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Thermal Infrared Remote Sensing for Analysis of Landscape 

Ecological Processes: Current Insights and Trends 

Dale A. Quattrochi and Jeffrey C. Luvall, NASA, Earth Science Office, Marshall 

Space Flight Center, Huntsville, AL 

Introduction: 

Landscape ecology as a field of study requires data from broad spatial extents 

that cannot be collected using field-based methods alone. Remote sensing data and 

associated techniques have been used to address these needs, which include 

identifying and detailing the biophysical characteristics of species habitat, predicting the 

distribution of species and spatial variability of species richness, and detecting natural 

and human-caused change as scales ranging from individual landscapes to the entire 

world (Kerr and Ostrovsky, 2003). This has been exemplified in a growing number of 

special issues of journals and journal articles that have focused on remote sensing 

applications in landscape ecology (Cohen and Goward, 2004; Gillanders et al., 2008; 

Newton et al., 2009; Rocchini, 2010a and b). Howvever, we believe that thermal remote 

sensing data have not been widely exploited to their full potential in landscape studies. 

Thermal data have important characteristics that can be used to derive quantitative 

measurements of surface energy balances and fluxes across the landscape, but wide-

spread use of these data in landscape ecological research may still be somewhat 

enigmatic to some investigators.  

In an article published in 1999, we examined the direct or indirect uses of thermal 

infrared (TIR) remote sensing data to analyze landscape biophysical characteristics to 

offer insight on how these data can be used more robustly for furthering the 
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understanding and modeling of landscape ecological processes (Quattrochi and Luvall, 

1999). As we noted at the time our article was published, we believed there was a 

perception that TIR data were difficult to use for applications in landscape 

characterization and analysis. Here we present a review and update of the literature 

related to TIR remote sensing in landscape ecological process studies to further 

illustrate both how the literature has grown, and to expand upon research area themes 

that were not included in our original article. Additionally as we noted in our 1999 article, 

accessing the literature related to TIR data and landscape ecological processes was 

difficult because of its fragmentation across a wide spectrum of journals or other 

scientific resources. Because of the interdisciplinary nature of research on TIR data and 

landscape processes, this is still true to some extent today; the literature on TIR remote 

sensing applications for land surface process analysis is being published in a wide 

range of publications, such as those focused strictly on remote sensing, or spread 

across numerous inter- or multidisciplinary publications such as hydrometeorology, 

climatology, meteorology, or agronomy. 

 

As we related in 1999, and expounded upon in our edited volume Thermal 

Remote Sensing in Land Surface Processes (Quattrochi and Luvall, 2004), we foresaw 

that the applications of TIR remote sensing data to landscape ecological studies has 

been limited for three primary reasons: 

 

1) TIR data are little understood from both a theoretical and applications 

perspective within the landscape ecological community; 
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2) TIR data are perceived  as being difficult to obtain and work with to those 

researchers who are uninitiated to the characteristics and attributes of these data in 

landscape ecological research; 

3) The spatial resolution of TIR data, primarily from satellite data, is viewed as 

being too coarse for landscape ecological research, and calibration of these data for 

deriving measurements of landscape thermal energy fluxes is seen as being 

problematic. 

 

Given the increase from 1999 (and even from 2004 when our book was 

published) in the TIR literature that has been published, these three issues have been 

considerably mitigated, but not entirely mollified. It, therefore, is still useful to examine 

examples of the literature that has been published post-1999 to provide further evidence 

and review of how TIR data has been applied to landscape ecological and land 

processes research. As was described in our article and book, there are two 

fundamental ways that TIR data can contribute to an improved understanding of 

landscape processes: 1) through the measurement of surface temperatures as related 

to specific landscape and biophysical components; and 2) through relating surface 

temperature with energy fluxes for specific phenomena or processes. This is not an 

exhaustive review; we wish only to provide further credence using selected selected 

studies taken from the literature that highlight and support the utility of TIR data to 

quantify and model land surface processes. We do so by providing citations that 

generally fall within several applications areas that we believe are most critical for 

illustrating the virtues of TIR data and associated analysis methods. 
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Some Background on NASA TIR Satellite Instruments 

 

Evaluation of the earth’s radiation energy balance has been a primary design 

function of the meteorological and other earth-sensing satellites since the launch of 

Explorer VII in 1959 (Diak et al., 2004). There has been considerable progress In 

estimating components of the land surface energy balance from orbit, particularly 

beginning with the NASA Landsat series of satellites carrying the Thematic Mapper 

(TM) instrument first  launched in 1984 and its successors. The TM sensor aboard 

Landsat 4 and 5 had spectral bands positioned between .45-12.5 micrometers (µm) in 

the electromagnetic spectrum. Six of these bands are in the visible and reflective 

infrared wavebands of the electromagnetic spectrum (between .45-2.35 µm); and there 

is one TIR spectral band in the 10.40-12.5 µm waveband range. All of the bands except 

for the TIR band have a spatial resolution of 30m; the TIR has a 120m spatial 

resolution. The Enhanced Thematic Mapper+ (ETM+) which was launched onboard 

Landsat 7 in 1999,  has the same spectral band configuration as the TM except the TIR 

band has a spatial resolution of 60m. Landsat 8 launched in February 2013 has a 

sensor that is equivalent to the ETM+ both in spectral bandwidth and spatial resolution, 

except for the TIR band which has e a spatial resolution of 100m1.  

                                                           
1
 For complete information on the Landsat series of satellites, see http://landsat.usgs.gov/about_ldcm.php. 

Additional information on Landsat 8, known as the Landsat Data Continuity Mission (LDCM) prior to  launch, can 

be accessed at http://ldcm.nasa.gov/.  
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The collection of TIR data from space has been further augmented via the launch 

of the NASA Terra and Aqua missions in 1999 and 2002, respectively. Terra carries 5 

sensor instruments including the Moderate-Resolution Imaging Spectroradiometer 

(MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), both of which have capabilities for imaging in TIR wavelengths. MODIS has 

multiple TIR bands as does ASTER; The MODIS TIR bands are in the 3.1-4.0 nm and 

10.7-12.2 µm ranges, and ASTER’s are in the 8.1-10.9 µm range The NASA Aqua 

mission also carries a MODIS instrument. Terra collects data twice daily at 

approximately 10:30 a.m. and 10:30 p.m. local time, while Aqua collects data twice daily 

at approximately 1:30 a.m. and 1:30p.m. local time. MODIS TIR data has a spatial 

resolution of 1km while ASTER thermal data is collected at 90m spatial resolution. In-

depth information on Terra and Aqua can be obtained at 

http://www.nasa.gov/mission_pages/terra/index.html and 

http://aqua.nasa.gov/index.php, respectively. 

