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ABSTRACT 1 

The projected frequent occurrences of extreme flood events will cause significant losses to 2 

crops and will threaten food security. To reduce the potential risk and provide support for 3 

agricultural flood management, prevention, and mitigation, it is important to account for flood 4 

damage to crop production and to understand the relationship between flood characteristics and 5 

crop losses. A quantitative and effective evaluation tool is therefore essential to explore what 6 

and how flood characteristics will affect the associated crop loss, based on accurately 7 

understanding the spatiotemporal dynamics of flood evolution and crop growth. Current 8 

evaluation methods are generally integrally or qualitatively based on statistic data or ex-post 9 

survey with less diagnosis into the process and dynamics of historical flood events. Therefore, 10 

a quantitative and spatial evaluation framework is presented in this study that integrates remote 11 

sensing imagery and hydraulic model simulation to facilitate the identification of historical 12 

flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial 13 

variation of crop yields and yield losses from floods on a grid scale over large areas; however, 14 

it is incapable of providing spatial information regarding flood progress. Two-dimensional 15 

hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and 16 

temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow 17 

velocity and flood duration. The methodological framework developed herein includes the 18 

following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal 19 

and spatial remote sensing imagery in association with agricultural statistics data were used to 20 

develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) 21 

The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was 22 
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employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff 23 

generator and the two-dimensional hydraulic model implementing the routing scheme for 24 

surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics 25 

on a grid scale can be used to investigate the relationship between the intensity of flood 26 

characteristics and associated loss extent. The modeling framework was applied for a 50-year 27 

return period flood that occurred in Jilin province, Northeast China, which caused large 28 

agricultural losses in August, 2013. The modeling results indicated that (a) the flow velocity 29 

was the most influential factor that caused spring corn, rice and soybean yield losses from 30 

extreme storm event in the mountainous regions; (b) the power function archived the best 31 

results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote 32 

sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating 33 

the influence of historical flood event on crop production and investigating the relationship 34 

between flood characteristics and crop yield losses.   35 

KEYWORDS: Yield Loss; Flood Characteristics; Remote Sensing; Two-dimensional 36 

Hydraulic Model; HJ-1A/B Imagery   37 
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1 INTRODUCTION 38 

Floods are one of the most frequent and devastating agricultural hazards (UNDP, 2004), which 39 

often cause severe crop production losses (Schmidhuber & Tubiello, 2007) and threaten food 40 

security (Kenyon et al., 2008; MRC, 2011). Meanwhile, climate change is expected to generate 41 

more challenges in the management of agricultural floods (IPCC, 2013; Lu et al., 2016). The 42 

losses from floods to agricultural production are likely to be greater under future climate 43 

scenarios. To alleviate potential crop losses from floods, quantitative and spatial assessment of 44 

agricultural flood loss and the relationship between flood characteristics and crop failure are 45 

essential prerequisites for providing some helpful and targeted guidance. Thus, it is imperative 46 

to establish a scientific evaluation system of agricultural flood influence, considering the 47 

temporal and spatial characteristics of flood.  48 

Recently, flood loss evaluation to agriculture has gained considerable attention for its 49 

contribution to helping stakeholders make informed decisions. Two methods have been 50 

developed for flood damage estimation. One is based on ex-post surveys of affected populations 51 

and assets to estimate losses, which is time-consuming and strenuous. The other approach 52 

employs what is known as “loss functions”, which describes the relationship between flood 53 

intensity and the associated loss extent (Kwak et al., 2015; Karagiorgos et al., 2016). Flood 54 

intensity can be represented by flood hazard parameters, including water depth, flow velocity, 55 

flood duration, etc. The formation of loss functions is the most important procedure in the 56 

formation of the latter method. The loss functions can be derived based on historical loss data, 57 

questionnaire surveys and experimental evidence. Historical loss data from actual flood events 58 

can be used to derive historical loss functions, which can be a guide for future events. However, 59 
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historical flood damage data are generally scarce and hardly available (Vozinaki et. al., 2015). 60 

Some studies construct loss functions with questionnaire surveys relying on the expertise of 61 

local experts in the farming industry (Brémond et al., 2010; Vozinaki et al., 2015; Chau et al., 62 

2015). Furthermore, some researchers concentrate on laboratory testing under controlled flood 63 

characteristics (Ganji et al., 2012; Anandan et al., 2015). Such experiments are very difficult to 64 

conduct and challenging to extrapolate the laboratory findings to different places since there 65 

are lots of differences from place to place. Moreover, the loss functions method has limitations 66 

for effective risk assessment because of the poor availability of spatial data of flood 67 

characteristics, such as inundation duration and flow velocity. Due to the above limitations, a 68 

looming question is the following: is it possible to develop a spatial evaluation framework of 69 

agricultural flood influence? Considering the effects of flood characteristics and the spatial 70 

distributions of floods and crops, the proposed method should have the ability to cover spatial 71 

variation and to predict flood progress. 72 

Remote sensing has proven to be a valid tool for monitoring the spatial variation of crop 73 

growth dynamics and yield (Beckerreshef et al., 2010; Zhang & Zhang, 2016). The National 74 

Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution (AVHRR) 75 

and Moderate Resolution Imaging Spectroradiometer (MODIS) are the most widely employed 76 

spatial data in crop yield monitoring due to their wider coverage, relatively longer data archive 77 

and daily observation. However, the AVHRR and MODIS resolutions are coarse and face the 78 

problem of classification uncertainties due to mixed types of land cover, especially on highly 79 

fragmented fields (Dong & Xiao, 2016; Zhong et al., 2016). Higher spatial resolution remote 80 

sensing data, e.g., Landsat TM/ETM+, SPOT, have been demonstrated to be promising in 81 
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capturing small-patch farmland. However, their relatively longer observation periods prevent 82 

effective monitoring of crop growth dynamics. As a part of the project “Environmental and 83 

