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ABSTRACT 

Impacts of land use and land cover change on regional 

climate in China 

Yaqian He 

The purpose of this research is to investigate, using an empirical approach, the 

effects of land use and land cover change (LULCC) on the regional climate of China. 

Land surface is one of the important factors in determining regional climate. Changed 

land surface conditions (e.g. changes in albedo, soil moisture, surface roughness, and leaf 

area index) due to LULCC have caused significant impacts to regional climates across 

the globe. China, which is home to more than 1.3 billion people, has experienced 

extensive LULCC since the economic reform of 1978. Summer and Autumn rainfall in 

China has significantly increased in the south and decreased in the north in the past four 

decades. Understanding the influences of LULCC on regional climate variability of 

China will greatly improve climate forecasts, directly benefiting society, including famers 

and water resources managers. Consequently, an integrated study on the role of LULCC 

on regional climate of China is of great necessity. 

 

In order to tackle the role of LULCC on regional climate in China, I divided this 

study into three parts. First, I produced a continuous series of annual land use and land 

cover (LULC) maps of China from 1982 to 2013 using random forest classification of 19 

phenological metrics derived from Advanced Very High Resolution Radiometer 

(AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) third generation 

NDVI (NDVI3g) data. The 19 phenological metrics include start of growing season, end 

of growing season, maximum and minimum NDVI values, and so on. The classifier was 

trained using reference data derived from the MODIS land cover type product 

(MCD12Q1). The resulting AVHRR LULC maps were compared to the annual MODIS 

LULC products for the years 2001-2012, and an agreement of between 69.3% and 72.5% 

was found. Similarly, the overall consistency between the AVHRR LULC maps and the 

Chinese Land-Use/cover (CLU) dataset, for the years 1995, 2000, 2005, and 2010, was 

found to be 64.3%, 64.3%, 63.0%, and 64.4%, respectively. Based on a more traditional 

error evaluation using high resolution 2012 Google Earth images as a reference source, 

the overall accuracy of a simplified eight-class version of the 2012 LULC map was 

estimated to be 73.8%, which is not significantly different from the accuracy of the 

MODIS map of the same year. These inter-comparison and accuracy evaluation indicate 

the reliability of our AVHRR LULC maps.  

 

Secondly, I explored the effects of three spatial scaling methods on correlations 

among LULC data and a land surface climatic variable, latent heat flux. Scaling by a 

fractional method preserved significant correlations among LULC data and latent heat 

flux at all three studied scales (0.5°, 1.0°, and 2.5°), whereas nearest neighbor and 

majority aggregation methods caused these correlations to diminish and even become 

statistically non-significant at coarser spatial scales (i.e., 2.5°). Based on the fractional 

method, I identified fractional changes in croplands, forests, and grasslands in China 

using the continuous series of LULC maps from 1982 to 2012. Relative to common 



 

LULC change analyses conducted over two time steps or several time periods, this 

annually-resolved and 31-year time-series of LULC maps enables robust interpretation of 

LULC change. Specifically, the annual resolution of these data enabled us to more 

precisely observe three key and statistically significant LULCC trends and transitions that 

could have consequential effects on land-atmosphere interaction: (1) decreasing 

grasslands being replaced by increasing croplands in the Northeast China plain and the 

Yellow river basin, (2) decreasing croplands being replaced by increasing forests in the 

Yangtze river basin, and (3) decreasing grasslands being replaced by increasing forests in 

Southwest China. 

 

Finally, I examined the impacts of croplands expansion on temperature in the 

troposphere during late summer of August and September in Northeast China from 1982 

to 2010. By using statistical methods including correlation analysis, linear regression 

analysis, and Granger-causality test, the relationships between croplands fractions and 

climatic variables (i.e., latent heat flux, sensible heat flux, surface temperature, multi-

level temperature, and geopotential height) and their underlying physical mechanisms 

were investigated. I found that the increased croplands in Northeast China results in 

increased latent heat flux in the regions with significantly increased croplands. The 

increased latent heat flux decreases surface temperature. The cooling effect of cropland 

expansion in Northeast China also extends to upper-level troposphere. 

 

Overall, this dissertation contributes to multidisciplinary geospatial research by 

applying remote sensing and climatological analyses to study the roles of LULCC in 

affecting regional climate of China. The 32 years of sequential annual LULC maps 

generated by this dissertation provide a valuable database of LULCC information for 

China. The examining of existing methods to address scale issues between remotely 

sensed data and climate data contributes to the integration of remote sensing and climate 

research. The insight regarding potential physical mechanisms for the effects of croplands 

expansion on regional climate advance the knowledge in land-atmosphere interaction 

studies in the mid-latitude regions. 
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1 

1 Introduction 

Summer and autumn rainfall accounts for more than 40% of the annual total 

precipitation in China (Yang and Lau 2004). From 1977 to 2008, the interannual 

variability of summer and autumn rainfall has intensified with more extreme wet and dry 

years (Ye 2014). In addition, summer and autumn rainfall in China has significantly 

increased in the south and decreased in the north areas in the past four decades (Piao et al. 

2010, Ye 2014). The significant changes in rainfall often result in severe drought or 

floods. In 2004, floods in Hunan province of central China destroyed 2.6 million houses, 

and a drought in Harbin in Heilongjiang provinces of Northeast China led to the drying 

up of sections of the Songhuajiang River, one of the longest rivers in China (Chao 2004). 

It is of great importance to investigate the reasons for the intensified variation of regional 

climate over China. 

 

Both observational and modeling studies have shown that land use and land cover 

change (LULCC) could significantly impact the climate system (Takata, Saito and 

Yasunari 2009, Webster 1987). This may happen by means of biogeophysical processes 

(changes in water and energy balance) through modifying the surface wetness, 

partitioning the surface energy between sensible and latent heat fluxes, and altering the 

roughness of the land surface (McPherson 2007). China has experienced extensive 

LULCC, including cropland expansion, desertification, deforestation, afforestation, and 

urbanization (Houghton and Hackler 2003, Lin and Ho 2003, Ge et al. 2004, Liu et al. 

2005). There have been many studies that have attempted to explicate the role of LULCC 

in the regional climate of China (Lee et al. 2011, Xue 1996, Fu 2003, Jones, Lister and Li 

2008, Han and Yang 2013). For example, Xue (1996) investigated the impact of 

desertification in the Mongolian and the Inner Mongolian grasslands on the regional 

climate of China, and found a weakened East Asian summer monsoon due to the sinking 

motion of air, which was caused by the reduction of convective latent heating above the 

surface of the area, where desertification was prevalent. 
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Previous studies on the climate in China have mainly concentrated on modeling 

(Xue 1996, Ma et al. 2013a, Ma et al. 2013b, Zhao et al. 2012). For instance, Ma et al. 

(2013a) used the National Center for Atmospheric Research Community Climate System 

Model (CCSM) to examine the roles of afforestation in influencing the climate of East 

China, and found that summer cooling could be attributed to the enhanced 

evapotranspiration. Those modeling studies were primarily limited by three factors 

(Wang et al. 2014). Firstly, their results were model-dependent; different models might 

produce different results. Second, nearly all of the modeling studies involved extreme 

sensitivity experiments. For example, in order to examine the effects of desertification on 

regional climate, Xue (1996) completely replaced the grass in Inner Mongolia with bare 

soil. Such extreme experiments are likely to be unrealistic as vegetation changes tend to 

be heterogeneous and partial. Third, the model uncertainty, such as the uncertainty of 

model parameters, could influence the results. Thus, owing to the limitations of modeling 

studies, observational studies are essential to help constrain model results.  

 

Due to the scarcity of continuous annual land use and land cover maps, previous 

studies generally have used a map of a specific year representing the entire study period 

(Zhu 2012), to indicate the locations of LULCC. For instance, Zhu (2012) employed a 

map of irrigation only for the year 2000 to examine the impacts of irrigation on climate 

during the period of 1978 to 2008, despite the tremendous change in irrigation 

infrastructure during theses 30 years. Therefore, obtaining accurate LULCC information 

on a continuous basis is critical for better understanding the effects of LULCC on climate 

in China.  

 

Remotely sensed LULC maps usually have very different spatial resolutions from 

that of climate data, including atmospheric and oceanic variables. For both physical and 

observational reasons, climate data generally have much coarser spatial resolution than 

remotely sensed LULC data. For example, National Center for Environmental Prediction 

(NCEP)/ National Center for Atmospheric Research (NCAR) reanalysis, European 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40), and 

Climate Research Unit Time-series (CRU TS) high-resolution gridded datasets have a 
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resolution of 2.5° by 2.5°, 1.125° by 1.125°, and 0.5° by 0.5°, respectively. Simply 

resampling LULC maps into the same resolution as climate data is problematic, as 

LULCC is complex, with heterogeneous patterns that may not be evident in simple 

measures, such as dominant change type, in coarse resolution data. However, the 

potentially problematic scale effects of the spatial resolution of LULC data and issues of 

rescaling have been largely overlooked in land-atmosphere interaction studies. It is 

therefore important to identify the effect of different spatial scaling methods for LULC 

data on land-atmosphere interaction. 

 

Moreover, previous studies generally have focused on climate responses to 

urbanization in a single case study area in China, such as the Yangtze River delta (Gu et 

al. 2011). The rainfall variability in China may also be related to other types of LULCC, 

such as croplands expansion. The physical mechanisms behind the impacts of different 

types of LULCC on climate have not been completely understood for China. 

Consequently, an integrated study on the role of different types of LULCC on the 

regional climate of China is of great necessity. 

 

The overall objective of this dissertation is to investigate the effects of human-

induced LULCC on regional climate in China from an observational perspective. In 

addressing the overall objective, this dissertation addresses three questions:  

1) What are long-term continuous LULC maps in China? (Chapter 2) 

2) What is the best spatial scaling method to match LULC data and climate data? 

(Chapter 3) 

3) What are the empirical relationships and their underlying physical mechanisms of land 

surface variables with atmospheric variables in the geographic areas of LULCC? 

(Chapter 4) 
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2 A time series of annual land use and land cover maps of 

China from 1982 to 2013 generated using AVHRR GIMMS 

NDVI3g data* 

* Published as He, Y., E. Lee, T. A. Warner, 2017: A time-series of annual land use and land cover maps of 

China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment 

199, 201-217. 

 

2.1 Background 

Land surface condition is an important factor in determining climate through both 

biophysical and biogeochemical processes (Foley et al. 2003). Recent changes in land 

surface conditions (e.g., albedo, soil moisture, and surface roughness) and atmospheric 

composition (e.g., CO2 and methane) due to land use and land cover change (LULCC) 

have had significant effects on regional and global climates (McPherson 2007, Lee et al. 

2015, Pielke 2005, Mahmood et al. 2014, Bonan, Pollard and Thompson 1992, Foley et 

al. 2005). For example, Bonan et al. (1992) found that replacing bare ground and tundra 

with boreal forest results in warming of both winter and summer air temperatures. In a 

more recent study, He and Lee (2016) found that vegetation growth in the Sahel may 

have induced the recent trend of increasing rainfall in that region. 

 

There have been many attempts to explore the effects of LULCC on climate based 

on observational (Lee et al. 2009, Lee et al. 2015, Kaufmann and Stern 1997) and 

modeling (Douglas et al. 2006, Lee et al. 2011, Eltahir 1996, Lawrence et al. 2012, 

Lawrence and Chase 2010) studies across the globe (Pielke et al. 2011). Both 

observational and modeling studies require as an input land use and land cover (LULC) 

maps that characterize the pattern of changing LULC over time. However, due to the 

limited length of time for which such LULC maps are available, previous climate studies 

have often made simplifying assumptions, for example, using a potential vegetation map 

(Fu 2003) or a single map of a specific year (Zhu 2012) to represent the LULC of the 

entire study period. For instance, Zhu (2012) employed a single map of irrigation for the 

year 2000 to examine the impacts of irrigation on climate during the period of 1978 to 

2008, despite the tremendous change in irrigation infrastructure during those three 

decades. Therefore, obtaining a continuous sequence of annual LULC maps over an 
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extended time period, for at least multiple decades, is critical for quantifying the effects 

of LULCC on climate.   

 

Townshend et al. (1991) and Running, Loveland and Pierce (1994) have noted 

that only remotely sensed data can potentially provide accurate and repeatable global land 

use and land cover for monitoring change. Since then, a number of studies have generated 

LULC maps in China using remotely sensed data. For instance, Wang et al. (2012) 

classified urban areas based on Landsat TM/ETM+ data during the years 1986-1994, 

1999-2002, and 2008-2010, and examined urban expansion in China from the 1990s to 

2010s. Liu et al. (2014) used Landsat and Huanjing-1 satellite data from the late 1980s, 

1995, 2000, 2005, and 2010 to generate a sequence of LULC maps of China every five 

years, which they used to investigate the spatiotemporal change patterns of LULC. 

However, these datasets have relatively low temporal frequency of acquisition. Finding 

cloud-free images to cover all of China may require imagery from several different years 

or a combination of data from different satellites. These problems may result in 

inconsistent periods of time in the analysis and biased results because of inconsistent data 

sources. Another remotely sensed data set that is particularly useful for such work is 

cloud-minimized multi-temporal composites (Holben 1986) derived from high temporal 

frequency images acquired at a coarse/moderate spatial scale (pixels 250 m or larger). 

This coarse/moderate spatial scale is better suited to the coarse scale typically used in 

climate modeling (e.g. 0.05° (approximately 5 km) or larger (Lawrence and Chase 2007)) 

compared to the finer scale sensors with global coverage, such as Landsat (Sexton et al. 

2013, Kim et al. 2014). An example of a dataset generated from a moderate-scale sensor 

that has been used for climate work is the Moderate-resolution Imaging 

Spectroradiometer (MODIS) land cover type product (MCD12Q1) (Lawrence and Chase 

2007). Unfortunately, however, global LULC data from MODIS is only available since 

2001, thus limiting the time span that can be studied, an important consideration in 

climate studies. 

 

Fortunately, there is a dataset with coarse spatial resolution and high temporal 

frequency that does provide global data for an extended period: NOAA Advanced Very 
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High Resolution Radiometer (AVHRR) imagery (James and Kalluri 1994). Often 

combined with MODIS data, AVHRR data have been widely used for monitoring land 

surface conditions at coarse scales (Andres, Salas and Skole 1994, Lunetta et al. 2006). 

The early AVHRR instruments had just 4 spectral bands, although this was later 

increased to 5 in some subsequent sensors (Tucker et al. 2005).  One of the most 

important derived datasets from AVHRR data is based on the Normalized Difference 

Vegetation Index (NDVI), a normalized ratio of the visible red and near infrared spectral 

bands (Rouse Jr et al. 1974). Water is generally associated with negative NDVI values, 

bare soil with values near zero (Sabins and Lulla 1987), and vegetation with high positive 

values that are broadly indicative of the amount of photosynthesizing vegetation present 

(Dappen 2003).  

 

There is a long history of using AVHRR imagery for continental (Townshend, 

Justice and Kalb 1987, Tucker, Townshend and Goff 1985) and even global scale 

mapping (DeFries and Townshend 1994, DeFries, Hansen and Townshend 1995, 

Loveland et al. 2000, Hansen et al. 2000). For example, Gitas et al. (2004) used AVHRR 

imagery to map burned areas in the Spanish Mediterranean coast region after a large 

forest fire. More recently, Zhang et al. (2016) generated a global climatic vegetation map 

from AVHRR imagery. These studies typically used NDVI data alone, or in combination 

with reflectance values in each spectral band as well as temperature variables from the 

AVHRR thermal bands. However, in a study of the importance of different variables in 

discriminating classes for producing a global land cover map using AVHRR, DeFries et 

al. (1995) found summary metrics describing NDVI phenology were by far the most 

important for most vegetation classes. Nevertheless, for LULC classes for which 

vegetation phenology is of limited diagnostic use, such as the urban, snow, water, and 

barren classes, ancillary data such as digital cartographic information was found to be 

necessary (e.g. Loveland et al. (2000)). Significantly, these early efforts focused on 

producing single maps, and to our knowledge, AVHRR data has not yet been used to 

produce a time series of LULC maps over broad regions. In recent years less attention has 

been paid to AVHRR data classification due to the availability of improved, higher signal 

to noise, and higher spatial resolution remotely sensed data, such as from MODIS 
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(Schneider et al. 2009; Muhammad et al. 2015). However, AVHRR data comprise the 

longest global image time-series, and thus provide the potential to generate a long-term 

time-series of LULC maps, a key input for climatological analysis. 

