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We present a non-parametric and computationally efficient method that detects spatiotem-
poral firing patterns and pattern sequences in parallel spike trains and tests whether the
observed numbers of repeating patterns and sequences on a given timescale are sig-
nificantly different from those expected by chance. The method is generally applicable
and uncovers coordinated activity with arbitrary precision by comparing it to appropriate
surrogate data. The analysis of coherent patterns of spatially and temporally distributed
spiking activity on various timescales enables the immediate tracking of diverse qualities
of coordinated firing related to neuronal state changes and information processing. We
apply the method to simulated data and multineuronal recordings from rat visual cortex and
show that it reliably discriminates between data sets with random pattern occurrences and
with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineu-
ronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential
organization beyond the cell assembly concept.
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INTRODUCTION
One of the most fundamental issues in neuroscience is the nature
of the neural representation of information. While it is widely
appreciated that informational contents are carried by the activ-
ities of a large number of neurons, there is dissent about the
independence of cells and the relevant timescales of their firing
(deCharms and Zador, 2000). Do neurons jointly encode infor-
mation by forming functional cell assemblies (Hebb, 1949; von der
Malsburg, 1986; Gerstein et al., 1989; Fujii et al., 1996)? Does pre-
cise spike timing significantly contribute to neuronal communica-
tion (Theunissen and Miller, 1995; Fetz, 1997; Gerstner et al., 1997;
Singer, 1999)? As a consequence, are neuronal assemblies distin-
guished by a covariation of firing rates (Harris, 2005) or by a time-
locked sequence of polychronous (Izhikevich, 2006) or synchro-
nous (Singer et al., 1997) spiking events? Finally, are the activities
of neuronal assemblies, whatever their particular structure may
be, arranged sequentially and coherently in time to form superor-
dinate patterns (Hebb, 1949; Abeles, 1991; Bienenstock, 1995)?

Although studying these questions is a statistical and computa-
tional challenge (Brown et al., 2004; Kass et al., 2005), a variety of
methods have successfully been applied to reveal clusters of func-
tionally related cells without characterizing their temporal struc-
ture (Gerstein and Aertsen, 1985; Gerstein et al., 1985; Berger et al.,
2010; Kim et al., 2011; Lopes-dos-Santos et al., 2011), to define
groups of cells firing in synchrony (Gerstein et al., 1978; Grün et al.,
1999, 2002a,b; Schnitzer and Meister, 2003; Samonds and Bonds,
2004; Pipa et al., 2008; Kass et al., 2011), to detect spatiotempo-
ral firing patterns (Abeles and Gerstein, 1988; Frostig et al., 1990;
Yamada et al., 1996; Tetko and Villa, 1997, 2001; Lee and Wil-
son, 2004; Schneider et al., 2006; Smith and Smith, 2006; Nikolić,

2007; Sastry and Unnikrishnan, 2010; Smith et al., 2010), and
to find signatures of synfire chain activity (Schrader et al., 2008;
Gerstein et al., 2012). Barring some difficulties in finding appro-
priate representations of the associated null hypotheses (Gütig
et al., 2002; Gerstein, 2004; Grün, 2009), these different methods
and their applications are able to analyze pertinent properties of
multineuronal activity, but an all-embracing approach is missing.

To achieve a comprehensive and conceptually unrestricted
description of multineuronal spiking, we present a new method
for analyzing consistent relations between discharges of simultane-
ously recorded neurons on arbitrary timescales that are referred to
as spatiotemporal firing patterns and pattern sequences (Gansel
and Singer, 2006). Adopting a maximally naïve view on multi-
neuronal suprathreshold activity, repeating spatiotemporal firing
patterns are registered with user-defined precision by sliding a
temporal window of interest along the parallel spike trains. In
addition, series of patterns are scanned for repeating sequences.
The significance of repeating firing patterns is estimated individ-
ually and globally by comparing the numbers of their occurrences
with the numbers that would be expected if the cells’s firing were
independent on the given timescales. For that purpose, a new
type of surrogate data is introduced that allows for variability and
sparseness of spiking events and is superior to common resam-
pling methods in terms of statistical test performance. Another
difficulty when searching for recurring spatiotemporal patterns
in massively parallel recordings arises from the mutual mask-
ing of actually unrelated patterns that are arranged in the same
window. To avoid the combinatorial explosion that results from
testing every single possible subpattern, we propose an algorithm
that separates coincident events based on the preferences with
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Gansel and Singer Detecting spatiotemporal firing patterns

which a neuron joins its various peers in coincident firing. (In
this paper, we use the terms “spike” and “event” interchange-
ably, emphasizing either their biological or statistical meaning,
respectively).

METHODS
In the following subsections we first describe the algorithms
for the detection of spatiotemporal firing patterns and pat-
tern sequences, including the proposed procedure of separating
subpatterns. Then, we present a Monte Carlo-based approach
to determine the statistical significance of the found patterns
and sequences, together with some common and a new resam-
pling technique and the corresponding hypothesis tests. Finally,
we briefly comment on the technical implementation of the
method.

DETECTION OF SPATIOTEMPORAL FIRING PATTERNS
What constitutes a multineuronal spike pattern? As long as we do
not explicitly know the relevant timescales of the data under inves-
tigation, we should not restrict the analysis to any special scale. The
method presented here is therefore designed to provide full flex-
ibility with regard to the temporal organization of the data: In
a straightforward approach, we focus on the activation sequence
of cells as the essential signature of a pattern (VanRullen et al.,
2005; Shahaf et al., 2008) and define patterns by registering the
first spikes of all units within a certain time window W with a cer-
tain precision τ (Figure 1). Both timescales – the maximal length
of the pattern and the spike timing precision – can be arbitrarily
chosen and jointly determine which aspects of the data are inves-
tigated. By applying several parameter combinations successively,
the data can be scanned for a range of very diverse spatiotemporal
patterns.

Given any W and any τ (with τ being an integer fraction of
W ), patterns are captured by systematically sliding the onset of
the time window W from spike to spike along the parallel traces.
They are represented by a vector indicating the constituent units
ranked by appearance (spikes co-occurring at the same sampling
point are ranked by their unit number), optionally followed by
the corresponding timing information. Thus, two modes for rep-
resenting a pattern can be used: a time-resolved mode (Figure 1A)
and a representation that is simply given by the temporal order
of the participating units (Figures 1C,D). In the time-resolved
version, the scale of the registered spike timing is set by divid-
ing the window into equal bins of length τ, using their respective
indices to specify each spike’s position in time (see Figure 1A for
an example). (Both modes are used in the data analysis and will
be discussed in subsequent sections.) Since the central purpose of
the analysis is to detect coordinated firing activity among a popu-
lation of cells, spike patterns comprising only one unit are skipped
(Figure 1B).

It is important to note that patterns do not necessarily cover
the whole space allowed by a given combination of parameters,
especially if restrictions are minimized by analyzing the data using
wide limits (long W and τ =W ). A subsequent analysis of the
found patterns may then reveal some characteristic spatiotempo-
ral structure covering only a part of the search space, making it a
particularly strong finding if some structure is found that has not
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FIGURE 1 | Detection of spatiotemporal firing patterns. Illustrated are
six simultaneously recorded spike trains and four separately detected
patterns (A–D) as examples. An arbitrary time window W (highlighted in
gray) is used in each case to define the spatiotemporal activity pattern. The
units that coincide in the given time window are further split into subgroups
according to previously validated peers: Based on the number of coincident
events of any two units during some period t of length T (raw correlation
matrix C (t ) ) and a threshold, units are classified as being functionally coupled
or uncoupled (thresholded correlation matrix V (t ) , see text for details). In this
example, units 2, 3, and 4 are correlated, as are units 5 and 6, and unit 1 is
not correlated with any other unit. (A) A 60 ms window containing six
spikes falling into different 15 ms bins given by τ. The resulting pattern is
represented by a vector indicating the constituent units ranked by
appearance ([3124...]), followed by the corresponding bin numbers of their
first spikes ([...1144], see arrows). After comparison with the sets of
validated peers, unit 1 is excluded from the pattern. (B) Since a pattern
consists of at least two spikes and only the first spike of each unit inside the
window is considered (see arrow), patterns comprising only one unit are
skipped (W = 60 ms). (C,D) If no binning is applied, the vector representing
the pattern indicates only the temporal order of the participating units
(W = 35 ms). (C) After comparison with the sets of validated peers, the
pattern is left unmodified. (D) After comparison with the sets of validated
peers, the pattern is split into two subpatterns and unit 1 is excluded.