 

One recently launched (December 2011) joint NASA/NOAA (National Oceanic 

and Atmospheric Administration) mission also offers TIR capabilities is the Visible and 

Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the National Polar-

orbiting Operational Environmental Satellite System (NPOESS), now called the Suomi 

National Polar-orbiting Partnership  or NPP space platform. Although it has a coarse 

spatial resolution (approximately .39km), VIIRS bears mention because it has 4 TIR 

spectral bands and it extends and improves upon a series of measurements initiated by 

the NOAA Advanced Very High Resolution Radiometer (AVHRR), which has been used 
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in many past and present studies of land surface energy balance fluxes. NPP collects 

data at about 1:30 p.m. and 1:30 a.m. local time, similar to the temporal cycle of Aqua. 

More information on NPOESS/VIIRS is available at http://npp.gsfc.nasa.gov/index.html. 

 

It must be noted that NASA or NOAA Earth Observing satellites are not the only 

space-based TIR platforms. The European Space Agency (ESA), the Chinese, and 

other countries do have in orbit, or plan to launch, TIR remote sensing systems. 

However, a discussion of these systems will not be presented here for the sake of 

brevity2. 

 

The Use of TIR Data in Analysis Landscape Ecological Characterization 

 

Solar and thermal radiation within the earth-atmosphere regime governs the 

energy available at the earth’s surface for heating and cooling of the air (i.e., sensible 

heat), the evaporation of water from soil and vegetation (i.e., latent heat) and heating or 

cooling of natural (e.g., soil) and non-natural (e.g., pavement) land surfaces. The earth’s 

only significant source of energy is solar radiation, which is partitioned into various 

energy fluxes at the surface (Diak et al., 2004). The ultimate driving factor controlling 

surface characteristics such as soil moisture, land cover, and vegetation conditions, is 

the energy transfer that occurs in land-atmosphere interactions. The simplest form of 

the surface energy balance (assuming no advection of energy across the land surface) 

is given by: 

                                                           
2
 Quattrochi et al. 2003 gives a listing of the characteristics of U.S. and international imaging satellites either 

launched at that time or planned for future launch. 
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     Rnet = G + H + LE     (1) 

 

where Rnet is the net radiation balance, G refers to the soil heat flux (i.e., the energy 

used to warm the near surface soil layers, H is sensible heat flux and LE is the latent 

heat flux The ability to quantify the partitioning of available energy at the land surface 

into sensible and latent heat flux is key to understanding the impact of the land surface 

on atmospheric processes (Czajkowski et al., 2000). Understanding land-atmosphere 

energy exchange processes is important for improving short-term meteorological 

conditions (i.e., the weather), and in predicting the impacts of natural and 

anthropogenic changes in the land surface on long-term climate variability (Humes et 

al., 2000). Although land-atmosphere energy fluxes can be measured using in situ 

methods via surface thermal radiation measurements and soil moisture instruments, 

the synoptic view provided by remote sensing data from satellites can measure land 

surface temperatures and energy fluxes over a wide area repetitively for multiple 

temporal periods (i.e., hours, days, weeks) for the same geographic area on earth. 

This facilitates the modeling of surface energy fluxes for different land covers across 

the heterogeneous land surface, for developing an understanding how individual land 

covers with different thermal characteristics force energy exchanges between the land 

and atmosphere. There are numerous references that explain thermal IR theory and 

how it can be used to derive surface thermal energy balances using remote sensing 

data (see for example Quattrochi and Luvall, 2009 and Quattrochi et al., 2009) and this 

will not be explained here. 
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Estimating Land Surface Energy Budgets Using Remote Sensing Data 

 

Satellite remote sensing provides an excellent opportunity to study land-

atmosphere energy exchanges at the regional scale. Many algorithms have been 

developed and tested using satellite TIR data to measure regional distributions of land 

surface temperature (LST), land surface reflectance, particularly that from vegetation, 

using the Normalized Vegetation Index (NDVI), and fluxes of net radiation, soil heat, 

and sensible and latent heat flux. The NDVI has been used extensively to measure 

canopy density (or biomass content) to develop better regional estimates of energy 

fluxes for vegetation at the regional scale (see Quattrochi and Luvall, 1999, 2004). The 

NDVI has also been used to compare the energy fluxes of vegetation with other types of 

land covers (e.g., non-natural surfaces), and to assess how energy dynamics of 

vegetation, especially evapotranspiration, affects surrounding land covers (NASA, 2013; 

(Quattrochi et al., 2009).  

Landsat TM and ETM data have been used extensively to derive land surface 

temperatures in conjunction with NDVI’s. Fan et al., 2007) used ETM+ data to derive 

regional distribution of surface energy fluxes in conjunction with NDVI over a watershed 

in Inner Mongolia China. Distribution maps revealed strong contrasts in thermal energy 

responses of surface characteristics as a function of landscape features. Southworth 

(2004) investigated the utility of integrating Landsat data for differentiation between 

successional stages of forest growth in the Yucatan, Mexico. He found that the Landsat 

ETM+ thermal data contains considerable information for the discrimination of land 



 

9 
 

cover classes in the dry tropical forest ecosystem. Li et al., (2004) used Landsat TM and 

ETM+ data to  derive land surface temperatures as part of the Soil Moisture 

Experiments in 2002 (SMEX02) in central Iowa. Results from the study show that it is 

possible to extract accurate LSTs that vary from 0.98 oC to 1.47 oC from Landsat 5 TM 

and Landsat 7 ETM+ data, respectively. Julien et al. (2006) used LST algorithms and 

NDVI values to estimate changes in vegetation in the European continent between 1982 

and 1999 from the Pathfinder AVHRR (NOAA Advanced Very High Resolution 

Radiometer) NDVI dataset3. These data show a well confirmed trend of increased NDVI 

values over Europe, with southern Europe seeing a decrease over the whole continent 

except for southern areas which show an increase of in NDVI. LST averages stay stable 

or slightly decrease over the whole continent, except southern areas which show an 

increase. These results provide evidence that arid and semi-arid areas of southern 

Europe have become more arid, while the remainder of Europe has seen an in increase 

in vegetated lands. Wloczyk et al., 2011 used ETM+ data in conjunction with a 

temperature-vegetation index method (TVX) for area-wide mapping of instantaneous air 

temperature. The TVX method was applied to a multi-temporal data set of nine ETM+ 

scenes covering large parts of northeastern Germany. These satellite-derived 

measurements were compared with in situ measurements showing an average error of 

about 3 K4 whereas the mean error in LST estimation was about 2 K. These results are 

comparable with previously reported results for the TVX method.  

                                                           
3
 The Pathfinder AVHRR NDVI dataset is available from the NASA Goddard Earth Science Data and Information 

Services Center (GES DISC) at http://disc.sci.gsfc.nasa.gov/about-us 
4
 Kelvin is a measurement of heat energy or temperature, which advances in the same increments, as does Celsius. 

