schedule (SA) attain
a 1.13× speedup when compared with DEP. The naive DFIFO gets 0.51×
performance degradation with respect to the state-of-the-art DEP approach.

RIP-DEP behaves better than the DEP baseline for the Conjugate gradient
and Gauss-Seidel applications (1.05× improvement for both application) and
much better for the Red-Black, Jacobi and NStream parallel codes (1.09×,
1.15× and 1.45×, respectively). These results are explained by the good

107

Chapter 6. Task-based applications in NUMA systems

Conj. gradient
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

Gauss-Seidel Integral histog.
0.4

Jacobi
0.4

NStream
0.5

1.8 1.7

QR factor.
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

Red-Black Symm. mat. inv.
0.8

Geom. mean
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.7

DFIFO RIP-DEP SA (expert progr.) DEP (baseline)

Figure 6.6.: Speedup results in the bullion S16 using 8 sockets, 32 cores.
DFIFO is locality-unaware, SA is manual, the rest are automatic
methods.

structure of the task graphs of these codes, which benefit from partitioning
the initial subgraph and, at the same time, the iterative access pattern to the
blocks of data allows for a good locality-aware propagation. In particular,
Jacobi shows very good performance under this system configuration for
RIP-DEP, with a higher performance than the programmer-driven partition
(SA, achieving a speedup of 1.09×).

Using eight sockets

Results with eight sockets, in figure 6.6, display larger speedups of the
RIP-DEP approach with respect to DEP than previous scenarios. Here,
RIP-DEP attains an average speedup of 1.16× over DEP, which is matched
by the expert programmer-driven partition.

Under this setting is where RIP-DEP obtains the highest benefit for Gauss-
Seidel and Red-Black (1.26× and 1.18×, respectively). For the Integral histo-
gram, the executions are somewhat slower using RIP-DEP than DEP (0.91×).
The benchmark operates on a 2D domain and accumulates results in both
dimensions, which creates horizontal and vertical data dependencies across
tasks, which forces the partitioning algorithm to split the TDG in a way that

108

6.4. Evaluation

Conj. gradient
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

1.5

Gauss-Seidel
0.3

Integral histog.
0.3 0.8

Jacobi
0.5

1.4

NStream
0.2

1.5 1.5

QR factor.
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.4

1.8

Red-Black
0.3

Symm. mat. inv.
0.2 0.6

Geom. mean
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.4

DFIFO RIP-DEP SA (expert progr.) DEP (baseline)

Figure 6.7.: Speedup results in the bullion S16 using all 16 sockets, 288 cores.
DFIFO is locality-unaware, SA is manual, the rest are automatic
methods.

the execution of some parallel tasks is serialised. However, as section 6.4.3
shows, combining both graph partitioning and a locality-aware propagation
(RIP-DEP) significantly reduces data movement with respect to DEP in the
case of the Integral histogram application.

Full system

Results when using all the 288 cores of the bullion S16 system are shown
in figure 6.7. The input set of some applications is increased to achieve
good scalability on 288 cores (e.g., CG). When running on all cores of the
bullion S16 system, the RIP-DEP approach achieves a remarkable average
speedup of 1.12× with respect to the state-of-the-art DEP technique. For
Jacobi, RIP-DEP achieves an outstanding 1.43× speedup over DEP, only
surpassed by NStream, which achieves a speedup of 1.52× when using
RIP-DEP due to its simple graph.

When using all cores of the bullion S16 system, the expert programmer-
driven partition (SA) obtains an average speedup of 1.19× with respect to
DEP. While in some cases (e.g., QR factorisation) the non-automatic expert-
driven SA partition achieves better performance than the automatic RIP-DEP

109

Chapter 6. Task-based applications in NUMA systems

CONTROL DATA

DFIFO RIP-DEP SA DEP
0

50
100
150
200
250
300

tr
an

sf
er

 (G
B

)
28 TB

(a) Gauss-Seidel
DFIFO RIP-DEP SA DEP

0
20
40
60
80

100
120

tr
an

sf
er

 (G
B

)

4.6 TB

(b) Integral histogram
Figure 6.8.: Coherence traffic to and from the BCS for selected applications

using 32 cores in 8 sockets in the bullion S16.

method, in the case of the Symmetric matrix inversion code the policy driven
by the expert programmer performs poorly. Symmetric matrix inversion’s
TDG is so complex that a proper partition needs to know where data are
allocated, which is impossible to be statically determined unless very simple
memory allocation policies are applied, which do not provide performance
benefits either. For all settings, the SA technique applied to the Symmetric
matrix inversion code performs below the DEP baseline, which shows the
need for dynamic and automatic methodologies in the case of very complex
TDGs.

6.4.3. Reduction of coherence traffic within the bullion S16 Machine

This section provides an evaluation of the coherence traffic triggered within
the bullion S16 system by all the 5 approaches considered in this chapter.
This evaluation demonstrates how the RIP-DEPmethod we propose achieves
remarkable reductions of coherence traffic. The bullion platform uses a soph-
isticated ccNUMA architecture composed of sets of 2 sockets grouped into
entities called modules. The Bull Coherence Switch (BCS) [6], a proprietary
ASIC, manages the inter-module interface and enables scaling up to a max-
imum of 8 modules (i.e., 16 sockets of Intel Xeon CPUs) in a single shared
memory system. We use the measurement capabilities of the BCS to provide
a precise analysis of the coherence traffic [24, 26]. We divide the coherence
traffic in the system into two categories: data messages, which carry a single
cache line payload, and control messages, which carry coherence protocol
signalling activities without a data payload.

110

6.4. Evaluation

Figure 6.8 shows the differences in data transfer to and from the BCS for
Gauss-Seidel and Integral histogram. Results are obtained in the bullion S16
running with 8 sockets. We have data for the other 6 applications, though we
do not display them since they are qualitatively equivalent to the ones we
show. When compared with the DEP baseline, SA and RIP-DEP achieve signi-
ficant reductions in total coherence traffic of 1.99× and, 1.74×, respectively,
in the case of Gauss-Seidel. Similarly, SA and RIP-DEP transfer 4.79× and
3.00× less data, respectively, in the case of Integral histogram. On average,
using the geometric mean, SA and RIP-DEP achieve reductions of 3.08×
and 2.28× with respect to DEP. These results clearly show the superiority
of RIP-DEP over DEP as it dramatically reduces DEP’s coherence traffic to
similar levels to the partitions done by an expert programmer.

6.4.4. Load imbalance and overhead

We measure the overhead and load imbalance incurred by the different
methods. Results are calculated using

(6.2) 𝐿𝐵 =
∑𝑖∈threads useful time of thread 𝑖

max𝑖∈threads {useful time of thread 𝑖} ⋅ #threads
⋅ 100

for the load balance, where the useful time of a thread is the total time the
thread is executing user-level tasks. The overhead (𝑂𝐻) is defined as the
percentage of time running runtime system routines over the wall clock
time and the graph partitioning overhead (𝐺𝑃), included in 𝑂𝐻, is the same
ratio restricted to graph partitioning procedures. table 6.1 reports maximum,
minimum and mean results computed over the eight applications described
in section 6.3 running on the UV100.

Although its lack of data locality awareness makes DFIFO worse than the
other approaches in terms of performance, it achieves the best load balance
and the smallest runtime overhead with an average of 96.1% and 1.77%,
respectively. RIP-DEP achieves very well balanced partitions, with an average
of 88.7%. The cost of doing an initial partition and propagating is, on
average, equivalent to 3.02% of the total execution time. In the case of

111

Chapter 6. Task-based applications in NUMA systems

Table 6.1.: Load balance (LB), runtime overheads (OH) and graph partition-
ing overheads (GP) in the SGI Altix UV100 using three sockets (as
percentages, %).

mean min. max.

DFIFO LB 96.1 78.7 99.5
OH 1.77 0.02 8.07

RIP-MW
LB 90.8 85.5 97.7
OH 3.02 0.05 6.33
GP 1.18 0.01 3.44

RIP-DEP
LB 88.7 79.7 94.9
OH 3.02 0.03 13.44
GP 0.030 0.000 0.089

SA LB 92.9 86.9 99.2
OH 3.84 0.03 23.28

DEP LB 86.5 69.9 98.3
OH 3.12 0.04 12.71

RIP-MW repartitioning can slightly improve load balancing (90.8%). Overall,
our proposals incur minimal overheads and do not produce unbalanced
partitions in the considered applications.

6.4.5. Adding pagemigrationmechanisms

In figure 6.9, we show experiments adding page migration mechanisms to
the automatic locality-aware proposals (DEP, RIP-DEP and RIP-MW). These
mechanisms take care of moving the physical memory pages that contain
the output data of the tasks to the socket that hosts the core executing the
task. As the figure shows, page migration does not give benefit in general
and is detrimental in many cases. This is mainly the case when not much
data is written, which makes the migration an unnecessary overhead.

In the particular case of the QR factorisation benchmark, however, RIP-MW
with page movement is the only automatic approach with positive results
(1.12×). In order to understand this, consider the shape of the graph, which
is a triangle pointing downwards similar to the Cholesky graph from list-
ing 2.1, and the way RIP-MW advances, shown in figure 6.1. The partitioning

112

6.5. Summary

Conj. gradient
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.3 0.2

Gauss-Seidel
0.6 0.6 0.2

Integral histog.
0.5

Jacobi NStream

QR factor.
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

Red-Black
0.7 0.7 0.3

Symm. mat. inv.
0.6 0.7

Geom. mean
0.8
0.9
1.0
1.1
1.2
1.3

sp
ee

du
p

0.7 0.7

RIP-MW RIP-DEP DEP (baseline) RIP-MW+pm RIP-DEP+pm DEP+pm

Figure 6.9.: Speedup results in the SGI Altix UV100 using 3 sockets, 24 cores,
with page migration mechanisms (marked as pm).

algorithms generally aim at clustering connected tasks, so the first window
is partitioned as three blocks (as many as sockets). At the same time, the QR
algorithm does each step by working on an element of the diagonal, applying
it to the rest of the matrix and discarding the whole row and column of
that element afterwards. This means that load balancing mechanisms used
by the graph partitioning algorithms schedule tasks created in consecutive
windows in such a way that inter-socket data movement is sometimes un-
avoidable. For this reason, migrating the pages helps overcoming the remote
accesses and makes sure that, when future partitions use the intersection,
the sockets where the tasks are executed are the ones containing the data.

6.5. Summary

This chapter shows how graph partitioning methods can be leveraged to
improve performance of parallel shared memory codes as well as to reduce
data transfers across the system. The benefits of automatic approaches
based on graph partitioning overcome the state-of-the-art without requiring
expert programmer hints to drive the scheduling decisions.

113

Chapter 6. Task-based applications in NUMA systems

Future work will go in the direction of taking even more advantage of the
structure of the graph. The partitioner will be extended to get better perform-
ance with RIP-MW, which has the potential for achieving further perform-
ance improvements in applications that drastically change the structure of
their TDG on runtime.

114

Chapter 7.

Conclusions

This thesis has presented a range of techniques leveraging information
already captured in modern architectures and task-based programming
models. These techniques tackle the challenges of scaling the memory hier-
archy to service ever larger core counts in ccNUMA systems. This chapter
details the main conclusions from the contributions of this thesis and then
outlines the possibilities for future research they suggest. Finally, this chapter
lists the publications resulting from this thesis and acknowledges the finan-
cial and technical support that made it possible.

7.1. Goals and contributions

The developments of HPC systems in the last couple of decades have opened
many fronts. The stagnation of frequency scaling has implied the need to
have multicore systems, with more and more cores every time. At the same
time, this ever growing number of cores needs to have access to a large
amount of memory, and to keep the benefits of using a single shared address
space one solution have been NUMA systems, particularly with groups of
cores having some memory as local and being able to access it faster than
the rest of the memory. While this can help reduce the gap between the
computation speed and the memory access speed when accessing the local
memory, accesses to remote memory are much slower and can have a huge

115

Chapter 7. Conclusions

performance penalty. This hurts the programmability of such systems when
the intent is to make software with as much performance as possible.

This thesis has provided three contributions to help reduce the gap between
local and remote accesses in NUMA systems, by means of both software and
hardware improvements in a transparent way for the programmers in these
systems. The sections below provide the conclusions of the contributions in
this thesis.

