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ABSTRACT 

As a complex biological process, there are various health issues that are related to 
pregnancy. Prenatal care, a type of preventative healthcare at different points in 
gestation is comprised of management, treatment, and mitigation of such issues. This 
also includes risk prediction for adverse pregnancy outcomes, where probabilistic 
modelling is used to calculate individual’s risk at the early stages of pregnancy. This 
type of modelling can have a definite clinical scope such as in prenatal screening, 
and an educational aim where awareness of a healthy lifestyle is promoted, such as 
in health education. Currently, the most used models are based on traditional 
statistical approaches, as they provide sufficient predictive power and are easily 
interpreted by clinicians. 

Machine learning, a subfield of data science, contains methods for building 
probabilistic models with multidimensional data. Compared to existing prediction 
models related to prenatal care, machine learning models can provide better results 
by fitting more intricate nonlinear decision boundary areas, improve data-driven 
model fitting by generating synthetic data, and by providing more automation for 
routine model adjustment processes. 

This thesis presents the evaluation of machine learning methods to prenatal 
screening and health education prediction problems, along with novel methods for 
generating synthetic rare disorder data to be used for modelling, and an adaptive 
system for continuously adjusting a prediction model to the changing patient 
population. This way the thesis addresses all the four main entities related to 
predicting adverse outcomes of pregnancy: the mother or patient, the clinician, the 
screening laboratory and the developer or manufacturer of screening materials and 
systems. 

 

KEYWORDS: Machine learning, Pregnancy outcomes, Risk calculation  



 v 

TURUN YLIOPISTO 
Teknillinen tiedekunta 
Tietotekniikan laitos 
Tietojenkäsittelytiede 
AKI KOIVU: Kliinisen riskin mallinnus koneoppimismenetelmin: raskaudelle 
haitalliset lopputulemat 
Väitöskirja, 118 s. 
Teknologian tohtoriohjelma 
Huhtikuu 2022 

TIIVISTELMÄ 

Raskaus on kompleksinen biologinen prosessi, jonka etenemiseen liittyy useita 
terveysongelmia. Äitiyshoito voidaan kuvata ennalta ehkäiseväksi terveyden-
huolloksi, jossa pyritään käsittelemään, hoitamaan ja lievittämään kyseisiä 
ongelmia. Tähän hoitoon sisältyy myös raskauden haitallisten lopputulemien 
riskilaskenta, missä probabilistista mallinnusta hyödynnetään määrittämään yksilön 
riski raskauden varhaisissa vaiheissa. Tällä mallinnuksella voi olla selkeä kliininen 
tarkoitus kuten prenataaliseulonta, tai terveyssivistyksellinen tarkoitus missä 
odottavalle äidille esitellään raskauden kannalta terveellisiä elämäntapoja. Tällä 
hetkellä eniten käytössä olevat ennustemallit perustuvat perinteiseen tilastolliseen 
mallinnukseen, sille ne tarjoavat riittävän ennustetehokkuuden ja ovat helposti 
tulkittavissa. 

Koneoppiminen on datatieteen osa-alue, joka pitää sisällään menetelmiä millä 
voidaan mallintaa moniulotteista dataa ennustekäyttöön. Verrattuna olemassa 
oleviin äitiyshoidon ennustemalleihin, koneoppiminen mahdollistaa parempien 
ennustetulosten tuottamisen sovittamalla hienojakoisempia epälineaarisia päätös-
alueita, tehostamalla data-keskeisten mallien sovitusta luomalla synteettisiä 
havaintoja ja tarjoamalla enemmän automaatiota rutiininomaiseen mallien 
hienosäätöön. 

Tämä väitös esittelee koneoppimismenetelmien evaluaation prenataaliseulonta-
ja terveyssivistysongelmiin, ja uusia menetelmiä harvinaisten sairauksien datan 
luomiseen mallinnustarkoituksiin ja jatkuvan ennustemallin hienosäätämisen 
järjestelmän muuttuvia potilaspopulaatiota varten. Näin väitös käy läpi kaikki neljä 
asianomaista jotka liittyvät haitallisten lopputulemien ennustamiseen: odottava äiti 
eli potilas, kliinikko, seulontalaboratorio ja seulonnassa käytettävien materiaalien ja 
järjestelmien kehittäjä tai valmistaja. 

 

ASIASANAT: Koneoppiminen, Raskauden lopputulema, Riskilaskenta.  
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1 Introduction 

Pregnancy is an event that contains various complex biological processes aimed at 
developing and delivering a healthy newborn. Because of this complexity, along with 
environmental factors affecting the mother, various health issues can rise that relate 
to the mother or the fetus, at different time points of gestation. Management, 
treatment and mitigation of such issues during the gestational period is commonly 
called prenatal care (Fiscella, 1995). Prenatal care is considered a type of 
preventative healthcare, as it contains periodical visits to a medical professional that 
can assess the progress and the current state of a pregnancy. These visits can also 
include the use of risk prediction -based screening procedures, that can be used to 
manage adverse outcomes. 

There are commonly four entities relating to risk prediction of adverse outcomes 
of pregnancy: the mother or patient, the clinician, the screening laboratory and the 
developer or manufacturer of screening materials and systems. The role of the 
manufacturer is to provide software, instrumentation, or biochemical reagent kits to 
be used by the other entities. The centralized screening laboratory specializes in 
running the related biochemical tests, and commonly provides results to a clinician 
with high patient sample throughput. The clinician’s role is to communicate and 
conduct management, treatment, or mitigation with his or her patients. In addition to 
processing screening results, these clinicians have a significant role in maternal 
health education, as they can recommend lifestyle choices to the mother that have a 
beneficial effect on the mother’s and child’s health during pregnancy. 

In the domain of prenatal care, probabilistic modelling is used to assess the 
individual’s risk of adverse pregnancy outcomes (Rose, et al., 2020). Depending on 
the clinical gravitas of the associated outcome and its treatment and management, 
the risk assessment can be used by the patient’s clinician to determine the most 
opportune treatment strategy, or by the patient herself for educational purposes. In 
this chapter, applications of clinical prenatal screening and health education of risk 
modelling for adverse pregnancy outcomes are described, along with the aims of the 
study. 



Aki Koivu 

2 

1.1 Prenatal Screening 
Prenatal screening is an aspect of prenatal care that consists of detecting affected 
events of the ongoing pregnancy (Rose, et al., 2020). This can concern the health of 
the mother or the fetus. For the fetus, in the most desirable case this enables timely 
treatment of the event or the underlying condition before or after birth. However, if 
treatment is not available, the screening gives the parents a chance to prepare for a 
baby with a health problem or a disability. In cases of lethal or severely disabling 
disorder, the pregnancy is commonly decided to be terminated. For the mother, 
conditions relating to the pregnancy can be detected, such as pre-eclampsia which 
can be life-threatening for the mother and child if left untreated (Steegers, et al., 
2010). 

Most common birth defects are related to hereditary genetic disorders (Yoon, et 
al., 2001). Therefore, prenatal screening commonly refers to aneuploidy or 
chromosomal abnormality screening. When prenatal screening is deployed, it is 
commonly done with a large patient population (Rose, et al., 2020). Centralized 
screening laboratories use affordable and highly sensitive biochemical and 
biophysical screening tests for conducting prenatal screening, usually to patients 
within their region. During certain time frames of the pregnancy, patient’s sample is 
collected and analysed in the lab. The results are then transferred to the patient’s 
clinician who provides diagnosis, and the appropriate treatment is then arranged for 
the patient. The screening tests that are commonly done are related to the conditions 
that the laboratory has selected for screening, and this is guided by the regional 
prenatal screening programs and guidelines they comply. 

The severe implications of a wrong prediction or diagnosis are the reason why 
prenatal screening is highly regulated. The American College of Obstetricians and 
Gynecologists or ACOG is an example of an organization that provides guidelines 
for screening tests conducted in the first and second trimester (Rose, et al., 2020). 
The regulation for In Vitro Diagnostics or IVD also relates to this domain (Food and 
Drug Administration, 2011), as they apply to the used screening instruments and 
reagents. 

Screening and diagnosis methods can be categorized as invasive or non-invasive 
tests (Rose, et al., 2020). Traditionally, invasive diagnosis methods in this context 
involve probes or needles that are inserted into the uterus, such as chorionic villus 
sampling or CVS and amniocentesis (Alfirevic, et al., 2017). These methods have a 
risk of affecting the fetus, and in extremely rare cases can result to pregnancy loss. 
Non-invasive screening tests on the other hand oppose minimal risk to the success 
of a pregnancy. These methods are usually based on ultrasonography or maternal 
serum screens from a blood sample. Invasive methods are usually deployed as a 
second tier diagnostic test when the initial first tier non-invasive method has given a 
positive result that cannot provide definitive diagnosis. 
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Different screening tests can also be time-dependent, meaning that they are 
feasible in certain time frame of the pregnancy due to development level of the fetus, 
or time restriction of the applicable treatment. For example, nuchal translucency scan 
or NT is usually offered around 11 to 13 weeks of gestational age because at that 
time the fetus has developed enough for the measurement to take place. For prenatal 
screening, first and second trimester are the main stages of pregnancy when testing 
is conducted due to time limitations of some management options. The general 
timeline of a pregnancy is depicted in Figure 1. 

 
Figure 1.  Timeline of a pregnancy. First trimester is defined as the gestation period of weeks 0 to 

13, while the second trimester is defined as the period of weeks 13 to 28 (The American 
College of Obstetricians and Gynecologists, 2020). Pregnancies with live birth that end 
before the week 37 are considered as preterm births, while term births are considered 
to occur during weeks 37 to 42 (World Health Organization, 2014). Pregnancies that 
end in loss of the child before week 22 are considered as miscarriages, during weeks 
22 to 27 they are classified as early stillbirth, and beyond week 28 as late stillbirth (World 
Health Organization, 2014). 

Because of the severity and low incidence of rare genetic disorders such as Down 
syndrome, prenatal screening has adapted the process of detecting pregnancies 
belonging to the high-risk pregnancies group (James, et al., 2010). Conceptionally, 
if a screening test result shows elevated risk for a condition, there are treatments and 
increased monitoring that can be applied before the condition fully takes an effect. 
The detection of a high-risk pregnancy is commonly an assessment of the prior risk 
of the patient, which consists of clinically significant risk factors (Parritz & Troy, 
2018). These factors consider the maternal demographics and history of the mother. 
Applicable biochemical and biophysical measurements can then be added to improve 
the screening performance. 

1.1.1 Down syndrome screening 
Down syndrome is a genetic disorder caused by the presence of all or part of a third 
copy of chromosome 21 (Patterson, 2009). Therefore, the condition is also known as 
Trisomy 21 or T21. The affected individual has three copies of the genes on 
chromosome 21 instead of the usually two, this is caused by the nondisjunction of 
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the 21st chromosome during egg or sperm development (Reisner, 2013). It is one of 
the most common chromosome abnormalities due to aneuploidy in humans, the 
incidence is estimated to be 1 in 1000 (Weijerman & de Winter, 2010). There have 
been multiple studies that have investigated the association of T21 to maternal 
history and demographics without concrete success, excluding maternal age 
(Sherman, et al., 2007). There is no known treatment for T21, and its severity can 
vary. Also, affected babies have an increased risk of developing other disorders such 
as heart problems, diabetes and Alzheimer’s (Abbag, 2006; Menéndez, 2005). Since 
its prenatal screening has been introduced, most pregnancies are decided to be 
terminated by the parents (Orthmann Bless & Hofmann, 2020). 

The development of prenatal screening of T21 is heavily intertwined with the 
development of prenatal screening in general. The study of 𝛼𝛼-fetoprotein or AFP 
levels collected from a maternal serum sample at second trimester to detecting neural 
tube defects conducted in the mid-1970s can be considered as the first significant 
step (Wald, et al., 1977). In that study, it was found that AFP concentration tended 
to be lower when the fetus had T21. After this, improvements on the quality of 
obstetric ultrasound, multiple additional biomarkers measured from the mother’s 
blood sample along with risk modelling and maternal age-specific stratification of 
risk enabled feasible first trimester screening for T21 (Davis, et al., 2014). 

The most widely used first trimester screening test for T21 is also named the 
combined test, because it incorporates the blood serum sample analysis after 14 
weeks of gestation with ultrasound at 10 weeks of gestation (Davis, et al., 2014). 
Pregnancy-associated plasma protein or PAPP-A (Breathnach & Malone, 2007) and 
serum free β-human chorionic gonadotrophin or fHCGβ (Ong, et al., 2000) were 
measured from the blood sample, while NT (Souka, et al., 2005) could be measured 
from an ultrasound image. This method had a false positive rate or FPR of 
approximately 5% with the fixed true positive rate or TPR of 85% (Cuckle & Benn, 
2010; Cuckle & Maymon, 2016; Padula, et al., 2014). The combined test represents 
one feasible protocol, as there are various other biomarkers to consider (Cuckle & 
Maymon, 2016). The widely agreed upon protocol has not emerged however as the 
scientific community, regulatory bodies and region representatives continue this 
assessment to this day. Advancements in technology have also been a topic of 
discussion, as DNA screening or NIPT becomes more and more commercially viable 
with highly accurate performance as time goes on (Gil, et al., 2015). The high 
prediction performance of T21 screening with the combined test is the result of 
highly predictive biomarkers applied to a clear and distinct outcome, which is not 
the case for health education. 
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1.2 Health Education 
A significant part of prenatal care is also to educate the mother and promote health 
and safety of the fetus (Alexander & Kotelchuck, 2001). Clinical risk algorithms can 
be used for this purpose; however, the performance and clinical relevance 
requirements of a clinical risk algorithm are strict, and usually require extensive 
validation. This does not however determine the clinical usefulness of a model, as 
there are widely used prenatal risk models that are not routinely used for clinical risk 
determination (Olivia Kim, et al., 2019). Patient risk produced by these types of 
models can be useful in terms of health education.  

Detection of a patient belonging to a high-risk group for adverse pregnancy 
outcomes such as preterm birth and stillbirth in the early stages of pregnancy is 
essential for their management and ultimately prevention. In such cases, non-
invasive monitoring and healthy lifestyle changes can improve the patient’s odds for 
the adverse outcome not to manifest during the pregnancy. Increasing the awareness 
and educating the mother of these possibilities is crucial. These preventive measures 
have no apparent drawback to the patient’s or the fetus’s health, so the threshold for 
starting management and monitoring is low. This thesis covers two pregnancy 
outcomes that currently can be considered as health education -related, stillbirth and 
preterm birth. 