been explicitly searched for. Once the data are known to contain
repeating patterns on a specific temporal scale, the search space
can be adapted to yield a better statistical accuracy.
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PEER VALIDATION AND PATTERN SEPARATION
Because every timestamp marks the start of a new window, allow-
ing each event to participate in multiple patterns on multiple
positions, the search is exhaustive in the temporal domain. In
order to thoroughly scan the data in the spatial domain, one would
need to break down every pattern into all possible subpatterns
and to independently assess their individual significance. With
an increasing number of units and events, however, this would
result in a combinatorial explosion requiring prohibitively large
amounts of computer memory (as an example, 20 events can be
combined in more than a million ways, forming exactly 220 sub-
sets minus the empty set and the 20 singleton sets). On the other
hand, unraveling simultaneously occurring but independent sub-
patterns is essential to reveal any repetitive structure in larger data
sets. As a practical solution, we therefore propose to determine the
probability with which a neuron joins its various peers in coinci-
dent firing and to split the events that coincide in any given time
window W accordingly. To do so, the empirical count of coinci-
dences of any two units during some period t of length T (with
T �W ) is compared against a threshold given by the expected
count of coincidences and a global support value to classify them
as being functionally coupled or uncoupled, thus providing every
unit with a set of “validated peers.” Because the functional cou-
pling may vary over time (Aertsen et al., 1989), it is necessary to
choose T appropriately (e.g., 1 min) and to currently adjust the
correlation values by dividing the data into successive intervals
of corresponding length. Formally, raw correlations are expressed

as C (t )
ij which is the number of coincidences of units i and j as

revealed by the pattern search during time interval t. The chance
level of spurious coincidences is roughly estimated as

P(t )
ij = W

T
nit njt (1)

with P(t )
ij being the expected number of coincidences of units i and

j in time interval t, and nit and njt being the numbers of events of
units i and j in time interval t (see “DERIVATION OF THE RATE-
BASED CHANCE LEVEL OF SPURIOUS COINCIDENCES” in
the appendix for a derivation and necessary conditions). In case
of low rates the resulting values may be too low to function as a
threshold. To assure that more than one coincidence per unit pair
is required to label peers as valid, an additional minimum support
value may be applied. Hence, peers are validated according to

V (t )
ij =

{
valid, if C (t )

ij > max
(

P(t )
ij , A

)
invalid, otherwise

(2)

with V (t )
ij characterizing units i and j as being functionally cou-

pled or uncoupled during time interval t, max(...) returning the
number with the higher value, and A being an arbitrary global
threshold referred to as absolute peer criterion that simply denotes
the number of coincidences in any time interval t required to val-
idate the functional coupling of any pair of units, irrespective of
the event rates. The resulting sets of validated peers indicate which
units preferentially take part in concerted firing patterns. To sep-
arate coincident events accordingly, all peers that are invalid with

respect to a chosen unit are removed from a pattern. The procedure
is repeated for every unit that participates in the parent pattern,
potentially producing several distinct subpatterns. Finally, non-
repeating patterns are dropped. After all repeating patterns thus
detected have been registered, they are subjected to a search for
some superordinate patterning.

DETECTION OF SEQUENCES OF PATTERNS
It has repeatedly been hypothesized that neuronal spiking activ-
ity be organized into superordinate patterns comprising coher-
ent sequences of circumscribed spatiotemporal firing patterns
that signify functional cell assemblies (Hebb, 1949; Abeles, 1991;
Bienenstock, 1995). As was pointed out by Schrader and colleagues
(Schrader et al., 2008), detecting those sequences means collating
the previously identified patterns appropriately and variously and
searching for new emerging structures – a task that has not been
tried yet. Here we present such a method for the detection of
repeating pattern sequences that is completely independent of the
particular temporal organization of the constituent patterns and
makes no a priori assumptions about the spatiotemporal structure
of the resulting sequences.

In a first step, the vector representation of every repeating pat-
tern is replaced by a hash value indicating the pattern’s identity,
which helps to alleviate computer memory consumption. Because
the significance of a single pattern is statistically distinct from the
significance of a sequence of patterns, all repeating patterns are
included. Along with the pattern ID, the timestamps of the first
and last event are recorded so that sequences can be clearly identi-
fied and represented by a vector of successive IDs. However, since
patterns are captured with a sliding window and potentially are
subdivided as a result of the peer validation procedure, they may
overlap in time. To register series of temporally non-overlapping,
directly consecutive patterns it is therefore necessary to look for the
very next initiation of a pattern after the last event of the preced-
ing pattern (Figure 2A). The resulting sequences may comprise an
arbitrary number of patterns and include all corresponding sub-
sequences (Figure 2B). As the process is repeatedly started at every
pattern, the detection of sequences is exhaustive up to the analyzed
length. In a last step, shorter sequences that are always part of the
same longer sequence as well as non-repeating sequences are dis-
carded. Importantly, this method does not imply any constraints
concerning the exact timing of consecutive patterns (provided
that they are temporally separated) or the overall duration of the
whole sequence – solely the succession of pattern IDs identifies a
sequence.

STATISTICAL HYPOTHESIS
Following the detection of recurring firing patterns and pattern
sequences, one may characterize their spatiotemporal properties
and relate them to the experimental conditions. However, their
mere recurrence does not imply that they occur more often than
expected by chance, and both patterns and sequences have to be
considered irrelevant unless an appropriate statistical test demon-
strates that they recur significantly often. To do so, we propose a
non-parametric approach that can be expressed in the following
way: The null hypothesis (H 0) states that the registered patterns
and sequences appear by chance, or in other words, that patterns
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FIGURE 2 | Detection of sequences of patterns (sketch). (A) Vertical bars
indicate first and last spikes of previously identified repeating
spatiotemporal firing patterns, horizontal bars indicate their duration. A
unique ID is assigned to every pattern, and sequences comprising an
arbitrary number of temporally non-overlapping, directly consecutive

patterns (highlighted in gray) are registered by looking for the very next
initiation of a pattern after the last spike of the preceding pattern (see
arrows). The process is repeatedly started at every pattern with all
subsequences being listed. (B) Vector representations of the pattern
sequences shown in (A) when starting at the first pattern.

occur independently and coordination of events is random on the
timescales that were used to identify a pattern. If this is the case,
then varying the timing of events on that scale or rearranging the
order of patterns should not affect any statistic extracted from the
parallel event trains or the pattern series. To test the probability
that this null hypothesis holds, we calculate the distribution of
pattern and sequence counts from surrogate data with random-
ized event timing and randomized pattern sequences, respectively,
using a Monte Carlo method. If the value obtained from the orig-
inal data exceeds the surrogate count with empirical probability x
(and falls below that count less often), then the probability that the
data are consistent with the null hypothesis is 1 – x. The alterna-
tive hypothesis (HA) states the opposite and assumes that patterns
show some systematic interdependence and events some degree of
coordination on the corresponding timescales.

GENERATION OF SURROGATE DATA
The problem of developing a non-parametric method is to pro-
duce surrogate data that differ from the original data in exactly
one property, namely the one that is addressed by the alternative
hypothesis. In the past, several procedures have been proposed to
create suitable surrogate data for testing the significance of coor-
dinated spike events by repeatedly modifying the original spike
trains (for a review see Grün, 2009). One possibility is to dither the
time of every individual event randomly and independently on a
certain scale, thereby destroying the temporal structure contained
across as well as within event trains up to that scale (Hatsopoulos
et al., 2003; Figure 3A). Although it is not necessary to change
the interval structure if the intention is to disarrange coordinated
events, the approach is intuitively appealing. It has, however, some
complications, as was revealed by Gerstein (2004). If the event
times are dithered uniformly within some symmetric window
(e.g., ±20 ms), short intervals are added to the interval distrib-
ution and its peak is lowered. In terms of gamma distributions,

such a surrogate is a move to lower order and hence produces an
inappropriately low number of patterns (the order parameter is
connected to regularity – the higher the order the more repeating
patterns are expected). Gerstein proposed to use a non-uniform
dithering instead that is based on the square roots of the adja-
cent intervals, which he found to produce interval distributions
remarkably similar to the original. To circumvent these problems,
Pipa and colleagues offered an even simpler method: If all spike
times within one train are dithered by the same amount, the spike
trains are effectively shifted against each other, and coordinated
firing is eliminated up to the corresponding timescale while the
full auto-structure is kept intact (Pipa et al., 2008; Figure 3B). A
third possibility is to randomly shuffle the inter-spike intervals,
which means destroying the temporal structure while exactly pre-
serving the original interval distribution. However, if all intervals
are included in the shuffling, the rate profile might be changed to
an unacceptable degree. As a solution, we introduce here a variant
of this method that only shuffles short intervals in between longer
intervals that exceed the dither window. Since in this way all events
adjacent to longer intervals keep their position, the spike trains
are additionally shifted against each other (Figure 3C) (compare
Hirata et al., 2008). Through the combination of shuffled inter-
spike intervals and misaligned spike trains, the resulting surrogates
become even more dissimilar from the original data, which might
make it more likely for individual patterns to be recognized as
being significant.