7.1.1. Performance and configurationmodels for interactions
between NUMA and hardware prefetchers

Although hardware prefetchers are designed to reduce the access latency in
general by filling the caches with the needed data beforehand, not just in
NUMA systems, the results in the first contribution show that their perform-
ance benefits can vary highly with the thread scheduling and data allocation.
Similarly, although scheduling and allocation play a very important role in
the performance of applications in NUMA systems, the best policies can
change depending on the underlying hardware prefetcher configuration.
This contribution proves that there is a significant performance benefit from
optimising the NUMA configuration (parallelism, and placement of threads
andmemory pages) simultaneously with hardware prefetcher configurations
(L1, L2).

The main issue is that the design space is very large. The solution we present
builds a performance model and uses two reaction-based performance
counter configurations (combinations of NUMA+Prefetcher and perform-
ance counters) in each system, which allow our model to make accurate
predictions of the best configuration for each application while reducing the
number of configurations the model has to choose among without losing
performance.

The tainting of the models can be done in a new system by reusing input
data from another system. This approach can be applied for online profiling

116

7.1. Goals and contributions

and optimisation to deliver an average of 1.68× performance increase over
a NUMA-locality-optimised baseline with all prefetchers enabled.

7.1.2. Hardware prefetching for NUMA systems

Considering that hardware prefetchers can show a different behaviour
(performance-wise) in NUMA systems depending on the optimisations
for NUMA, as illustrated in the first contribution, the second contribution
tries to solve this issue by means of a NUMA-aware hardware prefetching
technique. This is a general scheme that can be used with different prefetch-
ing algorithms and uses the cache hierarchy, with larger capacity at the
higher levels, to hide the latency of remote accesses.

The evaluation of the proposal is done with gem5, a cycle-accurate architec-
tural simulator, in a two-socket NUMA system, proposing a simple stride
prefetcher that is aware of NUMA effects. This NUMA-aware stride prefetcher
(NASP) achieves a 1.30× speedup on average when compared to a standard
stride prefetcher or 1.10× speedup against the best-performing state-of-the-
art prefetcher. Since the NUMA-aware scheme is general enough, other
prefetchers can be adapted to be NUMA-aware without much complexity.
In the case of the best prefetcher in the state of the art, its NUMA-aware
version has a speedup of 1.06× compared to the NUMA-unaware version.

7.1.3. Task-based applications in NUMA systems

One of the trends to ease the programmability of parallel systems is task-
based programming, with OpenMP and OmpSs being two great examples of
programming models that support this abstraction. In these programming
models, parallel applications can be mapped to a directed acyclic graph with
sequential code in the nodes, called tasks, and using the edges when there
are data dependencies between two tasks. This changes the way scheduling
works in a system, making it more difficult to build a model like in the first
contribution but allowing for more flexibility when scheduling the tasks
(instead of the threads) and allocating the data.

117

Chapter 7. Conclusions

The third contribution of the thesis provides different methodologies to use
graph partitioning in order to schedule task-based applications in NUMA
systems, leveraging all the information available in the runtime system about
the application and the underlying NUMA characteristics. The benefits of
automatic approaches based on graph partitioning overcome the state-of-
the-art without requiring expert programmer hints to drive the scheduling
decisions. This approach attains performance improvements up to 1.52×
and average improvements of 1.12× with respect to the best state-of-the-
art approach for scheduling task-based applications when deployed on a
288-core shared-memory system with 16 NUMA nodes.

7.2. Future work

The work presented in this thesis suggests many possible avenues for future
work. Detailed below are three which stand out as of particular potential.

• NUCA-aware hardware prefetching and task scheduling. In the work
presented in this thesis we consider NUMA effects in a system with
multiple processors. The same principles can be applied to large-
scale multicore processors that suffer from non-uniform cache access
(NUCA) effects. In these systems, the shared cache is divided in blocks
that can be accessed faster by some cores than others, and usually
there is associativity that allows addresses to be in different blocks of
the cache.

Scheduling threads in the various CPUs sharing a NUCA cache can
have performance impacts depending on how they share data, and so
can prefetching impact the performance as well when predicting an
access that can be migrated from cache block to make the (predicted)
access faster. Building a model that helps scheduling the threads
and choosing the configuration for the prefetchers in NUCA systems
is a natural step forward from the first contribution of this thesis.
Similarly, a NUCA-aware prefetcher could potentially request for data
more aggressively when it is in a ”far” higher-level cache block, or it

118

7.2. Future work

could predict when to move the data between cache blocks so that it is
where it is needed. Finally, for task-based applications like in the third
contribution, graph partitioning could be used to decide in which
CPU core (or group of cores, if they have the same access latency to a
cache block) to maximise the reuse of a cache block for an address
and minimise the latency due to NUCA.

• Runtime-driven management of coherence islands. The contributions
in this thesis all build upon a fully cache coherent baseline. As compute
unit parallelisation and specialisation proceeds, memory hierarchies
are likely to add features which break the coherent paradigm, such
as scratchpad memories, disjoint memory spaces and coherence is-
lands within multicore processors. The contributions developed in
this thesis are interesting in such non-coherent hardware also. The
second and third contributions in this thesis are also applicable to
settings where shared memory abstractions are provided across dis-
joint memory spaces attached to specialised heterogeneous compute
units, or where islands of coherence are implemented among groups
of cores to enhance scalability in homogeneous architectures.

• Hardware acceleration of TDG partitioning. As discussed in the third
contribution of this thesis, the execution time overhead of partitioning
the TDG of regular HPC architectures is reduced. However, with the
ongoing trend towards fine-grain tasking, the size of the TDG will
significantly increase, increasing the overhead of TDG partitioning.
We believe that an interesting future work could consist in designing
a custom hardware accelerator to perform such task. This accelerator
could be a stand-alone accelerator or an enhanced extension of a
vector processing unit or a general purpose CPU via ISA extensions.
Incorporating such accelerator in the exploding RISC-V ecosystem
could be also very interesting.

119

Chapter 7. Conclusions

7.3. Publications

This section lists below the publications that resulted from the work on this
thesis.

• Isaac Sánchez Barrera, Marc Casas, and Miquel Moretó. NUMA-
Aware Hardware Prefetching. Under submission.

• Isaac Sánchez Barrera, David Black-Schaffer, Marc Casas, Miquel
Moretó, Anastasiia Stupnikova, and Mihail Popov: Modeling and op-
timizing NUMA effects and prefetching with machine learning. Pro-
ceedings of the 34th International Conference on Supercomputing
(ICS), 2020: pages 34:1-34:13.

• Alejandro Rico, Isaac Sánchez Barrera, José A. Joao, Joshua Randall,
Marc Casas, and Miquel Moretó: On the Benefits of Tasking with
OpenMP. Proceedings of the 15th International Workshop on OpenMP
(IWOMP), 2019, pages 217-230.

• Isaac Sánchez Barrera, Miquel Moretó, Eduard Ayguadé, Jesús Lab-
arta, Mateo Valero, and Marc Casas: Reducing Data Movement on
Large Shared Memory Systems by Exploiting Computation Dependen-
cies. Proceedings of the 32nd International Conference on Supercom-
puting (ICS), 2018, pages 207-217.

• Isaac Sánchez Barrera, Marc Casas, Miquel Moretó, Eduard Ayguadé,
Jesús Labarta, and Mateo Valero: Graph partitioning applied to DAG
scheduling to reduce NUMA effects. Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2018, pages 419-420.

7.4. Financial and technical support

This thesis has been supported by the Spanish Government (Severo Ochoa
grants SEV2015-0493), by the Spanish Ministry of Science and Innovation

120

7.4. Financial and technical support

(contracts TIN2015-65316-P), by the Generalitat de Catalunya (contracts
2017-SGR-1414 and 2017-SGR-1328), by the RoMoL ERC Advanced Grant
(grant agreement 321253) and the European HiPEAC Network of Excellence.
The Mont-Blanc project receives funding from the EU’s H2020 Framework
Programme (H2020/2014-2020) under grant agreement numbers 671697
and 779877.

I. Sánchez Barrera has been partially supported by the Spanish Ministry
of Education, Culture and Sport under fellowship number FPU15/03612,
and by the Spanish Ministry of Science, Innovation and Universities under
fellowship number EST18/00799.

121

Bibliography

[1] John A. Ackley. Whirlwind. In: Encyclopedia of Computer Science.
Ed. by Edwin D. Reilly, Anthony Ralston and David Hemmendinger.
4th ed. Chichester, UK: John Wiley and Sons, Ltd., 2003, pp. 1847–
1848. ISBN: 978-0-470-86412-8.

[2] Charles W. Adams and P. A. Fox. Notes on the logical design of digital
computers and on special coding techniques. Based on lectures given
by Charles W. Adams as part of a special MIT course: 6.68 - Practice
in the Use of Digital Computers. Massachusetts Institute of Techno-
logy. Cambridge, MA, US, 1951. URL: http://www.bitsavers.org/
pdf/mit/whirlwind/Notes_on_the_Logical_Design_of_Digital_

Computers_and_on_Special_Coding_Techniques_1951.pdf (vis-
ited on 23/04/2021).

[3] Sam Ainsworth and Timothy M. Jones. ‘An Event-Triggered Pro-
grammable Prefetcher for Irregular Workloads’. In: Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’18. New
York, NY, USA: ACM, 2018, pp. 578–592. ISBN: 978-1-4503-4911-6.
https://doi.org/10.1145/3173162.3173189.

[4] Lluc Alvarez, Miquel MoretÃ³, Marc Casas, Emilio Castillo, Xavier
Martorell, Jesús Labarta, Eduard AyguadÃ© and Mateo Valero.
‘Runtime-Guided Management of Scratchpad Memories in Multicore
Architectures’. In: 2015 International Conference on Parallel Archi-
tecture and Compilation. PACT 2015 (San Francisco, CA, US, Oct.
2015). Piscataway, NJ, US: IEEE Press, Mar. 2016, pp. 379–391. ISBN:
978-1-4673-9524-3. https://doi.org/10.1109/PACT.2015.26.

123

http://www.bitsavers.org/pdf/mit/whirlwind/Notes_on_the_Logical_Design_of_Digital_Computers_and_on_Special_Coding_Techniques_1951.pdf
http://www.bitsavers.org/pdf/mit/whirlwind/Notes_on_the_Logical_Design_of_Digital_Computers_and_on_Special_Coding_Techniques_1951.pdf
http://www.bitsavers.org/pdf/mit/whirlwind/Notes_on_the_Logical_Design_of_Digital_Computers_and_on_Special_Coding_Techniques_1951.pdf
https://doi.org/10.1145/3173162.3173189
https://doi.org/10.1109/PACT.2015.26

Bibliography

[5] Lluc Alvarez, Lluís Vilanova, Miquel Moreto, Marc Casas, Marc
GonzÃ€lez, XavierMartorell, NachoNavarro, Eduard AyguadÃ© and
Mateo Valero. ‘Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures’.
In: Proceedings of the 42nd Annual International Symposium on
Computer Architecture. ISCA ’15 (Portland, Oregon, June 2015). New
York, NY, US: Association for Computing Machinery, 2015, pp. 720–
732. ISBN: 978-1-4503-3402-0. https://doi.org/10.1145/2749469.
2750411.

[6] Bull bullion S16 Technical Specifications. Technical specifications.
URL: https : / / bull . com / wp - content / uploads / 2016 / 08 / f -
bullion_s16_e7v3-en2_web.pdf.

[7] Grant Ayers, Heiner Litz, Christos Kozyrakis and Parthasarathy
Ranganathan. ‘Classifying Memory Access Patterns for Prefetch-
ing’. In: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’20. New York, NY, USA: Association for Comput-
ing Machinery, Mar. 2020, pp. 513–526. ISBN: 978-1-4503-7102-5.
https://doi.org/10.1145/3373376.3378498.

[8] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan and S.K. Weeratunga.
‘The Nas Parallel Benchmarks’. In:The International Journal of Super-
computing Applications 5.3 (Sept. 1991), pp. 63–73. ISSN: 0890-2720.
https://doi.org/10.1177/109434209100500306.

[9] David H. Bailey, E. Barszcz, John T. Barton, D. S. Browning,
R. L. Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O. Frederickson
, Tom A. Lasinski, Robert S. Schreiber, Horst D. Simon, V.
Venkatakrishnan and Sisira K. Weeratunga. ‘The NAS Parallel
Benchmarks — Summary and Preliminary Results’. In: Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing. Supercomput-
ing ’91 (Albuquerque, New Mexico, US, Aug. 1991). New York, NY,

124

https://doi.org/10.1145/2749469.2750411
https://doi.org/10.1145/2749469.2750411
https://bull.com/wp-content/uploads/2016/08/f-bullion_s16_e7v3-en2_web.pdf
https://bull.com/wp-content/uploads/2016/08/f-bullion_s16_e7v3-en2_web.pdf
https://doi.org/10.1145/3373376.3378498
https://doi.org/10.1177/109434209100500306

US: Association for Computing Machinery, 1991, pp. 158–165. ISBN:
978-0-89791-459-8. https://doi.org/10.1145/125826.125925.