1.2.1 Stillbirth 
World Health Organization or WHO defines stillbirth as an infant born without signs 
of life after the gestational age of 22 weeks (World Health Organization, 2014). The 
week threshold for stillbirth defined by ACOG is 20 weeks (The American College 
of Obstetricians and Gynecologists, 2009). WHO’s ICD-10 classification also 
defines early and late stillbirth, the former having the gestational age window of 22 
to 27 weeks, while the latter is defined by gestational age window of 28 weeks and 
beyond (World Health Organization, 2014). The epidemiology of stillbirth differs 
from other well-known fetal conditions, because the outcome can be a combination 
of multiple causing effects, and they are rarely fully understood (Aminu, et al., 
2014). These can include other pregnancy-related conditions such as genetic 
disorders, infections and structural malformations. The incidence of stillbirth 
correlates with the income level of a country, because most frequently the reported 
cause is maternal factors such as malaria, diabetes mellitus, syphilis or HIV positive 
status (McClure, et al., 2009; Turnbull, et al., 2011), and these conditions are more 
frequent in low-income countries. In high-income countries the incidence is 
estimated to be 1-9 in 1000 individuals, while in low- and middle-income countries 
it is estimated to be 3-30 in 1000 (McClure, et al., 2009; Stanton, et al., 2006). 
However, globally the rate of stillbirth has slowly declined mostly due to progress 
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in developed regions, while the highest rates and slowest declines are reported in 
Southern Asia and sub-Saharan Africa (McClure, et al., 2011). 

Despite the uncertainty relating to diagnosing stillbirth, several studies have 
shown that there are risk factors associated with it (Aminu, et al., 2014). Maternal 
age, ethnicity, body-mass index or BMI, smoking, various substance abuses, low 
level of education, low socioeconomic class, diabetes mellitus, multiple gestation 
and previous stillbirth are some of the more significant risk factors. Compared to 
T21 which has a substantial amount of scientific literature that associates certain 
biomarkers with the condition, a wide range of potential biomarkers for detecting 
stillbirth have been proposed (Smith, 2017), but feasible clinical verification is 
currently lacking for a majority of them, so the scientific community has not come 
to consensus regarding the subject. Some of the biomarkers with more clinical 
validity include PAPP-A (Smith, et al., 2002; Smith, et al., 2004), AFP (Smith, et 
al., 2007), placental growth factor or PlGF and soluble fms-like tyrosine kinase-1 or 
sFlt-1 (Chaiworapongsa, et al., 2013), along with unconjugated estriol or uE3 
(Yaron, et al., 1999). Because of the research activities for finding feasible 
biomarkers for stillbirth is still ongoing, demographic risk factors are the current 
standard method for determining risk of stillbirth for educational purposes (Trudell, 
et al., 2017). The performance of these methods is modest and ranges from 0.64 to 
0.67 area under the ROC curve or ROC AUC (Trudell, et al., 2017; Yerlikaya, et al., 
2016). 

Given the detection of a high-risk pregnancy for stillbirth, there are multiple 
management and treatment methods for preventing it due to the nature of the multiple 
underlying causes. One of the most potent treatments proposed in terms of late 
stillbirth is induced labour around 39 weeks of gestation, because the prevalence of 
stillbirth is thought to be constant after 24 weeks until term when it starts to increase 
again (Smith, 2001). This method is however being criticised for resulting in too 
many interventions compared to the number of prevented deaths. Low doses of 
aspirin during multiple weeks of gestation has been shown to reduce the risk of 
stillbirth by 14% (Duley, et al., 2007). Low-molecular-weight heparin has also been 
suggested as a preventative treatment (Dodd, et al., 2013), however feasible clinical 
validation of this is currently lacking. Nitric oxide is also thought to have a key role 
in the control of placental development and its deficit could be one of the causes 
leading to stillbirth (Abdel Razik, et al., 2016), however clinical validation of this 
treatment is also lacking. In addition to these, experimental treatments such as 
supplemental oxygen (Say, et al., 2003) and gene therapy (Spencer, et al., 2014) 
could become clinically viable in the future. 
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1.2.2 Preterm birth 
Spontaneous preterm birth or PTB is defined as infants born alive before 37 weeks 
of gestation (World Health Organization, 2014). Babies that are born before term are 
susceptible to various lethal or disabling outcomes, because commonly the baby is 
born before their organs are mature enough to sustain life on their own. This problem 
is amplified in low-income settings where a lack of proper newborn care results in 
loss of life (Chang, et al., 2013). The incidence of PTB in such countries is estimated 
to be 1 in 7 births on average, while in high-income countries it is estimated to be 1 
in 10 births on average (Purisch & Gyamfi-Bannerman, 2017). Early PTB, before 34 
weeks of gestation, is frequently associated with morbidity and mortality such as 
respiratory distress syndrome, necrotizing enterocolitis, intraventricular 
haemorrhage and neurological deficits (Martin, et al., 2009). 

Maternal history -related risk factors for pregnancies ending in PTB have been 
proposed in the past, such as multiple previous gestations, history of PTB and prior 
cervical surgery (Werner, et al., 2011). However, their causality is hard to prove, 
because PTB can occur to women without elevated risk results (Iams, et al., 2001). 
Proposed educational risk models for PTB have therefore modest performance, 
resulting in AUC values of 0.51 to 0.67 with evidence to overfitting (Meertens, et 
al., 2018). One of the most promising screening tests is measuring the length of the 
cervix by trans-vaginal ultrasound, the only concrete concern being the subjectivity 
of the measurement (Werner, et al., 2011). Multiple biomarkers for detecting PTB 
have been proposed in the past (Considine, et al., 2019; Souza, et al., 2019; Waller, 
et al., 1996), however widely accepted testing protocol remains to be adopted. This 
also highlights the fact that similar to stillbirth, the occurrence of PTB can have 
multiple underlying causes. As for diagnostic tests, fetal fibronectin swab test has 
been proposed to be used in combination with cervix-length screening for 
symptomatic patients as a rule-out method (Son & Miller, 2017). Measuring c-
reactive protein from amniotic fluid has also been proposed as a functioning, 
however invasive option (Ghezzi, et al., 2002). 

Women that are identified as having high risk for PTB can be targeted for more 
thorough antenatal surveillance and preventive healthcare (Medley, et al., 2018). 
These treatments can be highly specified because the underlying cause for PTB can 
be one of many. In the systematic review by Honest et al., antibiotic treatment for 
high-risk women due to bacterial vaginosis was found to significantly reduce the 
occurrence of PTB (Honest, et al., 2009). Also, progesterone supplements (Norwitz 
& Caughey, 2011), periodontal therapy (Radnai, et al., 2009), fish oil (Harper, et al., 
2010) smoking cessation programs (Soneji & Beltrán-Sánchez, 2019) cervical 
cerclage (Alfirevic, et al., 2017) and pessaries (Arabin & Alfirevic, 2013) showed 
promising results. In addition to them, non-steroidal anti-inflammatory agents in 
tocolytic therapies where premature pregnancies are medically suppressed showed 
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most promise, however good-quality evidence was deemed insufficient for tocolytic 
maintenance therapy (Abramovici, et al., 2012). Lastly, bed rest in a hospital or at 
home is also a common procedure, as the hard physical activity which is proposed 
to be associated with preterm delivery is minimized (Sosa, et al., 2004).  

1.3 Aims of the study 
The goal of the thesis was to find novel methods for advancing the various clinical 
analysis processes associated with prenatal risk assessment. Different entities 
relating to risk prediction of adverse outcomes of pregnancy have differing use cases 
and goals relating to them. Manufacturers want better development tools to provide 
more accurate and robust prediction models to their customers. Centralized screening 
labs want more automation without sacrificing performance, and reduce overall costs 
related to screening. Clinicians want better tools for characterising their patient 
before deciding what management path to suggest. Patients want more information 
about their ongoing pregnancy. All these needs were considered by approaching the 
problem in multiple angles, as each study aims to investigate new approaches to the 
established clinical analysis workflows. These would include assessing machine 
learning or ML applicability to different risk assessment tasks and developing novel 
methods for this particular domain. 

In the retrospective T21 study reported in Publication I, the focus was to evaluate 
several ML algorithms that were applied to predicting the risk of T21 from first 
trimester data. Improving prediction performance with existing predictor variables 
when compared to a “golden standard” IVD risk prediction software was the main 
objective. Generating more efficient models would mean less unnecessary testing 
conducted by the centralized screening lab. 

In the retrospective population study for stillbirth and PTB reported in 
Publication II, discovering clinically viable prediction models using only patient’s 
demographics and maternal history was the goal. ML models and ensemble learning 
were investigated for improving prediction performance. Producing a robust prior-
risk model for stillbirth and PTB could improve their detection in the natural world 
and provide clinicians new tools for creating treatment decisions. 

In the retrospective method development study reported in Publication III, 
minority oversampling methods were investigated for their applicability to prenatal 
risk data. Development of a specialized method for this domain was also considered. 
Generation of synthetic data that could be added to highly class-imbalanced training 
data has the potential of creating more robust decision boundaries within the 
associated models. Manufacturers and researchers of the domain can benefit from 
the novel method presented in the paper. 
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In the retrospective study reported in Publication IV, incremental -and transfer 
learning techniques were investigated for prenatal risk assessment. The goal was to 
propose a novel automated modelling system where given new T21 screening data, 
the system would adapt to it if it deemed it necessary. This would eliminate the need 
for the screening lab staff to update their models over time in a manual manner, 
which requires deep domain expertise. The articles and their themes are summarized 
in Table 1. 

Table 1.  Summarization of the themes considered by the publications. The prediction of T21 is 
considered in I and IV, PTB by II and Stillbirth by II and III. The applicability of ML 
methods to clinical prediction was investigated in I and II, while novel ML methods for 
the prenatal risk assessment domain was investigated in III and IV. The related entities 
of the research are also listed. 

Article 
Related  
entity 

T21 PTB Stillbirth 
ML 

applicability 
Novel ML 
methods 

I Screening lab •   •  
II Clinician  • • •  
III Manufacturer   •  • 
IV Screening lab •    • 
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2 Literature Review 

Prenatal risk assessment consists of utilizing predictors with suboptimal outcome 
discrimination and measurement variance, and data commonly having a significant 
amount of class-imbalance. The currently deployed domain-dependent methods and 
data sampling strategies are described in this chapter, along with their machine 
learning-based alternatives. In addition to this, novel methods applicable to the 
prenatal risk assessment domain which are enabled by machine learning are also 
described. 

2.1 Domain-Dependent Methods 
Data in the domain of prenatal risk assessment commonly refers to tabular datasets 
and databases, where information is structured in a matrix form that is comprised of 
columns and rows, or variables and patient records (Howard, 1987). These variables 
can have multiple data types depending on their origin. Biochemical and biophysical 
measurements are usually continuous, and some of the mother’s demographic 
information such as weight. Mother’s age can be processed as continuous or discrete 
values. Other demographics such as ethnicity and education are nominal, while 
maternal history and possible infection status variables are commonly logical. 

Statistical analysis in the domain of prenatal risk assessment has specialized over 
time to a point where “gold standard” methods (Greenhalgh, 1997) have been 
defined by the research community. Some are a result of research efforts directed at 
transforming biochemical measurements into a more comparable form over multiple 
laboratories and patient populations, while some are used due to necessity imposed 
by the highly imbalanced population data. In this section the most dominant domain-
dependent methods of prenatal risk assessment are described. 

In screening tests, the ideal design of the measurement is to fully discriminate 
the affected and unaffected outcomes (Coste & Pouchot, 2003). In this case, 
determining a classification cutoff value is the only necessary definition for using 
the test for its purpose. Example of a classification cutoff where elevated 
measurement would indicate the presence of a condition would be 
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       𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐴𝐴
𝑈𝑈𝑆𝑆𝑈𝑈𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐴𝐴      𝑆𝑆𝐴𝐴 𝑚𝑚𝑆𝑆𝑈𝑈𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑅𝑅 > 𝑆𝑆𝑅𝑅𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴

𝑆𝑆𝐴𝐴 𝑚𝑚𝑆𝑆𝑈𝑈𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑅𝑅 ≤ 𝑆𝑆𝑅𝑅𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴.  (1) 

However, perfect discrimination is rarely achieved in real-world applications. In 
these cases, the “gold standard” method can be though as the best available test 
(Versi, 1992). Sources of known and not known variation can affect the result in a 
way that measurement value distributions of the affected and unaffected populations 
overlap to some degree. Using a measurement cutoff in this scenario will produce a 
fixed amount of true positive and false positive results, this fact is visualized in 
Figure 2. 

 
Figure 2.  Typical measurement distributions of the affected and unaffected populations with a 

screening test. The classification threshold provides the decision value where lower 
values are classified as unaffected, and higher values as affected. Moving the cutoff 
from left to right provides better FPR at the cost of reduced TPR and moving from right 
to left would provide better TPR while increasing FPR. As the test doesn’t provide 
perfect discrimination of the two populations, the optimal classification cutoff for the 
measurement is determined by the performance requirements generated by the clinical 
prediction task.  

In order to produce more accurate classification results, more information can be 
considered. If it can be demonstrated that the classification outcome of a screening 
test has a significant correlation to other factors that are known about the patient, 
those factors can be used to further improve the screening test’s performance. For 
the clinical classification algorithm used in a laboratory, one can determine multiple 
cutoffs for specific sub-populations, for example for each BMI group (World Health 
Organization, 2004). This type of manual adjustment is feasible to a point where the 
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number of variables and their connections to the outcome stay within practical limits. 
For anything more involved, statistical analysis methods such as logistic regression 
or LR can be utilized. This enables the utilization of prediction variables with modest 
discrimination capability, where multivariate models of the classification problem 
can be constructed. 

Binary LR, henceforth referred as LR, is probabilistic modelling method for 
binary outcomes (McCullagh & Nelder, 1987). It describes the probability of an 
outcome as a function of predictor variables 

 𝑃𝑃(𝑋𝑋) =  𝑏𝑏(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+⋯+𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘)

1+𝑏𝑏(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+⋯+𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘) (2) 

where the 𝛽𝛽0 denotes the estimated intercept, 𝛽𝛽1, … ,𝛽𝛽𝑘𝑘 denotes the estimated slope 
coefficients, 𝑏𝑏 denotes the base of a logarithm and 𝑃𝑃 denotes a probability of the 
observation belonging to a category of the binary 𝑌𝑌 variable. In this context, the Y 
variable follows the Bernoulli distribution (McCullagh & Nelder, 1987). The LR 
formula calculates odds by exponentiating log-odds of base 𝑏𝑏. This formula can be 
further manipulated into a form 

 𝑃𝑃(𝑋𝑋) = 1
1+𝑏𝑏−(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+⋯+𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘) = 𝑆𝑆𝑏𝑏(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘)  (3) 

Where 𝑆𝑆𝑏𝑏 is the sigmoid function with base 𝑏𝑏. When the intercept and slope 
coefficients are chosen, the resulting function or a model can be used for binary 
prediction. This is essentially what fitting an LR implies, and this process can be 
facilitated with multiple different optimization methods (Minka, 2003). 