Disaster Monitoring and Forecasting with a Small Satellite Constellation (HJ-1)” in China, 84 

two small optical satellites (HJ-1A and HJ-1B) were launched on September 6, 2008. The 85 

charge-coupled device (CCD) cameras of these satellites have a 30-m spatial resolution and a 86 

two-day revisiting period (Wang et al., 2010). The high temporal resolution and mid-high 87 

spatial resolution of HJ-1A/B enable the availability of monitoring the dynamics of small-patch 88 

fields and are appropriate for monitoring damage from floods. Thus, we attempted to evaluate 89 

the spatial variation of crop yields and yield losses from flood using HJ-1A/B imagery and 90 

other auxiliary information. 91 

As an overwhelming storm disaster, floods can be highly localized due to the effect of both 92 

weather and topography (Thornton et al., 2014), and flood characteristics in watersheds possess 93 

highly spatial and temporal heterogeneity. Remote sensing imagery has become an ideal tool 94 

for effectively incorporating the spatial extent of flood inundation in loss evaluation (Pantaleoni 95 

et al., 2007; Kwak et al., 2015; Kotera et al., 2016). However, these data are unable to provide 96 

information on the spatial and temporal characteristics of other parameters, such as flow 97 

velocity and flood duration. Recently, advanced two-dimensional hydraulic model has 98 

accomplished spatial and temporal quantification of these flood parameters in watersheds 99 

(Nguyen et. al., 2015; Bellos et. al., 2016). This type of hydraulic model requires high-quality 100 

input data, especially terrain data (Bates et al., 1998; Callow et al., 2007; Schumann et al., 2014). 101 

Recent progress in remote sensing can provide the required terrain data for flood simulation 102 

(Sanders, 2007; Tarekegn et al., 2010; Baugh et al., 2013; Jarihani et al., 2015; Samantaray et 103 
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al., 2015; Fernández et al., 2016). For efficient and high-resolution simulation of large-scale 104 

areas using two-dimensional hydraulic model, the high computational demand will be the most 105 

challenging task. The development of Graphics processing unit (GPU) for high-performance 106 

parallel computing can effectively solve the problem of huge computational cost and can enable 107 

catchment-scale simulations involving millions of computational cells (Lacasta et al., 2015). 108 

Thus, the accessibility of terrain data and high-performance computing ability make it possible 109 

to obtain elaborate information about flood characteristics at a grid scale over large areas, which 110 

can be used to explore the influence of floods on crop growth dynamics. 111 

Therefore, this study aimed to develop an integrated evaluation framework to investigate the 112 

influence of extreme flood event on crop production in Jilin Province with 187,400 km2 of area. 113 

Specifically, three questions were asked: (a) what is the spatial variation of crop yield loss 114 

extent from flood; (b) what flood parameter is the most influential factor causing crop failure; 115 

and (c) what is the relationship between the intensity of most influential factor and associated 116 

yield loss extent? The integrated evaluation framework includes the following three steps: (a) 117 

Vegetation indices derived from remote sensing imagery with mid-high spatial and temporal 118 

resolution were used to monitor the crop yields and evaluate yield losses under extreme 119 

flooding; (b) the two-dimensional hydraulic model was employed to simulate the flood 120 

dynamics with spatial surface runoff derived from SCS-CN as the input; and (c) the spatial 121 

combination of the crop yield loss and flood dynamics on a grid scale was used to investigate 122 

the relationship between the intensity of flood characteristics and the associated loss extent. 123 

The modeling framework was applied to a 50-year return period flood event that occurred in 124 

Jilin Province, in northeastern China, which caused huge agricultural losses in August of 2013.   125 
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2 MATERIALS AND METHODS  126 

2.1 Study Area and the Flood Event 127 

Jilin Province (northeastern China), one of the most important agricultural areas of China, was 128 

selected as a case study to explore the regional effect of flood characteristics on crop production. 129 

Its climate is dominated by a continental monsoon climate, i.e., the rainy season (July to 130 

September) overlaps with the crop-growing season (April to September). The annual average 131 

precipitation spatially varies from approximately 350 mm in the northwest to over 1500 mm in 132 

the southeast. In this region, agriculture is occasionally disturbed by flooding. Meanwhile, Jilin 133 

is a major agricultural province, and its commercial volume of agricultural products and grain 134 

per capita have been at the forefront in China in recent years. Jilin is located in the famous black 135 

soil belt and is ideal for producing spring corn, soybean and rice, which are the three major 136 

crops of Jilin. It produces half of the commercial corn and approximately 14% of the total 137 

production in China. Jilin is one of the main provinces producing rice in northern China. Its 138 

planting area and rice production have increased in recent years. Furthermore, the midwestern 139 

Jilin is suitable for planting soybeans, and its soybean planting area ranks third in China. 140 

Accordingly, this study focused on the production conditions and yield losses of spring corn, 141 

soybean and rice. 142 

From the 14th to 30th of August 2013, an extreme flood event hit the northeastern part of 143 

China producing disastrous consequences for the provinces of Heilongjiang, Jilin and Liaoning. 144 

The flood was estimated to be a 50-year return period flood (Jin et al., 2015). According to the 145 

Ministry of Civil Affairs, approximately 5 million people were affected, killing 95 people, 146 



 

9 
 

collapsing 11,530 rooms in houses and damaging 154,622 rooms; and 1.59 million hectares of 147 

croplands were affected (Branch of the Red Cross Society of China, 2013). The flood occurred 148 

in August, during the crucial growth stages of three major crops, i.e., the silking stage for spring 149 

corn, the heading stage for rice and the podding stage for soybeans, thus resulting in extremely 150 

severe agricultural losses. 151 

Two typical agricultural watersheds, i.e., the headwater watersheds of the Dongliao River 152 

and Mudanjiang River, were identified for investigating how flood characteristics influence 153 

crop failure (Fig. 1). The headwater watershed of the Dongliao River (HDL) is in Liaoyuan 154 

City, in Jilin Province, where spring corn and rice are intensively cultivated. HDL covers an 155 

area of approximately 2191 km2 and approximately 49% is arable land. The elevation is 156 

between 58 m and 869 m. The mean annual precipitation of HDL is approximately 666 mm. 157 

Rainfall is variable in timing, with 80% of rainfalls occurring during the summer and autumn. 158 

The mean annual temperature is 5.25℃. The headwater watershed of the Mudanjiang River 159 

