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ABSTRACT 

Though the forests of the world are vital for all humans, their area is decreasing. 

The elevating deforestation rate has a severe impact on the global climate as 

approximately 20% of the total human-induced greenhouse gas emission was caused 

by forest degradation and deforestation process. Furthermore, forests are the most 

species-rich ecosystems of the world and the advance of forest degradation and 

deforestation dramatically threatens their high biodiversity. To monitor and observe 

forest degradation, satellite based analysis is quite effective and often the only possible 

approach due to the vast and often inaccessible study areas. 

The northeast China is the only remaining cold temperate forest area, which plays 

important ecological role on maintaining biological diversity and mitigating climate 

change. Additionally, the forestry industry has greatly supported the local economic 

development. However, the forest quality and quantity decreased dramatically over 

nearly 40 years of forest exploitation. Although the Chinese government has 

implemented forest conservation policies, the implementation of policies was not so 

effective because of the lack of knowledge on how to allocate the management resource. 

In this research, we aim to conduct an environmental risk assessment to help those 

decision makers for more effective policy implementation. 

Taking advantage of remote sensing data on monitoring land cover change in a 

wide range area, we used the MODIS time series images to analyze the forest cover 

change and to extract areas influenced by forest fires from 2000 to 2010. Additionally, 

we defined the forest degradation as forest coverage decrease and compared that with 

forest burned area. Results showed that the forest fires were the main driving force of 

forest degradation and forest degradation mainly occurred in the eastern region of 

Daxing’anling. 

Considering the uncertainty in forest fires occurrence, we used the environmental 

risk assessment theory to analyze the forest fires and its consequences. A forest fire is 
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a complex process affected by various factors. In this research, twelve variables related 

with climatic condition, topographical features and human activities were selected to 

predict the probability of forest fires occurrence. A weight of evidence model based on 

the priori probability obtained from historical data was established to identify the 

variables contributing for forest fires and a probability map of forest fires occurrence 

was generated. Result showed that the following ranges of factors significantly 

promoted forest fires: average wind speed (1.85–1.9 m/s), slope (0–6.26 °), river 

density (0–0.036 km/km2), land cover (shrub land), population density (3.65–4.53 

pop/km2), and distance from residential areas (<2 km). In addition, forest fires 

frequently break out in the eastern part of the study area, which is close to human 

settlements. Forest fires occurred in zones identified as high susceptible by our model 

at a rate of approximately 87.5%, which indicated the effectiveness of our model. 

In the environmental vulnerability assessment, thirteen variables related to 

exposure, sensitivity and adaptive capacity of the ecosystem were selected and 

integrated into a comprehensive index through spatial principal component analysis. 

The vulnerability within each part of the study area was then classified into five levels, 

including potential, slight, light, medium and heavy vulnerability, based on the 

numerical results. The degree of vulnerability was unevenly distributed throughout the 

Daxing’anling region. The highest environmental vulnerability index value was 

approximately 0.86 in the southern and central areas, suggesting that these regions are 

the most vulnerable to environmental changes. The lowest value was approximately 

0.036 in the eastern region, which indicated a relatively high-quality environment that 

was less vulnerable to environmental changes. 

Finally, a risk matrix approach was employed to combine the results of hazard 

(probability) and consequence (vulnerability) in the risk characterization stage. Fourth 

levels of environmental risk were regionalized for the whole study area. And result 

showed that the comprehensive environmental risk level is not so high across 

Daxing’anling since the high environmental risk area accounted for only 6% of total 
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area. The majority of Daxing’anling area holds a potential or light environmental risk. 

The regionalization of environmental risk can used as a basis for decision makers to 

determine a prioritization in policy implementation, that more management resource 

should be allocate in the high environmental risk area while policies as prevention 

mechanism should be implemented in potential environmental risk area.  
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Chapter 1. Introduction 

This chapter introduces the background of the research topic, which consists of two 

sections. The first section reviews the current research contents and progress on forest 

degradation and looks into the rationales for current research of environmental risk 

assessment theory. The second section identifies the main research problems in the 

research site. After that the main research questions in this research are addressed, the 

presentation of research contents and research objectives followed. Finally, the 

significance and limitation of this research were discussed and this chapter ends with 

illustrating its structure. 

1.1 Background 

As a main component of terrestrial ecosystem, the forest system plays an essential 

role on maintaining balance between the energy and substance. Moreover, forests 

provide human being with a broad range of goods and services (FAO, 2011). For 

instance, we have to acquire products like foods and fruits, medical plants and timber 

to support our livelihood. Meanwhile, forests act as a carbon sink to store more than 50 

percent carbon dioxide in the atmosphere. Besides the direct value, forests also have 

other indirect values such as wildlife habitat provision, conservation of soil and water, 

and hydrological functions.  

Nevertheless, with the development of economic and expansion of population, the 

forest ecosystem is facing a serious problem of degradation on a worldwide range. As 

reported by FAO (2010), the total area of forests in the world corresponded to over 4 

billion hectares in 2010 which unevenly distributed in every country. In addition, 

primary forests which with no distinctly symptoms of human activity account for 

approximately 36 percent of the total forest area. In recent decades, due to various 

pressures imposed by natural and anthropogenic factors like extreme weather condition, 

biotic stress and tree species selection, harvesting regimes and natural disturbance, the 
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forest resource in the tropical zone is decreasing at a dramatically high speed. 

According to the report proposed by FAO, about 104 million hectares of forest have 

been significantly affected by forest fires and pests (insects and diseases) or climatic 

abnormality like drought, snow and flood every year, resulted in 5.2 million hectares 

forest disappeared per year in a global level during 2000 to 2010 (FAO, 2010a). 

Meanwhile, afforestation and planted forest in some countries have substantially 

decreased the net loss of forest. 

Forest ecosystem can provide multiple products and services which play a critical 

role to support local livelihood and protect the environment (Sloan & Pelletier, 2012), 

however, how to manage the forest in a way not to compromise future benefits is still a 

challenge in forest management. The majority of the world’s forest, particularly in the 

tropical and subtropical area, are still managed in an unsustainable way (FAO, 2010b). 

Consequently, the concept of sustainable forest management has invented in order to 

protect the forest from deterioration (MacDicken et al., 2015). Sustainable forest 

management (SFM) was developed to address forest degradation and deforestation in a 

way taking the environmental, economic and social aspect into consideration (ICUN, 

2009). In the environmental level, SFM aims to enhance the probability of forest to 

conserve soil and biodiversity and store carbon dioxide; as for the social aspect, SFM 

contributes to improve local livelihood and generate income (Leroy et al., 2014). 

Although sustainable forest management has advantage on providing a wide range 

of ecological, economic and social benefit to society, uncertainty in forest ecosystem 

processes cannot be ignored which might affect the achievement of finable objectives. 

As well, some other processes like wildland fires (Shavit et al., 2013)and insect 

infestations (Rosenberger & Smith, 1997) can occur at a variety of temporal and spatial 

scales under different intensity levels. All this can be seemed as a source of great 

uncertainty for decision makers aimed to satisfy final objectives of sustainable forest 

management. This thesis will study the uncertainties come from forest fires and to 

identify the ecological vulnerable area in northeast China, which can be treated as a 

prioritization basis for sustainable forest management implementation. 
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1.2 Problem statement 

1.2.1 Forest resource and forest change in China 

According to the seventh national forest resource inventory report (2005-2009) 

(Lei, Westman, & Petry, 2009), the China’s forest area covers 195 million hectares with 

the forest stocking volume at 13,721 million cubic meters, ranking fifth and seventh in 

the world respectively. In addition, the natural, historical and human factors lead to an 

imbalance between regional economic and social development, resulting in an uneven 

distribution of forest resource around the whole China (D. Li, Fan, He, & Yin, 2004). 

Most of the forests are located in the Northeast and Southwest area in which the total 

annual precipitation is above 400 mm, while the vast Northwest Territories and 

economically developed North China hold a small amount of forest resource (S. Li & 

Yang, 2000) (Fig 1.1.). 

 

Fig 1. 1 The forest situation in China (Source: Forest resource inventory 2005-2009) 
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The different climatic condition and soil types lead to a very different distribution 

of forest type in north and south China (Li & Yang, 2000). The deciduous and 

coniferous forest system in Northeastern China was treated as one of the main timber 

supply area in where the stock volume is approximate 514 million cubic meters, 

simultaneously, this area holds rather unique ecological and environmental system in 

China (H. Xu, 1998; Y. Zhou, 1991) that function as a natural ecological screen for 

preventing the influence of Siberian cold air and a gene pool to conserve the biodiversity. 

The forest ecosystem in northeast China is one of the most ecologically fragile and 

economically under-developed region (Huang et al., 2010) and is particularly sensitive 

to change in temperature and other environmental conditions (Luo and Xue, 1995). 

Nevertheless, the management of forest resource went through a series of problems to 

date. 

Since 1964, Chinese government implemented the regional development policy in 

northeast China to improve the economic condition, the forest here has been over-cut 

through a long period due to development of infrastructure and construction by the 

increased demand of wood products. In addition, the population growth also increased 

the demand for food which resulted in conversion from forest land to agricultural land. 

Moreover, the abundant foliage and dead branches under the dry weather condition 

makes this area easily be burned by forest fires (W. Yang et al., 2013). All these factors 

have led to a degradation on forest resource in the past 50 years in the Northeast China. 

Shi (2011) calculated the change in forest volume density and forest area at the 

provincial scale over the past three decades using the inventory data, as shown in figure 

1.2, that forest density and forest area has increased in most provinces, above the 

diagonal line (red line in the figure), while, a decrease both in density and areas have 

found in the Ningxia and Heilongjiang province. 
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Fig 1. 2 The changes in China’s forests over the past three decades. (source: Shi et al., 

2011) 

1.2.2 Issues of forest degradation in Daxing’anling area 

After about 50 year’s exploitation, the natural forest in Daxing’anling have 

undergone a qualitative change compared to the early stages of development, and the 

total standing stock volume has been decreased and the recoverable resource declined 

dramatically (Qi & Song, 2004). Moreover, the forest stand quality deteriorated due to 

the reduction of forest volume per unit area. As can be seen from Table 1.1, although 
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the total forest area haven’t change so substantially because of the afforestation, the live 

stocking volume and area of mature forest have decreased noticeably. The live stocking 

volume decreased approximate 28.8% from 720 million cubic meters in 1964 to 520 

million cubic meters 2003, also the mature forest volume decreased 72.8% from 460 

million to 120 million cubic meters. The ecological functions including carbon storage, 

water and soil conservation and biodiversity conservation have weakened due to the 

changes of forest land. 

 

Table 1. 1 Changes on forest characteristic in Daxing’anling during 1964 to 2003 (data 

from the statistics bureau) 

 
Total forest area 

(×104 hm2) 

Live stocking 

volume 

(×108 m3) 

Mature forest 

volume 

(×108 m3) 

1964 840.1 7.2 4.6 

2003 835 5.2 1.2 

 

The forest ecosystem in northeast China is facing serious problems which are 

prominent contradictions for sustainable forest management process. Especially, 

natural forest is severely degraded and the quality of plantations remains low. In 

addition, the forest resource is irrational in structure. That means they have an 

excessively high percentage of timber forest and a comparatively low percentage of 

shelterbelt and economic forest. Meanwhile, the forest age structure is irrational as well, 

with the area of young and middle aged forest taking up over 70%, while the stock 

volume of mature and over-mature forest is on the decline. As a consequence, the 

harvestable forest resources are decreasing, and the harvest of middle and young forest 

stands would impose a great threat to the development of back-up forest resource. 

The history of forest management in northeast China is not very far-reaching. It 

mainly went through three phases: natural regeneration (before 1964), intensive 

harvesting (1964 ~ 1998), and forest protection (1998 ~ until now). In the natural 
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generation period, the human activity in this area is scarcely and the forest ecosystem 

is in virgin state with a high quality and a large quantity. The forest regeneration is 

mainly based on natural regeneration without human intervention. After 1964, the 

regional development requires more human and financial support. Therefore, a large 

amount of population was encouraged to immigrate into this area and a large area of 

forests were cut down for timber production. Conversely, the forest management system 

is lack to keep the balance between timber harvesting and tree growth. As a result, the 

forest system degraded dramatically during this period that the forest quality and 

quantity both decreased. In 1998, a huge flood disaster occurred in the three large river 

drainage areas of China (Yangtze River, Yellow River and the Songhuajiang and 

Nenjiang River), which caused enormous casualties and property losses. This disaster 

made the Chinese government realized the importance of environment. In 2001, the 

severe sand storm occurred in Beijing reinforced the determination of China’s 

government to fight with deforestation and forest degradation. Therefor a series of 

forest management strategies have been developed to protect the environment 

especially the natural forest ecosystem, with the objectives to conserve biodiversity, 

protect water quality and prevent soil erosion and desertification. Among all the 

strategies, the Natural Forest Protection Program (NFPP) is the most recommended 

project to improve quality and quantity of forest ecosystem, which has been invested a 

large amount of financial resource. 

The draft of NFPP was firstly published in October 1997, followed by 

implementation of several experimental programs. Through several discussion and 

revision, the implementation of NFPP was announced officially in December 2000. The 

NFPP program aimed at safeguarding China’s forests through logging banning in 

natural forest area, subsiding afforestation and reforestation and a range of other 

policies.  

Under NFPP program, several treatment have been implemented, such as 

establishing a special team of forestry police to enforce forest protection and restrain 

illegal cutting; redeploying and resettling state forest workers. Additionally, the central 
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government invested a large amount of money to assist the workers who become 

unemployed because of the program (Yang, 2001). In most research, the NFPP was 

evaluated by physical indicators such as changes in harvested timber, newly planted 

woodland, which proved the implementation of NFPP has been successful. Timber 

harvests from natural forest area reduced approximately 50% from 1997 to 2000 (Ma, 

2008). However, the implementation of NFPP have not been positive for all actors. 

Many of the smaller-scale enterprises with old equipment and inefficient management 

had to reduce or entirely cease production result of increased competitiveness and rise 

of raw material by NFPP. It caused a significant labor restructure that about two-thirds 

of timber production workers were unemployed by 2002 (Edstrom et al., 2012).  

On the other hand, there is no clear guidelines about how to allocate the 

investments and which area should be prioritized for NFPP implementation. 

Consequently, the northeast China is facing serious problems with resources and 

ecological environment issues since sustainable development process has necessitated 

a special policy for forest sustainability. In order to ensure the sustainable development 

of forestry in this area, it is crucial to shift the focus of existing forest management and 

to propose effective policies to fulfil the sustainable forest management. 

1.3 Research question 

The following research questions are addressed in this study to propose some 

forest management policies in northeast China. 

1) How have the forest cover changed during 2000 to 2010? 

2) How can we detect the forest area affected by forest fires? 

3) Is the probability of forest fires occurrence same among the whole area? How can 

we evaluate the probability of forest fires? 

4) How can we quantify the potential impacts of forest degradation?  

5) What kind of measurements can be proposed based on the results of risk assessment 
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of forest degradation? 

6) How can we allocate the forest management resource effectively? 

1.4 Research objectives and main contents 

1.4.1 Research objectives 

This research aims to conduct an environmental risk assessment for prioritization 

of existing forest management policies and to recommend some kind of risk 

management strategies to reduce the environmental risk value. In order to achieve this 

objective, this work envisages completing three sub-objectives: 

(1) Detect forest degradation area during 2000 to 2010.  

(2) Calculate the probability of forest fire occurrence. 

(3) Identify the vulnerable areas based on the result of vulnerability assessment. 

1.4.2 Research contents 

This research conducted: 1) forest degradation monitoring; 2) probability 

prediction of forest degradation; 3) vulnerability evaluation of forest degradation; 4) 

integrated risk assessment of forest degradation; 5) risk management of forest 

degradation on the basis of environmental risk assessment theory.  

In this study, we firstly monitored the forest cover change during 2000 to 2010 in 

study area by remote sensing data analysis. Meanwhile, the burned area of forest fires 

in the same period was extracted using the difference of Normalized Burn Ratio index. 

Through comparing the forest cover change area and forest fires burned area, the 

relationship of forest fires and forest degradation is determined. Additionally, risk 

assessment of forest degradation was conducted based on the application of 

environmental risk assessment theory, which defines that the risk was determined by 

the probability of hazardous event occurrence and potential loss caused by the event. 
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Combining the remote sensed data with field survey data, probability of forest fires was 

predicted using the weight of evidence method, a statistical method derived the 

contribution rate of each factor through analysis of historical data. Subsequently, the 

spatial principal component analysis was applied to evaluate the environmental 

vulnerability of forest degradation. Finally, integrating the hazard probability and 

environmental vulnerability, the comprehensive environmental risk assessment of 

forest degradation was conducted, based on which a series of forest management 

strategy was proposed. 

1.5 Research method 

In this research, the environmental risk assessment theory was introduced to 

analyze the uncertainty disturbance in forest management, which composed of three 

stages of problem formulation, hazard analysis and vulnerability assessment. The 

environment risk index can be calculated by multiplying probability of hazardous event 

and consequence together. Additionally, problem formulation is a preliminary 

characterization of hazard and consequences, as well as checking with scientific data 

and data availability, while the hazard analysis is the main stage to calculate the 

probability of hazard event and vulnerability assessment is to evaluate the potential 

consequence of the hazard event. 

1.6 Scope of the study 

This section presents the structure of this study. The whole dissertation consists of 

three main sections. The former three Chapters are the main problem formation stage 

that the early warning mechanism for risk mitigation is lack in the study site and 

additionally sustainable forest management should be implemented in order to keep the 

quality and quantity of forest resource. The middle three chapter is the key part in the 

whole research which is the basis for decision making.  

This study consists of eight chapters. Chapter one gives an overall introduction of 
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forest degradation, which is a serious issue in a worldwide range. This chapter also 

deals with the conceptualization of forest degradation from the perspective of forestry. 

In this study, forest degradation has been defined as the changes within the forest, which 

negatively affect the structure or function of the area, and thereby lower the capacity to 

supply products. It found that poverty and low land/man ratio coupled with 

consumerism trigger off series of events like logging, illegal felling. Apart from these, 

mining and oil and gas extraction due to ruthless motive for profit can be construed as 

main causes of global forest degradation. The main contents and objectives are 

determined here and the significance of limitation of this research is also pointed out.  

Chapter two gives a geographic description of the study area and looks back the 

forest resource management process in Daxing’anling area during the latest decades. 

Also, the challenge and problems on forest management are identified through literature 

reviews.  

Chapter three monitors the forest degradation situation in the past ten years and 

extracts burned area of forest fires in the same period by remote sensing data analysis. 

The results proved that the forest fires is the main stressor which leads to forest 

degradation in the study area.  

Chapter four is hazard assessment in environmental risk assessment process. Here, 

a statistical approach called weight of evidence method is employed to predict the 

probability of forest fire occurrence.  

Chapter five is vulnerability analysis stage which use the spatial principal 

component model to assess the vulnerability state of the whole study area and identify 

the vulnerable regions. 

Chapter six is a comprehensive risk assessment part which combines the results of 

hazard assessment and vulnerability analysis. Also the sensitive analysis of the research 

is conducted in this chapter.  

In chapter seven, the sustainable forest management policy is made, to proposed 
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effective forest management strategy based on the result of comprehensive 

environmental risk assessment in chapter six. The whole study area is divided into 

regions with different levels of hazard status and vulnerability situation. And forest 

management treatments should vary among regions according to different risk level.  

The dissertation ends by the chapter eight, which is the discussion and conclusion 

part. Here, the main results and finding is summarized and the future works and 

insufficient points are discussed. 

 

 

Fig 1. 3 Composition of dissertation 
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1.7 Significance of the study 

This study attempts to propose a prioritization grade for carrying out the existing 

policy which aims to improve the effectiveness in practical implementation. On this 

ground, a series of treatments are recommended based on the results of environmental 

risk assessment. Since the forest degradation degree vary among different regions, the 

implementation of forest conservation treatment also should be implement at a different 

way. Here, the whole study area was classified into different risk region using a risk 

matrix approach, which can suggest the forest manager to implement a hierarchical 

management according to the environment risk level. On the other hand, this study 

introduced environmental risk assessment to identify variables lead to high probability 

of forest fires occurrence and heavy vulnerability, which can help decision makers to 

consider an oriented treatment for reducing the probability or improve the vulnerability. 