Its principle difference is that Kelvin measurements are written as K, and have a much lower starting point; 0K or 0 

Kelvin is measured at -273.15 
o
C which is the point at which no heat energy exists in a substance (called absolute 

zero). Celsius converts to K by adding 273.15 to the Celsius number. 
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The MODIS and ASTER sensors have been a critical tool for providing regional 

estimates of LSTs. LST are warmer in the early afternoon than in the morning because 

this is a peak time for solar insolation. MODIS Data from the Aqua mission, therefore, 

are more likely to be closer to the maximum daily LST than that acquired earlier in the 

day by Terra. Coops et al. (2007) investigated the differences in LST between Aqua and 

Terra to get an assessment of how large these differences are across Canada. Using 

MODIS  Aqua and Terra data for 2000 through mid-2002, they found there are 

statistically significant differences between AM and PM LSTs ranging from 1.2 oC and 5 

oC, depending on the time of year. On the average, over 90% of the variation observed 

in the PM data can be explained by the AM LST land cover type and location. 

 

Yang et al. (2011) employed several land cover indices, the Soil-Adjusted 

Vegetation Index (SAVI), the Normalized Multi-band Drought Index (NMDI), the 

Normalized Difference Built-up Index (NSBI), and the Normalized Difference Water 

Index (NDWI) to investigate four land cover types (vegetation, bare soil, impervious, and 

water) in a suburban area of Beijing, China. They applied these indices to MODIS and 

ASTER data acquired in May 2001. The study was designed to evaluate differences in 

LST as function of spatial scale differences between the 1km MODIS TIR and 90m 

ASTER TIR data. They applied a disaggregation method for subpixel temperature 

analysis using a remote sensing endmember index based technique to derive land 
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surface temperature5. It was found that there was good agreement in LSTs between the 

two spatial resolutions. Another scaling study by Liu et al., 2006 used different scaling 

approaches to compare LSTs for MODIS and ASTER data over a part of the Loess 

Plateau in China. ASTER 90m TIR data were scaled up to match the 1km spatial 

resolution of the MODIS sensor to compare LST values between the two instruments. 

They found that upscaled ASTER LSTs achieved an agreement of -0.2 + 1.87 K in 

comparison to the MODIS LSTs. 

 

As part of Soil Moisture-Atmosphere Coupling Experiment (SMACEX) 

experiment (Kustas et al., 2005) conducted over Oklahoma, Kansas and surrounding 

states, French et al. (2005) used ASTER data to detect and discern variations in surface 

temperature, emissivities, vegetation densities, and albedo for distinct land use types. 

They combined ASTER observations with two physically based surface energy flux 

models, the Two-Source Energy Balance (TSEB) and the Surface Energy Balance 

Algorithm for Land (SEBAL) models, to retrieve estimates of instantaneous surface 

energy fluxes. Intercomparison of results between all flux components indicated that the 

two models operate similarly when provided identical ASTER data inputs. Further 

assessment of a multiscale remote sending model for disaggregating regional fluxes, is 

given in Anderson et al., 2004. Here thermal IR data from 6 remote sensing satellites 

(including the NOAA Geostationary Operational Environmental Satellite or GOES) are 

used in conjunction with the Atmosphere-Land Exchange Inverse (ALEXI) model and 

                                                           
5
 Spectral mixture analysis provides an efficient mechanism for the interpretation and classification of remotely 

sensed multidimensional imagery. It aims to identify a set of reference signatures (also known as ‘endmembers’) 

that can be used to model the reflectance spectrum of at each pixel of the original of a finite number of ground 

components (Plaza et al., 2002). 
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associated disaggregation technique (DisALEXI), in effecting regional to local 

downscaling of these data. An excellent reference that provides an overview of 

advances in thermal infrared-based land surface models is also provided by Kustas and 

Anderson, 2009. 

 

Evaporation/Evapotransipiration/Soil Moisture 

 

A predominant application of TIR data has been in inferring evaporation, 

evapotranspiration (ET), and soil moisture. This is verified by the numerous references 

in the literature relating to this application as we noted in our 1999 article and Quattrochi 

and Luvall, 2009. A good overview of remote sensing research in hydrometeorology and 

evapotranspiration, with particular emphasis on the major contributions that have been 

made by the U.S. Department of Agriculture’s, Agricultural Research Service (ARS), is 

given by Kustas et al., 2003. A review of surface temperature and vegetation indices 

remote sensing-based methods for retrieval of land surface energy fluxes and soil 

moisture is also proved by Petropoulos et al., (2009). An additional overview of remote 

sensing of evapotranspiration is given in Kustas, Diak, and Moran (2003). 

 

Landsat ETM+, MODIS, and ASTER data have been successfully used to derive 

parameters, such as surface temperature and emissivity, for input into soil moisture and 

ET models. Liu et al. (2007) used ETM+ and meteorological data were used in a 

regional ET model for the Beijing, China area. Comparisons of energy balance 

components (net radiation, soil heat flux, sensible and latent heat flux) with measured 



 

13 
 

fluxes by the model were made, integrating the remotely sensed fluxes by the model. 

Results show that latent heat flux estimates with errors of (Mean Bias Error [MBE] + 

Root Mean Square Error [RMSE]) of -8.56+23.79 Wm-2, sensible heat flux error of -

8.56+23.79 Wm-2, net radiation error of 25.16+50.87 Wm-2, and soil heat flux error of 

10.68+22.81 Wm-2. The better agreement between the estimates and the 

measurements indicates that the remote sensing model is appropriate for estimating 

regional ET over heterogeneous surfaces. 

 

Another study conducted as part of SMACEX by Su et al., (2005) used the 

Surface Energy Balance System (SEBS) to estimate land surface fluxes using remote 

sensing and meteorological data. SEBS consists of several separate modules to 

estimate the net radiation and soil heat flux, and to partition the available energy into 

sensible and latent heat fluxes. Results from using SEBS show that the model can 

predict ET with accuracies approaching 10-15% of that of in situ measurements. To 

extend the field-based measurement of SEBS, information derived from Landsat ETM+ 

data and data from the North American Land Data Assimilation System (NLDAS)6 were 

combined to determine regional surface energy fluxes for a clear day during the field 

experiment. Results from this analysis indicate that prediction accuracy was strongly 

related to crop type, with corn prediction showing improved estimates compared to 

those of soybean. This research found that differences between the mean values of 

observations and the SEBS Landsat-based predictions at in situ data collection sites 

were approximately 5%. Overall, results from their analysis indicate much potential 

                                                           
6
 Information on the NLDAS can be found at http://ldas.gsfc.nasa.gov/ 
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toward routine prediction of surface heat fluxes using remote sensing data in 

conjunction with meteorological data. 