(HMU) is in Dunhua, in Jilin Province, where soybean is intensively cultivated. HMU covers 160 

an area of approximately 2953 km2 and 165 km2 is planted soybean. The elevation of HMU is 161 

between 169 m and 1721 m. It possesses significant mountain climate characteristics. The total 162 

annual rainfall is approximately 550–630 mm, and the mean annual temperature is 2.9℃. 163 

2.2 Integrated Methodological Framework for Flood Impact Evaluation 164 

An evaluation framework was proposed for analyzing the regional impact of floods on crop 165 

production (Fig. 2). Five main steps were proposed as below: 166 

(1) Crop Pattern Identification. The HJ-1 A/B CCD imagery is appropriate for distinguishing 167 

crop types and was selected based on the reflection characteristics of each crop; the supervised 168 
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maximum likelihood classifier was applied to produce the crop pattern map. 169 

(2) Yield Loss Evaluation. Based on the crop pattern map, vegetation indices for each crop 170 

at different growth stages were derived from multi-temporal HJ-1 A/B CCD imagery. 171 

Vegetation indices in association with agricultural statistics data were used to develop empirical 172 

models to monitor the crop yield and evaluate the yield loss from flood. 173 

(3) Surface Runoff Generation. The spatial hourly precipitation data were used as the input 174 

for the SCS-CN model to generate the hourly surface runoff. 175 

(4) Flooding Characteristics Simulation. The spatial surface runoff derived from SCS-CN 176 

was input into the two-dimensional hydraulic model domain and flow routed within the domain 177 

before being concentrated at the watershed outlet with the help of GPU parallel computing. 178 

(5) Integrated Analysis. Finally, integrated analysis between yield losses and flood 179 

characteristics was carried out to analyze the effect of flood on crop production. 180 

2.3 Crop Yield Model Development 181 

To monitor the yield of specific crops and the yield losses under the effects of flood risk, we 182 

combined remote sensing imagery and crop statistics to develop empirical regression-based 183 

yield models. More information on crop yield prediction by remote sensing can be referred to 184 

Atzberger (2013), Calvão & Pessoa (2015) and Xue & Su (2017). The comparison between 185 

vegetation indices from remote sensing imagery and the official yield statistics was carried out 186 

to derive regression models as follows:  187 

𝑦𝑦 = ��𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖

n

𝑖𝑖=c

m

𝑖𝑖=1

+ b0                                                           (1) 188 

where 𝑦𝑦  is the crop yield; 𝑥𝑥  is the vegetation index; 𝑖𝑖  represents the vegetation index 189 
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symbol; 𝑗𝑗 represents the crucial month for crop harvesting from c to n; 𝑎𝑎 is the regression 190 

slopes for models; and b0 is the model intercept. 191 

In this study, three types of data were used: (a) county-level crop statistics, including crop 192 

production, planting area and yield; (b) crop pattern map; and (c) HJ-1A/B surface reflectance 193 

data. The crop pattern map was used to identify the crop spatial distribution. The yield statistics 194 

were then employed to develop an empirical relationship between the vegetation indices of the 195 

identified crop field and the crop yield. 196 

The Jilin Statistics Yearbook collects detailed annual county-level agricultural information 197 

across Jilin Province. Crop production (t), planting area (ha) and yield data (t ha-1) for spring 198 

corn, rice and soybean for 2013 and 2014 were obtained from the Jilin Bureau of Statistics. To 199 

quantify the yield loss by the flood of 2013, we used 2014 data, which had no major natural 200 

disasters, such as drought, flood, etc., as the benchmark year. 201 

Identification of crop fields is an important step in regression-based model development and 202 

implementation as it allows for crop-specific remotely sensed indices. In this study, HJ-1A/B 203 

CCD images for the 3th and 4th of September 2013 were used in a supervised classification 204 

model to produce land use classification that distinguished different crop types. It was easy to 205 

identify training areas for the three major crops in September when major crops were at 206 

different growth stages and had different reflection characteristics. Although the location of 207 

crop fields may vary from year to year due to crop rotation, we found that the spatial distribution 208 

of the three major crops remained relatively constant between 2013 and 2014 when comparing 209 

the HJ-1A/B CCD images of these two years. Therefore, in this study, we employed the same 210 

crop pattern map. 211 
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We employed HJ-1A/B CCD images at 30 m resolution for every month from July to 212 

September. The period from July to September was crucial for crop harvesting, which 213 

corresponded to a joint-maturity stage for spring corn, tillering-maturity stage for rice, and 214 

flowering- maturity stage for soybean. For every month, we chose the mid-month images for 215 

consistency between these two years. However, owing to the effects of clouds, the consistency 216 

could not be fully achieved. These images were geometrically corrected based on the images 217 

from September 2013 to ensure sub-pixel geolocation accuracy. The Normalized Difference 218 

Vegetation Index (NDVI) (Tucker, 1979) and Enhanced Vegetation Index (EVI) (Huete et al., 219 

2002) were used for crop yield predictions. These two indices were selected according to their 220 

popularity and capability for analyzing crop growth dynamics. The formulas for calculating 221 

NDVI and EVI are as follows: 222 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)                      (2) 223 

𝐸𝐸𝑁𝑁𝑁𝑁 = 2.5 × (𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁 + 6 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 1)          (3) 224 

where 𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 refer to the reflectance of the near-infrared, red and blue bands 225 

of HJ-1A/B CCD images, respectively. 226 

The NDVI was the most widely employed index to statistically correlate with crop growth 227 

dynamics and yield across the world (Satir & Berberoglu, 2016). More recently, the EVI has 228 

proven to be more effective in monitoring crop growth than NDVI (Bernardes et al., 2012; 229 

Bolton & Friedl, 2013; Zhang et al., 2014; Johnson, 2016). This is owing to fact that the EVI 230 

remains sensitive to variance in dense vegetation when the NDVI becomes saturated. Therefore, 231 

we adopted both of them for the sake of more effectively responding to crop growth dynamics. 232 