Moreover, this kind of environmental risk assessment have not been employed in the 

practical forest management process in the northeast China. Overall, this study aims to 

suggest suitable tactics to handle the problems in existing forest management policy in 

order to achieve sustainable management of forest resource.  
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Chapter 2 Literature Review 

This chapter is a literature review part, including four main parts. First of all, 

researches related to forest management and sustainable forest management have been 

reviewed. Progresses made for sustainable forest management around the world were 

illustrated and problems in effectively managing forest resource were also pointed out 

through review. Then the literatures review about environmental impact assessment 

which is a common tool in decision making process were carried out to demonstrate the 

applications and issues in environmental impact assessment. Followed by the literature 

review of environmental risk assessment, which is a relative new tools for assessment 

of environmental situation. Finally, the current situation of forest management in 

Daxing’anling area was explained. 

2.1 Forest management 

Sustainable forest management is a concept related with forest degradation. As the 

forest degradation becomes to be a serious issue which might resulted in loss of ability 

to provide environmental goods and services, impose impact on local livelihoods and 

influence local and national development to some extent (Rober Nasi, 2011). Forest 

management strategies have been developed to prevent the exacerbation of forest 

degradation. Unsustainable forestry activities have already caused more than 850 

million hectares of tropical forest degraded (ITTO, 2002), which might potentially 

affect millions of people whose livelihood depend wholly or part on forest goods and 

services at a local scale (FAO, 2011). By the beginning of twentieth century, 

approximate 90% of country’s timber depended on imports – softwood from Baltic 

States, Russia and North America, and hardwood from tropical forest (Holmes, 1975). 

The increased demand for wood products and consequent growth in human population 

magnify the pressure on forest resource, and as a result, forest management mainly rely 

on timber primacy doctrine (Glück, 1987), which primarily assure timber production in 

qualitative and quantitative terms, and other functions such as carbon sequestration, 
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protection towards natural hazards and tourism and recreation were overlooked in forest 

management process. It was the early stage of forest management lasting for many 

decades (Aletto & Ereno, 2008). 

In the late 1990s, the demands on environmental and social function of forest 

ecosystem have changed and evolved over time, the sustainable forest management 

(SFM) appeared as a new forest management paradigm (Luckert & Williamson, 2005). 

It explicitly takes a broader range of forest goods and services into consideration than 

traditional forest management (Adamowicz & Veeman, 1998). Concerns over 

biodiversity, endangered species and degraded environments have sparked interest in 

managing forests. SFM emphasizes the final objective to keep balance between 

environmental, economic and social aspects of forest ecosystem by maintaining the 

health, integrity and biodiversity situation (Luckert & Williamson, 2005). The need for 

sustainably managing forest resource has been clearly articulated at the second 

Ministerial Conference on the Protection of Forests in Europe (MCPFE), and aroused 

the concern of European Forestry (Helsinki, 1993). 

Pursuing sustainability has commonly become to be the main goal of forest 

management activities in the 21st century. Canada was the first country to hold an 

international seminar of expert on sustainable development of boreal and temperate 

forest in Montreal in 1993. This seminar aimed to establish a set of criteria and 

indicators to define and assess the progress towards sustainable forest management 

(Montreal Process Working Group 1998). After that, forest planning activities became 

more complex across Canada (Dunster, 1992) and the Canadian Forest Service began 

to treat sustainability as its mandate (Dunster, 1992). Sustainable forest management 

was defined on MCPFE as: 

“sustainable management means the stewardship and use of forest and forest lands in a 

way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, 

vitality and their potential to fulfill, now and in the future, relevant ecological, economic 

and social functions at a local national and global levels, and that does not cause damage 
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to other ecosystems” (Resolution H1 point D, MCPFE, 2000) 

The underpinning principles of forest management have shifted from achieving 

production of single commodity (mainly timber) to sustained production of multiple 

goods and services that include maintaining future options and not damaging other 

ecosystems (UN,1992). Apart from the sustainably yielding forest products, the 

ecological, economic and social sustainability are also prospective to be considered into 

forest management (Aletto & Ereno, 2008). In recent years, various guidelines and tools 

have been developed at international, regional and national level on how to manage 

forest resource in a more biodiversity –friendly way (Dennis, Meijaard, Nasi, & 

Gustafsson, 2008). Especially in the Amazon area, on the context of large amount of 

conversion activities from forest land to cultivated land, a variety of forest management 

countermeasures have been practically applied to slow down the speed of forest 

degradation. Among them, the Reduced Impact Logging (RIL) (ITTO, 2007) was 

adopted as a main project to alleviate the influence of timber harvesting and illegal 

logging in the early 21 century (ITTO, 2000 http://www.itto.int/feature15/). Moreover, 

the RIL studies have been engaged in Southeast Asia (Elias et al., 2001), Africa and 

South and Central America.  

Putz et al. (2008) reviewed the experimental results of RIL studies in different 

settings and compared the silviculture and financial impacts and elaborated that some 

aspects of RIL are lack of consideration such as protection of water course. Hasegawa 

et al. (2014) investigated the effects of reduced-impact logging and conventional 

selective logging practices on biodiversity and implied that the soil fauna community 

was strongly related with tree composition and the implementation of RIL mitigated the 

influence of loggings on decomposers of soil animals. Implementation of RIL might 

alter the regeneration species and the natural regeneration process was assessed in three 

different forest which harvested under RIL restriction in Eastern Amazon (Schwartz et 

al., 2017) and suggested that post silvicultural treatments and tending in logging gaps 

should be employed to guarantee the regeneration. Although RIL can sustainably 

reduce the undesired impacts of selective loggings (Putz et al., 2008), it might 

http://www.itto.int/feature15/
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significantly affect tree generation. Therefore, approaches to minimize these effects 

should be employed in future management plans. Moreover, the guidelines of RIL vary 

among different countries and there is no universal set of RIL practices (Pinard, Putz, 

& Tay, 2000). Recent researches also clearly demonstrated that RIL techniques alone is 

unable to achieve sustainable forest management (Sist, Sheil, Kartawinata, & Priyadi, 

2003). 

For this reason, the SFM has been encouraged as an important guiding principle 

in managing forest resource (EC, 2003) to provide for today’s needs under the premise 

not to damage the option of future generations (UN, 1992). Through discussion among 

participators in forest management in the past few years, the criteria and indicators (C&I) 

have been developed to guide SFM policies and planning (Brand, 1997; Keeton & Crow, 

2009), which reflect a series of broadly aspects related to environmental, economic and 

social functions of forests. Since the application of C&I, it was treated as useful tool to 

collect and organize information which is helpful in conceptualizing, evaluating, 

communicating and implementing SFM (Prabhu et al., 1998). Variety of initiatives have 

been conducted for developing, testing and implementation of C&I for sustainable 

forest management (MPCI, 2009) at national level, sub-national level and forest 

management unit level. Additionally, the majority of C&I implementation was 

conducted at national level (Wijewardana, 2008). The Montreal Process (2009) 

provided a common framework to describe criteria and indicators of temperate and 

boreal forest area. And seven criteria and 67 indicators was determined through 

discussion between the 12 participating countries. Some research also tried to develop 

C&I at small scales. Jaliova et al., 2012 adopted a multi-criteria analysis approach to 

identify a set of C&I at field level and evaluate the management strategies in walnut-

fruit forests of Kyrgyzstan and pointed that the forest health and vitality is the most 

important criteria in SFM. Multi-criteria decision analysis (MCDA) approach was 

proved to be effective for establishing and weighing the indicators through empirical 

preference ranking (Mendoza & Martins, 2003; Sheppard & Meitner, 2005). The 

decision support systems (DSS) is capable to integrate the decision maker’s insights 
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with computer’s capability of information processing. However, only experts and 

stakeholder opinion was combined in DSS process, resulted in an excessive influence 

from stakeholder on weighting process. In C&I implementation, the procedure to weigh, 

aggregate and judge the threshold value of indicators is often not clear (Rametsteiner 

& Simula, 2003) which is inevitable for any forestry decisions (Kangas & Kangas, 

2004). Lack of rigorous scientific information that can be applied in the decision 

making process has become to be a problem in addressing sustainable management. 

2.2 Environmental impact assessment 

Nowadays, environmental impact assessment has been employed as a primary 

tools for environmental protection and management around the world (Cashmore, 2004; 

Noble, 2009), which aims to inform environmental decision-making in the early stages 

of proposing plans to moderate the negative effects before development projects 

commence through evaluating possible environmental effects (Heinma & Põder, 2010). 

EIA process is intended to provide sound information to decision-makers, moreover, it 

was expanded to take account of broader environmental considerations in project 

selection and planning (Gibson, 2002). Possible impact was analyzed qualitatively for 

decision makers to decide whether to allow the project or not. The EIA is a process of 

identifying, predicting, evaluating and auditing environmental impacts (EC, 2012). 

Recently, the value of EIA has been recognized by practitioners (decision makers and 

stakeholders). It helps decision makers understand the possible impacts and make a 

decision (Norwich, 2013). However, the effective of EIA was doubtful whether it is 

capable to achieve the objectives of environmental management (Noble, 2009). Heinma 

and Põder (2010) employed the questionnaire to investigate the frequency of project 

implementation without EIA and indicated that a mandatory EIA requirement should 

be reconsidered when implement projects as well as make judgements. An EIA was 

conducted related to noise issues by Krukle (2012), and indicated that EIA process 

conduced barely accurately and treatment for noise reduction are insufficiently effective. 

Middle and Middle (2010) also concluded that the process of EIA is too long and costly 
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was a constant theme, moreover the consideration to improve effectiveness is also 

important in EIA process. 

Besides above issues, it is also not easy to make a decision even if decision makers 

got information through EIA, because many kinds of uncertainties and risks in different 

forms occurs in EIAs. Unsure about the knowledge is the main reason for these 

uncertainties (Stirling, 1999). To date, variety of studies pay attentions to uncertainty 

occurs in Environmental impact assessment, but the uncertainties are still a challenge 

in environmental impact assessment. Thissen and Agusdinata (2008) indicated that 

identifying and assessing uncertainties was not paid sufficient attention in 

environmental studies. In conformity with this, Maier and Ii (2008) also emphasized 

the importance of uncertainties during all stages of environmental decision making 

process. Walker et al. (2003) provided a conceptual basis for better communication 

among analysts by using uncertainty matrix tools and implied that understanding the 

dimension of uncertainty is a crucial step in decision support activities. Cardenas and 

Halman (2016) identified uncertainties involved in each decision making step and 

discussed a range of techniques to examine the extent of EIA guidelines in Colombia. 

Zhou (2015) proposed a conceptual framework incorporated into a Markov decision 

process model for uncertainties in forest carbon management, multiple forms of risk 

and uncertainty affecting forest function was analyzed, and the author pointed out that 

the stationary assumption and substantial costs limited the reliability of the forestation. 

Until now, several different measurements and concepts about uncertainties has 

been developed for improvement of environmental impact assessment (Frias, 2015; 

Messier et al., 2016; Norwich, 2013; Tennǿy et al., 2006; Thissen & Agusdinata, 2008). 

Traditional method aims to reduce uncertainty empirically through modelling to better 

integrate known information (Frias, 2015; O’Hagan, 2012). Formal methods are to help 

optimal uncertainty information to make decisions (Cardenas & Halman, 2016; Messier 

et al., 2016). Through literature reviews, we can know that the integrated assessment is 

the most effective approach to solve the complexity of environmental problems. 
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2.3 Environmental Risk assessment 

Probabilistic model is a way to conceptualize the level of uncertainty in a 

quantitative way, and the probability often known as likelihood of uncertainty. And the 

environmental risk assessment theory (Jones, 2001) is the most popular approach to 

address environmental issues incorporated into a probabilistic model. It is helpful to 

understand the relationship between stressors and environmental effects which is useful 

for environmental decision making (Hope, 2006). The structure of environmental risk 

assessment also can provides a common framework allowing the multiple stakeholders, 

regulatory groups and scientists to come to terms with the inherent difficulties of 

managing complex systems (Eduljee, 2000). 

Risk based environmental assessment might be a potential tool to generalize and 

quantity environment system for environmental management which could provide basis 

to balance and compare risks associated with environmental hazards (Hunsaker & 

L.Graham, 1990). It can be used for exploring, explaining and forecasting the responses 

of an environmental system to changes in natural and human induced stressor 

(McIntosh et al., 2011; Whelan et al., 2014). In environmental risk assessment, 

uncertainties (probability of occurrence) concerning potential environmental effects 

(potential losses) are explicitly recognized and quantified if possible. A better 

perception of environment risks might be achieved through combining the magnitudes 

of uncertainties and the ultimate consequences. 

Through the paradigm of risk assessment has been reported firstly by United States 

Atomic Energy Commission in their report of “Theoretical possibilities and 

consequence of major accidents in large nuclear power plants” (AEC, 1957), the risk 

assessment have made great progress and developed many approaches until now. The 

early stage is chemical pollution risk assessment (Lee-steere, 2009) of toxic substances 

which studies the ecological negative impacts of chemical pollutants. Lately in order to 



21 

 

cope with information and uncertainties to understand the relationships between 

stressors and environmental effects (M. Fan, Thongsri, Axe, & Tyson, 2005), which is 

useful in environmental decision making, the risk assessment has transferred from 

qualitative analysis to quantitative evaluation (Eduljee, 2000). As the ecological 

function of environment has been realized important, (Barnthous & Suter, 1986) 

attempted to adapt the framework of human health assessment into ecological 

assessment. In the early 1990s, risk assessment was ultimately adopted as a 

management tool which has been applied to populations, communities and eventually 

to ecological landscape at large scales (Gormley et al., 2011). Environmental risk 

assessment theory has been successfully employed to address various kind of 

environmental problems such as vegetation degradation (Malet & Maquaire, 2008), 

climate change (WHO, 2014), and land degradation (Stankevich et al., 2016). However, 

the adoption of risk assessment as a formalized analytical process employed for 

environmental problems and latterly as a policy tool to help regulators in decision 

making is a relatively recent development (Eduljee, 2000). 

2.4 Forest management in Northeast China 

Northeast and Southwest China harbors the largest areas of forest land in 

contemporary China (H. Xu, 1998). The history of forest exploration in northeast is 

much shorter than eastern and southern part of the country (Xu, 2013). The natural 

environmental in the Northeast was almost pristine at the beginning of the Qing 

Dynasty (1644) (Wang et al., 2007), with a high level of quality. Only in the last century, 

this region has been fully explored and settled (Ye & Fang, 2009) and resulted in 

dramatic changes in forest cover and forest stock. 

Three period of excessive timber harvesting can be witnessed in the past century 

(Yu et al., 2011). The first period was from 1896 to 1945, when this territory was 

controlled by Russia and Japan. The forest policy is harvesting without cultivation 

caused 18% of the forest area disappeared by the excessive harvesting (Ye & Fang, 
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2011). Then came with a period from 1950 to 1977 in which the main goal of forestry 

was produce economic value from timber harvesting (Zhou, 2006). During this period, 

the forest trees were clear cutting and artificial plantation was recommended. The third 

period stared from 1978 to 1998, the national economic reforms and broadening of 

international relations triggered deep and lasting changes in Chinese society (Wang et 

al., 2004), resulting with excessive loggings and no cultivation. This made the 

exploitable forest resource has been nearly exhausted in the region (Zhang et al., 2000). 

A substantial decrease of natural forests occurred in the meantime with serious 

degradation of overall forest quality and quantity. As a result, the ecosystem service 

provided by forest also change greatly, including soil erosion, biodiversity decline and 

carbon dioxide emission (P. Zhang et al., 2000), which weakened the capacity for 

sustainable economic development (Zhou, 2006). 

In 1998, floods in the Yangtze River basin was an alarm for Chinese government 

to recognize the importance of environmental protection (Zong & Chen, 2000). In 

response, Chinese government shifted the focus of forest management from simple 

wood production to policy adopting ecological restoration and protection (Yu et al., 

2011). The most striking one is the Natural Forest Protection Program (NFPP), and then 

the timber harvesting has decreased and forest areas and stockings have increased 

slowly (Wang et al., 2004). However, how to select management models and strategies 

to best protect, restore and manage forest land in such a large area is still a challenges 

for researchers and decision makers in China. 

The State Council committed 96 billion yuan to finance the first phase of NPFF 

program from 2000 to 2010. Much of this investment was expended as subsidies for 

forest enterprises (Xu et al., 2002). According to State Forestry Administration, 

approximately 60% of central government subsidies to the policy implemented area 

were spent as employment costs for state forest enterprise (Xu et al., 2006). The major 

changes about harvesting activities caused significant reformation of labor structure. 

By the end of 2002, approximately two-third workers had left their workplace (Edstrom 

et al., 2012). From the aspect of increasing forest area and decreasing harvested timber, 
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the NFPP can be considered to be successful (Ma, 2011). However, in the 

implementation, some kind of socio-economic effects of NFPP was unexpected, such 

as some unforeseen influence on local economics (Cohen et al., 2002). Shen et al., 

(2006) concluded that although the NFPP program has been effective in decreasing 

harvesting, impacts on household livelihoods was found negative. The labor restructure 

led to an income reduction for a range of people, meanwhile, the revenue of local 

government has also greatly decreased because of loss of income from loggings (Xu et 

al., 2006).  

On the other hand, although huge amount of funds were invested for NFPP, the 

rule of how to allocate the money was not clearly. The vast majority of the investment 

was mainly spend on compensation for worker who has lost their job due to NFPP (Y. 

Yang, 2001). For plantation and tending activities, the Chinese government instituted a 

uniform standard to financially support NFPP (Zhu, 2012). However, the actual 

situation of forest ecosystem varies among different areas, which means the investment 

also should be correspond with the actual situation. In the previous studies, the part of 

area has the prioritization for NFPP implementation wasn’t articulated. 

In this research, the environmental risk assessment (ERA) was employed to 

provide information about the environmental situation, which is helpful for decision 

makers to implement sustainable forest management. The ERA has advantage to deal 

with uncertainties occurred in forest management due to forest fires. Moreover, it can 

give a priority consideration for regions has a high environmental risk level, which is 

able to improve the efficiency of sustainable forest management.  
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Chapter 3 Methodology 

This illustrate the methods used and process involved in order to achieve the objectives 

of this study. The practical framework of Environmental risk assessment which is 

suitable for the regional case is explored. Followed by a detailed natural situation 

depiction of study area. Then an explanation in data needed and data collection was 

introduced. This chapter is ended with a data processing framework in the whole 

research. 

3.1 Environment risk assessment 

Environmental risk assessment was defined as “evaluate the likelihood probability 

of adverse environmental consequence which occurring as a result of exposure to one 

or more stressors related to natural disturbances and human activities” (EPA, 1992). It 

is an approach to systematically evaluate and analyze data, information, assumptions 

and uncertainties in decision making process (EPA, 1998). 

3.1.1 Theory of Environmental risk assessment 

Environmental risk assessment is a new study field accompanied by a shift on 

objective and concept of environmental management (Fu and Xu, 2001). Since the 

1970s, weakness of zero risk of environmental management in some industrialized 

countries is gradually exposed in the society, therefore risk management, a new 

environmental policy was generated in the early of 1980s. The risk management focuses 

on balance of risk grade and reduction of risk costs, which is aim to understand the 

relationship between risk level and risk acceptable by general society. Through 20 years’ 

development, the evaluation content, scope and method have been improved greatly. It 

focused on one chemical and one receptor. Currently, it is mainly applied to large spatial 

and temporal scale targets (Landis, 2003). In order to address complicate environmental 

problems, environmental risk assessment is used to systematically assess and cope with 

information and uncertainties to understand the relationships between stressors and 
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environmental effects (M. Fan et al., 2005). 