 

In water-deficient areas, water resource management requires ET at high spatial 

and temporal resolutions. The use of remote space-borne sensing data to do so, 

however, requires the assessment of trade-offs between spatial and temporal 

resolutions. The sharpening of remotely sensed data is one potential way to obviate the 

limitations posed by data from satellite platforms, to derive surface temperature and 

NDVI at the spatio-temporal scales needed for water resources management 

applications. Yang et al., 2010 used the triangle algorithm to sharpen Landsat ETM+ 

data. Sharpened surface temperatures and reference temperatures were compared at 

60m and 240m spatial resolutions. The reflectance measurements are used to calculate 

the NDVI. NDVI is then plotted as a function of surface temperature radiation (Tr) to 

evaluate the relationship between these two variables, as well as providing and 

overlaying index of moisture availability to establish a ‘warm edge’ and a ‘cold edge’ 

index (Figure 1). (A good overview of the triangle method is presented in Carlson, 

2007). It was found that  



 

 

 

Figure 1. Schematic of the triangle concept that illustrates the relationships between 

temperature and vegetation within the overall perspective of NDVI, where t

vegetated land cover and canopy density increases vertically, and the % of bare 

ground increases horizontally. The example here shows 

cover and vegetation decreases, there is a corresponding increase in bare ground and 

higher surface temperatures (Quattrochi and Luvall, 2009)

algorithm is smaller than those with a functional relationship between surface 

temperature and NDVI.  

 

In another study focused on a water deficient area, Landsat ETM+ data wer

used as input to a remote sensing based ET algorithm called METRIC (Mapping 

Evapotranspiration at High Resolution using Internalized Calibration) to provide 

accurate ET maps on actual crop water use over the Texas High Plains 

et al., 2008). The performance of the ET model was evaluated by comparing the 
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In another study focused on a water deficient area, Landsat ETM+ data were 

used as input to a remote sensing based ET algorithm called METRIC (Mapping 

Evapotranspiration at High Resolution using Internalized Calibration) to provide 

(THP) (Gowda, 

The performance of the ET model was evaluated by comparing the 
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predicted daily ET with values derived from soil moisture budget at four commercial 

agricultural fields. Daily ET estimates resulted in a prediction error (RMSE) of 

12.7+8.1% when compared with ET derived from measured soil moisture through the 

soil water balance. Considering prevailing advection conditions in the THP, these 

results are good. The investigators note that METRIC offers promise for use in mapping 

regional ET in the THP region. 

 

In a study over the U.S. central Great Plains, Park, Feddema, and Egbert, 2005) 

used surface temperatures (Ts) derived from MODIS data for correlation with concurrent 

water budge variables. Using a climate water budget program, four daily water budget 

factors (percentage of soil moisture, actual/potential ET ratio, moisture deficit, and 

moisture deficit potential ET ratio) were calculated at six weather station sites across 

western and central Kansas. Correlation analysis showed that Ts deviations from air 

temperature had a significant relationship with water budget factors. To do the analysis 

on a weekly basis, daily MODIS data were integrated into three different types of weekly 

composites, including maximum Ts driest-day, and maximum Ts deviation from 

maximum air temperature or max Tα. Results showed that the maximum Ts deviation 

(Ts-maxTα) temperature composite had the largest correlation with the climatic water 

budget parameters. Correlation for different data acquisition times of MODIS TIR data 

improved the representativeness of signals for surface moisture conditions. The driest-

day composite was most sensitive to time correction. After time correction, its 

relationship with soil moisture content improved by 11.1% on average, but the degree of 
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correlation improvement varied spatially, but there was not a strong correlation with 

water budget factors in relation to the maximum Ts deviation composite method. 

 

Three representative studies using MODIS data illustrate the potential of using 

these data for ET estimation. Modeling of actual daily ET in combination with MODIS 

data by Sanchez et al., 2007 allowed for the determination of surface fluxes over boreal 

forests on a daily basis from instantaneous information registered from a conventional 

meteorological tower, as well as the canopy temperatures (Tc) retrieved from satellite. 

The comparison between Tc ground measured with a thermal infrared radiometer at the 

meteorological sites and Tc retrieved from MODIS, showed an estimation error of 

+1.4oC. Their modeling method was validated over the study site using 21 MODIS 

images from 2002 and 2003. The results were compared with eddy-correlation ground 

measurements; with an accuracy of +1.0mm/day and an overestimation of 0.3mm/day 

were shown in daily ET retrieval. Mallick et al., 2007 used MODIS optical and thermal 

band data and ground observations to estimate evaporative fraction and daily actual ET 

(AET) over agricultural areas in India. Five study regions, each covering a 10km x 10km 

area falling over agricultural land uses, were selected for ground observations at a time 

closest to MODIS overpasses. Eight MODIS scenes collected between August 2003 

and January 2004 were resampled to 1km, and were used to generate surface albedo, 

land surface temperature, and emissivity. Evaporative fraction and daily AET were 

generated using a fusion of MODIS-derived land surface variables coincident with 

ground observations. Land cover classes were assigned using a hierarchical decision 

rule applied to multi-date NDVI and applied via a triangle method to estimate the 
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relationship between NDVI and surface temperature. Energy balance daily AET from 

the fused MODIS data was found to deviate from water balance AET by between 4.3% 

to 24.5% across five study sites with a mean deviation of 11.6%. The RMSE from the 

energy balance AET was found to be 8% of the mean water balance AET. Thus, the 

satellite-based energy balance approach can be used to generate spatial AET, but as 

noted by the investigators, further refinement of this technique should produce more 

robust results.  

 

Remote sensing with multispectral infrared can improve regional estimates of ET 

by providing new constraints on land surface energy balance. Current models use 

visible and near infrared bands to obtain vegetated cover and in some cases utilize TIR 

data; these data together yield good ET estimates. However, it may be possible to 

enhance these ET models by using emissivity estimates derived from TIR emissivity, 

which is a property related to fractional vegetation cover but independent of plant 

greenness (French and Inamdar, 2010). This is demonstrated in a study using MODIS 

observations obtained over Oklahoma and Kansas, which were compared with changes 

in NDVI for winter wheat and grazing land. It was found that emissivity changes were 

independent of NDVI and sensitive to standing canopies, regardless of growth stage or 

senescence. Therefore, emissivities were seasonally dynamic, able to detect wheat 

harvest timing, and helpful for modeling ET. 

 

Data combinations from different satellite sensors potentially provide even more 

useful information on soil wetness than by using data from one satellite platform alone. 
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Surface soil wetness determines moisture availability that controls the response and 

feedback mechanisms between land surface and atmospheric process. Mallick, 

Bhattacharya, and Patel (2009) performed a study to estimate volumetric surface soil 

moisture content in cropped areas in India at field (<102 m) to landscape (<103 m) 

scales. In situ data collected at the field scale were used to obtain a soil wetness index 

(SWI) from which soil moisture content (ƟV) was derived using ASTER data for the field 

scale and  MODIS at the landscape scale.  