The crop pattern map was used to retrieve the NDVI and EVI values for the three major 233 
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crops. The averaged NDVI and EVI for every growth stage of each crop were computed for 234 

each county. Then, the linear relationships between NDVI, EVI and the yield statistics were 235 

derived for each crop. Considering the inconsistency of daily images for the same month 236 

between 2013 and 2014, the crop model was built separately. To obtain these relationships, 237 

stepwise linear regression (SLR) was used. SLR enables selection of the relevant variables 238 

using the binary relationships between independent and dependent data and reduces the error 239 

caused by standard multi-linear regression with inputs of all variables. 240 

2.4 Surface Runoff Derived from a Hydrological Model 241 

The SCS-CN model (Woodward et al., 2002) was selected on the basis of its simplicity and 242 

success in simulating hydrological processes (Mishra & Singh, 2003; Mishra & Singh, 2012; 243 

Zhang & Pan, 2014; Chen et al., 2016). Although Caviedes-Voullième et al. (2012) found that 244 

the SCS-CN methods might be unsuitable for shallow-water based hydrological simulation. 245 

Infiltration models, such as Horton and Green-Ampt methods may be more suitable to be used 246 

together with hydraulic models to predict surface runoff (Fernández-Pato et al., 2016). But these 247 

models commonly require substantial field data for model calibration and verification and are 248 

not suitable for the current study. Meanwhile this study focus more on the spatial distribution 249 

of flood variables’ relative value by hydraulic modeling. For these reasons, this study will apply 250 

SCS-CN. SCS-CN was designed to compute volume of surface runoff (𝑆𝑆𝑅𝑅 ) for a specific 251 

rainfall event. The SCS-CN method is expressed as follows: 252 

𝑆𝑆𝑅𝑅 =
(𝑃𝑃 − 𝑁𝑁𝑎𝑎)2

(𝑃𝑃 − 𝑁𝑁𝑎𝑎) + 𝑆𝑆
                                                                (4) 253 

where 𝑃𝑃 is rainfall depth; 𝑆𝑆 is the potential maximum retention; 𝑁𝑁𝑎𝑎 is initial abstraction and 254 

𝑁𝑁𝑎𝑎 = λ𝑆𝑆, with λ generally taken as 0.2; the parameter 𝑆𝑆 is related to the Curve Number (CN) 255 
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as follows: 256 

𝑆𝑆 =
2540
𝐶𝐶𝑁𝑁

− 25.4                                                                   (5) 257 

The value of CN as the only parameter in SCS-CN can be derived from the National 258 

Engineering Handbook, Section-4 (SCS, 1956), which considers the catchment characteristics, 259 

such as land use, soil type and antecedent soil moisture conditions. In this study, the surface 260 

runoff was calculated with SCS-CN for every grid in every time step, using the cumulative 261 

precipitation from the beginning of the rainfall event to the given time. Therefore, the 262 

cumulative surface runoff was gained for that time. Then, surface runoff was the increment 263 

calculated by subtracting the cumulative surface runoff from the previous time step. 264 

As implemented for the selected watersheds, SCS-CN employed a 30 m × 30 m grid, with 265 

the cumulative precipitation, antecedent soil moisture, soil type and land use for each cell. The 266 

simulation period was from 3 pm on August 15th to 6 am on August 21th 2013, which was the 267 

key period for the formation and evolution of this extreme flood event.  268 

SCS-CN simulations were forced using hourly cumulative precipitation data estimated from 269 

a network of 86 and 45 precipitation gauge stations for HDL and HMU, respectively (Fig. 1). 270 

The hourly precipitation data employed here were the highest temporal resolution data that we 271 

can get, which were from the Hydrology Bureau of Jilin Province. The data represented the best 272 

density of precipitation stations that can capture the spatial variations of precipitation. Estimates 273 

of hourly cumulative precipitation and antecedent soil moisture derived as rainfall over the 5 274 

days before the rainstorm within each SCS-CN grid cell were obtained by interpolating from 275 

the four nearest gauges using the inverse distance squared weighting method. 276 
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2.5 Two-Dimensional Hydraulic Modelling 277 

Outburst floods across the selected watersheds were simulated using shallow water model that 278 

conserves mass and momentum by solving the two-dimensional, depth-averaged, shallow-279 

water equations on a rectangular grid. Detailed information can be seen in Hou et al. (2014) 280 

and Xia & Liang (2016). The conservative form of the two-dimensional shallow water model 281 

is given by the following: 282 

𝜕𝜕𝐪𝐪
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐟𝐟
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐠𝐠
𝜕𝜕𝜕𝜕

= 𝐬𝐬                             (6) 283 

where t is the time; x and y are the Cartesian coordinates; q is the flow variable vector; f and g 284 

denote the flux vectors in the x and y direction, respectively; the s is the source term vector. 285 

𝐪𝐪 = �
ℎ
𝑞𝑞𝜕𝜕
𝑞𝑞𝜕𝜕
�           𝐟𝐟 = �

𝑞𝑞𝜕𝜕
𝑢𝑢𝑞𝑞𝜕𝜕 + 1

2
𝑔𝑔ℎ2

𝑢𝑢𝑞𝑞𝜕𝜕
�      286 

𝐠𝐠 = �
𝑞𝑞𝜕𝜕
𝑣𝑣𝑞𝑞𝜕𝜕

𝑣𝑣𝑞𝑞𝜕𝜕 + 1
2
𝑔𝑔ℎ2

�          𝐬𝐬 =

⎣
⎢
⎢
⎡

0
−𝐶𝐶𝑓𝑓𝑢𝑢√𝑢𝑢2 + 𝑣𝑣2 − 𝑔𝑔ℎ 𝜕𝜕𝑧𝑧𝑏𝑏

𝜕𝜕𝑥𝑥

−𝐶𝐶𝑓𝑓𝑣𝑣√𝑢𝑢2 + 𝑣𝑣2 − 𝑔𝑔ℎ 𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥 ⎦
⎥
⎥
⎤
                 (7) 287 

where h denotes the water depth; qx and qy denote the unit-width discharges in x- and y directions, 288 

respectively; u and v are the depth-averaged velocities in x- and y-directions, respectively; and 289 

qx = uh and qy = vh; zb is the bed elevation; Cf is the bed roughness coefficient. 290 