[10] Jairo Balart, Alejandro Duran, Marc GonzÃ€lez, Xavier Martorell,
Eduard AyguadÃ© and Jesús Labarta. ‘Nanos Mercurium: A Research
Compiler for OpenMP’. In: 6th European Workshop on OpenMP.
EWOMP 2004. Oct. 2004, pp. 103–109. URL: http://people.ac.
upc.edu/eduard/papers/paper_a31.pdf.gz.

[11] Adrián Barredo, Adrià Armejach, Jonathan C. Beard and Miquel
MoretÃ³. ‘PLANAR: A Programmable Accelerator for Near-Memory
Data Rearrangement’. In: Proceedings of the 35th ACM International
Conference on Supercomputing. ICS ’21 (virtual event, US, June 2021).
New York, NY, US: Association for Computing Machinery, 2021. ISBN:
978-1-4503-8335-6. https://doi.org/10.1145/3447818.3460368.

[12] Adrián Barredo, Juan M. Cebrian, Miquel MoretÃ³, Marc Casas and
Mateo Valero. ‘Improving Predication Efficiency through Compac-
tion/Restoration of SIMD Instructions’. In: 2020 IEEE International
Symposium on High Performance Computer Architecture. HPCA 2020
(San Diego, CA, US, Feb. 2020). Piscataway, NJ, US: IEEE Press, 2020,
pp. 717–728. ISBN: 978-1-7281-6149-5. https://doi.org/10.1109/
HPCA47549.2020.00064.

[13] David Beniamine, Matthias Diener, Guillaume Huard and Philippe
O. A. Navaux. ‘TABARNAC: Visualizing and Resolving Memory Access
Issues on NUMA Architectures’. In: Proceedings of the 2nd Workshop
on Visual Performance Analysis. VPA ’15 (Austin, TX, US, Nov. 2015).
New York, NY, US: Association for Computing Machinery, 2015. ISBN:
978-1-4503-4013-7. https://doi.org/10.1145/2835238.2835239.

[14] Peter Bergner, Brian Hall, Alon Shalev Housfater, Madhusudanan
Kandasamy, Tulio Magno, Alex Mericas, Steve Munroe, Mauricio
Oliveira, Bill Schmidt, Will Schmidt, Bernard King Smith, Julian
Wang, Suresh Warrier and David Wendt. Performance Optimiz-
ation and Tuning Techniques for IBM Power Systems Processors In-
cluding IBM POWER8. 2nd ed. RedBooks. Poughkeepsie, NY, US:
IBM Corp., Aug. 2015. xx+248. ISBN: 978-0-7384-4092-7. URL: https:

125

https://doi.org/10.1145/125826.125925
http://people.ac.upc.edu/eduard/papers/paper_a31.pdf.gz
http://people.ac.upc.edu/eduard/papers/paper_a31.pdf.gz
https://doi.org/10.1145/3447818.3460368
https://doi.org/10.1109/HPCA47549.2020.00064
https://doi.org/10.1109/HPCA47549.2020.00064
https://doi.org/10.1145/2835238.2835239
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf

Bibliography

//www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf (visited
on 23/04/2021).

[15] Jim Beveridge and Bob Wiener. Multithreading Applications in
Win32: The Complete Guide to Threads. Boston, MA, US: Addison-
Wesley Longman Publishing Co., Inc., 1997. ISBN: 978-0-201-44234-2.

[16] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis.
Princeton University, Jan. 2011.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li.
‘The PARSEC Benchmark Suite: Characterization and Architectural
Implications’. In: Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques. Oct. 2008.
https://doi.org/10.1145/1454115.1454128.

[18] Erik Boman, Karen Devine, Lee Ann Fisk, Robert Heaphy, Bruce
Hendrickson, Vitus Leung, Courtenay Vaughan, Ümit V. Ã⁄atalyÃ¼rek
, Doruk Bozdag andWilliam Mitchell. Zoltan. Sandia Na-
tional Laboratories. 1999. URL: http://www.cs.sandia.gov/Zoltan.

[19] Greg Bronevetsky, John Gyllenhaal and Bronis R. De\bibnamedelima Supinski .
‘CLOMP: Accurately Characterizing OpenMP Application Overheads’.
In: Proceedings of the 4th International Conference on OpenMP in a
New Era of Parallelism. IWOMP ’08. West Lafayette, Indiana, USA:
Springer, 2008, pp. 13–25. ISBN: 978-3-540-79560-5. https://doi.
org/10.1007/978-3-540-79561-2_2.

[20] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-
André Wacrenier and Raymond Namyst. ‘ForestGOMP: an efficient
OpenMP environment for NUMA architectures’. In: International
Journal of Parallel Programming 38.5 (2010), pp. 418–439. ISSN: 1573-
7640. https://doi.org/10.1007/s10766-010-0136-3.

[21] Iulian Brumar, Marc Casas, Miquel MoretÃ³, Mateo Valero and
Gurindar S. Sohi. ‘ATM: ApproximateTaskMemoization in the Runtime
System’. In: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium. IPDPS 2017 (Orlando, FL, US, May–June 2017).
Piscataway, NJ, US: IEEE Press, 2017, pp. 1140–1150. ISBN: 978-1-
5386-3914-6. https://doi.org/10.1109/IPDPS.2017.49.

126

https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf
https://doi.org/10.1145/1454115.1454128
http://www.cs.sandia.gov/Zoltan
https://doi.org/10.1007/978-3-540-79561-2_2
https://doi.org/10.1007/978-3-540-79561-2_2
https://doi.org/10.1007/s10766-010-0136-3
https://doi.org/10.1109/IPDPS.2017.49

[22] Aydın BuluÃ§, Henning Meyerhenke, Ilya Safro, Peter Sanders
and Christian Schulz. ‘Recent Advances in Graph Partitioning’. In:
Algorithm Engineering: Selected Results and Surveys. Ed. by Lasse
Kliemann and Peter Sanders. Vol. 9220. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2016, pp. 117–158.
ISBN: 978-3-319-49486-9. https://doi.org/10.1007/978-3-319-
49487-6_4.

[23] Alfredo Buttari, Julien Langou, Jakub Kurzak and Jack Dongarra.
‘Parallel Tiled QR Factorization for Multicore Architectures’. In: Con-
curr. Comput. Pract. Exp. 20.13 (July 2008), pp. 1573–1590. ISSN: 1532-
0626. https://doi.org/10.1002/cpe.1301.

[24] Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Miquel
MoretÃ³ and Marc Casas. ‘Reducing Cache Coherence Traffic with a
NUMA-Aware Runtime Approach’. In: IEEE Transactions on Parallel
and Distributed Systems 29.5 (2018), pp. 1174–1187. ISSN: 1045-9219.
https://doi.org/10.1109/TPDS.2017.2787123.

[25] Paul Caheny, Lluc Alvarez,Mateo Valero,MiquelMoretÃ³ andMarc
Casas. ‘Runtime-Assisted Cache Coherence Deactivation in Task
Parallel Programs’. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis.
SC ’18 (Dallas, TX, US, Nov. 2018). Piscataway, NJ, US: IEEE Press,
Mar. 2019. ISBN: 978-1-5386-8384-2. https://doi.org/10.1109/SC.
2018.00038.

[26] Paul Caheny,Marc Casas,MiquelMoretÃ³, Hervé Gloaguen,Maxime
Saintes, Eduard AyguadÃ©, Jesús Labarta and Mateo Valero. ‘Re-
ducing Cache Coherence Traffic with Hierarchical Directory Cache
and NUMA-Aware Runtime Scheduling’. In: Proceedings of the 2016
International Conference on Parallel Architectures and Compilation.
PACT ’16 (Haifa, IR, Sept. 2016). New York, NY, US: Association for
Computing Machinery, 2016, pp. 275–286. ISBN: 978-1-4503-4121-9.
https://doi.org/10.1145/2967938.2967962.

127

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1002/cpe.1301
https://doi.org/10.1109/TPDS.2017.2787123
https://doi.org/10.1109/SC.2018.00038
https://doi.org/10.1109/SC.2018.00038
https://doi.org/10.1145/2967938.2967962

Bibliography

[27] Marc Casas, Rosa M. Badia and Jesús Labarta. ‘Automatic Phase
Detection and Structure Extraction of MPI Applications’. In:The Inter-
national Journal of High Performance Computing Applications 24.3
(Aug. 2010), pp. 335–360. ISSN: 1094-3420. https://doi.org/10.
1177/1094342009360039.

[28] Marc Casas, Miquel MoretÃ³, Lluc Alvarez, Emilio Castillo, Di-
mitrios Chasapis, Timothy Hayes, Luc Jaulmes, Oscar Palomar,
Osman Unsal, Adrián Cristal, Eduard AyguadÃ©, Jesús Labarta and
Mateo Valero. ‘Runtime-Aware Architectures’. In: Euro-Par 2015:
Parallel Processing. 21st International Conference on Parallel and
Distributed Computing. Euro-Par 2015 (Vienna, AT, 2015). Lecture
Notes in Computer Science 9233. Berlin and Heidelberg, DE: Springer,
Aug. 2015, pp. 16–27. ISBN: 978-3-662-48096-0. https://doi.org/
10.1007/978-3-662-48096-0_2.

[29] Emilio Castillo, Lluc Ã•lvarez, Miquel MoretÃ³, Marc Casas, En-
rique Vallejo, José Luis Bosque, Ramón Beivide and Mateo Valero.
‘Architectural Support for Task Dependence Management with Flex-
ible Software Scheduling’. In: 2018 IEEE International Symposium
on High Performance Computer Architecture. HPCA 2018 (Vienna,
AT, Feb. 2018). Piscataway, NJ, US: IEEE Press, 2018, pp. 283–295.
https://doi.org/10.1109/HPCA.2018.00033.

[30] Emilio Castillo, Miquel Moreto, Marc Casas, Lluc Alvarez, En-
rique Vallejo, Kallia Chronaki, Rosa Badia, Jose Luis Bosque, Ra-
mon Beivide, Eduard Ayguade, Jesus Labarta and Mateo Valero.
‘CATA: Criticality Aware Task Acceleration for Multicore Processors’.
In: 2016 IEEE International Parallel and Distributed Processing Sym-
posium). IPDPS 2016 (Chicago, IL, US, May 2016). Piscataway, NJ,
US: IEEE Press, 2016, pp. 413–422. ISBN: 978-1-5090-2140-6. https:
//doi.org/10.1109/IPDPS.2016.49.

[31] Ümit V. Ã⁄atalyÃ¼rek. PaToH Graph Partitioner. 2011. URL: http :
//www.cc.gatech.edu/~umit/software.html%5C#patoh.

128

https://doi.org/10.1177/1094342009360039
https://doi.org/10.1177/1094342009360039
https://doi.org/10.1007/978-3-662-48096-0_2
https://doi.org/10.1007/978-3-662-48096-0_2
https://doi.org/10.1109/HPCA.2018.00033
https://doi.org/10.1109/IPDPS.2016.49
https://doi.org/10.1109/IPDPS.2016.49
http://www.cc.gatech.edu/~umit/software.html%5C#patoh
http://www.cc.gatech.edu/~umit/software.html%5C#patoh

[32] Ümit V. Ã⁄atalyÃ¼rek and Cevdet Aykanat. ‘Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multiplica-
tion’. In: IEEE Trans. Parallel Distrib. Syst. 10.7 (July 1999), pp. 673–
693. ISSN: 1045-9219. https://doi.org/10.1109/71.780863.

[33] John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla,
Michael F. P. O'Boyle, Grigori Fursin and Olivier Temam. ‘Automatic
Performance Model Construction for the Fast Software Exploration
of New Hardware Designs’. In: Proceedings of the 2006 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems. CASES ’06. Seoul, Korea: ACM, 2006, pp. 24–34. ISBN: 978-1-
59593-543-4. https://doi.org/10.1145/1176760.1176765.

[34] Charm++ Programming Model. 2016. URL: http://charmplusplus.
org/.

