87 research outputs found

    Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China

    Get PDF
    Multiple ecological engineering projects have been implemented in semiarid and subhumid Northern China since 1978 with the purpose to combat desertification, control dust storms, and improve vegetation cover. Although a plethora of local studies exist, the effectiveness of these projects has not been studied in a systematic and comprehensive way. Here, we used multiple satellite-based time-series data as well as breakpoint analysis to assess shifts in leaf area index (a proxy for green vegetation cover), gross primary production, and aboveground biomass in Northern China. We documented increased vegetation growth in northwest and southeastern parts of the region, despite drought anomalies as documented by the standardized precipitation-evapotranspiration index during 1982–2016. Significant breakpoints in leaf area index were observed for over 72.5% of the southeastern and northwestern regions, and 70.6% of these breakpoints were detected after 1999, which correspond well to the areas with the highest ecological engineering efforts. Areas with negative trends were mainly located in the Inner Mongolian Plateau, Hulun Biur, Horqin Sand Land, and urban areas. The Loess Plateau had the largest increase in vegetation growth, followed by the north parts of Northern China where biomass increased more in the provinces of Shanxi, Liaoning, Shannxi, Hebei, and Beijing than Xinjiang, Inner Mongolia, Tianjin, and Qinghai. Our results show that multiple ecological engineering projects in the region have increased vegetation cover, production, and aboveground biomass that have led to improved environmental conditions in the study area

    Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia

    Get PDF
    Land degradation is an important environmental problem facing the world. "Land Degradation Neutrality" is one of the core indicators in the 15th goal of the "United Nations Sustainable Development Goals" for 2030. Mongolia is an important country for global land degradation. The increasingly serious land degradation has caused a direct impact on the ecosystem of the entire Mongolian plateau. We analyzed the patterns of land degradation and restoration during 1990-2010 and 2010-2015 and determined the driving forces behind the variations, by using fine resolution land cover data for the first time in Mongolia. The results showed that the spatial distribution of newly increased land degradation and restoration have a strong transitional nature. For the past 25 years, the trend of land change in Mongolia was dominated by land degradation. However, land degradation was accompanied by ongoing restoration of some land areas, and the capacity for land restoration has been gradually improved. This study discovers a series of typical land degradation and restoration regions and provides an interpretation of the driving forces in these areas. The joint effects of natural and socioeconomic factors have been found to result in land degradation and restoration in different regions

    Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends

    Get PDF
    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types

    Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields

    Get PDF
    The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff generator and the two-dimensional hydraulic model implementing the routing scheme for surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics on a grid scale can be used to investigate the relationship between the intensity of flood characteristics and associated loss extent. The modeling framework was applied for a 50-year return period flood that occurred in Jilin province, Northeast China, which caused large agricultural losses in August, 2013. The modeling results indicated that (a) the flow velocity was the most influential factor that caused spring corn, rice and soybean yield losses from extreme storm event in the mountainous regions; (b) the power function archived the best results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating the influence of historical flood event on crop production and investigating the relationship between flood characteristics and crop yield losses

    Multiple cropping systems of the world and the potential for increasing cropping intensity

    Get PDF
    Multiple cropping, defined as harvesting more than once a year, is a widespread land management strategy in tropical and subtropical agriculture. It is a way of intensifying agricultural production and diversifying the crop mix for economic and environmental benefits. Here we present the first global gridded data set of multiple cropping systems and quantify the physical area of more than 200 systems, the global multiple cropping area and the potential for increasing cropping intensity. We use national and sub-national data on monthly crop-specific growing areas around the year 2000 (1998–2002) for 26 crop groups, global cropland extent and crop harvested areas to identify sequential cropping systems of two or three crops with non-overlapping growing seasons. We find multiple cropping systems on 135 million hectares (12% of global cropland) with 85 million hectares in irrigated agriculture. 34%, 13% and 10% of the rice, wheat and maize area, respectively are under multiple cropping, demonstrating the importance of such cropping systems for cereal production. Harvesting currently single cropped areas a second time could increase global harvested areas by 87–395 million hectares, which is about 45% lower than previous estimates. Some scenarios of intensification indicate that it could be enough land to avoid expanding physical cropland into other land uses but attainable intensification will depend on the local context and the crop yields attainable in the second cycle and its related environmental costs. © 2020 The Author(s

    中国大興安嶺地区の持続的森林管理のための環境リスク評価

    Get PDF
    筑波大学 (University of Tsukuba)201

    Spatial−temporal variation of ecological environment quality and driving factors from 2000 to 2020 in Wuliangsu Lake Basin, Northern China

    Get PDF
    Due to global climate change and the intensification of human activities, the ecological function of Wuliangsu Lake Basin has been seriously degraded. Obtaining accurate spatial–temporal dynamics of regional ecological environment quality is essential for the evaluation of ecological management and restoration effects. This study assessed the trend changes and drivers of the Remote Sensing Ecological Index (RSEI) in the Wuliangsu Lake Basin from 2000−2020. Firstly, the trend analysis method and hurst index were used to analyze the temporal and spatial variation of RSEI. Then the main factors of RSEI variation were analyzed using meteorological data, integrated nighttime lighting data, and population density data. Overall, the RSEI shows an increasing trend from the west to the east with a rate of 0.0034 year−1 over the last 21 years. The area change of RSEI was 54.22%, 63.80% and 52.43% for 2000−2006, 2007−2013 and 2014−2020, respectively, which indicates that most areas have a stable ecological environment. However, the overall Future Improvement Trend (FIT) area of RSEI is 42.21%, mainly in Dengkou area, Urad Qianqi and central area. This indicates that the RSEI remains stable locally and shows an overall improving trend. The results of the correlation analysis showed that the areas influenced by meteorological and human factors were highly coincident, mainly in Dengkou and northern Linhe areas and Urad Qianqi. Considering the lagging effect of ecological engineering, the sustainable development status of RSEI in the western and eastern regions will maintain an improving trend in the future. Our study confirms the complex relationship between RSEI and meteorological and human activities, which is crucial for the scientific management of watershed ecosystems under the influence of anthropogenic factors
    corecore