 

The aim of this study is to produce annual land use and land cover maps of 

Mainland China for the three decades covering the period from 1982 to 2013. The maps 

are produced based on a random forest classification using phenological metrics derived 

from the AVHRR Global Inventory Modeling and Mapping Studies (GIMMS) NDVI 

third generation (NDVI3g) dataset and trained using land cover information from the 

MODIS MCD12Q1 data set. The key attribute of our classified land cover maps is that 

they comprise a continuous time series covering three decades, which contrasts with the 

limited temporal information previously available for use in climate studies. 

 

2.2 Data and Methods  

2.2.1 Data 

The primary dataset in this study is AVHRR GIMMS NDVI3g, first version, with 

data covering the period from 1982 to 2013, which were acquired from 

https://nex.nasa.gov/nex/projects/1349/. GIMMS NDVI3g data have been normalized to 

account for issues such as sensor calibration loss, orbital drift, and atmospheric effects 

such as volcanic eruptions (Pinzon and Tucker 2014). The spatial resolution of the data is 

1/12°. Each layer in the dataset is a bimonthly (15 days) composite produced using the 

maximum NDVI value for each pixel (Holben 1986). We re-projected NDVI3g data onto 

a geographic grid, with WGS 1984 spheroid. 

 

The second major dataset used is MODIS MCD12Q1 collection 5 data (Channan, 

Collins and Emanuel 2014), which we utilized as a reference source for identification of 

training areas and class labels for the AVHRR classification. The MODIS MCD12Q1 

data with a WGS 1984 spheroid were obtained from University of Maryland 

http://glcf.umd.edu/data/lc/. The data comprise annual maps of land use classes keyed to 

the International Geosphere-biosphere Programme (IGBP) classification system, covering 

the period 2001 to 2012. MODIS MCD12Q1 collection 5 data are generated from 

https://nex.nasa.gov/nex/projects/1349/
http://glcf.umd.edu/data/lc/
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MODIS bands 1-7 and enhanced vegetation index data using an ensemble supervised 

classification algorithm (Friedl et al. 2010). The original MODIS MCD12Q1 data were 

resampled by the University of Maryland to 1/12° pixels, the resolution of the AVHRR 

GIMMS NDVI3g dataset, using a majority aggregation method (Channan et al. 2014). In 

this approach, each new pixel was labeled as the class that most frequently occurred in 

the original resolution data, for the area encompassing that new pixel. 

 

The Chinese Land-Use/cover (CLU) dataset for 1995, 2000, 2005, and 2010 were 

obtained from the Data Center for Resources and Environmental Sciences (RESDC), 

Chinese Academy of Sciences (http://www.resdc.cn). CLU data were compared with our 

classified LULC maps in order to assess the 32-year time series of LULC dataset more 

robustly. The CLU data are produced mainly from 30 m Landsat TM data, as well as 30 

m Huangjing-1 satellite imagery and 20 m China-Brazil Earth Resources Satellite-1 

imagery using a human-computer interactive interpretation method (Liu et al. 2003a; Liu 

et al. 2010; Liu et al. 2014). The CLU data have 6 classes: cropland, woodland, water 

body (which includes water, snow, and ice), built-up land, and unused land. The accuracy 

of the six classes of land use is about 94.3% (Liu et al. 2014). RESDC provides the CLU 

data with spatial resolution of 1 km. To be consistent with our classified maps, we 

resampled the data to 1/12° spatial resolution, using a majority aggregation approach. 

 

2.2.2 Data pre-processing 

Although the temporal compositing process used in producing the NDVI3g 

dataset greatly reduces cloud and other atmospheric effects, residual noise remains (de 

Jong et al. 2011, Reed et al. 1994). Cleaning and smoothing NDVI data is therefore 

necessary (Figure 2.1) (A second version of GIMMS NDVI3g dataset, including data up 

to 2015, has recently been made available. However, this new dataset is not directly 

compatible with the original dataset, and for that reason, we did not incorporate the new 

data. Specifically, the binary VI3g data format of the first version was changed to the 

Network Common Data Form (NetCDF) for the second version, and the 1 to 7 range of 

the quality flag for the first version was adjusted to 0 to 2 for the second version.) 

http://www.resdc.cn/
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 Figure 2.1. Flowchart for pre-processing the GIMMS NDVI3g data. 

 

1) Cleaning AVHRR GIMMS NDVI3g data- The quality information flags for NDVI3g 

data range from 1 to 7. Flag values of 1 and 2 represent good data, 3 indicates the 

application of a spline interpolation (i.e. a data gap that has been filled), 4 and 6 

indicate possible snow, 5 indicates a gap filled through averaging the seasonal 

profile, and 7 indicates missing data. We retained data with flag values of 1, 2, and 3, 

following Chen et al. (2016), and excluded data with flag values of 4 to 7 by 

assigning those locations a “no data” value.  
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2) Smoothing the cleaned AVHRR GIMMS NDVI data- Even after removing pixels that 

are flagged as having low quality, smoothing is required to reduce the noise. This 

was done using the program TIMESAT (Jönsson and Eklundh 2002, Jönsson and 

Eklundh 2004). TIMESAT is a software package for analyzing time-series of 

satellite sensor data and available from http://web.nateko.lu.se/timesat/timesat.asp. 

Numerous studies have employed TIMESAT for phenological analysis (Palacios-

Orueta et al. 2012, Boyd et al. 2011, Heumann et al. 2007, Palmer et al. 2015). 

TIMESAT offers multiple outlier removal methods: median filtering, approaches 

using weights from the Seasonal-Trend decomposition procedure based on Loess 

(STL)-decomposition (Cleveland et al. 1990) or weights from STL-decomposition 

multiplied with the original weights assigned based on the ancillary data, and three 

smoothing functions (a Savitzky-Golay filter, an asymmetric Gaussian filter, and a 

double logistic smoothing function) (Jönsson and Eklundh 2004). Following Lee et 

al. (2015), we selected median filtering to remove outliers that deviate more than two 

standard deviations from the median in a moving window (Eklundh and Jönsson 

2015) and the double logistic method to smooth the time-series. 

 

TIMESAT smoothing requires the user to specify the number of growing season per 

year. In China, two growing seasons are common in some locations (e.g., cropland 

areas in Southern China), and only one growing season predominates elsewhere (e.g., 

deciduous forest and cropland in Northern China). In order to identify the appropriate 

number of seasons, we first smoothed the entire NDVI time-series with two growing 

seasons (Smoothed NDVI_2) (Figure 1). Each resulting smoothed time-series was 

checked to determine if there were at least four points of increasing NDVI before the 

NDVI peak (i.e., where the first derivative is zero) and four points of decreasing 

NDVI points after the peak, in each year. We chose these criteria as the potential 

growing season for cropland in China is approximately four months. If the time-

series for a particular year did not meet these criteria, it was replaced with a 

smoothing based on the assumption of a single growing season (Smoothed NDVI_1) 

(Figure 1). 

http://web.nateko.lu.se/timesat/timesat.asp
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For the time series of a single pixel, any year with missing data that comprises a 

continuous period longer than 0.2 years, is not smoothed by TIMESAT. Similarly, the 

entire 32 year time-series for any pixel is also not smoothed if 25% of the data is missing 

(Gao et al. 2008). These pixels were labeled “no data” in our classified LULC maps, and 

cover 3.7% of the area of China. 

 

Figure 2.2 displays the spatial patterns of cleaned, and cleaned and smoothed 

NDVI for Julian day 75 of 2011 as an example. Pixels with flag values 4 to 7, which were 

excluded in the cleaning processes, are mostly found in Northeast China and Western 

China, as shown in white in Figure 2.2 (a). The smoothing processes discussed above 

improves the completeness of the NDVI, reducing, but not entirely eliminating, the 

number of no data pixels, as shown in Figure 2.2 (b). This is due to the limitation of 

TIMESAT, as mentioned above. 

                

(a)                                                                  (b) 

Figure 2.2. Spatial patterns for Julian day 75 of 2011 of (a) cleaned and (b) cleaned and 

smoothed NDVI. 

 

Figure 2.3 displays the raw NDVI and cleaned and smoothed NDVI time-series 

for a single year of randomly selected individual pixels from Northeast China 

representing mixed forest, croplands, and grasslands. After cleaning and smoothing, the 

NDVI profiles provide generalized overall patterns of the NDVI time-series.  
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Figure 2.3. Raw, and cleaned and smoothed NDVI time-series of mixed forest, 

croplands, and grasslands. 

 

2.2.3 Land use and land cover classification methods 

Pixels identified as having two growing seasons (as described in section 2.2) were 

directly labeled as croplands, since natural vegetation should have only one growing 

season. The remaining pixels, which comprise those with one growing season, were 

classified following the procedures in Figure 2.4. 
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Figure 2.4. Flowchart of the land use and land cover classification approach. 

 

2.2.3.1 Classification 

Our aim in selecting a method for obtaining training data for the classification 

was to develop a method that provided many examples of each land cover class, from 

multiple years, in order to capture both geographic and temporal variability. We therefore 

used as a reference data source pixels of unchanged land cover during the period from 

2001 to 2010 in the MODIS MCD12Q1 dataset (Figure 2.4). The reference data were 

randomly split, with 25% used as training data (25%) and the remaining 75% used as 

validation data (75%) for an initial evaluation of the classification.  
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Prior to carrying out the classification, China was divided into four separate 

regions generally based on vegetation zones, as suggested by Hou (1981) (Figure 5), and 

each region was classified separately. This segmentation was applied because the 

characteristics of phenological patterns of the mapping classes vary geographically. For 

example, croplands in Central and Southern China may have two growing seasons and 

spring green-up occurs typically in March, while croplands in Northeast China only have 

one growing season and green-up occurs only in May (Wu et al. 2010). Similarly, natural 

vegetation spring green-up occurs later, moving from south to north (Zhang, Friedl and 

Schaaf 2006). The boundaries of the sub-regions were chosen along arbitrary N-S and E-

W lines, and not along previously mapped ecological boundaries. Our choice for doing so 

reflected our philosophical concern not to impose a simple view of sharp ecotonal 

boundaries that have not moved over the more than three decades of the study. An added 

advantage of using simple, relatively arbitrary sub-region boundaries is that it made for 

simpler processing, which could potentially easily be applied to the production of a 

global map, where the issue of identifying simple sharp ecotonal boundaries between 

regions would be even more problematic. A potential drawback with our approach as it 

perhaps increases the chance for classification inconsistencies across the sub-region 

boundaries.  

 

The four zones chosen were: Western China, Northeast China, Central China, and 

Southern China. In Western China, barren or sparsely vegetated land and grasslands 

dominate, with some minor croplands. In Northeast China, the main vegetation types are 

grasslands, croplands, and mixed forest. In Central China, the dominant classes are barren 

or sparsely vegetated, grasslands, and croplands. Southern China has the most diverse 

vegetation types, including grasslands, croplands, forest, and savanna (Figure 2.5).  
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Figure 2.5. Unchanged pixels of LULC for Mainland China, 2001 to 2010 derived from 

MODIS MCD12Q1, and used for training the random forest classifier. 

 

The numbers of pixels for each unchanged LULC type in each region are shown 

in Table 2.1. For some LULC types, the numbers of pixels are zero or close to zero. For 

example, there are no unchanged pixels in the deciduous needleleaf forest class and only 

two pixels of permanent wetlands and closed shrublands. These LULC types of limited 

extent were excluded from further analysis, reducing the original 17 classes down to 13 

LULC classes that were mapped (Table 2.1, class for AVHRR classification).   
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Table 2.1. Number of pixels for each unchanged LULC type in each region in China. 

These pixels were randomly split, with 25% used for training, and 75% for validation. 

MODIS 

MCD12Q1 
Class 

Number of pixels Class for AVHRR 

classification Western Northeast Central Southern 

Water 313 60 135 260 Water 

Evergreen 

Needleleaf 

Forest 

20 0 0 0 Evergreen 

Needleleaf Forest 

Evergreen 

Broadleaf Forest 

141 0 0 1432 Evergreen 

Broadleaf Forest 

Deciduous 

Needleleaf 

Forest 

0 0 0 0  

Deciduous 

Broadleaf Forest 

0 117 75 0 Deciduous 

Broadleaf Forest 

Mixed Forest 496 2702 1832 10032 Mixed Forest 

Closed 

Shrublands 

0 0 2 0  

Open 

Shrublands 

210 0 43 0 Open Shrublands 

Woody 

Savannas 

0 1 0 2949 Woody Savannas 

Savannas 0 0 0 0  

Grasslands 16062 5387 12530 3628 Grasslands 

Permanent 

wetlands 

0 0 0 2  

Croplands 450 3947 7751 6177 Croplands 

Urban and Built-

up 

4 25 138 233 Urban and Built-up 

Cropland and 

Natural 

Vegetation 

Mosaic 

7 556 102 521 Cropland and 

Natural Vegetation 

Mosaic 

Snow and Ice 432 0 1 5 Snow and Ice 

Barren or 

Sparsely 

Vegetated 

23881 0 5159 0 Barren or Sparsely 

Vegetated 

 

The cleaned and smoothed 1982-2013 AVHRR GIMMS NDVI dataset (section 

2.2) was used to generate a total of 19 phenological metrics (Table 2.2), including start of 

growing season, end of growing season, and maximum and minimum NDVI values, for 

each pixel. Maximum and minimum NDVI value, Julian day of maximum and minimum 

NDVI value, NDVI value of start and end of season, and Julian day of start and end of 

the season are commonly used phenological variables for land cover characterization 



 

17 

(Knight et al. 2006; Vuolo et al. 2011; Xue et al. 2014; Yan et al. 2015) because they 

capture the gross pattern of the annual NDVI cycle. For instance, in Figure 2.3, the 

maximum NDVI value is greatest for mixed forest, followed by croplands, and then 

grasslands, which have the lowest value. The Croplands in Figure 2.3 are distinguished 

by an earlier green-up than mixed forest and grasslands. Additional key summary metrics 

were generated from integrated NDVI values. According to Liu et al. (2015) and Vuolo et 

al. (2011), integrated phenological metrics are important in classifying crops, thus we 

included several integrated values, such as the integral under the NDVI curve, and the 

integral between start season and maximum value. Other metrics, for example those 

based on the maximum and minimum derivative of the NDVI curve, were chosen in 

order to capture properties related to the rate and timing of phenological change, such as 

green-up (DeFries and Townshend 1994, Nellis, Price and Rundquist 2009).  

 

Table 2.2. The 19 phenological metrics used as input for the random forest classification 

Phenological Metrics 

1: Maximum NDVI value 

2: Minimum NDVI value 

3: Julian day of maximum NDVI value 

4: Julian day of minimum NDVI value 

5: Integral of NDVI between Day 105 and Day 315 

6: Integral under the NDVI curve 

7: Maximum derivative of NDVI curve 

8: Minimum derivative of NDVI curve 

9: Julian day of maximum derivative of NDVI curve 

10: Julian day of minimum derivative of NDVI curve 

11: Julian day of start season 

12: Julian day of end season 

13: NDVI value of start season 

14: NDVI value of end season 

15: Integral between maximum derivative and minimum derivative 

16: Integral between start season and maximum value 

17: Integral between end season and maximum value 

18: Maximum NDVI value － minimum NDVI value 

19: Maximum NDVI value/ Integral under the NDVI curve 

 

Classification was carried out using the R randomForest package (Liaw et al. 

2009). Ensemble learning algorithms such as random forests have received increasing 

attention, because they are simple to implement, with few user-specified parameters, tend 
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not to be sensitive to noise or overtraining, and therefore do not need pruning, and are 

generally found to be more robust than single classifiers (Rodriguez-Galiano et al. 2012). 