[35] Dimitrios Chasapis, Marc Casas, Miquel MoretÃ³, Martin Schulz,
Eduard AyguadÃ©, Jesus Labarta andMateo Valero. ‘Runtime-Guided
Mitigation of Manufacturing Variability in Power-Constrained Multi-
Socket NUMA Nodes’. In: Proceedings of the 2016 International Con-
ference on Supercomputing. ICS ’16 (Istanbul, TR, June 2016). New
York, NY, US: Association for Computing Machinery, 2016. ISBN: 978-
1-4503-4361-9. https://doi.org/10.1145/2925426.2926279.

[36] Dimitrios Chasapis, Miquel MoretÃ³, Martin Schulz, Barry Rountree
, Mateo Valero and Marc Casas. ‘Power Efficient Job Scheduling
by Predicting the Impact of Processor Manufacturing Variability’. In:
Proceedings of the ACM International Conference on Supercomputing.
ICS ’19 (Phoenix, AZ, US, June 2019). New York, NY, US: Association
for Computing Machinery, 2019, pp. 296–307. ISBN: 978-1-4503-6079-
1. https://doi.org/10.1145/3330345.3330372.

[37] Sanjay Chatterjee, Nick Vrvilo, Zoran Budimlic, Kathleen Knobe
and Vivek Sarkar. ‘Declarative Tuning for Locality in Parallel Pro-
grams’. In: 45th International Conference on Parallel Processing. ICPP
2016. IEEE, Aug. 2016, pp. 452–457. https://doi.org/10.1109/
ICPP.2016.58.

129

https://doi.org/10.1109/71.780863
https://doi.org/10.1145/1176760.1176765
http://charmplusplus.org/
http://charmplusplus.org/
https://doi.org/10.1145/2925426.2926279
https://doi.org/10.1145/3330345.3330372
https://doi.org/10.1109/ICPP.2016.58
https://doi.org/10.1109/ICPP.2016.58

Bibliography

[38] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW.
Sheaffer, Sang-Ha Lee and Kevin Skadron. ‘Rodinia: A Benchmark
Suite for Heterogeneous Computing’. In: Proceedings of the 2009 IEEE
International Symposium on Workload Characterization. IISWC ’09.
Austin, Texas, USA: IEEE, 2009, pp. 44–54. ISBN: 978-1-4244-5156-2.
https://doi.org/10.1109/IISWC.2009.5306797.

[39] Tien-Fu Chen and Jean-Loup Baer. ‘Effective hardware-based data
prefetching for high-performance processors’. In: IEEE Transactions
on Computers 44.5 (May 1995), pp. 609–623. ISSN: 0018-9340. https:
//doi.org/10.1109/12.381947.

[40] Kallia Chronaki, Alejandro Rico, Rosa M. Badia, Eduard AyguadÃ©,
Jesús Labarta and Mateo Valero. ‘Criticality-Aware Dynamic Task
Scheduling for Heterogeneous Architectures’. In: Proceedings of the
29th ACM on International Conference on Supercomputing (New-
port Beach, CA, US, June 2015). New York, NY, US: Association for
Computing Machinery, 2015, pp. 329–338. ISBN: 978-1-4503-3559-1.
https://doi.org/10.1145/2751205.2751235.

[41] Henry Cook, Miquel MoretÃ³, Sarah Bird, Khanh Dao, David A.
Patterson and Krste AsanoviÄ⁄. ‘A Hardware Evaluation of Cache
Partitioning to Improve Utilization and Energy-EfficiencyWhile Pre-
serving Responsiveness’. In: Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture. ISCA ’13. Tel-Aviv,
Israel: ACM, 2013, pp. 308–319. ISBN: 978-1-4503-2079-5. https://
doi.org/10.1145/2485922.2485949.

[42] Idriss Daoudi, Philippe Virouleau,Thierry Gautier, Samuel Thibault
and Olivier Aumage. ‘sOMP: Simulating OpenMP Task-Based Applic-
ations with NUMA Effects’. In: OpenMP: Portable Multi-Level Paral-
lelism on Modern Systems. Ed. by Kent Milfeld, Bronis R. de Supinski,
Lars Koesterke and Jannis Klinkenberg. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 197–211.
ISBN: 978-3-030-58144-2. https://doi.org/10.1007/978-3-030-
58144-2_13.

130

https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/12.381947
https://doi.org/10.1109/12.381947
https://doi.org/10.1145/2751205.2751235
https://doi.org/10.1145/2485922.2485949
https://doi.org/10.1145/2485922.2485949
https://doi.org/10.1007/978-3-030-58144-2_13
https://doi.org/10.1007/978-3-030-58144-2_13

[43] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien
Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema and Mark
Roth. ‘Traffic Management: A Holistic Approach to Memory Place-
ment on NUMA Systems’. In: Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’13 (Houston, Texas, US, Apr. 2013). New
York, NY, US: Association for Computing Machinery, 2013, pp. 381–
394. ISBN: 978-1-4503-1870-9. https://doi.org/10.1145/2451116.
2451157.

[44] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna
and Christian Le. ‘RAPL: Memory Power Estimation and Capping’. In:
Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design. ISLPED ’10. Austin, Texas, USA: ACM,
2010, pp. 189–194. ISBN: 978-1-4503-0146-6. https://doi.org/10.
1145/1840845.1840883.

[45] Peter J. Denning. ‘Virtual Memory’. In: ACM Computing Surveys 2.3
(Sept. 1970), pp. 153–189. ISSN: 0360-0300. https://doi.org/10.
1145/356571.356573.

[46] Peter J. Denning. Virtual memory. In: Encyclopedia of Computer
Science. Ed. by Edwin D. Reilly, Anthony Ralston and David Hem-
mendinger. 4th ed. Chichester, UK: JohnWiley and Sons, Ltd., 2003,
pp. 1832–1835. ISBN: 978-0-470-86412-8.

[47] Nicolas Denoyelle, Brice Goglin, Emmanuel Jeannot and Thomas
Ropars. ‘Data and Thread Placement in NUMA Architectures: A Stat-
istical Learning Approach’. In: Proceedings of the 48th International
Conference on Parallel Processing. ICPP 2019 (Kyoto, JP, Aug. 2019).
New York, NY, US: Association for Computing Machinery, 2019. ISBN:
978-1-4503-6295-5. https://doi.org/10.1145/3337821.3337893.

[48] Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Philippe
O. A. Navaux and Israel Koren. ‘Affinity-Based Thread and Data
Mapping in Shared Memory Systems’. In: ACM Computing Surveys
49.4 (Dec. 2016). ISSN: 0360-0300. https://doi.org/10.1145/
3006385.

131

https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/3337821.3337893
https://doi.org/10.1145/3006385
https://doi.org/10.1145/3006385

Bibliography

[49] Matthias Diener, Eduardo H.M. Cruz, Philippe O.A. Navaux, An-
selm Busse and Hans-Ulrich HeiÃ�. ‘KMAF: Automatic Kernel-Level
Management of Thread and Data Affinity’. In: Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation.
PACT ’14 (Edmonton, AB, Canada, Aug. 2014). New York, NY, US:
Association for Computing Machinery, 2014, pp. 277–288. ISBN: 978-
1-4503-2809-8. https://doi.org/10.1145/2628071.2628085.

[50] Matthias Diener, EduardoHMCruz, Laércio L. Pilla, FabriceDupros
and Philippe O.A. Navaux. ‘Characterizing communication and page
usage of parallel applications for thread and data mapping’. In: Per-
formance Evaluation (June 2015), pp. 18–36. ISSN: 0166-5316. https:
//doi.org/10.1016/j.peva.2015.03.001.

[51] Vladimir DimiÄ⁄, Miquel MoretÃ³, Marc Casas, Jan Ciesko and Mateo
Valero. ‘RICH: Implementing Reductions in the Cache Hierarchy’.
In: Proceedings of the 34th ACM International Conference on Super-
computing. ICS ’20 (Barcelona, ES, June 2020). New York, NY, US:
Association for ComputingMachinery, 2020. ISBN: 978-1-4503-7983-0.
https://doi.org/10.1145/3392717.3392736.

[52] Vladimir DimiÄ⁄, Miquel MoretÃ³, Marc Casas and Mateo Valero.
‘Runtime-Assisted Shared Cache Insertion Policies Based on Re-
reference Intervals’. In: Euro-Par 2017: Parallel Processing. 23rd Inter-
national Conference on Parallel and Distributed Computing. Euro-
Par 2017 (Santiago de Compostela, ES, Aug.–Sept. 2017). Ed. by Fran-
cisco F. Rivera, Tomás F. Pena and José C. Cabaleiro. Lecture Notes in
Computer Science 10417. Cham, CH: Springer International Publish-
ing, 2017, pp. 247–259. ISBN: 978-3-319-64203-1. https://doi.org/
10.1007/978-3-319-64203-1_18.

[53] Andi Drebes, Karine Heydemann, Nathalie Drach, Antoniu Pop and
Albert Cohen. ‘Topology-Aware and Dependence-Aware Scheduling
and Memory Allocation for Task-Parallel Languages’. In: ACM Trans-
actions on Architure and Code Optimization 11.3 (2014), p. 30. ISSN:
1544-3566. https://doi.org/10.1145/2641764.

132

https://doi.org/10.1145/2628071.2628085
https://doi.org/10.1016/j.peva.2015.03.001
https://doi.org/10.1016/j.peva.2015.03.001
https://doi.org/10.1145/3392717.3392736
https://doi.org/10.1007/978-3-319-64203-1_18
https://doi.org/10.1007/978-3-319-64203-1_18
https://doi.org/10.1145/2641764

[54] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen and
Nathalie Drach. ‘Scalable Task Parallelism for NUMA: A Uniform
Abstraction for Coordinated Scheduling and Memory Management’.
In: Proceedings of the 2016 International Conference on Parallel Archi-
tectures and Compilation. PACT ’16 (Haifa, IR, Sept. 2016). New York,
NY, US: ACM, 2016, pp. 125–137. ISBN: 978-1-4503-4121-9. https:
//doi.org/10.1145/2967938.2967946.

[55] Juan J Durillo, Philipp Gschwandtner, Klaus Kofler and Thomas
Fahringer. ‘Multi-Objective region-Aware optimization of parallel
programs’. In: Parallel Computing 83 (2019), pp. 3–21. https://doi.
org/10.1016/j.parco.2018.03.010.

[56] Alexandre E. Eichenberger, JohnMellor-Crummey,Martin Schulz,
Michael Wong, Nawal Copty, Robert Dietrich, Xu Liu, Eugene Loh
and Daniel Lorenz. ‘OMPT: An OpenMP Tools Application Program-
ming Interface for Performance Analysis’. In: OpenMP in the Era of
Low Power Devices and Accelerators. Ed. by Alistair P. Rendell, Barbara
M. Chapman and Matthias S. Müller. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2013, pp. 171–185. ISBN: 978-3-
642-40698-0. https://doi.org/10.1007/978-3-642-40698-0_13.

[57] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa
M. Badia, Eduard Ayguade, Jesus Labarta and Mateo Valero. ‘Task
Superscalar: An Out-of-Order Task Pipeline’. In: Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO-43 (Atlanta, GA, US, Dec. 2010). Piscataway, NJ,
US: IEEE Press, 2010, pp. 89–100. ISBN: 978-0-7695-4299-7. https:
//doi.org/10.1109/MICRO.2010.13.

[58] Michael J. Flynn. ‘Very high-speed computing systems’. In: Proceed-
ings of the IEEE 54.12 (1966), pp. 1901–1909. https://doi.org/10.
1109/PROC.1966.5273.

[59] Victor Garcia, Alejandro Rico, Carlos Villavieja, Paul Carpenter,
Nacho Navarro and Alex Ramirez. ‘Adaptive Runtime-Assisted Block
Prefetching on Chip-Multiprocessors’. In: International Journal of

133

https://doi.org/10.1145/2967938.2967946
https://doi.org/10.1145/2967938.2967946
https://doi.org/10.1016/j.parco.2018.03.010
https://doi.org/10.1016/j.parco.2018.03.010
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1109/PROC.1966.5273

Bibliography

Parallel Programming 45.3 (1st June 2017), pp. 530–550. ISSN: 1573-
7640. https://doi.org/10.1007/s10766-016-0431-8.

[60] Constantino GÃ³mez, Francesc MartÃ�nez, Adrià Armejach, Miquel
MoretÃ³, Filippo Mantovani and Marc Casas. ‘Design Space Ex-
ploration of Next-Generation HPC Machines’. In: 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium. IPDPS 2019
(Rio de Janeiro, BR, May 2019). IEEE Press, 2019, pp. 54–65. https:
//doi.org/10.1109/IPDPS.2019.00017.