Of great importance is the timescale that is chosen to dither
single events or to shift event trains or to dissociate between short
and long inter-event intervals: The resulting average displacement
of an event should closely correspond to the timing precision that
is used to define patterns to yield the best compromise between an
extensive disarrangement of potentially coordinated events and
the preservation of rate modulations on slower timescales (for
a brief discussion on this topic see Pipa et al., 2008; see also
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A B C

FIGURE 3 |Three different ways of creating surrogate data for testing

the significance of coordinated events in parallel time series. Top traces
depict original event trains, subjacent traces depict surrogate trains that
have been derived from the original data (thin vertical bars: onset). (A) The
time of every individual event is dithered randomly and independently on a
certain scale, thereby destroying the temporal structure contained across
as well as within event trains up to that scale. (B) Whole event trains are
shifted randomly against each other, in that way eliminating coordination of
events up to the corresponding timescale while preserving the full
auto-structure. (C) Same as in (B), but with additional random shuffling of
consecutive inter-event intervals that are equal to or shorter than the
maximal allowed shift (highlighted in light and dark gray).

Pazienti et al., 2008). We applied three different methods of dither-
ing single events as well as the described methods of shifting event
trains with and without additional shuffling of inter-event inter-
vals to simulated data and real recordings and will evaluate them
in the results section (see “SURROGATE DATA GENERATING
PROCEDURES” in the appendix for a formal description). None
of them is however able to assess the significance of pattern
sequences. As mentioned before, these are statistically distinct
from single spatiotemporal patterns and have to be tested inde-
pendently. Since sequences are defined solely by a succession of
pattern IDs irrespective of their temporal structure, we may gen-
erate appropriate surrogate data simply by randomizing the order
of IDs in circumscribed stretches of data (for convenience, we use
the same intervals as for the calculation of the functional cou-
pling of units), in this way eliminating any potential dependencies
between consecutive patterns while approximately preserving each
pattern’s rate profile. Once the surrogate data are constructed, we
can compare the original pattern and sequence counts to those
that would be expected given independent events.

STATISTICAL SIGNIFICANCE ESTIMATION
If the null hypothesis was true, the numbers of repeating patterns
and sequences extracted from the original data should be approx-
imately the same in the surrogate data. To test the probability that
the hypothesis holds, we first count the occurrences no of every
repeating individual pattern and pattern sequence in the original
data and compare the number to the frequency of occurrence ns of
the same pattern or sequence in the surrogate data. Testing every
pattern and sequence individually is necessary to rule out that its
appearance is merely due to the frequencies of its components, the
significance of the data as a whole notwithstanding.

Under the null, no < ns and no > ns are equally likely. Given
the distribution of surrogate counts, the statistical significance of
any pattern or sequence could thus be estimated by testing the
relative frequency of no > ns against the expected value of 0.5
with an appropriate binomial test. For example, an exact binomial
test gives a probability of at most ∼ 6.3 × 10−23 for 95 surrogate
counts out of 100 being lower than the original count by chance.

A Bonferroni correction for multiple comparisons would in that
case allow for ∼ 7 × 1020 (!) parallel comparisons while maintain-
ing a significance level of ∼ 4.4% (likewise, the correction would
allow for ∼ 2 × 103 parallel comparisons at a significance level of
∼ 4% if 19 surrogate counts from a total of 20 were required to
be lower than the original count). It follows that large numbers of
individual tests may be performed in parallel at reasonable signif-
icance levels if a sufficient number of surrogate data sets are taken
into account. As an alternative to the binomial test, we therefore
employ a simple heuristic that inherently allows for multiple com-
parisons and considerably reduces the computational complexity:
If at least 95% of the counts from the surrogate data fall below
the original count, then H 0 is rejected at a designated significance
level of 5% or less, and one can conclude that the original count
is unusually high. The minimal necessary number of surrogate
data sets is accordingly given by the number of parallel tests and
the desired significance level (see examples). After evaluation of
their individual statistical significance, insignificant patterns and
sequences are discarded.

In a second step, we assess the coordination of events on a global
level. To do so, every pattern and sequence that appears more than
once in any surrogate data set is individually tested for significance
in the very same way as those occurring in the original data, cap-
italizing on the assumption that the generation of the surrogate
data did not affect the statistic under investigation and that all
data sets, including the original one, are essentially indistinguish-
able with regard to the patterning of events. As a result, every data
set is characterized by a certain number X of patterns or sequences
that recur unexpectedly often, given their frequencies in the rest
of the data sets. Their combined occurrences

Nd =
Xd∑

i=1

nid (3)

(with ni being the number of occurrences of the ith pattern or
sequence that is statistically significant on the individual level and
d being the index of the respective data set) are then subjected to a
second level analysis to evaluate the overall significance of a coor-
dination of firing events in the original data. The null hypothesis is
rejected on the global level if at least 95% of the numbers N from
the surrogate data fall below the number from the original data.

Of course,only data that pass the second level test can be consid-
ered to contain coordinated firing patterns, namely those patterns
and sequences that have been found to be significant on the indi-
vidual level. It has to be pointed out, though, that the original
data might well be statistically distinguishable from the surrogate
data despite lacking significant numbers of repeating patterns or
sequences, because other statistics may be extracted as well and
might prove to be different. One example is the rate of joint-spike
events calculated per unit time and complexity (Figure 4). Here,
however, the intention is to assess the significance of individual
activity patterns based on a global evaluation of the whole data set.

TECHNICAL IMPLEMENTATION
The whole analysis including the detection and statistical evalua-
tion of spatiotemporal firing patterns and pattern sequences was
programmed in Mathematica (Wolfram Research, Champaign,
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FIGURE 4 | Relative frequencies of joint-spike events depending on time

and complexity. A sliding window was moved from spike to spike to collect
groups of coincident spikes (joint-spike events) in parallel recordings of
neuronal activity from rat visual cortex in vitro. Their frequency of occurrence
is compared against the corresponding values from 100 surrogate data sets
that have been obtained by randomly shifting the original spike trains by an
average amount of 5–7 ms. Relative frequencies are expressed on a

logarithmic grayscale depending on the number of units per group
(complexity) in data segments of 1 min duration. The respective numbers of
joint-spike events have been validated by an exact binomial test (50% gray
indicates no significant difference between the original data and the surrogate
data at a significance level of 0.05). (A) Data 1 recorded simultaneously from
101 units in 95 min. (B) Data 2 recorded simultaneously from 102 units in
95 min.

IL, USA) as a single computational process. Adjustable parame-
ters are the duration T of the intervals that form the basis for
calculating the correlation matrix and for generating surrogate
data, the size W of the temporal window that is used for the pat-
tern detection, the precision τ of the registered spike timing, the
criterion A for the peer validation, the width w of the dither win-
dow, the number of surrogate data sets, the desired significance
level, and the maximal sequence length. All repeating patterns
and sequences are saved in text files along with the statistical
results for further analysis. A platform-independent Mathemat-
ica notebook file and related material are freely available online at
http://www.brain.mpg.de/research/emeriti/prof-dr-dr-hc-mult-
wolf-singer/publications/download/Gansel_Singer_2012.zip.

RESULTS
In the following subsections we report the statistical and com-
putational properties of the method by applying it to simulated
data and multielectrode recordings from slices of rat visual cor-
tex. The main findings are that dithering event times with the
“square root dither” method is likely to change the interval distri-
bution in a way that produces inappropriate surrogate data, that
the new resampling method proposed here yields a slightly lower
rate of false positives and is significantly more sensitive than the
methods it has been compared to, that the detection of patterns
is considerably facilitated by the flexible search algorithm and the
controlled separation of concurrent events, and that the associ-
ated computational load can easily be handled by a conventional
personal computer. We refer to sections “DATA SIMULATION”
and “DATA ACQUISITION” in the appendix for details regarding
the generation of the simulated data and the recording of spiking
activity, respectively.

EFFECT OF DITHERING EVENT TIMES ON THE INTERVAL DISTRIBUTION
To elucidate potential complications when creating surrogate data
by dithering event times independently, we investigated the impact
of three different dithering procedures on the interval distribution
(Figure 5). In the first instance, simulated event trains were gen-
erated by gamma processes of order 4 with a mean event rate of
∼ 40 Hz, and a number of surrogates were constructed using each
method, always assuring a “refractory period” of 1 ms between
events as an upper bound for their displacement (see “SURRO-
GATE DATA GENERATING PROCEDURES” in the appendix).
If event times are relocated randomly and uniformly within a
symmetric window, short intervals are added to the probability
distribution and its peak is lowered, in this way producing surro-
gates with an inappropriately low number of repeating patterns
(Figure 5A). If we allow for an asymmetric window, the effect
gets attenuated and the resulting average probability density func-
tion exhibits more regular intervals, but still does not conform to
the original data (Figure 5B). As previously shown by Gerstein
(2004), randomizing the event timing within a window given by
the square roots of the adjacent intervals and squaring the result-
ing offset while keeping its sign accurately preserves the original
interval distribution (Figure 5C). Ensuring a “refractory period”
between events alone does not suffice,at any rate, to get appropriate
surrogate data.