LR is commonly used in clinical research because the frequent goal in this 
domain is to understand biological effects and their determinants. The binary 
outcome of “effect” or “no effect” in drug discovery is a good example of this. 
Prenatal risk assessment is not an exception to this, as most research papers utilize 
multivariate analysis or LR (Ylijoki, et al., 2019). The relevant binary outcome in 
this context is “low risk” or “high risk”, which can also be reported as odds instead 
of probabilities. LR as a method has been extended multiple times in the past 
(Wilson, 2015), and the current versions usually deploy some type of regularization 
when multiple predictor variables are present (Salehi, et al., 2019). Class weighting 
(He & Ma, 2013) can also be used to make the model aware of the imbalanced classes 
of the data, and thus improving fitting and performance. 

In addition to LR’s applicability, it can also be used intuitively to describe the 
effect of a predictor to the outcome. The exponential function of a fitted regression 
coefficient 𝛽𝛽𝑘𝑘 can be described as an odds ratio or OR that is associated with a one-
unit increase in the predictor 𝑘𝑘 (Szumilas, 2010). These ORs compare the relative 
odds of an outcome to the predictor variable of interest, and they are commonly 



Literature Review 

 13 

interpreted as risk factors for the outcome in question. These factors can be 
interpreted as 

𝐼𝐼𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑅𝑅𝑈𝑈𝑅𝑅𝑆𝑆𝑐𝑐𝑆𝑆 = �
𝑁𝑁𝑐𝑐 𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑅𝑅

𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑆𝑆 𝑈𝑈𝑅𝑅𝑅𝑅𝑐𝑐𝑆𝑆𝑆𝑆𝑈𝑈𝑅𝑅𝑆𝑆𝐴𝐴 𝑤𝑤𝑆𝑆𝑅𝑅ℎ ℎ𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆 𝑐𝑐𝑅𝑅𝑅𝑅𝑆𝑆𝑐𝑐𝑚𝑚𝑆𝑆 𝑐𝑐𝐴𝐴𝐴𝐴𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑆𝑆 𝑈𝑈𝑅𝑅𝑅𝑅𝑐𝑐𝑆𝑆𝑆𝑆𝑈𝑈𝑅𝑅𝑆𝑆𝐴𝐴 𝑤𝑤𝑆𝑆𝑅𝑅ℎ 𝑅𝑅𝑐𝑐𝑤𝑤𝑆𝑆𝑆𝑆 𝑐𝑐𝑅𝑅𝑅𝑅𝑆𝑆𝑐𝑐𝑚𝑚𝑆𝑆 𝑐𝑐𝐴𝐴𝐴𝐴𝑅𝑅

𝑆𝑆𝐴𝐴 𝑂𝑂𝑅𝑅 = 1
𝑆𝑆𝐴𝐴 𝑂𝑂𝑅𝑅 > 1
𝑆𝑆𝐴𝐴 𝑂𝑂𝑅𝑅 < 1

  (4) 

and their magnitude can also be compared. Comparing ORs between different 
studies is common in prenatal risk assessment research (Kogan, et al., 1994), and 
some ORs have enough data behind them for the research community to recognize 
them as standards, which are then established as guidelines (Coppedè, 2016). 

The task of predicting risk from a highly imbalanced dataset of prenatal risk 
assessment results requires a method with high sensitivity. This means that the 
performance metric for fitting a model also needs to reflect this requirement. 
Receiver operating characteristic or ROC curve is the golden standard for clinical 
binary prediction tasks (Obuchowski, et al., 2004). It plots TPR against FPR as a 
curve. With a binary problem and using some probability cutoff for classification, 
this curve can demonstrate the trade-off of TPR and FPR when different cutoffs are 
utilized. The area under of this curve, AUC, can also be calculated, which can be 
used as a performance metric to determine a feasible prediction model for screening 
rare occurrences (Huang & Ling, 2005). AUC has a value range from 0 to 1, and it 
depicts the discrimination of two classes. AUC of 1 represents perfect discrimination 
within the prediction result for the two classes, while AUC of 0.5 represents an 
imperfect discrimination which can be compared to random guessing. AUC of 0 on 
the other hand represents reversed perfect discrimination, where the prediction is 
always the opposite of the true class. While AUC is favoured in the screening domain 
where TPR is frequently compared against FPR, it is insensitive to class-imbalance, 
meaning that proportions of the classes “affected” and “unaffected” are not 
considered. 

Clinical screening laboratories are known for monitoring and reporting their TPR 
against their FPR over periods of time (De Jesús, et al., 2010). In the field, this is the 
most straightforward way to measure their performance. In terms of the ROC curve, 
the laboratories are interested in a limited set of cutoffs with fixed FPR’s for different 
screening tests. These are sometimes called FPR’s with clinical significance 
(Bigirumurame & Kasim, 2017). This set of FPR’s is unique for every screened 
condition because the relevance is determined by the incidence of the condition. For 
example, clinically significant FPR’s for T21 are narrow 1% to 5% because the 
incidence of the condition is most currently estimated as 1 in 700 (Mai, et al., 2019). 
TPR of 100% is meaningless in this context if FPR reaches unacceptably high, 
because over 99% of the time the true outcome is unaffected. Another aspect for the 
laboratory to consider when selecting FPR’s is the available resources, finding a 
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screen positive result generates work and the screening laboratory needs to produce 
results in a timely manner, so that the diagnosis can be promptly made. 

In every measurement conducted by a clinical screening laboratory, underlying 
components that produce variance can be detected (Ichihara, et al., 2008). These can 
include variation caused by different laboratories, patient populations, lab 
environments, lab technicians and instruments (Whiting, et al., 2004). To reduce the 
effect of unwanted variation, multiple of the median or MoM was developed (Wald, 
et al., 1977). This procedure divides the result of the individual patient with the 
median measurement of the patient population  

 𝑀𝑀𝑐𝑐𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑈𝑈𝑅𝑅: [0, +∞)   (5) 

and produces values that show how much the individual patient differentiates from 
the population. This comprehensible method was first introduced as a method to 
compare the results from different laboratories and has now become the golden 
standard for reporting prenatal screening results (Berberich, 2013). Extension of this 
method is to also adjust the MoM results based on other maternal factors, such as 
gestational age at the time of sampling and ethnicity (Sprawka, et al., 2011). This 
can be done by using sub-population medians or by fitting multivariate regression 
models. 

Typical statistical analysis workflow for prenatal data would consist of using 
descriptive statistics for describing the study population, using univariate or 
multivariate analysis in order to assess the ORs of predictors and finally produce 
prediction performance metrics of the finalized model. Variable analysis could also 
be a two-step process, where the statistically significant ORs would be detected, and 
a final model would be constructed based on them (Nicholas, et al., 2009). 

2.2 Statistical Sampling Methods 
Prenatal risk data is highly imbalanced where most observations are a part of the 
unaffected class due to the incidence of the condition. Data sampling methods that 
address this limitation by attempting to increase the number of affected observations 
or reduce the number of unaffected in data are called oversampling and 
undersampling methods. In this section, the applicable sampling methods for 
prenatal risk assessment are described.  

Routine prenatal data has a majority of unaffected observations. The most 
straightforward method for rebalancing the two classes is to remove unaffected 
observations from the training data. This is called majority undersampling (Chawla, 
2010). In the case of random majority undersampling, one would remove 
observations belonging to the majority class without any other criteria. This has the 
negative effect of removing important observations that significantly contribute to 
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the model’s decision boundaries by chance. The more advanced undersampling 
methods such as K-means clustering (Forgy, 1965) and Tomek links (Tomek, 1976) 
attempt to address this by using mean- and distance-based observation elimination. 
Undersampling has been successfully applied to predicting adverse pregnancy 
outcomes by identifying factors that contribute to PTB (Dong, et al., 2020), 
predicting gestational diabetes or GDM (Qiu, et al., 2017) and predicting 
readmission following hospitalization due to hypertensive disorders (Hoffman, et al., 
2021). 

Aside from model-specific methods such as class weighting (He & Ma, 2013) 
and focal loss (Lin, et al., 2017), an alternative way to address the class-imbalance 
is to oversample the minority class observations. The most straightforward way of 
doing this is to randomly duplicate these observations (Ling & Chenghui, 1998), 
however duplicated observations do not enrich the training data in a way that more 
intricate decision boundaries can be modelled. The more involved way of generating 
new and unique minority class observations is to understand the feature space of the 
predictors and generate new points within that space. This is essentially what the 
method Synthetic Minority Oversampling Technique or SMOTE does (Chawla, et 
al., 2002). By calculating the distance between observations with a metric such as 
Euclidean distance, new synthetic observations can be generated between real 
observations in the feature space. SMOTE has been widely applied to different 
domains (Fernández, et al., 2018), and its methodology has been extended to 
multiple variations of the algorithm (Han, et al., 2005; Maciejewski & Stefanowski, 
2011; He, et al., 2008) . In terms of prenatal risk assessment, SMOTE and its variants 
have been applied to prediction of stillbirth and miscarriage (Inyang, et al., 2020), 
PTB (Fergus, et al., 2016) and T21 (Ramanathan, et al., 2018). 

2.3 Tree Models and Ensemble Learning 
The most common alternative to using LR for constructing prenatal risk models is to 
use tree-based models (Wallenstein, et al., 2016; Heng, et al., 2014; Shen, et al., 
2020). These models deploy a hierarchical tree structure that enables the predictor 
variable space to be assigned into multiple decision boundary areas (Quinlan, 1986). 
In this section, most prominent tree-based models that have been applied to prenatal 
risk assessment are described.  

Tree-based learning is a widely applied statistical modelling technique 
(Podgorelec, et al., 2002). The overall concept of tree learning is to produce a 
hierarchical and sequential system of rules where conditions form if clauses that 
progress decision making into the next set of rules or nodes (Quinlan, 1986). These 
paths form branches, and at the end of them are output decisions or leaves of the 
model. The simplicity and nonlinear behaviour make tree-based models highly 
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popular for classification and regression tasks. One implementation of this is 
classification tree, henceforth referred as decision tree or DT (Quinlan, 1986). The 
core principles of fitting a DT are entropy and information gain. Shannon’s Entropy 
(Shannon, 2001) can be defined as 

 𝐸𝐸(𝑆𝑆) = ∑ −𝑝𝑝𝑝𝑝𝑅𝑅𝑐𝑐𝑆𝑆2𝑝𝑝𝑝𝑝, 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑈𝑈𝑅𝑅: [0,1]  𝑐𝑐
𝑝𝑝=1   (6) 

where 𝑝𝑝𝑝𝑝 is the probability of a class value 𝑆𝑆 occurrence in the data used for training 
the model. Entropy is a metric for disorder or uncertainty, used in fitting DT models 
by minimizing it while constructing the tree. Information gain, also known as 
Kullback-Leibler divergence (Kullback & Leibler, 1951), on the other hand can be 
defined as 

 𝐼𝐼𝐺𝐺(𝑌𝑌,𝑋𝑋) = E(Y) − 𝐸𝐸(𝑌𝑌|𝑋𝑋), 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑈𝑈𝑅𝑅: [0,1] (7) 

where the conditional entropy of 𝑌𝑌 given predictor 𝑋𝑋 is subtracted from the prior 
entropy of 𝑌𝑌. Because information gain describes the information gained by 
explaining 𝑌𝑌 with 𝑋𝑋, it is used to choose the optimal predictor variables and node 
splits during fitting the DT model until a certain hyperparameter threshold is 
achieved. After the fitting process is done, the finalized information gain values per 
predictor variable can be inspected with the method proposed by Breiman (Breiman, 
2001) for understanding variable importance of the final model. This is one of the 
main reasons why DT is also highly favored in medical diagnosis (Podgorelec, et al., 
2002). For adverse pregnancy conditions, DT has been applied to classifying high-
risk pregnancies (Lakshmi, et al., 2016), hypertension during pregnancy (Moreira, et 
al., 2017), stillbirth outcome of pregnancy (Malacova, et al., 2020), GDM during 
pregnancy (Shen, et al., 2020) and PTB (Hill, et al., 2008). The abstract visualization 
of a DT and its decision areas are depicted in Figure 3. 
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Figure 3.  DT’s tree structure depicted as a set of rules, which are visualized in predictor variable 

space of 𝑥𝑥1 and 𝑥𝑥2. Two classes of orange and blue are classified with the decision 
regions implemented by the DT’s rules. 

As an extension of DT, random forests or RF were first proposed by Ho in 1995 (Ho, 
1995). In its initial state, the training algorithm would randomly sample the training 
data multiple times and fit multiple decision trees with them. This is called bootstrap 
aggregation (Breiman, 1996). When the model would process unseen data to predict 
them, average of all models would be produced in the case of regression and majority 
vote in the case of classification. Using multiple independent prediction models to 
perform superiorly compared to a single model is commonly references as ensemble 
learning (Piryonesi & El-Diraby, 2020). This strategy was later extended to 
predictors by Ho in the form of random subspace bagging or feature bagging (Ho, 
1998), and it represents the current interpretation of random forests. In feature 
bagging, predictors are randomly sampled to individual tree models. This is proposed 
to increase variance of the model without introducing more bias (Ho, 1998). As for 
adverse pregnancy outcomes, RF has been applied to predicting PTB (Lee & Ahn, 
2019), stillbirth (Malacova, et al., 2020), GDM (Shen, et al., 2020), hypertension 
(Ijaz, et al., 2018), congenital heart defects of the newborn (Luo, et al., 2017), pre-
eclampsia (Jhee, et al., 2019) and abnormal pregnancies (Spilka, et al., 2014). 
Gradient boosted decision trees or GBDT are the next iteration of the tree models 
after random forests by extending the ensemble learning aspect (Ye, et al., 2009). 
Boosting is a method of combining weak models into a strong ensemble, where a 
weak learner is a model that has fitted poorly to the underlying problem. During each 
iteration of constructing a new parallel tree model, the next model is given the 
information of what observations were poorly classified by the previous model, in 
other words the prediction errors. This way, the next model is focused on correctly 
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predicting those hard observations. The first tree model to utilize this type of 
boosting was called AdaBoost (Schapire, 2013), later the generalization of adaptive 
boosting to gradient boosting in a form of XGBoost (Chen & Guestrin, 2016) created 
gradient boosted decision trees, where minimizing an arbitrary differentiable loss 
function by adding weak learners optimized by a stochastic gradient descent was the 
core functionality of the algorithm. The abstract description of this process is 
depicted in Figure 4. 

 
Figure 4.  In gradient boosted trees, at each iteration a new parallel tree model is created that is 

trained on new targets, which are the errors created by the existing ensemble of trees 
(Inside the blue rectangle). As the ensemble grows after each iteration, the prediction 
errors shrink, and the model fits further. 

This method has been applied to predicting adverse pregnancy outcomes in the form 
of GDM (Shen, et al., 2020), in vitro fertilization or IVF outcome (Qiu, et al., 2019), 
and PTB (Malacova, et al., 2020). 