The distinctive nature of environmental risk assessment framework derived mainly 

from three different emphasis compared with previous risk assessment approaches 

(such as human health risk assessment). On the first hand, environmental risk 

assessment consider effects which might examine population, community and 

ecosystem impacts. Second, no agreement on assessment endpoint which means no one 

set of endpoint can be generally applied, they were selected from a very large number 

of possibilities based on scientific and policy consideration. Finally, a comprehensive 

environmental risk assessment might go beyond the traditional emphasis on one 

chemical effects and consider the possible effects of non-chemical stressors. 

The framework of environmental risk assessment is shown in figure below. The 

whole process is based on two major phases: characterization of hazard (probability) 

and characterization of environmental consequences (potential loss). Although these 

two phases are most prominent in the analysis process, aspects of both hazard and 

consequences are considered through problem formulation, as shown by the arrows in 

the figure. The analysis process also contains the risk characterization step, in where 

the hazard and consequences are integrated together to evaluate risk. This framework 

referred to the Environmental Protection Agency (EPA) paradigm for ecological risk 

assessment (EPA, 1992). 

It introduce the process of environmental risk assessment as follows: 

Firstly, environmental risk assessment started from problem formulation, which 

includes a preliminary characterization of hazard and consequences, as well as checking 

with scientific data and data availability, site-specific factors to decide the feasibility, 

objective of whole environmental risk assessment. Because environmental risk 

assessment needs to address risks of stressors to many components as negative impacts, 

problem formulation might provide an early identification of key factors which should 

to be considered, and produce a more scientifically sound risk assessment. 

Secondly, the framework consists of two activities, characterization of hazard and 
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characterization of vulnerability. In hazard analysis, we aims to predict or evaluate the 

spatial and temporal distribution of a stressor and its occurrence probability, while the 

purpose of vulnerability analysis is to identify and quantify the negative influences 

elicited by the stressor. 

Risk characterization is the final phase of the framework. It combines the results 

of hazard analysis and vulnerability evaluation to assess the likelihood of adverse 

environmental effects associated with susceptibility to a stressor. The ecological 

significance of risk characterization is on the consideration of the types and magnitudes 

of the effects, their temporal and spatial distributions and the likelihood for recovery. 

Figure 3.1 indicates that discussion between risk assessor and risk manager is 

indispensable in the framework, because the risk manager is able to help ensure what 

kind of information is relevant to making decisions on the problems under consideration. 

Also, a role for verification and monitoring can help to make sure the overall 

effectiveness of the approach and provide necessary feedbacks thinking about the future 

modification for the framework. 

 

Fig 3. 1 Framework for environmental risk assessment (referred to EPA, 1992) 
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3.1.2 Advantage of environmental risk assessment 

Environmental risk assessment has several advantages as applied to environmental 

planning and management. It can provide a quantitative basis for comparing and 

prioritizing risks. In the risk assessment process, the probability that an adverse 

outcome might happen was characterized as a result of exposure to the stressors. By 

showing the results as probabilities, it enable to recognize the inherent uncertainty in 

predicting future environment states, which makes the assessment more credible.  

3.2 Study site 

3.2.1 Location 

Daxing’anling area is located in the northwestern part of Heilongjiang province, 

northeast of Inner Mongolia Autonomous Region, situated in the northeastern slope of 

Daxing’anling Mountains (Figure 3.2). This area has a latitude range from 50°10’ to 

53°33’N, and a longitude range from 121°12’ to 127°00’E, covered a total area of 840 

km2, occupies 0.9% of total China. The administrative region of Daxing’anling crosses 

two province of Heilongjiang and Inner Mongolia. The precinct includes three counties 

of Huma, Tahe, Mohe and two districts of Huzhong and Xinlin. 



28 

 

 

Fig 3. 2 Location map of Daxing’anling area 

3.2.2 Mountains and topography 

The topography in Daxing’anling region is a kind of folded mountains, which was 

formed by the joint action of platform depression area and geo-synclinal fold uplift area 

(Tao et al., 2014). After a long geological evolution history, the main mountain range 

extended many branch mountains along both side and countless long slow side ridges 

(Sun, 2010). The overall topography appears that it is lower in west and higher in lower 

in west and higher in east (Fig 3.3). The highest peak has an attitude of 1509 meter, 

which is located in the intersection of Daxing’anling ridge and Yilehuli Mountain. 

While the lowest point is at Yanjiang village with value of 134m. According to elevation, 

the study area can be divided into shallow hill, hill, Low Mountain and Middle 

Mountain from east to west. 
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Fig 3. 3 Elevation distribution in study area 

The rivers is flowing all over the region, therefore, the water resource is abundant. 

Due to the presence of permafrost soil and seasonal frozen layer, the action of river 

decline is blocked and the lateral erosion of river is increased, as a consequence, the 

valley in Daxing’anling area is broad.  



30 

 

 

Fig 3. 4 Water system in study area 

In addition, because the river is broad and flat, the precipitation discharge is slow 

so that the area of frozen soil layer expands and it result in poor soil permeability that 

lead to most water retained in the surface. There are 178 rivers, and their total watershed 

area is wider than 50 square kilometer. The water system can be classified into 

Heilongjiang and Nenjiang (Table 3.1). 

 

Table 3. 1  The statistics of river resource in Daxing’anling area 

Water 

system 

Name of 

river 

Watershed 

area (km2) 

Average 

annual flow 

(m3/s) 

Total 

length 

(km) 

Natural 

river fall 

(m) 

Heilongjiang Humahe 31210 215 524 740 

Heilongjiang Emuerhe 16280 92 469 761 

Nenjiang Duobukuer  5490 39.1 278 635 

Heilongjiang Panguhe 3638 218 133 367 

Heilongjiang Xiergenqihe 3858 21.8 133 367 

Nenjiang Ganhe 19549 129 447 726 

(Source: Administrative Water department in Daxing’anling area) 
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3.2. 3 Climatic characteristics 

The Daxing’anling area was controlled by the temperate continental monsoon 

climate with obvious features of mountain climate (Fig 3.5 and Fig 3.6). The seasonal 

temperature varies significantly. The spring starts from late April to late June with 

changeable weather soon that the temperature rises sharply. The summer begins from 

June to August with high temperature and high precipitation. The autumn is from 

August to October with low temperature and dry weather. The winter is the longest in 

the study area which lasts about half of the year from October to April. In winter, it is 

very cold with great amount of accumulated snow. 

 

Fig 3. 5 Trend of annual average temperature from 1980 to 2010 

 

According to the historical statistical data, the annual average temperature is about 

-0.8℃ to -4.3℃, the extreme minimum temperature was recorded in Mohe in February 

13th 1969 with the value of -52.3℃, while the extreme maximum temperature was 

recorded in Huma in July 18th 1994 with the value of 39.4℃ . The total annual 

precipitation is about 400~500mm with uneven distribution in temporal and spatial 

scale. Generally speaking, the northern and eastern part is lack of rainfall while the 

central and southern part is rich of precipitation. In addition, almost 70% of 
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precipitation fall in summer, whereas rainfall in winter accounts for only about 10% of 

annual precipitation. 

 

Fig 3. 6 Trend of annual total precipitation from 1980 to 2010 

 

3.2.4 Soil characteristic 

The soil type is classified into brown coniferous forest soil, dark brown soil, gray 

forest soil, meadow soil and swamp soil. Among them, the brown coniferous forest soil 

occupies a large proportion and is seemed as the representative soil type in 

Daxing’anling area. Its formation is not only related with the climate characteristics, 

geological rock and vegetation condition, but also closely associated with the 

permafrost soil layer. In other word, the permafrost soil is an important characteristic 

of brown coniferous forest soil, meanwhile, it is a critical forming condition of brown 

coniferous forest soil. This kind of soil is covered by the larch forest mixed with Scotch 

pine and birch trees. The soil layer is relatively thin in the whole study area (20-40cm), 

contains more gravel particles of which the podsolization is not so strong. The surface 

layer is thin with low fertility and the humus content is about 10%~30%.  
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3.2.5 Vegetation characteristic 

According to the vegetation regionalization of China, the study area belongs to 

cold temperate boreal forests, which are the southward extending section of Eurasian 

coniferous forest (Y. Zhou, 1991). Woodland area accounts for a large proportion with 

a total area of 6.65 million ha, and vegetation coverage is approximately 79.83% (2010 

forestry inventory). The canopy species composition is relatively simple, dominated by 

larch (Larix gemelinii) and pine (Pinus sylvestris var. mongolica), mixed with birch 

(Betula platyphylla) and spruce (Picea koraiensis). According to the altitude, the forest 

can be divided into different subclasses. Herbage-Larix gemelinii forest range from 

350-750m, Mongolian oak-larch forest ecosystem located in the southeastern part with 

lower elevation than 450m, Spruce-larch forest located in the higher elevations, in the 

approximate range of 820-1100m. 

 

Fig 3. 7 The situation of forest coverage in Daxing’anling (Photo at 21 July 2015) 

The forest in Daxing’anling area is one of the main area of natural forest in China, 

Meanwhile, it is the only exist boreal forest around China. Because of the special 

geographical location and natural climatic conditions, there are still intact natural forest 

ecosystem and wetland preserved in this region, which contains the only remaining 

boreal biodiversity system in China. 
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3.3 Dataset 

3.3.1 Data need and data collection 

Forest fires play an important role as a forest landscapes shaping agent (Cissel et 

al. 1999; Seymour et al. 2002; Cleland et al. 2004; Nitschke 2005), which are 

indispensable factor in vegetation succession. As pointed by Ruokolainen & Salo (2009) 

forest fires have positive effect on biodiversity to some extent, however large and 

frequent occurrence of forest fires might negative affect carbon stocks (Ilvestrini et al., 

2011) and decrease the capacity of soil and water conservation (Farshad et al., 2004), 

since it can wipe out all vegetation and release large amounts of carbon dioxide (Dokas 

et al. 2007). Historically, the Daxing’anling is a fire-prone areas. According to the 

Chinese National Bureau of Statistics, more than 10 million hectares of Chinese forest 

have been affected by forest fires during the past 50 years (Gao 1999). Living trees 

above hundred year with fire burns can be seen everywhere, and charred interlayer in 

ground soil was often observed when doing soil profile. The dry cold weather condition 

and strong winds in northern Daxing’anling makes this area easily to be burned by 

forest fires, meanwhile, accumulation of leaf litter for many years lead to an increase 

of combustible materials. In addition, the tall standing wither-bark is the main reason 

of lightning fires in this area. 

According to the local government statistical data, the total numbers of forest fire 

in Daxing’anling area reached 1561 times from 1966 to 2010, about 36 times per year. 

The total burnt area is about 6.6104 km2 in the 43 years (Fig 3.8). And recently it seems 

that the occurrence of forest fires are becoming more frequent. 
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Fig 3. 8 Annual forest fire occurrence from 1966 to 2010 in Daxing’anling area 

 

Obviously, forest fire can be treated as a disturbance event which contributed 

greatly to the forest degradation process in this area. Moreover, due to the natural forest 

protection program, the volume of timber harvesting has been decreased during 2000 

to 2010. Therefore, in this research, we have a fundamental assumption that forest fires 

are the hazard event which might cause unpredictable potential losses to other related 

ecosystems such as atmosphere, hydrosphere, biosphere and human livings. 

In this research, the remote sensed dataset Moderate Resolution Imaging 

Spectroradiometer (MODIS) was mainly used to classify the land cover and extract the 

forest fire burned area in Daxing’anling. The Terra/Aqua composite 16-day global 

250m MODIS atmospherically-corrected dataset (MOD13Q1) was used to extract the 

vegetation indices of enhanced vegetation index (EVI). Land surface temperature was 

derived from composite 8-day global 1km MOD11A2 time series dataset. Additionally, 

atmospherically corrected level 3 8 day composite surface reflectance data (MOD09Q1) 

and active fire product derived from MOD14/MYD14 product with a global coverage 

and 1km spatial resolution was also employed to forest fire analysis. The detailed data 

processing can be seen at each chapter. 
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Apart from remote sensed images, other source of ancillary data also have been 

used in this research as followed: 

Table 3. 2 Ancillary data used in this research 

Data Usage Source Description 

Digital 

elevation 

model 

To extract topographical 

variables such as 

elevation, slope gradient 

and slope aspect 

Freely download from 

Geospatial data cloud: 

http://www.gscloud.cn/s

ources/?cdataid=302&p

dataid=10 

Shuttle Radar 

Topography Mission 

with path number of 61 

and row of 2. The spatial 

resolution is 90m. 

Plant 

functional 

map 

To help identify the 

geographical distribution 

of Chinese vegetation 

Obtained from Cold and 

Arid Regions Science 

Data Center at Lanzhou 

(Ran & Li, 2011) 

A functional 

classification of Chinese 

vegetation at 1km 

Weather 

condition 

To obtain climatic data of 

temperature, humidity, 

wind speed and 

precipitation. 

Supported by China 

meteorological data 

sharing center: 

http://data.cma.cn/ 

Records of five weather 

station were 

interpolated using 

Ordinary Kriging.  

Demograp

hical data 

To understand the social 

situation of the study site 

Derived from the 

Daxing’anling statistics 

Bureau 

Including demographic 

and economic data 

 

A field survey was carried out at 17 July 2015, which aimed to get sampling data 

for land cover classification and to collect forest inventory data through consulting with 

the local Daxing’anling administrative government. 

3.3.2 Data processing 

In this research, the data processing contains four main parts. Firstly, remote 

sensing data including MODIS time series vegetation index product and Landsat 5 

image coving the study area combined with forest inventory data was employed to 

classify the forest cover types, then the forest cover change from 2000 to 2010 was 

detected through overlapping the classification at this two period. Secondly, MODIS 

http://www.gscloud.cn/sources/?cdataid=302&pdataid=10
http://www.gscloud.cn/sources/?cdataid=302&pdataid=10
http://www.gscloud.cn/sources/?cdataid=302&pdataid=10
http://data.cma.cn/
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surface reflection data and forest inventory data were used to extract the burnt area of 

forest fires in the same period. This two parts were seemed as hazard identification 

stage, which proved that the forest fires are the main driving force of forest degradation 

in Daxing’anling area. Then, in the hazard analysis part, weather condition data, 

topography data and demography data were applied to mapping the probability of forest 

fires occurrence. Finally, forest inventory data and demographical data were used to 

analysis the environmental vulnerability status of the total study area. The detailed 

flowchart of data processing was showed as Fig 3.9. 

 

Fig 3. 9 Flowchart of data processing 
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Chapter 4 Identification of forest degradation 

This chapter attempt to identify the hazard event resulted in forest degradation. As an 

important part of environmental risk assessment, hazard identification is always 

carried out through problem formulation, which provides the original descriptions of 

the ecological system and is a systematic planning step to determine the major steps in 

the environmental risk assessment process. In this chapter, the land cover classification 

across broad spatial range was conducted by using remote sensed images and forest 

cover change during 2000 to 2010 was detected. On the other hand, the burned area at 

the same period caused by forest fires also extracted by applying the spectral index 

difference. In order to prove that the forest fires is the main cause of forest degradation, 

the two kind of maps were overlapped in ArcGIS. 

4.1 Classification of forest cover change 

Understanding the situation of forest degradation is fundamental for the 

sustainable forest management(Davidar et al., 2010). In the past times, the detection of 

forest change in China is mainly relied on the forest inventory which cost time and 

money. Since the remote sensing data can meet the data demand among a large temporal 

and spatial scale, it has become one of the most commonly used techniques around the 

world and it has been successfully applied to land type classification (Baroudy, 2011; 

Grinand et al., 2013). Generally, these techniques can be divided into either data mining 

or statistically based procedures, depending on the assumptions of the model and the 

way to conduct the model (Hogland, Billor, & Anderson, 2013). In the discriminant 

analysis such as maximum likelihood classification might overestimate the magnitude 

of association among classes (Hosmer & Lemeshow, 2000) and produces misleading 

posterior probabilities if assumptions are not satisfy (Johnson & Wichern, 2007). In 

order to address these issues, a number of different techniques have been applied to 

develop many classifiers, and results might vary among different classifier (Lu et al., 

2004). In contrast, among the data mining methodologies, decision trees, neural 
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networks, and K-means clustering have been developed to be quite popular (D. Lu & 

Weng, 2007). Especially for the decision tree classification method, it might be better 

suited to the situations where a single cover type is represented more than remote 

sensing features because it is not rely on any assumptions of normality within training 

area (DeFries, Hansen, Townshend, & Sohlberg, 1998). 

The vegetation indices have advantage in providing consistent, spatial and 

temporal comparison of vegetation condition (Justice et al., 1998). Normalized 

Difference of Vegetation Index (NDVI) has been widely used in land cover 

classification and change detection and monitoring(Goward et al., 1991; Tucker et al., 

1985). However, NDVI is easily to get saturation in high vegetation cover area (B. 

Matsushita, et al.,2007). In this paper, Daxing’anling forest is the study site, where the 

land was densely covered by forest trees. Therefore, in order to improve the sensitivity 

in high biomass region(Huete et al., 2002), the enhanced vegetation index (EVI) was 

chosen to identify the phenology characteristic of vegetation. Although higher 

resolution data such as SPOT and IKONOS can provide valuable information about 

vegetation cover, they are difficult to apply for large areas based on the current regional 

land cover classification (Lu et al., 2004) in practical applications. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor on board Terra and Aqua 

satellites after launch in December 1999 and May 2002 have been used in monitoring 

land surface changes continuously in space and time due to this multi-year and long-

term time series images (Mildrexler et al., 2007; Hansen et al., 2008). Moreover, the 

MODIS data also has been applied to examine the ecological functions of vegetation 

dynamics for various purpose (Bucha et al., 2008; Setiawan et al., 2011). 

In this research, the phenology feature of vegetation derived from the MODIS EVI 

data, land surface temperature extracted from MODIS LST data and topographical 

characteristic calculated from digital elevation model (DEM) was treated as input data 

to establish a decision tree model, a non-parametric and hierarchical classifier. It 

predicts land covers through recursively partitioning a data set into more homogeneous 

subsets (Quinlan, 1993). Combined with the local prior knowledge on crop calendars, 



40 

 

a simple but reasonable decision tree allowing for a more accurate forest cover 

classification is built at a regional scale. 

4.1.1 Forest cover types in Daxing’anling 

Referred to the list of land classes defined by the IGBP (Hansen & Sohlberg, 2000) 

and the plant functional type map of China (Ran & Li, 2011), which gives the 

geographical distribution of indigenous vegetation in China, we decided to classify the 

study area into seven classes to meet with the actual vegetation condition of 

Daxing’anling area as shown in the following table. 

 

Table 4. 1 Description of land type in the research site combined with the IGBP-DIS 

definition 

Land types Descriptions 

Needle forest Lands dominated by trees with a percent canopy cover >60% and 

the dominate tree species is Larix gmelinii. 

Broadleaf 

forest 

Lands dominated by trees with a percent canopy cover >60% and 

the dominate tree species is Betula platyphylla. 

Mixed forest Forest consists of tree communities with interspersed mixtures or 

mosaics of other forest cover types. 

Shrubs Lands dominated by bushes and shrubs. 

Croplands Lands covered with temporary crops followed by harvest and a bare 

soil period. 

Residential 

Place 

Land covered by buildings and other man-made structure. 

Bare land Land without vegetation 

 

The needle forest dominated by Larix gmelinii is the main forest type in northeast 

China, especially in Daxing’anling area. It covers the majority of total Daxing’anling. 

The second type of forest is broadleaf forest dominated by Betula platyphylla, which 

always grew firstly on a fire burned area. Currently, causing by timber harvesting and 

high frequent forest fires, the forest coverage become fragmented and area with mixed 

forest tree increased gradually. Cropland here is rare and almost close to settlements. 
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4.1.2 Method and data processing 

In this study, the EVI value derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data was used as a measure of vegetation intensity on 

pixel-level, which is a parameter to detect the vegetation change. The vegetation indices 

composite 16-day global 500 m gird (MOD13A1) was downloaded from the LAADS 

website (ftp://ladsweb.nascom.nasa.gov/allData/).The tile number covering 

Daxing’anling area is h25v03. Then, the dataset was converted to the Albers Conical 

Equal Area projection on datum World Geodetic System 1984 (WGS 84) which is 

suitable to China (Zhang X, Sun R, Zhang B, & Tong QX, 2008). 