Since neuronal firing statistics typically defy analytical formu-
lation, we also examined the impact of dithering event times inde-
pendently on a distribution of real inter-spike intervals to check
if it can be as accurately preserved as simulated interval distribu-
tions (Figure 5D). Surrogate data were again constructed using
the “square root dither” method (Gerstein, 2004) while assur-
ing a “refractory period” of 1 ms between spikes. In contrast to
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FIGURE 5 | Effect of dithering event times on the interval distribution.

(A–C) Simulated event trains were generated by gamma processes of order
4, and event times were dithered individually and independently using three
different methods (number of surrogates: 100). The resulting average
probability density functions (PDF) of the inter-event intervals (IEI) are
shown in comparison with the original data and with theoretical interval
distributions of gamma processes of orders 3, 4, and 5. (A) Event times
were dithered randomly and uniformly within a symmetric window of
maximally ±20 ms, but assuring a “refractory period” of 1 ms between
events. The average absolute displacement of an event resulted in 4.1 ms.

(B) Same as in (A), but allowing for an asymmetric window. The average
absolute displacement of an event resulted in 6.1 ms. (C) Event times were
dithered according to the “square root dither” method (Gerstein, 2004)
again using a maximal window of ± 20 ms and assuring a “refractory
period” of 1 ms between events. The average absolute displacement of an
event resulted in 3.9 ms. (D) Same as in (C), but dithering was applied to
real spike trains recorded simultaneously from 67 units. The resulting
average distribution of inter-spike intervals (ISI) is shown in comparison with
the original data (bin size = 1 ms). The average absolute displacement of an
event resulted in 6.1 ms.

simulated interval distributions, the examined distribution of real
inter-spike intervals exhibits local minima and maxima and is con-
spicuously smoothed as a result of the dithering (the small peaks
around 100 and 200 ms are due to indirect electrical stimulation).
It is unclear if and how this affects the number of repetitive patterns
in the surrogate data, but one might suspect that locally decreasing
the regularity of the intervals again produces inappropriately low
pattern counts.

ERROR LEVELS IN PATTERN DETECTION AND VALIDATION
To assess the probability of false positives when patterning of
events is actually at chance level, we analyzed sets of 30 paral-
lel simulated time series generated by inhomogeneous gamma
processes. Spatiotemporal patterns and sequences were detected
and tested both during independent modulations and covaria-
tions of event rates using three different techniques for creating
surrogate data (dithering single event times with the “square root
dither” method and shifting event trains with and without addi-
tional interval shuffling, see “SURROGATE DATA GENERATING
PROCEDURES” in the appendix) and 30 different pattern defi-
nitions corresponding to the combinations of ten different time
windows W (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ms) and three
different relative timing precisions (10 bins, 5 bins, and rank order;

cf. Figure 1). The generation of the surrogate data was balanced
such that the average displacement of an event always resulted in
6–8 ms; also the remaining parameters were kept constant (signif-
icance level p ≤ 0.05, number of surrogate data sets: 20, absolute
peer criterion: 2, maximal sequence length: 10). The rate of false
positives is expressed as the mean percentage of 100 simulated data
sets that passed the second level test. It turned out to be consid-
erably below 5% in all cases (Figures 6A,B), demonstrating that
the presented method constitutes a conservative statistical test for
the evaluation of spatiotemporal patterns and pattern sequences
even when the instantaneous event rates closely covary. Interest-
ingly, creating surrogate data by combined interval shuffling and
event train shifting seems to produce a little less false positive esti-
mates than shifting event trains alone or the “square root dither”
technique (Figure 6A).

To assess the test power of the method under various con-
ditions, we analyzed sets of 30 parallel simulated time series
generated by homogeneous gamma processes including different
numbers of inserted recurring spatiotemporal patterns and pat-
tern sequences (see “DATA SIMULATION” in the appendix and
Figure A1 for details). The same three procedures for creating
surrogate data as before together with three different pattern def-
initions (5 ms window, timing precisions of 10 bins, 5 bins, and
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FIGURE 6 | Error levels in pattern detection and validation. Sets of 30
parallel simulated time series were generated by gamma processes featuring
independent rate modulations (data type 1), rate covariations (data type 2) and
precisely repeating spatiotemporal patterns and pattern sequences (data
types 3, 4, and 5; see “DATA SIMULATION” in the appendix for further
description). Error levels were estimated for each parameter combination
based on 100 independently simulated data sets. (A) Rate of false positives
(mean ± SEM) when analyzing spatiotemporal patterns using 30 different
pattern definitions given by 10 different time windows W (5, 10, 15, 20, 25, 30,
35, 40, 45, and 50 ms) and three different relative timing precisions (10 bins, 5
bins, and rank order). (B) Rate of false positives (mean ± SEM) when

analyzing pattern sequences using the same pattern definitions as in (A) three
times each. (C) Detection rates of spatiotemporal patterns (mean ± SEM)
calculated as the difference of significant pattern counts from data with and
without additional patterns, normalized with respect to the number of inserted
patterns, and averaged across 100 data sets using three different pattern
definitions (5 ms window, timing precisions of 10 bins, 5 bins, and rank order).
(D) Test power for an excess of spatiotemporal patterns using a window W of
5 ms and timing precisions τ of 0.5, 1, and 5 ms (rank order) as indicated
(excess averaged across 100 data sets). (E) Test power for an excess of
pattern sequences using the same parameters as in (D) (excess displayed as
the standardized mean difference and averaged across 300 data sets).

rank order) were used to uncover the hidden structure in the par-
allel event trains. Again, the generation of the surrogate data was
balanced such that the average displacement of an event resulted
in 6–8 ms. The remaining analysis parameters were retained as
well (significance level p ≤ 0.05, number of surrogate data sets: 20,
maximal sequence length: 10) except for the absolute peer crite-
rion which was matched to the frequencies of the inserted patterns
(A = 5 when patterns appeared every second, A = 1 when patterns
appeared every 5 s).

First of all we compared the number of significant spatiotem-
poral patterns from data containing precisely repeating patterns
to the number from data that had been simulated using the same
parameters but featuring rate covariations instead of predefined
patterns at corresponding positions (Figure 6C). As expected, the
data containing precise patterns exhibit an excess of significant
patterns on the investigated timescales. Remarkably, this holds
both for original and for surrogate data, indicating that randomly
varying the event timing by an average amount that only slightly
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exceeds the timescale on which events are coordinated still pre-
serves some patterning of events on that same scale (compare
Pazienti et al., 2008). Nevertheless, the surrogate data contain
smaller numbers of significant patterns than the original data,
particularly if patterns are not masked by collateral events. The
relative rate of significant patterns decreases with a decreasing
absolute number of inserted patterns and increases drastically if
all unrelated events are removed from the patterns, emphasizing
the importance of separating concurrent but independent events.
Furthermore, the detection rate is always higher when shifting
complete event trains to produce surrogate data as compared
to dithering single events with the “square root dither” method
(p < 0.02, exact binomial test), and it is yet higher when addi-
tional interval shuffling is applied in cases where patterns are
masked by concurrent events (p < 0.03, exact binomial test), espe-
cially if pattern rates are low. A controlled combination of shifting
whole event trains and shuffling inter-event intervals thus seems
to be advantageous over previous resampling methods, particu-
larly under statistically more demanding conditions. (Note that
the displayed detection rates do not directly reflect the fraction
of inserted patterns that have been found to be significant. In
fact, every pattern that repeats without collateral events will be
detected.)

The test power is expressed as the percentage of 100 simulated
data sets that passed the second level test (Figures 6D,E). For spa-
tiotemporal patterns, it reaches 80% at an excess of patterns in the
original data of about 20% as compared to the surrogate data and
strongly depends on the pattern rate, the separation of patterns
from unrelated events, and the adaptation of the registered tim-
ing precision to the actual precision of the patterns (Figure 6D).
The same is true for pattern sequences which require an excess
of approximately 1–2 standard deviations to be reliably detected
(Figure 6E). The choice of the method for creating surrogate data
does not seem to substantially influence the test power, except for
the “square root dither” technique of dithering event times inde-
pendently which is superior if pattern rates are high and inferior if
pattern rates are low. Considering the fact that on average no more
than 11.8% (SD 1.2) and 2.6% (SD 0.3) of the events were coordi-
nated in data featuring high and low pattern rates, respectively, it
appears that the presented method has impressive power to detect
precisely repeating patterns. Nonetheless, it relies heavily on the
correct isolation of spatiotemporal patterns and the matching of
the timescales on which events are coordinated and registered,
most notably when sequences of patterns are concerned. From
this perspective, having the possibility to accurately specify the
event timing in spatiotemporal patterns with arbitrary precision,
as provided by the method presented here, is essential.