Extending ensemble learning beyond tree models can also be done with various 
methods (Opitz & Maclin, 1999). Ensemble averaging is one strategy that enables 
the use of multiple different algorithms as one (Naftaly, et al., 1997). Given a set of 
probabilistic prediction models trained with the same training data and binary 
classification task, the prediction probabilities of an unseen observation can be 
averaged. This strategy frequently outperforms any individual models, because 
various underfitting and overfitting problems of a single model are balanced out. 
Ensemble averaging can be extended to weighted averaging, where a set 𝑌𝑌 of 
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predicted probabilities by different models are adjusted by a weight set 𝐴𝐴, and the 
weighted sum 𝛾𝛾 is calculated as 

 𝛾𝛾(𝑥𝑥,𝐴𝐴) = ∑ 𝑈𝑈𝑗𝑗𝑦𝑦𝑗𝑗(𝑥𝑥)𝑝𝑝
𝑗𝑗=1  (8) 

where 𝑝𝑝 is the number of models in the ensemble. This method produces the need to 
find a feasible set of weights, which requires ranking the ensemble models by some 
mechanism. Prior domain knowledge can be used for this, or search strategies such 
as the exhaustive brute-force, or the genetic algorithm (Mirjalili, 2019). 

2.4 Artificial Neural Networks as Classifiers 
Artificial neural networks or ANN are not commonly utilized in prenatal risk 
assessment modelling in the past, mostly due to their unintuitive interpretation, but 
their benefits can outweigh this fact. In this section, ANN’s and their auxiliary 
methods applicable to prenatal risk assessment are described.  

The human brain’s main tissue component is nervous tissue that is comprised of 
nerve cells or neurons (Herrup & Yang, 2007). These neurons can pass electrical and 
chemical signals to other neurons via a structure called a synapse, and given stimulus 
they can produce individual or ensemble neural responses (Foster & Sherrington, 
1897). While a human learns, the neuronal connections can be altered (structural 
neuroplasticity), or the properties of neurons are altered (functional neuroplasticity) 
(Schmidt-Wilcke, et al., 2010). Artificial neural network or ANN is the algorithmic 
simplification of this complex biological system (McCulloch & Pitts, 1943). In 
ANN, an artificial neuron or a node can of type hidden, input or output. Given a 
number of input nodes 𝑆𝑆, a hidden node 𝑘𝑘 takes the output 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 of those nodes 
as input, then multiplies them with weights 𝑤𝑤0, … ,𝑤𝑤𝑝𝑝 (dot product), and their sum 
along with an added bias term 𝑏𝑏𝑘𝑘 is passed to a non-linear function 𝜑𝜑  

 𝑦𝑦𝑘𝑘 = 𝜑𝜑(∑ 𝑥𝑥𝑝𝑝𝑤𝑤𝑘𝑘𝑝𝑝 + 𝑏𝑏𝑘𝑘𝑝𝑝
𝑝𝑝=1 ) (9) 

that produces the output 𝑦𝑦 of the node 𝑘𝑘. 𝜑𝜑 in this context is called the activation 
function (Cybenko, 1989). There are several proposed activation functions 
(Nwankpa, et al., 2018), and most of them are designed to produce nonlinearity to 
the model by mimicking the action potential signalling of a neuron (Hodgkin & 
Huxley, 1952). The neuronal learning scheme was first derived as an unsupervised 
technique (Hinton, et al., 1999) from Hebbian learning theory (Hebb, 2005), and 
later the supervised learning method perceptron was proposed (Rosenblatt, 1958). 
This was then later extended to support automatic differentiation by backpropagation 
(Linnainmaa, 1970; Rumelhart, et al., 1986), which enabled the development of the 
now widely adopted ANN methods. 
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As opposed to hidden nodes, input nodes of the input layer do not have similar 
functionality, as they simply pass input values to hidden nodes. A hidden layer of a 
neural network can consist of one or many hidden nodes, this is usually referred as 
the wideness of a layer (Lee, et al., 2020). Output nodes have the same functionality 
as hidden ones, but their used activation and amount in the output layer are 
determined by the prediction task (Nwankpa, et al., 2018). For binary problems with 
a finite output value set of [0,1], commonly a one node output layer with a sigmoid 
activation is used. The abstract structure of an ANN is depicted in Figure 5. 

 
Figure 5.  Subplot A depicts a hidden neuron or node 𝑘𝑘 that is feeded inputs 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝  weighted 

with 𝑤𝑤1, … ,𝑤𝑤𝑝𝑝 , which are added together along with a bias term 𝑏𝑏𝑘𝑘, and their sum is 
passed to the activation function 𝐴𝐴. The resulting 𝑦𝑦𝑘𝑘 is feeded to the 2nd layers nodes as 
input. Subplot B depicts the common network design of an ANN, which contains an input 
layer, 1,…,n hidden layers and an output layer. 

The initialization of weights and biases for the network is usually stochastic, and 
during fitting the model they along with bias are updated. This is done using the 
method called backpropagation (Linnainmaa, 1970). In the case of a binary 
classification task, when the true class 𝑦𝑦 of the training data observation 𝑘𝑘 is known, 
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the error of the predicted value 𝑝𝑝 can be calculated with using cross entropy or log 
loss (Murphy, 2012) as a loss function 

 𝐶𝐶𝐸𝐸𝑘𝑘 =  −(𝑦𝑦𝑘𝑘 ln(𝑝𝑝𝑘𝑘) + (1 − 𝑦𝑦𝑘𝑘) ln(1 − 𝑝𝑝𝑘𝑘))  (10) 

Where ln is the natural logarithm. The sum of cross entropy over all training data 
observations is the value that backpropagation needs to minimize. The partial 
derivatives of the loss function with respect to any weight or bias in the network are 
calculated, and then the weights and biases can be updated by the product of the 
learning rate constant 𝛼𝛼 and a partial derivative with respect to the cost function. 
This algorithm is called gradient descent or GD that iterates through the whole 
training data before weights updates are calculated (Boyd & Vandenberghe, 2004). 
Currently, the most popular version of GD is stochastic gradient descent or SGD 
(Bottou, 1998) with mini-batches (Bertsekas, 1996), as it is computationally less 
expensive at deriving heuristic optimization results. Given an objective function that 
is differentiable or subdifferentiable, instead of calculating the gradient from the 
whole data set as in GD, the data set is partitioned randomly into subsets. These 
subsets or mini-batches are then used individually to calculate the gradient. 

A fully connected ANN that consist of one input, output and hidden layer and 
uses a step function for output is commonly referenced as single-layer perceptron 
(Auer, et al., 2008). It is considered as the predecessor of modern neural networks. 
The full connectivity in this context means that each node of network is connected 
to all the nodes in the previous layer (Hastie, et al., 2009). The advantage of this is 
that no prior understanding of the prediction problem and its data is necessary. If one 
or more hidden layer to the design of an ANN is added, the depth of the network 
increases, and it becomes a multi-layer perceptron which can be considered as a deep 
neural network or DNN (Hastie, et al., 2009). Compared to less complex modelling 
techniques such as LR, DNN can provide more intricate decision areas that can have 
multiple local optima. If the data to be fitted has enough complex and high 
dimensional structures from which DNN fitting can benefit from, it will outperform 
conventional models such as LR with high probability. On the other hand, because 
of this complexity, the interpretability of a DNN model is worse when compared to 
LR, where coefficients or OR’s can be inspected. 

The progress of ANN’s applied to tabular data has not been as rapid when 
compared to neural networks that are applied to more complex data types such as 
images and video (Voulodimos, et al., 2018). While currently the most promising 
methods for tabular data seem to be variations of gradient boosted decision trees, 
advancements such as the self-normalizing neural network or SELU network have 
been made (Klambauer, et al., 2017). This type of ANN utilizes scaled exponential 
linear unit or SELU  
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 𝑆𝑆𝐸𝐸𝑆𝑆𝑈𝑈(𝑥𝑥) = 𝛿𝛿 �
𝑥𝑥

𝜀𝜀 exp(𝑥𝑥) − 𝜀𝜀  𝑆𝑆𝐴𝐴 𝑥𝑥 > 0
𝑆𝑆𝐴𝐴 𝑥𝑥 ≤ 0 (11) 

as activation functions for hidden nodes. The parameters 𝛿𝛿 ≈ 1.0507 and 𝜀𝜀 ≈
1.6733 are solved for the equations resulting from finding a fixed point for the 
mapping from the mean and variance of activations from one layer to another, using 
the Banach fixed point theorem (Banach, 1922). They represent standard deviation 
of 1 and mean of 0 respectively in the normalization mapping. In addition to this, a 
dropout method revised by the authors of SELU needs to be used, as commonly used 
dropout would not result in the desired mean and variance of the activations 
(Klambauer, et al., 2017). 

For utilizing ANNs with highly imbalanced prenatal data, in addition to using 
data-related methods such as under -and oversampling, cost-sensitive learning can 
be used (He & Ma, 2013). This can mean designing the loss function to consider the 
uneven importance’s of the affected and unaffected observations or apply weights to 
the error scores based on the class of the observations, which is more straightforward. 
In this context, the affected class is assigned the larger weight for error, because its 
correct prediction result is more important. Fully connected ANNs have been 
proposed for prenatal risk tasks of T21 (Williams, et al., 1999), PTB (Fergus, et al., 
2016; Zernikow, et al., 1998) and congenital heart disease (Li, et al., 2017). 

2.5 Artificial Neural Networks as Generators 
Recently, an extension of ANN’s called generative adversarial networks or GAN 
have been developed for the task of generating synthetic data based on training data 
(Goodfellow, et al., 2014). In this section, the formulation of GAN and its relevance 
to clinical data is described. 

The GAN framework was proposed by Goodfellow et al. in 2014. The method 
consists of training a generative neural network model 𝐺𝐺 along with a discriminative 
neural network model 𝐷𝐷 in an adversarial manner. The learning task of 𝐺𝐺 is to map 
stochastic noise derived from a distribution to observations in the training dataset. 
Successfully fitting this network will then produce realistic synthetic observations 
by feeding it random noise. The learning task for 𝐷𝐷 on the other hand is to determine 
if the input observation is truly from the training dataset or has it been produced by 
𝐺𝐺. Successful fitting of 𝐷𝐷 would produce a model that perfectly discriminates real 
and synthetic data. These two models are trained together with a two-objective loss 
function that can be formalized as 

 min
𝐺𝐺

max
𝐷𝐷

𝑆𝑆 (𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥 ~ Pr[𝑅𝑅𝑐𝑐𝑆𝑆(𝐷𝐷(𝑥𝑥))] + 𝔼𝔼𝑥𝑥� ~ Pg[𝑅𝑅𝑐𝑐𝑆𝑆(1 − 𝐷𝐷(G(𝑥𝑥�)))]  (12) 

where 𝑃𝑃𝑟𝑟 is the training data distribution and 𝑃𝑃𝑔𝑔 is the model distribution, defined by 
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 = 𝐺𝐺(𝑧𝑧), 𝑧𝑧~𝑝𝑝(𝑧𝑧)𝑥𝑥
~  (13) 

where 𝑧𝑧 is the noise input sampled from the stochastic distribution 𝑝𝑝. This type of 
training can be compared to a zero-sum game between the networks 𝐺𝐺 and 𝐷𝐷. After 
a successful training of both models, the discriminator network is no longer utilized, 
and the generator is used to produce synthetic observations. The conceptual 
description of the GAN framework is depicted in Figure 6. 

 
Figure 6.  The generator network 𝐺𝐺 is fitted to map random values to training observations of real 

data, so that it can generate synthetic observations. The discriminator network 𝐷𝐷 is then 
fitted to differentiate these observations from the real ones. These two networks are 
trained in unison, better fake observations are generated by 𝐺𝐺 while they are more 
accurately discriminated from real ones by 𝐷𝐷. This results in a 𝐺𝐺 that can create synthetic 
observations highly similar to real data, while 𝐷𝐷 is discarded. 

Training GAN’s proposed by Goodfellow et al. without alterations have been proven 
to be fragile and unstable, as problems such as mode collapse and diminishing 
gradient of the generator arise (Arjovsky & Bottou, 2017). In 2017, extension of 
GAN called Wasserstein GAN or WGAN was proposed to address these problems 
(Arjovsky, et al., 2017). The major difference was to replace the discriminator 
network 𝐷𝐷 with a critic network 𝐶𝐶 that scores observations as being real or synthetic 
by learning a 𝐾𝐾-Lipschitz function to compute Wasserstein distance between the 
probability distributions of real and fake samples (Fournier & Guillin, 2015). 
Decreasing this function during training implicates that the resemblance of the G 
network output to true training data increases, the loss function is then defined as 

 𝑊𝑊�𝑃𝑃𝑟𝑟,𝑃𝑃𝑔𝑔� = 1
𝐾𝐾

 
𝑅𝑅𝑅𝑅𝑝𝑝

‖𝐴𝐴‖𝐿𝐿 ≤ 𝐾𝐾  𝔼𝔼
 𝑥𝑥 ~ ℙ𝕣𝕣

[𝐴𝐴(𝑥𝑥)] −  
𝔼𝔼

𝑥𝑥� ~ ℙ𝕘𝕘[𝐴𝐴(𝑥𝑥�)]  (14) 
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where 𝑅𝑅𝑅𝑅𝑝𝑝 is supremum and 𝐾𝐾 is the Lipschitz constant for function 𝐴𝐴, and is made 
to satisfy ||𝐴𝐴||𝐿𝐿  ≤ 𝐾𝐾, or 𝐾𝐾-Lipschitz continuity (Hager, 1979). WGAN provided 
much needed stability to model training, however preserving the 𝐾𝐾-Lipschitz 
continuity opposed challenges, as weight clipping was utilized to limit weight 
updates to a small value range. 

WGAN was further improved upon by Gulrajani et al. as they proposed WGAN 
with gradient penalty or WGAN-GP (Gulrajani, et al., 2017). Gradient penalty 
replaced weight clipping for the method of maintaining 𝐾𝐾-Lipschitz continuity 
during weight updates. A differentiable function f can be considered 1-lipschitz if 
and only if it has gradients everywhere with a norm of at most 1. In order to achieve 
this, the loss function was redesigned to increase the generated loss if the gradient 
norm moved away from 1. This new loss was defined as 

 𝑊𝑊�𝑃𝑃𝑟𝑟,𝑃𝑃𝑔𝑔� = 1
𝐾𝐾

 
𝑅𝑅𝑅𝑅𝑝𝑝

‖𝐴𝐴‖𝐿𝐿 ≤ 𝐾𝐾  𝔼𝔼
 𝑥𝑥 ~ ℙ𝕣𝕣

[𝐴𝐴(𝑥𝑥)] −  
𝔼𝔼

𝑥𝑥� ~ ℙ𝕘𝕘[𝐴𝐴(𝑥𝑥�)]  +  𝜆𝜆 𝔼𝔼
 𝑥𝑥� ~ ℙ𝕩𝕩�

[(‖∆𝑥𝑥�𝐷𝐷(𝑥𝑥�)‖2 − 1)2]  (15) 

where ℙ𝕩𝕩� is sampled from generator distribution ℙ𝕘𝕘 and data distribution ℙ𝕣𝕣 with t 
uniformity between the range of 0 and 1, so that 

 𝑥𝑥� = 𝑅𝑅𝑥𝑥� + (1 − 𝑅𝑅)𝑥𝑥 when 0 ≤ 𝑅𝑅 ≤ 1 (16) 

And 𝜆𝜆 is the penalty coefficient. This modification stabilized model training even 
further and removed the need to set a hyperparameter for weight clipping (Gulrajani, 
et al., 2017). 