In order to remove random noise or eliminate cloud/snow contamination, the 

harmonic analysis of time series (HANTS) algorithm was employed to transfer the 

complex raw curve of time-series EVI to a series of sinusoidal waves (Zhou et al., 2015). 

As shown in Fig 4.1, the abnormal spatial variability can be effectively filtered. 

Comparing the original curves with the corresponding curves obtained by HANTS 

analysis, we can see that the EVI data was smoothed after removal of abnormal data 

and easy to obtain the phenology characteristics of different vegetation. 

Besides the MODIS EVI products, the 8-day composite MODIS LST data 

embedded in the MOD11A2 product was used to describe the difference of surface and 

atmosphere interaction in different land cover classes (Hulley et al., 2014). In order to 

ensure the uniformity of projection coordinates, the LST dataset also re-projected to the 

Albers Conical Equal Area projection. 

Considering the vegetation distribution is not only determined by a single factor, 

it is affected by the regional natural conditions (Zhao et al., 2005), such as elevation 

and slopes. So a digital elevation map (DEM) and a topographical slope map derived 

from the DEM enabled us to get the regular pattern of vegetation distribution. 

4.1.3 Establishment of decision tree 

Decision tree theory (Breiman, 1984; Quinlan, 1993) is proposed by Breiman in 

1984 and the basic principle is to constitute a binary tree structure through the 

recursively partitions a dataset into smaller subdivisions (Friedl & Brodley, 1997). This 

theory has been successfully used in the classification of remotely sensed datasets 

ftp://ladsweb.nascom.nasa.gov/allData/
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(DeFries, Hansen et al., 1998). And as a non-parametric, hierarchical classifier, decision 

tree classification offers some advantages over other classification methods. 

 

 

 

Fig 4. 1The enhanced vegetation index characteristic of different land cover type (up: 

raw curve, low: processed through HANTs analysis) 
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The tree is consisted by the root node (from all data), a set of internal nodes and a 

set of terminal nodes. At each node a splitting rule is applied to discriminate one cluster 

out from all the data, which resulting in a hierarchical binary tree (Fig 4.2). At the next 

node the discriminated class is not included so it can reduce the disturbance information 

from other clusters. 

Fig 4. 2 Two-class hierarchical tree classification in forest cover classification 

 

Around Daxing’anling area, since snow falls from October and lasts to March, the 

growth period of vegetation is very short (from March to September). The land surface 

is covered by snow so the reflection from vegetation can’t be detected by the remote 

sensor. Taking this special climatic characteristic into account, four vegetation index 

related variables (Table 4.2) were extracted from the MODIS EVI data to describe the 

phenological difference between land covers.  

Rule-making is critical for decision tree construction. According to the rules, the 

tree is classified into two branches and the class membership is determine by the class 

homogeneity. In order to get the spectral heterogeneity and multidimensional clusters, 

some regions of interest were chosen from Landsat TM as training data because of its 

high spatial resolution.  

All the variables used to constitute a decision tree is listed as below: 
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Table 4. 2 Metric employed in the decision tree classification 

Variable name Description 

EVI-Mar The mean EVI value in March 

EVI-Aug The mean EVI value in August 

EVI-Mean The average EVI during the vegetation’s growth period 

EVI-apl The amplitude of EVI between August and March 

Slope The slope value derived from DEM 

LST The Land surface temperature 

DEM The elevation value 

 

Combining with the local prior knowledge, the main rules for the tree based on a 

pixel level are determined as following: first, the residents usually settled down at a flat 

place so the built-up area is always in flat land and its amplitude of EVI is small and 

the surface temperature is higher in summer. Second, the shrubs and cropland have 

higher EVI value in August and lower EVI value in March, and the EVI change of 

cropland is bigger than the shrubs. Third, the forest has a high average EVI and small 

EVI change. And the needle forest has a higher EVI in March because the needle forest 

don’t fall leaves in winter. 

 

Fig 4. 3 Decision tree classifier in Daxing’anling area 
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4.1.4 Forest cover classification 

The land cover map in 2000 and 2010 were classified using the decision tree 

classifier developed above. The confusion matrix (Table 4.3) was constructed using 

ROIs from high resolution images and ground truth data in order to check the accuracy, 

and it shows the overall accuracy is approximate 75.2%. It can be seen that in some 

extent, the urban area and cropland were wrongly classified as shrubs because of the 

coarse resolution. However, our objective is the forest coverage, the accuracy with 75.2% 

can be seen as effective results in forest cover change analysis at large spatial scales. 

Finally, the Landsat TM data was used as a base image for artificially correcting the 

misclassified pixels. The final classification map are shown in Fig 4.4 and Fig 4.5. 

 

Table 4. 3 Accuracy confusion matrix of 2000 MODIS classification 

 Cropland Built-

up 

Needle 

forest 

Broadleaf Shrubs Mixed 

forest 

Barren 

Cropland 74.24 4.58 2.89 3.1 3.68 3.02 6.13 

Built-up 6.3 78.4 1.61 0.76 1.59 2.17 10.83 

Needle 

forest 

2.01 1.88 78.82 6.32 6.32 4.12 3.88 

Broadleaf 1.78 1.14 5.61 74.09 8.89 7.46 4.09 

Shrubs 10.2 4.35 3.98 5.19 69.65 8.29 8.16 

Mixed 

forest 

3.79 1.09 5.29 7.11 8.52 71.11 4.78 

Barren 1.68 8.56 1.8 3.43 4.35 3.83 62.13 

Total 

(Percentage) 

100 100 100 100 100 100 100 

Total 

(Pixels) 

1882 1724 12830 7821 2739 3032 1062 
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Fig 4. 4 Land cover classification map of Daxing’anling area in 2000 

 

 

Fig 4. 5 Land cover classification map of Daxing’anling area in 2010 
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From the figure 4.4 and figure 4.5, we can see that most part of Daxing’anling 

Mountain is covered by forest, and the forest coverage (needle forest, broadleaf forest 

and mixed forest) is approximately 88.57% and 80.73% respectively in 2000 and 2010 

(Fig 4.6). In the forest stands, the needle forest occupies dominantly and distributes 

throughout the region. Among the non-forest classes, the shrubs is occupying a large 

part and mostly distributed near the valley. The residential area is sparsely distributed 

among the forest but concentrated in the east part of the region. 

 

Fig 4. 6 Area proportion of each land type 

 

4.1.5 Detection of forest cover change 

Based on the above analysis, it can be seen that the forest coverage in the 

Daxing’anling Mountain is decreasing from 2000 to 2010, especially the area of needle 

forest is reducing. Through overlapping of classification map of 2000 and 2010, a map 

describing the forest change situation can be obtained (Fig 4.7). 



48 

 

 

Fig 4. 7 The forest change in Daxing’anling from 2000 to 2010 

 

Here the forest cover change was divided into three kinds: forest converted to non-

vegetation land (residence and agricultural area), forest converted to shrubs. And forest 

increased by means of afforestation. The forest change to non-vegetation mainly 

happened in the eastern and northern part where the population is concentrated and the 

demand for residential and agricultural land is relatively high. On the other hand, the 

forest changed to shrubs in the southeastern and eastern area where, forests are closed 

to the residence, the people need more fuel wood to keep warm in the long and cold 

winter, and to take out woods and logs as one major supply of forestry product. 

Consequently, huge amount of trees were cut down every year. 

4.1.6 Discussion and conclusion 

The change detection analysis is an efficient way to observe the changes between 
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each land use category. The universal application of the remote sensing technology 

makes the change detection become possible in a large temporal and spatial scale. 

Although the spatial resolution of MODIS data is 250m which is not enough for 

precision researches, by taking the advantage of its high temporal resolution, and 

combining with other auxiliary data such as Landsat images and DEM map, it is 

possible to obtain a comprehensive land type information at a large scale. We used the 

MODIS EVI product, MODIS LST data and DEM data to acquire the variables for 

establishment of decision tree model. Then an overlap analysis was conducted to detect 

the forest cover change. The result demonstrate that the majority part of Daxing’anling 

is occupied by forest, and due to some anthropological activities and natural disturbance, 

in some area the forest cover transformed to other non-forest cover. 

4.2 Extraction of forest fires burnt area 

Burned area and occurrence frequency are two indicators used to describe the 

severity of forest fires. Burned area mapping is particularly important in forest fire 

research to capture information about the location and timing of fires.  

4.2.1 Introduction 

Traditional methods of collecting forest fire data are dependent on field surveys 

which are time consuming and difficult to conduct over large areas (W. Yang et al., 

2013). Considering the wide coverage of land surface information, the use of satellite 

imagery has recently become a popular tool to evaluate the fire damage and 

contingencies on a global and regional scales (Portillo-Quintero et al. 2013). Until now, 

various sources of remotely sensed data have been applied to extract areas influenced 

by fire at a regional (Röder et al. 2008), national (Goetz et al. 2006), and global scale 

(Chuvieco and Martin 1994; Giglio et al. 2006; Roy et al. 2005). At the regional scale, 

moderate spatial resolution remote sensing data with high temporal resolution is 

considered a suitable alternative to extracting a time series burned area map (Emilio 

Chuvieco, Englefield, Trishchenko, & Luo, 2008). Therefore, Advanced Very High 
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Resolution Radiometer (AVHRR) (Sukhinin et al., 2004) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) data (Louis Giglio, Loboda, Roy, Quayle, & 

Justice, 2009; Roy et al., 2005) have been broadly applied in recent years to map burned 

areas caused by forest fires. However, because of radiometric instability, cloud 

obscuration, and sensor transmission problems, AVHRR data were identified as having 

some potential problems in burned area mapping (Barbosa et al. 1999). The use of 

MODIS data may reduce these problems and provide better spatial and radiometric 

resolutions than AVHRR data. 

Two methods can be applied to monitor forest fires using remote sensing data 

according to the different phases of burning: active fire (hotspot) detection (Fraser et al. 

2000) and post-fire (scars) burn detection (Bastarrika & Chuvieco, 2011). In hotspot 

detection, the thermal energy contrast with background pixels and mid-infrared bands 

is most appropriate for monitoring the active fire. Although burned areas can be 

evaluated through counting the fire pixel from the active fire detection, the result is 

somewhat unreliable because of omission errors (L Giglio et al., 2006; Kasischke, 2003). 

Alternatively, burn scars can be identified by the change of vegetation index and 

spectral reflectance caused by fires (Carl, 2006; Louis Giglio et al., 2009). However, in 

some cases, the area of forest clear cuts and harvested croplands are difficult to 

distinguish from burned areas because of their similar spectral features. 

This study proposes an algorithm to discriminate burned areas in the 

Daxing’anling region, China, using MODIS time series imagery. The algorithm not 

only considers the thermal abnormalities caused by fires, but also considers the spectral 

differences in pre- and post-fire vegetation surface. It combines the active fire products 

that reflect abnormal thermal characteristics with spectral indices that indicate the 

reflectance difference between pre- and post-fire vegetation surfaces to generate a 

burned area map on a local scale. 

4.2.2 Method and data processing 

The primary input data for the burn scar discrimination algorithm included the 
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MODIS atmospherically corrected level 3 surface reflectance 8-Day composite product 

(MOD09Q1) time series (Vermote et al. 2002), the MODIS active fire product in a 

vector format (MCD14DL; https://earthdata.nasa.gov/active-fire-data), and the MODIS 

enhanced vegetation index (EVI; MOD13Q1). 

The algorithm for the MODIS active fire product was based on thermal anomalies 

that occur during fires (Louis Giglio, Descloitres, Justice, & Kaufman, 2003), and in 

this research it was applied as a contextual parameter to identify the core pixel of a fire. 

The surface reflectance composites covered a full year (January 1 – December 31) and 

only high-quality pixels were processed during analyses. Table 4.4 illustrates the image 

mask value developed according to the information from the packed quality bits 

included in the standard MODIS products (http://modis-sr.ltdri.org). 

 

Table 4. 4 MODIS surface reflectance QA science data set bits used to mask low quality 

data 

Surface 

reflectance state 

250 m bit id 

0-1 2 3-5 6-7 8-9 10 12 15 

Bit description Cloud 

state 

Cloud 

shadow 

Land/w

ater 

flag 

Aerosol 

quality 

Cirrus 

detecte

d 

Internal 

cloud mask 

Snow/ice 

flags 

Internal 

snow mask 

Value accepted 0 0 1 1-2 0-2 0 0 0 

 

The MODIS data were originally saved in Hierarchy Data Format (HDF) using 

the sinusoidal projection, and were subsequently re-projected into Albers equal area 

conic projection which is commonly used in China. The entire study area was then 

extracted by using the administrative boundary of Daxing’anling. 

As the pre- and post-fire spectral differences are the basis of extracting burned 

https://earthdata.nasa.gov/active-fire-data
http://modis-sr.ltdri.org/
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areas, it is critical to choose an appropriate spectral index to explain any differences. 

Recently, the most widely used indices have been the Burned Boreal Forest Index, 

Burned Area Index (Bastarrika et al., 2014), and Normalized Burn Ratio (NBR) 

(Hardtke, Blanco, del Valle, Metternicht, & Sione, 2015). Among these indices, NBR 

was deemed appropriate to extract burned areas in this study because NBR is sensitive 

to deposits of ash and char caused by forest fires. The Normalized Difference 

Vegetation Index (NDVI) has also been applied in burned area extraction research 

because it can offer precise estimations of vegetation condition. However, there are 

some insufficiencies with the NDVI. For example, the NDVI value may reach its 

maximum in areas of high vegetation cover (Justice et al., 1998) and cause latent errors 

for burned area mapping (Barbosa et al., 1999). EVI can overcome the saturation 

problem in areas with high vegetation coverage such as our study site. 

In this study, we used the differenced Normalized Burn Ratio (dNBR) index and 

EVI to extract the burned areas in Daxing’anling region. Originally, the NBR was 

developed for use with Landsat images (López & Caselles, 1991) because the near 

infrared band (B4) is sensitive to living plants and chlorophyll content (Miller & Thode, 

2007), whereas the short wave infrared band (B7) provides information about water 

content in vegetation, lignose in non-photosynthetic vegetation, and hydrous minerals 

such as clay and ash (Elvidge, 1990).  

The NBR value is associated with vegetation moisture content by combining the 

near- and mid-infrared spectral regions, in which post fire reflectance changes 

significantly. Unburned sparsely vegetated areas are easily confused with burned areas 

when using mono-temporal post-fire imagery. Thus, the NBR values obtained pre- and 

post-fire are generally bi-temporally differenced, resulting in dNBR, which provides a 

clear contrast between unburned and burned areas. 

The formula of NBR index was constructed as: 

NBR =
(𝐵4−𝐵7)

(𝐵4+𝐵7)
 ,                    (1) 
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dNBR = (𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡).        (2) 

EVI was combined with the dNBR value to reduce potential errors in the process of 

burned area discrimination. 

𝐸𝑉𝐼 = 𝐺 ×
(𝑁𝐼𝑅−𝑅𝐸𝐷)

𝑁𝐼𝑅+𝐶1×𝑅𝐸𝐷−𝐶2×𝐵𝐿𝑈𝐸+𝐿
       (3) 

where NIR, RED, and BLUE are atmospherically corrected surface reflectances in 

the near-infrared, red and blue bands. C1 and C2 are the coefficients of the aerosol 

resistance term and L is the canopy background adjustment parameter. The coefficients 

adopted in the MODIS algorithm are L = 1, C1 = 6, C2 = 7.5, and G (gain factor) =2.5 

(Huete et al., 2002). 

Additionally, the MODIS active fire product that can represent thermal 

characteristics was considered as another contextual restriction to map burned areas. 

The proposed algorithm proceeded through two stages as shown in Fig. 4.9. The 

input data were the NBR data obtained from the MODIS time series images, the 

MODIS_EVI data, and MODIS active fire data. The algorithm was implemented in two 

stages and executed iteratively. The first stage attempted to detect the “core pixels”, 

which were deemed as potentially burned by setting threshold values for the input data. 

The core pixels were then used to discriminate the entire area affected by the forest fire 

by defining more relaxed criteria for the neighboring pixels around the core pixels. 

The first stage was based on the temporal thresholds of EVI and dNBR, combined 

with the abnormal temperature characteristics. The core pixels fulfilled the following 

conditions: 

1) EVI of the previous period should be above a certain value to ensure that the pre-fire 

area was vegetated land. 

2) The decrease in EVI caused by fires should be persistent and significant, as: 

(𝐸𝑉𝐼𝑡 − 𝐸𝑉𝐼𝑡−1) 𝐸𝑉𝐼𝑡 < −0.1⁄ .     (4) 

where 𝑡 is the 1 month period under consideration. Suppose the t-period was the fire 
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period and the t-1 period was the post-fire period. The threshold ensured that the 

decrease in the post-fire image was sufficient. 

3) The dNBR value of the fire period and the following period should be greater than a 

certain threshold value. The commonly used threshold of the dNBR value was obtained 

from empirical knowledge, which is likely to vary for different regions. Here, the 

threshold value was determined from the frequency distribution of dNBR values over 

a sample year with known fire activity in the area (Fig. 4.8). The histogram of dNBR 

values displayed a near-Gaussian distribution for unburned areas and an extended tail 

of positive values for burned areas. In this study, the dNBR threshold of forest fires was 

initially set at 250, which was defined by the fit of the Gaussian distribution at 95% of 

the range (Fig. 4.8). However, in the first stage, a relatively high dNBR value was 

required to detect the forest fire point, therefore, the value was set at 350. 

𝑁𝐵𝑅𝑡−1 − 𝑁𝐵𝑅𝑡 > 350.                 (5) 

 

Fig 4. 8 Frequency distribution of dNBR values for threshold determination test 

windows in Daxing’anling. The solid vertical lines were used to inform the placement 

of the burn thresholds 

After the discrimination of core pixels, more relaxed conditions were applied to 
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detect the area affected by fire from the surrounding pixels. Taking the real conditions 

of the study site into account, the maximum distance from the core pixels was fixed at 

12km and the burned area was discriminated in the 12-km buffer in the second stage as 

follows: 

(𝐸𝑉𝐼𝑡 − 𝐸𝑉𝐼𝑡+1) 𝐸𝑉𝐼𝑡 < −0.1 ∗ 0.5⁄ ,        (6) 

(𝐸𝑉𝐼𝑡+1 − 𝐸𝑉𝐼𝑡−1) 𝐸𝑉𝐼𝑡+1 < −0.1 ∗ 0.5⁄ ,    (7) 

𝐸𝑉𝐼𝑡+2 < 𝐸𝑉𝐼𝑡−1,                       (8) 

𝑁𝐵𝑅𝑡−1 − 𝑁𝐵𝑅𝑡 > 250.                  (9) 

Finally, all pixels detected in 1 month were stitched together to form a polygon 

and a mode filter of 5  5 m was applied to remove small polygons. The algorithm was 

then applied repeatedly for every year from 2001 to 2010. The burned area map was 

obtained through stacking the resulting polygons together. 

4.2.3 Extraction of burned areas 

The Daxing’anling region was severely influenced by forest fires from 2001 to 

2010, while the extent of the fires differing according to year (Fig.4.10). Among the 

four administrative districts, Mohe County was the least affected by fires during the 

study period, with both the smallest total area (85 km2) and numbers of forest fires. 

Huma County was the most severely influenced by forest fires with larger fires affecting 

more areas. The total burned area for Huma County was 5185.5 km2, which represents 

approximately 36% of the whole County. During this period, one catastrophic forest 

fire was detected in 2003. It occurred adjacent to the border between Huma County and 

Russia, and affected approximately 2,500 km2 of forest. 
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Fig 4. 9 Flowchart of algorithm processing for burned area extraction 
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The historical fire data for 2000 - 2010 that were obtained from the Bureau of 

Statistics in Daxing’anling region were used as the validation data to analyze the 

accuracy of the burned area extractions. The extracted burned areas from MODIS were 

compared with the fire statistics from the local government. Table 4.5 displays the 

differentiation between the validation data and the discriminated fire area for each year. 