The random forest classifier consists of a combination of a large number of classification 

trees, which “vote” to produce a single outcome for each pixel (Breiman 2001). Each 

individual tree is generated from a random subset of the training data, as well as a 

random subset of the variables. In this way, the individual trees have reduced accuracy, 

but also reduced correlation, resulting in a more reliable overall classification. The 

random forest classifier can handle thousands of variables without variable deletion 

(Rodriguez-Galiano et al. 2012), and can even be applied when the number of variables is 

much larger than the number of samples (Dahinden 2011). A further benefit is that the 

classifier provides an estimate of the importance of each variable by summarizing the 

accuracy of trees that don’t use that variable. The random forest classifier (Breiman 

2001) has been widely used in many fields, including remote sensing (Cutler et al. 2007, 

Speiser, Durkalski and Lee 2015, Baudron et al. 2013, Maxwell and Warner 2015, 

Maxwell, Warner and Strager 2016). Random forest classification requires two user-

defined parameters: the number of decision trees produced (ntree) and the number of 

variables available for splitting at each node (mtry). In general, the value of ntree simply 

has to be large enough to give a stable result; we chose a value of 500 based on prior 

experience (Maxwell et al. 2016). For mtry, we chose the default value, in the 

randomForest package (Liaw et al. 2009), the square root of the number of predictor 

variables (i.e., 4), following Liu et al. (2016), though Shi and Yang (2016) advocate for a 

larger number of variables, combined with a smaller number of trees. The importance of 

the 19 phenological variables was measured using the mean decrease in accuracy (MDA) 

derived from the random forest classifier. The larger mean decrease in accuracy means 

the more the accuracy of the random forest decreased due to the exclusion of a variable, 

thus the greater the assumed importance of that variable (Breiman 2001). Separate 

random forest classifications were generated to map the LULC for each of the four 

regions. 
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2.2.3.2 Temporal filtering 

In order to try to improve the overall quality of the map time series, short-term, 

unreasonable land cover transitions were identified and suppressed (Clark et al. 2010, 

Baker et al. 2013). For example, it would be unlikely that a forested pixel would be 

converted to urban cover, and then subsequently changed back to forest cover in the 

following year. Therefore, we used a temporal filter with a 3-year moving window to 

remove the disallowed land use and land cover transitions (Clark et al. 2010). 

Specifically, we tested to see if the classes from year n and n+2 were the same. If the 

classes were the same and class n+1 was a disallowed transition as specified by Table 

2.3, then class n+1 was replaced with the class from year n. 
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Table 2.3. Allowed and disallowed class transitions 

             

        Class 

Year n+1 

Water Forest Open 

Shrublands 

Woody 

Savannas 

Grasslands 

 

Croplands  Urban 

and Built-

up 

Cropland 

and 

Natural 

Vegetation 

Mosaic 

Snow 

and 

Ice 

Barren or 

Sparsely 

Vegetated 

Year n 

and 

n+2 

Water Yes No No No No No No No No No 

Forest No Yes1 No No No No No No No No 

Open 

Shrublands 

No No Yes Yes Yes Yes No Yes No No 

Woody 

Savannas 

No No Yes Yes Yes Yes No Yes No No 

Grasslands No No No No Yes Yes No Yes No Yes 

Croplands No No No No Yes Yes No Yes No Yes 

Urban and 

Built-up 

No No No No No No Yes No No No 

Cropland and 

Natural 

Vegetation 

Mosaic 

No No No No Yes Yes No Yes No No 

Snow and Ice No No No No No No No No Yes No 

Barren or 

Sparsely 

Vegetated 

No No No No Yes No No No No Yes 

1: Transitions of the same forest type: “Yes”, transitions between different types of forest: “No” 
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2.2.3.3 Inter-comparisons and accuracy evaluation 

To assess the reliability of the classified maps, we chose multiple approaches 

because the 32-year time series of land use and land cover maps represent such a 

complex dataset. These included inter-comparison with the validation data (75%), the 

entire 2001-2010 MODIS MCD12Q1 LULC maps (years that were used in training the 

classifier), as well as the entire MODIS MCD12Q1 LULC maps for 2011 and 2012 

(years that were excluded from the reference data set), and the 1995, 2000, 2005, and 

2010 CLU data. In addition, we undertook a more traditional error evaluation (Olofsson 

et al. 2014) using high resolution 2012 Google Earth images as a reference source.  

 

We chose to compare our maps against the MODIS data in order to benchmark 

our approach against the input MODIS data. This comparison can potentially provide 

insight regarding how successful the AVHRR NDVI data are in reproducing the overall 

patterns as identified with MODIS, a sensor with superior spectral and radiometric 

resolution (Tucker et al. 2005). We compared our maps with CLU dataset, because it was 

a typical LULC dataset of China generated from high resolution imageries, such as 

Landsat and Huanjing -1 data. The CLU dataset has a classification system that differs 

from ours, as mentioned in section 2.1. Thus, we combined our classes of evergreen 

needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, 

open shrubland, and woody savannas, into a single forest class; water and snow and ice 

into the water class; and croplands and the cropland and natural vegetation mosaic into 

the croplands class (Table 4, see column “class for comparing with CLU data”). It is 

important to note, however, that the inter-comparisons with MODIS and CLU data are 

not an accuracy evaluation, since the MODIS and CLU data themselves have errors. For 

example, the global overall accuracy of MODIS MCD12Q1 has been estimated as 

approximately 75% (Zhao et al. 2013).  

 

Table 2.4. Class for comparing with CLU data 

Class for comparing with CLU data Class for AVHRR classification 

Water Water 

Snow and Ice 
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Forest Evergreen Needleleaf Forest 

Evergreen Broadleaf Forest 

Deciduous Broadleaf Forest 

Mixed Forest 

Open Shrublands 

Woody Savannas 

Grasslands Grasslands 

Croplands Croplands 

Cropland and Natural Vegetation Mosaic 

Urban and Built-up Urban and Built-up 

Barren or Sparsely Vegetated Barren or Sparsely Vegetated 

 

Comparisons with other land cover classifications provide useful insight into the 

similarities of the results with different sensors. However, only an assessment using 

independent reference data can provide an estimate of the map accuracy. We therefore 

undertook an accuracy evaluation using a manual interpretation of Google Earth imagery, 

focusing on land cover for the year 2012. This year was chosen because there were 

relatively abundant images in Google Earth for that year, and also this was a year not 

used in training the random forest classifier used to produce the AVHRR LULC maps.   

 

A random sampling strategy with stratification was chosen to select sample points 

(Olofsson et al. 2014). The strata were the mapped classes. Based on multinomial 

sampling theory, we estimated a minimum of 150 random samples would be required in 

order to generate an estimate with 10% precision and 15% confidence (Jensen 2016). An 

initial random sample of 300 sample points with a minimum of 15 points for each stratum 

was selected across the study area. Sample points for the final analysis after points 

without appropriate high resolution imagery for 2012 in Google Earth were removed, 

leaving a final total of 256 points, many more than the 150 points we set as a minimum. 

Although we had concerns that only using locations for which 2012 imagery was 

available might introduce bias, there was no obvious pattern to the availability of such 

imagery.   

 

A visual estimate was made of the dominant land cover within a 1/12° x 1/12° 

square, representing the AVHRR pixel dimensions, which was drawn around each 

sample point in Google Earth. Because it was not always possible to visually differentiate 
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between all classes, we combined evergreen needleleaf forest, evergreen broadleaf forest, 

deciduous broadleaf forest, mixed forest, open shrubland, and woody savannas to form a 

single forest class (Table 5, class for Google Earth validation). Thus, although the 

original map has 13 classes, the accuracy evaluation is based on only eight of those 

classes, and therefore the accuracy we estimated is for a simplified map that does not 

differentiate forest classes. The accuracy of the map with the original 13 classes will of 

course be lower than that of the eight classes map we evaluated.  

 

Table 2.5. Class for Google Earth validation 

Class for Google Earth validation Class for AVHRR classification 

Water Water 

 

Forest Evergreen Needleleaf Forest 

Evergreen Broadleaf Forest 

Deciduous Broadleaf Forest 

Mixed Forest 

Open Shrublands 

Woody Savannas 

Grasslands Grasslands 

Croplands Croplands 

Urban and Built-up Urban and Built-up 

Cropland and Natural Vegetation Mosaic Cropland and Natural Vegetation Mosaic 

Snow and Ice Snow and Ice 

Barren or Sparsely Vegetated Barren or Sparsely Vegetated 

 

Because the sampling design is stratified random using the map classes as strata, 

the cell entries of the error matrix are estimated using (Olofsson et al. 2014):  

                                                       𝑃𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖+
                                          (1) 

Where 𝑃𝑖𝑗 denotes the proportion of area for the population that is class i 

according to the classification information, and class j according to the reference 

information. 𝑊𝑖 is the proportion of area mapped as class i. 𝑛𝑖𝑗 is the number of samples 

in class i according to the classification, and class j according to the reference 

information. 𝑛𝑖+ denotes the row totals. 

 

Recent research has called into questioning the value of the kappa statistic 

(Pontius and Millones 2011), consequently we instead calculated allocation disagreement 
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and quantity disagreement, measuring which divide overall error into components related 

to errors in class location and proportion, respectively (Pontius and Millones 2011). 

Based on the error matrix generated from Eq. (1), the overall allocation disagreement (A) 

and overall quantity disagreement (Q) were calculated as follows (Pontius and Millones 

2011; Warrens 2015):  

                                                    𝑎𝑖 = 2 min(𝑝𝑖+, 𝑝+𝑖) − 2𝑝𝑖𝑖                                          (2)                            

                                                      𝐴 =
1

2
∑ 𝑎𝑖

𝐶
𝑖=1                                                                (3) 

                                                     𝑞𝑖 = |𝑝𝑖+ − 𝑝+𝑖|                                                           (4) 

                                                    𝑄 =
1

2
∑ 𝑞𝑖

𝐶
𝑖=1                                                                  (5) 

Where C is the number of classes.  𝑝𝑖+ and 𝑝+𝑖 denote the row and column totals, 

respectively.  𝑎𝑖 is the allocation disagreement for class i. 𝑞𝑖 is the quantity disagreement 

for class i. 

 

The same points were used to estimate the accuracy of our 2012 AVHRR map 

and the MODIS MCD12Q1 2012 map. McNemar’s test (de Leeuw et al. 2006) was used 

to assess whether our classified LULC was significantly different from that of the 

MODIS classification. 

 

2.3 Results and Discussion 

2.3.1 Relative importance of 19 phenological metrics 

The importance of the 19 phenological metrics as predictors measured using the 

mean decrease in accuracy of the random forest classifier is showed in Figure 2.6. It is 

notable that the lowest mean decrease in accuracy is approximately 18%, indicating all 

the metrics appear to be useful for all regions, and that there is not a great deal of 

redundancy in the 19 metrics. This finding is most evident for Southern China, where 

excluding any single metric seemed to have a particularly large effect (no less than 30% 

mean decrease in accuracy). The other major observation from Figure 2.6 is that there is 

little consistency in the importance of individual metrics for the different regions of 

China. However, in general, the most important metrics are Julian dates of phenological 
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events, such as the start of season (metric number 11), probably due to differences in the 

growth calendars of different vegetation cover types. For example, croplands start green-

up earlier than mixed forest and grasslands (Figure 2.3). In Northeast China and 

Southern China, actual NDVI values are also important (e.g. the maximum NDVI value, 

metric number 1). As Northeast China and Southern China have mixed forest and other 

vegetation classes (Figure 2.5), maximum NDVI may differentiate less productive non-

forest biomes from more highly productive forests. In Central China, the integral of 

NDVI over time (e.g. between the maximum value and the end of season, metric number 

17) is also important. Barren or sparsely vegetated areas, grasslands, and croplands are 

dominant in Central China (Figure 2.5). Integrated NDVI values, such as integral 

between maximum value and the end of season, may separate croplands from other 

vegetation cover types, such as grasslands, since croplands are usually characterized by a 

high rate of green-up and senescence. 

 

 
Figure 2.6. Relative importance of 19 phenological metrics as indicated by mean 

decrease in accuracy (larger values indicate higher importance). (See Table 2.2 for 

associated metric for each metric number) 

 

2.3.2 Temporal filtering of time-series of LULC maps 

Comparing the classified maps before and after temporal filtering, the percentage 

of pixels replaced varies among different classes and years (Figure 2.7). Water, 
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evergreen needleleaf forest, deciduous broadleaf forest, open shrublands, urban and built-

up, snow and ice, and barren or sparsely vegetated are replaced less than other classes, 

while mixed forest, woody savannas, grasslands, and croplands are replaced more 

frequently. This is likely due to the relatively large area of the latter classes. 

 
 

Figure 2.7. Percentage of pixels for each class for which the filtering operation changed 

the labeled class, per year from 1983 to 2012 (Note: the filtering operation does not affect 

the first and last year data, i.e., 1982 and 2013). 
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2.3.3 Inter-comparison and accuracy evaluation 

In this section, we first evaluate the reliability of the AVHRR classifications. This 

is done by a comparison with the validation data (75%), and comparisons with the entire 

2001-2012 MODIS classifications and 1995, 2000, 2005, and 2010 CLU data. These 

inter-comparisons with the validation data (75%) and MODIS data are based on 13 

classes (i.e., the column “class for AVHRR classification” in Table 2.1), the inter-

comparison with the CLU data is based on six classes (i.e., the column “class for 

comparing with CLU data” in Table 2.4). After these comparisons, we then report the 

results of the more traditional accuracy evaluation, which is based on the eight classes in 

the column “class for Google Earth Validation” in Table 2.5. After the accuracy 

evaluation we summarize the geographic and temporal trends in the 32-year time series in 

the following section. The focus of temporal trend analysis is on the areas of land cover 

classes in individual date and not change maps.  

 

2.3.3.1 Inter-comparison of classified LULC with validation data (75%)  

The user’s accuracy and producer’s accuracy vary among different classes and 

different regions (Table 2.6). It is apparent that the user’s and producer’s accuracies tend 

to be lower for most classes in Southern China compared to the other regions, possibly a 

result of cloud contamination. Some classes, for example, the barren or sparsely 

vegetated, grasslands, and mixed forest, are consistently mapped with relatively high 

accuracy (defined as here as greater than 75% user’s and producer’s accuracies). In 

contrast, water and evergreen needleleaf forest are mapped generally (though not always) 

with lower reliability (user’s and producer’s accuracies less than 50%). It is notable that 

the classes with higher accuracies, such as mixed forest, tend to cover larger areas, and 

thus have larger number of training samples (Table 2.1). The overall accuracy of 

validation data (75%) is also shown in Table 2.6. All of regions have high accuracy 

(>91%), except for southern China, which has 79.0% overall accuracy.  

 

Table 2.6. Random forest user’s accuracy (UA), producer’s accuracy (PA), and overall 

accuracy for each region based on the validation data (75%). 

 Western China Northeast China Central China Southern China 

UA PA UA PA UA PA UA PA 
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Water 44.4% 2.1% 66.7% 8.3% 75.0% 5.3% 25.0% 3.2% 

Evergreen 

Needleleaf 

Forest 

25.0% 7.1%       

Evergreen 

Broadleaf 

Forest 

76.0% 51.4%     64.2% 46.4% 

Deciduous 

Broadleaf 

Forest 

  42.6% 29.9% 85.7% 20.7%   

Mixed Forest 76.5% 79.0% 89.0% 97.9% 85.0% 89.9% 79.1% 88.4% 

Open 

Shrublands 

40.0% 3.8%   100.0% 3.6%   

Woody 

Savannas 

      66.9% 58.1% 

Grasslands 89.3% 92.9% 94.9% 97.2% 94.0% 96.6% 85.4% 86.5% 

Croplands 71.5% 50.0% 91.7% 89.2% 92.9% 92.5% 85.3% 84.6% 

Urban and 

Built-up 

  50.0% 5.9% 

 

25.0% 1.0% 52.4% 15.4% 

Cropland and 

Natural 

Vegetation 

Mosaic 

  62.8% 37.4% 

 

63.0% 22.4% 55.4% 37.0% 

Snow and Ice 66.7% 3.5%       

Barren or 

Sparsely 

Vegetated 

93.6% 94.9%   96.7% 95.5%   

Number of 

validation 

pixels 

28502 9518 19653 16518 

Overall 

Accuracy 

91.4% 91.5% 

 

93.5% 

 

79.0% 

 

 

2.3.3.2 Inter-comparison of classified LULC with MODIS MCD12Q1  

The comparison of our classification with the entire MODIS MCD12Q1 maps for 

the years not used in training the classifier (2011 and 2012) indicates a consistency of 

71.0% for 2011, and 69.3% for 2012. Inconsistency is high in Northeast China and 

Southern China (Figure 2.8), whereas the two datasets are generally much more 

consistent in Western China. It is notable that the areas of inconsistent land cover are 

common where cloud cover is more frequent, including parts of the humid Southeastern 

China, and some of the relatively mountainous regions of Northeastern and Western 

China, as well as the places where land use and land cover change appears to be more 

common. However, for the Tibetan Plateau, inconsistent regions are more common on 
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the edges of the region than the interior. This may be due to the fact that the interiors of 

region tend to be dominated by more homogenous LULC (e.g., grasslands), while the 

edges of the region are transitional areas for different LULC type. For example, in 

Southeast edge of Tibetan Plateau, mixed forest and grasslands coexist. Furthermore, the 

inconsistency between these two land use and land cover datasets may be also related to 

the different data sources (i.e., NDVI in this study and reflectance of bands 1-7 in 

MCD12Q1) and methodologies (i.e., random forest in this study and ensemble supervised 

classification algorithm in MCD12Q1) for producing these two datasets. 