As of now, several variations of GAN methods have been proposed (Jabbar, et 
al., 2020). While these have been more widely applied for image and video-based 
tasks, they are applicable to clinical tabular data that is used in prenatal risk 
assessment. The major problem to solve in this research space is to make the 
generator network aware of the different data types of variables, as discrete variables 
should have different generation rules when compared to continuous ones. GAN 
designs that take this to account have been proposed  (Xu & Veeramachaneni, 2018; 
Xu, et al., 2019).  

Clinical data applications of GAN networks have also been proposed. Data-
driven research based on electronic health records could be improved by generating 
less noisy and more complete data sets (Rashidian, et al., 2020). Availability of more 
confidential clinical data could also be improved by GAN networks (Allen & 
Salmon, 2020). GAN-generated data can also be used to improve model performance 
for clinical prediction tasks (Lazaridis, et al., 2021). Development of feasible and 
useful GAN methods in the domain of clinical risk assessment represents the most 
contemporary research, as there is currently limited scientific literature available. 
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2.6 Incremental and Transfer Learning 
The applicability of a model from one patient population to the next is crucial for its 
clinical significance. Prediction models that function feasibly within one dataset 
have little value if it cannot generalize to other datasets. Often the lack of 
generalizability of a model is caused by the insufficiency of the training data 
(Therrien & Doyle, 2018). The real world is constantly changing and a method that 
tries to model it should also constantly adapt to it. In this section, the covariate shift 
problem that also affects prenatal risk data is described, along with modelling 
techniques that try to solve it.  

Changes in the general patient population over time are evident (Gebremariam, 
et al., 2018). The natural temporal change of a population alters the relationship of 
the dependent or outcome and independent or predictor variables (Sugiyama, et al., 
2007). Training data will always be a snapshot over a certain time frame, and a 
probabilistic model fitted to it will also learn only the observed predictor-outcome 
relationship of that data. The prediction performance of that model will deteriorate 
over time as the temporal change affects the predictor variable’s value distribution. 
This phenomenon is called covariate shift (Sugiyama, et al., 2007) due to temporal 
change, and it is evident in population screening tasks such as prenatal risk 
assessment. 

Probabilistic modelling that addresses the fact that data becomes available as a 
function of time has had many names in the past, online learning, continual learning 
and incremental learning for example. The two main topics of research in this 
domain have been algorithms that work with unavailable data due to physical 
memory constraints of a computer, and algorithms that work with unavailable data 
due to temporal availability (Bottou & LeCun, 2004). Incremental learning 
algorithms have been proposed to address covariate shift due to temporal change, as 
they adapt to new available data without completely forgetting existing knowledge. 
Often, the relevance of old training data can be parameterized. As for ANN’s, the 
commonly used mini-batch SGD technically uses incremental batch learning for 
gaining computational advantage compared to other GD methods (Bottou, 1998), so 
in essence it supports incremental learning. The amount of training epochs and 
possible decay terms need to be parameterized correctly, however. An abstract 
description of incremental training GD in batches is depicted in Figure 7. 
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Figure 7.  The incremental batch learning process with GD over multiple iterations in time. Subplot 

A demonstrates that during the first iteration, no model is yet present, so 𝑏𝑏1 data batch 
is used for training model 𝑚𝑚0. After this, 𝑚𝑚0 is used for predicting the next batch, which 
is followed by incorporating batch 𝑏𝑏2 into the training process, which results into model 
𝑚𝑚1. This model uses the next batch for prediction, and after that for training. As more 
time passes, more data is available, which enables better model fitting produced with 
GD. Subplot B showcases these training iterations as points in a nonlinear optimization 
space that is traversed by GD.  

Covariate shift due to real-world limitations can also occur. An example of this 
would be a prediction model trained with enough training data but within one 
geographical location. This limitation causes the model to perform poorly when used 
in another location that has a significantly different patient population. Therefore, 
multi-center and multi-institutional studies are important as they produce richer 
datasets where population characteristics and artefacts of a single study site can be 
described. These are however resource-heavy endeavours, so often pilot or case 
studies are done with a selected population and geographical location. Prediction 
models of these studies can perform well within their study data and even with 
unseen data from the same population, but often the models struggle or fail 
completely when they are applied to another patient population. 

Modelling techniques that can adapt from population to population, or more 
generally from domain to domain have been proposed (Torrey & Shavlik, 2010). 
This is called transfer learning, where existing knowledge can feasibly be applied to 
new problems. This improves the computational efficiency of modelling; instead of 
collecting an exhaustive dataset of the new problem, partial dataset can be enough 
as a model that has been fitted to a similar problem now only has to adapt to minor 
discrepancies between the two problems. Transfer learning can address covariate 
shift due to real-world limitations. Prediction models developed in another 



Literature Review 

 27 

geographical location with a distinct patient population could be adapted to a new 
patient population with partial training data. Transfer learning with ANN’s 
commonly amount to fixing or freezing the hidden layer weights and biases, 
removing the output layer of the network, adding one or more hidden layer along 
with a new output layer, and fitting the weights and biases of the new layers with the 
dataset of the new problem (Torrey & Shavlik, 2010). This enables leveraging 
existing information about the previous problem in the form of fitted weights and 
biases of the hidden layer nodes, while adapting to the new problem by fitting new 
layers. Also, not freezing and removing layers and simply continuing model fitting 
is called fine-tuning. This is commonly done when a pretrained model is used for the 
same task but fine-tuned to a new data set. An abstract description of both TF and 
fine-tuning is depicted in Figure 8. 

 
Figure 8.  The process of transfer learning and fine-tuning with ANNs. In subplot A, given a 

completed ANN model for task A, the input layer and some of the layers are fixed or 
frozen. This way the back-propagation process does not update the weights and biases 
of these layers, thus retaining their fitted information during training for task B. In subplot 
B, the whole pretrained model is used for back-propagating weights while training for 
task B. 

When incremental and transfer learning are utilized to adapt to new unseen 
information, often the amount of adaptation needs to be addressed. The well-known 
stability-plasticity dilemma relates to this, as it addresses the key constraint of 
learning by biological and artificial neural systems (Carpenter & Grossberg, 1987). 
It states that a learning system needs plasticity in order to integrate new information, 
but also stability retain previous learned knowledge. There seems to be a “golden 
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mean” of the two where old data is not being constantly forgotten and new data is 
being adapted to. The two extremes are the undesirable learning outcomes of a 
system; too much plasticity results to catastrophic forgetting of previous essential 
information and too much stability causes the entrenchment effect where older 
information is more important compared to newer (Ratcliff, 1990). 

When the learning parameters related to IL and TL are adjusted for the prediction 
problem and the temporal aspect of data availability, automation of the adaption 
could be achieved. A system designed to automate modelling that reacts to new 
training data in a meaningful way, by evaluating the necessity of a model update 
could be deployed to a clinical setting such as a prenatal screening lab safely. This 
would be done using IL and an evaluation for updating, which would be based on 
clinically significant performance increase. TL would enable the usage of prior 
prediction models trained with different populations. In an optimal situation, a new 
screening lab could immediately start the usage of an existing NN prediction model 
instead of waiting for the completion of their own sufficient data set, and via this 
automated system the model could be incrementally updated as screening data would 
be generated by the lab. This increases operational availability of the prediction 
model and requires less manual oversight by the lab staff. 
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3 Materials and Methods 

This chapter contains a summary of the materials and methods used in this study. 
Complete descriptions can be found in the original Publications I-IV. 

3.1 Datasets 

3.1.1 Publication I 
Dataset for the first publication (I) was a combination of data from three clinical 
studies, which originally was collected to assess the risk prediction performance of 
routine T21 screening. This data was retroactively analysed for modelling purposes. 
Rights to analyse and publish the results were given to two individual datasets from 
Canada and one from the UK by clinical collaborators. All the studies were approved 
by local ethics committees, also the participants of the studies gave their informed 
consent for the whole data life cycle of collection, analysis and publication of results. 
The data was also irreversibly anonymized.  

The combined dataset was used to evaluate the benefits of using machine 
learning modelling techniques in prenatal risk calculation for T21. Compared to the 
typical population incidence of T21, the number of positive cases is highly over-
represented in the dataset. This enriched case population was caused by the data 
collection method of the original studies and enabled feasible usage of machine 
learning with a limited dataset. For training the candidate models, two of the three 
datasets were used while the third was used for model evaluation. Also, during the 
training process, k-fold cross-validation (Hastie, et al., 2009) was used to test the 
generalizability of the chosen hyperparameters. 

Variables for the analysis were selected based on the predictor set of the 
benchmark method, which in our case was LR with the parameters that were 
established during the SURUSS study (Wald, et al., 2003). This set of predictors 
contained maternal history, demographics and T21-relevant biomarkers NT 
thickness (Souka, et al., 2005), PAPP-A (Breathnach & Malone, 2007) and fHCGβ 
(Ong, et al., 2000). AFP (Tomasi, 1977) and PlGF (Shibuya, 2008) were also 
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partially present in the data, although not utilized due to incomplete data. Summaries 
of the three study datasets are listed in Table 1 of Publication I. 

Before any modelling could take place, the study data was preprocessed so that 
it would applicable for modelling. Predictor variables were inspected to having 
enough values not missing, AFP and PlGF measurements were excluded because of 
this reason. Missing values of NT, PAPP-A and fhCG𝛽𝛽 were sparse, so they were 
imputed with zero values. Missing ethnicities were recoded as “Other/Unknown”, 
while missing smoking status was replace with “No”. Weight, gestational age and 
maternal age values that were missing were imputed by their mean values. For the 
biomarker measurements, MoM values and raw concentration values were available, 
however MoM values were selected based on association tests to the outcome, which 
in this case were linear correlation and chi-squared tests. The tests compared both 
versions of the measurement to the outcome of T21 by calculating Cramer’s V and 
𝑅𝑅2. 

3.1.2 Publication II 
Dataset for the second publication (II) consisted of two routinely collected infant 
birth datasets that contained the outcomes of the pregnancies. The first dataset 
contained reported pregnancies during the years 2013 to 2016 in the United States, 
and it was released by the Centers for Disease Control and Prevention or CDC. We 
accessed this data via their National Vital Statistics System (Centers for Disease 
Control and Prevention, 2019). The data originates from the yearly reported birth 
and death certificates.  CDC anonymizes data before publicly releasing it, and our 
study complied with their data user agreement. The second dataset contained yearly 
reported pregnancies from 2014 to 2016 in New York City. It was requested from 
the New York City Department of Health and Mental Hygiene or NYC DOHMH. 
Similarly to the CDC dataset, this data is also based on the reported birth and death 
certificates. IRB approval was obtained for the analysis of the dataset, and it was 
anonymized by NYC DOHMH. 

The two datasets were used for constructing predictive models for PTB, early 
and late stillbirth. The incidences for PTB and infant death were 9.6% and 0.58% in 
the CDC dataset, while for NYC data they were 8.7% and 0.15%. These incidences 
correspond to the reported national averages of PTB and infant death in the United 
States (Purisch & Gyamfi-Bannerman, 2017). The larger CDC dataset was used for 
training the models, while NYC data was used for model evaluation. 

Biomarker measuring is not routinely reported by the hospitals that provide the 
certificates, so the study data was limited to infections, maternal history and 
demographics. Initial variable selection was made based on existing literature 
(Trudell, et al., 2017; Yerlikaya, et al., 2016; Kayode, et al., 2016; Purisch & 
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Gyamfi-Bannerman, 2017), along with pragmatic reasoning. After this, predictor 
sets for the models were selected by utilizing correlation and univariate analysis. 
Chosen variables for the study are listed in Table 1 of Publication II.  

Inclusion criteria for the observations consisted of six rules. Mothers would have 
to be 18 of age or older, cases of maternal death were excluded, multiple birth 
pregnancies were excluded, fetal death outcomes which were reported to being 
caused by external causes were excluded, postnatal death outcomes were excluded 
and pregnancies with reported alive babies with less than 21 weeks of gestational 
age were excluded. The final observations counts are listed in Table 2 of Publication 
II. 

The CDC study data was divided into four different sets for four different 
purposes; feature selection data, training data, validation data and testing data. They 
were used for conducting feature selection, training the models, validating the 
models while training and evaluating the finished models respectively. This was an 
applicable approach since the amount of data was substantial. The NYC dataset was 
added to the testing dataset, this way also the generalizability to other data could be 
evaluated. Class-imbalance had to considered when splitting the data, so class-
stratified split was used to split the CDC data into partitions of 10%, 70%, 10% and 
10% for feature selection, training, validation and testing respectively. This 
established individual sets for all the different phases of the analysis. The final 
partitions are listed in the Table 2 of Publication II. 

3.1.3  Publication III 
Dataset for the third publication (III) was the aforementioned NYC dataset. It was 
used to develop a novel minority oversampling method, with the focus of applying 
it to predicting early stillbirth within the dataset. Incidence for early stillbirth in the 
data was 0.04%, or 1 in 2500. This significant class-imbalance reflects the routine 
clinical situation where the method was aimed for and was therefore applicable for 
experimentation.  

Predictor set selection for early stillbirth prediction was made based on existing 
literature (Trudell, et al., 2017; Yerlikaya, et al., 2016; Kayode, et al., 2016) . Chosen 
variables for the study are listed in Table 1 of Publication III. Same inclusion criteria 
were used as what is depicted in chapter 3.1.2. The data was randomly splitted in a 
class-stratified manner into two equal-sized sets, one for method hyperparameter 
optimization and fitting the finalized model, and one for model evaluation. 
Preprocessing was done to each variable according to their data type. One-hot 
encoding was used with nominal features and continuous variables were 
standardized by unit-variance and zero-mean normalization. Parameters for the 
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preprocessing were calculated using the hyperparameter dataset, and after this they 
were applied to both datasets. 

3.1.4 Publication IV 
Dataset for the fourth publication (IV) was collected by the Hong Kong Hospital 
Authority Universal Down Syndrome screening program. First trimester T21 
screening data was acquired from a screening database, which was provided by the 
Obstetrics Screening Laboratory of The Department of Obstetrics and Gynaecology 
of The Chinese University of Hong Kong. The time frame of the acquired data was 
from July 2011 to June 2019.  All participants signed an institutionally approved 
consent form, which was specific to screening aneuploidies. The audit and analysis 
related to the pregnancy outcomes of the women undergoing aneuploidy screening 
was authorized by the Joint Chinese University of Hong Kong – New Territories 
East Cluster Clinical Research Ethics Committee (CREC Ref No. 2012.538). The 
observations were irreversibly anonymized before the analysis took place. 