The results indicate that the extracted burned areas appear to be only a slight 

overestimation of actual burned areas in 2001 and 2002. In the other years, the extracted 

burned areas are smaller than the actual burned areas. A potential explanation for this 

may be that some low-severity burned areas were ignored because of the high threshold 

value of dNBR. The results from 2008 were the best estimation of the actual burns with 

an accuracy of 95.4%; almost all the burned areas were detected. Conversely, the 

greatest discrepancy occurred in 2003, possibly because of a large fire in that year that 

spread outside the 12-km buffer distance that may have resulted in some regions of the 

burned areas being missed. Overall, the discriminated burned areas showed good 

consistency with the actual burned areas.  

 

Table 4. 5 Validation results for the discriminated burned area using MODIS imagery 

Year  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Extracted 

area (km2) 

42.8 40.8 4136.5 464.3 601.7 598.5 62.8 105.8 77.2 113.6 

Actual 

area (km2) 

31.3 18.7 4461.5 632.3 830.6 730.2 120.4 110.9 90.1 130.3 
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Fig 4. 10 Time series of burned area extraction from 2001 to 2010 in Daxing’anling 

 

4.2.4 Relationship of forests burned area and topographic factors 

The study area is a mountainous area that the terrain is complex. In order to find 

out the relationship between forest fires and topographic factors, we analyzed the 

correlation among them. As it can be seen from table 4.6, the distribution of burned 

areas showed a clear negative correlation with elevation, with the burned areas mostly 

occurring at lower altitudes. Almost 86% of the burned areas occurred below 471m 

(Table 4.6). A possible explanation may be that the flat area has relatively high 

temperatures than the mountain area, which may allow fire to spread more easily. 

Burned areas were also negatively correlated with slope. The burned areas within six 

slope gradients accounted for almost 90% of the total burned areas during the 10-year 

period (Table 4.6). There was no significant correlation between burned areas and 

latitude; however, a clear concentration of burned areas was detected between 50.9°and 
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52.9° N (Table 3), with more than 90% of burned areas occurring in this range. The 

upper latitudes (>52.9°N), with relatively low temperatures and low human populations, 

showed a very low proportion of burned areas (3%). 

 

Table 4. 6 Cross tabulation of burned areas with different auxiliary variables 

Factors Class Burned area (km2) Proportion (%) 

Elevation 

(m) 

136–340 2816 45.1 

341–471 2595 41.6 

472–675 417 6.7 

676–996 329 5.3 

997–1500 86 1.3 

Slope  

() 

0–2.8 4171 66.8 

2.9–5.6 1416 22.7 

5.7–8.9 383 6.1 

9–13.4 204 3.3 

13.5–31.3 70 1.1 

Latitude 

() 

50.91–51.9N 2894.3 46.4 

51.91–52.9 3148.71 50.4 

52.91–53.5 200.99 3.2 

 

4.2.5 Discussion and conclusion 

This study presented a burn scar discrimination algorithm and applied it to a time 

series of MODIS imagery for the Daxing’anling region during a 10-year period from 

2001 to 2010. Considering the effects of climate warming caused by fire behavior, the 

approach focused on a unique combination of vegetation cover, abnormal temperatures 

and spectral differences between pre- and post-fire surfaces to discriminate burned 

areas. As a result, commission and omission errors may be reduced using this algorithm, 

and a more accurate estimation of burned areas may be obtained. 

For our proposed algorithm, a critical stage is choosing a suitable threshold value 

for the spectral indices (EVI and dNBR) between pre- and post-fire surfaces. Different 
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critical values can lead to different accuracy rates. In this study, the frequency 

distribution of dNBR values was used to determine the threshold, which avoided the 

subjective influence of previous methods (Loboda et al. 2007). Different dNBR values 

were then selected during different stages under the threshold value to discriminate 

burned areas. 

Several problems related to the input data may be found when mapping burned 

areas. For instance, the geographic precision of smaller fire scars was relatively low 

because of the coarse resolution (250 m) of the MODIS imagery. Another problem is 

that the quality assessment algorithm applied to the MODIS surface reflectance product 

can cause an omission of low-quality input data. In addition, atmospheric contamination 

includes cloud cover in the input data and can also result in large errors during burned 

area mapping. Although it is possible to reduce these errors using visual checks, it is 

very time consuming and only suitable for smaller areas. 

In this study, inter-annual variability in the spectral index was taken into 

consideration in burned area extraction, while intra-annual variability in vegetation 

cover caused by factors such as phenology presented a challenge for single annual 

threshold implementation in the algorithm. Changing the threshold for the spectral 

index could improve the accuracy rate in mapping burned areas. 

Despite these insufficiencies, the time series of burned areas provides a reliable 

trend forecast of burned areas in the study region. Through analyzing the burned area 

maps, the temporal and spatial trends of forest fire occurrence could be identified, for 

example, the higher impact fires occurred in locations with lower elevations, such as 

Huma County.  

Our proposed algorithm used MODIS time series imagery to extract burned areas, 

which was the best alternative for regional and long-term burned area mapping. The 

algorithm not only considers abnormal thermal features, but also takes into account pre- 

and post-fire spectral differences. Herein, the annual burned areas in Daxing’anling 

from 2001 to 2010 were mapped using the algorithm. The results showed that the 
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eastern part of study area was frequently affected by forest fire, especially in 2003 and 

2005. The burned area mapping approach based on the MODIS time series imagery 

provides opportunities for further ecosystem-specific refinement. Although the dNBR 

index may prove useful to differentiate fire impact levels within a single fire scar, proper 

field validation should be conducted to improve accuracy. Therefore, additional work 

is necessary for developing dNBR to assess the severity and effects of fires on land 

surface. 

4.3 Detection of forest degradation 

In the previous stage, the area of forest cover change and forest fires burned was 

extracted from remote sensed images. By validating using high spatial resolution 

images and ground truth data, the accuracy of forest cover change detection and burned 

area extraction is feasible for this research. According to the statistical data, it is 

obviously that the forest fires greatly influenced the forest cover change. By 

overlapping the forest cover classification and burned area map in ArcGIS 10.2, we can 

understand the spatial relationship of forest degradation and forest fires, as shown in 

Figure 4.11. 

In the environmental risk assessment, it is critical to identify the hazard events. In 

our research, we attempt to analyze the environmental risk assessment of forest 

degradation, thus we have to recognize the main cause of forest degradation. From Fig 

4.11, it can be seen that, the forest degradation and forest fire burned area has a large 

area overlapped. Through the statistical analysis, we can know that the intersection part 

occupied 81.28% of the total forest degradation area, which means that majority of 

forest degradation area has gone through at least one times of forest fires during 2000 

to 2010. Therefore, we can treat forest fires as hazard events caused forest degradation 

and might have potential influence on other related ecosystem. 
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Fig 4. 11 The intersection of forest degradation and forest fire burned area 
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Chapter 5 Environmental risk assessment 

In this chapter, we conduct the process of environmental risk assessment, which is an 

interaction of hazard events and potential losses. In Chapter 4, we already identified 

the hazard event caused forest degradation in Daxing’anling area is the occurrence of 

forest fires. Therefore, in order to get a quantitative analysis of environmental risk, we 

have to calculate the probability of forest fires and to evaluate the potential losses 

resulted by forest fires. Thus, in this chapter, a data driven model called weight of 

evidence (WofE) was employed to map the probability of forest fire occurrence. It is 

based on Bayesian Theory, which get the posterior probability by using priori 

probability obtained from historical data, hence it has advantage to avoid the subjective 

influence on weight allocation. After calculating the probability of forest fires, an 

evaluation of potential losses is carried out, which is the environmental vulnerability 

assessment in this research. 

5.1 Probability of forest fire occurrence 

Natural forest fires play an indispensable role in shaping forest landscapes (Cissel 

et al. 1999; Seymour et al. 2002; Cleland et al. 2004; Nitschke 2005). According to the 

Chinese National Bureau of Statistics, more than 10 million hectares of Chinese forest 

have been affected by forest fires during the past 50 years (Gao 1999). Forest fires can 

wipe out all vegetation and release large amounts of carbon dioxide (Dokas et al. 2007). 

Although various forest fire management measures have been implemented to reduce 

their occurrence, forest fires appear to remain as a major recurrent problem in many 

regions (Collins et al. 2013). Therefore, monitoring is crucial for fire prevention to 

decrease the negative effects on the environment and on people (Ballari et al. 2012). 

Understanding the human and environmental variables that affect forest fires as well as 

the spatial distribution of such fires is also essential for effective landscape management 

and fire mitigation. In addition, mapping the probability of a forest fire occurring is 

necessary to understand the risk of a fire breaking out and the threat posed to humans 
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and ecosystem features such as the atmosphere, the soil, and flora and fauna. 

5.1.1 Introduction 

In previous studies, considerable attention was paid to describing fire weather 

conditions and constructing fire indices integrating different meteorological factors. As 

a result, a wide range of fire risk rating systems and indices were applied to evaluate 

forest fire risk (Skvarenina et al. 2003; Viegas et al. 1999). Some systems took into 

account the relationships between moisture, weather conditions, fire fuel properties and 

fire activity (Wagner 1987). However, Viegas et al. (1999) compared five fire danger 

indices and demonstrated that they varied significantly because of the different 

environmental conditions in which they were applied. However, a forest fire is a 

complicated process influenced both by physical factors and human related factors, and 

how human activities affect forest fire behaviour is still poorly elucidated.  

On the other hands, some studies involved efforts to construct indices that take 

account of several indicators to predict the probability of forest fires (Chou et al. 1993; 

Wotton et al. 2003; Preisler et al. 2004; Finney 2005; Syphard et al. 2008; Dlamini 2010; 

Ganteaume et al. 2012; Eskandari and Chuvieco 2015), different modelling approaches 

have various strengths and limitations depending on the particular management 

objectives (Farris et al. 1998). The main difficulty relates to determining the appropriate 

weight for each indicator in index-based models because of the subjectivity that this 

inevitably involves (Tiburan et al. 2013). Therefore, an effective approach should be 

adopted to avoid this problem. As such, in this study, a geostatistical approach that can 

avoid the influence of subjectivity was applied to estimate the relative rates of 

contribution of causative factors to forest fires and to build a model for mapping the 

risk of forest fire occurrence.  

The Weight of Evidence method is performed following the equation of the 

Bayesian probability model (Bonham-Carter et al. 1989), which aims to objectively 

determine the relative rates of contribution of multiple variables to the occurrence of an 

event (Engel et al. 1999). It is a data-driven model that unearths the potential linkage 
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between unknown events and causative factors using prior probability and posterior 

probability derived from historical data (Regmi et al. 2010). In the 1980s, this method 

was first introduced into the field of geography by a Canadian geologist to identify 

potential mineral deposits (Agterberg 1989). Since then, it has been demonstrated that 

the Weight of Evidence method can provide a reliable explanation of evidential factors 

while avoiding subjectivity (Dong et al. 2011; Lee et al. 2012; Fu et al. 2013). In this 

study, we attempted to establish a model to broadly characterise the important causative 

factor layers that may be associated with the occurrence of forest fires. We also used 

Weight of Evidence model to map the probability of forest fires over a broad spatial 

scale. 

5.1.2 Material and method 

5.1.2.1 Spatial data layers 

Forest fires are complicated phenomena that affected by a variety of factors 

including physical and human factors (Chuvieco et al. 2014). Therefore, to completely 

characterise the behaviour of a potential fire, it is necessary to determine the influential 

factors acting on forest fires. Based on the previous studies (Chou et al. 1993; Vasilakos 

et al. 2007; Preisler et al. 2004; Soto 2012; Krawchuk et al. 2008; Pew and Larsen 2001) 

and considering the availability of data for the area focused on in this study, twelve 

variables related to fire weather conditions, vegetation composition, topography and 

human activity were selected to establish a model for mapping forest fire risk. 

Meteorological factors including monthly mean temperature (C), monthly 

average wind speed (m·s−1), monthly mean relative humidity (%) and monthly total 

precipitation (mm) in fire season (1 March to 31 October) were obtained from China 

Meteorological Data Sharing Service System (http://cdc.cma.gov.cn). Records of 5 

national meteorological stations run by the National Meteorological Administration in 

northeast China were used to obtain a grid dataset covering the whole study area by 

kriging interpolation. A digital elevation model (DEM) with 90-m resolution 

downloaded from the CGIR Consortium for Spatial Information Centre 

http://cdc.cma.gov.cn/
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(http://srtm.csi.cgiar.org) was used to extract topographical variables including 

elevation, slope and aspect using spatial analysis in ArcGIS. Vegetation composition 

can be seen as the land type cover and the land cover classification at the study site was 

referring to Zou and Yoshino (2013). Human-related factors including distance from 

residential areas, population density and road density were chosen to represent the 

human influence on fires. The data on the total population and the road map in 2009 

were obtained from Daxing’anling Statistical Bureau. Then, population density was 

calculated for each county using equation (1). Road density was calculated for each grid 

section (1  1 km) in the same way, as shown in equation (2). ArcGIS function was 

used to create a buffer zone for residential areas using a diameter of 2 km. 

Population density =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑝𝑜𝑝)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑦 (𝑘𝑚2)
                         (1) 

Road density =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑜𝑎𝑑 (𝑚)

𝐺𝑖𝑟𝑑 𝑎𝑟𝑒𝑎 (𝑘𝑚2)
                                 (2) 

All of the potentially causative factors were processed in ArcGIS and 

georeferenced to  Albers equal area conic projection based on the World Geodetic 

System 1984 (WGS 84), which is commonly used in China. Because the analytical 

approach of the Weight of Evidence method required categorical rather than continuous 

input data, all input maps were categorised into different classes with equal intervals. 

They were then converted to a 1×1 km grid in ArcGIS grid format, which can be directly 

inputted into the Weight of Evidence model. 

The forest fire season in Daxing’anling prefecture is from 1March to 31 October, 

during which forest fires are prone to occur due to dry weather condition (Tian et al. 

2013). A digital database of the occurrence of forest fires during the fire season in 2009 

was compiled based on the MODIS active fire product (MOD/MYD 14) in 

Daxing’anling Prefecture with a spatial resolution of 1 km (Giglio et al. 2004). This 

product provide information about time, location of burning (limited to a 1 km pixel) 

and the confidence of detection estimate. The burnings with confidence level larger than 

90% were used as training data in the model. 

http://srtm.csi.cgiar.org/
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Fig 5. 1 Spatial data input in weight of evidence analysis 
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5.1.2.2 Weight of evidence model 

A Bayesian probability method, named weights of evidence (WOE) model 

(Bonham-Carter et al. 1989) was employed to quantify the risk of forest fires. It requires 

a spatially defined study area, a set of training points (known occurrences of forest fires), 

and a set of spatial data layers (input maps) as evidence layers. WOE model can provide 

a measure of spatial association between training points and evidence layers (Romero-

Calcerrada et al. 2008), and the evidence layers are assumed to be conditionally 

independent with respect to the training points (Agterberg et al. 1993). 

Take a study site T, with a total area A (T). Then it is divided into unit cells with 

equal size u km2; thus the number of cells on study area is N (T) = A (T)/u. The number 

of cells with a fire occurred is N (D), so prior probability P (D) was computed as P (D) 

= N (D)/N (T). The prior probability is a non-conditional probability and is a constant 

throughout the whole study. Odds ratio (O) of prior probability that a randomly selected 

cell include a fire occurrence was computed by the prior probability as  

𝑂 (𝐷) =
𝑃(𝐷)

𝑃(𝐷̅)
=

𝑃(𝐷)

1 − 𝑃(𝐷)
                                               (3) 

Where 𝑃(𝐷̅) is the prior probability that a fire event didn’t occur in that cell. 

For a given set of evidence layer 𝐸𝑖, where 𝑖 = 1, 2, 3, …, n, and n is the total 

number of evidence layer, where each of them represents an independent causative 

factor. Thus the conditional posterior P (Ei/D) was expressed as odds: 

𝑂(𝐸𝑖|𝐷) = 𝑂(𝐷)
𝑃(𝐷|𝐸𝑖)

𝑃(𝐷̅|𝐸𝑖)
                                                 (4) 

According to Bayes’ rule, and the fundamental assumption that the input evidence 

layers are conditional independent, the following equation can be derived 

𝑂(𝐸𝑖|𝐷) =  𝑂(𝐷)
𝑃(𝐸𝑖|𝐷)

𝑃(𝐸𝑖|𝐷̅)
                                                (5) 

And then take the natural logarithms on both sides of the equation: 
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 ln(O(𝐷|𝐸)) = ln (𝑂(𝐷) ×
𝑃(𝐷|𝐸1 ∩ 𝐸2 ∩ 𝐸3 ⋯ 𝐸𝑛)

𝑃(𝐷̅|𝐸1 ∩ 𝐸2 ∩ 𝐸3 ⋯ 𝐸𝑛)
)

= ln (𝑂(𝐷) ×
𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ⋯ 𝐸𝑛|𝐷)

𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ⋯ 𝐸𝑛|𝐷̅)
)  

= ln(𝑂(𝐷)) + ln (
𝑃(𝐸1|𝐷)𝑃(𝐸2|𝐷)𝑃(𝐸3|𝐷) ⋯ 𝑃(𝐸𝑛|𝐷)

𝑃(𝐸1|𝐷̅)𝑃(𝐸2|𝐷̅)𝑃(𝐸3|𝐷̅) ⋯ 𝑃(𝐸𝑛|𝐷̅)
)

= ln(𝑂(𝐷)) + In (
𝑃(𝐸1|𝐷)

𝑃(𝐸1|𝐷̅)
) + ln (

𝑃(𝐸2|𝐷)

𝑃(𝐸2|𝐷̅)
) + ⋯

+ ln (
𝑃(𝐸𝑛|𝐷)

𝑃(𝐸𝑛|𝐷̅)
)                        (6) 

In WOE model, two kinds of weight (𝑊+ and 𝑊−) for evidence pattern i of each 

evidence variable is defined as below: 

𝑊𝑖
+ = ln

𝑃(𝐸𝑖|𝐷)

𝑃(𝐸𝑖|𝐷̅)
                                              (7) 

𝑊𝑖
− = ln

𝑃(𝐸̅𝑖|𝐷)

𝑃(𝐸̅𝑖|𝐷̅)
                                              (8) 

Thus, the log odds of posterior probability might be calculated through adding 𝑊+ 

or  𝑊−  for presence or absence of each evidence layer to log odds of the prior 

probability as below 

ln(O(𝐷|𝐸)) = ln(𝑂(𝐷)) + 𝑊1
+(𝑂𝑅 𝑊1

−) + 𝑊2
+(𝑂𝑅 𝑊2

−) + ⋯ 𝑊𝑛
+(𝑂𝑅 𝑊𝑛

−)

= ln(𝑂(𝐷)) + ∑ 𝑊𝑖
𝑘

𝑛

𝑖=1

               (9) 

where 

𝑊𝑖
𝑘 = { 

𝑊𝑖
+ ,                 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡;

𝑊𝑖
− ,                   𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 𝑖 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡;

0  ,                                                    𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑙𝑜𝑠𝑠;

 

Then the posterior probability of unit cell 𝑃(𝐷|𝐸𝑖) calculated from the logit equation 
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𝑃(𝐷|𝐸𝑖) =
𝑂(𝐷|𝐸𝑖)

1 + 𝑂(𝐷|𝐸𝑖)
                                               (10) 

C = 𝑊+ − 𝑊−                                                                 (11) 

where 𝑊+ and 𝑊−  are the weights in the presence and absence of the causative 

factor, respectively. P is the conditional probability, B and 𝐵̅  is the area where 

predictive pattern is present and absent respectively, D and 𝐷̅ in terms of the area 

where forest fire occurrence is present and absent. The magnitude of 𝑊+ shows a 

positive relationship between the presence of the causative factor and forest fires; 

similarly, the magnitude of 𝑊− indicates the level of a negative relationship (Regmi 

et al. 2010). In general, absolute weight values between 0 and 0.5 show a mildly 

predictive capacity, values between 1 and 2 are strongly predictive and those greater 

than 2 are extremely predictive (Agterberg et al. 1993; Neuhäuser and Terhorst 2007; 

Ozdemir 2015).  