 

              
                                 (a)                                                                              (b) 

Figure 2.8. Comparisons of the classified LULC maps with MODIS MCD12Q1 in (a) 

2011 and (b) 2012. 

 

Notably, the consistency values for 2011 and 2012 are only slightly lower than the 

average of the consistency values observed for 2001-2010, years that were used for 

training the classifier (Figure 2.9). This result is encouraging, because it provides some 

evidence that the classifier is able to extrapolate to years other than those used in training. 

If the training data, or the classifier, were not adequate to capture the overall patterns, we 

would expect a much greater drop in years not used in training, when the annual patterns 

of rainfall or temperature, for example, might be slightly different than the years used for 

training. 
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Figure 2.9. Consistency between classified LULC maps and MODIS MCD12Q1 from 

2001 to 2012. 

 

To further explore the consistency for different classes between these two LULC 

datasets, we display a time-series of user’s consistency (calculated as the consistent 

pixels for class i / all pixels for class i in our classified map) and producer’s consistency 

(calculated as the consistent pixels for class i / all pixels for class i in MODIS data) for 

each class from 2001 to 2012 (Figure 2.10). The classes with the highest user’s and 

producer’s consistencies for each year tend to be those of mixed forest, woody savannas, 

grasslands, croplands, and barren or sparsely vegetated. This may be due to the better 

performance of the random forest classification for the classes with a larger number of 

training samples (Table 2.1 and Table 2.6). The classes with the lowest consistencies are 

water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest, 

open shrublands, urban and built-up, and snow and ice. 
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Figure 2.10. User’s and producer’s consistencies for each class between classified LULC 

maps and MODIS MCD12Q1 from 2001 to 2012. 

 

2.3.3.3 Inter-comparison of classified LULC with CLU dataset 

The overall consistency values between our classified LULC and the CLU 

dataset, for years 1995, 2000, 2005, and 2010, are 64.3%, 64.3%, 63.0%, and 64.4%, 

respectively. Compared to the consistency values of our classified LULC maps and 

MODIS MCD12Q1, the consistency values for the CLU maps are generally lower. The 
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very different spatial resolutions (i.e., 30 m for original CLU maps and 1/12° for our 

classified LULC maps) and different classification systems may have contributed to the 

lower consistency values.  

 

Figure 2.11 summarizes the user’s and producer’s consistencies for our classified 

LULC and CLU maps for each class for 1995, 2000, 2005, and 2010, calculated as in 

Figure 2.10. Forest, grasslands, croplands, and barren or sparsely vegetated classes have 

relatively high consistencies, while water and urban and built-up have lower 

consistencies.  

 

Figure 2.11. User’s and producer’s consistencies for each class between classified LULC 

and CLU maps for 1995, 2000, 2005, and 2010. 

 

2.3.3.4 Accuracy evaluation of the 2012 classification using Google Earth imagery 

The error matrix for the accuracy assessment of the 2012 AVHRR map, using the 

visual interpretation of eight classes from 256 samples of Google Earth images from 

2012 as reference data, is shown in Table 2.7. The overall accuracy is 73.8%. The 

producer’s and user’s accuracies for urban and built-up, as well as producer’s accuracy 
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for cropland and natural vegetation mosaic and user’s accuracy for snow and ice, are low, 

but these estimates are based on a relatively small number of samples, and thus the 

uncertainty in these estimates is comparatively large. Another possible reason for the low 

accuracy of urban and built-up class may be the coarse spatial resolution of GIMMS 

NDVI data. As mentioned in Liu et al. (2003c) and Loveland et al. (2000), the urban class 

may easily be confused with other classes due to the complex mixtures of surface 

materials within each pixel. The low accuracy for cropland and natural vegetation mosaic 

and snow and ice may be due to the similarity of phenological characteristics with other 

classes (i.e., croplands and barren or sparsely vegetated, respectively). For instance, Guan 

et al. (2014) noted that in Africa, most croplands were fragmented and mixed with natural 

savannas, resulting in generally similar phenology patterns. The barren or sparsely 

vegetated class, which has a distinctive low NDVI year-round, has user’s and producer’s 

accuracies greater than 90%. Overall, the allocation disagreement (16.2%) is higher than 

the quantity disagreement (10.0%), which indicates the disagreement between our 

classified LULC map and Google Earth reference data is mainly due to errors in the 

location of the mapped classes, rather than their proportions in the map. Improving the 

quality of the training data might improve the spatial consistency of the map and thus 

improve the overall accuracy of our classified map. 
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Table 2.7. Error matrix of Google Earth data and classified LULC 

 
Reference LULC (from Google Earth interpretation) 

 
Water Forest Grasslands Croplands 

Urban 

and built-

up 

Cropland 

and natural 

vegetation 

mosaic 

Snow and 

Ice 

Barren or 

sparsely 

vegetated 

Total 

User's 

accuracy 

 

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 C

la
ss

if
ie

d
 L

U
L

C
  

Water 0.00049 0.00000 0.00000 0.00000 0.00004 0.00004 0.00000 0.00000 0.00057 86% 

Forest 0.00000 0.15101 0.00000 0.04066 0.00000 0.02323 0.00000 0.00000 0.21491 70% 

Grasslands 0.00000 0.01921 0.19211 0.07684 0.00000 0.00480 0.00000 0.01441 0.30737 63% 

Croplands 0.00000 0.03800 0.01900 0.16623 0.00475 0.01425 0.00000 0.00000 0.24223 69% 

Urban and 

built-up 
0.00000 0.00011 0.00004 0.00008 0.00015 0.00011 0.00000 0.00000 0.00049 31% 

Cropland and 

natural 

vegetation 

mosaic 

0.00000 0.00000 0.00000 0.00082 0.00000 0.00905 0.00000 0.00000 0.00988 92% 

Snow and Ice 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00053 0.00177 0.00230 23% 

Barren or 

sparsely 

vegetated 

0.00000 0.00000 0.00427 0.00000 0.00000 0.00000 0.00000 0.21799 0.22226 98% 

Total 0.00049 0.20833 0.21542 0.28463 0.00494 0.05149 0.00053 0.23417 1.00000  

Producer's 

accuracy 
100% 72% 89% 58% 3% 18% 100% 93%  73.8% 
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Using the same samples from Google Earth as reference data, the MODIS 

MCD12Q1 2012 error matrix is shown in Table 2.8. Because there is no snow and ice 

class for the sample points in 2012 MODIS data, it is impossible to calculate the 

proportion of area 𝑃𝑖𝑗 for snow and ice in error matrix. Therefor, we deleted the snow and 

ice class, remaining seven classes with 253 sample points for validating 2012 MODIS 

MCD12Q1. As with our 2012 AVHRR map, the MODIS producer’s accuracies for the 

urban and built up land, as well as cropland and natural vegetation mosaic classes, are 

very low. The allocation disagreement and quantity disagreement are 12.1% and 16.6%, 

respectively, indicating the disagreement between MODIS map and Google Earth 

reference data is mainly due to errors in the proportions in the map. The overall accuracy 

of the 2012 MODIS LULC for the seven classes is estimated as 71.3%, 2.5% lower than 

the accuracy of our classified LULC. However, the McNemar’s statistic (de Leeuw et al. 

2006) based on the comparison of the two accuracy assessments is approximately 0.4, 

indicating that this difference is not statistically significant at the 95% confidence level. 
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Table 2.8. Error matrix of Google Earth data and MODIS LULC 

 
Reference LULC (from Google Earth interpretation) 

 
Water Forest Grasslands Croplands 

Urban and 

built-up 

Cropland and 

natural 

vegetation 

mosaic 

Barren or 

sparsely 

vegetated 

Total 

User's 

accuracy 

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 M

O
D

IS
 L

U
L

C
 

Water 0.00619 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00696 89% 

Forest 0.00000 0.15929 0.01493 0.02489 0.00000 0.04480 0.00498 0.24889 64% 

Grasslands 0.00441 0.03531 0.18098 0.05738 0.00000 0.02207 0.01766 0.31782 57% 

Croplands 0.01035 0.00000 0.00345 0.13106 0.01035 0.01380 0.00000 0.16900 78% 

Urban and 

built-up 
0.00000 0.00000 0.00000 0.00119 0.00238 0.00000 0.00000 0.00358 67% 

Cropland and 

natural 

vegetation 

mosaic 

0.00000 0.00332 0.00000 0.00996 0.00000 0.01661 0.00000 0.02989 56% 

Barren or 

sparsely 

vegetated 

0.00000 0.00000 0.00367 0.00367 0.00000 0.00000 0.21652 0.22386 97% 

Total 0.02095 0.19793 0.20303 0.22816 0.01350 0.09728 0.23915 1.00000  

Producer's 

accuracy 
30% 80% 89% 57% 18% 17% 91% 

 
71.3% 
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2.3.4 Spatial patterns and temporal trends of annual LULC in China 

Example classifications for 1982, 1992, 2002, and 2012 are shown in Figure 

2.12. It is worth noting that the classification was carried out in four separate regions, 

with arbitrary boundaries (Figure 2.5). Nevertheless, a close examination of the final 

classifications (Figure 2.12) indicates no obvious evidence of artifacts or errors across 

these boundary lines. The maps show that in Western China, LULC appears broadly 

similar during the period 1982 to 2012. Croplands in Xinjiang province increase a little 

from 1982 to 2002, and then decrease from 2002 to 2012. The initial increase in 

croplands in Xinjiang may be attributed to the successful promotion of modern 

agronomic technology (Yin 2008), whilst the recent decrease, also observed by Liu et al. 

(2008), may reflect the conversion of cropland to built-up land, associated with the policy 

of increased Western China development. In Northeast China croplands increase notably 

during the three decades, while grasslands and mixed forest decrease. In Central China, 

croplands first increase from 1982 to 1992, then decease along the upper reach of Yellow 

River basin from 1992 to 2002, followed by an increasing trend during the last decade. In 

contrast, grasslands in Central China decrease from 1982 to 1992, followed by an 

increasing trend from 1992 to 2002 and a decreasing trend from 2002 to 2012. The recent 

increase in cropland, and reduction in other classes, is supported by the observations of 

Xu et al. (2015) in Central China, who noted, in a study that focused on the period since 

2000, a conversion of wetlands, barren areas, and woody shrubland to cropland. In 

Southern China, cropland area decreases during the entire period from 1982 to 2012. 

Mixed forest and evergreen broadleaf forest increase, especially along the Yangtze river 

and tropical regions, such as the south part of Yunnan province. Woody savannas first 

increase from 1982 to 2002, then decrease during the last decade. The overall changing 

patterns in croplands documented in these maps, an increase in Northern China and 

decrease in Southern China, are broadly consistent with Liu et al. (2014). However, 

although a thorough analysis of the underlying reasons for different patterns of LULC 

over different regions in China is needed, this is beyond the scope of this paper. 
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Figure 2.12. Annual LULC maps of China, produced by random forest classification. (a) 

1982, (b) 1992, (c) 2002, and (d) 2012. 

  

Based on abovementioned analyses, croplands, forest, and grasslands show the 

clear spatial change patterns. In Figure 2.13, we show the overall trends of these three 
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classes across the entire 32 years of the study for further analysis. In here, the forest class 

means evergreen needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest, 

and mixed forest in the column “class for AVHRR classification” in Table 2.1. We used 

the R nlme package (Pinheiro et al. 2014) to conduct the linear regression trend analysis 

accounting for temporal autocorrelation. The significance of the trend was tested by 

Student’s t test. The overall trend for grassland is a significant decrease at the 1% level. 

This is consistent with Liu et al. (2014), who used Landsat TM/ETM+ data acquired in 

intervals of five years to explore LULCC in China since the late 1980s. The overall trend 

for forest is increasing, which may be due to afforestation efforts, such as the “Grain for 

Green” and “Three-North Shelterbelt” projects (Liu et al. 2014). The overall trend of 

cropland is an increase during the three decades. However, the standard errors of the 

trends for forest and croplands are larger than that of grasslands, and thus the uncertainty 

of the trends may be bigger. The trends for both forest and croplands are not significant at 

the 10% level. While the overall trends of these three classes are generally consistent 

with previous studies, there are some short-term variations in the three times series that 

seem inconsistently large, such as the large temporary increase in grasslands in 1984 as 

well as the decline in forest and increase in croplands in 1993. The latter short-term 

anomaly was also identified by He and Shi (2015), but the reasons for these variations do 

need to be explored further. Absent an obvious physical explanation, such as unusual 

weather patterns, or other national policy changes or pressures (Liu et al. 2003b), our 

assumption is that these variations may be artifacts, such as the result of temporal 

inconsistent variations of GIMMS NDVI time-series due to sensor drift. Previous studies 

have revealed the temporal inconsistency of GIMMS NDVI dataset (Detsch et al 2016; 

Fensholt et al. 2009; Fensholt and Proud 2012; Tian et al. 2015). For example, Tian et al. 

(2015) found that the abrupt increase of NDVI around 1994 coincided with the sensor 

shift from NOAA-11 to NOAA-9. The coarse spatial and temporal resolution of GIMMS 

dataset may also contribute to the artifacts. Alcaraz-segura et al. (2010) stated that 

GMMMS NDVI dataset failed to capture long-term ecosystem changes in some places, 

such as central Canada, while they were evident by using higher spatial resolution NDVI 

datasets, such as Canadian Centre for Remote Sensing (CCRS) NDVI dataset. 
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Figure 2.13. Temporal changes in area of grasslands, croplands, and forest classes from 

1982 to 2013. Dotted lines represent overall trend. 

 

2.4 Summary  

Both observational and modeling studies have shown that LULCC can 

significantly affect the climate system (Takata et al. 2009, Webster 1987). This may 

happen through biogeophysical (changes in water and energy balance) and 

biogeochemical (changes in CO2 and methane) processes that modify surface wetness, 

partition surface energy between sensible and latent heat fluxes, alter roughness of the 

land surface, and change terrestrial carbon storage (McPherson 2007, Foley et al. 2003). 

China has experienced extensive LULCC, including cropland expansion, desertification, 

deforestation, afforestation, and urbanization (Houghton and Hackler 2003, Lin and Ho 

2003, Ge et al. 2004, Liu et al. 2005). However, due to the limited period for which time-

series of annual land use and land cover maps are available, LULCC information in 

China has been normally used in climate modeling in only a simplified manner. 
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To address this need for an extended time-series of LULC data, we constructed a 

three-decade continuous time series of annual land use and land cover maps of China 

from 1982 to 2013 using AVHRR GIMMS NDVI3g data. The reference data for training 

the classifier was a 25% sample of the pixels of constant LULC class in the MODIS 

MCD12Q1 annual land cover maps from 2001 to 2010. Classes for which the number of 

reference pixels were zero, or close to zero, were excluded, reducing the number of 

classes from 17 to 13 (Table 2.1). 19 phenological features were derived from the 

AVHRR data, and used as attributes in the random forest classification.   

 

Based on the validation data (75%), the overall accuracy of the AVHRR 

classification for 2001 to 2010 was greater than 91% for each region, except Southern 

China, for which it was 79%. This result is strong evidence that the AVHRR 

phenological features are broadly able to differentiate the different MODIS LULC 

classes. The higher user’s accuracy and producer’s accuracy for mixed forest, grasslands, 

croplands, and barren or sparsely vegetated in all of the four regions indicate the 

performance of random forest classifier is better in separating classes with larger 

reference data. 