[61] Marius Grannaes, Magnus Jahre and Lasse Natvig. ‘Multi-Level
Hardware Prefetching Using Low Complexity Delta Correlating Pre-
dictionTables with Partial Matching’. In:High Performance Embedded
Architectures and Compilers. Ed. by Yale N. Patt, Pierfrancesco Foglia,
Evelyn Duesterwald, Paolo Faraboschi and Xavier Martorell. HiPEAC
2010. Berlin, Heidelberg: Springer, 2010, pp. 247–261. ISBN: 978-3-
642-11515-8. https://doi.org/10.1007/978-3-642-11515-8_19.

[62] Thomas Grass, César Allande, Adrià Armejach, Alejandro Rico,
Eduard AyguadÃ©, Jesus Labarta, Mateo Valero, Marc Casas and
Miquel MoretÃ³. ‘MUSA: A Multi-Level Simulation Approach for
Next-Generation HPC Machines’. In: Proceedings of the International
Conference for High Performance Computing,Networking, Storage and
Analysis. SC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 526–537.
ISBN: 978-1-4673-8815-3. https://doi.org/10.1109/SC.2016.44.

[63] Jason Hiebel, Laura E. Brown and ZhenlinWang. ‘Machine Learning
for Fine-Grained Hardware Prefetcher Control’. In: Proceedings of
the 48th International Conference on Parallel Processing. ICPP 2019
(Kyoto, JP, Aug. 2019). New York, NY, US: Association for Computing
Machinery, 2019. ISBN: 978-1-4503-6295-5. https://doi.org/10.
1145/3337821.3337854.

[64] Rodney E. Hooker, Douglas R. Reed, John Michael Greer and Colin
Eddy. ‘Multiple Data PrefetchersThat Defer to One Another Based on
Prefetch Effectiveness by Memory Access Type’. US9817764B2. Nov.
2017. URL: https://patents.google.com/patent/US9817764B2/en
(visited on 14/05/2020).

134

https://doi.org/10.1007/s10766-016-0431-8
https://doi.org/10.1109/IPDPS.2019.00017
https://doi.org/10.1109/IPDPS.2019.00017
https://doi.org/10.1007/978-3-642-11515-8_19
https://doi.org/10.1109/SC.2016.44
https://doi.org/10.1145/3337821.3337854
https://doi.org/10.1145/3337821.3337854
https://patents.google.com/patent/US9817764B2/en

[65] Rodney E. Hooker, Douglas R. Reed, John Michael Greer and Colin
Eddy. ‘Prefetching with Level of Aggressiveness Based on Effect-
iveness by Memory Access Type’. US10387318B2. Aug. 2019. URL:
https://patents.google.com/patent/US10387318B2/en (visited
on 14/05/2020).

[66] Rich Hornung, Jeff Keasler and Maya Gokhale. Hydrodynamics
Challenge Problem. Tech. rep. LLNL-TR-490254. Livermore, CA, US:
Lawrence Livermore National Laboratory, July 2011, pp. 1–17. URL:
https://computing.llnl.gov/projects/co-design/spec-7.pdf.

[67] Connor Imes, Steven Hofmeyr, Dong In D. Kang and John Paul Walters
. ‘A Case Study andCharacterization of aMany-Socket,Multi-Tier
NUMA HPC Platform’. In: IEEE/ACM 6th Workshop on the LLVM Com-
piler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarch-
ical Parallelism for Exascale Computing (HiPar). Virtual event: IEEE
Press, Nov. 2020. https://doi.org/10.1109/LLVMHPCHiPar51896.
2020.00013.

[68] International Business Machines Corporation . IBM System/360
System Summary. 13th ed. IBM Corp. Poughkeepsie, NY, US, 1974.
URL: http://bitsavers.org/pdf/ibm/360/systemSummary/GA22-
6810-12_360sysSumJan74.pdf (visited on 23/04/2021).

[69] Yasuo Ishii, Mary Inaba and Kei Hiraki. ‘Access Map Pattern Match-
ing for High PerformanceData Cache Prefetch’. In: Journal of Instruction-
Level Parallelism 13 (Jan. 2011), p. 24. ISSN: 1942-9525. URL: https:
//www.jilp.org/vol13/v13paper3.pdf.

[70] Ashok Jagannathan, Prabhat Jain, Krishna N. Vinod and Avinash
Sodani. ‘Instruction and Logic for Prefetcher Throttling Based on
Counts of Memory Accesses to Data Sources’. US9507596B2. Nov.
2016. URL: https://patents.google.com/patent/US9507596B2/en
(visited on 14/05/2020).

[71] Akanksha Jain and Calvin Lin. ‘Linearizing Irregular Memory Ac-
cesses for Improved Correlated Prefetching’. In: Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitec-
ture. MICRO-46. New York, NY, USA: Association for Computing

135

https://patents.google.com/patent/US10387318B2/en
https://computing.llnl.gov/projects/co-design/spec-7.pdf
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00013
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00013
http://bitsavers.org/pdf/ibm/360/systemSummary/GA22-6810-12_360sysSumJan74.pdf
http://bitsavers.org/pdf/ibm/360/systemSummary/GA22-6810-12_360sysSumJan74.pdf
https://www.jilp.org/vol13/v13paper3.pdf
https://www.jilp.org/vol13/v13paper3.pdf
https://patents.google.com/patent/US9507596B2/en

Bibliography

Machinery, Dec. 2013, pp. 247–259. ISBN: 978-1-4503-2638-4. https:
//doi.org/10.1145/2540708.2540730.

[72] Luc Jaulmes, Marc Casas, Miquel MoretÃ³, Eduard AyguadÃ©, Jesús
Labarta and Mateo Valero. ‘Exploiting Asynchrony from Exact For-
ward Recovery for DUE in Iterative Solvers’. In: Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. SC ’15 (Austin, TX, US, Nov. 2015). New
York, NY, US: Association for Computing Machinery, 2015. ISBN: 978-
1-4503-3723-6. https://doi.org/10.1145/2807591.2807599.

[73] Luc Jaulmes, Miquel MoretÃ³, Eduard AyguadÃ©, Jesús Labarta,
Mateo Valero and Marc Casas. ‘Asynchronous and Exact Forward
Recovery for Detected Errors in Iterative Solvers’. In: IEEE Transac-
tions on Parallel and Distributed Systems 29.9 (2018), pp. 1961–1974.
ISSN: 1045-9219. https://doi.org/10.1109/TPDS.2018.2817524.

[74] Luc Jaulmes, Miquel MoretÃ³, Mateo Valero and Marc Casas. ‘A
Vulnerability Factor for ECC-protected Memory’. In: 2019 IEEE 25th
International Symposium on On-Line Testing and Robust System
Design. IOLTS 2019 (Rhodes, GR, July 2019). Piscataway, NJ, US:
IEEE Press, Oct. 2019, pp. 176–181. ISBN: 978-1-7281-2490-2. https:
//doi.org/10.1109/IOLTS.2019.8854397.

[75] Luc Jaulmes, Miquel MoretÃ³, Mateo Valero, Mattan Erez andMarc
Casas. ‘Runtime-Guided ECC Protection Using Online Estimation of
MemoryVulnerability’. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
SC ’20 (Atlanta, GA, US, Nov. 2020). Piscataway, NJ, US: IEEE Press,
2020. ISBN: 978-1-7281-9998-6. https://doi.org/10.1109/SC41405.
2020.00080.

[76] Victor JimÃ©nez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu
, Pradip Bose and Francis P. O'Connell. ‘Making Data
Prefetch Smarter: Adaptive Prefetching on POWER7’. In: Proceedings
of the 21st International Conference on Parallel Architectures and
Compilation Techniques. PACT ’12. Minneapolis, Minnesota, USA:

136

https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1109/TPDS.2018.2817524
https://doi.org/10.1109/IOLTS.2019.8854397
https://doi.org/10.1109/IOLTS.2019.8854397
https://doi.org/10.1109/SC41405.2020.00080
https://doi.org/10.1109/SC41405.2020.00080

ACM, 2012, pp. 137–146. ISBN: 978-1-4503-1182-3. https://doi.
org/10.1145/2370816.2370837.

[77] Doug Joseph and Dirk Grunwald. ‘Prefetching Using Markov Pre-
dictors’. In: Proceedings of the 24th Annual International Symposium
on Computer Architecture (Denver, CO, US, 1997). New York, NY,
US: Association for Computing Machinery, 1997, pp. 252–263. ISBN:
978-0-89791-901-2. https://doi.org/10.1145/264107.264207.

[78] Norman P. Jouppi. ‘Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and Prefetch
Buffers’. In: Proceedings of the 17th Annual International Symposium
on Computer Architecture. ISCA ’90 (Seattle, WA, US, 1990). New
York, NY, US: Association for Computing Machinery, 1990, pp. 364–
373. ISBN: 978-0-89791-366-9. https://doi.org/10.1145/325164.
325162.

[79] Laxmikant V. KalÃ© and Sanjeev Krishnan. ‘Parallel Programming
with Message-Driven Objects’. In: Parallel Programming Using C++.
Ed. by Gregory V. Wilson and Paul Lu. Cambridge, MA, USA: MIT
Press, 1996, pp. 175–213. ISBN: 978-0-262-73118-8.

[80] Ian Karlin, Jeff Keasler and Rob Neely. LULESH 2.0 Updates and
Changes. Tech. rep. LLNL-TR-641973. Livermore, CA, US: Lawrence
Livermore National Laboratory, Aug. 2013, pp. 1–9. URL: https://
computing.llnl.gov/projects/co-design/lulesh2.0_changes1.

pdf.

[81] George Karypis andVipin Kumar.Metis Graph Partitioner. 1997. URL:
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

[82] George Karypis andVipin Kumar. ‘A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs’. In: SIAM J. Sci. Comput.
20.1 (Jan. 1998), pp. 359–392. ISSN: 1064-8275. https://doi.org/10.
1137/S1064827595287997.

[83] George Karypis and Vipin Kumar. ‘Multilevel k-Way Hypergraph
Partitioning’. In: 36th Annual ACM/IEEE Design Automation Confer-
ence. DAC ’99. New York, NY, USA: ACM, 1999, pp. 343–348. ISBN:
978-1-58113-109-3. https://doi.org/10.1145/309847.309954.

137

https://doi.org/10.1145/2370816.2370837
https://doi.org/10.1145/2370816.2370837
https://doi.org/10.1145/264107.264207
https://doi.org/10.1145/325164.325162
https://doi.org/10.1145/325164.325162
https://computing.llnl.gov/projects/co-design/lulesh2.0_changes1.pdf
https://computing.llnl.gov/projects/co-design/lulesh2.0_changes1.pdf
https://computing.llnl.gov/projects/co-design/lulesh2.0_changes1.pdf
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/309847.309954

Bibliography

[84] George Karypis and Vipin Kumar. hMetis Partitioning Software.
2007. URL: http://glaros.dtc.umn.edu/gkhome/metis/hmetis/
overview.

[85] Muneeb Khan, Michael A. Laurenzanoy, Jason Marsy, Erik Hagersten
 and David Black-Schaffer. ‘AREP: Adaptive Resource Efficient
Prefetching for Maximizing Multicore Performance’. In: Proceedings
of the 2015 International Conference on Parallel Architecture and
Compilation (PACT). PACT ’15. San Francisco, California, USA: IEEE,
2015, pp. 367–378. ISBN: 978-1-4673-9524-3. https://doi.org/10.
1109/PACT.2015.35.

[86] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson and Zeshan Chishti. ‘Path Confidence Based
Lookahead Prefetching’. In:The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-49. Taipei, Taiwan: IEEE
Press, Oct. 2016, pp. 1–12. https://doi.org/10.1109/MICRO.2016.
7783763.

[87] Sanjeev Kumar, Christopher J. Hughes and Anthony Nguyen. ‘Car-
bon: Architectural Support for Fine-Grained Parallelism on Chip
Multiprocessors’. In: Proceedings of the 34th Annual International
Symposium on Computer Architecture. ISCA ’07 (San Diego, CA, USA,
June 2007). New York, NY, US: Association for Computing Machinery,
2007, pp. 162–173. ISBN: 978-1-59593-706-3. https://doi.org/10.
1145/1250662.1250683.