SELECTIVITY IN PATTERN DETECTION AND VALIDATION
To evaluate the performance of the method when analyzing real
data and varying the way of detecting or the way of validating
patterns, we investigated the dependence of the number N of
significant spatiotemporal patterns and pattern sequences from
parallel recordings of neuronal spiking activity on the peer crite-
rion A, the method for creating surrogate data, and the number
of surrogates (Figure 7). The data were scanned for repeating pat-
terns and sequences using 10 different time windows W (5, 10,

15, 20, 25, 30, 35, 40, 45, and 50 ms) and three different relative
timing precisions (10 bins, 5 bins, and rank order) for represent-
ing patterns, a significance level of p ≤ 0.05, a maximal sequence
length of 10, and an interval T of 1 min as the basis for calculating
the correlation matrix and for generating surrogate data. The gen-
eration of the surrogate data was balanced such that the average
displacement of a spike always resulted in 5–9 ms.

Applying a global peer criterion in addition to the threshold
given by Eq. (1) and varying it between 1 (no further splitting)
and 8 (at least eight coincident spikes within one minute required
to label peers as valid) has a dramatic effect on the numbers of
significant patterns and sequences (Figure 7A), clearly indicating
that the proposed method of extracting subpatterns from larger
spatiotemporal patterns can improve pattern detection. Given the
data and the chosen time interval T, the largest number of sig-
nificant spatiotemporal firing patterns could be detected using a
peer criterion of 2, suggesting that the expected numbers of coin-
cident spikes per unit pair have in some cases been calculated to
be smaller. Further incrementing the criterion essentially removes
more and more units from the patterns and increasingly impairs
their information content, so that their numbers of occurrences
approximate chance level. Sequences of patterns, however, appar-
ently become increasingly significant if the threshold for labeling
peers as valid is raised, and the distance between original and
surrogate counts is concurrently growing.

Creating surrogate data by randomly shifting the spike trains
against each other yields marginally less significant spatiotempo-
ral firing patterns if additional interval shuffling is applied, but
the difference is practically negligible (Figure 7B). In contrast,
dithering single-spike times with the “square root dither” method
while assuring a refractory period of 1 ms between spikes signifi-
cantly increases the average number of significant patterns in the
original data and decreases the average number in surrogate data
compared to the other techniques (p < 8 × 10−28, exact binomial
test), possibly due to smoothing of the inter-spike interval distrib-
ution which likely introduces a bias toward less repeating patterns.
Since sequences of patterns are evaluated independently of the
significance of individual patterns, the numbers of significant
sequences are unaffected by the type of surrogate data used to vali-
date spatiotemporal patterns. Increasing the number of surrogates
markedly reduces the average significant pattern counts obtained
both from original data and from surrogate data by about the
same amount (Figure 7C), reflecting the fact that the significance
estimation becomes increasingly conservative.

Comparing the counts from original data and from surrogate
data shows that randomly displacing spikes by only a few mil-
liseconds leads to a significant drop of repeating spatiotemporal
firing patterns within a wide range of parameters (Figure 7),
demonstrating a remarkably precise coordination of neuronal
suprathreshold activity in the local cortical circuitry. Moreover,
directly consecutive firing patterns are organized to a significant
degree into repetitive sequences, revealing some superordinate
temporal structure beyond the cell assembly concept. Importantly,
repeating firing patterns and repeating sequences of patterns
occur both spontaneously and in response to electrical stimula-
tion, suggesting that they are an inherent feature of intracortical
signaling.
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FIGURE 7 | Dependence of the number N of significant patterns and

pattern sequences on analytical parameters. Multineuronal spiking
activity was scanned for spatiotemporal patterns using 30 different
definitions given by ten different time windows W (5, 10, 15, 20, 25, 30,
35, 40, 45, and 50 ms) and three different relative timing precisions (10
bins, 5 bins, and rank order). The numbers of significant patterns and
sequences were normalized to be comparable across data sets
(mean ± SEM across 10 data sets and 30 pattern definitions). Stars denote
a significant difference between original and surrogate data (�p < 0.004,
��p < 0.00007, exact binomial test). (A) Counts depending on the

absolute peer criterion A applied in addition to the threshold given by Eq.
(1) (number of surrogates: 20, surrogate data generated by combined
spike train shifting and interval shuffling). (B) Counts depending on the
surrogate data type (1: shifting spike trains, 2: dithering individual spike
times with the “square root dither” method, 3: shifting spike trains and
shuffling intervals, number of surrogates: 100, absolute peer criterion: 2).
Original counts are displayed in dark gray, surrogate counts in light gray.
(C) Counts depending on the number of surrogates (absolute peer
criterion: 2, surrogate data generated by combined spike train shifting and
interval shuffling).

COMPUTATIONAL DEMANDS
To illustrate the computational requirements of the method, we
measured the memory consumption and the processing time for
a complete analysis of two example recordings of multineuronal
spiking activity depending on the number of surrogate data sets
and the window size W used for pattern detection (Figure 8). The
data were scanned for spatiotemporal firing patterns and pattern
sequences using the temporal order of spikes to define patterns and
a maximal sequence length of 10. Surrogate data were constructed
by combined spike train shifting and interval shuffling. The com-
putation was carried out as a single process on a 32-bit machine
with a CPU running at 2.4 GHz using Mathematica version 5.2.

As projected, the processing time grows linearly with the num-
ber of surrogates and strongly depends on the average pattern
complexity that results from the applied window size and the
spike rate (Figure 8A). The same approximately holds for the
memory consumption (measured using the Mathematica com-
mand “MaxMemoryUsed”), but here the slope accompanying an
increase in the number of surrogate data sets is less pronounced
(Figure 8B). The absolute values show that the computational load
can be handled with ease by a single personal computer, even in
the case of large data sets.

DISCUSSION
The quest for the neuronal code has led to extensive controver-
sies about the relevant timescales and particular organization of
neuronal firing and is commonly considered an unresolved issue
(Shadlen and Newsome, 1994; Ferster and Spruston, 1995; Fetz,
1997; Gerstner et al., 1997; Singer, 1999; deCharms and Zador,
2000; Averbeck and Lee, 2004). To achieve a complete understand-
ing of neuronal information processing, we need to precisely char-
acterize the dynamic dependencies between cells and the temporal
relationships between their discharges beyond pairwise correla-
tions (Theunissen and Miller, 1995; Brown et al., 2004; Harris,
2005).

For this purpose, we presented a straightforward and compu-
tationally efficient method for detecting temporally coordinated
firing events in parallel spike trains. The method is generally
applicable and implies no assumptions about the statistical proper-
ties of the data or the spatiotemporal structures contained therein.
Focusing on the activation sequence of cells, activity patterns are
captured on arbitrary timescales and may or may not show sig-
natures of functional cell assemblies, synchrony, synfire chains or
synfire braids. By utilizing carefully modified versions of the orig-
inal spike trains to assess the significance of any detected activity
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FIGURE 8 | Computational demands of the analysis. Parallel recordings
of multineuronal spiking activity were scanned for significant
spatiotemporal firing patterns and pattern sequences using the temporal
order of spikes to define patterns. Data 1 comprises ∼ 194000 spikes
recorded simultaneously from 66 units in 96 min, data 2 comprises ∼ 93000
spikes recorded simultaneously from 73 units in 96 min. (A) Dependence of
the processing time on the number of surrogates and the window size used
for pattern detection. (B) Dependence of the memory consumption on the
number of surrogates and the window size used for pattern detection.

pattern, the method allows for variability and sparseness of spik-
ing events as well as the analysis of very short data segments. The
temporal offset of events in the surrogate data selectively separates
the timescales on which coordination of spikes is disturbed and
preserved, respectively, and provides a means to directly address
the temporal coding and rate coding hypotheses. In effect, the
method acts as a filter revealing repetitive spatiotemporal pat-
terns and pattern sequences amongst distributed discharges, yield-
ing a comprehensive description of the neuronal activity on the
selected timescales. Through a subsequent analysis of significant
patterns, coordinated firing may be characterized in relation to
neuronal state changes and information processing with single-
spike resolution. Preliminary results obtained in the analysis of
simultaneous recordings from rat visual cortex demonstrate a
millisecond-precise coordination of neuronal spiking and reveal
some superordinate patterning beyond the cell assembly concept.

Conceptually, the method is not restricted to the analysis of
multiple spike trains. In principle, any parallel time series can
be investigated just by adapting the temporal scales. For exam-
ple, stimulus times or behavioral events may readily be included.
Another possible application area is the analysis of so-called multi-
voxel patterns in functional magnetic resonance imaging data
(Norman et al., 2006). In the following, we contrast the method
with existing approaches and discuss a number of related issues in
more detail.

COMPARISON WITH OTHER METHODS
Common approaches in the analysis of correlational structures in
parallel spike trains differ with respect to the particular property in
question. While this paper deals with the detection of spatiotem-
poral firing patterns, other methods investigate the functional
coupling between neurons on longer timescales (Berger et al.,
2010; Kim et al., 2011; Lopes-dos-Santos et al., 2011) or concen-
trate specifically on synchronous firing (Grün et al., 1999, 2002a,b;
Pipa et al., 2008; Kass et al., 2011). It is important to further distin-
guish the method presented here from methods trying to identify
genuine higher order correlations between neurons (Martignon
et al., 2000; Gütig et al., 2003; Schneider and Grün, 2003; Staude
et al., 2010). Whereas the latter aim at discovering multineu-
ronal interactions, the focus of the present work is more directed
toward dynamically changing activity patterns arising from these
interactions.