 

Integration of satellite data with spatial data on vegetation and terrain features via 

GIS methods have also been used to map ET. Accurate estimation of ET is difficult to 

obtain over heterogeneous landscapes with diverse land covers and topographic 

terrains. Mariotto et al., (2011) performed a study to build advanced remote sensing and 

land surface energy balance algorithms to map ET in a heterogeneous semi-arid area 

over the U.S. Department of Agriculture, Agricultural Research Service, Jornada 

Experimental Range that encompasses parts of southern Arizona, New Mexico, and 

Texas. ET of 12 different land covers was computed by applying he Surface Energy 

Balance Algorithm for Land (SEBAL). A GIS raster/vector system was used to integrate 

multispectral TIR and reflectance imagery from ASTER with meteorological, terrain, and 

land cover data. The study showed that SEBAL run with all these input data, provided 

the best agreement with ground measurements, in comparison with SEBAL run without 

any modification for terrain features and associated data, and it could significantly 

discriminate ET among 75.8% of vegetation types. SEBAL without ASTER integrated 

data set could not discriminate any vegetation types. 
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The influence of spatial scale on ET estimation using multiple satellite sensors 

collected over heterogeneous land surfaces is a critical research need. McCabe and 

Wood (2006) used Landsat ETM+ (60m), ASTER (90 m), and MODIS (1,020 m) data to 

independently estimate ET. The range of satellite sensor resolutions allows for analyses 

that span spatial scales from in situ measurements (i.e., point-scale) to the MODIS 

kilometer scale. ET estimates derived at these multiple resolutions were assessed 

against eddy covariance flux measurements during the SMACEX campaign over the 

Walnut Creek watershed in Iowa. Together, these data allow a comprehensive scale 

intercomparison of remotely sensed predictions, that included intercomparison of the ET 

products from the various sensors, as well as a statistical analysis for the retrievals  at 

the watershed scale. A high degree of consistency was observed between the higher 

spatial resolution sensors (ETM+ and ASTER). The MODIS-based estimates were 

unable to discriminate the influence of land surface heterogeneity at the field scale, but 

did effectively reproduce the average ET of the watershed response, which illustrated 

the utility of this sensor for regional scale ET estimates.  

 

Further information on the assessment of ET and soil moisture content across 

different scales of observation that has implications in deriving ET from satellite-based 

data is given in Verstaeten, Veroustaete, and Feyen (2008). Here they provide a 

summary of the generally accepted theory of ET, a summary of ET assessment at 

different scales of observation, a summary of data assimilation schemes for estimating 

ET using reflectance and TIR remote sensing data, and a summary of soil moisture 
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retrieval techniques at different spatial and temporal scales. Another useful reference on 

scaling of TIR data for evaporation estimation is given by Li et al., (2009). Here they 

provide an overview of the commonly applied ET models using remote sensing data at 

regional scales. They discuss the main inputs, assumptions, theories, advantages and 

drawbacks of different ET models. They also provide insight into the limitations and 

promising aspects of the estimation of ET-based remotely sensed data and ground-

based measurements. 

 

Drought Monitoring 

 

In addition to using TIR data for ET and soil moisture analysis over vegetated 

surfaces, there is also a need for using these data for assessment of drought 

conditions. Anderson and Kustas (2008) illustrate that ALEXI model can successfully be 

used with TIR data to model ET and drought at local to continental scales. They 

demonstrate this using GOES AVHRR data to produce ET soil moisture stress 

estimates at a 10 km grid resolution over the coterminous U.S. They also indicate that in 

ALEXI run in a disaggregation mode (DisALEXI) can generate moderate to high 

resolution (100-103 m) ET flux maps using data satellite platforms such as Landsat and 

MODIS. This methodology is examined more extensively and reported on in Anderson 

et al., 2011. Min and Minghu (2010) show that combining a spectral vegetation index 

(NDVI) with TIR data (Ts) in a Ts/NDVI triangle model can provide a promising measure 

for drought monitoring. They use the Ts/NDVI triangle method using MODIS NDVI and 

LST data to explore dryness monitoring in Heilongjiang Province, China. The spatial 
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pattern observed using this method demonstrates that the summer dryness is 

characterized with extensive and long duration droughty conditions. They find that the 

Ts/NDVI method can provide near-real time drought monitoring in the study area. 

Another study conducted in China by Wu et al., (2008) used MODIS TIR data within a 

GIS format to generate a soil moisture map based on the relationship between thermal 

inertia and soil moisture. Results indicate that thermal inertia derived from MODIS data 

is consistent with the actual dryness characteristics that occurred as verified with 

meteorological data7. 

 

Karniell et al., 2010 provide an insightful analysis of the merits and limitations of 

the use of NDVI and LST for drought assessment. Their work investigates the generality 

of the LST-NDVI relationship over a wide range of moisture and climatic/radiation 

regimes encountered over the North American continent (up to 60oN) during the 

summer growing season. Information on LST and NDVI was obtained from long term 

(21 years) datasets acquired with the AVHRR sensor. It was found that when water is 

the limiting factor for vegetation growth (which is the typical situation for low latitudes of 

the study area during the midseason), the LST-NDVI correlation is negative. However, 

when energy is the limiting factor for vegetation growth (in higher latitudes and 

elevations, particularly at the beginning of the growing season), a positive correlation 

exists between LST and NDVI. Multiple regression analysis revealed that during the 

beginning and end of the growing season, solar radiation is the predominant factor 

                                                           
7
 Thermal inertia is the ability of a landscape to resist change in temperature. Because thermal inertia is related to 

surface composition or to near-surface moisture, remote sensing can be used to measure this property. We 

explain the utility of thermal inertia measurements in landscape analysis in our1999 Landscape Ecology article on 

pages 583-584. 
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driving the correlation between LST and NDVI, whereas other biophysical variables play 

a lesser role. Air temperature is the primary factor in midsummer. They conclude that 

there is a need to use empirical LST-NDVI relationships with caution to restrict their 

application to drought monitoring to areas and periods where negative correlations are 

observed, primarily to conditions when water – and not energy – is the primary factor 

limiting vegetation growth. 

 

Desert or Arid Environments 

 

Desert or arid environments occupy a significant portion of the earth’s surface 

and with the prospect of the spatial extent of arid lands possibly increasing due to global 

climate change, they are important areas for analysis in landscape ecology. In 

association with drought monitoring, TIR data have been used to study surface 

temperature characteristics over desert or arid environments. For example, Akbar et al. 

(2011) used AVHRR and meteorological data to assess drought events in the semi-arid 

central plains of Iran. Drought recognition is based on the analysis of the Standard 

Precipitation Index (SPI) derived from meteorological variables and NDVI obtained from 

AVHRR data. These variables include the Vegetation Condition Index (VCI), LST, Land 

Surface Moisture (LSM), Temperature Condition Index (TCI), Land Surface Moisture 

(LSM), and the Vegetation Health Index (VHI). Analysis was restricted to the spring 

season from 1998 to 2004. Results show that indices derived from the AVHRR thermal 

band have a higher sensitivity to drought conditions than indices derived from the visible 

bands. Indices derived from reflective bands such as NDVI and VCI, appear to be better 
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correlated to meteorological parameters than thermal band indices such as TCI. Indices 

that are calculated from both the reflective and TIR bands like LSM and VHI do not 

seem to be a reliable measure of drought conditions in the study area. 