[88] James Laudon and Daniel Lenoski. ‘The SGI Origin: A ccNUMA
Highly Scalable Server’. In: Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture. ISCA ’97 (Denver,
Colorado, US, 1997). New York, NY, US: Association for Comput-
ing Machinery, 1997, pp. 241–251. ISBN: 978-0-89791-901-2. https:
//doi.org/10.1145/264107.264206.

[89] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin
Schulz, Karan Singh and Sally A. McKee. ‘Methods of Inference
and Learning for Performance Modeling of Parallel Applications’. In:
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and

138

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
https://doi.org/10.1109/PACT.2015.35
https://doi.org/10.1109/PACT.2015.35
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1145/1250662.1250683
https://doi.org/10.1145/1250662.1250683
https://doi.org/10.1145/264107.264206
https://doi.org/10.1145/264107.264206

Practice of Parallel Programming. PPoPP ’07. San Jose, California,
USA: ACM, 2007, pp. 249–258. ISBN: 978-1-59593-602-8. https://
doi.org/10.1145/1229428.1229479.

[90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-
Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz and
Monica S. Lam. ‘The Stanford Dash Multiprocessor’. In: Computer
25.3 (Mar. 1992), pp. 63–79. ISSN: 0018-9162. https://doi.org/10.
1109/2.121510.

[91] Sheng Li, JungHo Ahn, RichardD. Strong, Jay B. Brockman, DeanM.
Tullsen and Norman P. Jouppi. ‘McPAT: An Integrated Power, Area,
and Timing Modeling Framework for Multicore and Manycore Archi-
tectures’. In: Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO 42. New York, NY, USA:
Association for Computing Machinery, Dec. 2009, pp. 469–480. ISBN:
978-1-60558-798-1. https://doi.org/10.1145/1669112.1669172.

[92] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman and Norman
P. Jouppi. ‘CACTI-P: Architecture-Level Modeling for SRAM-Based
Structures with Advanced Leakage Reduction Techniques’. In: Pro-
ceedings of the International Conference on Computer-Aided Design.
ICCAD ’11. San Jose, California: IEEE Press, Nov. 2011, pp. 694–701.
ISBN: 978-1-4577-1398-9. https://doi.org/10.1109/ICCAD.2011.
6105405.

[93] Tan Li, Yufei Ren, Dantong Yu and Shudong Jin. ‘Analysis of NUMA
Effects inModernMulticore Systems for theDesign of High-Performance
Data Transfer Applications’. In: Future Generation Computer Systems
74 (Sept. 2017), pp. 41–50. ISSN: 0167-739X. https://doi.org/10.
1016/j.future.2017.04.001.

[94] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou,
Chiaheng Tu and Hucheng Zhou. ‘Machine Learning-Based Prefetch
Optimization for Data Center Applications’. In: Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis. SC ’09. Portland, Oregon, USA: ACM, 2009. ISBN: 978-1-
60558-744-8. https://doi.org/10.1145/1654059.1654116.

139

https://doi.org/10.1145/1229428.1229479
https://doi.org/10.1145/1229428.1229479
https://doi.org/10.1109/2.121510
https://doi.org/10.1109/2.121510
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1016/j.future.2017.04.001
https://doi.org/10.1016/j.future.2017.04.001
https://doi.org/10.1145/1654059.1654116

Bibliography

[95] Peng Liu, Jiyang Yu and Michael C. Huang. ‘Thread-Aware Adaptive
Prefetcher on Multicore Systems: Improving the Performance for
MultithreadedWorkloads’. In: ACM Transactions on Architecture and
Code Optimization 13.1 (Mar. 2016), 13:1–13:25. ISSN: 1544-3566.
https://doi.org/10.1145/2890505.

[96] Gabriel H. Loh. ‘Cache Prefetching from Non-Uniform Memories’.
US8621157B2. Dec. 2013. URL: https : / / patents . google . com /
patent/US8621157B2/en (visited on 09/07/2020).

[97] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils
Asmussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong
Chen, Nicolas Derumigny, Stephan Diestelhorst,Wendy Elsasser,
Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan
Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus
Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris,
Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M.
Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh,
Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian
Menard, Andrea Mondelli, Tiago MÃ¼ck, Omar Naji, Krishnendra
Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr,
Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar
Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Mat-
thew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon and
Éder F. Zulian. ‘The gem5 Simulator: Version 20.0+’. In: (2020). arXiv:
2007.03152 [cs.AR].

[98] Zoltan Majo and Thomas R. Gross. ‘Matching Memory Access Pat-
terns and Data Placement for NUMA Systems’. In: Proceedings of the
Tenth International Symposium on Code Generation and Optimiza-
tion. CGO ’12. San Jose, California, USA: ACM, 2012, pp. 230–241. ISBN:
978-1-4503-1206-6. https://doi.org/10.1145/2259016.2259046.

140

https://doi.org/10.1145/2890505
https://patents.google.com/patent/US8621157B2/en
https://patents.google.com/patent/US8621157B2/en
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/2259016.2259046

[99] Zoltan Majo and Thomas R. Gross. ‘(Mis)Understanding the NUMA
Memory System Performance of MultithreadedWorkloads’. In: Pro-
ceedings of the 2013 IEEE International Symposium on Workload
Characterization. IISWC ’13 (Portland, OR, US, Sept. 2013). Piscat-
away, NJ, US: IEEE Press, 2013, pp. 11–22. ISBN: 978-1-4799-0555-3.
https://doi.org/10.1109/IISWC.2013.6704666.

[100] Madhavan Manivannan, Vassilis Papaefstathiou, Miquel PericÃ€s
and Per StenstrÃ¶m. ‘RADAR: Runtime-Assisted Dead Region Man-
agement for Last-Level Caches’. In: 2016 IEEE International Sym-
posium on High Performance Computer Architecture. HPCA 2016
(Barcelona, ES, Mar. 2016). Piscataway, NJ, US: IEEE Press, 2016,
pp. 644–656. ISBN: 978-1-4673-9211-2. https://doi.org/10.1109/
HPCA.2016.7446101.

[101] Madhavan Manivannan, Miquel PericÃ¡s, Vassilis Papaefstathiou
and Per StenstrÃ¶m. ‘Global Dead-BlockManagement forTask-Parallel
Programs’. In: ACM Transactions on Architure and Code Optimization
15.3 (2018). ISSN: 1544-3566. https://doi.org/10.1145/3234337.

[102] Larry McAvoy and Carl Staelin. ‘Lmbench: Portable Tools for Per-
formance Analysis’. In: USENIX 1996 Annual Technical Conference.
USENIX, 1996, pp. 279–294. URL: https://www.usenix.org/legacy/
publications/library/proceedings/sd96/mcvoy.html.

[103] John D. McCalpin. ‘Memory Bandwidth and Machine Balance in
Current High Performance Computers’. In: IEEE Comput. Soc. Tech.
Comm. Comput. Archit. TCCA Newsl. (1995), pp. 19–25. URL: http:
//www.cs.virginia.edu/stream/.

[104] Puya Memarzia, Suprio Ray and Virendra C Bhavsar. ‘Toward Effi-
cient In-memory Data Analytics on NUMA Systems’. In: arXiv e-prints
(2019). arXiv: 1908.01860v2 [cs.DB].

[105] Pierre Michaud. ‘Best-Offset Hardware Prefetching’. In: 2016 IEEE
International Symposium on High Performance Computer Architec-
ture (HPCA). Mar. 2016, pp. 469–480. https://doi.org/10.1109/
HPCA.2016.7446087.

141

https://doi.org/10.1109/IISWC.2013.6704666
https://doi.org/10.1109/HPCA.2016.7446101
https://doi.org/10.1109/HPCA.2016.7446101
https://doi.org/10.1145/3234337
https://www.usenix.org/legacy/publications/library/proceedings/sd96/mcvoy.html
https://www.usenix.org/legacy/publications/library/proceedings/sd96/mcvoy.html
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://arxiv.org/abs/1908.01860v2
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/HPCA.2016.7446087

Bibliography

[106] Sparsh Mittal. ‘A Survey of Recent Prefetching Techniques for Pro-
cessor Caches’. In: ACM Computing Surveys 49.2 (Aug. 2016). ISSN:
0360-0300. https://doi.org/10.1145/2907071.

[107] Kyle J. Nesbit and James E. Smith. ‘Data Cache Prefetching Using
a Global History Buffer’. In: Proceedings of the 10th International
Symposium on High Performance Computer Architecture. 10th Inter-
national Symposium on High Performance Computer Architecture.
HPCA ’04 (Madrid, ES, Feb. 2004). Piscataway, NJ, US: IEEE Press,
2004, pp. 96–96. https://doi.org/10.1109/HPCA.2004.10030.

[108] Linus Torvalds, ed. NUMA binding description. 2016. URL: https:
//www.kernel.org/doc/Documentation/devicetree/bindings/

numa.txt (visited on 07/08/2020).

[109] Pablo de Oliveira\bibnamedelima Castro , Chadi Akel, Eric Petit, Mihail Popov and
William Jalby. ‘CERE: LLVM-Based Codelet Extractor and REplayer
for Piecewise Benchmarking and Optimization’. In: ACM Trans. Archit.
Code Optim. 12.1 (Apr. 2015). ISSN: 1544-3566. https://doi.org/10.
1145/2724717.

[110] Pablo de Oliveira\bibnamedelima Castro , Yuriy Kashnikov, Chadi Akel, Mihail
Popov andWilliam Jalby. ‘Fine-Grained Benchmark Subsetting for
System Selection’. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’14. Or-
lando, Florida, USA: ACM, 2014, pp. 132–142. ISBN: 978-1-4503-2670-
4. https://doi.org/10.1145/2581122.2544144.

[111] Rabab al-Omairy, Guillermo Miranda, Hatem Ltaief, Rosa M. Badia
, Xavier Martorell, Jesús Labarta and David Keyes. ‘Dense
Matrix Computations on NUMA Architectures with Distance-Aware
Work Stealing’. In: Supercomput. Front. Innov. 2.1 (Jan. 2015), pp. 49–
72. ISSN: 2313-8734. https://doi.org/10.14529/jsfi150103.

[112] OpenBLAS Library. 2016. URL: http://www.openblas.net/.

[113] OpenMP Committee . OpenMP 4.0 Complete Specifications. OpenMP
Committee Technical Report. OpenMP Architecture Review Board,
July 2013. URL: http://www.openmp.org/mp-documents/OpenMP4.0.
0.pdf.

142

https://doi.org/10.1145/2907071
https://doi.org/10.1109/HPCA.2004.10030
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://doi.org/10.1145/2724717
https://doi.org/10.1145/2724717
https://doi.org/10.1145/2581122.2544144
https://doi.org/10.14529/jsfi150103
http://www.openblas.net/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[114] Cristobal Ortega, Lluc Alvarez, Marc Casas, Ramon Bertran, Alper
Buyuktosunoglu, Alexandre E. Eichenberger, Pradip Bose and
Miquel MoretÃ³. ‘Intelligent Adaptation of Hardware Knobs for Im-
proving Performance and Power Consumption’. In: IEEE Transactions
on Computers 70.1 (2021), pp. 1–16. https://doi.org/10.1109/TC.
2020.2980230.

[115] Cristobal Ortega, Miquel MoretÃ³, Marc Casas, Ramon Bertran,
Alper Buyuktosunoglu, Alexandre E. Eichenberger and Pradip
Bose. ‘libPRISM: An Intelligent Adaptation of Prefetch and SMT
Levels’. In: Proceedings of the International Conference on Supercom-
puting. ICS ’17 (Chicago, IL, US, June 2017). New York, NY, US: As-
sociation for Computing Machinery, 2017. ISBN: 978-1-4503-5020-4.
https://doi.org/10.1145/3079079.3079101.

[116] Vassilis Papaefstathiou, Manolis G.H. Katevenis, Dimitrios S. Nikolopoulos
 and Dionisios Pnevmatikatos. ‘Prefetching and Cache
Management Using Task Lifetimes’. In: Proceedings of the 2013 ACM
International Conference on Supercomputing. ICS ’13 (Eugene, OR,
US, June 2013). New York, NY, US: Association for Computing Ma-
chinery, 2013, pp. 325–334. ISBN: 978-1-4503-2130-3. https://doi.
org/10.1145/2464996.2465443.

[117] Jean-Charles Papin, Christophe Denoual, Laurent Colombet and
Raymond Namyst. ‘SPAWN: An Iterative, Potentials-Based, Dynamic
Scheduling and Partitioning Tool’. In: SC ’15 - RESPA Workshop. Nov.
2015. URL: https://hal.inria.fr/hal-01223897.