C is the difference in these two weights, being called the weight contrast, which 

indicates the spatial association among the causative factors and forest fires (Dahal et 

al. 2008). A larger weight contrast implies stronger spatial association between 

causative factor and forest fires (Romero-Calcerrada et al. 2008). If C is zero, this 

means that the causative factor has a negligible influence on forest fires. A positive C 

implies a positive spatial correlation and negative C suggests a negative one (Corsini et 

al. 2009). However, in some case the contrast value might become meaningless due to 

less number of training point (Oh and Lee 2010). The studentized value of C (Cs) can 

serve as a useful measure of the significance of the spatial association (Agterberg et al. 

1993)and act as a cut off to categorize causative factors into binary patterns as 

favourable and unfavourable layer (Dilts et al. 2009).  

The Arc-SDM (Kemp et al. 2001) spatial data modeller extension to ArcView 3.3 

was used to conduct the Weight of Evidence analysis, which enabled the probability of 

a fire per 2 km2 area throughout the whole of the study area to be reported. 
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5.1.2.3 Test for pair-wise conditional independence 

The Weight of Evidence model involves the fundamental assumption that the 

causative factors are conditionally independent of each other. Therefore, tests of 

conditional independence were conducted before the integration of the evidential 

factors to generate the posterior probability map of forest fires. A chi-square test was 

adopted to investigate the significance of differences between two factors. The chi-

square table for testing conditional independence between all pairs of factors is shown 

in table 5.1. The 2 value of 6.63 was calculated at the 99% significance level with 1 

degree of freedom. 

Table 5. 1Pair wise Chi-square statistic of 12 factors 

Factors (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) 1.10 0.47 0.06 0.36 0.21 1.69 0.01 0.00 4.23 0.26 0.38 

(2)  5.09 0.74 0.06 18.54 11.35 6.45 62.96 12.07 11.11 108.69 

(3)   21.38 20.35 64.13 1.69 1.26 39.01 2.33 1.54 2.76 

(4)    57.17 1.61 0.03 0.39 13.92 0.51 4.15 2.07 

(5)     5.49 0.56 3.06 6.19 2.93 3.00 0.75 

(6)      0.01 3.17 42.98 2.20 3.16 4.62 

(7)       1.65 11.94 0.01 5.16 20.00 

(8)        13.64 5.58 3.83 49.17 

(9)         1.12 10.56 186.46 

(10)          0.00 3.33 

(11)           2.31 

(1). Aspect; (2). Elevation; (3). Precipitation; (4). River density; (5). Road density; 

(6). Wind speed; (7). Slope gradient; (8). Humidity; (9). Temperature; (10). Distance 

from residential area; (11). Land cover; (12). Population density 

 

If the 2 value between two factors in table 2 is below 6.63, the pair of these two 

factor is conditional independent. As an example, the chi square between aspect and 

elevation is 1.10 (Table 1) is smaller than 6.63, which implies they are conditional 

independent and could be used together to map the risk of forest fires. However, the 
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pairs of elevation and temperature show conditional dependence, because the chi-

square is 62.96 above 6.63. This means that these two factor could not be employed 

together in mapping forest fire risk. 

By checking the chi-square statistic table, the high 2 value between elevation and 

wind speed, slope gradient, temperature, distance from residential area and population 

density indicate elevation is conditional dependent with wind speed, slope gradient, 

temperature, distance from residential area and population density (Table 5.1). Likewise, 

precipitation is dependent with river density, road density, wind speed and temperature; 

temperature is conditional dependent with elevation, precipitation, river density, wind 

speed, slope gradient and humidity. Finally, a combination of conditional independent 

factors including aspect, distance from residential, slope, river density, road density, 

wind speed, population density and land cover type was applied in WOE model.  

5.1.3 Results of weights for evidential layers 

In the Weight of Evidence model, the causative factors selected from conditional 

independent test were treated as input data, while the sites at which forest fires had 

occurred in 2009 were adopted as training points. The number of training points was 

approximately 271, and the unit cell for the Weight of Evidence model was set at 2 km. 

By using Bayesian probability analysis (equation (7, 8, 11), the positive weight (𝑊+), 

negative weight (𝑊−) and C can be calculated (Table 5.2). 

As mentioned before, the magnitude of W+ and W− represent the predictive 

capacity of the causative factor to forest fires, therefore the aspect and road density 

factor were removed from the WOE model because the magnitude value of W+ and W− 

are lower than 0.5. The final model for forest fires occurrence in Daxing’anling 

prefecture included 6 evidential factors as slope gradient, river density, wind speed, 

land cover type, population density and distance from residential area. After that, in 

order to generate a dichotomous pattern for each causative factor, we reclassified the 

factors into favourable and unfavourable layers based on the value of studentized C. 

Here take the variable distance from residential areas as an example. We can see that  
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Table 5. 2 Weight of Evidence analysis for forest fires and related causative factors 

Factors  Class  W+ W− C S(C) STU(C) 

Slope gradient 

(°) 

0–6.26 0.48 -0.81 1.29 0.23 5.56 

6.26–12.52 -1.22 0.15 -1.37 0.27 -5.15 

12.52–18.79 -0.64 0.02 -0.66 0.45 -1.45 

18.79–25.05 NaN NaN NaN NaN NaN 

25.05–31.31 NaN NaN NaN NaN NaN 

Aspect 

(°) 

0–90 0.06 -0.03 0.09 0.13 0.68 

90–180 -0.07 0.02 -0.09 0.14 -0.61 

180–270 0.08 -0.02 0.10 0.14 0.7 

270–360 -0.09 0.03 -0.11 0.15 -0.76 

River density 

( km/km2) 

0–0.036 0.69 -0.07 0.76 0.32 2.38 

0.036–0.089 -0.24 0.13 -0.37 0.13 -2.85 

0.089–0.147 0.23 -0.05 0.28 0.15 1.85 

0.147–0.217 0.07 -0.002 0.07 0.32 0.21 

0.217–0.382 0.24 -0.003 0.27 0.34 0.79 

Average wind 

speed 

(m/s) 

1.847–1.903 0.7 -0.23 0.93 0.13 7.15 

1.903–1.959 0.48 -0.21 0.69 0.13 5.47 

1.959–2.016 -0.69 0.18 -0.87 0.17 -5 

2.016–2.072 -0.76 0.12 -0.88 0.21 -4.11 

2.072–2.129 -0.89 0.08 -0.97 0.28 -3.39 

Land use Urban 1.72 -0.08 1.79 0.22 8.22 

Cropland  0.55 -0.02 0.57 0.33 1.74 

Needle leaf -0.93 0.57 -1.49 0.15 -10.19 

Shrubland 1.2 -0.5 1.7 0.12 13.87 

Broadleaf -0.52 0.04 -0.56 0.28 -2.04 

Mixed forest -0.35 0.06 -0.41 0.17 -2.19 

Population 

density  

(10−2 pop/km2) 

365–453 1.18 -0.99 2.18 0.13 16.19 

453–481 -1.57 0.27 -1.85 0.26 -7.17 

481–584 -0.37 0.05 -0.42 0.21 -2.01 

584–658 -1.67 0.12 -1.79 0.38 -4.66 

>658 -0.73 0.14 -0.87 0.19 -4.39 

Road density 0–0.11 0.02 -0.02 0.04 0.12 0.30 
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( km/km2) 0.11–0.22 0.06 -0.04 0.1 0.12 0.81 

0.22–0.33 -0.15 0.02 -0.17 0.17 -0.91 

0.33–0.43 -0.26 0.01 -0.27 0.50 -0.54 

0.43–0.54 NaN NaN NaN NaN NaN 

Distance from 

residential 

areas (km) 

0–2 0.93 -0.06 0.99 0.22 4.58 

2–4 0.61 -0.1 0.72 0.16 4.39 

4–6 -0.03 0.00 -0.03 0.19 -0.16 

6–8 0.16 -0.03 0.19 0.17 1.12 

8–10 -0.43 0.06 -0.49 0.22 -2.22 

10–12 -0.33 0.04 -0.37 0.22 -1.68 

12–14 -0.27 0.03 -0.3 0.23 -1.33 

14–16 -0.33 0.03 -0.36 0.26 -1.39 

14–18 -0.29 0.02 -0.31 0.29 -1.06 

18–20 -0.33 0.01 -0.34 0.36 -0.95 

20– NaN NaN NaN NaN NaN 

(W+ and W− values in bold indicate the weights of the dichotomous predictor pattern of 

each factor.) 

studentized C has the highest value of 4.58 in the range below 2 km; therefore, the layer 

below 2 km was classified as a favourable layer and that above 2 km was set as an 

unfavourable one. Then, the positive weight and negative weight were applied as rating 

values for the range below 2 km and other ranges. By analysing the other factors in a 

similar way, we were able to obtain a dichotomous pattern for each causative factor. 

5.1.4 Probability of forest fire occurrence 

The prior probability was 0.0042, calculated as the total forest fire events over the 

area of study region. And all of the dichotomous patterns for each conditional 

independent variable were inputted into the Weight of Evidence model to generate the 

posterior probability map of forest fire occurrence. From a visual interpretation of the 

risk of forest fires (see Fig. 5.2), it was considered that the probability map of the 

occurrence of forest fires should be divided into different levels. In this study, we 

divided the posterior probability into four levels: potential, low, medium and high by 

employing the natural breaks classification (Apan 1997), which can objectively and 

rationally explore the statistical distribution of classes in an attribute space. 
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For Daxing’anling prefecture we analysed, the maximum posterior probability of 

forest fire occurrence was not so large, only approximate 0.224. It can be seen that the 

zones with high susceptibility to forest fires are generally located in the east of 

Daxing’anling. The combined effects of meteorological conditions, topography and 

human activities make this region particularly vulnerable to forest fires, with a large 

part of it being classified as a high susceptibility zone for forest fires. The zones with a 

relatively high probability (posterior probability > 0.023) of forest fires occupy 

approximately 4% of the total area. Zones with lower risk (posterior probability < 0.003) 

occupy approximately 91% of the total area and are generally located in the western 

part of Daxing’anling. 

A studentized uncertainty statistic for each cell was applied to evaluate the uncertainties 

associated with the posterior probability map. It calculated as  

σ(𝑠𝑡𝑢) =
𝑃𝑝𝑠𝑜𝑡

𝜎𝑇𝑂𝑇𝐴𝐿
                                                                                           (12) 

in where, the total uncertainty was the variance in the weights (Bonham-Carter et al., 

1989), and it comprised by uncertainties due to missing data or incomplete values in 

overlapping input data. 

σ2 (𝑇𝑂𝑇𝐴𝐿) = σ2 (𝑊𝐸𝐼𝐺𝐻𝑇) + ∑ σ2 (𝑀𝐼𝑆𝑆𝐼𝑁𝐺)

𝑛

𝑖=1

                           (13) 

If the value of studentized uncertainty smaller than 1.96, it means the cells is with 

significant uncertainty (=0.05) (Bonham-Carter et al. 1989). As can be seen from Fig 

5.2 (low), the overall studentized uncertainty if greater than 2, which indicate the 

uncertainty level for posterior probability map can be accepted. 
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Fig 5. 2 Normalized posterior probability of forest fire occurrence (up) and studentized 

uncertainty values (low) for all forest fires (n=271) among the study area. Ranges for 

all values are scaled using a natural breaks classification. 
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In this research, the ROC curve (Swets et al. 2000)was used for model validation, 

which was performed through comparison with existing forest fire events data (Fig 5.3). 

It compares the probability value derived from WOE model with the actual forest fire 

events. The area under the ROC curve (AUC) was commonly used to define the quality 

of a prediction model by describing the performance to identify the occurrence or non-

occurrence of forest fires (Yesilnacar and Topal 2005). From fig 5.3, we can understand 

that probability above 10% could explain 85% (AUC=0.85) of the forest fire occurrence, 

which show a relatively high accuracy for the WOE model. 

 

Fig 5. 3 ROC curve evaluation for weight of evidence analysis 

5.1.5 Discussion and conclusion 

5.1.5.1 Discussion 

Forest fires show an irregular spatial distribution in Daxing’anling Prefecture, 

which our research suggests is influenced by both physical and human factors. Thus, a 
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data mining statistical model was considered to be suitable for modelling the occurrence 

of fires there. Results showed that this model was relatively good at predicting fires. 

Although previous studies suggested that forest fires are strongly related to weather 

conditions (Viegas et al. 1999; Skvarenina et al. 2003; Wotton et al. 2003), due to 

conditional dependence, only average weed speed was adopted in WOE model. As 

shown in Table 5.2, the high studentized contrast value appears in the range between 

1.84 and 1.9 m/s, thus this average wind speed range can be seen as a promoter of forest 

fires. 

In our WOE analysis, through conditional independent test, we select three 

topographical factors for mapping forest fires, however, aspect factor was not a highly 

ranked predictor for forest fire occurrence in Daxing’anling prefecture. As for the factor 

of slope gradient, its predictive capacity for forest fires is not so strong since the highest 

𝑊+ is 0.48, which is smaller than 0.5, however, the studentized contrast value reached 

to approximate 5.6, which means the spatial association between slope gradient and 

forest fire occurrence is significant. We identified the favourable range of slope is below 

6.26 °, which indicates that forest fires are more likely to start in areas with a gentle 

slope. River as a barrier to slow down fire spread also play an important role in mapping 

forest fire occurrence. In our analysis, the lower river density between 0-0.036 km/km2 

was set as a favourable layer which means the less the number of rivers, the easier the 

forest fires occur. Similar analysis also employed for factors related with human 

activities, population density, road density and distance from residential areas are 

variables that influence forest fires, and forest fires generally occur at sites with 

intensive human activities. Therefore, in Daxing’anling Prefecture, the impact of 

human activity on forest fires in recent years cannot be overlooked. 

By overlaying the weighted influential variables in ArcGIS 10.2, a posterior 

probability of forest fires was calculated, which ranged from 0 to 0.224. The higher the 

probability, the greater the susceptibility to forest fires. Overall, the zones vulnerable to 

forest fires occupy approximately 10% of the total study area and are almost all located 

in the eastern part of this area. This might be a consequence of the combined effects of 
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weather conditions, topography, fuel features and human activities. Although the low-

risk zones occupied a large proportion of the total area, mitigation measures should also 

be considered in these zones to avoid potential damage caused by forest fires. 

GIS technologies provide a means of integrating multi-source information and 

data into decision-making processes, through which a quantitative assessment over a 

broad range of spatial and temporal scales can be carried out. In addition, in this study, 

the assignment of weight to each variable that potentially influences forest fires was 

successfully improved using a Bayesian framework by specifying the prior probability, 

which avoided subjectivity and resulted in a relatively objective weight assignment. 

5.1.5.2 Conclusion 

This study focused on the influences of a range of variables on the occurrence of 

forest fires, using a Weight of Evidence model to characterise the spatial distribution of 

forest fires in Daxing’anling Prefecture, China. Twelve variables related to climate 

conditions, topographical features, fire fuel characteristics and human activities were 

selected based on previous studies on the effects of such variables and the availability 

of data for the study area. Our results indicate that forest fires occurred nonrandomly, 

being significantly related to environmental variables. The results suggest that six 

variables, namely, average wind speed, slope gradient, river density, land cover type, 

population density and distance to residential areas, have relatively strong influences 

on forest fires. Via the Weight of Evidence analysis, the active layer of each variable 

was identified. For example, for the variables of slope gradient, a gentler slope (0–6.26°) 

were found to be associated with a higher probability of forest fires. 

This research also indicates that the probability of forest fires in Daxing’anling 

differs across the region, in that the eastern part has a relatively high probability of 

forest fires, and thus might warrant extra measures to manage the threats to the 

environment and humans there. In contrast, the western part has a low occurrence of 

forest fires. These results provide a rational basis on which forest managers can make 

decisions to mitigate damage due to fires. 
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5.2 Environmental vulnerability assessment 

Within the study area, extremely low winter temperatures help to develop an 

underground permafrost soil layer that can be envisioned as the southern edge of the 

Eurasian permafrost zone (Jin et al., 2007). The permafrost soil zone has strong effects 

on biogeochemical processes such as oxidation/reduction and decomposition (Ping et 

al., 2015). Moreover, the large amount of organic carbon that has accumulated in these 

soil layers make them prominent in global climate research (Bobrik et al., 2014) 

because thawing of this permafrost is predicted to release large amounts of greenhouse 

gas. However, the permafrost in the region is sensitive to climatic warming, which 

makes the forest ecosystem susceptible to climate change. The change of the permafrost 

soil layer can be seen as a sign of global climate change and once this permafrost is 

destroyed, recovery to its original state is considered difficult in the coming decades 

and centuries (Wang, 2005). Therefore, Identifying ecologically vulnerable regions is 

an important aspect of forest resource management, especially in boreal forest 

ecosystems that exhibit sensitivity to climate change. In this study, the environmental 

vulnerability was understood as the potential losses of the environmental system when 

exposed to the forest degradation. It is the important step in environmental risk 

assessment. 

5.2.1 Introduction 

Forest ecosystems are under increased stress that has been linked to climate change 

(Mildrexler et al., 2015) resulting in the common problem of forest degradation in 

China (Xiao et al., 2004). The forest ecosystem of the Daxing’anling region in northeast 

China represents the southern-most part of the global boreal forest biome (Jiang et al., 

2002), one of the most ecologically fragile and economically under-developed region 

in China (Huang et al., 2010). This region is particularly sensitive to changes in 

temperature and other environmental conditions (Luo and Xue, 1995). The ecosystem 

here plays important roles in biodiversity conservation and climate mitigation. However, 

it is affected by various types of natural and anthropogenic disturbance. In recent years, 
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economic development and timber harvest operations have exacerbated the imbalance 

between environmental protection and economic development (Hong et al., 2002), 

which creates several problems related to the management of forest resources. 

Identifying vulnerable areas plays an important role in forest resource management, 

especially in fragile regions such as the Daxing’anling. To help decision makers 

formulate effective forest management strategies, conducting a comprehensive 

environmental vulnerability evaluation is imperative. This type of evaluation enables 

the identification of areas at risk of losing functions that will threaten future efforts 

related to sustainable land management. However, scientists have found vulnerability 

difficult to quantify because the qualitative nature of vulnerability indicators makes it 

difficult to develop precise and objective measurements of vulnerability. 

The term of “environmental vulnerability” is related to the risk of damage to the 

natural environment or a particular ecosystem type. According to the Intergovernmental 

Panel on Climate Change (IPCC 2014), vulnerability is the degree to which a system is 

susceptible to adverse effects caused by a specific hazard or stressor. Understanding the 

factors that affect vulnerability is critical to the process of evaluating environmental 

vulnerability (Burger, 1997). However, the mechanism of vulnerability evaluation 

varies from region to region because of regional environmental differences. Therefore, 

developing a location-based set of indicators that are suitable for the actual situation of 

each case study is necessary, because no universally applicable indicators currently 

exist (Beroya-Eitner, 2016). Additionally, knowing how to correctly convert data from 

multiple sources, such as data related to climatic conditions, land cover, and socio-

economic condition, into an integrated evaluation index is also important for 

vulnerability evaluation (Munda et al., 1994). A variety of methods have been 

developed to evaluate vulnerability such as the fuzzy theory approach  (Enea and 

Salemi., 2001), or the use of grey assessment models (Hao and Zhou, 2002), the 

artificial neural network approach (Park et al., 2004), and the analytical hierarchy 

process (Li et al., 2009). However, a certain degree of subjectivity cannot be avoided 

in index selection and index weight determination using these methods, because all of 
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these methods mostly rely on the prior knowledge and experience of researchers. 