 

In the comparison with the MODIS classification across all of China for 2011 and 

2012, years not used in training the classifier, consistency was 71.0% and 69.3%, 

respectively. It is not surprising that these numbers are lower than the accuracies for the 

unchanged pixels in the 2001 to 2010 reference data, since the latter data are presumably 

mostly pixels with consistent land cover with relatively distinct remote sensing spectral 

characteristics. Furthermore, we would expect slightly lower accuracy of land cover 

classification in years not used for training, since the climatic variations and thus 

phenological patterns from 2001 to 2010 may not have captured the entire range of 

possible conditions. However, comparisons of our AVHRR classification and the MODIS 

MCD12Q1 data from 2001 to 2010 (years that were used for training) show only 0-3% 

improvement, indicating that this effect is small. The relatively low consistency for 

Southern China may be due to extensive clouds in the relatively humid Southern China. 

For instance, An et al. (2015) found that poor relationships between MODIS and SPOT 
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NDVI datasets in Southern China may be attributed to greater cloud cover in that area. In 

summary, we regard the broad consistency with MODIS data as one line of evidence of 

the ability of the classifier to be extended over time. The comparisons between our 

classified maps and CLU data show the lower consistency values, ranging from 63.0% to 

64.4%. It is in our expectation, because converting the very different spatial resolutions 

(i.e., 30 m for original CLU and 1/12° for our classified LULC) and classification 

systems may induce additional inconsistencies.  

 

An overall accuracy assessment of the AVHRR classification was carried for 

2012, a year not used for training. The reference data were derived from a visual 

interpretation of stratified random samples of Google Earth imagery. This accuracy 

assessment combined all the forest classes, resulting in a simplified map with just eight 

classes. The overall accuracy of this eight-class map was 73.8%. In comparison, the 

MODIS MCD12Q1 product, which has been estimated to have a global accuracy of 

approximately 75% (Zhao et al. 2013), was found to have an accuracy of 71.3% for 

China in 2012. The McNemar’s test indicated no significant difference between the 

MODIS LULC and AVHRR LULC accuracies. We regard this finding as particularly 

notable. MODIS is a sensor with greater spectral and radiometric resolution than 

AVHRR (Tucker et al. 2005), and thus achieving an accuracy with AVHRR that is 

similar to the MODIS product is encouraging. On the hand, it is important to 

acknowledge that the MODIS MD12Q1 is generated through a global classification, 

whereas our classification is based on four regional classifications, a much simpler 

mapping task.   

 

Several areas of future work seem promising. First, using as reference data areas 

in the MODIS MD12Q1 maps that do not change over an extended period of time, an 

approach previously also successfully employed by others, including Klein et al. (2012) 

and Wohlfart et al. (2016), provides a simple approach that can easily be applied to other 

regions. In particular, we plan to investigate ways to scale the method up to a global 

approach, since having annual land cover maps of the entire world for more than 30 years 

could be particularly valuable to the climate modeling community. A second line of 
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research would be to consider alternative methods for generating the reference data. 

Although the MODIS data provide a very effective method for selecting large numbers of 

training samples over multiple years, the reliability of the MODIS data is not that high 

(Zhao et al. 2013). Moreover, since pixels of some unchanged classes are not present in 

some of the regions in the training data (e.g., deciduous broadleaf forest in Western and 

Southern China) (Table 2.1), the final classification maps in these regions do not have 

these classes. In addition, the reference data does not distribute evenly across different 

classes. Some classes have larger numbers of reference data, such as grasslands, while 

other classes have much less reference data, such as water (Table 2.1). These influence 

the classification accuracies of the classes (Table 2.6). It is possible that if we could 

generate more reliable training data, we might improve the accuracy of the AVHRR 

classification. The final area of possible future research would be to establish statistically 

robust approaches to investigate the time series for its potential to produce change maps. 

This would require an evaluation of the accuracy of the change information itself, rather 

than only an evaluation of the accuracy of the individual dates, as we have done in this 

study. 

 

In summary, this study generated annual land use and land cover maps in China 

from 1982 to 2013 using AVHRR GIMMS NDVI3g data. The overall accuracy from 

random forest classifier was high for all of the regions, except for Southern China. Based 

on a comparison of visual interpretation of images from Google Earth, the overall 

accuracy of the simplified eight-class LULC map was 73.8%, which was not statistically 

different from that of the simplified seven-class MODIS MCD12Q1 LULC map (71.3%). 

Based on temporal evolution of areas for forest, grassland, and cropland during the last 

three decades, the overall trend was consistent with previous studies (He and Shi 2015, 

Liu et al. 2014). These thirty-two years of annual maps of land cover will be an important 

dataset for quantifying the associations of recent LULCC with changes in the regional 

climate systems in East Asia, and the pre-processing, classification, and validation 

methods used in this study could be applied to other geographical regions where the 

availability of continuous LULC maps is limited. 
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3 Reducing uncertainties in applying remotely sensed land 

use and land cover maps in land-atmosphere interaction: 

identifying change in space and time* 

*Published as He, Y., T. A. Warner, B. McNeil, and E. Lee, 2018: Reducing uncertainties in applying 

remotely sensed land use and land cover maps in land-atmosphere interaction: identifying change in space 

and time, Remote Sensing, 10, 506. 

 

3.1 Introduction 

Human activities have transformed a large proportion of the plant’s land surface 

(Foley et al. 2005) through processes such as deforestation of tropical forests, as well as 

intensified agricultural land-use and urbanization in China and India. Human-induced 

land use and land cover change (LULCC) can alter surface roughness, surface wetness, 

the partitioning of surface energy between sensible and latent heat fluxes, and terrestrial 

carbon storage (McPherson 2007, Pielke 2005, Lee et al. 2015, Foley et al. 2003, 

Mahmood et al. 2014). These changes are increasingly becoming a focus of concern 

because of their potential to influence the climate system (Bonan et al. 1992, He and Lee 

2016), and as a consequence, the Intergovernmental Panel on Climate Change (IPCC) has 

emphasized the importance of understanding the climate response to LULCC at local, 

regional, and global scales (IPCC 2014). In particular, identifying and quantifying 

LULCC is crucial for a better understanding of land-atmosphere interaction and thereby 

climate change and variability (Mahmood et al. 2014). 

 

Efforts to map land use and land cover (LULC) and its changing patterns using 

remotely sensed data have been a focus of much attention over the last three decades (Liu 

and Tian 2010, Ramankutty and Foley 1999, Liu et al. 2003, Liu 1996, Liu et al. 1998, 

Schneider and Mertes 2014). Remote sensing can potentially provide not only accurate 

and repeatable global LULC information, but also time series data that can be used to 

map change (Townshend et al. 1991, Running et al. 1994). However, remotely sensed 

LULC maps usually have very different spatial resolutions from that of climate data, 

including atmospheric and oceanic variables. For both physical and observational 
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reasons, climate data generally have much coarser spatial resolution than remotely sensed 

LULC data. For example, National Center for Environmental Prediction (NCEP)/ 

National Center for Atmospheric Research (NCAR) reanalysis, European Centre for 

Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40), and Climate 

Research Unit Timeseries (CRU TS) high-resolution gridded datasets have a resolution of 

2.5° by 2.5°, 1.125° by 1.125°, and 0.5° by 0.5°, respectively. While anthropogenic 

forces and other drivers (e.g., natural disturbance from fires or storms, sharp gradients of 

riparian vegetation) can dramatically alter LULC at fine scales, the atmosphere is often 

more well-mixed, with properties changing more gradually across spatial scales. Simply 

resampling LULC maps into the same resolution as climate data is problematic, as 

LULCC is complex, with heterogeneous patterns that may not be evident in simple 

measures, such as dominant change type, in coarse resolution data. 

 

Problems of spatial scale mismatches are well known to the remote sensing 

community. For example, Woodcock and Strahler (1987) proposed local variance as a 

frame work for examining the effects of scale and spatial resolution in remotely sensed 

images. They found that traditional spectral classification that produced a single class for 

each pixel was appropriate where the spatial resolution of the imagery was much finer 

than the objects in the scene. In contrast, for images where the spatial resolution is not 

sufficient to resolve the objects, a mixture model, which estimates the proportion of the 

classes within a pixel, is required [18]. In subsequent work, a more rigorous treatment 

was developed using variograms (Woodcock, Strahler and Jupp 1988). Cao and Lam 

(1997) thoroughly reviewed scale and resolution effects that were relevant to geographic 

information system (GIS) and remote sensing, and usefully identified four 

conceptualizations of spatial scale: cartographic scale, geographic (observational) scale, 

operational scale, and measurement (resolution) scale. In a more recent study, Peng et al. 

(2017) compared several downscaling methods for remotely sensed soil moisture 

products, including a satellite-based fusion method, a method using geoinformation data, 

and model-based methods. They concluded that each method has its own advantages and 

disadvantages, and none of the methods can be applied everywhere across the world 

without any calibration or improvements [21]. In land-atmosphere interaction studies, the 
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potentially problematic scale effects of the spatial resolution of LULC data and issues of 

rescaling have been largely overlooked. For example, Community Earth System Model 

(CESM) adopts LULC data from Moderate Resolution Imaging Spectroradiometer 

(MODIS) at 0.05° (approximately 5 km) resolution (Lawrence and Chase 2007) while the 

original spatial resolution of MODIS LULC data is 1 km (Friedl et al. 2002). It is 

therefore important to identify the effect of different spatial scaling methods for LULC 

data on land-atmosphere interaction. 

 

Another uncertainty in land-atmosphere interaction studies is due to insufficient 

LULC time-series data to detect long-term LULCC patterns. Cao et al. (2015) 

emphasized that longer time periods of LULC data are needed to quantify land-

atmosphere interaction. The longest continuous annual LULC data is MODIS land cover 

data, which only covers from 2001 onward. The primary method of extracting LULCC 

information from remotely sensed data has been through separate classifications of 

imagery of two different dates, which are overlaid to obtain change information (Liu et 

al. 2003). For example, Rawat and Kumar (2015) used 1990 and 2010 Landsat Thematic 

Mapper (TM) images to classify the land surface of Hawalbagh block, Uttarakhand, 

India, and thus mapped LULCC over a 20-year period. Similarly, Liu et al. (2005) 

classified cropland based on 1990 and 2000 Landsat TM/ Enhanced Thematic Mapper 

Plus (ETM+) data to quantify the changing spatial patterns of cropland in China during 

1990 to 2000. However, LULCC information from just two time steps or even several 

time periods may obscure important overall trends in land cover change, especially in 

regions where land cover change is dynamic. For example, temporary fluctuations in a 

landscape where land cover change is common, such as occurs with the logging of short-

rotation forests (Qiao et al. 2016), may obscure important long term trends in land cover 

change. Change that is non-significant over long time periods could bias analyses that use 

LULCC as an input or initial forcing for the biophysical and biogeochemical processes of 

land-atmosphere interaction (Lee et al. 2011, Xue 1996, Fu 2003, Jones et al. 2008, Han 

and Yang 2013, Chen and Dirmeyer 2016). Considering this limitation in recent LULCC 

detection studies, a spatio-temporal analysis using a long-term time-series of LULC maps 

is an effective option. Such an approach can identify statistically significant spatio-
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temporal LULCC, and also provide information regarding the types of LULCC and the 

dominant transitions among the LULC types. 

 

In this study, we addressed these uncertainties related to the spatial and temporal 

resolutions of LULC data. Firstly, we used two regions in China (Figure 3.1): a relatively 

homogenous region (North China plain), and a more heterogeneous region (Sichuan 

basin) to explore the effect of LULC spatial resolution on the relationship of LULC data 

and the land surface climatic variable of latent heat flux. We aggregated the original 

resolution of the LULC maps from 0.0833° to 0.5°, 1.0°, and 2.5°, which are the 

commonly used spatial resolutions of climatic variables. At each resolution, we 

investigated how the correlation of LULC data and latent heat flux is affected by three 

spatial aggregation methods. We used nearest neighbor and majority aggregation 

methods, which preserve the LULC maps as nominal maps, and a fractional method, 

which transforms the nominal LULC maps into fractional maps.  

 

Using the optimal scale and scaling method identified in these experiments within 

the spatial domain, we then explored the temporal changes from 1982 to 2012 for 

croplands, forests, and grasslands, which are the dominant LULC types in China. 

Specifically, we used a newly developed 31-year times-series of annual LULC maps (He, 

Lee and Warner 2016, He, Lee and Warner 2017) to ask: Where are the statistically 

significant LULCC regions in China based on the long-term time-series LULC maps, and 

what are the dominant transitions among the different types of LULC? 
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Figure 3.1. Land use and land cover map of China from 2000, with the North China 

plain, and Sichuan basin subsets used in the spatial rescaling experiments shown. The 

geographic locations labeled in red are referred to in Section 3, Results. 

 

3.2 Materials and Methods 

3.2.1 Materials  

The primary dataset used in this study are continuous annual LULC maps of China, 

covering the period from 1982 to 2012. Figure 1 shows the LULC map of 2000 as an 

example. The data were generated by (He et al. 2017), using a random forest 

classification of 19 phenological metrics derived from AVHRR Global Inventory 

Modeling and Mapping Studies (GIMMS) third generation NDVI (NDVI3g) data. The 19 
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phenological metrics include start of growing season, end of growing season, maximum 

and minimum NDVI values, and so on. The classifier was trained using reference data 

derived from pixels within the MODIS land cover (MCD12Q1) maps that did not change 

over the period of 2001 to 2010. The phenological metrics were extracted using 

Interactive data language (IDL; Harris Geospatial Solutions, Florida, USA) and the 

classification was carried out using R randomForest package. The LULCC maps have a 

0.0833° (approximately 8 km) spatial resolution and 13 classes, as listed in the legend of 

Figure 1. The overall accuracy of a simplified eight-class version of the 2012 LULC map 

was estimated to be 73.8% (refer to He et al. (2017) for more information). We chose 

LULC maps of 1982, 1988, 1994, 2000, 2006, and 2011 for spatial rescaling 

experiments.  

 

As a climatic variable for exploring the effects of rescaling, we chose latent heat 

flux, because it links the land surface condition to the atmosphere. Latent heat flux data 

was obtained from the FLUXNET-Multi-Tree Ensemble (MTE). FLUXNET-MTE 

datasets were estimated using a machine learning approach called model tree ensemble 

based on FLUXNET measurements, a long-term remotely sensed monthly fraction of 

absorbed photosynthetically active radiation (fAPAR) dataset, near surface air 

temperature from Climatic Research Unit (CRU), precipitation data from the Global 

Precipitation Climatology Center (GPCC), an estimate of the top of the atmosphere 

shortwave radiation, and information on land cover (Jung et al. 2011). 

The land cover map used in FLUXNET-MTE dataset was static and did not vary 

over time (Jung et al. 2011). In the MTE model, the land cover data were only used to 

stratify the data, and did not act as predictor variables for deriving data layers such as the 

latent heat flux in the regression equations (Jung, Reichstein and Bondeau 2009). The 

global estimates of latent heat flux were similar to other independent estimates (Oki and 

Kanae 2006, Trenberth, Fasullo and Kiehl 2009, Dirmeyer et al. 2006) and the R-squared 

was 0.92 when correlated with catchment water balances (Jung et al. 2010). The 

FLUXNET-MTE dataset has been widely used in hydrology and land-atmosphere 

interactions studies (Jung et al. 2010, Bonan et al. 2011, Liu et al. 2013, Koster and P. 

Mahanama 2012, Pan et al. 2015). The spatial resolution of the latent heat flux datasets is 



 

50 

0.5° by 0.5°, over the period 1982 to 2011. For consistency with the LULC data from the 

years 1982, 1988, 1994, 2000, 2006, and 2011, latent heat flux during the peak growing 

time of August in 1982, 1988, 1994, 2000, 2006, and 2011 was chosen for the analysis.  

 

Although the latent heat flux derived from FLUXNET-MTE can be influenced by 

land cover types (Yang et al. 1999, Biraud et al. 2005, Williams and Torn 2015), our 

objective is to investigate how the relationships between latent heat flux and LULC data 

derived from different spatial scaling methods (i.e., fractional method, nearest neighbor 

method, and majority aggregation method) change over three different resolutions (i.e., 

0.5°, 1.0°, and 2.5°). In doing so, we anticipate identifying the best spatial rescaling 

method, which can preserve the relationships between latent heat flux and LULC data 

among different scales.  