[118] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu
Perrot and Édouard Duchesnay. ‘Scikit-learn: Machine Learning in
Python’. In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830. arXiv: 1201.0490 [cs.LG].

143

https://doi.org/10.1109/TC.2020.2980230
https://doi.org/10.1109/TC.2020.2980230
https://doi.org/10.1145/3079079.3079101
https://doi.org/10.1145/2464996.2465443
https://doi.org/10.1145/2464996.2465443
https://hal.inria.fr/hal-01223897
https://arxiv.org/abs/1201.0490

Bibliography

[119] Leeor Peled, UriWeiser andYoav Etsion. ‘ANeural Network Prefetcher
for Arbitrary Memory Access Patterns’. In: ACM Transactions on Ar-
chitecture and Code Optimization 16.4 (Oct. 2019), 37:1–37:27. ISSN:
1544-3566. https://doi.org/10.1145/3345000.

[120] François Pellegrini. ‘Static Mapping by Dual Recursive Bipartition-
ing of Process Architecture Graphs’. In: Scalable High Performance
Computing Conference. SHPCC 1994. IEEE, May 1994, pp. 486–493.
ISBN: 978-0-8186-5680-4. https://doi.org/10.1109/SHPCC.1994.
296682.

[121] François Pellegrini. SCOTCH. 2012. URL: https://www.labri.fr/
perso/pelegrin/scotch/.

[122] François Pellegrini. Scotch and libScotch 6.0 User’s Guide. 2014. URL:
http://gforge.inria.fr/docman/view.php/248/8260/scotch_

user6.0.pdf.

[123] Mihail Popov, Chadi Akel, Yohan Chatelain, William Jalby and
Pablo de Oliveira\bibnamedelima Castro . ‘Piecewise holistic autotuning of parallel
programs with CERE’. In: Concurrency and Computation: Practice
and Experience 29.15 (2017). https://doi.org/10.1002/cpe.4190.

[124] Mihail Popov, Chadi Akel, Florent Conti, William Jalby and Pablo
de Oliveira\bibnamedelima Castro . ‘PCERE: Fine-Grained Parallel Benchmark De-
composition for Scalability Prediction’. In: Proceedings of the 2015
IEEE International Parallel and Distributed Processing Symposium.
IPDPS ’15. Hyderabad, India: IEEE, 2015, pp. 1151–1160. ISBN: 978-1-
4799-8649-1. https://doi.org/10.1109/IPDPS.2015.19.

[125] Mihail Popov, Alexandra Jimborean and David Black-Schaffer.
‘Efficient Thread/Page/Parallelism Autotuning for NUMA Systems’.
In: Proceedings of the ACM International Conference on Supercom-
puting. ICS ’19 (Phoenix, Arizona, US, June 2019). New York, NY,
US: Association for Computing Machinery, 2019, pp. 342–353. ISBN:
978-1-4503-6079-1. https://doi.org/10.1145/3330345.3330376.

[126] Fatih Porikli. ‘Integral Histogram: A Fast Way to Extract Histograms
in Cartesian Spaces’. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. Vol. 1. CVPR 2005. IEEE, 2005,

144

https://doi.org/10.1145/3345000
https://doi.org/10.1109/SHPCC.1994.296682
https://doi.org/10.1109/SHPCC.1994.296682
https://www.labri.fr/perso/pelegrin/scotch/
https://www.labri.fr/perso/pelegrin/scotch/
http://gforge.inria.fr/docman/view.php/248/8260/scotch_user6.0.pdf
http://gforge.inria.fr/docman/view.php/248/8260/scotch_user6.0.pdf
https://doi.org/10.1002/cpe.4190
https://doi.org/10.1109/IPDPS.2015.19
https://doi.org/10.1145/3330345.3330376

pp. 829–836. ISBN: 978-0-7695-2372-9. https://doi.org/10.1109/
CVPR.2005.188.

[127] Maria Predari and Aurélien Esnard. ‘A k-Way Greedy Graph Parti-
tioning with Initial Fixed Vertices for Parallel Applications’. In: 24th
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. PDP 2016. IEEE, Feb. 2016, pp. 280–287.
https://doi.org/10.1109/PDP.2016.109.

[128] Petar RadojkoviÄ⁄,Vladimir Ä„akareviÄ⁄,MiquelMoretÃ³, Javier VerdÃº,
Alex Pajuelo, Francisco J. Cazorla, Mario Nemirovsky and Mateo
Valero. ‘Optimal Task Assignment in Multithreaded Processors: A
Statistical Approach’. In: Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XVII (London, England, UK, Mar.
2012). NewYork, NY, US: Association for Computing Machinery, 2012,
pp. 235–248. ISBN: 978-1-4503-0759-8. https://doi.org/10.1145/
2150976.2151002.

[129] Petar RadojkoviÄ⁄, Paul M. Carpenter, Miquel MoretÃ³, Vladimir
Ä„akareviÄ⁄, Javier VerdÃº, Alex Pajuelo, Francisco J. Cazorla, Mario
Nemirovsky andMateo Valero. ‘Thread Assignment inMulticore/Mul-
tithreaded Processors: A Statistical Approach’. In: IEEE Transactions
on Computers 65.1 (Jan. 2016), pp. 256–269. ISSN: 0018-9340. https:
//doi.org/10.1109/TC.2015.2417533.

[130] Edwin D. Reilly, Anthony Ralston and David Hemmendinger, eds.
Encyclopedia of Computer Science. 4th ed. Chichester, UK: JohnWiley
and Sons, Ltd., 2003. ISBN: 978-0-470-86412-8.

[131] James Reinders. Intel Threading Building Blocks. 1st ed. Sebastopol,
CA, US: O’Reilly Associates, Inc., 2007. ISBN: 978-0-596-51480-8.

[132] Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic,
Augusto Vega, Yoav Etsion, Alex Ramirez andMateo Valero. ‘On the
Simulation of Large-Scale Architectures Using Multiple Application
Abstraction Levels’. In: ACM Transactions on Architecture and Code
Optimization 8.4 (Jan. 2012), 36:1–36:20. ISSN: 1544-3566. https:
//doi.org/10.1145/2086696.2086715.

145

https://doi.org/10.1109/CVPR.2005.188
https://doi.org/10.1109/CVPR.2005.188
https://doi.org/10.1109/PDP.2016.109
https://doi.org/10.1145/2150976.2151002
https://doi.org/10.1145/2150976.2151002
https://doi.org/10.1109/TC.2015.2417533
https://doi.org/10.1109/TC.2015.2417533
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1145/2086696.2086715

Bibliography

[133] Alejandro Rico, Isaac SÃ¡nchez\bibnamedelima Barrera , Jose A. Joao, Joshua Randall
, Marc Casas and Miquel MoretÃ³. ‘On the Benefits of Tasking
with OpenMP’. In: OpenMP: Conquering the Full Hardware Spectrum.
11th International Workshop on OpenMP. IWOMP 2019 (Auckland,
New Zealand, Sept. 2019). Ed. by Xing Fan, Bronis R. de Supinski,
Oliver Sinnen and Nasser Giacaman. Lecture Notes in Computer
Science 11718. Cham, CH: Springer International Publishing, 2019,
pp. 217–230. ISBN: 978-3-030-28596-8. https://doi.org/10.1007/
978-3-030-28596-8_15.

[134] Isaac SÃ¡nchez\bibnamedelima Barrera , David Black-Schaffer,Marc Casas,Miquel
MoretÃ³, Anastasiia Stupnikova and Mihail Popov. ‘Modeling and
Optimizing NUMA Effects and Prefetching with Machine Learning’.
In: Proceedings of the 34th ACM International Conference on Super-
computing. ICS ’20. New York, NY, USA: Association for Computing
Machinery, June 2020, pp. 1–13. ISBN: 978-1-4503-7983-0. https:
//doi.org/10.1145/3392717.3392765.

[135] Isaac SÃ¡nchez\bibnamedelima Barrera , Marc Casas and Miquel MoretÃ³. ‘NUMA-
Aware Hardware Prefetching’. 2021. Submitted.

[136] Isaac SÃ¡nchez\bibnamedelima Barrera , Miquel MoretÃ³, Eduard AyguadÃ©, Jesús
Labarta, Mateo Valero and Marc Casas. ‘Reducing Data Movement
on Large Shared Memory Systems by Exploiting Computation De-
pendencies’. In: Proceedings of the 2018 International Conference
on Supercomputing. ICS ’18 (Beijing, CN, June 2018). New York, NY,
US: Association for Computing Machinery, 2018, pp. 207–217. ISBN:
978-1-4503-5783-8. https://doi.org/10.1145/3205289.3205310.

[137] Curt Schimmel. Cache Coherency. In: Encyclopedia of Computer
Science. Ed. by Edwin D. Reilly, Anthony Ralston and David Hem-
mendinger. 4th ed. Chichester, UK: JohnWiley and Sons, Ltd., 2003,
pp. 176–180. ISBN: 978-0-470-86412-8.

[138] SGI® Altix®UV 100 SystemUser’s Guide.Version 001. SiliconGraphics
International Corp. 2010. xviii + 88. URL: https : / / irix7 . com /
techpubs/007-5662-001.pdf (visited on 23/04/2021).

146

https://doi.org/10.1007/978-3-030-28596-8_15
https://doi.org/10.1007/978-3-030-28596-8_15
https://doi.org/10.1145/3392717.3392765
https://doi.org/10.1145/3392717.3392765
https://doi.org/10.1145/3205289.3205310
https://irix7.com/techpubs/007-5662-001.pdf
https://irix7.com/techpubs/007-5662-001.pdf

[139] Daniel L. Slotnick. ‘The Conception and Development of Parallel
Processors: A Personal Memoir’. In: Annals of the History of Comput-
ing 4.1 (1982), pp. 20–30. https://doi.org/10.1109/MAHC.1982.
10003.

[140] Alan Jay Smith. ‘Cache Memories’. In: ACM Computing Surveys 14.3
(Sept. 1982), pp. 473–530. ISSN: 0360-0300. https://doi.org/10.
1145/356887.356892.

[141] Standard for Information Technology–Portable Operating System In-
terface (POSIX(TM)) - System Application Program Interface (API)
Amendment 2:Threads Extension (C Language). Standard, IEEE 1003.1c-
1995.

[142] Xubin Tan, JaumeBosch, Daniel JimÃ©nez-GonzÃ¡lez, Carlos Ã†lvarez-MartÃ�nez
, Eduard AyguadÃ© and Mateo Valero. ‘Performance ana-
lysis of a hardware accelerator of dependence management for task-
based dataflow programming models’. In: 2016 IEEE International
Symposium on Performance Analysis of Systems and Software. ISPASS
2016 (Uppsala, SE, Apr. 2016). Piscataway, NJ, US: IEEE Press, 2016,
pp. 225–234. ISBN: 978-1-5090-1953-3. https://doi.org/10.1109/
ISPASS.2016.7482097.

[143] Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Ã†lvarez, Daniel
JimÃ©nez-GonzÃ¡lez, Eduard AyguadÃ© and Mateo Valero. ‘General
Purpose Task-Dependence Management Hardware for Task-Based
Dataflow Programming Models’. In: 2017 IEEE International Parallel
and Distributed Processing Symposium. IPDPS 2017 (Orlando, FL, US,
May–June 2017). Piscataway, NJ, US: IEEE Press, 2017, pp. 244–253.
ISBN: 978-1-5386-3914-6. https://doi.org/10.1109/IPDPS.2017.
48.

[144] Masahiro Tanaka and Osamu Tatebe. ‘Workflow Scheduling to Min-
imize Data Movement Using Multi-Constraint Graph Partitioning’. In:
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. CCGrid 2012 (Ottawa, ON, CA, May 2012). Piscataway,
NJ, US: IEEE Press, 2012, pp. 65–72. https://doi.org/10.1109/
CCGrid.2012.134.

147

https://doi.org/10.1109/MAHC.1982.10003
https://doi.org/10.1109/MAHC.1982.10003
https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892
https://doi.org/10.1109/ISPASS.2016.7482097
https://doi.org/10.1109/ISPASS.2016.7482097
https://doi.org/10.1109/IPDPS.2017.48
https://doi.org/10.1109/IPDPS.2017.48
https://doi.org/10.1109/CCGrid.2012.134
https://doi.org/10.1109/CCGrid.2012.134

Bibliography

[145] Xavier Teruel, Xavier Martorell, Alejandro Duran, Roger Ferrer
and Eduard AyguadÃ©. ‘Support for OpenMP Tasks in Nanos V4’. In:
Conference of the Center for Advanced Studies on Collaborative Re-
search. CASCON ’07. Riverton, NJ, USA: IBM Corp., 2007, pp. 256–259.
https://doi.org/10.1145/1321211.1321241.