 

Research by Qin, Karnieli, and Berliner (2001, 2002, 2005) also used thermal 

data from the AVHRR to estimate LST and the variation of this parameter over the 

Israel-Sinai peninsula. As they note, the retrieval of LST from AVHRR data with two 

channels in the 10.5-11.3 µm bandwidth is usually derived using split window algorithm 

technique. In order to assess the spatial distribution of LST over the study area, they 

used a modified version of the split window technique that only requires input on 

emissivity and transmittance, as opposed to other versions of this technique that require 

atmospheric parameters that are generally difficult to estimate due to absence of in situ 

atmospheric profile data8. An LST image in combination with a pseudo-color image 

generated from AVHRR reflective wavelength bands (1, 2, and 4). A sharp contrast in 

arid land characteristics can be identified on both sides of the Israel-Egypt border. This 

contrast is a direct result of different vegetation cover and biogenic crust percentage on 

both sides. 

 

                                                           
8
 Extensive work has gone into the development of algorithms to estimate LST from AVHRR channels 4 and 5. The 

primary approach is the so-called “split window” technique that uses the difference in brightness temperatures 

between AVHRR channels 4 and 5 to correct for atmospheric effects on sea surface and land surface temperatures. 

The split window method corrects for atmospheric effects based on differential absorption in adjacent infrared 

bands in deriving LST from satellite data. The split window technique works independently of other data sources 

and takes advantage of the differential effect of the atmosphere on the radiometric signal across the atmosphic 

window region (Czajkowski et al. 2004.). Two other informative sources on the split window technique and 

retrieval of LST from satellite data are Wan and Dozier(1996) and Dash, et al. (2001). 
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Miliaresis and Partsinevelos used monthly night averaged LST derived from 

MODIS throughout a year-period (2006) in an attempt to segment terrain of Egypt into 

regions with different LST seasonal variability, and represent them parametrically. 

Regions with distinct spatial and temporal LST patterns were identified using several 

clustering techniques that captured aspects of spatial, temporal, and temperature 

homogeneity or differentiation. Segmentation was augmented by taking elevation, 

morphological features, and land cover information into consideration.  Analyses of 

these data showed that the lowland northern coast region of Egypt along the 

Mediterranean Sea corresponds to the coolest clusters, indicating a latitude/elevation 

dependency of seasonal LST variability. Conversely, for inland regions, elevation and 

terrain dissection plays a key role in LST seasonal variability, while an east to west 

variability of spatial distribution in clusters is evident. Lastly, elevation biased clustering 

revealed annual LST differences among the regions with the same physiographic and 

terrain characteristics. Thermal terrain segmentation outlined temporal variation of LST 

during the year period, as well as the spatial distribution of LST zones. 

 

Thermal Energy Theory as Applied to Ecological Thermodynamics 

The concept of ecological thermodynamics provides a quantification of surface 

energy fluxes for landscape characterization in relation to the overall amount of energy 

input and output from specific land cover types. The concept of ecological 

thermodynamics was introduced in the Quattrochi and Luvall (1999) Landscape Ecology 

paper, but here we present a more thorough understanding of the techniques and 
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methods embodied within this concept to offer an updated and clearer understanding of 

its utility and virtues  

 

Terrestrial ecosystem's surface temperatures have been measured using 

airborne and satellite sensors for several decades.  Using NASA’s Thermal Infrared 

Multispectral Scanner (TIMS) Luvall and his coworkers (Luvall and Holbo 1989; Luvall 

et al 1990; Luvall and Holbo 1991) have documented ecosystem energy budgets for 

tropical forests, mid-latitude varied ecosystems, and semiarid ecosystems.  These data 

show that within a given biome type, and under similar environmental conditions (air 

temperature, relative humidity, winds, and solar irradiance), the more developed the 

ecosystem, the cooler its surface temperature and the more degraded the quality of its 

reradiated energy. These data suggest that ecosystems develop structure and function 

that degrades the quality of the incoming energy more effectively; that is they degrade 

more exergy9, which agrees with the predictions of nonequilibrium thermodynamic 

theory (Schneider and Kay 1994a; Kay and Schneider 1994; Schneider and Sagan 

2005), This remote sensing work suggests that analysis of airborne remote sensing  

energy flux data is a valuable tool for measuring the energy budget and energy 

transformations in terrestrial ecosystems.  Given the stated hypothesis, a more 

developed ecosystem degrades more exergy, the ecosystem temperature, Rn/K*, beta 

index, and Thermal Response Number (TRN) are excellent candidates for indicators of 

ecological integrity. The potential for these methods to be used for remote sensed 

ecosystem classification and ecosystem health/integrity evaluation is apparent. 

                                                           
9
 In thermodynamics, the exergy of a system is the maximum work available through any process that brings the 

system into equilibrium with a heat reservoir (environment). Exergy is the energy available for use. See Fraser and 

Kay, 2004 for a discussion of exergy in an ecological context. 
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Recent advances in applying principles of nonequilibrium thermodynamics to 

ecology provide fundamental insights into energy partitioning in ecosystems.  

Ecosystems are nonequilibrium systems, open to material and energy flows, which grow 

and develop structures and processes to increase energy degradation. More developed 

terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading 

its exergy content). 

Thermal energy theory results from work to understand ecological development.  

(See Kay 2000 for an overview.)  The research in ecological thermodynamics has 

focused on linking physics and systems sciences with biology, and especially linking the 

science of ecology with the laws of thermodynamics.  This research follows on the 

observation that similar developmental processes are observed in ecosystems, from 

small laboratory microcosms, to prairie grass systems, to vast forest systems and ocean 

plankton systems.  Such similar phenomenology has long suggested underlying 

processes and rules for the development of ecological patterns of structure and function 

(Odum 1969).  Furthermore, recent advances in nonequilibrium thermodynamics 

coupled with the investigation of self-organizing phenomena in  different types of 

systems, (from simple convection cell systems to forested ecosystems)  has revealed 

that all self-organizing phenomena (including ecosystem development) involve similar 

processes, processes which are mandated by the second law of thermodynamics.  This 

conclusion, as discussed below, provides a basis for a quantitative description of 

ecosystem development.  (Fraser and Kay 2004; Kay 1991; Kay and Schneider 1992a, 

1992b; Schneider and Kay 1993, 1994a, 1994b, 1994 c; Regier Kay 1996.)  
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The study of self-organization phenomena in thermodynamic systems is based 

on systems that are open to energy or material flows, and which reside in quasi-stable 

states some distance from equilibrium, (Nicolis and Prigogine 1977). Both non-living 

self-organizing systems (like convection cells, tornadoes and lasers), and living self-

organizing systems (from cells to ecosystems), are dependent on exergy (high quality 

energy) fluxes from outside sources to sustain their self-organizing processes.  These 

processes are maintained by the destruction of the exergy; that is the conversion of the 

high quality energy flux into a flux of lower quality forms of energy.  Consequently, these 

processes increase the entropy of the larger "global" system, in which the self-

organizing system is embedded.  Crucial insights, into the dynamics of self-organizing 

systems can be gained from examining the role of the second law of thermodynamics, 

in determining these dynamics.  