As implemented for the selected watersheds, the two-dimensional hydraulic model employed 291 

a 30 m × 30 m grid, using the surface runoff, DEM and roughness coefficient in each cell as 292 

inputs. The time step used for hydraulic simulating is 1 s, which can be adaptively increased 293 

according to the local Courant-Friedrichs-Lewy (CFL) condition. In order for depicting the 294 

whole flood process, the duration of the simulation was 136 h, which was longer than the rain 295 

process (60 h) and the same as the SCS-CN model. The runoff produced during 1 hour of the 296 
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hydrological scheme is assumed to occur at the same rate over that time step as the input of 297 

hydraulic model and the flow was routed within the domain before concentrating at the 298 

watershed outlet. The topographic data were derived from ASTER GDEM version 2 developed 299 

by the Ministry of Economy, Trade, and Industry of Japan (METI) and the United States 300 

National Aeronautics and Space Administration (NASA). The spatial resolution of ASTER 301 

GDEM is 30m, which is the finest resolution among all free downloadable topographic data in 302 

China. Adequate flood simulations require not only terrain data but also hydraulic roughness 303 

data of the earth’s surface. The shallow water model performed the bed friction stress with 304 

Manning’s roughness coefficient (n). Numbers of studies estimated the Manning roughness n 305 

from a lookup table based on the catchment characteristics and successfully applied them to 306 

hydraulic models (e.g., Mtamba et al., 2015; Garrote et al., 2016). There have been various 307 

studies that offer Manning lookup tables, e.g., Chow, 1959; Barnes, 1967; Arcement & 308 

Schneider, 1984. Thus, we determined the roughness coefficient using the land use types based 309 

on these lookup tables. We set n=0.016 for urban land, 0.027 for ponds, 0.03 for grassland, 310 

0.035 for cultivated land, and 0.15 for forest. 311 

The necessity that the spatial resolution (30 m) is consistent between the yield loss evaluation 312 

and flood simulation requires the use of millions of computational cells (2.43 million for HDL 313 

and 2.95 million for HMU), hence there is a high computational cost and increased 314 

computational time. To improve the computational efficiency and reduce the computation time, 315 

the two-dimensional hydraulic model was carried out on GPU using NVIDIA’s parallel 316 

computing architecture CUDA (compute unified device architecture). 317 

The model outputs for flood stage and the x and y components for flow velocity were saved 318 
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as grids every 1 h. The water depth (h) was determined by the difference between the flood 319 

stage and bed elevation, and the streamwise velocity (u) was calculated by the vector sum of 320 

the x and y velocity components. The 136 grids were averaged and maximized. Meanwhile, the 321 

durations of water depth exceeding 5 cm, 10 cm and 20 cm for every grid were counted. 322 

3 RESULTS AND DISCUSSION 323 

3.1 Yield Predictions and Losses based on Flood Evaluation 324 

We used a supervised classification method to produce pattern maps of three major crops for 325 

the Jilin Province at the HJ-1A/B 30 m resolution (Fig. 3). To quantitatively validate this map, 326 

the classified spring corn, rice and soybean were aggregated to the county scale and compared 327 

with the official planted area statistics. When compared at the county level, the classified area 328 

for spring corn from the 30 m mask was well correlated with the statistical area (Classified 329 

estimate=0.88*statistics area, R2=0.83) (Fig. 4). For rice and corn, the classified results were 330 

not as good as spring corn, but they were acceptable (R2=0.80 for rice and R2=0.70 for soybean) 331 

(Fig. 4). Hence, spring corn, rice and soybean fields were extracted for yield evaluations from 332 

multi-temporal HJ-1A/B datasets. 333 

The NDVI and EVI values for different crops were retrieved by using the crop pattern map 334 

as mask. The NDVI and EVI values were averaged by the county level. The relationships 335 

between the yield statistics data and vegetation indices at the county level were derived by SLR 336 

model to obtain the most descriptive indices for yield development. The yield model equations 337 

and variables are presented in the Supporting Material (Table S1). The models were derived 338 

using SPSS software. From Table S1, the coefficients of determination (R2) were greater than 339 
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0.6 for spring corn and soybean. For rice, the R2 for 2013 (R2=0.55) was relatively lower than 340 

that of 2014 (R2=0.70). Meanwhile, the SLR results indicate that the most accurate indices for 341 

yield prediction were different between the flood year 2013 and the benchmark year 2014. Fig. 342 

5 shows the actual yield and the model predictions. Most of the data points were close to the 343 

1:1 line. On the whole, the results of the empirical models based on vegetation indices can 344 

sufficiently capture the yield variation of the three major crops in Jilin. 345 

The predicted yield maps of the three major crops for HDL and HMU watersheds were 346 

developed from regression-based models employing different indices presented in Table S1. 347 

These maps exhibit obvious spatial variation in yields, as represented by different colors. The 348 

yield loss map can be generated using the yield maps of 2013 and 2014. There were no other 349 

major natural factors apart from flooding that reduced the yield in 2013 according to officials 350 

and local media reports. Hence, we assumed that the reduction in yield from 2013 was caused 351 

by the flood. We employed the yield ratio between these two years as the measure of yield loss 352 

extent.  353 

Fig. 6 shows the spatial variation of crop yield loss extent from flooding. We can determine 354 

the area and extent of yield loss from this rainstorm. For spring corn, approximately 25% of the 355 

area displayed yield reductions and the average ratio of yield loss was 12%. The yield loss was 356 

more severe in rice. Nearly half of the rice area experienced crop failure, and the average ratio 357 

of yield loss was 15%. For soybean, the area percentage of crop failure was 25%, and the 358 

average ratio of yield loss was 11%. Meanwhile, crop damaged by floods is mainly concentrated 359 

in the low lands around rivers, which are usually more vulnerable to flood attack. If the areas 360 

are confined to 500 meters buffer zones around river networks, the relative damage is obviously 361 
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higher than the whole catchment. For spring corn, 33% of the area displayed yield reductions 362 

and the average ratio of yield loss was 19% in the buffer zones; for rice and soybean, the area 363 

percentage of crop failure was 59% and 28%, and the average ratio of yield loss was 17% and 364 

