757 research outputs found

    Discrete Time Generative-Reactive Probabilistic Processes with Different Advancing Speeds

    Get PDF
    We present a process algebra expressing probabilistic external/internal choices, multi-way synchronizations, and processes with different advancing speeds in the context of discrete time, i.e. where time is not continuous but is represented by a sequence of discrete steps as in discrete time Markov chains (DTMCs). To this end, we introduce a variant of CSP that employs a probabilistic asynchronous parallel operator whose synchronization mechanism is based on a mixture of the classical generative and reactive models of probability. In particular, differently from existing discrete time process algebras, where parallel processes are executed in synchronous locksteps, the parallel operator that we adopt allows processes with different probabilistic advancing speeds (mean number of actions executed per time unit) to be modeled. Moreover, our generative-reactive synchronization mechanism makes it possible to always derive DTMCs in the case of fully specified systems. We then present a sound and complete axiomatization of probabilistic bisimulation over finite processes of our calculus, that is a smooth extension of the axiom system for a standard process algebra, thus solving the open problem of cleanly axiomatizing action restriction in the generative model. As a further result, we show that, when evaluating steady state based performance measures which are expressible by attaching rewards to actions, our approach provides an exact solution even if the advancing speeds are considered not to be probabilistic, without incurring the state space explosion problem that arises with standard synchronous approaches. We finally present a case study on multi-path routing showing the expressiveness of our calculus and that it makes it particularly easy to produce scalable specifications

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Estimating the Maximum Information Leakage

    Get PDF
    none2noopenAldini, Alessandro; DI PIERRO, A.Aldini, Alessandro; DI PIERRO, A

    Journey of Artificial Intelligence Frontier: A Comprehensive Overview

    Get PDF
    The field of Artificial Intelligence AI is a transformational force with limitless promise in the age of fast technological growth This paper sets out on a thorough tour through the frontiers of AI providing a detailed understanding of its complex environment Starting with a historical context followed by the development of AI seeing its beginnings and growth On this journey fundamental ideas are explored looking at things like Machine Learning Neural Networks and Natural Language Processing Taking center stage are ethical issues and societal repercussions emphasising the significance of responsible AI application This voyage comes to a close by looking ahead to AI s potential for human-AI collaboration ground-breaking discoveries and the difficult obstacles that lie ahead This provides with a well-informed view on AI s past present and the unexplored regions it promises to explore by thoroughly navigating this terrai

    Clinical risk modelling with machine learning: adverse outcomes of pregnancy

    Get PDF
    As a complex biological process, there are various health issues that are related to pregnancy. Prenatal care, a type of preventative healthcare at different points in gestation is comprised of management, treatment, and mitigation of such issues. This also includes risk prediction for adverse pregnancy outcomes, where probabilistic modelling is used to calculate individual’s risk at the early stages of pregnancy. This type of modelling can have a definite clinical scope such as in prenatal screening, and an educational aim where awareness of a healthy lifestyle is promoted, such as in health education. Currently, the most used models are based on traditional statistical approaches, as they provide sufficient predictive power and are easily interpreted by clinicians. Machine learning, a subfield of data science, contains methods for building probabilistic models with multidimensional data. Compared to existing prediction models related to prenatal care, machine learning models can provide better results by fitting more intricate nonlinear decision boundary areas, improve data-driven model fitting by generating synthetic data, and by providing more automation for routine model adjustment processes. This thesis presents the evaluation of machine learning methods to prenatal screening and health education prediction problems, along with novel methods for generating synthetic rare disorder data to be used for modelling, and an adaptive system for continuously adjusting a prediction model to the changing patient population. This way the thesis addresses all the four main entities related to predicting adverse outcomes of pregnancy: the mother or patient, the clinician, the screening laboratory and the developer or manufacturer of screening materials and systems.Kliinisen riskin mallinnus koneoppimismenetelmin: raskaudelle haitalliset lopputulemat Raskaus on kompleksinen biologinen prosessi, jonka etenemiseen liittyy useita terveysongelmia. Äitiyshoito voidaan kuvata ennalta ehkäiseväksi terveydenhuolloksi, jossa pyritään käsittelemään, hoitamaan ja lievittämään kyseisiä ongelmia. Tähän hoitoon sisältyy myös raskauden haitallisten lopputulemien riskilaskenta, missä probabilistista mallinnusta hyödynnetään määrittämään yksilön riski raskauden varhaisissa vaiheissa. Tällä mallinnuksella voi olla selkeä kliininen tarkoitus kuten prenataaliseulonta, tai terveyssivistyksellinen tarkoitus missä odottavalle äidille esitellään raskauden kannalta terveellisiä elämäntapoja. Tällä hetkellä eniten käytössä olevat ennustemallit perustuvat perinteiseen tilastolliseen mallinnukseen, sille ne tarjoavat riittävän ennustetehokkuuden ja ovat helposti tulkittavissa. Koneoppiminen on datatieteen osa-alue, joka pitää sisällään menetelmiä millä voidaan mallintaa moniulotteista dataa ennustekäyttöön. Verrattuna olemassa oleviin äitiyshoidon ennustemalleihin, koneoppiminen mahdollistaa parempien ennustetulosten tuottamisen sovittamalla hienojakoisempia epälineaarisia päätösalueita, tehostamalla datakeskeisten mallien sovitusta luomalla synteettisiä havaintoja ja tarjoamalla enemmän automaatiota rutiininomaiseen mallien hienosäätöön. Tämä väitös esittelee koneoppimismenetelmien evaluaation prenataaliseulonta-ja terveyssivistysongelmiin, ja uusia menetelmiä harvinaisten sairauksien datan luomiseen mallinnustarkoituksiin ja jatkuvan ennustemallin hienosäätämisen järjestelmän muuttuvia potilaspopulaatiota varten. Näin väitös käy läpi kaikki neljä asianomaista jotka liittyvät haitallisten lopputulemien ennustamiseen: odottava äiti eli potilas, kliinikko, seulontalaboratorio ja seulonnassa käytettävien materiaalien ja järjestelmien kehittäjä tai valmistaja

    Cyber-Physical Embedded Systems with Transient Supervisory Command and Control: A Framework for Validating Safety Response in Automated Collision Avoidance Systems

    Get PDF
    The ability to design and engineer complex and dynamical Cyber-Physical Systems (CPS) requires a systematic view that requires a definition of level of automation intent for the system. Since CPS covers a diverse range of systemized implementations of smart and intelligent technologies networked within a system of systems (SoS), the terms “smart” and “intelligent” is frequently used in describing systems that perform complex operations with a reduced need of a human-agent. The difference between this research and most papers in publication on CPS is that most other research focuses on the performance of the CPS rather than on the correctness of its design. However, by using both human and machine agency at different levels of automation, or autonomy, the levels of automation have profound implications and affects to the reliability and safety of the CPS. The human-agent and the machine-agent are in a tidal lock of decision-making using both feedforward and feedback information flows in similar processes, where a transient shift within the level of automation when the CPS is operating can have undesired consequences. As CPS systems become more common, and higher levels of autonomy are embedded within them, the relationship between human-agent and machine-agent also becomes more complex, and the testing methodologies for verification and validation of performance and correctness also become more complex and less clear. A framework then is developed to help the practitioner to understand the difficulties and pitfalls of CPS designs and provides guidance to test engineering design of soft computational systems using combinations of modeling, simulation, and prototyping

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications
    corecore