[146] The MPI Forum . ‘MPI: A Message Passing Interface’. In: Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing. Supercomput-
ing ’93 (Portland, Oregon, US). New York, NY, US: Association for
Computing Machinery, 1993, pp. 878–883. ISBN: 978-0-8186-4340-8.
https://doi.org/10.1145/169627.169855.

[147] MustafaM. Tikir and Jeffrey K. Hollingsworth. ‘HardwareMonitors
for Dynamic Page Migration’. In: Journal of Parallel and Distributed
Computing 68.9 (Sept. 2008), pp. 1186–1200. ISSN: 0743-7315. https:
//doi.org/10.1016/j.jpdc.2008.05.006.

[148] François Trahay, Manuel Selva, Lionel Morel and Kevin Marquet.
‘NumaMMA: NUMA MeMory Analyzer’. In: Proceedings of the 47th
International Conference on Parallel Processing. ICPP 2018 (Eugene,
OR, US, Aug. 2018). New York, NY, US: Association for Computing
Machinery, 2018. ISBN: 978-1-4503-6510-9. https://doi.org/10.
1145/3225058.3225094.

[149] Jan Treibig, Georg Hager and Gerhard Wellein. ‘LIKWID: A Light-
weight Performance-Oriented Tool Suite for X86 Multicore Envir-
onments’. In: Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops. ICPPW ’10. San Diego, Califor-
nia, USA: IEEE, 2010, pp. 207–216. ISBN: 978-0-7695-4157-0. https:
//doi.org/10.1109/ICPPW.2010.38.

[150] Mateo Valero, Miquel MoretÃ³, Marc Casas, Eduard AyguadÃ© and
Jesús Labarta. ‘Runtime-Aware Architectures: A First Approach’. In:
Supercomputing Frontiers and Innovations 1.1 (Sept. 2014), pp. 28–43.
ISSN: 2313-8734. https://doi.org/10.14529/jsfi140102.

[151] Raul Vidal, Marc Casas, Miquel MoretÃ³, Dimitrios Chasapis, Roger
Ferrer, Xavier Martorell, Eduard AyguadÃ©, Jesús Labarta and
Mateo Valero. ‘Evaluating the Impact of OpenMP 4.0 Extensions on

148

https://doi.org/10.1145/1321211.1321241
https://doi.org/10.1145/169627.169855
https://doi.org/10.1016/j.jpdc.2008.05.006
https://doi.org/10.1016/j.jpdc.2008.05.006
https://doi.org/10.1145/3225058.3225094
https://doi.org/10.1145/3225058.3225094
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.14529/jsfi140102

Relevant Parallel Workloads’. In: OpenMP: Heterogenous Execution
and Data Movements. International Workshop on OpenMP. Lecture
Notes in Computer Science. Cham: Springer, Oct. 2015, pp. 60–72.
ISBN: 978-3-319-24594-2 978-3-319-24595-9. https://doi.org/10.
1007/978-3-319-24595-9_5.

[152] Philippe Virouleau, François Broquedis,Thierry Gautier and Fabrice
Rastello. ‘Using Data Dependencies to ImproveTask-Based Schedul-
ing Strategies on NUMA Architectures’. In: Euro-Par 2016: Parallel
Processing. 22nd International Conference on Parallel and Distrib-
uted Computing. Euro-Par 2016 (Grenoble, FR, Aug. 2016). Lecture
Notes in Computer Science 9833. Cham, CH: Springer International
Publishing, Aug. 2016, pp. 531–544. ISBN: 978-3-319-43659-3. https:
//doi.org/10.1007/978-3-319-43659-3_39.

[153] Krishnaswamy Viswanathan. Disclosure of Hardware Prefetcher Con-
trol on Some Intel® Processors. Intel Corp. 24th Sept. 2014. URL:
https://software.intel.com/content/www/us/en/develop/

articles / disclosure - of - hw - prefetcher - control - on - some -

intel-processors.html.

[154] Qian Wang, Xianyi Zhang, Yunquan Zhang and Qing Yi. ‘AUGEM:
Automatically Generate High Performance Dense Linear Algebra
Kernels on X86 CPUs’. In: International Conference on High Perform-
ance Computing, Networking, Storage and Analysis. SC ’13. New York,
NY, USA: ACM, 2013, 25:1–25:12. ISBN: 978-1-4503-2378-9. https:
//doi.org/10.1145/2503210.2503219.

[155] Wei Wang, JackW. Davidson and Mary Lou Soffa. ‘Predicting the
memory bandwidth and optimal core allocations for multi-threaded
applications on large-scale NUMA machines’. In: Proceedings of the
2016 IEEE International Symposium on High Performance Computer
Architecture. HPCA ’16. Barcelona, Spain: IEEE, 2016, pp. 419–431.
ISBN: 978-1-4673-9211-2. https://doi.org/10.1109/HPCA.2016.
7446083.

[156] Zheng Wang and Michael O'Boyle. ‘Machine Learning in Compiler
Optimization’. In: Proceedings of the IEEE 106.11 (2018), pp. 1879–

149

https://doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-319-43659-3_39
https://doi.org/10.1007/978-3-319-43659-3_39
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1109/HPCA.2016.7446083
https://doi.org/10.1109/HPCA.2016.7446083

Bibliography

1901. ISSN: 0018-9219. https://doi.org/10.1109/JPROC.2018.
2817118.

[157] ZhengWang andMichael F.P. O'Boyle. ‘Mapping Parallelism toMulti-
Cores: A Machine Learning Based Approach’. In: Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP ’09. Raleigh, North Carolina, USA: ACM, 2009,
pp. 75–84. ISBN: 978-1-60558-397-6. https://doi.org/10.1145/
1504176.1504189.

[158] Maurice V. Wilkes. ‘Slave Memories and Dynamic Storage Allocation’.
In: IEEE Transactions on Electronic Computers. EC 14.2 (Apr. 1965),
pp. 270–271. ISSN: 0367-7508. https://doi.org/10.1109/PGEC.
1965.264263.

[159] Carole-Jean Wu and Margaret Martonosi. ‘Characterization and
Dynamic Mitigation of Intra-Application Cache Interference’. In: Pro-
ceedings of the IEEE International Symposium on Performance Ana-
lysis of Systems and Software. ISPASS ’11. Austin, Texas, USA: IEEE,
2011, pp. 2–11. ISBN: 978-1-61284-367-4. https://doi.org/10.
1109/ISPASS.2011.5762710.

[160] William A. Wulf and Sally A. McKee. ‘Hitting the Memory Wall:
Implications of the Obvious’. In: SIGARCH Computer Architecture
News 23.1 (Mar. 1995), pp. 20–24. ISSN: 0163-5964. https://doi.
org/10.1145/216585.216588.

[161] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei and David
Brooks. ‘Quantifying Sources of Error in McPAT and Potential Im-
pacts on Architectural Studies’. In: 2015 IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA). Feb.
2015, pp. 577–589. https://doi.org/10.1109/HPCA.2015.7056064.

[162] Yonghong Yan, Jisheng Zhao, Yi Guo andVivek Sarkar. ‘Hierarchical
Place Trees: A Portable Abstraction for Task Parallelism and Data
Movement’. In: Languages and Compilers for Parallel Computing.
Berlin, Heidelberg: Springer, Oct. 2009, pp. 172–187. ISBN: 978-3-642-
13373-2 978-3-642-13374-9. https://doi.org/10.1007/978-3-642-
13374-9_12.

150

https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1145/1504176.1504189
https://doi.org/10.1145/1504176.1504189
https://doi.org/10.1109/PGEC.1965.264263
https://doi.org/10.1109/PGEC.1965.264263
https://doi.org/10.1109/ISPASS.2011.5762710
https://doi.org/10.1109/ISPASS.2011.5762710
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12

[163] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish and Srinivas
Devadas. ‘IMP: Indirect Memory Prefetcher’. In: Proceedings of the
48th International Symposium on Microarchitecture. MICRO-48. New
York, NY, USA: Association for Computing Machinery, Dec. 2015,
pp. 178–190. ISBN: 978-1-4503-4034-2. https://doi.org/10.1145/
2830772.2830807.

151

https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1145/2830772.2830807

	Front page
	Dedication
	Abstract
	Resum
	Resumen
	Acknowledgements
	Contents
	1. Introduction
	1.1. Thesis objectives and contributions
	1.1.1. Performance and configuration models for interactions between NUMA and hardware prefetchers
	1.1.2. Hardware prefetching for NUMA systems
	1.1.3. Task-based applications in NUMA systems

	1.2. Thesis structure

	2. Background and related work
	2.1. Parallel computing, shared memory and NUMA
	2.1.1. Virtual memory: allowing multiprogramming and larger main memory capacity

	2.2. Caches and the memory hierarchy
	2.2.1. Cache coherence and ccNUMA
	2.2.2. Hardware prefetching

	2.3. Parallel programming in shared-memory systems
	2.3.1. Task-based programming
	2.3.2. Work scheduling and data placement in NUMA systems

	2.4. Holistic performance optimisation and runtime-aware architectures
	2.4.1. Using models to drive configurations
	2.4.2. Runtime-aware architectures

	3. Experimental methodology
	3.1. Real NUMA systems
	3.1.1. Large ccNUMA systems

	3.2. Simulation of NUMA Systems
	3.3. Workloads
	3.3.1. Fork-join parallel applications
	3.3.2. Task-based parallel applications

	4. Performance and configuration models for interactions between NUMA and hardware prefetchers
	4.1. The relevance of NUMA and prefetcher configurations in performance
	4.2. Search space
	4.2.1. NUMA configurations
	4.2.2. Prefetcher configurations

	4.3. Characterisation
	4.3.1. Experimental setup
	4.3.2. Performance opportunities
	4.3.3. NUMA+Prefetcher configuration diversity
	4.3.4. Takeaway

	4.4. Prediction model
	4.4.1. Machine learning models
	4.4.2. Model generation and inputs

	4.5. Prediction results
	4.5.1. Model evaluation
	4.5.2. Comparing machine learning methods
	4.5.3. Reaction-based performance counters improve modelling
	4.5.4. Takeaway

	4.6. Optimising applications online
	4.6.1. Online profiling and optimisation
	4.6.2. Whole-application optimisation
	4.6.3. Per-region NUMA optimisation

	4.7. Summary

	5. Hardware prefetching for NUMA systems
	5.1. Introduction
	5.2. Motivation
	5.2.1. Background on hardware prefetchers
	5.2.2. Opportunity for NUMA-aware prefetchers

	5.3. Proposal: NUMA-aware prefetching
	5.3.1. The NUMA-aware stride prefetcher
	5.3.2. Other considerations

	5.4. Methodology
	5.4.1. Simulation environment
	5.4.2. Design space exploration

	5.5. Results and evaluation
	5.5.1. Design space exploration
	5.5.2. Performance evaluation
	5.5.3. Comparison with the state of the art
	5.5.4. Making other prefetchers aware of NUMA
	5.5.5. Cost evaluation

	5.6. Summary

	6. Task-based applications in NUMA systems
	6.1. Graph partitioning
	6.1.1. Graph partitioning algorithms

	6.2. Exploiting the task dependency graph to mitigate NUMA effects
	6.2.1. Dependency easy placement (DEP)
	6.2.2. Considerations about applying graph partitioning on applications' TDGs
	6.2.3. Runtime informed partitioning (RIP)
	6.2.4. Benefits of graph partitioning
	6.2.5. Assumptions of the proposals

	6.3. Experimental environment
	6.3.1. Manual scheduling and graph windows

	6.4. Evaluation
	6.4.1. SGI Altix UV100
	6.4.2. Atos Bull bullion S16
	6.4.3. Reduction of coherence traffic within the bullion S16 Machine
	6.4.4. Load imbalance and overhead
	6.4.5. Adding page migration mechanisms

	6.5. Summary

	7. Conclusions
	7.1. Goals and contributions
	7.1.1. Performance and configuration models for interactions between NUMA and hardware prefetchers
	7.1.2. Hardware prefetching for NUMA systems
	7.1.3. Task-based applications in NUMA systems

	7.2. Future work
	7.3. Publications
	7.4. Financial and technical support

	Bibliography