The dataset was used for a retrospective analysis of the use of an adaptive risk 
prediction system, as it provided a real-world example of screening T21 from a 
population. The incidence of T21 was calculated being 0.22% or roughly 1 in 440, 
which is more than the anticipated T21 incidence of 1 in 700 (Mai, et al., 2019). 
Characteristics for the study population are listed in Table 1 of Publication IV. 

As the origin of the data was a T21 screening program, the relevant biochemical 
and biophysical measurements were included alongside with demographics and 
maternal history. NT, PAPP-A and fHCGβ concentrations and MoM derivatives 
were present in the data. Fetal crown rump length or CRL was also present, which 
was used for determining gestational age using a previously published Chinese 
dating formulae (Sahota, et al., 2009). For a proper comparison against the 
laboratory’s existing method, the same set of feature variables was used. 
Preprocessing used in this retrospective study for the dataset was chosen to be 
minimal, because it was already validated and standardized against the referral form 
of the laboratory, at the time when the initial data collection was conducted. 
Characteristics for the variables are listed in Table 1 of Publication IV. 

Due to the nature of the experimentation, the dataset was partitioned multiple 
times into different length data blocks. These blocks were iterated one by one by the 
adaptive risk prediction system, which would simulate real-world usage of the 
system over some time period. Data block sizes representing one day, one week, one 
month, one quartile, half year and one year were estimated from the study data, and 
they are presented in Table 2 of Publication IV. 
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3.2 Risk Modelling 

3.2.1 Publication I 
Seven different machine learning methods were used to assess the risk of T21 (Figure 
2D, publication I). These included K-nearest Neighbour, Decision Tree, Random 
Forest, Naïve Bayes, L2-regularized LR, Support Vector Machine and Feed-forward 
ANN. The finalized design of all the methods were found after rigid heuristic 
experimentation with the study data. Along with most feasible hyperparameters, 
several versions of the modelling methods were experimented with. Naïve Bayes 
was investigated with and without Laplace smoothing (Sorkine, et al., 2004). Support 
vector machines with different kernel functions and penalty factors were 
investigated. Lastly, for the feed-forward ANN, different activation functions and 
network structures were investigated. The complete description of the used methods 
is listed in publication I. 

All of the models were used in conjunction with the 𝑘𝑘-fold cross-validation 
procedure. Because of this, tuning the parameters within the training data was 
possible, as all of the tested algorithms were experimented upon to produce better 
finalized models for the test data evaluation. The appropriate 𝑘𝑘 value for our study 
data was determined to be 10, and the median value of ROC AUC calculated from 
all folds was used as the result for parameter tuning. Algorithms that produced a 
feasible level of performance in the cross-validation process were then used to 
produce risk predictions from the test data set, this represented independent 
evaluation of classification performance per model. The resulting AUC scores were 
used to compare against the predicate method of the study, the results of LifeCycle™ 
risk assessment software. In addition to comparing AUC’s, TPR’s calculated at 
FPR’s of 1, 3, 5 and 8% were also compared against the predicate. The reason for 
this was to cover the relevant FPR range for prenatal screening of T21, which is 
derived from the incidence of the predicted outcome. The summary of results is listed 
in chapter 4.1, while the comprehensive description can be found in Publication I. 

3.2.2 Publication II 
Correlation and univariate analysis were conducted for the partitioned feature 
analysis dataset. In the former, all predictor variables were tested in the combinations 
of two for linear dependency. This was due to the fact highly correlated predictors 
have the same effect on the response variable (Hall, 2000). Correlations of less than 
-0.5 and more than 0.5 flagged for the removal of the other variable. By doing this, 
redundancy was removed from the data set, which should result in more stable and 
accurate modelling. The univariate analysis consisted of using LR to construct a 
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binary prediction models for all study outcomes, so that individual ORs with their 
confidence intervals of 2.5% and 97.5% and p values could be determined. The 
univariate analysis was not however used for feature selection in the case of ML, 
because it was noted that beneficial feature dependencies found and utilized by ML 
models were not necessarily detected with LR-based analysis. 

After the determination of feature variables, binary risk modelling of affected 
and unaffected in the case of PTB, late stillbirth and early stillbirth with different 
algorithms was conducted. These included LR, GBDT algorithm called LGBM (Ke, 
et al., 2017) and a two different deep fully-connected ANN, details are listed in 
Publication II.  

LGBM was chosen to represent the tree models because according to its author, 
it provided a concrete increase in execution speed without losing significant amount 
of accuracy (Ke, et al., 2017), which was relevant because of the data size of the 
study. Different TPR values at clinically significant FPR’s were experimented as an 
alternative, but they did not provide any significant improvements when compared 
to AUC. 

Two ANN models were considered. The first was a Leaky ReLU-based (Maas, 
et al., 2013) deep two-layer feed-forward ANN, referenced as the deep ANN 
henceforth, that we had previously shown in Publication I to perform in a feasible 
manner in the task of predicting risk of T21. The second one was deep four-layer 
feed-forward self-normalizing neural network, referenced as the SELU network 
henceforth. It was designed to use the scaled exponential linear units or SELU 
activation function in its hidden nodes, which the author of the SELU network has 
shown to achieve superior performance when compared to other prominent feed-
forward ANN versions (Klambauer, et al., 2017). The author of SELU network also 
suggests that architectures which are deeper produce better results, so instead of 
using two layers like in our first ANN model proposed in Publication I, four hidden 
layers were used with the SELU network. For every hidden layer, the number of 
nodes was set to be the same as the number of predictor variables, and all of the 
nodes contained the SELU activation function. 

Class-imbalance was present in the study data, so the training data set was used 
to derive class weights 𝑤𝑤 with 

 𝑤𝑤 = 𝑅𝑅/(𝑆𝑆 ∗ 𝐴𝐴(𝑦𝑦))  (17) 

where 𝑅𝑅 is number of samples, 𝑆𝑆 is the number of predicted classes and 𝐴𝐴(𝑦𝑦) is the 
frequency of said classes in data labels 𝑦𝑦. These class weights were utilized with all 
of the modelling algorithms. Cross validation was not deemed necessary with the 
substantially large independent test data set. 

Ensemble learning of the different types of models was also considered. As there 
were two ANN models which were experimented with, one of them will be chosen 
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for ensemble learning based on their individual performance. The average and 
weighted average strategies or AE and WA were experimented in order to test if 
different modelling methods with differing structures, priors and assumptions would 
complement each other and ultimately produce superior risk predictions. In AE, 
prediction probabilities of the multiple models were averaged together, creating a 
new ensemble prediction. In WA, the set of probabilities created by different models 
or 𝑦𝑦 is used with a set of predetermined weights or 𝛼𝛼 to calculate the weighted sum 
𝑦𝑦� with the formula 

 𝑦𝑦�(𝑥𝑥; 𝑈𝑈) = ∑ 𝑈𝑈𝑗𝑗𝑦𝑦𝑗𝑗(𝑥𝑥)𝑝𝑝
𝑗𝑗=1 .  (18) 

Since we didn’t possess any prior information on the optimal or even sub-optimal 
set of weights to be used, all possible weight combinations were calculated using an 
exhaustive grid search, where the objective function was to maximize AUC of the 
ensemble prediction result. From there, the most optimal set of weights would be 
selected for WA. Results summary is listed in chapter 4.2, and the comprehensive 
description can be found in Publication II. 

3.3 Data Augmentation 

3.3.1 Publication III 
For oversampling the minority class of a mixed-type data set, a variation of the 
SMOTE algorithm was used called SMOTE-Nominal Continuous or SMOTE-NC 
(Chawla, et al., 2002). Our study dataset contained continuous feature variables and 
nominal feature variables. The design of SMOTE-NC considers this by containing a 
separate logic for nominal features, which is designed to specifically penalize 
differences in nominal features. Theoretically, this should produce more precise 
synthetic features if they are nominal. SMOTE-NC was selected to be the benchmark 
in our study, as it represents the current standard. 

In order to generate synthetic observations of the affected class that take into 
account the variable-specific constrains which are present in tabular mixed-type data, 
the design of WGAN-GP was altered for this purpose. The most common application 
of GANs is image data, where one variable is in the form of a pixel. Compared to 
tabular data, a set of pixels is more straightforward to work with, since they are 
essentially continuous variables with no specific constraints. In our domain, mixed-
type data is more challenging, as it can contain both nominal and ordinal variables 
that are affected by explicit rules, for example the value of a variable should be a 
non-negative integer value. Preprocessing can also introduce rules to the data, for 
example one-hot encoding produces multidimensional representations that can have 
conditional properties. One example of this would be a stochastic vector, where the 
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representation should always add up to 1. Given enough training data, the generator 
model of a GAN will learn all of the imposed rules. However, if there is not a 
sufficient amount of data, such as in a minority oversampling situation, the rules 
affecting the data cannot be learned in a feasible manner. To overcome this problem, 
we proposed an alteration of WGAN-GP where the output layer is activation-
specific, or actGAN. 

Build upon the WGAN-GP architecture which combines gradient penalty with 
Wasserstein loss, actGAN was designed to learn and generate mixed-type data in a 
minority learning setting. In actGAN, different variable types dictate the activation 
functions of the output layer neurons in the generator model. For generating 
continuous and discrete variables, the method uses the RELU function (Agarap, 
2018) 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑈𝑈(𝑥𝑥) =  � 𝑥𝑥 if 𝑥𝑥 > 0,
0 otherwise, (19) 

Which structure guarantees that only non-negative values are produced. Binary 
variables on the other hand were created with the logistic function 

 𝐴𝐴(𝑥𝑥) = 1
1+𝑝𝑝−𝑥𝑥

 (20) 

as its output can be interpret as a binary value in a feasible manner. One-hot encoding 
representations were deemed appropriate for nominal features, they were generated 
with the softmax function (Agarap, 2018) 

 σ(𝑧𝑧)𝑝𝑝 = 𝑝𝑝𝑧𝑧𝑝𝑝
∑ 𝑝𝑝𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (21) 

where for 𝑆𝑆 = 1, … ,𝐾𝐾 and z = (z1, … , zK) ∈ ℝK . Softmax is useful in this context 
because its structure ensures that the output vector’s σ(z) elements sum is 1. 
Customizing the output layer’s activation functions made it possible to inject domain 
knowledge which is known in prior of the generated variables to the model structure, 
which enabled actGAN to achieve a better model fit when a limited amount of 
training data was available. Scaled exponential linear unit (SELU) functions that 
utilize LeCun normal weight initialization (Klambauer, et al., 2017) were used in the 
hidden layer nodes. The design of the critic network was kept simple on purpose, 
because the task of discrimination is simpler when compared to generation. Random 
noise input would be used with the finalized generator in order to generate synthetic 
observations. The generator and critic model designs are depicted in Figure 1 of 
Publication III. 

Data generation methods were compared by inspecting the added prediction 
performance they provide. This was done by choosing two different classifier models 
that would use the generated training data for the prediction task. LR which is 
commonly used in ML benchmarking and a NN -variant called the SELU network 
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were selected, the latter representing the state of the art of fully-connected feed-
forward ANN’s. During testing, hyperparameters were also tuned appropriately. 
Cost-sensitive learning was also utilized in the form of class weights due to the 
magnitude of class-imbalance found in the study data. Chapter 4.3 contains the 
summary of results, and the full description can be found in Publication III. 

3.4 Adaptive Risk Prediction System 

3.4.1 Publication IV 
When designing a method for the detection of distribution shifts, different sources 
of variance needed to be addressed. Mitigable sources of variance are usually related 
to factors related the sample measurement of biomarkers. In a clinical setting, to 
common ones are laboratory-to-laboratory, instrument-to-instrument and operator-
to-operator variance (Munson & Rodbard, 1978). In addition to this, the biochemical 
-and physical testing can be affected by temporal variance, such as seasonal effects. 
To a varying degree, these sources are addressed by the MoM procedure (Wald & 
Nicolaides, 1976), which is commonly used by clinical entities for the reduction of 
laboratory-to-laboratory variance, and thus making their results more comparable. 
However, it is not specifically designed to address temporal variance sources. If the 
population median used by the MoM procedure is updated in a regular manner, this 
can actively reduce seasonality. The MoM procedure, while applicable to any 
continuous variable, is commonly only used for biochemical -and physical 
measurements (Bishop, et al., 1993), as the standardization of the most predictive 
risk prediction features is deemed most important by most clinical entities. 

For a risk system to adapt to changes evident in the data over some period of 
time, they need to be detected first. A feasible method of detection should consider 
every feature variable, regardless of their data types. In the task of predicting risk for 
T21, used features are commonly continuous and categorical variables. For 
continuous features, testing for differences in two distributions can be done by 
inspecting the medians with a nonparametric Mood's median test (Siegel & 
Castellan, 1988). This test is more applicable for our problem when compared to 
one-way ANOVA, because the assumptions related to sample variance are more 
relaxed (Howell, 2002). Distribution shape is another aspect of the data that can be 
monitored with a nonparametric two sample Kolmogorov-Smirnov test (Stephens, 
1974) by comparing the cumulative distributions. For categorical data, Chi-square 
test of independence used to a contingency table can be utilized (Siegel & Castellan, 
1988). Our distribution shift detection method utilizes all of the three aforementioned 
tests with the feature variables of suitable data type. The method is described in Table 
3 of Publication IV. 
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The distribution shift detection method which utilizes the three tests produces a 
set of p values as a result. In order to reduce the type 1 error produced by calculating 
multiple statistical tests, the values are adjusted with the Bonferroni correction 
(Bonferroni, 1936). The resulting set of adjusted p values is then compared against 
a cutoff value, which determines their significance in terms of detecting a shift event. 
This global p value cutoff or GpVC is a tunable parameter in our method, and it 
determines how sensitive the determination of significance is. If one or more feature 
is found to have a significant shift event, the prediction system fits a candidate model 
with the currently iterated data set. At this point, it is assumed that any of the detected 
events are caused by underlying populations changes, and not from other sources 
such as equipment failure. The shift detection method is naïve in a sense it does not 
use any prior information about the data, nor does it address the clinical relevance of 
the found differences. The latter is considered later by the model updating 
mechanism in the prediction system, which is triggered by the distribution shift 
detection method. The proposed schema of the method for detection distribution 
shifts is found in Figure 2 of Publication IV. 

When a shift event is found by the detection method, the prediction system 
constructs a candidate model from the available historical data. This is done 
according to one of the data processing strategies. The cumulative strategy utilizes 
all of the available historical data during fitting, as opposed to the windowed strategy 
which limits the used training data to a certain sample of the historical data, 
determined by the data block size. These two strategies implement two different 
points in the stability-plasticity scale (Carpenter & Grossberg, 1987). The most 
stable way of conducting IL would be to use the cumulative data strategy, since all 
historical data retained.  The windowed strategy on the other hand forces plasticity 
in a form of moving training data window. Experimentation with both strategies was 
done with our proposed prediction system. 