Principal component analysis is a type of statistical analysis that can be used to reduce 

the dimensionality of a dataset by converting a set of observed correlated variables into 

a set of linearly uncorrelated variables through orthogonal transformation (Hotelling, 

1933), and can reduce this subjective influence to some extent. However, when 

considering the difficulty in finding a spatial relationship among different factors, the 

integration of geographic information system (GIS) data and PCA, defined as spatial 

principal component analysis (SPCA), was employed here. The goal was to detect the 

spatial tendencies of factors and use in a wide range of environmental reasearch for 

investigating the relationship between different indicators (Shi et al. 2009). In this study, 

we applied spatial principal component analysis to assess the environmental 

vulnerability caused by forest degradation in the Daxing’anling region, China. We 

combined  remote sensing image data that can frequently provide updated information 

for inaccessible areas, where temporal and spatial variation of environmental 

vulnerability evaluation is needed, with PCA. 

Our study builds a regional envrionmental vulnerability index (EVI) model using 

remote sensing, GIS, and a quantitative method based on SPCA to evaluate the 

environmental vulnerability in the Daxing’anling region, China. Next, the study area 

was regionalized into different vulnerability levels based on the EVI values. Then, 

alternative measures available for improving the environmental vulnerability of each 

area are proposed to help forest manager conduct effective forest resource management. 

5.2.2 Material and methods 

5.2.2.1 Vulnerability evaluation framework 

According to the definition proposed by the IPCC, vulnerability is a process that 

mutually includes the effects of the exposure, sensitivity and adaptive capacity of a 

system (Turner et al., 2003). When a system is subjected to perturbations or stressors, 

the first step is to quantify the susceptibility of the system to exposure to that type of 

stress, i.e., how much the ecosystem or ecosystem components are actually exposed to 
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a particular stressor (Fig. 5.4). This can be done using a combination of environmental 

variables to determine the features of the ecosystem or ecosystem components that 

might be influenced by external disturbances. 

The second aspect to be considered is the sensitivity of the system to perturbations, 

which refers to variables that make the system vulnerable and easily influenced by 

hazards. At the ecosystem level, sensitivity is treated as a measure of the instability of 

an ecosystem that leads to a potential vulnerability in that ecosystem (Luers et al., 2003). 

The adaptive capacity of an ecosystem characterizes its ability to bounce back to 

a healthy state following degradation caused by exposure to a hazard, and its capacity 

to maintain certain structures and functions when experiencing an external disturbance. 

It is determined not only by the internal resilience of a system, but also by any 

anthropogenic improvement of that system such as an investment in afforestation. 

 

 

Fig 5. 4 Framework used for environmental vulnerability evaluation 

 

Past quantitative applications used to assess environmental and climatic impacts 

have generally emphasized the exposure and sensitivity of an ecosystem to 

perturbations and stressors (Manuel and Victor., 2015; Rives et al., 2012). However, but 

the capacity of a system to recover from degradation has not been included in past 

vulnerability evaluation. In this study, environmental vulnerability was treated as a 

function of exposure, sensitivity and adaptive capacity, and as a collective effect of 

these three aspects of a system. In an ecosystem, environmental degradation might 
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result in decreases in vegetation coverage and forest carbon storage. In addition, it also 

may cause degradation in soil-organic properities and influence the lives of local human 

residents. However, the climatic conditions, topographical features and the condition of 

the forest system may influence the susceptibility of an ecosystem and make it more 

easily affected by hazardous events. Considering data availability and local 

characteristics, thirteen factors were initially selected to evaluate environmental 

vulnerability in the present study. These included exposure (vegetation coverage, soil 

organic matter, population density and forest volume), sensitivity (standardized 

precipitation index, degree of forest fragmentation, average monthly temperature, slope 

gradient, elevation and proportion of vulnerable people in the population (those under 

15 and above 60 years old)), and the adaptive capacity (annual investment for forest 

protection, literacy rate and per capita income). Exposure has a positive relationship 

with environmental vulnerability, meaning higher exposure leads to greater 

environmental vulnerability. Sensitivity responds similarly, with higher sensitivity 

resulting in increased environmental vulnerability. In contrast, the adaptive capacity of 

a system is negatively correlated with vulnerability; therefore, higher adaptive capacity 

corresponds to lower vulnerability. 

5.2.2.2 Data acquisition and processing 

This study used climatic, topographic, demographic and economic data. The 

climatic data were obtained from the Chinese Meteorological Data Sharing Service 

System (http://cdc.cma.gov.cn) that covers five national meteorological stations in the 

study area. The temperature and standardized precipitation indices were calculated at 

each of these five meteorological stations. These data were then interpolated in ArcGIS 

10.2 using an ordinary Kriging method to obtain a grid dataset for the entire study area. 

The topographic variables were extracted from a digital elevation model with 90 m 

resolution that was freely available for download from the Consortium for Spatial 

Information Center of the Consultative Group for International Agricultural Research 

(CGIAR-CSI) (http://srtm.csi.cgiar.org). The demographic and economic data were 

derived from the Daxing’anling Statistics Bureau at the Forestry Administration Unit. 

http://cdc.cma.gov.cn/
http://srtm.csi.cgiar.org/
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Vegetation coverage was expressed using the Normalized Difference Vegetation Index, 

which was derived from the Moderate Resolution Imaging Spectroradiometer 

vegetation product at a resolution of 250 m. All factors were preprocessed using ArcGIS 

(Fig 5.5). This included re-projection to the Albers projection system with parameters 

of the 1st standard parallel of 25, the 2nd standard parallel of 47, and the central meridian 

of 105, which is suitable for studies in China. A grid with 10 km × 10 km cells was then 

generated using the Hawth’s Tools (v3.27) extension (Beyer, 2004) in ArcGIS. The 

mean value of each variable was extracted for each grid cell, with each grid cell treated 

as a study unit. 

To remove the influence of unit differences among different variables, Eq. (1) was 

applied to acquire a dimensionless evaluation dataset: 

𝑌𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑚𝑖𝑛,𝑗

𝑥𝑚𝑎𝑥,𝑗−𝑥𝑚𝑖𝑛,𝑗
× 100%                                    (Eq. 1) 

where, 𝑌𝑖𝑗 is the standardized value of variable 𝑗 in grid cell 𝑖 varying from 0 to 1, 

𝑥𝑖𝑗 is the measured value of variable 𝑗 in grid cell 𝑖, and 𝑥𝑚𝑎𝑥,𝑗 and 𝑥𝑚𝑖𝑛,𝑗 are the 

maximum and minimum values of variable 𝑗 in grid cell 𝑖, respectively. 

5.2.2.3 Spatial principal component analysis 

When constructing a comprehensive evaluation index during a vulnerability 

evaluation, it is essential to integrate a range of variables with different sources such as 

variables related to climatic conditions, vegetation coverage, and demographic 

characteristics (Munda et al., 1994). The wide use of remote sensing data and GIS 

provides a useful framework for integrating a variety of spatial data and addressing 

spatial analyses of environmental problems (Arianoutsou et al., 2011). Our study 

employed an SPCA approach to develop a model used to evaluate environmental 

vulnerability, for which the original data attributes were transformed into a new 

multivariate attribute set rotated with respect to the original space. SPCA is often useful 

when the existence or nature of the components are not known in advance (Ding, 2003). 
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Fig 5. 5 Schematic representation of environmental vulnerability evaluation through 

spatial principal component analysis 

The principal components were selected based on the fact that the first principal 

component represents the greatest amount of variance in the data. If the accumulated 

variance represents over 80% of the total variance, the remaining components can be 

ignored. The final evaluation value was obtained using Eq. (2): 

𝐸 = 𝑟1𝑌1 + 𝑟2𝑌2 + 𝑟3𝑌3 + ⋯ + 𝑟𝑛𝑌𝑛                             (Eq. 2) 

where 𝐸 is the integrated environmental vulnerability index (EVI), 𝑟𝑛 represents the 

contribution ratio of principal component 𝑌𝑛 , and 𝑛  is the significant number of 

principal components that remain. The contribution ratio 𝑟𝑖 was obtained using Eq. (3): 

𝑟𝑖 =
𝜆𝑖

∑ 𝜆𝑖
𝑚
𝑖=1

                                                 (Eq. 3) 
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where 𝜆𝑖 is the eigenvalue of the 𝑖th principal component. 

In principal component analysis, the principal components are selected by 

eigenvalues. Generally, an eigenvalue is treated as an indicator reflecting the 

explanatory power of each variable. If the eigenvalue is greater than 1, it is reasonable 

to believe this number of components can explain the information carried by the 

original variables (Li et al., 2006).  

In this study, the indices of exposure (E), sensitivity (S) and adaptive capacity (AC) 

were analyzed separately; then, a comprehensive EVI was calculated using the SPCA 

model. The principal components with eigenvalues greater than 1 were extracted with 

PC loading rotated for the maximum variance, and three principal components were 

identified for exposure analysis that accounted for approximately 91.4% of the total 

variance (Table 5.3). Similarly, three and two principal components were extracted for 

sensitivity and adaptive capacity analyses, respectively, using the same rule. Finally, a 

total of five principal components were extracted to calculate the comprehensive EVI. 

Eqs. (4)–(7) provide the linear formulae for each respective evaluation index: 

𝐸 = 0.4508 × 𝐸𝑃𝐶1 + 0.2941 × 𝐸𝑃𝐶2 + 0.2551 × 𝐸𝑃𝐶3              (Eq. 4) 

𝑆 = 0.4012 × 𝑆𝑃𝐶1 + 0.3568 × 𝑆𝑃𝐶2 + 0.242 × 𝑆𝑃𝐶3                (Eq. 5) 

𝐴𝐶 = 0.4944 × 𝐴𝐶𝑃𝐶1 + 0.5056 × 𝐴𝐶𝑃𝐶2                         (Eq. 6) 

𝐸𝑉𝐼 = 0.2988 × 𝐸𝑉𝐼𝑃𝐶1 + 0.236 × 𝐸𝑉𝐼𝑃𝐶2 + 0.1606 × 𝐸𝑉𝐼𝑃𝐶3 + 0.1542 ×

𝐸𝑉𝐼𝑃𝐶4 + 0.1503 × 𝐸𝑉𝐼𝑃𝐶5                                     (Eq. 7) 

where E is exposure, S is sensitivity, AC is adaptive capacity and EVI is environmental 

vulnerability index. 𝐸𝑃𝐶1 − 𝐸𝑃𝐶3 , 𝑆𝑃𝐶1 − 𝑆𝑃𝐶3 , and 𝐴𝐶𝑃𝐶1 − 𝐴𝐶𝑃𝐶2  are principal 

components for exposure, sensitivity, and adaptive capacity analyses, respectively. 

𝐸𝑉𝐼𝑃𝐶1 − 𝐸𝑉𝐼𝑃𝐶5  are principal components for the comprehensive environmental 

vulnerability evaluation; a higher EVI value indicates a relatively vulnerable 

environment situation. 

In forest management process, in order to improve the effectiveness of practical 
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countermeasures, a gradation of environmental vulnerability is needed (Nguyen et al., 

2016). In the present study, natural break classification (NBC) was used to regionalize 

environmental vulnerability into several vulnerable regions. An NBC will group similar 

values and maximize the difference between classes (Apan., 1997). This is considered 

an objective and reasonable measure that can be used to explore the statistical 

distribution of clusters and classes, and was conducted using ArcGIS 10.2. 

5.2.3 Environmental vulnerability evaluation 

Based on Eqs. 4–6, indices of exposure, sensitivity and adaptive capacity, 

respectively, for the Daxing’anling region were calculated. Fig. 5.6 to Fig. 5.8 illustrates 

the spatial distribution of the exposure, sensitivity and adaptive capacity indices 

respectively, which showing that the overall exposure is not very high, with a highest 

value of approximately 0.27. Additionally, the central Daxing’anling had the highest 

exposure value perhaps because this highly urbanized region has a relatively high 

population density and the abundant forest cover of this region has also led to relatively 

high exposure. As such, a large proportion of the environmental components could be 

damaged by external disturbances that may occur in this area.  

The sensitivity situation of the study region is a little high, with a highest value of 

about 0.54 (Fig. 5.7). The highest sensitivity values occurred in the southern and 

western areas, indicating they are comparatively the most sensitive in the region to 

external stressors and are relatively likely to be affected by disturbance. The climatic 

conditions, topographic features and forest composition makes this area susceptible to 

environment change.  

Meanwhile, the total adaptive capacity was not very high and peaked at 

approximately 0.35. The ecosystems in the central and southern parts of the analysis 

area had the largest adaptive capacities, suggesting that these ecosystems can cope with 

a hazardous event or disturbance, and might respond in ways that could allow them to 

maintain essential functions. The low per capita income and low investment in forest 

protection caused the eastern area to have a relatively low adaptive capacity. However, 
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the low exposure and low sensitivity cause this area to have a low vulnerability value, 

meaning the environment is in relatively good condition. The high sensitivity, relatively 

high exposure level and low adaptive capacity in Xinlin County combined to lead to a 

relatively high vulnerability value given the negative correlation between adaptive 

capacity and environmental vulnerability as well as the positive correlation between 

vulnerability and both the levels of exposure and sensitivity. 

Using equation (7), we obtained the integrated environmental vulnerability index 

across the whole area. As showed in Fig. 5.9, the highest EVI value in the 

Daxing’anling area was approximately 0.86, located mainly in southern and central 

regions (Xinlin District and part of Mohe County). The higher EVI value indicates more 

serious environmental vulnerability and countermeasures against vulnerability should 

be proposed to improve the state of the environment in these areas. The lowest 

vulnerability value was approximately 0.036 in the eastern area of Daxing’anling 

(Huma County and part of Huzhong District). While this area is less vulnerable to 

hazardous events at present, it is also a potentially vulnerable region that should be 

monitored for any changes to forest quality. 

 

Fig 5. 6 Spatial distribution of regional exposure in the Daxing’anling study area. 

Higher values are represented by red color. 
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Fig 5. 7 Spatial distribution of sensitivity in the Daxing’anling study area. Higher 

values are represented by red color. 

 

 

Fig 5. 8 Spatial distribution of adaptive capacity in the Daxing’anling study area. 

Higher values are represented by red color. 
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Fig 5. 9 Spatial distribution of environmental vulnerability in the Daxing’anling study 

area. Higher values are represented by red color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

Table 5. 3 Percentage of total variance explained by each component (PC) extracted 

by PC analysis. 

PCs  

Evaluation index 

Environmental 

vulnerability 
Exposure Sensitivity 

Adaptive 

capacity 

PC1 

Eigenvalue 3.117 1.828 2.147 1.153 

Contribution ratio (%) 23.974 45.709 35.778 51.081 

Cumulative 

contribution ration (%) 
23.974 45.709 35.778 51.081 

PC2 

Eigenvalue 2.461 1.192 1.909 1.179 

Contribution ratio (%) 18.929 29.806 31.822 32.639 

Cumulative 

contribution ration (%) 
42.903 75.514 67.601 83.719 

PC3 

Eigenvalue 1.675 1.034 1.295  

Contribution ratio (%) 12.888 15.851 21.579  

Cumulative 

contribution ration (%) 
55.791 91.366 89.179  

PC4 

Eigenvalue 1.608    

Contribution ratio (%) 12.373    

Cumulative 

contribution ration (%) 
68.164    

PC5 

Eigenvalue 1.568    

Contribution ratio (%) 12.059    

Cumulative 

contribution ration (%) 
80.223    

 

5.2.4 Regionalization of environmental vulnerability 

In this study, the EVI was treated as an integrated index to a regionalized study 

area. Considering the regional characteristics and practical needs for environmental 

protection, Daxing’anling is spatially divided into five regions with levels of different 

vulnerability: potential, slight, low, moderate and high vulnerability regions (Fig 5.10). 
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Fig 5. 10 Regionalization of the environmental vulnerability index (EVI) in the 

Daxing’anling study area 

 

Based on this classification, the potentially vulnerable areas covered 

approximately 6.47% of the study area (Table 5.4). At this level, the ecosystem can be 

treated as stable, with an extremely high anti-interference ability and the capacity to 

recover from disturbance. Therefore, there is no need for extra measures in this area. 

The low vulnerable area accounted for a relatively large proportion (30.27%) of the 

study area. At that level the ecosystem is relatively unstable with a low anti-interference 

ability. The high vulnerable area covered approximately 20.88% of total study area, and 

can be described as an unstable ecosystem with a low anti-interference ability for 

disturbance. This means that if the ecosystem suffers a threatening disturbance, it would 

be difficult to recover and might undergo losses. Therefore, extra measures should be 

implemented to improve the fragile environment in those areas. 
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Table 5. 4 Proportions of the five environmental vulnerability levels attributed to the 

Daxing’anling study area. 

Environmental vulnerability 

level 

Area (km2) Percentage (%) 

Potential   4176.3 6.47 

Slight 9574 14.82 

Low  19550.8 30.27 

Moderate 17806.7 27.56 

High  13486.8 20.88 

5.2.5 Function of environmental vulnerability regionalization 

To help decision makers propose alternative treatments and make those treatments 

effective in improving environmental quality, the measured environmental vulnerability 

in the present study area was categorized into three sub-regions (Fig 5.11): heavy, 

medium and potentially vulnerable regions. These three sub-regions have different 

levels of vulnerability and land managers should implement three different kinds of 

protection measures. 

Regions with heavy vulnerability: Collectively, this region mainly occurs in Xinlin 

District and Mohe County, and constitutes 23.9% of the total area. It is mainly located 

at high elevations where rehabilitating the forest trees after disturbance would be 

difficult. Considering this level of environmental vulnerability, this region should be 

strictly protected from timber harvest and funding should be made available for forest 

fires mitigation as needed. In addition, ecological restoration measures also should be 

strengthened at the same time. 

Region with medium vulnerability: This widely distributed region with a medium 

level of vulnerability accounts for 52.3% of the total area, including Huzhong District, 

the majority of Tahe County and part of Mohe County. This region requires improved 

implementation of forest conservation alternatives. Because the Huzhong Nature 

Reserve serves as an important recovery area that protects rare species of flora and 
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fauna, large-scale reforestation and a reasonable and sustainable project related to forest 

resources use should be formulated. Meanwhile, active participation of the local people 

in the environment protection area should be promoted. 

 

Fig 5. 11 Regional classifications for comprehensive development as well as focus 

and strict protection, based on the EVI. 

 

Region with potential vulnerability: This region occupies 23.8% of the total study 

area. The majority of Huma County has a very low vulnerability value, which means 

the environment is a relative stable and the integrity of the region is intact. However, to 

prevent future environment degradation, a composite development program should be 

developed for this region. Establishing an environmentally-sound and sustainable 

economic compensation mechanism is a very important method that should be 

implemented to regulate human activity. 
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5.2.6 Discussion and conclusion 

Through the spatial principal component analysis, five principal components were 

retained from the original thirteen variables. Together these five principal components 

accounts for approximately 80.2% of the variation. The loading of each variables for 

the retained PCs are shown as Table 5.5. The first PC was heavily loaded on variables 

of elevation, soil organic, Slope gradient and Forest volume, which indicated that the 

topographical factor has a greatly related to the environmental vulnerability values. The 

second PC substantially correlated with vulnerable population, population density and 

climatic variables (standard precipitation and temperature). The third PC was load on 

forest fragmentation degree, vegetation coverage and per capita income and the forth 

PC was load on per capita income, slope gradient and local investment on forest 

protection. Here we can see the per capita income and slope gradient were mentioned 

twice because one variable can load on several PCs. The fifth PC was heavily load on 

vegetation coverage, local investment on forest protection and local literacy level. 