 

Using exergy, the second law of thermodynamics can be applied to 

nonequilibrium regions and processes. In this systems can be described in terms of the 

exergy fluxes setting up gradients (e.g., temperature and pressure differences in 

classical thermodynamic systems).  With the establishment of these gradients, the 

system is no longer in equilibrium.  The system responds to these imposed gradients, 

by self-organizing in a way which resists the ability of the exergy fluxes to establish 

gradients, and hence move the system further away from equilibrium.  More formally, a 

restatement of the second law says that as systems are moved away from equilibrium, 

they will utilize all avenues available to counter the applied gradients.  As the applied 
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gradients increase, so does the system's ability to oppose further movement from 

equilibrium (Schneider and Kay, 1994a).  As a system self-organizes, the more effective 

it will become at exergy utilization. Kay and Schneider (1994c) have focused on the 

application of this thermodynamic principle to the science of ecology.  Ecosystems are 

viewed as open thermodynamic systems with a large gradient impressed on them by 

the exergy flux from the sun.  Ecosystems, according to the restated second law, 

develop in ways that systematically increases their ability to degrade the incoming solar 

exergy, hence counteracting the sun’s ability to set up even larger gradients. It is clear 

that for forested ecosystems by far the majority of the energy is processed through 

sensible and latent heat fluxes as exampled by the measurements form the Hubbard 

Brook Forest (Figure 2). 

 

 

Figure 2. Partitioning of surface energy fluxes in Hubbard Brook (Bormann and Likens 

1978, lecture notes J. Kay) 
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Thus it can be predicted that more mature ecosystems will degrade the exergy they 

capture more completely than a less developed ecosystem (Table 1).  The degree to 

which incoming solar exergy is degraded is a function of the surface temperature of 

the ecosystem.  (See Fraser and Kay 2004 for details.)  If a group of ecosystems 

receives the same amount of incoming radiation, we would expect that the most 

mature ecosystem would reradiate its energy at the lowest quality level and thus would 

have the lowest surface temperature.  

 

Beta Index as a Measure of Surface Temperature Spatial Variation 

 

Three measures to characterize the thermodynamic performance of the 

ecosystem, the ratio Rn/K*, the Beta Index and the TRN. The average temperature for a 

forest canopy cannot express the spatial variability. However, as demonstrated by 

Holbo and Luvall (1989), the frequency distributions of temperatures can be used as a 

powerful model in differentiation and identification of land surface cover types and their 

properties. They found that a beta distribution closely resembles the observed 

temperature frequency distributions from forested landscapes. An advantage of using 

the beta distribution, as a model is that it utilizes the pixel frequency distributions 

directly, and no high-order, measurement-error- magnifying statistics are used (Figure 

3). From this they developed the Beta Index by which these forested landscapes could 

be classified and quantify the spatial temperature variability of the ecosystem. As 

ecosystems develop, nonequilibrium thermodynamic theory suggests that they would 

tend toward internal equilibrium. Therefore we would expect the spatial variability of 

temperature to decrease as an ecosystem develops (Table 1). Thus a large beta index 
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should indicate a more developed ecosystem. These data are consistent with viewing 

ecosystems in terms of nonequilibrium structures and processes.  Nonequilibrium 

thermodynamic theory suggests dissipative systems tend toward steady state and 

develop homeostatic methods for maintaining steady state and thus we expect 

temperature variability to decrease with ecosystem development.   

 

 

 

Figure 3. Fitting BETA probability distributions to observed frequency distributions. 

(Holbo and Luvall 1989). 

 

Thermal Response Number 

 

The second characterization measure, the Thermal Response Number (TRN), can be 

applied where ever there are overlaps in adjacent flight lines.  The TRN was developed 

in Luvall and Holbo (1989, 1991) as a remote sensing based technique for describing 

the surface energy budget within a forested landscape.  This procedure treats changes 

in surface temperature as an aggregate response of the dissipated thermal energy 
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fluxes (latent heat and sensible heat exchange; and conduction heat exchange with 

biomass and soil). The TRN is therefore directly dependent on surface properties 

(canopy structure, amount and condition of biomass, heat capacity, and moisture). 

Surface net radiation integrates the effects of the non-radiative fluxes, and the rate of 

change in forest canopy temperature presents insight on how non-radiative fluxes are 

reacting to radiant energy inputs.  The ratio of net radiation to change in temperature 

can be used to define a surface property referred to as the Thermal Response Number 

(TRN).  

TRN = Rn∆t / ∆T
t1

t2

∑   (in kJm-2  K); where Rn∆t
t1

t2

∑
 
represents the total amount of net 

radiation ( Rn ) for that surface over the time period between flights ( ∆t = t2 − t1)  and 

∆T  is the change in mean temperature of that surface. Experiments by the P.I. using 

the Thermal Infrared Multispectral Scanner (TIMS) showed that 15-30 minutes 

between over-flights is sufficient time difference to obtain measurable and useful 

changes in forest canopy temperature due to the change in incoming solar radiation. 

The mean spatially averaged temperature for the surface elements at the times of 

imaging is estimated from T =
1

n Tp∑
; where each Tp  is the temperature of a pixel in 

the thermal image, and n is the number of pixels of the surface element. The TRN 

provides an analytical framework for studying the effects of surface thermal response 

for large spatial resolution map scales that can be aggregated for input to coarser 

scales as needed by climate models. The utility of TRN is that (1) it is a functional 

classifier of land cover types; (2) it provides an initial surface characterization for input 

to various climate models; (3) it is a physically based measurement; (4) it can be 
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determined completely from a pixel by pixel measurement or for a polygon from a 

landscape feature which represents a group of pixels; (5) surface topography and 

orientation of observation are not handicaps where adequate digital elevation data are 

available. The TRN can be used as an aggregate expression of both environmental 

energy fluxes and surface properties such as forest canopy structure and biomass, 

age, and physiological condition; urban structures and material types.  

 

Table 1.  Radiative transfer estimates, surface temperatures, Beta Index, and TRN 

measurements for several surface types at the Andrews Experimental Forest, Oregon. 

(Modified from Luvall and Holbo 1989, Holbo and Luvall 1989, Bishop et al. 2004).  