20%, respectively. Taken together, this flood event resulted in a considerable reduction in crop 365 

yield, especially for the potential vulnerable areas. 366 

Because remote sensing devices can concurrently monitor large-scale areas and observe the 367 

same location at regular intervals, remote sensing imagery has been employed to assess the 368 

impact of floods and other natural disasters. In particular, remote sensing imagery provides 369 

vegetative index measure, wherein the impact of flooding on agricultural crops can be 370 

quantified. The HJ-1 A/B CCD imagery can avoid classification uncertainty resulting from 371 

mixed pixels of coarse resolution satellite data and provides the possibility for more accurate 372 

and detailed description of the spatiotemporal dynamics of crop biophysical variables. 373 

Successful exploitation of the vegetation indices based on multi-temporal HJ-1 A/B CCD 374 

imagery can help us determine the spatial variation of crop yield and evaluate the yield loss 375 

from floods at a high spatial resolution over large areas (Fig. 6). 376 

3.2 Flood Simulation Results 377 

We coupled the two-dimensional hydraulic model with the SCS-CN hydrological model for 378 

flood simulation in 30-m resolution grid. The coupled framework used SCS-CN as a rainfall-379 

runoff generator and ran the routing scheme with the hydraulic model to predict grid-based and 380 

time-varying flood depths and velocities for the entire basin. The rainfall hyetographs and 381 

surface runoff from SCS-CN are shown in in the Supporting Material Fig. S1. Figs. 7, 8 and 382 

S2 displayed the distributed high-resolution flow information for the HDL and HMU basin, 383 
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respectively. The information included the maximum water depth, mean water depth, maximum 384 

flow velocity, mean flow velocity and duration of water depth above 5 cm, 10 cm, and 20 cm. 385 

In this study, the input runoff of every time step (1 s) in hydraulic modeling is generally less 386 

than 1 mm, thus 1 mm can be used to discriminate the inputed runoff and accumulated water 387 

flow, i.e., non-wet (maximum water depth ＜ 1 mm) and wet (maximum water depth ≥ 1 mm). 388 

In the HDL basin, the areal average value of antecedent rainfall, i.e., the rainfall over the five 389 

days prior to the rainstorm, was 6.27 mm. The cumulative precipitation spatially ranged from 390 

37 mm to 217 mm inside the basin during this flood event. The areal average value of 391 

precipitation was 171.28 mm. Total runoff volume from SCS-CN is 96404,000 m3, and the 392 

measured volume is 106999,560 m3 from the Quantai station, which is near the watershed outlet. 393 

The error between the measured volume and computed volume is 10%, thus the result from 394 

SCS-CN is acceptable. According to the simulation results (Fig. 7), 41% of the watershed area 395 

was wet. The average depth and maximum depth in the wet area was 0.014 m and 0.092 m, 396 

respectively. The maximum flow velocity spatially varied from 0 m/s to 1.98 m/s. Moreover, 397 

4.8%, 4.4% and 3.9% of the area was wet by over 5 cm, 10 cm and 20 cm, respectively. In the 398 

HMU basin, the areal average value of antecedent rainfall was 9.81 mm. The cumulative 399 

precipitation spatially varied from 0 mm to 172 mm during the flood. The areal precipitation 400 

was 76.12 mm. Total runoff volume from SCS-CN is 62308,300 m3, the measured volume is 401 

73839,407 m3 from the Xiwaizi station at watershed outlet. The error between the measured 402 

volume and computed volume is 16%, thus the result from SCS-CN is acceptable. From the 403 

simulation results (Fig. 8), 35% of the watershed area was wet. The average of depth and 404 

maximum depth in the flooded area was 0.016 m and 0.034 m, respectively. The maximum 405 
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flow velocity spatially varied from 0 m/s to 2.89 m/s. Moreover, 4.4%, 2.5% and 1.4% of the 406 

area was wet by over 5cm, 10cm and 20cm respectively. 407 

The simulation results of the two-dimensional hydraulic model provide a clear picture of the 408 

flood characteristics for the entire basin, yet maintain a high enough spatial resolution so that 409 

the flooding effect on individual fields, which is highly localized, can be observed (Fig. 7 and 410 

Fig. 8). In this study an individual field area is 900 m2 (30*30m), which is spatial size of 411 

computational cell for hydrodynamic modeling. While some existing hydraulic models are 412 

capable of depicting complex surface flow, it often only includes the river reach (e.g., Bonnifait 413 

et. al., 2009), small catchments (Kim et. al., 2012) or low-resolution data (Neal et. al., 2012; 414 

Paiva et. al., 2013) due to computational expense. The hydraulic model, with the help of GPU 415 

parallel computing allows for efficient production of flow information at high spatial 416 

resolutions for the whole catchment. The water depth and flow velocity are very important 417 

information for flood warning and can potentially be used to deepen the understanding of 418 

associated disasters. 419 

3.3 Evaluation of Flood Characteristics on Crop Yield Losses 420 

After accomplishing the yield loss evaluation based on remote sensing imagery and flood 421 

simulation via hydraulic modeling, the yield loss ratio and flood characteristics can be gained 422 

detailedly for every cell. Then we counted the average value of flood variables (including the 423 

water depth, flow velocity, and duration at depth above 5 cm, 10 cm, and 20 cm) for cells with 424 

the same yield loss ratio. Thus we can gain the average value of flood variables against every 425 

1% yield loss ratio. The relationships between the flood characteristics and yield loss ratio are 426 

presented in Table 1 and Figs. S3, S4, and S5. The flood characteristics include the water depth, 427 
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flow velocity, and duration at depth above 5 cm, 10 cm, and 20 cm. 428 

3.3.1 The Most Influential Factor that Caused Crop Failure 429 

According to the yield loss evaluation based on multi-temporal HJ-1 A/B CCD imagery, 62690 430 

cells for corn, 4416 cells for rice, and 44960 cells for soybean displayed yield reductions. We 431 

counted the average value of flood variables from these abundant cells with having the same 432 

yield loss ratio, i.e., the corresponding average values of flood variables in every 1% yield loss 433 

ratio. Then we investigated the relationships between the flood variables and yield loss ratio. 434 