Previous studies have developed a variety of methods that can be used to evaluate 

the vulnerability of an ecosystem to certain stressors, and have pointed out that the 

evaluation of vulnerability is an important process during risk mitigation (Hong et al., 

2016; Mildrexler et al., 2015). However, these methods largely depend on expert 

knowledge to allocate the contribution rates for each variable. In this study, we 

evaluated spatial environmental vulnerability across the Daxing’anling region by 

integrating remotely sensed and demographic data into a SPCA model, which can 

determine the contribution of each factor based on coefficients of linear correlation to 

reduce subjective influences on the result. Using an environmental vulnerability 

framework for analyses, variables related to exposure, sensitivity and adaptive capacity 

were selected to build a vulnerability index that was used to describe the environmental 

situation. 
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Table 5. 5 Retained principal components for the spatial analysis of total environment 

vulnerability assessment 

 PC1 PC2 PC3 PC4 PC5 

Elevation 0.402 -0.057 -0.287 0.058 0.119 

Soil organic 0.407 0.186 0.019 -0.047 0.145 

Forest volume 0.289 -0.003 -0.474 0.101 -0.209 

Vulnerable population -0.071 0.47 0.189 0.240 0.09 

Population density 0.203 0.481 0.091 -0.183 0.091 

Standard precipitation -0.317 0.285 -0.264 0.186 0.291 

Temperature -0.436 0.268 -0.165 0.124 0.238 

Forest Fragmentation  0.279 0.123 0.317 0.296 -0.327 

Vegetation coverage 0.085 0.157 0.409 0.073 0.299 

Per capita 0.127 -0.356 0.339 0.432 -0.058 

Slope gradient 0.368 -0.094 -0.291 0.599 0.199 

Local investment 0.167 -0.475 0.011 0.312 0.429 

Literacy level 0.064 -0.187 0.291 -0.599 0.572 

 

We found that the measure of vulnerability was unevenly distributed spatially 

across the study area. The southern and western areas had a relatively high vulnerability 

rating of 0.8 that was caused by the high level of exposure and sensitivity in these 

regions. The opposite was true for the eastern region that was associated with a low 

vulnerability value of 0.036 because of the low levels of exposure and sensitivity as 

well as the relatively high level of adaptive capacity. The southern region stands at a 

relatively high elevation, which led to relatively low temperatures and slow growth in 

the trees. Therefore, this ecosystem is vulnerable to climate change and forest fire 

disasters. If these forest ecosystems were heavily degraded by fire or timber harvest, 

restoring them back to their original state would be quite difficult. The central part of 

the study area is the center of Daxing’anling region, with a large human population and 

concentrated urbanization. However, the high exposure and relatively high sensitivity 

of this area were mitigated by high adaptive capacity, resulting in a medium 

vulnerability value for the central region. To assist land managers in proposing specific 
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measures related to environmental protection, NBC was then applied to divide the study 

site into five sub-regions based on the local vulnerability indices. The lightly vulnerable 

regions accounted for a relatively large proportion (approximately 30%) of the total 

area, while the highly vulnerable regions occupy approximately 21% of Daxing’anling. 

Different environment management measures were suggested for each area based on 

the vulnerability regionalization. 

This study illustrated that the integration of remote sensing, geography 

information system and spatial principal component analysis allows researchers to 

quantitatively evaluate environmental vulnerability in a region. In addition, the results 

of the environmental vulnerability evaluation may be helpful for decision makers by 

providing a more rational decision making tool for developing effective and sustainable 

forest resource management methods.  
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Chapter 6 Sustainable forest management based on 

comprehensive environmental risk assessment 

In this chapter, the comprehensive environmental risk assessment was conducted based 

on the previous hazard analysis and vulnerability evaluation. By multiply the 

probability of forest fires occurrence and the environmental vulnerability, an integrated 

environmental risk value can be calculated. In order to rank the environmental risk 

levels, risk matrix was applied to get a qualitative evaluation of environmental risk 

distribution. In this research, the environmental risk was graded into four levels: 

potential, light, medium and high level. Correspondingly, in order to reduce 

environmental risk, kinds of countermeasures was proposed and recommendation for 

sustainable forest management was also discussed, which might provide the scientific 

foundation for decision-makers to improve the effectiveness of forest managements. 

6.1 Comprehensive environmental risk assessment 

Environmental risk assessment is the formal process to evaluate the potential 

consequence of a hazard event and their occurrence probability (Suter, 1993). Assessing 

a risk involves an analysis of the consequences and likelihood of a hazard event, which 

have been analyzed in the previous chapters. The process of environmental risk 

assessment can be summarized as follows.  

 

Fig 6. 1 The primary stages of environmental risk assessment. 

Characterize risk 

Assess the consequences 

Hazard analysis 

Identify hazard events 

Probability of receptors being affected by 

the hazard 

Probability of hazard event occurring 

Magnitude and level of integrated risk 

ERA 
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Risk characterization is the final step of risk assessment, which pulls together the 

information of hazard occurrence and potential effects. It concerns with determining 

the likelihood of occurrence and potential adverse effects in a quantitative way, along 

with acknowledging the assumptions and uncertainties in risk management (Walker et 

al., 2003). It helps the environmental managers to address the problems (Fig 6.1) such 

as: (1) The probability of the hazard event occurring. (2) The probability of the 

environment being influenced by the hazard. (3) The magnitude of the total 

environmental risk and its distribution across the whole area. 

A wide range of qualitative and quantitative methods have been involved in risk 

assessment, including fault tree analysis, event tree analysis, Markov models (Khan et 

al., 2015; Mandal & Maiti, 2014). Risk matrix, a semi-quantitative risk assessment 

approach, is a practical tool for risk ranking and management, and currently is 

commonly utilized in space and chemical processing industries (L. Lu et al., 2015). The 

risk matrix aims to rank and prioritize risk for the benefit of environment managers 

(Duijm, 2015). Normally, two basic methods were employed to establish categories in 

a risk matrix: quantitative risk score calculated through ordinal numbers (Flage & RØed, 

2012) and subjective judgements called “IF-THEN” method (Markowski & Mannan, 

2008). In this research, quantitative risk scoring approach displaying the basic 

properties of “likelihood” and “consequence”, of forest degradation. In the previous 

chapter, the probability of forest degradation and environmental vulnerability 

evaluation were conducted. Therefore, linear scales was utilized to obtain the risk score 

by multiplying category ordinal numbers (Duan et al, 2016). The increase in the number 

of probability and vulnerability level might improve the resolution of final risk 

gradation (Markowski & Mannan, 2008). Generally, risk level cells in the risk matrix 

are distributed symmetrically as shown in Fig 6.2. The different risk levels are depicting 

in different colors: red color usually marks the high risk level at a dangerous situation, 

yellow and orange indicates light and medium risk level that can be reduced, green 

typically represents acceptable risk levels. 
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H1 ERI11 ERI12 ERI13 ERI14 

H2 ERI21 ERI23 ERI24 ERI25 

H3 ERI31 ERI32 ERI33 ERI34 

H4 ERI41 ERI42 ERI43 ERI44 

Fig 6. 2 Levels of concern 4  4 risk matrix for Daxing’anling 

 

In the previous chapter, the hazard level and vulnerability level was divided into 

four different level, therefore, by multiply the level numbers of hazard and vulnerability, 

we can get a risk score from 1 to 16. Through the risk matrix above, the risk can be 

divided into four levels: potential, light, medium and high (Fig 6.3).  

L1 

L2 

L3 

L4 

Potential risk—Environment is in good condition and 

the environmental risk level is negligible that can be 

ignored. 
Light risk—Environment situation is good, with a light 

risk that might lead to environment deterioration. 

Moderate risk—Environment quality is declining. A 

medium environmental risk was detected.  

High risk—Environment is in a dangerous condition.  
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Fig 6. 3Environmental risk level distribution across the study area 

 

From figure 6.3, we can understand that the overall integrated environmental 

situation is quite well. Area with a high environmental risk level occupies a small 

proportion, approximately 6.3% of the total area, and locates at the eastern part. The 

majority of the study area is in potential risk level, accounting for 41.9%. Additionally, 

the medium risk region accounts for approximate 41.8%. Although the potential risk 

can be ignored in risk management process, the protection treatment also should be 

implemented in order to prevent the degradation. 

6.2 Recommendation for sustainable forest management 

In the decision making process, the incomplete or incoherent information might 

limit the ability of environmental managers to make appropriate decisions (Suter et al., 

1999). Therefore, the final objective of environmental risk assessment is to assist 
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decision making process by evaluating risks of adverse effects on environment 

ecosystem and human livelihood. The risk management in order to reduce 

environmental risk can be proposed based on the risk levels. Moreover, the hierarchy 

risk treatment makes sure that the treatment is the best alternative for sustainable 

management.  

Theoretically, environmental risk can be managed in two ways: reducing 

likelihood of hazard event and consequence. In fact, in the northeast China, the natural 

forest protection program has been successfully implemented in order to diminish the 

timber harvesting amount and has got some achievements. During the research period, 

the environmental risk mainly referred to the risk caused by forest fires and its potential 

losses. Thus, when thinking about operational forest management countermeasures, the 

treatments for lowering probability of forest fires and improving the vulnerable 

situation should be recommended. 

In the previous chapter, six variables including topographic factor (slope gradient, 

river density and land cover type), climatic factors (wind speed) and human related 

factors (population density and distance from residential area) were identified as 

evidential factors influence forest fires occurrence. Therefore, in order to reduce 

probability of forest occurrence, treatments related to improve the situation of these 

variables should be taken into consideration. The thick foliage on the ground provides 

enough combustible fuels for forest fires, meanwhile the frequent human activities 

around the residential area for taking firewood and other goods increase the risk of 

ignition. Considering this, biomass technology which can transfer the combustible 

foliage into other kind of fuels that can be used for household’s living. Other kind of 

fuel treatment also be recommended in this area, for instance prescribed burning which 

can change the surface fuel distribution and reduce the burn severity. 

On the other hand, human activities play important role in forest fires process in 

the study area. They can increase the ignition probability in forest fire behavior and 

eliminate forest fires after its occurrence together. Therefore, two kinds of treatment 
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should be implement. One is reducing human-caused ignitions by enhancing awareness 

on forest fires and implementing the forest certification mechanism to increase people’s 

consciousness on forest protection; another one is to strengthen the capability of 

firefighting that the forest fires can be suppressed immediately and decrease the 

potential losses. 

As for another treatment in risk management is to reduce the vulnerability level 

which can minimize the impact of forest fires. In chapter five, a principal component 

was employed to identify factors related to vulnerability and the vulnerable regions 

across the study area. In the high vulnerable level area, the vulnerability level can be 

reduced through increasing the adaptive capacity or decreasing the sensitivity. The 

special economic development way which rely greatly on timber production makes the 

local income level is behind to other forestry area. Thus, the treatment such as economic 

transformation from single forestry economic to diversified economics is recommended 

for improve the per capital income. Investment for implementing forest restoration and 

establishing natural reserves to protect endangered species can help the forest 

ecosystem to increase adaptive capacity after impacted by forest fires. 

In practical application for the proposed treatments, how to allocate the resource 

of protection that which region should be implement the conservation treatment first is 

still an existing problem in Daxing’anling area. Therefore, the final comprehensive 

environmental risk assessment recognized the risk level across the whole area and 

divided the study area into different risk level, which can be used as a prioritization 

basis for carrying out the forest management.  

Since the risk management involves different activities including prevention, 

mitigation and preparedness, and recovery. In the potential risk area, the environmental 

risk negligible that the environment quality is good, however, prevention activities 

should be considered for avoidance of adverse impacts of hazardous events. In area 

with a light and medium risk, the environment is in a declining trend. If no treatment 

be taken, the environmental risk will become large. Therefore, mitigation activities 
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should be carried out to lessen or limit the probability and adverse impacts of hazards. 

For areas already holds a high environmental risk, the environmental deterioration is 

serious and forest recovery activities should be implemented as soon as possible to 

improve the environment quality. Knowledge and capacities of governments, 

professional response and recovery organizations and individuals should be encouraged 

to anticipate effectively in ecological restoration from negative impacts.  
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Chapter 7 Conclusion and Future work 

This chapter draw conclusions from the whole research. It reproduces the research aims, 

objectives and presents the key findings as per the four objectives. It then draws an 

overarching conclusion, demonstrates the original contribution of this research. 

7.1 Conclusion 

7.1.1 Main driving force of forest degradation 

The focused environmental issue in Daxing’anling area is the forest ecosystem 

degradation. In this research, the literature analysis-based assumption was that the 

forest cover decrease such as forest converted to shrubs and non-vegetated land was 

seemed to be forest degradation process. In order to mitigate the decrease of natural 

forest, the Chinese government implemented a project named “Natural Forest 

Protection” to forbid the timber harvesting in natural forest area. However, forest 

degradation in Daxing’anling not only caused by timber harvesting, natural disturbance 

such as forest fires and forest insects and disease also considered to be the driving forces 

of forest degradation.  

The objective described in chapter 3 is to find out the main cause of forest 

degradation in Daxing’anling. Through the literature review and the actual situation 

analysis, the conversion of forest land to non-vegetated land was treated as forest 

degradation, and the conversion from forest land to shrubs was considered as potential 

forest degradation risk. Remote sensing image was applied to monitor the forest cover 

change, results shows that the forest degradation area occupies a small proportion and 

sporadically distributed among the east part. By combine the settlements data, we can 

find that the forest degradation always occurred near the center of human activities. On 

the other hand, the area with risk of potential forest degradation mainly located at the 

east part. The degraded forest and potential degraded forest accounts for a relative large 

percentage of the total area, approximately reached to 10% of the total Daxing’anling. 
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When the forest degradation area was detected, we can realize that more attention 

should be paid to which regions. Through the analysis of previous literature, it can find 

that the forest fires plays a critical role on forest degradation process. In order to confirm 

this point, the relation of forest fire burnt area and forest degradation area should be 

analyzed. Considering the obvious spectral change caused by forest fires, spectral index 

called differenced Normalized Burnt Ration (dNBR) was employed to extract the burnt 

area. Results showed approximate 6000 km2 of forest was burned by forest fires 

through 2000 to 2010, and a huge forest fires occurred in 2003 burned almost 8% of the 

Daxing’anling. The historical statistical data of forest fires was applied to validate the 

accuracy of the burnt area extraction. The extracted burnt area consistent with the actual 

burnt area well which means this approach can be used to detect areas burnt by fires. 

Overlapping in ArcGIS was used to analyze the relation between forest 

degradation and forest fires. The result pointed that approximate 81.28% of forest 

degradation area experienced at least one forest fire. Therefore, it is reasonable to treat 

the forest fires as the main causes of forest degradation in period from 2000 to 2010. 

7.1.2 The probability distribution of forest fires occurrence 

In chapter four, we attempt to identify factor contribute to forest fires and to 

identify regions with a high probability of forest fires. Results showed that six variables 

related with climate condition, topography feature, land cover and human activities 

were the main contributors of forest fires occurrence. The meteorological factors most 

strongly affecting forest fires are wind speed. The topographical factors responsible for 

forest fires are slope, land cover types and river density. Regarding human activities, 

population density and distance from residential areas are variables that influence forest 

fires mostly. 

All of the dichotomous patterns for each variable were inputted into the Weight of 

Evidence model to generate the posterior probability map of forest fire occurrence. It 

can be seen that the zones with high susceptibility to forest fires are generally located 

in the east of Daxing’anling. The combined effects of meteorological conditions, 
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topography and human activities make this region particularly vulnerable to forest fires, 

with a large part of it being classified as a high-risk or extremely high-risk zone. The 

zones with a relatively high probability (posterior probability > 0.023) of forest fires 

occupy approximately 4% of the total area. Zones with lower risk (posterior probability 

< 0.003) occupy approximately 91% of the total area and are generally located in the 

western part of Daxing’anling. 

7.1.3 Environmental vulnerability of Daxing’anling area 

In chapter five, we analyze vulnerability in the context of environment change, 

targeting the hazard event “forest degradation”. Our study builds a regional 

envrionmental vulnerability index (EVI) model using remote sensing, GIS, and a 

quantitative method based on spatial principal component analysis (SPCA) to calculate 

an environmental vulnerability value. 

In this study, environmental vulnerability was treated as a function of exposure, 

sensitivity and adaptive capacity, and was a collective effect of these three aspects. 

Considering data availability and local characteristics, thirteen factors were initially 

selected to assess environmental vulnerability, including exposure (vegetation coverage, 

soil organic matter, population density and forest volume), sensitivity (standardized 

precipitation index, forest fragmentation degree, average monthly temperature, slope 

gradient, elevation and proportion of vulnerable people (under 15 and above 60)), and 

adaptive capacity (annual investment for forest protection, literacy rate and per capita 

income). 

Using spatial principal component analysis, five principal components was 

extracted through the original thirteen factors. The first principal component greatly 

reflects the sensitivity of the forest ecosystem, which constructed by factor of elevation, 

slope gradient, forest fragmentation and standardized precipitation index. The second 

principal component was significant related with per capita income, population density 

and annual investment for forest protection. The third principal component greatly 

related with forest literacy rate, normalized vegetation index and forest volume. 
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A comprehensive environmental vulnerability index was built, which integrated 

the five principal components extracted by spatial principal component analysis. 

Through the spatial distribution, the highest EVI value in the Daxing’anling area was 

approximately 0.86, located mainly in southern and central regions. The higher EVI 

value indicates more serious environmental vulnerability and countermeasures against 

vulnerability should be proposed to improve the state of the environment in these areas. 

The lowest vulnerability value was approximately 0.036 in the eastern area of 

Daxing’anling. While this area is less vulnerable to hazardous events at present, it is 

also a potentially vulnerable region that should be monitored for any changes to forest 

quality. 

7.2 Future work 

To date, sustainable forest management is the best contribution forestry in 

countries which depends much on natural resource base. The dependence of China on 

forest resource renders it extremely vulnerable to association with highly negative 

social and environmental impacts. The large amount of Chinese demand on timber 

including domestic use and exports increased the utilization of forest resource, which 

imposed negative pressure on the environment ranging from increased soil erosion, 

reduced carbon sequestration capacity and reduced biodiversity. In the last century, 

forest management in China mainly focus on increased yield (economic gains) with 

little or no regards to environmental implications. The excessive harvesting led to an 

environmental deterioration that the forest quality and quantity decreased greatly. 

Although in the early 21 century, the recognition of environmental importance 

makes Chinese government implement a series of environmental protection strategies, 

in which the natural forest protection program (NFPP) was designed mainly for 

protection natural forest resource through strictly banning selective loggings in natural 

forest zone. Thanks to the NFPP implementation, the rapid decline in forest quantity 

has been effectively improved, however, other kinds of disturbances in forest ecosystem 

were not paid enough attention and the prioritization for implementation of existing 
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policy still not being discussed in the prior research. 

Until now, the environmental impact assessment is commonly applied in 

environmental management process which attempts to evaluation the negative impact 

of a planning activities (Gibson, 2002; Heinma and Põder, 2010). It helps decision 

makers understand the possible impacts and make a decision whether to adopt the 

activities (Norwich, 2013). However, the effectiveness of environmental impact 

assessment was doubtful whether it is capable to achieve the objectives of 

environmental management (Noble, 2009), because many kinds of uncertainties and 

risks in different forms existing in environmental impact assessment (Stirling, 1999). 

Given the uncertainty exists in decision making process, a risk management 

process was established by decision makers to guide their response to unexpected 

events (Zeleňáková & Zvijáková, 2017). It is relatively common to develop a risk rating 

approach and provide forest management direction for common disturbance agents 

such as forest fires and climates changes (Hirschi et al., 2001). This research presents 

an environmental risk assessment and rating system for forest degradation caused by 

forest fires based on elements of probability of forest fires and environmental 

vulnerability (susceptibility to forest fires). An estimation of environmental risk level 

was conducted through combining these elements. However, a number of reasons may 

cause environmental risk analysis less certain in practical application, for example, the 

complexity of environmental system result that the understanding of consequences of a 

hazard event is difficult to determine. The lack of reliable data and inaccuracies in forest 

inventory might resulted in a wrong evaluation and misclassification of environmental 

risk at some areas. 

In the future environmental management process, the advantages of environmental 

impact assessment and environmental risk assessment should be used together to 

complement each other for a better decision making. They have a common ultimate 

goal that intend to provide sound prediction of possible consequence of planned 

decision (Demidova & Cherp, 2005). However, they have different emphasis in terms 
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of substance and process. Practical application for integrating EIA and ERA can help 

decision makers to manage risks at the project implementation stage, meanwhile help 

to institutionalize the risk assessment procedure in decision support tool as 

environmental impact assessment. 
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