To date, only a few publications have specifically addressed the
issue of detecting and evaluating spatiotemporal firing patterns.
In a pioneer work, Abeles and Gerstein developed a method to
capture precisely repeating spike patterns and estimate the sig-
nificance of classes of patterns including up to six spikes using a
parametric approximation (Abeles and Gerstein, 1988). Although
partly relying on the same statistical assumptions, Tetko and Villa
subsequently resolved the limit on the complexity of the patterns
(Tetko and Villa, 1997) and succeeded in assigning significance
to patterns that had been grouped by matching single occur-
rences with a predefined template (Tetko and Villa, 2001). A
different approach was pursued by Frostig and colleagues who
collected significant patterns of increasing complexity in a cas-
caded fashion using Fisher’s exact test (Frostig et al., 1990). In the
original formulation, higher order patterns are only detected if
all subpatterns formed by at least three spikes are themselves sta-
tistically significant (including all possible configurations would
lead to an unmanageable combinatorial explosion). Along sim-
ilar lines, Sastry and Unnikrishnan (2010) proposed to identify
frequent temporal patterns by incrementally assembling larger
patterns from smaller ones that have been found to be signifi-
cant under some stationarity assumptions. Instead of looking for
temporally precise repetitions of multineuronal firing patterns,
Lee and Wilson emphasized the significance of the activation
order of neurons and presented an elegant way to quantify and
statistically rate the degree of matching between a found firing
sequence and a preselected reference pattern (Lee and Wilson,
2004; see also Smith and Smith, 2006; Smith et al., 2010). Yet
another avenue to uncovering hidden structure in multineuronal
spiking is to identify the predominant activity pattern. Yamada
et al. (1996) took an information theoretic approach to reconstruct
the directed functional connectivity among a number of neurons,
including exact delays. Nikolić and co-workers exploited pair-
wise measurements of characteristic temporal relations to detect
more complex firing sequences, expressed as precise inter-spike
intervals (Schneider et al., 2006) or relative temporal order of
spikes (Nikolić, 2007). Analyses of this kind are suited to detect
differences in the preferred firing sequences between different
experimental conditions, but they fail to reproduce the full dynam-
ics of neuronal interactions within short time intervals. So, none
of these methods is designed to systematically search for all repeat-
ing spatiotemporal patterns on any given timescale and evaluate
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them both individually and globally without making any statistical
assumptions, quite contrary to the method presented here.

The work by Gerstein and colleagues has hitherto been the
only attempt to provide a way for directly detecting superordinate
activity patterns forming synfire chains (Schrader et al., 2008; Ger-
stein et al., 2012). The authors utilized specially devised recurrence
plots to indicate pairs of temporal bins containing approximately
repeating firing patterns across the whole population of recorded
neurons. Synfire chains can readily be identified if the repeating
patterns are not masked by too many concurrent spikes from cells
that do not participate in the same link, if the applied bin width
matches the temporal organization of the chain, and if the interlink
propagation delays are stable (as postulated for synfire chains). In
contrast, we propose to register spatiotemporal firing patterns with
a sliding window in the first instance and to subsequently search
for recurring sequences of temporally non-overlapping patterns
irrespective of their particular spatiotemporal structure, trying to
make as few assumptions about the organization of multineuronal
activity as possible.

PENDING PROBLEMS IN PATTERN DETECTION
Any way of defining the identity of a pattern, be it by using some
template for the pattern search or by specifying the pattern as it is
captured, inevitably poses the problem of where to draw the line
between similar patterns. For example, it is completely unclear
how to divide a continuum of patterns if the classification scheme
permits missing or extra spikes. The same principle applies to reg-
istering the spike timing: The assignment of exclusive time bins,
even the usage of “smooth” templates imposes perfectly arbitrary
boundaries on the temporal patterns to be detected. For these
reasons, it is most straightforward to require patterns to contain
no extra or missing spikes to be unambiguously identified, and it
appears that the only way to avoid temporal aliasing effects is to
specify spike times solely by their temporal order.

Another problem, as mentioned earlier, is the mutual mask-
ing of concurrent but independent patterns. To reliably unravel
simultaneously occurring but unrelated patterns, one would have
to systematically list all possible subpatterns and to subsequently
distill the significant ones. We actually implemented a correspond-
ing algorithm in the analysis, and it turned out that the additional
computational load does not add too much to the processing time,
but memory requirements dramatically increased. Therefore, we
propose to group simultaneously active cells according to their
joint firing probabilities, which essentially produces a subset of all
possible subpatterns. In doing so, some significant patterns might
however be missed, and the overall significance of the data might
be underestimated, resulting in reduced test power (Figure 6). The
functional coupling between cells can easily be assessed by com-
paring the number of synchronous spikes to the chance level of
coincident firing as estimated by Eq. (1), assuming serial inde-
pendence and stationarity of firing events. As an alternative, one
could employ conventional cross-correlation techniques, among
which information theoretic approaches seem to be most sensitive
(Yamada et al., 1993). Both methods fail to give meaningful results
if events are scarce, which is why we implemented an additional
global threshold with respect to the joint firing probabilities to
identify each neuron’s peers. Besides, other methods to quantify
the correlation between two spike trains exist which may as well

be applied, like for example fitting pairwise maximum entropy
models to the data (Roudi et al., 2009) or determining the degree
of synchrony between spike trains (for a comparison of different
innovative measures see Kreuz et al., 2007). The particular advan-
tage of the method of estimating the time-dependent functional
coupling between cells proposed here is its technical simplicity
and ease of computation. Despite its heuristic character, it has
clearly demonstrated its potential to improve pattern detection
(Figure 7A). Nevertheless, the thorough evaluation of all possible
combinations of events that coincide in the given time window is
to be preferred whenever it is technically feasible.

STATISTICAL ISSUES
Since the complexity of multineuronal spiking activity typically
prevents analytical approaches, resampling methods have to be
applied to test a certain null hypothesis (Stark and Abeles, 2005;
Grün, 2009). Here, we compared three different surrogate data
types for testing the significance of coordinated events in parallel
time series (Figure 3). Dithering event times randomly and inde-
pendently almost inevitably changes the interval distribution and
introduces a bias toward inappropriately low levels of coordina-
tion if uniform dithering is used, regardless of whether the dither
window is always centered on the event or not (Figures 5A,B).
The only technique we know of that randomizes event times inde-
pendently and at the same time does not significantly change the
interval distribution of a gamma process is the“square root dither”
method proposed by Gerstein (2004; Figure 5C). However, this
technique conspicuously flattens the more modulated distribu-
tion of real inter-spike intervals (Figure 5D), rendering them less
regular. As a consequence, the surrogate data can again be expected
to contain an inappropriately low number of coordinated events,
which in turn would result in an increased number of spuriously
detected patterns in the original data (Figure 7B).

If the intention is to disarrange coordinated events, we therefore
suggest to randomly shift whole event trains against each other,
preferably in combination with random shuffling of short inter-
event intervals (Figures 3B,C). While preserving the complete
auto-structure is the only way to perfectly account for effects of e.g.
spike bursts or oscillatory processes on the apparent coordination
of events, shuffling selected intervals in addition to shifting event
trains increases the distance between original data and surrogate
data and markedly facilitates the detection of patterns (Figure 6C).
At the same time, the surrogates also become more dissimilar from
each other, which leads to an increased number of statistically sig-
nificant patterns in every surrogate data set and makes the second
level test slightly more conservative with respect to the original
data (Figures 6A,D). Recently, Harrison and Geman presented the
idea to randomly and independently shift segments of spike trains
so that inter-spike intervals are changed only in between them
(Harrison and Geman, 2009). How such a procedure affects the
validation of patterns and the corresponding error levels remains
to be investigated.

Several factors inherent in the presented method should be
highlighted that tend to result in conservative estimates of the sig-
nificance of patterns: First, patterns of a higher complexity may be
split into multiple patterns with lower complexity as a consequence
of the surrogate data generation (reflected in Figure 4) which may
produce misleadingly high numbers of repeating patterns in the
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surrogate data. Second, the surrogate data sets are more dissimilar
from each other than from the original data, because the original
data constitutes their common source. This consequently implies
an increased potential to contain unique, statistically significant
patterns, introducing a bias toward higher pattern counts in the
surrogate data. The finding that under certain circumstances the
original data contain significantly less repeating patterns than the
respective surrogate data (Figure 6D) is arguably attributable to
these first two factors. A third potential source of conservative esti-
mates is the statistical test itself: Directly calculating the percentage
of counts from the surrogate data that fall below the original count
is the most simple test one might think of. When applying this
test, one might confidently do so without explicitly correcting for
multiple comparisons. The same does not hold if more refined
tests are used, like for example the binomial test, which is per-
fectly applicable and may serve as an alternative but would clearly
require a correction. The t -test, like the Wilcoxon signed rank
test, is unsuited because of its sensitivity to skewed, discontinu-
ous distributions (Stonehouse and Forrester, 1998) and especially
inapplicable if many zero counts generate a floor effect, as is to be
expected when looking for complex patterns.