Deep fully-connected ANN (DNN) was used as the basis of our learning system, 
and it had similar architecture as our best performing T21 risk model, proposed in 
Publication I. This was due to the demonstrated improvement of the performance in 
the T21 risk prediction task, when the comparison was done against a commercially 
used T21 algorithm implemented in the LifeCycle™ software. Within our adaptive 
risk prediction system or ARPS, the new candidate model would be compared 
performance-wise to the latest existing prediction model. The performance metric 
related to this model update rule needs to be appropriate for fitting a model with rare 
disorder screening data. In this type of data, a significant class-imbalance is 
commonly found. This is caused by the incidence of T21 in a patient population, 
which is estimated being roughly 1 in 700 (Mai, et al., 2019). Due to this, prior 
literature of this topic commonly reports TPR’s at clinically significant FPR’s, along 
with the more general ROC AUC (Obuchowski, et al., 2004). In order to represent 
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the clinically significant FPR range, the partial AUC or pAUC (Dodd & Pepe, 2003) 
of 0% to 10% FPR was selected for our ARPS performance metric. Average 
precision from a precision-recall curve (Zhang & Zhang, 2009), F1 score (Powers, 
2020) and plain AUC were also investigated initially, but they were ruled out due to 
inferior performance when compared to the selected pAUC of 0% to 10% FPR. The 
proposed ARPS is showcased in in Figure 3A of Publication IV. 

It should be noted that the first model that ARPS would generate and deploy to 
production would probably perform in a suboptimal way. This is caused by the small 
training data amount (small throughput laboratory or small data block size), or 
because that the training data simply contains a small amount of T21 cases due to its 
rare occurrence. To avoid this “cold start”, TL can be used with the ANN models. 
Existing models that are fitted to a different population or to a different clinical 
problem all together can be used as the backbone for fitting. We have proposed a 
T21 risk model published in the past, which was included in Publication I. In our 
experimentation regarding TL, this model was used as the backbone model. The 
training was done in an IL manner, where the backbone would be used for inference 
in the first time point, and then retrained in the next time points with the local data. 
It should be noted that this combination of TL and IL is similar to the research topic 
of domain adaptation (Redko, et al., 2019), where the utilization also imposes 
restrictions for the used data. For TL to function properly, the data was formatted in 
a similar way. Categorical variables needed to contain same levels, this meant that 
ethnicities of South and East Asian were recoded as Asian to attain compatible 
standardization across the two data sets. The proposed method for utilizing TL is 
showcased in Figure 3B of Publication IV, also a more complete description of our 
used model architecture is listed in the Supplementary material of Publication IV. 

The experiments in Publication IV are reported in two phases: firstly, the 
parameters relating to distribution shift detection and the two data processing 
strategies were investigated. Secondly, the evaluation of differing ARPS systems 
risk prediction performance was done. During the first phase, the relationship of data 
block sizes and GpVC values and detected distribution change events was 
investigated. This was done for both data processing strategies. In the second phase, 
these strategies and the utilization of TL were investigated, and finally evaluated 
against the predicate methods. The testing done in the second phase showcased 
which IL is more advantageous for our prediction task, a system with high stability 
or plasticity. Also, the usefulness of TL was assessed, and lastly the performance of 
the automatic ARPS was compared to see if it can match the performance of the 
predicates. It should be noted, that in our study the assumption was made that the 
outcome of the patient is available in the modelling environment at the same time as 
the predictor information. However, this is not the case when screening is conducted 
in real-life. The real patient outcome will most probably arrive to the screening lab 
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with some delay, as the entities conducting screening and providing the clinical 
outcome are usually different. If our proposed ARPS would be implemented to a 
laboratory, the detection of the distribution shifts would function similarly, while 
there would be some delay in fitting the candidate models, as this step would be 
pending for the arrival of the patient outcomes. The list of hardware and software 
libraries used to construct ARPS for this study is listed in the Supplementary material 
of Publication IV. Chapter 4.4 summarizes the results of Publication IV, which 
contains the full description of the results.  
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4 Results and Discussion 

The summary of the results for Publications I-IV are presented and elaborated on in 
this chapter. Full descriptions can be found in the corresponding publications, and 
their supplementary materials. 

4.1 Publication I 
The cross-validation procedure with the study training data was done, the results are 
highlighted in Figure 9. For Naïve Bayes, it was found that the best performance was 
achieved when Laplace smoothing was used. It was speculated that since the 
smoothing ensures that posterior probabilities never reach zero which improves the 
model’s generalization with unseen data values, and that the test set contained the 
ethnicity value of “Other / Unknown” which was not present in the training data, the 
smoothing enabled better generalization and thus better performance.  

For SVM, ANOVA kernel function (Wahba, 1990) and the penalty factor 𝐶𝐶 
(Cortes & Vapnik, 1995) were chosen for the finalized model as they presented 
superior performance with the test data set. Based on the commonly used radial basis 
kernel (Cortes & Vapnik, 1995), the ANOVA kernel has been shown to perform well 
with multi-dimensional data used for non-linear estimation (Stitson, et al., 1997), a 
result that was replicated in our experiments with our data. Figure 2A of Publication 
I highlights the findings on the hyperparameters related to the ANOVA kernel.  

It should be noted that for the feed-forward ANN, Leaky ReLU activation 
function (Maas, et al., 2013) was selected because it demonstrated better 
performance with the test data set when compared to the others. The SGD was used 
as the weight and bias optimization algorithm during fitting and learning rate 
decrease or decay was utilized. It can be seen in Figure 2C of Publication I that the 
low decay of learning rate contributed towards a favourable ROC AUC, and that if 
we increase the number of epochs iterated during fitting the model, it does not 
increase the performance in a meaningful way. In addition to this, prediction 
performance decreased with the utilization of node dropout if and only if the amount 
of dropout was set to over 50%. Also, increasing the decay of learning rate speeds 
up this phenomenon. This is highlighted in Figure 2B of Publication I. Three ANN 
model architectures were experimented with; NN1 which had a modest number of 
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hidden nodes for both layers, NN2 with substantial amount of hidden nodes while 
node dropout was used and the training was 100 epochs long, and lastly NN3 which 
was similar to NN2 but with only 20 epochs during training. The used parameters 
for the three finalized ANN models are listed in Table 2. 

 
Figure 9.  Results produced by the 10-fold cross-validation as boxplots. Median AUC values from 

training phase for KNN, Decision Tree, Naïve Bayes, SVM, NN1, NN2 and NN3 
algorithms were 0.85, 0.93, 0.97, 0.96, 0.97, 0.98 and 0.97, respectively. From 
Publication I. 

Results from the cross-validation were that the best performance was achieved with 
the ANN models; the resulting median AUCs were 0.97 or better (Figure 9). SVM 
and Naïve Bayes also produced good results with median AUCs of 0.96 and 0.97, 
but the latter had one serious outlier of 0.84 during the cross-validation. LR also 
performed adequately by producing a median AUC of 0.97, but the cross-validation 
produced an outlier of 0.89 for it. It was concluded from these results that the SVM, 
LR and NN models were used for the comparison of LifeCycle™ classification 
results in the test data evaluation phase. 

These results confirmed the previous findings where SVM and ANN models 
performed more advantageously in the domain of prenatal risk assessment when 
compared to KNN, Decision Tree and Naïve Bayes models (Uzun, et al., 2013). This 
could be because the subtle non-linear relationships between the demographic 
information and the tested biomarkers are captured in more detail. To avoid local 
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minima and overfitting during the model optimization of classification error, careful 
design of the optimization parameters and the usage of techniques such as node 
dropout for ANN’s were deemed important if not crucial while analysing data of this 
size. 

Table 2.  Used model hyperparameters and the resulting performance metrics from different 
algorithms with the test sample set, presented as AUC from ROC and TPR at one, three, 
five and eight FPR values. From Publication I. 

Algorithm Attributes 

 
TPR at 

AUC  
(CI 95%) 

1% 
FPR 

3% 
FPR 

5% 
FPR 

8% 
FPR 

LC4.0 
Population parameters 

from the SURUSS study 
0.96 

(0.94 - 0.98) 
66% 78% 85% 87% 

SVM 
ANOVA Kernel, 

sigma=0.31, C=0.057 
0.95 

(0.93 - 0.98) 
61% 75% 81% 86% 

NN1 
30-20, a=1, dec=0.1, 

ep=20 
0.95 

(0.92 - 0.98) 
68% 78% 86% 89% 

NN2 
80-70, a=1, dec=0.1, 

drop=0.5, ep=100 
0.96 

(0.94 - 0.99) 
72% 82% 85% 92% 

NN3 
80-70, a=1, dec=0.1, 

drop=0.5, ep=20 
0.96 

(0.93 - 0.98) 
78% 80% 84% 88% 

 
The results of the test data evaluation are listed in Table 2. The ANOVA SVM, LR 
and NN1 models performed slightly worse when they were compared to 
LifeCycle™, however NN1 had similar TPR’s at low FPR’s. When compared, NN2 
and NN3 models demonstrated comparable AUC values, and they also achieved 
significant improvements in TPR’s at multiple different fixed FPR cut-offs. 
Comparing different FPR results, NN2 model performed moderately better overall, 
however TPR at 1% FPR was worse. Because NN2 and NN3 differ only by how 
long the fitting was parameterized with epochs, the results would indicate that the 
number of epochs in ANN training contributed to the TPR at low FPR’s. This is then 
compensated in higher FPR’s, which ultimately results to similar results in terms of 
ROC AUC. This effect is also showcased in the ROC curve shape in Figure 3 of 
Publication I. 

The current “golden standard” model of T21 risk assessment utilizes decades 
worth of domain knowledge and multi-site studies, and they are commonly LR-based 
(Verweij, et al., 2013). While ML-based models for this domain have been proposed 
in the past (Westreich, et al., 2010; Uzun, et al., 2013; Neocleous, et al., 2016) , they 
don’t seem to be favoured by clinical entities. The speculation is that the modelling 
methods have not advanced into more involved and contemporary algorithms for 
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two reasons; firstly the interpretability of such methods is usually weaker when 
compared to commonly used LR, and the primary users of such methods are 
laboratory workers that favour straightforward solutions in general. The second 
reason is that these new methods can be thought of having miniscule improvement 
in prediction performance. In our study, this is related to the primary limiting factor 
of relatively small number of observations. The benefit of utilizing deep learning 
algorithms is fully manifested only when sufficiently large training data set is used. 
However, the results we produced indicate that even with a limited data set, one can 
fit an ML model that is either on par or superior to the current “golden standard”. 

Experimentation also revealed that the number of hidden layers mattered more 
when compared to the number of nodes within one layer. There is prior literature 
that supports this claim (Chiu, et al., 1996).  The biggest improvement was from 
advancing from one hidden layer to two. The ANN structure should be re-
investigated when new predictor variables are added, for example in the case of the 
discovery of a new predictive biomarker. ANN experimentation should also be 
present during this discovery work, as biomarkers that might not initially appear 
useful or predictive when analysed with traditional methods can be beneficial with 
ANN fitting. 

While prediction of T21 with the information from the combined test is fairly 
optimized to a point of saturation, improving FPR while maintaining the “golden 
standard” TPR has relevance. Small improvements in population screening can 
produce significant cost savings for the clinical entity involved. An example of this 
would be that in a hospital with 30,000 annual prenatal screens, reducing FPR from 
3% to 1% with our method would mean 600 fewer unnecessary invasive procedures, 
which amounts to roughly 450000€ in saved costs when using numbers from (Chitty, 
et al., 2016). Future work relating to T21 ML models would include developing 
intuitive explainability methods for clinicians to use, and adding new biomarkers as 
more predictor variables would support the usage of deep learning algorithms even 
further. This way predictive performance in a prenatal screening program could be 
improved while the overall cost would be kept minimal. 

4.2 Publication II 
From the proposed feature variables, mother’s BMI was selected overweight with 
the results from correlation analysis. The utilization of assisted reproductive 
technology or ART and infertility drugs were correlated to infertility treatment, this 
is straightforward as they are alternative forms of this type of treatment. Other 
significant correlations, i.e. less than − 0.5 or more than 0.5, were not found. 

The univariate analysis revealed that for the prediction of early stillbirth with the 
selected variables, 18 out of the total 26 had a statistically significant OR’s. Table 4 
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of Publication II demonstrates that these variables with notable OR’s were risk 
factors, along with ART, infertility treatment and marital status. For late stillbirth, 
the analysis showed that 14 variables out of the total had a statistically significant 
OR. Notable significant feature variables were also risk factors, along with ART, 
infertility treatment and marital status. For the prediction of PTB, the infection status 
of Hepatitis B was the only one not found to be statistically significant. Same 
variables with notable OR were found when compared to the two other outcomes, 
but it seems that infections have a bigger association in predicting PTB. This was to 
be expected, as infectious diseases are associated with about 25%-30% of the 
preterm pregnancy cases (Goldenberg, et al., 2008). Our results have a similar 
conclusion, as every infectious disease other than Hepatitis B became statistically 
significant with PTB and no other outcomes. It should also be noted that the level of 
education had a positive effect of lowering the calculated risk, this was evident for 
all of the three adverse outcomes. The finalized variable sets that were used in the 
risk prediction phase are highlighted in Table 4 of Publication II. 

The risk prediction performance of the used models was most promising with 
early stillbirth; LGBM and SELU network models both achieved 0.75 and 0.76 
AUC, which was better when compared to LR and deep ANN, however SELU 
network had slightly better TPR at 10% FPR. With the external NYC dataset, the 
performance of the different models was similar. Late stillbirth prediction produced 
the worst results of the three outcomes. From them, LGBM produced the best result 
of 0.60 and 0.61 for CDC and NYC data. Lastly, PTB classification results were 
from in between: LGBM and SELU network both produced 0.64 and 0.67 AUC’s. 
The complete listing of results can be found in Tables 5 and 6 of Publication II. 

Out of the two ANN models, the SELU network performed better when 
compared to the deep ANN in each of the experiments. As the purpose of using 
ensemble learning was to have a diverse set of different algorithms that could 
potentially complement each other, SELU network was chosen to represent ANN 
models over the deep ANN. AE achieved similar performance when compared to the 
best models for PTB and early stillbirth classification, in both datasets. The best 
AUC for late stillbirth was 0.63, and the 10% TPR was the same as the best 
individual model. Rest of the related results are listed in Tables 5 and 6 of Publication 
II. 

Similarly to AE, WA ensemble reached similar performance when compared to 
the best performing models, but it achieved it for all outcomes with CDC data. 
Differing results were achieved in late stillbirth prediction, as the WA ensemble 
produced a noteworthy TPR increase of 26% at 10% FPR, when the second best TPR 
for this FPR was 22%, which was created by the LGBM model. For this ensemble, 
the used weights used were 0.0 for LR, 0.2 for SELU network and 0.8 for LGBM. 
The results of both ensemble methods would indicate that ensemble learning 
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provided significant increase in predicting late stillbirth, however it was the only 
outcome that was improved upon. This can also be seen from the weight grid search 
experiments in Figure 3 of Publication II, as it demonstrates to being the only 
outcome that showed some effect when different weights were iterated, while models 
for PTB and early stillbirth were mostly unresponsive. Tables 5 and 6 of Publication 
II contain the full listing of results. 