For spring corn, the water depth, flow velocity and duration were all negatively correlated with 435 

yield loss (Table 1). The correlations with maximum flow velocity peaked at the highest level, 436 

with a Pearson’s coefficient (r) of -0.86. There was little difference between the maximum flow 437 

velocity and mean flow velocity. The water depth was weaker, with an r of around -0.6 and the 438 

mean water depth was slightly stronger than the maximum’s. The durations of the flood 439 

exhibited the weakest value among all of the parameters. For rice, the water depth, velocity and 440 

duration were all negatively correlated with yield loss. The mean flow velocity had the strongest 441 

negative correlation, reaching -0.78. There was no obvious difference between the maximum 442 

and mean flow velocity. The mean water depth had a greater effect than the maximum water 443 

depth. Meanwhile, the duration with depths greater than 20 cm was stronger than that of 5 cm 444 

and 10 cm. Furthermore, the r of duration with depths >20 cm and the mean water depth were 445 

almost equal. For soybean, the overall results were similar to spring corn and rice in that all 446 

seven flood characteristics were negatively correlated with yield lose. The mean flow velocity 447 

presented the strongest negative correlation, reaching -0.70. And the mean flow velocity was 448 

superior to the maximum flow velocity. The duration was weaker, with r varying from -0.28 to 449 
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-0.51. Moreover, the water depth exhibited the weakest correlation, with an r of just -0.1. It 450 

should be noted that we adopted the average values to investigate the most relevant variable 451 

and the factor-loss functions. The average values help us simplify data analysis from the large 452 

amount of cells affected by flood and more easily capture the key factor, however, they may 453 

result in underestimation of the flood variables, which influences the numerical relationship 454 

between the factor and yield loss. Thus the factor-loss functions are not exactly physical factor-455 

loss functions, and should be carefully treated. 456 

Based on the above results, the maximum flow velocity is the most influential factor on 457 

spring corn at silking stage corresponding to the flood occurrence period and the mean flow 458 

velocity for rice at the heading stage and for soybean at the podding stage. The HDL and HMU 459 

are in the river source areas and have steep terrain, where the average slope of HDL and HMU 460 

are 8.3° and 9.3°, respectively. In these steep mountainous regions, flash floods are commonly 461 

characterized by speed-varying surface flow as a result of rapid catchment response to rainfall 462 

from intense thunderstorms (Borga et. al., 2014), which results in a short lead time and 463 

considerable damage due to high flow velocity (Xia et. al, 2011; Karagiorgos et. al., 2016). Thus, 464 

the crop yield loss was more strongly correlated with the flow velocity than the water depth and 465 

duration for HDL and HMU. The higher the flow velocity from flooding, the more likely the 466 

agricultural damage. Vozinaki et. al., (2015) collected opinions of practicing and research 467 

agronomists and found that flow velocity was a very important damage factor on tomatoes and 468 

green vegetables. Ganji et.al, (2012) found that the flow velocity had obvious damage on rice 469 

production in a set of laboratory tests. Therefore, in areas with large flow motion, agricultural 470 

activity should more carefully consider the potential consequences of extreme flood events. 471 
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Reasonable estimation of flood damage is a complex task, especially in the case of flash 472 

floods. The identification of suitable flood parameters is of great importance for the realistic 473 

assessment of direct crop flood damages and in helping make informed decisions about the 474 

management of crop flood risk and food production (Brémond et. al., 2013). The current 475 

literature pays more attention to two variables, i.e., water depth (Brémond et. al., 2013; Chau 476 

et. al., 2014; Samantaray et. al., 2014) and the duration of floods (Dutta et. al., 2003). The 477 

intensive focus on water depth as the main determinant parameter for flood damage might be 478 

due to the limited information about other parameters, e.g., flow velocity (Kreibich et. al., 2009). 479 

However, a strong influence from flow velocity on crop loss was identified for the two 480 

mountainous watersheds in this study. Thus more variables, including the flow velocity, and the 481 

flood types and differences, should be taken into account in future research. 482 

3.3.2 Relationship between Most Influential Factor and Yield Loss  483 

Based on the above analysis, the r of the most relevant flood parameters for the three major 484 

crops were no weaker than -0.7. They showed favorable and satisfactory results, which can help 485 

us understand and establish a flood factor-loss function for specific crops in a given 486 

environment. In previous studies, the relationships between flood characteristics and the extent 487 

of agricultural flood damage are empirical and simple, i.e., grading or linear. According to the 488 

observations (Fig. 9), the relationship between the most relevant parameters and the yield lose 489 

ratio was nonlinear; that is, they did not decrease at the same rate. The coefficients of 490 

determination (R2) indicated that the power function archived the best results among the 491 

commonly used functions, such as the linear function, exponential function, power function and 492 

logarithmic function. The R2 of the power functions were 0.86, 0.64, and 0.55 for spring corn, 493 
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rice and soybean, respectively. The power function has an asymptote that is parallel to the “x” 494 

axis, which means, after a specific upper limit, there are large increases in the hydraulic 495 

parameter that bring about a negligible increase in the loss. The implication is that power 496 

function is compatible with realistic condition. Therefore, the power function can be selected 497 

as the appropriate functional form for agricultural flood loss estimation. However, one point 498 

should be noted: because the results in Fig. 9 were derived from a large number of points across 499 

the watershed and represent the average and overall response to floods, they are different from 500 

the physical factor-loss functions. 501 

Extreme precipitation is inescapable, but the lessons learned from past practice can be 502 

applied to reduce the damage they may inflict. Considering that historical flood damage data 503 

are rarely available or restricted in use (Vozinaki et. al., 2015), we explored the relationship 504 

between flood intensity and associated crop loss extent by combing the monitoring of remote 505 

sensing imagery and the model simulation of floods. According to the analysis, enhancing and 506 

developing crop flood management projects should be needed primarily in areas with high flow 507 

velocity for mountainous headwater watersheds. Simultaneously based on the flood simulation 508 

results of HDL and HMU, we found that the areas with a large topographic slope and relatively 509 

low terrain compared to the surrounding environment are more likely to be disturbed by high 510 

