1,623 research outputs found

    The Local Field Potential Reflects Surplus Spike Synchrony

    Get PDF
    The oscillatory nature of the cortical local field potential (LFP) is commonly interpreted as a reflection of synchronized network activity, but its relationship to observed transient coincident firing of neurons on the millisecond time-scale remains unclear. Here we present experimental evidence to reconcile the notions of synchrony at the level of neuronal spiking and at the mesoscopic scale. We demonstrate that only in time intervals of excess spike synchrony, coincident spikes are better entrained to the LFP than predicted by the locking of the individual spikes. This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations but contribute only a fraction of their spikes to temporally precise spike configurations, suggesting a dual coding scheme of rate and synchrony. This finding provides direct evidence for the hypothesized relation that precise spike synchrony constitutes a major temporally and spatially organized component of the LFP. Revealing that transient spike synchronization correlates not only with behavior, but with a mesoscopic brain signal corroborates its relevance in cortical processing.Comment: 45 pages, 8 figures, 3 supplemental figure

    Meta-Potentiation: Neuro-Astroglial Interactions Supporting Perceptual Consciousness

    Get PDF
    Conscious perceptual processing involves the sequential activation of cortical networks at several brain locations, and the onset of oscillatory synchrony affecting the same neuronal population. How do the earlier activated circuits sustain their excitation to synchronize with the later ones? We call such a sustaining process "meta-potentiation", and propose that it depends on neuro-astroglial interactions. In our proposed model, attentional cholinergic and stimulus-related glutamatergic inputs to astroglia elicit the release of astroglial glutamate to bind with neuronal NMDA receptors containing the NR2B subunit. Once calcium channels are open, slow inward currents activate the CaM/CaMKII complex to phosphorylate AMPA receptors in a population of neurons connected with the astrocyte, thus amplifying the local excitatory pattern to participate in a larger synchronized assembly that supports consciousness

    Coordinated neuronal ensembles in primary auditory cortical columns.

    Get PDF
    The synchronous activity of groups of neurons is increasingly thought to be important in cortical information processing and transmission. However, most studies of processing in the primary auditory cortex (AI) have viewed neurons as independent filters; little is known about how coordinated AI neuronal activity is expressed throughout cortical columns and how it might enhance the processing of auditory information. To address this, we recorded from populations of neurons in AI cortical columns of anesthetized rats and, using dimensionality reduction techniques, identified multiple coordinated neuronal ensembles (cNEs), which are groups of neurons with reliable synchronous activity. We show that cNEs reflect local network configurations with enhanced information encoding properties that cannot be accounted for by stimulus-driven synchronization alone. Furthermore, similar cNEs were identified in both spontaneous and evoked activity, indicating that columnar cNEs are stable functional constructs that may represent principal units of information processing in AI

    DAMNED: A Distributed and Multithreaded Neural Event-Driven simulation framework

    Full text link
    In a Spiking Neural Networks (SNN), spike emissions are sparsely and irregularly distributed both in time and in the network architecture. Since a current feature of SNNs is a low average activity, efficient implementations of SNNs are usually based on an Event-Driven Simulation (EDS). On the other hand, simulations of large scale neural networks can take advantage of distributing the neurons on a set of processors (either workstation cluster or parallel computer). This article presents DAMNED, a large scale SNN simulation framework able to gather the benefits of EDS and parallel computing. Two levels of parallelism are combined: Distributed mapping of the neural topology, at the network level, and local multithreaded allocation of resources for simultaneous processing of events, at the neuron level. Based on the causality of events, a distributed solution is proposed for solving the complex problem of scheduling without synchronization barrier.Comment: 6 page

    Spiking neural network connectivity and its potential for temporal sensory processing and variable binding

    Get PDF
    Copyright © 2013 Wall and Glackin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsPeer reviewedFinal Published versio

    Brain at work : time, sparseness and superposition principles

    Get PDF
    Abstract : Many studies explored mechanisms through which the brain encodes sensory inputs allowing a coherent behavior. The brain could identify stimuli via a hierarchical stream of activity leading to a cardinal neuron responsive to one particular object. The opportunity to record from numerous neurons offered investigators the capability of examining simultaneously the functioning of many cells. These approaches suggested encoding processes that are parallel rather than serial. Binding the many features of a stimulus may be accomplished through an induced synchronization of cell’s action potentials. These interpretations are supported by experimental data and offer many advantages but also several shortcomings. We argue for a coding mechanism based on a sparse synchronization paradigm. We show that synchronization of spikes is a fast and efficient mode to encode the representation of objects based on feature bindings. We introduce the view that sparse synchronization coding presents an interesting venue in probing brain encoding mechanisms as it allows the functional establishment of multilayered and time-conditioned neuronal networks or multislice networks. We propose a model based on integrate-and-fire spiking neurons

    Synergistic activity between primary visual neurons

    Get PDF
    Abstract : Cortical microcircuitry plays a pivotal role in encoding sensory information reaching the cortex. However, the fundamental knowledge concerning the mechanisms that govern feature-encoding by these sub-networks is still sparse. Here, we show through multi electrode recordings in V1 of conventionally prepared anesthetized cats, that an avalanche of synergistic neural activity occurs between functionally connected neurons in a cell assembly in response to the presented stimulus. The results specifically show that once the reference neuron spikes in a connected neuron-pair, it facilitates the response of its companion (target) neuron for 50 ms and, thereafter, the excitability of the target neuron declines. On the other hand, the functionally unconnected neurons do not facilitate each other’s activity within the 50 ms time-window. The added excitation (facilitation) of connected neurons is almost four times the responsiveness of unconnected neurons. This suggests that connectedness confers the added excitability to neurons; consequently leading to feature-encoding within the emergent 50 ms-period. Furthermore, the facilitation significantly decreases as a function of orientation selectivity spread

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept

    Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity.

    Get PDF
    The anterior cingulate cortex (ACC) is vital for a range of brain functions requiring cognitive control and has highly divergent inputs and outputs, thus manifesting as a hub in connectomic analyses. Studies show diverse functional interactions within the ACC are associated with network oscillations in the β (20-30 Hz) and γ (30-80 Hz) frequency range. Oscillations permit dynamic routing of information within cortex, a function that depends on bandpass filter-like behavior to selectively respond to specific inputs. However, a putative hub region such as ACC needs to be able to combine inputs from multiple sources rather than select a single input at the expense of others. To address this potential functional dichotomy, we modeled local ACC network dynamics in the rat in vitro. Modal peak oscillation frequencies in the β- and γ-frequency band corresponded to GABAAergic synaptic kinetics as seen in other regions; however, the intrinsic properties of ACC principal neurons were highly diverse. Computational modeling predicted that this neuronal response diversity broadened the bandwidth for filtering rhythmic inputs and supported combination-rather than selection-of different frequencies within the canonical γ and β electroencephalograph bands. These findings suggest that oscillating neuronal populations can support either response selection (routing) or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances.Wellcome Trus
    corecore