The SELU network used did not show any improvements in prediction 
performance after adding more hidden layers beyond four. This result contradicted 
the conclusions provided by the authors of the SELU method (Klambauer, et al., 
2017). Also, it elaborated on the ANN results of Publication I by demonstrating that 
an ANN’s deepness can be increased to a point of saturation. Therefore, one should 
iteratively design the network architecture by assessing the prediction task at hand. 

Our study findings further establish the role of ML models as methods that can 
achieve improved risk prediction performance over more conventional LR. The main 
limitations in the study were that the study population was limited to US citizens, 
and the inability to assess data quality and integrity due to the nature of data released 
by NYC and CDC. Errors in data entry and other random artefacts can be present in 
the study data, however the size of the data sets should reduce these types of errors 
to insignificant levels.  

Ensemble of three different ML methods achieved on par results or results with 
minor improvements. The biggest effect of improving TPR at 10% FPR for late 
stillbirth with WA ensemble could not be replicated for other outcomes, however the 
improvement was similar within the CDC and NYC data. This finding suggests that 
the improvement was task-specific, so future work would include investigating the 
possibility of using WA ensemble of ML models for other prenatal outcomes to gain 
additional prediction performance from existing predictor variables.  

4.3 Publication III 
Six different combinations were used with the evaluation dataset, the prediction 
results are showcased in Table 3. Comparing the benchmark models side by side, LR 
was able to achieve better performance over the SELU network. The utilization of 
SMOTE-NC was reduced to no utilization at all during the optimization of SMOTE-
NC and LR, this explains why it produced identical performance to LR. SMOTE-
NC combined with SELU network was able to improve performance over the SELU 
network regarding some of the metrics, while decreasing the others. actGAN 
combined with LR produced similar conflicting results. This can be seen as a drop 
in TPR at higher FPRs, shown in Figure 3 of Publication III. actGAN combined 
SELU network was able to improve all of the four metrics when compared to plain 
SELU network, and it produced the best performance of the whole experiment. Table 
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2 of the Supplementary material of Publication III showcases variable importance 
results of the classifiers.  

Table 3.  Model results calculated with the evaluation data set. TPR’s at clinically significant FPRs 
are presented, along with ROC AUC. Models without training data oversampling are 
presented and models that utilized either SMOTE-NC or actGAN oversampling. From 
Publication III. 

Name AUC 
(CI 95%) 

TPR at 
1% FPR 

TPR at 
3% FPR 

TPR at 
5% FPR 

LR 0.688 
(0.620 - 0.756) 9% 16% 20% 

SELU Network 0.659 
(0.590 - 0.728) 7% 16% 20% 

SMOTE-NC & LR 0.688 
(0.620 - 0.756) 9% 16% 20% 

SMOTE-NC & 
SELU 

0.663 
(0.594 - 0.733) 6% 17% 23% 

actGAN & LR 0.637 
(0.562 - 0.712) 9% 16% 24% 

actGAN & SELU 0.704 
(0.635 - 0.772) 9% 23% 27% 

 

Applying more intricate modelling-based minority oversampling techniques to vital 
statistics data or prenatal screening data can be effortful simply because of the 
restricted amount of affected data available, and mixed-type data to be modelled. 
This can be demonstrated with SMOTE-NC, which results imply that it could 
produce improved TPR’s at specific FPR’s while decreasing it at others. Our 
proposed actGAN produced more robust results when paired with the SELU network 
classifier, performance with LR was mixed. actGAN generator network was 
optimized during the Bayesian hyperparameter optimization to be more complex 
when paired with SELU network as opposed to LR, this result implies that the 
generator network architecture needs to reflect the complexity of the used classifier 
method in order for any beneficial performance to manifest. Compared to SMOTE-
NC, the activation-specific output layer of actGAN mostly outperformed the nominal 
mechanism of SMOTE-NC with both classifier methods. 

The limitations of the study are related to the data set used. Similarly as in 
Publication II, due to the release method the quality and integrity of the data cannot 
be assessed by external entities. Also, the study population was limited to US citizens 
which were recorded by the NYC health system at the time. This means that the 
generalizability of actGAN is not exhaustively investigated. This would be the topic 
for future work. 

The applicability of actGAN to any probabilistic modelling task where rare 
conditions are predicted is the method’s biggest upside. By utilizing domain 
knowledge to improve the modelling of a minority class, any prenatal screening risk 
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assessment model can potentially be improved upon without adding more data, along 
with clinical models from other domains. This is especially beneficial with rare 
disorders, as gathering data from rare occurrences is problematic. 

4.4 Publication IV 
In phase one of the study, the method for detecting distribution shifts was 
experimented with a range of data block sizes. All the different values represented 
different durations of time which were estimated from laboratory sample throughput. 
GpVC was also iterated over a value range, to see the effect of the sensitivity of 
significance determination to the overall shifts detected. These two parameters were 
plotted as heatmap coordinates, shown in Figure 10. The plot shows the resulting 
amounts of distribution shift events that each parameter pair produces. 

 
Figure 10. The resulting distribution shifts of the windowed (10A) and cumulative strategies (10B). 

Number of shift triggers is visualized for data block size and GpVC value ranges. From 
Publication IV. 
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From Figure 10, it can be seen that with both cumulative and windowed data 
strategies, the amount of shifts increases when the GpVC or cutoff for significance 
is increased, this was to be expected as the required level for significance gets more 
lenient. The results show that from the two parameters, data block size is more 
important to the number of detected events. This was true with both data strategies. 
This is also to be expected, as the maximum number of possible events increases. 
Biggest difference in the two strategies was within the block size of 1000 and 3000 
observations, where number of detected events with the 2-block windowed strategy 
was significantly smaller with any GpVC. The complete listing of the results can be 
found in the Supplementary material of Publication IV.  

Results from phase one indicated that the number of detection events from two 
data processing strategies can differ, given different parameters. What strategy to 
use and if TL was used or not formulated into four candidate system designs: 
cumulative strategy with and without TL, and windowed strategy with and without 
TL. The four systems were all tested to process the whole study data, and all data 
block size and GpVC value combination were investigated. Complete results of this 
are listed in the Supplementary material of Publication IV. Data block of 1000 and 
GpVC of 0.05 were investigated in more detail, as it highlighted the differences 
between the windowed and the cumulative strategies. The four predicate system’s 
AUC performance at each data block were investigated and then evaluated against 
the predicate methods. Comparison to our published deep ANN model would 
showcase if TL would be beneficial, and comparison against the laboratory’s routine 
screening method would demonstrate if IL would be stable enough to be used. The 
latter would also showcase if the automated system could reach similar clinically 
acceptable performance automatically. These results are plotted in Figure 5 of 
Publication IV. It demonstrates that TL gives the candidate systems the ability to 
give feasible predictions during the initial phases of operation. Without TL, the 
results show that the candidate system using cumulative data strategy requires a 
substantial amount of training data for producing similar performance when 
compared to the predicates. The plot also shows the volatility of the windowed 
strategy without TL. 

If we calculate ROC curves over the whole study data, we can compare the 
performance of the predicates and candidates across the whole time span. These 
results are listed in Table 4. 
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Table 4.  Predicate and candidate system performance metrics calculated over the whole study 
data. ROC AUC, its bootstrapped 95% confidence interval and TPRs of 5% and 10% 
FPR are shown. The best performing candidate system is highlighted in bold. From 
Publication IV. 

 AUC  
(CI 95%) 

TPR at  
5% FPR 

TPR at  
10% FPR Predicates 

Screening lab 
algorithm 0.98 (0.98 - 0.99) 91% 95% 

2018 published model 0.96 (0.95 - 0.97) 79% 87% 
Candidates    

Cumulative system 0.92 (0.89 - 0.94) 77% 81% 
Cumulative system 

with TL 0.90 (0.88 - 0.92) 71% 77% 

Windowed system 0.89 (0.87 - 0.91) 61% 68% 
Windowed system with 

TL 0.96 (0.95 - 0.97) 82% 90% 

 
Compared to our previously published deep ANN model in Publication I that was 
the TL backbone, the windowed TL system managed to slightly improve the 
prediction performance with the study data. This would indicate that TL combined 
with windowed IL is beneficial, while TL with cumulative data strategy was 
unfavourable. Also when we compare systems without TL, it can be seen that they 
performed poorly compared to the deep ANN of Publication I. Our results also 
indicate that the screening lab algorithm performs as previously reported (Leung, et 
al., 2009). 

The deployment of an automated adaptive system such as what we experimented 
with in this study requires thoughtful examination of the used parameters relating to 
how the distribution shift detection and model updating behave. As the shift 
detection was parameterized for our application, the sensitivity of the detection needs 
to be adjusted for the specific task and environment. In addition to this, data block 
determination should be done according to a screening lab’s throughput, while taking 
into account the minimum required amount of data for deploying any type of risk 
modelling to a clinical setting. Also, the performance metric which drives the model 
updating procedure should be decided accordingly with the prediction task at hand. 
For the prediction task of T21, the pAUC of 0% to 10% FPR was tested to produce 
the best overall performance with our study data. 

Our empirical testing shows that if we use our proposed method for the detection 
of distribution shifts where model fitting is based on differences found from data 
over time, the window strategy provides an alternative to fitting models while 
cumulating training data which is less computationally expensive. We demonstrated 
that TL could leverage models fitted with other patient populations as a starting point 
for adapting to a local population over time. Our proposed ARPS can achieve this 
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adaptation over time in a clinically significant way. Also, it is not limited to T21 
prediction, as any clinical probabilistic screening model used in a lab could benefit 
from it. It is also possible to extend ARPS to include actGAN synthetization for 
added performance, or the utilization of Shapley additive explanations or SHAP 
values (Lundberg & Lee, 2017) could be added to improve model transparency, and 
possibly explain in great detail the differences between models generated within 
ARPS. Causal representation learning has been recently proposed to address domain 
adaptation (Schölkopf, et al., 2021), this framework could also be integrated to 
ARPS in the future. 

Generalizability of the proposed method is the main limitation in this study. The 
data set used in the study is exceptionally large, however it contains a specific patient 
population. Collecting a data set from another population of equal proportions and 
evaluating ARPS with this external data set would be the emphasis of future work. 
Also, implementations to other prenatal outcomes such as stillbirth and preterm birth 
could be investigated. 

The assessment of the study is that IL and TL are at the maturity level where 
they can be used for in clinical risk assessment in a robust way. ARPS could 
potentially enable a screening laboratory to start their operation with an existing 
prediction model that has been fitted to a different population, or to a similar but 
different clinical risk prediction task, and over time fit or adapt to their local patient 
population, and improve the risk assessment accuracy of the affected cases. Rare 
disorders that have not been feasible to build prediction models for in the past could 
now be within reach, as similar and more common disorder models could be used as 
a backbone with TL. This was also experimented in our study for Trisomy 13 and 18 
(Lakovschek, et al., 2011), where a system using our published T21 model was used 
as the backbone with TL. The results showed improved prediction performance over 
the model fitting without TL, and they can be found in the Supplementary material 
of Publication IV. By designing our adaptive system to be built on concepts that are 
familiar to clinical practitioners, we believe ARPS has the potential to introduce 
more involved risk assessment to clinical screening situations in general, while 
utilizing a complex ANN-based system. 
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5 Conclusions 

Risk prediction for the adverse outcomes of pregnancy is a clinical domain where 
probabilistic modelling is utilized. Different entities relating to risk prediction of 
adverse outcomes of pregnancy have their own use cases and goals for the modelling 
methods they utilize. More classical statistical techniques used are selected for their 
prediction performance and explainability, as they are more easily monitored and 
regulated. More intricate modelling techniques such as artificial neural networks are 
commonly not considered, as their explainability is not as good, and the added 
benefit hasn’t been investigated thoroughly in prior literature. 

In this thesis, methods that could improve the existing risk prediction of adverse 
outcomes of pregnancy were investigated. This included the evaluation of the 
applicability of ML methods to be used by the centralized screening labs and 
clinicians in a hospital environment, and the proposal of novel methods which 
address some of the key modelling obstacles during development by researchers and 
manufacturers. In addition to this, increasing automation related to risk model usage 
in a screening lab was also investigated. Clinical significance was the driving factor 
in all of the studies. Pregnancy-related outcomes such as Trisomy 21 or Down 
syndrome, Trisomy 13 & 18, stillbirth and preterm birth were investigated. The 
primary goal of this thesis was to consider all entities in the clinical analysis 
workflow and provide novel methods and applications which could be implemented 
and used routinely in the real world. 

ML has the capability to improve risk prediction modelling in multiple ways; 
maintaining the clinically sufficient true positive rate while reducing false positive 
rate in a screening situation, improving the current modelling results by generating 
synthetic affected observations to learn from, and providing more autonomy to 
model updating processes. 
 
Based on the original publications I-IV, the main conclusions of the thesis are: 
 
I&II: ML methods can improve the existing performance of risk prediction for 

adverse outcomes of pregnancy. This was demonstrated also with T21 or 
Down syndrome, where the current standard of prediction performance is 
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considerably high. The amount and complexity of the data gathered which 
relate to pregnancy will probably increase over time, and in order to match 
this growth the related analysis methods need to be scalable and efficient. This 
can also mean utilizing ensemble learning of different modelling techniques. 

 
I&II: In terms of the architecture of a fully-connected feedforward artificial neural 

network, 2 to 4 hidden layers is appropriate for the domain of prenatal risk 
prediction. This finding reflects on the complexity of the data commonly used 
in this context. 

 
III:  Screening data is heavily imbalanced in terms of affected and unaffected 

classes; this is caused by the rare incidence of the affected outcomes. 
Probabilistic modelling from this type of data can be challenging, as one of 
the predicted classes is not well represented in the data. To combat this 
modelling problem, our proposed synthetic minority oversampling method 
actGAN could be used to mitigate it.  

 
IV:  Prenatal screening in a laboratory environment requires extensive knowledge 

of the local patient population and statistical expertise. This includes 
improvements and updates of the used risk algorithms. Autonomous 
adaptation of a risk model which is computationally efficient within a 
laboratory environment is feasible with our proposed ARPS architecture, 
which could improve existing screening strategies in general. 

 
The digitalization of healthcare will affect the processes and technologies related to 
detecting adverse outcomes of pregnancy in the future. More data is collected and 
processed, which means that more relevant information can be incorporated into the 
prediction step (Gil, et al., 2015). Methods that scale sufficiently with this 
phenomenon are needed, and ANN-based methods seem to provide the necessary 
capabilities for this. They can also enable better utilization of routinely generated 
data of rare disorders. These benefits can be the necessary advancement needed for 
achieving clinically significant performance of a prediction model for an outcome, 
so that it can be implemented for routine clinical use, when no alternative is 
available.  

To conclude, the clinical analysis workflow related to risk prediction of adverse 
outcomes of pregnancy could potentially benefit from various ML methods 
presented in original publications I-IV. 
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