Because the statistical significance of individual patterns and
sequences is assessed based on the overall number of their occur-
rences in the whole data set, they may be significant despite being
rare; all that matters for them to be detected as being non-random
is that they occur significantly more often in the original data
than in the surrogate data, irrespective of other criteria like their
particular time of occurrence or their complexity. This distin-
guishes our method from others in which the statistical evaluation
is based on trials or relies on an exact calculation of the probability
of occurrence under the null hypothesis. In the presented Monte
Carlo approach, the chance level of pattern and sequence occur-
rences is derived directly from the original data, thus avoiding the
“curse of dimensionality” inherent in many other approaches that
relate the original data to some exact model and require larger
data volumes for assessing the significance of complex patterns.

Besides, effects of firing rate on the statistical performance of the
method are minimized by disregarding all but the first spike of
every unit inside the respective time window and can further be
counteracted by adapting the parameters for the pattern search. In
conclusion, there are no specific requirements regarding the min-
imum amount of investigated data, although the probability of a
rare pattern to recur and thus to be detected clearly increases with
increasing recording time.

POSSIBLE TECHNICAL IMPROVEMENTS
Although the analysis has been programmed as a single compu-
tational process, it can easily be adapted to parallel computing
environments by insertion of only a few extra commands that dis-
tribute the separate Monte Carlo steps over the available cores.
[We refer the reader interested in practically trivial solutions to
related parallelization problems to Denker et al. (2010).] In the
very near future, the use of multi-core systems and the integration
of general-purpose GPUs will enable the evaluation of data com-
prising hundreds of thousands of events in at most a few minutes.
At the same time, the availability of 64 GB of working memory or
more in a single workstation should make it possible to system-
atically analyze all spatial subpatterns and hence to directly detect
genuine higher order correlations between units also in large data
sets. After all, the problem of detecting significant spatiotemporal
patterns in massively parallel time series is not a conceptual one,
but one of computational resources.

ACKNOWLEDGMENTS
The authors wish to thank Sergio Neuenschwander for pro-
viding the software for data acquisition (“SPASS”), Nan-Hui
Chen for providing the software for spike sorting (“Smart Spike
Sorter”), Gordon Pipa, Michael Wibral, Eugénio Rodriguez, and
Anton Sirota for helpful discussions on various statistical topics,
and Raoul-Martin Memmesheimer for carrying out some of the
computations. This work was partially supported by the German
Research Foundation (SFB 269) and the Max Planck Society.

REFERENCES
Abeles, M. (1991). Corticonics – Neural

Circuits of the Cerebral Cortex.
Melbourne: Cambridge University
Press.

Abeles, M., and Gerstein, G. L.
(1988). Detecting spatiotemporal
firing patterns among simultane-
ously recorded single neurons. J.
Neurophysiol. 60, 909–924.

Aertsen, A. M. H. J., Gerstein, G. L.,
Habib, M. K., and Palm, G. (1989).
Dynamics of neuronal firing cor-
relation: modulation of “effective
connectivity.” J. Neurophysiol. 61,
900–917.

Averbeck, B. B., and Lee, D. (2004).
Coding and transmission of infor-
mation by neural ensembles. Trends
Neurosci. 27, 225–230.

Berger, D., Borgelt, C., Louis, S., Mor-
rison, A., and Grün, S. (2010).
Efficient identification of assembly
neurons within massively parallel

spike trains. Comput. Intell. Neu-
rosci. 439648.

Bienenstock, E. (1995). A model of
neocortex. Network 6, 179–224.

Brown, E. N., Kass, R. E., and Mitra,
P. P. (2004). Multiple neural spike
train data analysis: state-of-the-art
and future challenges. Nat. Neurosci.
7, 456–461.

deCharms, R. C., and Zador, A. M.
(2000). Neural representation and
the cortical code. Annu. Rev. Neu-
rosci. 23, 613–647.

Denker, M., Wiebelt, B., Fliegner, D.,
Diesmann, M., and Morrison, A.
(2010). “Practically trivial parallel
data processing in a neuroscience
laboratory” in Analysis of Paral-
lel Spike Trains, eds S. Grün and
S. Rotter (New York: Springer),
413–436.

Ferster, D., and Spruston, N. (1995).
Cracking the neuronal code. Science
270, 756–757.

Fetz, E. E. (1997). Temporal coding
in neural populations? Science 278,
1901–1902.

Frostig, R. D., Frostig, Z., and Harper,
R. M. (1990). Recurring discharge
patterns in multiple spike trains.
I. Detection. Biol. Cybern. 62,
487–493.

Fujii, H., Ito, H., Aihara, K., Ichinose,
N., and Tsukada, M. (1996).
Dynamical cell assembly hypoth-
esis – theoretical possibility
of spatio-temporal coding in
the cortex. Neural Netw. 9,
1303–1350.

Gansel, K. S., and Singer, W. (2006).
Detection and validation of first-
and second-order multineuronal
spike patterns. FENS Abstr. 3,
A216.7.

Gerstein, G. L. (2004). Searching for sig-
nificance in spatio-temporal firing
patterns. Acta Neurobiol. Exp. (Wars)
64, 203–207.

Gerstein, G. L., and Aertsen, A. M. H.
J. (1985). Representation of cooper-
ative firing activity among simulta-
neously recorded neurons. J. Neuro-
physiol. 54, 1513–1528.

Gerstein, G. L., Bedenbaugh, P., and
Aertsen,A. M. H. J. (1989). Neuronal
assemblies. IEEE Trans. Biomed. Eng.
36, 4–14.

Gerstein, G. L., Perkel, D. H., and Day-
hoff, J. E. (1985). Cooperative firing
activity in simultaneously recorded
populations of neurons: detection
and measurement. J. Neurosci. 5,
881–889.

Gerstein, G. L., Perkel, D. H., and Sub-
ramanian, K. N. (1978). Identifica-
tion of functionally related neural
assemblies. Brain Res. 140, 43–62.

Gerstein, G. L., Williams, E. R., Dies-
mann, M., Grün, S., and Trengove,
C. (2012). Detecting synfire chains
in parallel spike data. J. Neurosci.
Methods 206, 54–64.

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 18 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gansel and Singer Detecting spatiotemporal firing patterns

Gerstner, W., Kreiter, A. K., Markram,
H., and Herz, A. V. (1997). Neural
codes: firing rates and beyond.
Proc. Natl. Acad. Sci. U.S.A. 94,
12740–12741.

Grün, S. (2009). Data-driven signifi-
cance estimation for precise spike
correlation. J. Neurophysiol. 101,
1126–1140.

Grün, S., Diesmann, M., and Aert-
sen, A. M. H. J. (2002a). Unitary
events in multiple single-neuron
spiking activity: I. Detection and
significance. Neural Comput. 14,
43–80.

Grün, S., Diesmann, M., and Aert-
sen, A. M. H. J. (2002b). Unitary
events in multiple single-neuron
spiking activity: II. Nonstationary
data. Neural Comput. 14, 81–119.

Grün, S., Diesmann, M., Grammont, F.,
Riehle, A., and Aertsen, A. M. H.
J. (1999). Detecting unitary events
without discretization of time. J.
Neurosci. Methods 94, 67–79.

Gütig, R., Aertsen, A. M. H. J., and Rot-
ter, S. (2002). Statistical significance
of coincident spikes: count-based
versus rate-based statistics. Neural
Comput. 14, 121–153.

Gütig, R., Aertsen, A. M. H. J.,
and Rotter, S. (2003). Analysis of
higher-order neuronal interactions
based on conditional inference. Biol.
Cybern. 88, 352–359.

Harris, K. D. (2005). Neural signatures
of cell assembly organization. Nat.
Rev. Neurosci. 6, 399–407.

Harrison, M. T., and Geman, S. (2009).
A rate and history-preserving
resampling algorithm for neural
spike trains. Neural Comput. 21,
1244–1258.

Hatsopoulos, N. G., Geman, S., Ama-
rasingham, A., and Bienenstock, E.
(2003). At what time scale does the
nervous system operate? Neurocom-
puting 52, 25–29.

Hebb, D. O. (1949). The Organization
of Behavior – A Neuropsychological
Theory. New York: John Wiley &
Sons.

Hirata, Y., Katori, Y., Shimokawa, H.,
Suzuki, H., Blenkinsop, T. A., Lang,
E. J., and Aihara, K. (2008). Testing a
neural coding hypothesis using sur-
rogate data. J. Neurosci. Methods 172,
312–322.

Izhikevich, E. M. (2006). Polychro-
nization: computation with spikes.
Neural Comput. 18, 245–282.