 

3.2.2 Methods  

3.2.2.1 Spatial scaling methods 

To explore the suitability of different approaches for scaling LULC maps for 

land-atmosphere interaction studies, we compared three rescaling methods: nearest 

neighbor, majority aggregation, and a fractional method. The effectiveness of these 

methods was compared for the aggregation of LULC maps of China with an original 

0.0833° spatial resolution, which we rescaled to 0.5°, 1.0°, and 2.5° spatial resolution.  

 

Nearest neighbor and majority aggregation methods, which are commonly used 

for categorical data such as LULC maps, preserve the nominal nature of LULC maps. In 

the nearest neighbor method, the value of an output pixel is determined by the pixel 

nearest to it in the input data (Baboo and Devi 2010). Majority aggregation assigns the 

most frequently occurring value in the input data to the new pixel (He et al. 2017). The 

fractional method is a proportional estimate of land cover for each class at the coarser 

resolution. Specifically, the spatial resolution of the LULC map is aggregated from 

0.0833° to 0.5°, 1.0°, and 2.5°, by calculating the proportion of the new coarse-scale 

pixel covered by each class within respectively a 6 x 6, 12 x 12, and 30 x 30 pixel region 

in the fine scale data. 
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We chose bilinear interpolation to resample the latent heat flux data from the 

original 0.5° to 1.0° and 2.5° spatial resolutions, because it is the method commonly used 

in the climate community to regrid interval data. In bilinear interpolation, the output pixel 

value is estimated through linear interpolation of the four pixel values in two orthogonal 

directions within the input data (Han, Li and Gong 2010). 

 

3.2.2.2 Exploring the relationship between LULC data and latent heat flux at 

different spatial resolutions 

For this section, we focused on croplands, because croplands are the dominant 

LULC type in the North China plain and the Sichuan basin (Figure 3.1). For fractional 

LULC maps, we explored relationships between LULC data and latent heat flux by 

exploring the correlation between the fraction of croplands and latent heat flux. The 

correlation coefficient is (Pearson 1895): 

                                           𝑟 =
∑ 𝑋𝑌−

∑ 𝑋 ∑ 𝑌
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(∑ 𝑌)2

N
)

                                            (1) 

Where, X is the fraction of croplands at different spatial scales in each pixel, and 

𝑌 is the corresponding August latent heat flux value for each pixel. The significance of 

the correlation coefficient was tested by Student’s t test. 

 

For nominal LULC maps, the relationship between LULC data and latent heat 

flux was tested by the Wilcoxon rank sum test. The Wilcoxon rank sum test was used to 

identify the significance of the difference in the distributions of the latent heat flux values 

in croplands compared to non-croplands. The Wilcoxon rank sum test is a non-parametric 

test and suitable for small samples (Hogg, Tanis and Zimmerman 2014). We chose the 

Wilcoxon rank sum test because our sample size is proportionally reduced as the spatial 

scale coarsened.  

 

3.2.2.3 Linear regression trend analysis 

We tested the usefulness of the fractional rescaling method for evaluating trends 

in land cover change. We aggregated our 31-year LULC maps using the fractional 
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method, and in doing so, generated fractional maps for croplands, forests, and grasslands, 

respectively. These 31-year fractional maps were summarized through linear regression 

trend analysis and spatial pattern correlation analysis to determining the long-term 

LULCC patterns. 

 

Linear regression analysis is a statistical method for analyzing the relationship 

between two or more variables by evaluating the degree to which one variable can be 

predicted or explained by the others (Freund, Wilson and Sa 2006). The simple linear 

regression model is: 

                                       𝑌=a + b 𝑋 + e                                                        (2) 

Parameters a and b are the regression coefficients, which are estimated by a least 

squares method (Walpole et al. 1993); e is the regression residual. In this study, we are 

interested in b, the slope of the regression line, which characterizes how the 𝑌 variables 

(fraction of croplands, forests, and grasslands, respectively) change over time (𝑋). The 

significance of the trends was estimated using a Student’s t test. A trend analysis was 

performed to determine the spatio-temporal changes in croplands, forests, and grasslands 

for each grid cell independently, and regions where LULCC is significant were thereby 

identified. Statistically non-significant regions were masked out, and consequently only 

pixels significant at the 5% level are shown in the maps. 

 

3.2.2.4 Spatial pattern correlation analysis 

Within four regions where statistically significant changes were identified, we 

performed spatial pattern correlation analysis to investigate the transitions among the 

LULC types (e.g., grasslands transitioning to croplands, or croplands to forests). The 

correlation coefficient here is the same as Equation (1). However, the 𝑋 and 𝑌 have a 

different meaning. Here, 𝑋  and 𝑌  are the trend values (b in the Equation (2)) of 

croplands, forests, and grasslands at each grid cell, respectively. The significance of 

correlation coefficient was quantified using a adjusted Student’s t test, accounting for 

spatial autocorrelation through a correction of the degrees of freedom of the samples 

(Clifford, Richardson and Hémon 1989). 
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3.3 Results and Discussion 

3.3.1 Categorical and factional LULC maps at different spatial resolutions in the 

North China plain and the Sichuan basin 

The North China plain is a relatively homogenous region, with croplands 

dominant. In contrast, the Sichuan basin is a relatively heterogeneous region, with 

croplands, mixed forests, and grasslands prevalent (Figure 3.1). The overall pattern of 

croplands in the North China plain and the Sichuan basin is evident in both categorical 

LULC maps and fractional maps at all three spatial scales (Figure 3.2). However, due to 

coarsening of the spatial scale, the heterogeneous patterns of croplands are smoothed, 

especially at the 2.5° scale. Generally speaking, nearest neighbor, majority aggregation, 

and fractional methods capture the croplands patterns better at the finest scale, 0.5°, with 

notable smoothing at the scales of 1.0° and 2.5°.  

 
Figure 3.2. Categorical LULC and fractional maps of 2000 in North China plain and 

Sichuan basin at 0.5°, 1.0°, and 2.5° spatial resolution, aggregated by (a) Nearest 

neighbor method, (b) Majority aggregation method (Please refer to Figure 3.1 for 

legend), and (c) Fractional method (Legend is the fraction of croplands in each grid cell 

from 0-100%) 
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3.3.2 Relationships of categorical and fractional LULC data with latent heat flux 

at different spatial resolutions in the North China plain and the Sichuan 

basin 

The correlation coefficients for the association of fraction of croplands and latent 

heat flux in both the North China plain and the Sichuan basin change minimally as the 

spatial scale coarsened for all six years, and in each case is significant at the 1% level 

(Table 3.1). The difference in mean correlation coefficient of the six years among the 

values within each of these two regions is quite small (≤0.08). The significant positive 

correlations are associated with the increased evapotranspiration during the peak growing 

time of crops. In general, the correlations in the North China plain are larger than those in 

the Sichuan basin, which may due to the more croplands in the North China plain (Figure 

3.1). 

 

Table 3.1. Spatial correlations of annual fraction of croplands with August latent heat 

flux in 1982, 1988, 1994, 2000, 2006, and 2011 at 0.5°, 1.0°, and 2.5° spatial resolution 

in the North China plain and the Sichuan basin. 

Year Correlation Coefficient, r 

 0.5° spatial resolution 1.0° spatial resolution 2.5° spatial resolution 

 North 

China plain 

Sichuan 

basin 

North 

China plain 

Sichuan 

basin 

North 

China plain 

Sichuan 

basin 

1982 0.50* 0.44* 0.59* 0.47* 0.53* 0.55* 

1988 0.62* 0.49* 0.69* 0.56* 0.64* 0.59* 

1994 0.53* 0.63* 0.62* 0.65* 0.58* 0.64* 

2000 0.55* 0.44* 0.60* 0.51* 0.59* 0.54* 

2006 0.65* 0.35* 0.70* 0.45* 0.70* 0.48* 

2011 0.63* 0.51* 0.71* 0.57* 0.70* 0.57* 

Mean 0.58 0.48 0.65 0.53 0.62 0.56 

*: Significant at the 1% level. 

 

For the relationships between categorical LULC data and latent heat flux, the 

distribution of latent heat flux in croplands and non-croplands is different at the 1% 

significance level for all six years at both the 0.5° and 1.0° scales in the North China 

plain and the Sichuan basin for both nearest neighbor and majority aggregation methods 

(Table 3.2 and Table 3.3). At the 2.5° scale, the significance level varies among years in 

the North China plain. The difference of the distribution is significant in 2006 and 2011 

and not significant in 1982 for both nearest neighbor and majority aggregation methods 
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(Table 3.2). In the Sichuan basin, the difference of the distribution is not significant at 

the 2.5° resolution for all six years, excepting 1994 for nearest neighbor method and 2011 

for majority aggregation method, at 5% level (Table 3.3). In addition, the significance 

level decreases more in the more heterogeneous Sichuan basin than in the relative 

homogenous North China plain. 

 

Table 3.2. Wilcoxon rank sum test p values for differences in the distribution of latent 

heat flux values over croplands and non-croplands for two spatial scaling methods in 

1982, 1988, 1994, 2000, 2006, and 2011 at the 0.5°, 1.0°, and 2.5° spatial resolutions in 

the North China plain. 

Year p-value of Wilcoxon rank sum test 

 0.5° spatial resolution 1.0° spatial resolution 2.5° spatial resolution 

 Nearest 

neighbor 

Majority 

aggregation 

Nearest 

neighbor 

Majority 

aggregation 

Nearest 

neighbor 

Majority 

aggregation 

1982 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.51 p = 0.22 

1988 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.09 p = 0.09 

1994 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.01 p = 0.03 

2000 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.02 p = 0.07 

2006 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 

2011 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 

 
 

Table 3.3. Wilcoxon rank sum test p values for differences in the distribution of latent 

heat flux values over croplands and non-croplands for two spatial scaling methods in 

1982, 1988, 1994, 2000, 2006, and 2011 at the 0.5°, 1.0°, and 2.5° spatial resolutions in 

the Sichuan basin. 

Year p-value of Wilcoxon rank sum test 

 
0.5° spatial resolution 1.0° spatial resolution 2.5° spatial resolution 

 
Nearest 

neighbor 

Majority 

aggregation 

Nearest 

neighbor 

Majority 

aggregation 

Nearest 

neighbor 

Majority 

aggregation 

1982 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.44 p = 0.41 

1988 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.07 p = 0.12 

1994 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.02 p = 0.06 

2000 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.11 p = 0.09 

2006 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.07 p = 0.08 

2011 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.17 p = 0.03 
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In summary, the fractional method preserves the significant relationship between 

LULC data and latent heat flux for all six years and all three resolutions in both the North 

China plain and the Sichuan basin, while the nearest neighbor and majority aggregation 

methods cause these correlations to diminish and even become statistically insignificant 

at coarser scales in some years. Therefore, we recommend rescaling using fractional 

maps in land-atmosphere studies. 

 

3.3.3 Fractional maps of croplands, forests, and grasslands 

Based on the aforementioned analyses, the fractional method preserves the 

significant relationship between LULC data and latent heat flux, and the finer scale (i.e. 

0.5° resolution in this study) best captures the spatial patterns. Therefore we used the 

fractional method to resample LULC maps to the spatial resolution of 0.5° to identify 

spatio-temporal changes of croplands, forests, and grasslands from 1982 to 2012 in 

China. Figure 3.3 shows the mean fractional maps of croplands, forests, and grasslands 

averaged over the period of 1982 to 2012. The maps are color-coded by the fraction of 

croplands, forests, and grasslands in each 0.5° grid cell. Figure 3.3 (a) indicates that 

croplands dominate in the Northeast China plain, the Hai river basin, the Yellow river 

basin, the Yangtze river basin, and the Sichuan basin (refer to Figure 1 for the locations 

of these regions). All of these regions have been recognized as important Chinese 

agricultural regions since the 11th century (Deng, Chuangjun and Zhikang 1983, Liu et 

al. 2005, Korontzi et al. 2006, Liu et al. 2010).  

 

Forests dominate along the borders of the Northeast China, including the 

mountain ranges of Daxing’anling, Xiaoxing’anling, and Changbaishan, as well as 

southeast and southwest mountainous regions (Figure 3.3 (b)). This overall spatial 

pattern of the distribution of forests in China is consistent with the findings of Yin et al. 

(2015) and Fenning (2014). Grasslands are distributed in a belt, stretching from the 

Northeast China plain adjacent to Inner Mongolia, to the Tibetan Plateau. This region 

covers the major grassland regions of China, including the Hulun Buir and Xilin Gol 

grasslands in Inner Mongolia and the Naqu grassland in Tibet (Figure 3.3 (c)). The 
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additional grasslands identified in this study, such as the Narat and Bayinbuluke 

grasslands in northern Xinjiang province, in far northwestern China, were also identified 

by Kang et al. (2007). 

 
Figure 3.3. Mean fraction of (a) croplands, (b) forests, and (c) grasslands averaged over 

the period from 1982 to 2012. The map depicts the fraction of croplands, forests, and 

grasslands in each 0.5° grid cell. 

 

3.3.4 Spatio-temporal changes of croplands, forests, and grasslands during the last 

three decades 

The linear regression trend analysis indicates how the fraction of croplands, 

forests, and grasslands changed from 1982 to 2012 at each grid cell (Figure 3.4). The 

color bar represents the slope of the linear regression model over time (i.e., years) for 

locations where the change is statistically significant at the 5% level. Croplands 

significantly increased in the Northeast China plain and the Yellow river basin and 

decreased in the Yangtze river basin (Figure 3.4 (a)). The highest rate of increase, 

greater than 1.5%/year, occurred in the Northeast China plain. The increase in croplands 

(a) Croplands (b) Forests 

(c) Grasslands 

Cell fraction (%) 
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in the Northeast China plain may due to the increase in population, and the associated 

increase in demand for food (Liu et al. 2014). Furthermore, policy regulations, such as 

scrapping the agriculture tax in 2006 and increasing agricultural investment in Northeast 

China to improve cropland yields in 2008, as well as scientific and technological progress 

in agriculture, including increased access to fertilizer and irrigation, as well as the 

mechanization of agriculture, may also have all contributed to the increase in croplands 

(Man et al. 2016). There are also some small isolated areas of significantly increased 

croplands in the northern part of Xinjiang province, in northwestern China, which may be 

attributed to the successful promotion of modern agronomic technology (Liu et al. 2010, 

Yin 2008). The decreased croplands in the Yangtze river basin may be due to increasing 

forests (Figure 3.4 (b)), and also the expansion of industry in that region, which has 

resulted in arable lands being converted to built-up areas (Liu et al. 2010). The overall 

changing patterns of croplands, especially the increase in North China and the decrease in 

South China, are consistent with those in Liu, et al. (2010). 

 

 

(a) Croplands (b) Forests 

(c) Grasslands 

Regression slope 

(%/year) 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 
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Figure 3.4. Spatial linear regression trends of fraction (%/year) for (a) croplands, (b) 

forests, and (c) grasslands from 1982 to 2012. The color is the slope of linear regression 

model. Statistically non-significant areas are masked out and significant areas at the 5% 

level are shaded. Rectangle 1: Northeast China plain, 2: Yellow river basin, 3: Yangtze 

river basin, and 4: Southwest China. 

 

In contrast to the trend for croplands, forests significantly decreased along the 

borders of Northeast China, and increased in the Hai river basin, the Yangtze river basin, 

and Southwest China (Figure 3.4 (b)). The increasing trend of forest cover in the 

Yangtze river basin may be due to the national forest protection project after the 

catastrophic flood of 1998 (Liu et al. 2010) and the construction of the forest shelter-belt 

system (Liu et al. 2014), which converted other types of LULC, such as croplands, into 

forest. The increasing trend of forests in southern mountainous areas may be attributed to 

the “Grain for Green” program and related afforestation activities (Liu et al. 2014, Tong 

et al. 2018) The reclamation of forests to control sandstorms in the Hai river basin, 

including the cities of Beijing and Tianjin, is a likely cause of the increasing forests in 

areas neighboring these two cities.  

 

Grasslands significantly decreased in the Northeast China plain, the Yellow river 

basin, and Southwest China, and increased in some parts of Western China (Figure 3.4 

(c)). Grassland degradation, which is closely associated with desertification, is a long-

term environmental concern in China. The main factors causing grassland degradation are 

over-grazing and cultivation, processes that are common in, for example, Inner Mongolia 

(Waldron, Brown and Longworth 2008). However, a revision of the Grassland Law in 

2002, which controls all aspects of livestock grazing, may yet result in recovery of 

grasslands in Western China (Figure 3.4 (c)) (Waldron et al. 2008). The pattern of 

decreasing grasslands also seems to correspond with an increase in croplands and forests.  