 

 QUARRY CLRCUT 

2 yr Doug-

Fir 

NATREG 

25 yr. Doug-

Fir 

PLANT 

25 yr. Doug-

Fir 

MATUREF 

400 yr Doug-

Fir 

K*  W m-2 718 799 895 854 1,005 

L*  W m-2 273 281 124 124 95 

Rn  W m- 445 517 771 730 830 

Rn /K*  % 62 65 86 85 90 

T    oC 50.7 51.8 29.4 29.5 24.7 

delta T  4.5 2.2 1.7 0.8 0.9 

Beta -12.9 6.3 17.2 34.4 130.7 

TRN 

k J m-2 

168 

 

406 

 

788 

 

1631 

 

1549 

  

K* = net incoming solar radiation, L*  = net long wave, Rn = net radiation, Rn/K* = 

percent of net incoming solar radiation degraded into non-radiative processes.  
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A similar index, thermal buffer capacity (TBC) was later proposed by Aerts et al. 2004 

as a dissipation indicator: 

 

TBC = (t2 − t1)

(Ts (t2 ) − Ts (t1))
= ∆t

∆Ts

 

Ecological Complexity and Ecological Health 

 

The use of ecosystem exergy theory with thermal remote sensing observations is 

beginning to be used to study other ecosystems throughout the world. Maes et al. 2011 

research used a series of DAIS (Digital Airborne Imaging Spectrometer) images 

collected over various forests, orchards, croplands, grazing lands, and urban areas in 

Northern and Central Belgium. They found that TRN and TBC have the highest 

discriminative power of all dissipative indices and were particularly suited for 

distinguishing differences in latent heat flux among the vegetation types. They also 

determined that TBC and TRN were the dissipation indicators that were least influenced 

by prevailing meteorological conditions.  

 

Additional work by Lin et al 2009 used TRN, TBC, and Rn /K* to quantify plant 

community self-organization in a tropical seasonal rainforest, an artificial tropical 

rainforest, a rubber plantation, and two Chromolaena odorata (L.) R.M. King & H. 

Robinson communities aged 13 years and 1 year. These transects sampled the typical 

vegetation complexity and land use in Xishuangbanna, southwestern China. They 

concluded that these thermodynamic indices could discriminate differences in 
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complexity among ecosystems studied both in the dry and wet seasons. 

Norris et al. 2012 studied the application of ecological thermodynamics theory to 

ecosystem climate change adaptation and resilience. They concluded using ecological 

thermodynamic indicators would significantly enhance the understanding of the 

characteristics of resilient and adaptable natural environments.  

 

Concluding Remarks 

In our final remarks in our 1999 paper, we noted that the incorporation of TIR 

data into landscape studies offers the prospect to measure the state and dynamics of 

energy fluxes across and between landscapes, from the patch to the regional levels. 

The utilization of TIR remote sensing in landscape ecological research has indeed, as 

illustrated buy the numerous references cited herein, made meaningful and significant 

progress since the publication of our Landscape Ecology article. The utility of TIR data 

is now commonplace and a “known quantity” for application to landscape ecological 

research. This is a product of the increased amount of references in the literature to TIR 

data in landscape studies, but even more so because of the number of satellite 

platforms that have been launched in the last 14 years since our article was published. 

Of principle importance have been the TIR sensors onboard the NASA Terra Earth 

Observing platform (i.e., MODIS and ASTER) where the thermal data from these 

instruments have been widely used for analysis of a variety of landscape 

characteristics. Moreover, the launch of the VIIRS instrument in 2011 and Landsat 8 in 

2013, has increased the overall availability of TIR data. New NASA missions that will be 

launched with TIR instruments are outlined in the National Research Council’s report on 
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“Earth Science and Applications from Space: National Imperative for the Next Decade 

and Beyond” (better known as the “Decadal Survey”) (NRC, 2007) which established a 

roadmap for developing a suite of Earth observing satellites in the future. The NRC 

provided further direction for NASA’s Earth science missions in its recently published 

report on “Earth Science and Applications from Space: A Midterm Assessment of 

NASA’s Implementation of the Decadal Survey” (NRC, 2012). 

 

One future mission in particular is important for furthering the use and analysis of 

TIR data for landscape assessment – the Hyperspectral Infrared Imager (HyspIRI). This 

will be a combined hyperspectral/thermal instrument with 213 spectral channels 

between 380 and 2500 nm on 10nm centers, and the TIR sensor will have 8 spectral 

channels (7 between 7.5-12 µm and 1 at 4 µm). Both instruments will have a spatial 

resolution of 60 m and the revisit time for HyspIRI will be 19 and 5 days for the 

Visible/Shortwave Infrared (VSWIR) and TIR instruments, respectively.10 The HyspIRI 

mission, therefore, will offer an unprecedented opportunity to obtain high spatial 

resolution multispectral TIR data that can be used in landscape ecological and land 

surface processes research, at revisit times wherein observations of the land surface 

can be made at repeat times that to date, are unattainable by current NASA Earth 

science missions. 

 

In the spirit of the Decadal Survey, HyspIRI is designed to address a number of 

thematic topics and underlying science questions related to the observation, 

                                                           
10

 More in-depth information on the HyspIRI mission can be accessed at the HyspIRI Mission Study website at 

http://hyspiri.jpl.nasa.gov/. 
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measurement, and analysis of land surface characteristics and ecosystem functioning. 

Although the HyspIRI science questions, at least in part, all focus on land surface 

issues, three overarching science question in particular, are of significance to furthering 

and fostering data analysis and modeling with TIR data from a landscape ecological 

perspective: 

 

• How does urbanization affect the local, regional, and global environment? 

Can we characterize this effect to help mitigate its impact on human health and welfare? 

• What is the composition and temperature of the exposed surface of the 

Earth? How do these factors change over time and affect land use and habitability? 

• What is the composition of the exposed terrestrial surface of the Earth, 

and how does it respond to anthropogenic and non-anthropogenic drivers? 

 

Correspondingly, each of these overarching science questions has underlying 

science sub-questions that elucidate issues associated with these larger questions. It is 

anticipated that HyspIRI with its hyperspectral/multispectral capabilities and improved 

revisit times, will provide the VSWIR and TIR data needed to help answer these 

questions 

 

In summary, we have presented here a synopsis and description of relevant 

literature that has been published on thermal infrared remote sensing for analysis of 

landscape ecological and land surface processes research, since the publication of our 

article that appeared in Landscape Ecology in 1999, and which augments the 
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information presented in our Thermal Remote Sensing in Land Surfaced Processes 

book, published in 2004. To this end, we believe that the review of the literature that is 

presented here annunciates the overall premise of the importance of TIR data for 

advancing the science of landscape ecological and land surface processes research. 

TIR data are now readily available from a number of NASA Earth observing satellite 

platforms at differing spectral and spatial scales that lend themselves in the overall 

analyses and modeling of a host of landscape characteristics and processes. In 

actuality, the volume of TIR data that are now available is somewhat overwhelming, and 

the specific types of TIR data and the spatial/spectral scales of these data, must be 

carefully matched with the landscape research in question. Dependent upon the 

objectives of specific research, it may in fact be prudent to utilize and compare TIR data 

collected at different spatial and spectral scales from different satellites, to develop a 

more complete understanding of the thermal characteristics, energy balances, and 

fluxes, that force or drive the landscape processes of interest. And, there is more TIR 

data to come in the future with the launch of NASA missions such as HyspIRI as well as 

Earth observing instruments launched by the European Space Agency (ESA) and other 

national entities. Through increased use and analyses, the science questions and 

research associated with developing a more comprehensive visual, qualitative, and 

quantitative insight into landscape functioning and characteristics  that make  the land 

surface, the” ‘landscape”, will be realized. 
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