flow velocity, such as the foot of the mountain and the gorge areas. In order for displaying the 511 

velocity more clearly, the local map for the headwater watershed of the Mudanjiang River is 512 

showed in the Supporting Material Fig S6. It is easy to understand that a large topographic 513 

slope can accelerate the motion of water flow, and relatively low terrain can accumulate more 514 

water from the surrounding environment, both of which can bring up high flow velocity. 515 
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This study integrates the crop yield losses evaluated by remote sensing imagery and flood 516 

dynamic characteristics simulated by the two-dimensional hydraulic model to explore the effect 517 

of flood on crop production and the relationship between flood intensity and associated crop 518 

loss extent. In consideration of the main feature of the hydraulic model that it can depict surface 519 

flow based on the conservation of mass and momentum, minimal parameters and successful 520 

application in previous studies, no validation works are carried out in this study. Further 521 

investigation, such as confirmation with the observed water level and inundation extent derived 522 

from remote sensing imagery, are still needed to validate the flood simulation results. The 523 

parametrization of rainfall losses by SCN-CN is based on the underlying surface characteristics 524 

in combination with previous research, and the sensitivity of results to variations in the 525 

parametrization is not investigated in this study considering that the simulation errors by SCS-526 

CN are acceptable. It must be noticed, however, the variations in the parametrization may 527 

influence the results about the relationship between flood and yield loss. Further work are still 528 

needed to explore the uncertainty of the results and sensitivity to the parametrization in the 529 

methodological framework.  530 

4 CONCLUSIONS 531 

The remote sensing data and two-dimensional hydraulic model were integrated in this study to 532 

facilitate the identification of flood characteristics from an extreme flood event effect on the 533 

yield of spring corn, rice and soybean in Jilin Province (China). The modeling results indicated 534 

the following： 535 

(a) The empirical models developed from NDVI and EVI for critical periods of crop growth 536 

from multi-temporal HJ-1 A/B CCD imagery, in association with agricultural statistical data, 537 
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can sufficiently capture the yield variation and monitor the spatial variation of yields of spring 538 

corn, rice and soybean in Jilin Province. 539 

(b) The August 2013 catastrophic flood affected 25% of the spring corn area, with an average 540 

12% yield reduction, and nearly half of the rice area was affected, with an average 15% yield 541 

reduction in the headwater watershed of the Dongliao River; the 2013 flood damaged 25% of 542 

the soybean area, with 11% yield losses in the headwater watershed of the Mudanjiang River. 543 

(c) The simulation results of the two-dimensional hydraulic model, with the help of GPU 544 

parallel computing, provide a clear picture of the flood characteristics for the entire HDL and 545 

HMU, and maintain a high enough spatial resolution (30 m). 546 

(d) For steep mountainous areas, the flow velocity was the most influential factor that caused 547 

crop yield losses during the extreme flood event, and the power loss functions archived the best 548 

results among the commonly-used functions. For spring corn at the silking stage, the maximum 549 

flow velocity is the key factor and the R2 of power loss function was 0.85. For rice at the heading 550 

stage and soybean at the podding stage, the mean flow velocity was more important and the R2 551 

of the power loss functions were 0.63 and 0.52, respectively. 552 
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Figure Captions: 

Fig. 1. The study area 

Fig. 2. Evaluation system of agricultural flood impact using remote sensing imagery and two-

dimensional hydraulic model 

Fig. 3. Distribution of spring corn, rice and soybean in Jilin Province 

Fig. 4. The validation of the crop classification area (Y-axis) against the official crop county-

level, planted area statistics (X-axis) 

Fig. 5. Correlation between actual and predicted yields for (a) spring corn in 2013; (b) spring 
corn in 2014; (c) rice in 2013; (d) rice in 2014; (e) soybean in 2013; and (f) soybean in 
2014 

Fig. 6. The predicted yield for (a) spring corn in 2013; (b) spring corn in 2014; (c) spring corn 

in 2013 versus 2014; (d) rice in 2013; (e) rice in 2014; (f) rice in 2013 versus 2014; (g) 

soybean in 2013; (h) soybean in 2014; and (i) soybean in 2013 versus 2014 

Fig. 7. Flood simulation results for the headwater watershed of the Dongliao River 

Fig. 8. Flood simulation results for the headwater watershed of the Mudanjiang River 

Fig. 9. Velocity-loss functions for spring corn, rice and soybean 
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Table 1. Yield loss correlations with flood characteristics by crop type 

Crop 
Water depth Flow velocity Duration at depth > 

Maximum Mean Maximum Mean 5cm 10cm 20cm 
Spring corn -0.56 -0.62 -0.86 -0.85 -0.28 -0.38 -0.51 

Rice -0.24 -0.30 -0.77 -0.78 -0.14 -0.21 -0.31 
Soybean -0.11 -0.09 -0.62 -0.70 -0.28 -0.39 -0.51 
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Fig. 1. The study area  
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Fig. 2. Evaluation system of agricultural flood impact using remote sensing imagery and two-dimensional 

hydraulic model 
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Fig. 3. Distribution of spring corn, rice and soybean in Jilin Province 
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(a) Spring corn                 (b) Rice                    (c) Soybean 

Fig. 4. The validation of the crop classification area (Y-axis) against the official crop 

county-level, planted area statistics (X-axis) 
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Fig. 5. Correlation between actual and predicted yields for (a) spring corn in 2013; (b) 
spring corn in 2014; (c) rice in 2013; (d) rice in 2014; (e) soybean in 2013; and (f) 
soybean in 2014 
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Fig. 6. The predicted yield for (a) spring corn in 2013; (b) spring corn in 2014; (c) spring corn in 2013 versus 

2014; (d) rice in 2013; (e) rice in 2014; (f) rice in 2013 versus 2014; (g) soybean in 2013; (h) soybean in 2014; and 

(i) soybean in 2013 versus 2014 
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Fig. 7. Flood simulation results for the headwater watershed of the Dongliao River 
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Fig. 8. Flood simulation results for the headwater watershed of the Mudanjiang River 
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(a) Spring corn                       (b) Rice                    (c) Soybean 

Fig. 9. Velocity-loss functions for spring corn, rice and soybean 
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