 

Figure 3.5 summarizes the relative frequency of fraction of croplands, forests and 

grasslands for grid cells where the LULCC trend is significant. The histograms show that 

for all three LULC types, regions with lowest fractions of LULC (i.e., 0-20%) have the 
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largest number of grid cells with significantly changed LULC, whether the trend is 

decreasing or increasing, indicating that change trends to occur in cover classes that are a 

minority proportion of the landscape, rather than the dominant fraction. For croplands 

and forests, increasing trends are the most common, even where forests and croplands 

already dominate. For grasslands, decreasing trends dominate, especially for areas where 

grasslands are a low percentage of the land cover even before the additional loss of 

grassland. In contrast, in areas of moderate percentages of grassland cover (40-80%), 

increasing and decreasing trends somewhat balance resulting in only a small net loss of 

grasslands in such areas. 

 

Figure 3.5. Relative frequency of fraction of (a) croplands, (b) forests, and (c) grasslands 

for the gird cells where the LULCC trend is significantly changed, as shaded in Figure 4. 

(a) (b) 

(c) 
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Blue color represents significantly decreasing trend and red is significantly increasing 

trend. 

 

3.3.5 Transitions between croplands, forests, and grasslands 

To examine the underlying relationships among the changes in croplands, forests, 

and grasslands during the last three decades, we performed spatial pattern correlation 

analysis, drawing only on grid cells with trends significant at the 5% level. We studied 

the three LULC types in the selected regions (shown as rectangles in Figure 3.4): the 

Northeast China plain (Rectangle 1 in Figure 3.4), the Yellow river basin (Rectangle 2), 

the Yangtze river basin (Rectangle 3), and Southwest China (Rectangle 4). Scatterplots 

and spatial correlation coefficients for the linear regression trends (%/year) of croplands, 

forests, and grasslands are shown in Figure 3.6. 

 

The spatial correlations coefficients between croplands, forests, and grasslands in 

the four regions show very different associations. In the Northeast China plain and the 

Yellow river basin, grid cells with increasing croplands generally correspond to 

decreasing grasslands, with a significant negative correlations of r= -0.934 in the 

Northeast China plain (Figure 3.6 (b)) and r= -0.894 in the Yellow river basin (Figure 

3.6 (e)). Trends of increased forests are significantly correlated with trends of decreased 

grasslands in the Yellow river basin (Figure 3.6 (f)) and the Northeast China plain 

(Figure 3.6 (c)). From Figure 3.6, together with the spatial trends shown in Figure 3.4, 

we can draw the general inference that in the Northeast China plain and the Yellow river 

basin the dominant transition was replacement of grasslands by croplands. In addition, in 

the Yellow river basin, grasslands also appear to have been converted to forest cover, 

though the pattern is less strong than with croplands. In the Yangtze river basin, the only 

significant association is between decreasing croplands and increasing forests (r= -0.545) 

(Figure 3.6 (g) and Figure 3.4). In Southwest China, the transition between forests and 

grasslands has the strongest association (r= -0.668) (Figure 3.6 (l)), followed by a 

transition between croplands and forests (r= -0.433) (Figure 3.6 (j) and Figure 3.4). 
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Figure 3.6. Scatterplots and spatial correlation coefficients among the trends of 

croplands, forests, and grasslands for the four selected regions shown in Figure 4. Each 

data point represents the significant trends at the 5% level over the 31-year for a 

particular 0.5° grid cell. 
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3.4 Summary 

Remotely sensed LULC maps have been widely used in land-atmosphere 

interaction studies, and this research identified key uncertainties related to scale 

mismatches in the spatial and temporal domains. Both categorical LULC maps and 

fractional maps capture the overall pattern of croplands in the relatively homogenous 

North China plain and the comparatively heterogeneous Sichuan basin at all of the three 

spatial resolutions studied (0.5°, 1.0°, and 2.5°). The significant positive correlation 

between fraction of croplands and latent heat flux in August of 1982, 1988, 1994, 2000, 

2006, and 2011 at the three spatial resolutions is quite similar in the two study areas, 

although the difference in r values between 0.5° and 2.5° is greater in the Sichuan basin 

than in the North China plain. For the categorical LULC maps, the distribution of latent 

heat flux values over croplands and non-croplands is significantly different at the 1% 

level at the 0.5° and 1.0° spatial resolutions for both nearest neighbor and majority 

aggregation methods in North China plain and Sichuan basin for all of the six years. 

However, at the 2.5° spatial resolution, the significance level varies among years. 

Nevertheless, both the nearest neighbor and majority aggregation methods are 

particularly problematic in regions with more heterogeneous, fine-grained spatial patterns 

of LULC. In contrast, for both the relatively homogeneous North China plain and 

heterogeneous Sichuan basin, the fractional maps preserved the relationships between 

LULC data and latent heat flux at all the spatial scales. Therefore, we recommend 

rescaling using fractional maps in observational land-atmosphere studies. In summary, 

the fractional scaling method preserves significant correlations among LULC data and 

latent heat flux at all three studied scales (0.5°, 1.0°, and 2.5°), while nearest neighbor 

and majority aggregation methods cause these correlations to diminish and even become 

statistically insignificant at coarser scales. 

 

Based on the optimal spatial scaling method, this study explored spatio-temporal 

changes in croplands, forests, and grasslands from 1982 to 2012 through 31-year LULC 

maps, which were aggregated to 0.5° using the fractional method. The annual LULC 

maps enable a time-series analysis of changes in LULC, which is the key attribute 

compared to the previous LULCC studies of China. Croplands significantly increased in 
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the Northeast China plain and the Yellow river basin, and decreased in the Yangtze river 

basin. Forests significantly decreased along the border of Northeast China, and increased 

in the Yangtze river basin and Southwest China. Grasslands significantly decreased in the 

Northeast China plain, the Yellow river basin, and Southwest China, and increased in 

some parts of Western China. The analysis of transitions among significant changes in 

croplands, forests, and grasslands shows that decreasing grasslands in the Northeast 

China plain and the Yellow river basin are significantly associated with increasing 

croplands. Similarly, increasing forests in the Yangtze river basin are significantly 

associated with decreasing croplands. In Southwest China, decreasing grasslands and, to 

a lesser extent, decreasing croplands, are significantly correlated with the increasing 

forests. 

 

The time-series analysis of annual LULC maps in China suggests a complex 

pattern of spatio-temporal changes in croplands, forests, and grasslands from 1982 to 

2012. The analysis facilitates the identification of regions where change is extensive and 

statistically significant, such as North China, where croplands have increased 

significantly, and South China, where forest have increased significantly. Compared to 

previous studies, which relied on overlaying LULC maps covering a short-time period 

(Fan, Weng and Wang 2007), the statistically significant patterns of spatio-temporal 

changes from our study provide a robust approach for capturing LULCC in China. 

 

The identified LULCC patterns in this study have the potential to influence the 

regional climate in China. The increasing forest in the Yangtze river basin and Southwest 

China, associated respectively with decreasing of croplands and grasslands, is likely 

decreasing the region’s albedo, because of the higher albedo of croplands and grasslands, 

compared to forest. A decreased albedo would induce higher net radiation, and 

consequently promote higher temperatures (Bonan et al. 1992). On the other hand, the 

conversions from croplands and grasslands to forests may reduce surface air temperature 

due to the cooling effects from the higher evapotranspiration of forest (Li et al. 2015, 

Betts 2011). The transitions of LULC types within the regions of extensive significant 

LULCC revealed by this study can potentially alter surface heat and moisture conditions 
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and thereby induce changes in the regional climate system. Previous studies have 

explored the climatic impacts of LULCC in China. For examples, Cao, et al. [24] used 

the weather research and forecasting (WRF) model to investigate how different LULCC 

types affect regional climate in the ago-pastoral transitional zone of North China. Ma et 

al. (2013b) simulated afforestation impacts on the regional climate in Jiangxi province, 

China using WRF. Fu (2003) applied a regional integrated environmental model system 

(RIEMS) to investigate the effects of human-induced land cover change on the East Asia 

monsoon. However, most previous studies have not been able to incorporate long-term 

temporal LULCC patterns due to lack of long-term time-series LULC data. Incorporating 

long-term LULCC pattern, such as that produced in this study, could therefore be useful 

for future empirical and modeling studies investigating how LULCC affects regional 

climate. 
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4 Observational cooling effects of croplands expansion in the 

troposphere over Northeast China during late growing 

season* 

* To be submitted to Geophysical Research Letter 

  

4.1 Introduction 

Northeast China is one of the agriculture heartlands of China (USDA 2016, Sun 

et al. 2007, Ye and Fang 2009). With good soil quality, Northeast China accounts for 

almost 20% of the total grain production in China (Yang et al. 2014). In the past four 

decades, summer and autumn rainfall in Northeast China has significantly decreased 

(Piao et al. 2010, Ye 2014, Wang et al. 2015), resulting in severe drought. In 2014, a 

drought in Liaoning Province of Northeast China affected 1.8 million hectares of crops 

(Yi 2014). Irrigation has been practiced to mitigate the negative effects of drought in crop 

production (Yin et al. 2016, Chen et al. 2017). The irrigated area has increased from 

27,000 ha in 1995 to 667,000 in 2005 in western part of Jilin province in Northeast China 

(Li et al. 2005). The human-induced land use and land cover changes due to the 

expansion and intensification of agricultural practices might affect heat and moisture 

fluxes which could influence regional climatic conditions. Northeast China as the largest 

plain of China is surrounded by the mountains of Daxing’anling Mountain in the west, 

Xiaoxing’anling Mountain in the north, and Changbai Mountain in the east. Considering 

the isolated geography to the surrounding oceans, Northeast China is an ideal place to 

explore the land-atmosphere interaction associated cropland expansion.  

 

Both modeling and observational studies have shown that agriculture practices, 

including conversion of non-croplands to croplands and intensification of irrigation or 

fertilization, could significantly impact the climate system through biogeophysical and 

biogeochemical processes in the land-atmosphere interaction (Cook, Puma and Krakauer 

2011, Mahmood et al. 2006, Wei et al. 2013, Lee et al. 2011, Lobell, Bonfils and Faurès 

2008, Zhao et al. 2016). Agriculture activities may reduce surface air temperature 

through altering the Bowen ratio from sensible to latent heat flux (Bonan 2001, Han and 

Yang 2013), increasing moisture content in the atmosphere by increasing the 
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transpiration rate (Zhang et al. 2013), and decreasing monsoon rainfall by reducing the 

land-ocean heat contrast (Lee et al. 2009, Puma and Cook 2010). With irrigated and dry 

simulations using a regional atmospheric model of the U.S. High Plains, Adegoke et al. 

(2003) found a 15% decrease in sensible heat flux and 36% increase in latent heat flux, 

and thereby 1.2°C decrease in the near-ground temperature. From an observational 

perspective, Zhang et al. (2013) showed that the wetting effects of cropland greenness 

changes accounted for about 48% of the spatial variance of daily minimum specific 

humidity change for the spring in the North China Plain. Puma and Cook (2010) explored 

the effects of irrigation on the global climate during the 20th century using an atmosphere 

general circulation model and found precipitation increased downwind of major irrigation 

areas, and decreased in India due to a weaker summer monsoon. A modeling study of the 

impact of agriculture intensification and irrigation on land-atmosphere interactions 

indicated that irrigation caused reduction in the surface temperature and led to a modified 

regional circulation pattern and changes in mesoscale precipitation (Douglas et al. 2009). 

 

The observational evidence of cooling effect of agriculture activities in near-

surface atmosphere in China has been documented. By using 90 meteorological stations, 

Han and Yang (2013) found the trends in daily average surface temperature for May-

September were expected to decrease by -0.018 oC per decade along with a 10% increase 

in cultivated land proportion over Xinjiang, Northwest China. Zhu, Liang and Pan (2012) 

found the difference in the magnitude of daytime land surface temperature between areas 

with irrigation percentages of more than 50 and less than 50, was as high as 2.7 K during 

the driest year over Jilin, Northeast China. Zhao et al. (2016) stated the stations with large 

cultivated land fraction experienced a less significant increase in air temperature, 

especially in daily maximum temperature during growing season from May to September 

in Northeast China. Although the near-surface cooling effect of enhanced agricultural 

activities have been observed, how agriculture activities can influence the climatic 

conditions in the mid and upper troposphere is rarely studied through observational 

perspective and to our knowledge it has not yet been explored in China. 
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Another limitation in many previous observational studies is access to multi-

temporal data to detect the year-to-year as well as long-term variations of cropland cover. 

Consequently, previous studies have used a map of a specific year to represent the 

croplands of the entire study period (Zhu et al. 2012, Han and Yang 2013, Zhang et al. 

2013). This may ignore the tremendous change in agriculture practices, such as croplands 

expansion or abandonment, leading to uncertainties in estimating of the climatic effects 

of agriculture activities. The impacts of agriculture activities on climate might be 

overestimated or underestimated. Therefore, observational studies with more realistic 

croplands variations derived from more robust data (e.g., remotely sensed imagery) over 

longer temporal periods are needed to better understand the climatic effects of agriculture 

activities. 

 

This study applied a newly developed, 29-year continuous annual land use and 

land cover maps from 1982 to 2010 derived from remotely sensed data to extract 

cropland cover change information in Northeast China. Based on the identified 

significantly changed regions, this study explored the impacts of agriculture activities on 

atmospheric conditions in the Northeast China during the late growing season (August 

and September: AS) not only near the surface but also in the mid and upper troposphere. 

        

4.2 Data and Methods 

4.2.1 Data 

Annual fractional maps of croplands were used to detect croplands change in 

Northeast China. Fractional maps of croplands were generated from a time-series of land 

use and land cover (LULC) maps from 1982 to 2013 produced by He et al. (2017), using 

a random forest classification based on 19 phenological metrics derived from AVHRR 

Global Inventory Modeling and Mapping Studies (GIMMS) third generation NDVI 

(NDVI3g) data. The consistency values between AVHRR LULC maps and Moderate 

Resolution Imaging Spectroradiometer (MODIS) LULC maps for the years 2001-2012 

range from 69.3% to 72.5%, and the overall accuracy of the 2012 LULC map was 73.8%. 

The LULC maps have a spatial resolution of 1/12°. We displayed LULC map of the 

Northeast China in 2012 as an example (Figure 4.1 (a)). We aggregated the 32-year 
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LULC maps to 0.50 using a fractional method, as a fractional method preserves the 

significant relationship between LULC data and climate variable in China (He et al. 

2018). In doing so, this study generated fractional maps of croplands from 1982 to 2013. 

 

Figure 4.1. (a) The location of Northeast China (the background is land use and land 

cover map in 2012 from (He et al. 2017)), (b) mean fraction of croplands averaged over 

the period from 1982 to 2010 (the color bar is the fraction of croplands in each 0.5o grid 

cell), (c) spatial linear regression trend of fraction (%/year) for croplands from 1982 to 

2010 (the color bar is the slope of linear regression model, statistically non-significant 

regions were masked out and only pixels significant at the 10% level are shown in the 

map), and (d) temporal linear regression trend of fraction for croplands from 1982 to 

2010 (the fraction of croplands was area-averaged for each year over the regions with 

significantly increased croplands in Northeast China, as shown in Figure 4.1 (c)). The 

black dashed polygon in (b) and (c) indicates the Northeast China study region. 
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Daily mean of surface air temperature (°C) date from Chinese Meteorological 

Data Sharing Service System of the China Meteorological Administration (CMA) were 

used to calculate the averaged AS temperature in Northeast China at each weather station. 

This dataset includes records from January 1954 to July 2011 (Meng et al. 2014) for 

approximately 120 weather stations in Northeast China. To determine the influence of 

croplands expansion on mid and upper level atmospheric conditions, we used temperature 

(0K) and geopotential height (m2/s2) data at different pressure levels (27 levels from 1000 

to 100 hPa) from European Center for Medium-Range Weather Forecasts (ECMWF) re-

analysis (ERA)-Interim. ERA-Interim uses sets of observations and boundary forcing 

fields acquired for ERA-40 through 2001, and from ECMWF operations hereafter. ERA-

Interim also utilizes other data sources, such as European Remote Sensing Satellite (ERS) 

altimeter wave heights and European Organisation for the Exploitation of Meteorological 

Satellites (EUMETSAT) reprocessed winds and clear-sky radiances (Dee et al. 2011). 