Kass, R. E., Kelly, R. C., and Loh,
W.-L. (2011). Assessment of syn-
chrony in multiple neural spike
trains using log-linear point
process models. Ann. Appl. Stat. 5,
1262–1292.

Kass, R. E.,Ventura,V., and Brown, E. N.
(2005). Statistical issues in the analy-
sis of neuronal data. J. Neurophysiol.
94, 8–25.

Kim, S., Putrino, D., Ghosh, S.,
and Brown, E. N. (2011). A
Granger causality measure for point
process models of ensemble neural
spiking activity. PLoS Comput.
Biol. 7, e1001110. doi:10.1371/jour-
nal.pcbi.1001110

Kreuz, T., Haas, J. S., Morelli, A., Abar-
banel, H. D. I., and Politi, A. (2007).
Measuring spike train synchrony. J.
Neurosci. Methods 165, 151–161.

Lee, A. K., and Wilson, M. A. (2004).
A combinatorial method for analyz-
ing sequential firing patterns involv-
ing an arbitrary number of neu-
rons based on relative time order. J.
Neurophysiol. 92, 2555–2573.

Lopes-dos-Santos, V., Conde-
Ocazionez, S., Nicolelis, M. A.
L., Ribeiro, S. T., and Tort, A.
B. L. (2011). Neuronal assembly
detection and cell membership
specification by principal compo-
nent analysis. PLoS ONE 6, e20996.
doi:10.1371/journal.pone.0020996

Martignon, L., Deco, G., Laskey, K.,
Diamond, M. E., Freiwald, W. A.,
and Vaadia, E. (2000). Neural cod-
ing: higher-order temporal pat-
terns in the neurostatistics of cell
assemblies. Neural Comput. 12,
2621–2653.
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APPENDIX
DERIVATION OF THE RATE-BASED CHANCE LEVEL OF SPURIOUS
COINCIDENCES
Let niT be the (known) number of events of unit i during time
interval T, then the number kiW of events of unit i in the time
window W (with W < T ) can be approximated as

kiW = W

T
niT , (A1)

assuming serial independence and stationarity of events. Under the
condition that T /W ≥ niT, the probability P of coinciding events
of M different units labeled 1...M in time window W is

P(W )
1...M =

M∏
i=1

kiW . (A2)

Since T /W is the number of time windows W in the time
interval T, multiplying Eq. (A2) with this number gives the
expected number of coincidences of M different units during time
interval T :

P(T )
1...M = T

W

M∏
i=1

kiW . (A3)

Insertion of Eq. (A1) and conversion yields

P(T )
1...M =

(
W

T

)M−1 M∏
i=1

niT . (A4)

In the case of M = 2, Eq. (A4) becomes

P(T )
ij = W

T
niT njT (A5)

with P(T )
ij being the expected number of coincidences of units i

and j during time interval T, and niT and njT being the numbers
of events of units i and j during time interval T.

SURROGATE DATA GENERATING PROCEDURES
Formally, the methods for generating surrogate data are expressed
as follows. Definitions include ti being the ith timestamp of an
event train t 1...n with n events labeled 1...n, the preceding inter-
event interval δp = ti – t i-1, the subsequent inter-event interval
δs = t i+1 – ti, the maximal width w of the dither window, and a
random number r ∈ R.

Single event times were dithered randomly and independently
according to

t (S)
i = ti + r . (A6)

The random number r is bounded above by υs and below by
–υp such that –υp ≤ r ≤ υs. The bounds were defined depending
both on the adjacent inter-event intervals and on w. When the
resulting dither window was required to be centered on the event
(“symmetric dither”), the bounds were specified corresponding to

υp = υs = min
(
δp − 1 ms, δs − 1 ms, w

)/
2 (A7)

with min(...) returning the number with the lowest value. In cases
where the window center was allowed to deviate from the time
of the event (“asymmetric dither”), the bounds were calculated
independently from each other:

υp = min
(
δp − 1 ms, w

)/
2, (A8)

υs = min (δs − 1 ms, w)
/

2. (A9)

In both cases, the probability for an event to occur is distributed
uniformly over the dither window. By contrast, the “square root
dither” method (Gerstein, 2004) relocates event times randomly
within a window that is composed of the square roots of υp and
υs as given by Eqs (A8) and (A9):

υp =
√

min
(
δp − 1 ms, w

)/
2, (A10)

υs =
√

min (δs − 1 ms, w)
/

2. (A11)

The offset r results from drawing a random number q ∈ {–υp; υs}
and squaring its absolute value while keeping its sign, such that
r = q × | q | with |...| denoting the absolute value.

Event trains were shifted randomly and independently accord-
ing to

t (S)
1...n = t1...n + r (A12)

with –w/2 ≤ r ≤ w/2. When additional interval shuffling was
applied, consecutive inter-event intervals δ ≤ w/2 were randomly
rearranged.

DATA SIMULATION
Sets of 30 parallel simulated spike trains were generated on biolog-
ically plausible timescales by gamma processes featuring indepen-
dent rate modulations (data type 1), rate covariations (data type
2) and precisely repeating spatiotemporal patterns and pattern
sequences (data types 3, 4, and 5). By default, the rate parameter
was fixed (β = 49), while the shape parameter (order) varied ran-
domly between 0.7 (bursty) and 7 (regular) for any given spike
train, resulting in mean firing rates of ∼ 3–30 Hz. In rate mod-
ulated data (data type 1), the rate parameter was changed to a
random value between 24 and 74 for five consecutive inter-event
intervals chosen randomly from every 25 inter-event intervals,
resulting in transient firing rates of ∼ 2–60 Hz. Rate covaria-
tions (data type 2) were realized by jointly randomizing the rate
parameter between 24 and 74 for 1 s every 5 s. Exactly repeat-
ing spatiotemporal spike patterns, arranged in a synfire chain-like
structure (Figure A1), were inserted into the data every second
(data type 3) or every five seconds (data types 4 and 5), leading
to an average fraction of coordinated events of 11.8% (SD 1.2)
and 2.6% (SD 0.3), respectively. Importantly, a distinction is made
between data containing spikes concurrent to but not participat-
ing in the inserted patterns (data types 3 and 4, Figure A1A) and
data with these events removed (data type 5, Figure A1B). The
spike trains were truncated at 50 s and divided into 5 s intervals as
the basis for calculating the correlation matrix and for generating
surrogate data.
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FIGURE A1 | Spike raster plots exemplifying simulated data segments

including inserted spatiotemporal patterns and pattern sequences.
Thirty parallel spike trains were generated by gamma processes with rate
parameter β = 49 and random shape parameter α = 0.7–7. Patterns
consisted of five spikes with millisecond intervals and followed each other
with an onset delay of 50 ms, giving rise to a synfire chain-like structure

made up of six distinct patterns with exactly one spike per unit (periods of
pattern occurrences highlighted in gray). (A) Some events co-occur by
chance with the inserted patterns, complicating their detection (data types
3 and 4). (B) Events concurrent to but not participating in the inserted
patterns have been removed to ensure the correct identification of the
patterns (data type 5).

DATA ACQUISITION
Experiments were carried out in accordance with European
and German laws for the protection of animals. Coronal slices
(400 μm) were prepared from visual cortices of juvenile (P17–P22)
Wistar rats. Recordings were performed at 37˚C in a submersion
chamber continuously perfused with oxygenated artificial cere-
brospinal fluid containing (in mM) 110 NaCl, 3.75 KCl, 1.25
NaH2PO4, 25 NaHCO3, 1 CaCl2, 1 MgCl2, and 17.5 glucose. In
certain periods, Carbachol (20 or 50 μM), Bicuculline (30 μM),
CGP-35348 (10 μM), and KCl (10 mM) were added. In addition,
intermittent electrical stimulation was applied to layer IV or layer
V cells using a 59-electrode array (Multichannel Systems, Reutlin-
gen, Germany) with flat electrodes spaced at 200 μm, integrated
in the bottom of the chamber. One to three electrode pairs were
selected for weak bipolar stimulation (rectangular pulse, ±100 or

±200 μA, 200 μs) of the neuronal tissue at frequencies ranging
from 0.5 to 40 Hz using a programmable stimulator (STG 1008,
Multichannel Systems).

Spontaneous and evoked activity was recorded with a silicon-
based multielectrode array (Bionic Technologies, Salt Lake City,
UT, USA) consisting of 1.5 mm long, sharpened electrodes
arranged in a regularly spaced (tip distance 400 μm) matrix. The
recording electrode tips (2 μm diameter, 0.1–0.8 MΩ impedance
at 1 kHz) were placed in the middle of the slice and covered an
area of 3.2 mm horizontally and 1.2 mm vertically, including all
six cortical layers. Single-unit spiking activity was extracted from
32 sampled channels by offline sorting. The analysis encompasses
data obtained from 10 animals comprising between ∼ 40000 and
∼ 270000 spikes recorded simultaneously from 56 to 125 units in
40 to 120 min.
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