ERA-Interim covers the period from 1979 onwards with spatial resolution of 0.703°. The 

monthly data was used in this study. In order to explore physical mechanisms linking 

croplands expansion to climate, we used latent heat flux and sensible heat flux derived 

from FluxNet-Multi-Tree Ensemble (MTE). Fluxnet-MTE datasets are based on remotely 

sensed indices, climate and meteorological data, and information on land use (Jung et al. 

2011). The spatial resolution of Fluxnet-MTE datasets is 0.5° by 0.5°, over the period 

1982 to 2011.   

 

The common periods of 1982 to 2010 of these datasets were used in this study. 

The unit of ERA-interim temperature (°K) and geopotential height (m2/s2) is converted to 

°C and geopotential meter (m), respectively. The latent heat flux and sensible heat flux 

were extracted at weather stations. 

4.2.2 Statistical Methods 

Linear regression analysis 

Linear regression analysis is a statistical method for analyzing the relationship 

between two or more variables by evaluating the degree to which one variable can be 

predicted or explained by the others (Freund et al. 2006). In this study, we performed 

linear regression trend analysis to determine the spatio-temporal changes of croplands in 
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Northeast China at each grid point. We were interested in the slope of the regression line, 

which characterizes how the dependent variable (i.e., fraction of croplands) changes over 

time. The significantly changed regions for croplands in Northeast China are thereby 

determined. 

 

We also applied linear regression analysis for croplands fraction with latent heat 

flux, sensible heat flux, and surface temperature in order to determine the magnitude of 

impacts of croplands expansion on these variables. The dependent variable is the area-

averaged croplands fraction at all grid points of weather stations over the significantly 

increased regions. The area-averaged latent heat flux, sensible heat flux, and surface 

temperature over the same grid points were used as an independent variable, respectively. 

Both independent and dependent variables were detrended by subtracting n* slope from 

their original values (n is 1, 2, 3, . . . , 29). The slopes were estimated from linear 

regression trend analysis. The significance of linear regression was estimated using a 

Student’s t test.  

 

Detrended correlation analysis 

This study applied correlation analysis (Pearson correlation coefficients) to 

examine relationships of the croplands fraction with the climatic variables from near the 

surface to top of the troposphere, including latent heat flux, sensible heat flux, surface air 

temperature, multi-level temperatures, and geopotential height, during the late growing 

season of AS. The trends in the cropland and climate variables were removed using the 

detrended method as described above. The significances of correlation coefficients were 

tested by Student’s t test. 

 

Detrended composite analysis 

Composite difference analysis is a sampling technique based on the conditional 

probability of a certain event occurring (NOAA 2005). Composite analysis is commonly 

combined with correlation analysis to explore relationship between two variables (Grantz 

et al. 2005). In this study, we defined the eight high (top 25th percentile) years of 

detrended croplands fraction as the conditional event. Composite differences of 
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temperature and geopotential height at 850, 500, and 300 hPa were calculated by 

subtracting the mean value for the eight high years from the climatological mean value 

for the 29 years of study period. Composite difference analysis was applied to each grid 

cell. The significance for composite difference analysis was also estimated using a 

Student’s t test. 

 

Granger causality test 

Granger-causality test could be used to assess potential causality among different 

variables. Granger-causality was defined by Granger (1969) as follows: A variable Y is 

Granger-causal for another variable X if knowledge of the past history of Y is useful for 

predicting the future state of X over and above knowledge of the past history of X itself. 

So if the predicting of X is improved by including Y as a predictor, then Y is said to be 

Granger-causal for X. Granger-causality test have been widely used in climate studies 

(Jiang, Liang and Yuan 2015, Elsner 2007, He and Lee 2016). In this study, we explored 

the granger causal associations of croplands fraction with near surface temperature. 

 

4.3 Results and Discussion 

4.3.1 Croplands expansion in Northeast China 

Within Northeast China, cropland cover varies from less than 5% to over 85%, 

with the highest values (>55%) concentrating in the east (Figure 4.1 (b)). Croplands 

significantly increased in the central part of Northeast China, with the highest value of an 

increase of 1.5%/year in the north and east parts (Figure 4.1 (c)). The temporal trend of 

fraction in Northeast China for cropland cover shows croplands increased around 

1.23%/year (Figure 4.1 (d)) in the regions with significantly increasing croplands. The 

time-series of croplands fraction was area-averaged over the regions with significantly 

increased croplands in Northeast China as shown in Figure 4.1 (c). 

 

4.3.2 Impacts of croplands expansion on near-surface climate in Northeast China 

As 33 stations among 120 weather stations in Northeast China fall into the region 

with significantly increased croplands (Figure 4.1 (c)), this section only focuses on these 

33 stations (Figure 4.1 (a)). Figure 4.2 shows the spatial patterns of correlations between 
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detrended time-series of croplands fraction with detrended latent heat flux, sensible heat 

flux, and surface temperature in each station during the late growing season. Most of the 

stations show that the fraction of croplands is positively correlated with latent heat flux, 

including a significant correlation in the central and southern parts of Northeast China 

(Figure 4.2 (a)). Correspondingly, the fraction of croplands has a negative correlation 

with sensible heat flux over the majority of the stations (Figure 4.2 (b)). There is a 

negative relationship between fraction of croplands and surface temperature during the 

late growing season (Figure 4.2 (c)), demonstrating the cooling effects of croplands 

expansion. 
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Figure 4.2. Correlation patterns of detrended time-series of croplands fraction from 1982 

to 2010 with detrended (a) latent heat flux, (b) sensible heat flux, and (c) surface 

temperature at each station point during the late growing season of AS. The green circle 

is significant at 10% level. 

 

To determine the magnitude of croplands expansion impacts on heat fluxes and 

surface temperature, we then conducted linear regression analysis for croplands fraction 

with latent heat flux, sensible heat flux, and surface temperature, respectively (Figure 

4.3). The croplands fraction, latent heat flux, sensible heat flux, and surface temperature 

during AS were averaged over the 33 weather stations. The latent heat flux increases 0.76 

W/m2 along with a 10% increase in croplands, while the sensible heat flux and surface 

temperature decrease 0.58 W/m2 and 0.21 oC, respectively. 

 

Figure 4.3. Linear associations of croplands fraction with latent heat flux, sensible heat 

flux, and surface temperature. 

 

The causal association between croplands expansion and surface temperature 

cooling was tested by Granger-causality analysis. As shown in Test 1 in Table 4.1, the 

null hypothesis that croplands fraction does not granger-cause surface temperature is 

rejected at 10% significance level (p-value = 0.067), which indicates that croplands 

expansion does granger-cause surface cooling in Northeast China.  

 

Table 4.1. Granger-causality test between croplands fraction with AS surface 

temperature.  

 Model Residual Df Df F-statistic P-value 

Test 1:  AS temperature ~ AS temperature + croplands fraction 
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Unrestricted 25                          

Restricted 26 1 3.67 0.067 

 

4.3.3 Impacts on upper-level climate in Northeast China 

The cooling effect of croplands expansion is not confined to the near-surface 

atmosphere, but it spreads vertically. Figure 4.4 (a) shows the spatial patterns of 

correlations between detrended time-series of area-averaged croplands fraction over the 

regions with significantly increased croplands (Figure 4.1 (c)) with detrended 

temperature in each grid cell at the 850, 500, and 300 hPa levels over the northern East 

Asia, respectively. The fraction of croplands is negatively correlated with temperature 

from lower (850 hPa) to upper troposphere (300 hPa) in the Northeast China. The 

negative correlation is significant in the north part of Northeast China at 5% level 

(Figure 4.4 (a)). The spatial patterns of multi-level temperatures from detrended 

composite analysis are consistent with those from correlation by indicating the significant 

cooling at the 850, 500, and 300 hPa levels during the years of high croplands fraction 

(Figure 4.4 (b)).  
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Figure 4.4. (a) Correlation patterns of detrended time-series of croplands fraction, area-

averaged over the regions with significantly increased croplands from 1982 to 2010, with 

detrended temperatures and (b) composite differences patterns for temperature (°C) 

between eight high detrended croplands fraction years and 29 years of study period, at the 

850, 500, and 300 hPa levels at each grid point during the late growing season of AS.  

The yellow contour is the 5% significant level and the green contour is the 10% 

significant level. Black dashed polygon indicates the Northeast China study region. 

 

At the mid (500 hPa) and upper (300 hPa) levels, there are a negative relationship 

of the fraction of croplands with geopotential height in the Northeast China, with 

significant regions at 10% level in the central and northern parts, during AS (Figure 4.5 

(a)). At the lower level (850 hPa), the significant negative correlation at both 10% and 

5% levels is in the northern region of Northeast China. The spatial patterns of composite 

difference are consistent with the spatial correlation patterns by indicating the 

significantly reduced geopotential height at the troposphere during the years of high 

croplands fraction compared to climatological mean (Figure 4.5 (b)). 

 

Figure 4.5. Same as in Figure 4.4 but for geopotential height (m). 
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Meridional vertical cross sections of correlations of croplands fraction with 

temperature and geopotential height are shown in Figure 4.6. They are zonally averaged 

over the regions with significantly increased croplands (122°E ~ 135°E). In the Northeast 

China, the significantly negative correlation between croplands fraction and temperature 

extends up to top of the troposphere (200 hPa). Interestingly, inverse correlation 

(significant positive correlation) was observed in the lower stratosphere (above 200 hPa).  

Correspondingly, there are significantly negative correlations between croplands fraction 

and geopotential height at the entire troposphere, especially mid- and upper-levels. The 

significantly decreased geopotential height with increased croplands fraction could be 

explained by compressed air column due to the significant cropland-induced cooling in 

the troposphere (Pielke et al. 1998). The modeling study showed that the irrigation-

induced cooling in the lower troposphere could significantly reduce the geopotential 

height in the upper troposphere over the Middle East and central Asia, the High Mountain 

Asia, and Huang-Huai-Hai plain in China (Yang et al. 2016, de Kok et al. 2018, Lee et al. 

2011). The observed patterns of vertical cross sections support the tropospheric cooling 

effects of cropland expansion over Northeast China and consequent lower geopotential 

height over the northern East Asia. 

(a)              (b) 

Figure 4.6. Meridional cross sections of correlation patterns of detrended time-series of 

croplands fraction, area-averaged over the regions with significantly increased croplands 

from 1982 to 2010, with (a) temperature and (b) geopotential height zonally averaged 
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over 122°E~135°E for AS. The yellow contour is the 5% significant level and the green 

contour is the 10% significant level. 

 

4.4 Summary 

The land surface condition is one of the important factors in determining regional 

climate system. The changed land surface conditions (e.g. albedo, soil moisture, surface 

roughness, and leaf area index) due to land use and land cover change (LULCC) have 

brought significant impacts to the regional climate system. Understanding the influences 

of LULCC on regional climate can greatly improve predictive skills in seasonal climate 

forecasting (Lee, Chase and Rajagopalan 2008), which could benefit the end-users 

including famers and water resources managers.  

 

This study examined the impacts of croplands expansion on regional climate in 

Northeast China during later growing season over the last three decades. By using a 

newly developed 29-year time-series of land use and land cover maps, this study found 

croplands significantly increased in Northeast China, at an average increasing rate of 

1.23%/year (Figure 4.1(d)). This croplands expansion is highly correlated with increased 

latent heat flux and decreased sensible heat flux in Northeast China (Figure 4.2 (a) and 

(b)), which leads to decreasing surface air temperature in this region (Figure 4.2 (c)). 

The cooling effect of croplands expansion in near surface atmosphere has been 

documented in the previous observational studies, while the magnitude of cooling 

captured by this study is more reliable compared to the previous studies, as their studies 

were only based on one year map to indicate cropland cover, which overlooks its 

dynamics. This study further explored the impacts of croplands expansion on mid and 

upper atmospheric conditions, and found the cooling effects of croplands expansion 

extent up to top of the troposphere and thereby decrease the geopotential height. The 

observed results suggest that expansion and intensification of agricultural practices could 

influence regional climatic conditions through cropland-induced cooling as well as the 

resultant lower height in the troposphere. The lower geopotential height in the upper 

troposphere may alter upper-level atmospheric circulation, such as Asian jet, which may 

subsequently induce a large impact on Asian climate (Lee et al. 2011).  
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5 Conclusions and future study 

5.1 Conclusions 

This dissertation addresses three research gaps in current LULCC-atmosphere 

interaction studies: 1) a lacking of long-term continuous LULC maps, 2) a spatial scale 

mismatch between LULC data and climate data, and 3) limited understanding in 

observational studies related to climatic effects of croplands expansion. To address the 

first research question, this dissertation produced a continuous series of annual LULC 

maps of China from 1982 to 2013 using random forest classification of 19 phenological 

metrics derived from AVHRR GIMMS NDVI3g data. The classifier was trained using 

reference data derived from the MODIS land cover type product (MCD12Q1). Based on 

a comparison with Google Earth images, the overall accuracy of a simplified eight-class 

version of our 2012 LULC map is 73.8%, which is not significantly different from the 

accuracy of the MODIS map of the same year. 

 

To fulfill the second research question, I explored the effect of three spatial 

scaling methods, nearest neighbor method, majority aggregation method, and a fractional 

method, on correlations among LULC data and a land surface climatic variable, latent 

heat flux. Scaling by the fractional method preserved significant correlations among 

LULC data and latent heat flux at all three studied scales (0.5°, 1.0°, and 2.5°), whereas 

nearest neighbor and majority aggregation methods caused these correlations to diminish, 

and even become statistically non-significant, at coarser spatial scales (i.e., 2.5°). 

Therefore, we recommend rescaling using fractional maps in observational LULCC-

atmosphere studies. 

 

This dissertation then resampled a newly developed time-series of LULC maps to 

0.5° using the fractional method and identified fractional changes in croplands, forests, 

and grasslands in China from 1982 to 2012. I found that decreasing grasslands in the 

Northeast China plain and the Yellow river basin are significantly associated with 

increasing croplands. Similarly, increasing forests in the Yangtze river basin are 

significantly associated with decreasing croplands. In Southwest China, decreasing 
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grasslands and, to a lesser extent, decreasing croplands, are significantly correlated with 

the increasing forests. 

 

In order to improve understanding of the physical mechanism behind impacts of 

croplands expansion on regional climate in China, I applied several statistical methods 

(e.g., linear regression analysis, correlation analysis, and granger-causality test) to 

explore the associations between croplands fraction and atmospheric variables (e.g., 

latent heat flux, sensible heat flux, surface temperature, multi-level temperature, and 

geopotential height). With the more robust croplands dynamic information identified in 

second chapter, this dissertation finds that croplands significantly increased in Northeast 

China during last three decades. The increased croplands result in increased latent heat 

flux in the regions within significantly increased croplands. The increased latent heat flux 

decreases surface temperature. This cooling effect of croplands expansion in Northeast 

China extends to the upper-level troposphere. 

 

5.2 Future study 

Considering the scope and limitation in this dissertation, there are several opportunities 

for future research. 

1) Production of continuous global land use and land cover maps dating back to the 

1980s. Land use and land cover map is a key component in land-atmosphere 

interaction studies. Currently, a long-term time series of global land use and land 

cover maps is very rare. The methodology in the first chapter can be applied to 

generate global land cover maps, which could improve accuracy of land surface 

information for global climate studies. 

2) Incorporation of alternative heat flux data for analyzing spatial scale mismatch 

between climate data and LULC data. The latent heat flux data from FLUXNET-

MTE in the second chapter used land use information, which may bias the results. 

Obtaining more reliable data is needed to better understand the spatial scale 

effects for LUCC data. 

3) Exploration the impacts of different LULCC types on climate using both 

observational methods and climate models. The third chapter in this dissertation 
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only focused on cropland expansion due to time limitation. The second chapter 

showed that forests significantly increased in Southern China. An exploration of 

the afforestation impacts on regional climate would be very interesting. In doing 

so, we could understand how different LULCC types influence climate. In 

addition, in the third chapter, we only used observational methods. Comparing the 

results from climate models could improve the understanding of physical 

mechanism related to LULCC affects on climate. 
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